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Preface

The symposium Operations Research 2007 was held from September
5-7, 2007 at the Saarland University in Saarbrücken. This international
conference is at the same time the annual meeting of the German Op-
erations Research Society (GOR).

The transition in Germany (and many other countries in Europe)
from a production orientation to a service society combined with a
continuous demographic change generated a need for intensified Oper-
ations Research activities in this area. On that account this conference
has been devoted to the role of Operations Research in the service
industry. The links to Operations Research are manifold and include
many different topics which are particularly emphasized in scientific
sections of OR 2007.

More than 420 participants from 30 countries made this event
very international and successful. The program consisted of three ple-
nary, eleven semi-plenary and more than 300 contributed presentations,
which had been organized in 18 sections. During the conference, the
GOR Dissertation and Diploma Prizes were awarded. We congratulate
all winners, especially Professor Wolfgang Domschke from the Darm-
stadt University of Technology, on receiving the GOR Scientific Prize
Award.

Due to a limited number of pages available for the proceedings vol-
ume and the ambition to compile only high quality papers, the length
of each contribution as well as the total number of accepted papers had
to be restricted. Submitted manuscripts have therefore been reviewed
by the section chairs and 77 of them have been accepted for publi-
cation. These contributions represent a wide portfolio chosen from the
comprehensive spectrum of Operations Research in theoretical research
as well as practical experience. We would like to thank all participants
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of the conference for submitting high quality manuscripts for the pro-
ceedings. Our thanks also go to the section chairs for their support in
acquiring interesting contributions and their reviewing work.

Various persons and organizations contributed to the great success
of the conference. We would like to thank the GOR-board and Bärbel
Niedzwetzki from the GOR administrative office for the uncomplicated
and constructive collaboration as well as our sponsors for their support.
Our thanks also go to the members of the program and organization
committees of the congress. Furthermore, we are grateful to all speakers
from Germany and from all over the world for their active participa-
tion and to the section chairs as well as to the session chairs for their
professional moderation of the interesting talks and discussions.

Moreover, we express our special thanks to Dipl.-Kffr. Ursula-Anna
Schmidt, Dipl.-Math. oec. Sebastian Velten, Dipl.-Kfm. Hans-Peter
Ziegler, and Karin Hunsicker for their excellent job before, during and
after the congress. Finally, we would like to thank Stefanie Schweitzer
and Lisa Scheer for their help in compiling this proceedings volume as
well as Barbara Feß and Barbara Karg from Springer-Verlag for their
support concerning its publication.

Saarbrücken, Jörg Kalcsics
December 2007 Stefan Nickel
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Retail, Revenue and Pricing Management
Spinler (HHL Leipzig)

Scheduling and Project Management
Pesch (U Siegen)

Simulation, System Dynamics and Dynamic Modelling
Furmans (U Karlsruhe)

Supply Chain Management and Traffic
Stadtler (U Hamburg), Haase (TU Dresden)

Software
Kalcsics (U Saarbrücken)



Contents

Part I Dissertation Award Winners

Expected Additive Time-Separable Utility Maximizing
Capacity Control in Revenue Management
Christiane Barz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Routing and Capacity Optimization for IP Networks
Andreas Bley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Coping with Incomplete Information in Scheduling –
Stochastic and Online Models
Nicole Megow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Availability and Performance Analysis of Stochastic
Networks with Unreliable Nodes
Cornelia Wichelhaus nee Sauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Part II Diploma Award Winners

Heuristics of the Branch-Cut-and-Price-Framework
SCIP
Timo Berthold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Forecasting Optimization Model of the U.S. Coal,
Energy and Emission Markets
Jan-Hendrik Jagla, Lutz Westermann . . . . . . . . . . . . . . . . . . . . . . . . 37

Optimal Control Strategies for Incoming Inspection
Stefan Nickel, Sebastian Velten, Hans-Peter Ziegler . . . . . . . . . . . . . 43

´



XII Contents

An Extensive Tabu Search Algorithm for Solving the
Lot Streaming Problem in a Job Shop Environment
Liji Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Part III Applied Probability and Stochastic Programming

Optimizing Consumption and Investment: The Case of
Partial Information
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Expected Additive Time-Separable Utility
Maximizing Capacity Control in Revenue

Management

Christiane Barz

Graduate School of Business, University of Chicago
christiane.barz@gsbchicago.edu

Summary. We briefly discuss the static capacity control problem from the
perspective of an expected utility maximizing decision-maker with an additive
time-separable utility function. Differences to the expected revenue maximiz-
ing case are demonstrated by means of an example.

Within the last two decades, revenue management – the control of
product availability and pricing decisions in order to maximize revenue
– has spread in both theory and practice. More and more industries
adopted revenue management practices, new models have been studied
extensively, structural properties of the optimal control policy have
been proven, heuristics have been promoted, and various extensions
and alternatives have been suggested (for a review see [5]). Even in the
latest literature on revenue management, however, expected revenue is
the most widespread optimality criterion in use.

The assumption that different alternatives are evaluated solely by
expected values is a standard assumption and justified e.g. if the com-
pany repeats the same decision problem over thousands of instances.
But today more and more industries with sometimes only very few rep-
etitions are adopting revenue management practices. In applications,
where a single poor realization can have a major impact on the finan-
cial condition of the business, risk-averse approaches might need to
be considered. Failing to suggest mechanisms for reducing unfavorable
revenue levels, traditional risk-neutral revenue management models fall
short of meeting the needs of a risk-averse planner.

Since the assumption of an additive time-separable utility function is
the one most frequently used in combination with Markov decision pro-
cesses, we will briefly discuss the implications of this preference struc-
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ture on an optimal capacity control policy. We start with a brief review
of the static capacity control problem in Sect. 1. Then, we reformulate
this decision problem from the perspective of a (risk-averse) expected
utility maximizing decision maker in Sect. 2. The effect of this new
perspective on an optimal decision policy is demonstrated by means
of an example. In particular, we critically discuss the special structure
of temporal and risk preferences imposed in Sect. 3. For simplicity, we
will stick to the terminology of the airline industry throughout.

The papers by [6] and [2] also introduce risk-aversion into the ca-
pacity control formulation and are hence closest to our analysis. The
underlying preference structures are, however, different from our ap-
proach. See [1] for a more comprehensive literature review and an in-
depth discussion of optimal capacity control from the perspective of an
expected utility maximizing decision-maker.

1 The Static Capacity Control Model

The very basic single-leg static capacity control model considers a non-
stop flight of an airplane with a capacity of C seats that is to depart
after a certain time. There are imax (imax ∈ N) booking classes with
positive fares ordered according to ρ1 ≥ ρ2 ≥ · · · ≥ ρimax . Demand
for the different booking classes arrives in a strict low-to-high fare or-
der. Total demands for the booking classes 1, . . . , imax are assumed to
be independent discrete random variables D1, . . . ,Dimax with outcomes
d ∈ {0, . . . , dmax}. Neither cancelations nor no-shows are allowed.

At the time the total demand of a booking class is known, the
decision-maker has to determine the amount of demand to be accepted,
i.e. the number of seats that should be sold. Traditionally, the decision-
maker aims at maximizing the expected revenue of a flight.

1.1 The Underlying MDP

The objective of finding a policy maximizing the expected revenue can
be reduced to solving the optimality equation of a finite stage Markov
decision model MDP (imax,X,A, pi, ri, V0) with planning horizon imax,
state space X = {(c, d) ∈ Z × N0 | c ≤ C, d ≤ dmax}, where we refer
to c as the remaining capacity and to d as the demand observed for
the actual booking class, set A(c, d) = {0, . . . , d} of admissible actions
in state (c, d), transition law pi for i = imax, imax − 1, . . . , 1 such that
pi((c, d), a, (c − a, d′)) = P (Di−1 = d′) and 0 otherwise, one-stage re-
wards ri((c, d), a) = aρi, and terminal reward V0((c, d)) = 0 for c ≥ 0
and V0((c, d)) = ρ̄c for c < 0 with ρ̄ > maxi{ρi}.
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A (Markov) policy π = (fimax , fimax−1, . . . , f1) is then defined as a
sequence of decision rules fi specifying the action a = fi(c, d) to be
taken at stage i in state (c, d). Let Π denote the set of all policies and
(Ximax ,Ximax−1, . . . ,X0) the state process of the MDP . In addition,
introduce for all (c, d) ∈ X

V ∗(c, d) = max
π∈Π

Eπ

[
imax∑
i=1

ri(Xi, fi(Xi)) + V0(X0) | Ximax = (c, d)

]
(1)

to be the maximum expected revenue.
For all booking classes i, given the residual capacity c and demand d,

the decision-maker is interested in the number a = fi(c, d) ∈ {0, . . . , d}
of seats that should be sold in order to achieve the maximum expected
revenue V ∗.

It is well-known that V ∗ ≡ Vimax is the unique solution to the opti-
mality equation

Vi(c, d) = max
a=0,...,d

{
aρi +

dmax∑
d′=0

P (Di−1 = d′)Vi−1(c− a, d′)

}
, (2)

which can be obtained for i = 1, . . . , imax by backward induction start-
ing with V0. Every policy π∗ that is formed by actions a∗ = f∗

i (c, d)
each maximizing the right hand side of (2) is optimal, i.e. leads to V ∗.

1.2 Structural Results

Many authors have shown that the structure of an optimal policy for
this static model is as follows (see e.g. [5, pp. 36–40]):

Theorem 1. For the static problem there exists an optimal policy π∗ =
(f∗

imax
, f∗

imax−1, . . . , f
∗
1 ) such that

f∗
i (c, d) =

{
min{d, c− y∗i−1} c > y∗i−1

0 c ≤ y∗i−1 ,

with protection levels y∗i−1 = max{c ∈ {0, . . . , (i − 1)dmax} : ρi <∑dmax
d′=0 P (Di−1 = d′) [Vi−1(c)− Vi−1(c− 1)]}. Optimal protection levels

are increasing in i, i.e. y∗imax−1 ≥ y∗imax−2 ≥ . . . ≥ y∗1 ≥ y∗0 = 0.

Given d requests from customer class i = 1, . . . , imax, a non-negative
number of y∗i−1 seats (the so-called protection level of class i − 1) is
reserved for future demand of classes i− 1, . . . , 1. The protection levels
y∗i−1 are lower for higher value demand.
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2 Maximizing Additive Time-Separable Expected Utility

In his definition of Markov decision processes, Rust explicitly assumes
that the decision-maker has a utility function that is additively separa-
ble, since other structures are “computationally intractable for solving
all but the smallest problems”[4, p. 630].

So assume that the one-stage rewards ri(Xi, fi(Xi)) and the ter-
minal reward V0(X0) are transformed by increasing and concave von
Neumann-Morgenstern utility functions ui and u0 with ui(0) = u0(0) =
0. We refer to the textbook of [3] for a general introduction to expected
utility theory.

2.1 The Underlying MDP

Suppose that the decision-maker is interested in finding

V u∗(c, d)= max
π∈Π

Eπ

[ imax∑
i=1

ui(ri(Xi, fi(Xi))) + u0(V0(X0))|Ximax= (c, d)
]
,

the maximum expected (additive time-separable) utility starting with
capacity c given d requests from class imax over all policies π ∈ Π.

Then, V u∗ ≡ V u
imax

is the unique solution of the optimality equations

V u
i (c, d) = max

a=0,...,d

{
ui(aρi) +

dmax∑
d′=0

P (Di−1 = d′)V u
i−1(c− a, d)

}
(3)

with terminal reward V u
0 (c, d) = u0(V0(c, d)) = 0 for all c ≥ 0 and

V u
0 (c, d) = u0(V0(c, d)) = cρ̄u for all c < 0, where ρ̄u is sufficiently large

to prevent overbooking, i.e. ρ̄u > maxi=1,...,imax ui(ρ1). Each policy πu∗

formed by actions au∗ = fu∗
i (c, d) each maximizing the right hand side

of (3) leads to V u∗. We will call such a policy πu∗ utility-optimal.

2.2 Structural Results

V u∗ can be proven to be increasing and concave in c. In particular, the
following theorem holds, see [1] for a proof.

Theorem 2. Assume a decision-maker who maximizes expected addi-
tive time-separable utility with increasing and concave one-stage utility
functions ui. There then exists an utility-optimal policy
πu∗ = (fu∗

N , fu∗
N−1, . . . , f

u∗
1 ) for the static capacity control problem such

that
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fu∗
i (c, d) =

{
min{d, c − yu∗

i−1(c)} c > yu∗
i−1(c)

0 c ≤ yu∗
i−1(c) ,

with capacity dependent controls yu∗
i−1(c) = max{y ∈ {0, . . . , (i −

1)dmax} : ui ((c− y + 1)ρi) − ui ((c− y)ρi) <
∑dmax

d′=0 P (Di−1 = d′)
[Vi−1(y)− Vi−1(y − 1)]} and yu∗

0 (c) = 0. In addition, for all i and c,
0 ≤ yu∗

i−1(c + 1)− yu∗
i−1(c) ≤ 1.

Note that given a decision-maker with additive time-separable util-
ity function, there need not exist an utility-optimal policy that can be
described in terms of (capacity-independent) protection levels for the
static capacity control model. One can think of this as a consequence of
the additive time-separable utility function that is composed of concave
one-stage utility functions. The concavity of u induces intertemporal
preferences and risk-aversion at the same time. The concave utility
functions impose a preference for a smooth income stream over time
and destroy the structure known from the expected revenue maximizing
setting.

2.3 A Numerical Example

Given a total capacity of C = 50, seats are sold in imax = 4 booking
classes at fares ρ1 = 1000, ρ2 = 101, ρ3 = 100, and ρ4 = 10. The total
demand at each stage i = 1, . . . , 4 is assumed to be i.i.d. with P (Di =
d) = 0.2 for d = 0, 1, 2; P (Di = d) = 0.1 for d = 3, 4; P (Di = d) = 0.05
for d = 5; and P (Di = d) = 0.01 for d = 6, . . . , 20. The optimal risk-
neutral protection levels are y∗1 = y∗2 = 0 and y∗3 = 18. In line with the
results of Theorem 1, these controls are independent of c and increasing
in the booking class i.

For an expected utility maximizing decision-maker with exponential
one-stage utility function ui(w) = 1− exp(−0.05w) for all i = 0, . . . , 4,
controls of yu∗

1 (c) = 0 for all c are still preferred. The number of seats
that should be protected for classes 2 and 3, however, depends on the
number of seats available at the corresponding stage. Figure 1 shows a
plot of the utility-optimal controls yu∗

2 (c) and yu∗
3 (c). The controls of

booking class 2 are plotted in gray, the controls of class 3 are white, and
dotted columns indicate that both are equal. Although it is obvious that
the add-optimal controls depend on c, it can be seen that they never
increase by more than 1. In addition, they need not be monotone in
the booking class. In this example, yu∗

2 (c) is larger than yu∗
3 (c) for small

values of c. They are equal for values of 38 ≤ c ≤ 41. For higher values
of c, the control yu∗

3 (c) is larger than yu∗
2 (c).
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Fig. 1. Capacity dependent controls for classes 2 and 3 of an utility-optimal
policy given exponential one-stage utility functions with γ = 0.05

3 Conclusion

Many applications might challenge the assumptions underlying ex-
pected additive time-separable utility maximization in a risk-averse
context (despite of its analytical tractability).

In the static model, the periods might be so short that temporal
preferences seem unlikely. Sometimes, different booking classes might
even be open at the same time, and the protection levels determined
by the static model are used simultaneously as a worst-case heuristic
(because the order of arrival is the least preferred). Additive time-
separable utility functions are inappropriate in these cases.

In this spirit, one could think of a decision-maker with a utility func-
tion that evaluates the total revenue gained independent of the timing
within the booking horizon. Capacity control from the perspective of
such a decision-maker is discussed e.g. in [1] and [2].

References

1. Barz C (2007) Risk-averse capacity control in revenue management. Lec-
ture notes in economics and mathematical systems, Vol. 597, Springer,
Berlin Heidelberg New York

2. Barz C, Waldmann K-H (2007) Risk-sensitive capacity control in revenue
management. Mathematical Methods of Operations Research 65: 565–579

3. Gollier C (2001) The economics of risk and time. MIT Press, Cambridge
4. Rust J (1996) Numerical dynamic programming in economics. In: Am-

man, HM, Kendrick, DA, Rust, J (eds) Handbook of computational Eco-
nomics. Elsevier, Amsterdam: 619–729

5. Talluri KT, van Ryzin GJ (2004) The theory and practice of revenue
management. Kluwer, Boston

6. Weatherford LR (2004) EMSR versus EMSU: revenue or utility? Journal
of Revenue and Pricing Management 3: 277–284



Routing and Capacity Optimization for IP
Networks

Andreas Bley

Konrad-Zuse-Zentrum für Informationstechnik, Takustr. 7, 14195 Berlin,
Germany. bley@zib.de

The world-wide Internet is a huge, virtual network comprised of more
than 13, 000 distinct networks, which all rely on the Internet Proto-
col (IP) for data transmission. Shortest path routing protocol such as
OSPF or IS-IS control the traffic flow within most of these networks.
The network administrator can manage the routing in these networks
only by supplying a so-called routing metric, which specifies the link
lengths (or routing weights) used in the shortest path computation.

The simplicity of this policy offers many operational advantages.
¿From the network planning perspective, however, shortest path rout-
ing is extremely complicated. As all routing paths depend on the same
shortest path metric, it is not possible to configure the end-to-end rout-
ing paths for different communication demands individually. The rout-
ing can be controlled only indirectly and only as a whole by modifying
the routing metric. Additional difficulties arise if each traffic demand
must be sent unsplit via a single path – a requirement that is often
imposed in practice to simplify network management and to avoid out-
of-order packets and other undesired effects of traffic splitting. In this
routing variant, the metric must be chosen such that all shortest paths
are uniquely determined.

In this paper, we describe the main concepts and techniques that
have been developed in [5] to solve dimensioning and routing optimiza-
tion problems for such networks. We first discuss some fundamental
properties of shortest path routings and the computational complexity
of some basic network planning problems for this routing type. Then we
describe an integer-linear programming approach to solve such prob-
lems in practice, which has been used successfully in the planning of
the German national education and research network for several years.
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1 Metrics and Routing Paths

Given a digraph D = (V,A) and a set K of directed commodities, an
unsplittable shortest path routing (USPR) is a set of flow paths P ∗

(s,t),
(s, t) ∈ K, such that there exists a compatible metric λ = (λa) ∈ Z

A
+

with respect to which each P ∗
(s,t) is the unique shortest (s, t)-path. One

of the elementary problems in planning shortest path networks is to
decide whether a given path set S is an USPR and, if so, to find a
compatible routing metric λ.

If there is no upper bound on the length values λa, this so-called
Inverse Unique Shortest Paths problem can be solved very effi-
ciently with linear programming techniques. We denote with s(P ) and
t(P ) the start and end node of a path P , respectively, and with P(s, t)
the set of all (s, t)-paths in D. It is not difficult to see that there exist
an integer-valued metric compatible with S if and only if the following
linear program has a solution [1]:

minλmax∑
a∈P ′

λa −
∑
a∈P

λa ≥ 1 ∀ P ∈ S, P ′ ∈ P
(
s(P ), t(P )

)
\ {P} (1)

1 ≤ λa ≤ λmax ∀ a ∈ A,

Although this linear program contains exponentially many inequalities
of type (1) it can be solved (or proven infeasible) in polynomial time; the
separation problem for these inequalities reduces to |S|many 2-shortest
path computations. Its (possibly fractional) optimal solution λ∗ easily
can be turned into an integer-valued, compatible metric by multiplying
all values λa with a sufficiently large number and then rounding them to
the nearest integer. As shown in [1], this approach yields a metric whose
lengths exceed the lengths of the smallest possible integer-valued metric
by a factor of at most min (|V |/2, max{|P | : P ∈ S}). For real-world
problems, the lengths obtained this way are small enough to easily fit
into the data formats of current routing protocols. In theory, however,
the problem of finding a compatible routing metric with integer lengths
as small as possible or bounded by a given constant is NP-hard [5, 4].

If the given path set S is no unsplittable shortest path routing, then
the above linear program is infeasible. Using standard greedy tech-
niques, one then can construct from the final dual solution a subset R
of the given paths, such that the paths in R cannot occur together in
any USPR, but any proper subset of the path in R can. Figure 1 shows
such an inclusion-wise minimal conflict set R consisting of four paths.
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v4 v5 v6

v1 v2 v3

P1 = (v1, v2, v6)
P2 = (v1, v5, v3)
P3 = (v4, v2, v3)
P4 = (v4, v5, v6)

Fig. 1. Four paths that cannot occur together in a unique shortest path
routing, but any subset of at most three of these paths can

These minimal conflict sets are of great practical importance. For ev-
ery given digraph D = (V,A), the family of all path sets that comprise
a valid USPR forms an independence system (or hereditary family),
and the circuits of this independence system are exactly these minimal
conflict set. Any path set S that is not an USPR contains at least one
of these minimal conflict sets. In a routing optimization framework,
it hence is sufficient to ensure that none of these elementary conflicts
occurs in the set of chosen routing paths to guarantee the these paths
indeed from a valid USPR.

Several types of such elementary conflicts have been studied in the
literature. The simplest one is a violation of the so-called Bellman- or
subpath-condition [1, 8]: Two paths P1 and P2 can occur together in
an USPR only if their (u, v)-subpaths P1[u, v] and P2[u, v] – if existent
– coincide for all node pairs u, v. All elementary conflicts that involve
only two paths are violations of the Bellman-condition. Generalizations
of this condition are discussed in [1, 5], another type of necessary con-
ditions has been studied in [10].

However, none of these combinatorial conditions yields a complete
combinatorial description of all unsplittable shortest paths routings in a
given digraph. In general, the minimal conflict sets can be very complex
and arbitrarily large. Given an arbitrary path set S, it is NP-hard to
approximate the size |R| of the smallest conflict set R ⊆ S within a
factor less than 7/6. The contrary problem of finding the largest subset
R ⊆ S that still comprises an USPR is computational hard as well.
This problem cannot be approximated within a factor less than 8/7,
unless P = NP [5].

2 Hardness and Approximability

Network design and routing optimization problems with unsplittable
shortest path routing are very difficult – from both the theoretical
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and the practical point of view. In [5] three basic problem versions are
thoroughly analyzed.

In the congestion minimization problem Min-Con-USPR, we are
given a digraph D = (V,A) with fixed arc capacities ua and a set K
of directed commodities with demand values dst , and we seek for an
USPR that minimizes the peak congestion (i.e., the maximum flow to
capacity ratio over all arcs). This problem corresponds to the task of
finding an efficient USPR in an existing network. The peak congestion is
a good measure for the service quality network. In general, this problem
is NP-hard to approximate within a factor of O(|V |1−ε) for any ε > 0,
but polynomially approximable within min(|A|, |K|).

Two extremal versions of designing and dimensioning an USPR net-
work are expressed as the fixed charge network design problem FC-
USPR and as the capacitated network design problem Cap-USPR,
respectively. In both problems we are given a digraph with arc capaci-
ties and arc costs and a set of directed commodities with demand values.
In FC-USPR the capacities are fix, and the goal is to find a minimum
cost subgraph that admits an USPR of the commodities. This problem
is NPO-complete even if the underlying graph is an undirected ring
or a bidirected cycle. In the capacitated network design problem Cap-
USPR, we consider the given arc capacities as basic capacity units
and seek a minimum cost installation of integer multiples of these ba-
sic capacity units, such that the resulting capacities admit an USPR of
the given commodities. This problem cannot be approximated within a
factor of O(2log1−ε|V |) in the directed and within a factor of 2− ε in the
undirected case, unless P = NP. For various special cases, however,
better approximation algorithms can be derived. For the case where
the underlying network is an undirected cycle or a bidirected ring, for
example, Min-Con-USPR and Cap-USPR are approximable within
constant factors.

The very restricted possibilities to configure the routing make un-
splittable shortest path routing problems not only theoretically very
hard, they are also an inherent drawback compared to other routing
schemes in practice. In certain cases, these restrictions necessarily lead
to unbalanced traffic flows with some highly congested links. In [3],
we present a class of examples where the minimum congestion that
can be obtained with unsplittable shortest path routing exceeds the
congestion achievable with multicommodity flow, unsplittable flow, or
shortest multi-path routing by a factor of Ω(|V |2).
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3 Solution Approaches

Traditional planning approaches for shortest path networks use lo-
cal search, simulated annealing, or Lagrangian relaxation techniques
with the lengths of the routing metric as primary decision variables
[2, 6, 11, 12, 13, 15]. Basically, these approaches generate or iteratively
modify numerous routing metrics and evaluate the resulting routings.
The search for promising metrics is guided by the subgradients observed
at the solution or other simple, local improvement criteria. The main
challenges are to speed up the evaluation of the generated solution can-
didates to avoid the creation of poor candidates. The major drawbacks
of these approaches are that they deliver no or only very weak quality
guarantees for the computed solutions and that they perform well only
for “easy” problems, where a globally efficient routing metric actually
can be found by iterating simple local improvements.

In order to compute provenly optimal solutions, we propose a solu-
tion approach that – similar to Bender’s decomposition – decomposes
the routing subproblem into the two tasks of first finding the opti-
mal end-to-end routing paths and then, secondly, finding a compatible
routing metric for these paths.

In the master problem, we consider only the decisions concerning the
design and dimensioning of the network and the choice of end-to-end
routing paths. This part is solved using combinatorial methods and ad-
vanced integer linear programming techniques, which finally guarantees
the optimality of the solution by this approach.

The client problem consists in finding a compatible routing metric
for the end-to-end paths computed in the master problem. Whenever
during the solution of the master problem an integer routing is con-
structed, we solve the client problem to determine whether the corre-
sponding path set is a valid routing or not. This is done using the linear
programming techniques illustrated in Section 1. If the current path set
is an USPR, then we have found a incumbent solution for the master
problem and the client problem’s solution yields a compatible metric.
Otherwise the client problem yields a minimal conflict among the cur-
rent paths, which leads to an inequality that is valid for all USPRs, but
violated by the current routing. Adding this inequality to the master
problem, we cut off the current invalid solution and re-optimize the
master problem. This approach was first described in [8] and refined
and adapted to similar routing problems in [5, 14, 16].

To illustrate this approach, consider the Min-Con-USPR problem
introduced in the previous section. With C denoting the family of all
(inclusion-wise) minimal path sets that cannot occur in an USPR, this
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problem can be formulated as in integer programming problem as fol-
lows:

minL∑
P∈P(s,t)

xP = 1 ∀ (s, t) ∈ K

∑
(s,t)∈K

∑
P∈P(s,t): a∈P

dst xP ≤ uaL ∀ a ∈ A

∑
P∈S

xP ≤ |S| − 1 ∀S ∈ C (2)

xP ∈ {0, 1} ∀P ∈
⋃

(s,t)∈K

P(s, t)
L ≥ 0

In principle, our decomposition approach solves this model with a
branch-and-bound approach that dynamically separates violated con-
flict constraints (2) via the client problem. The initial formulation of
the master problem would contain only the path variables for each
commodity and some of the conflict inequalities (2), for example those
corresponding to the Bellman-condition. At each node of the branch-
and-bound tree we solve the current LP relaxation, pricing in path
variables as needed. Whenever an integer solution x is found, we solve
the linear program for the corresponding Inverse Unique Shortest
Paths to find a compatible metric for the corresponding routing. If
there exists one, then x yields the new incumbent solution for the mas-
ter problem. If there is no compatible metric, we generate a violated
conflict inequality (2) from the dual solution of the Inverse Unique
Shortest Paths LP, add this inequality to the formulation of the
master problem, and proceed with the branch-and-bound algorithm.

From the theoretical point of view, this approach seems not very
attractive. For the plain integer programming formulation illustrated
above, the integrality gap of the master problem can be arbitrarily
large, the separation problem for the conflict inequalities is NP-hard,
and the optimal bases of the linear relaxation may necessarily be-
come exponentially large. Nevertheless, carefully implemented this ap-
proach works surprisingly well for real-world problems. Our software
implementation uses alternatively either a formulation based on path-
routing variables or a formulation based on arc-routing variables for the
master problem. In the branch-and-cut or branch-and-price-and-cut al-
gorithms, we use specially tailored branching and pricing schemes as
well as additional problem-specific primal heuristics and strong cutting
planes. One type of these cutting planes, for example, exploits the spe-
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Fig. 2. Link congestion values in G-WiN for several routing metrics

cial structure of the precedence constrained knapsacks defined by a link
capacity constraint and the Bellman-condition among the paths across
that link. In order to handle real-world problems, we also incorporated
a very detailed and flexible hardware model, network failure resilience
conditions, and various other types of technical and operational con-
straints into our software.

Numerous small and medium size benchmark problems could be
solved optimally with this implementation. Even for large problems, for
which optimality was not always achieved, our approach found better
solutions than traditional metric-based methods in reasonable compu-
tation times. For several years, this software implementation has been
used in the planning of the German national education and research
networks B-WiN, G-WiN and X-WiN [6, 7, 9].

Figure 2 illustrates the importance of optimizing the routing in prac-
tice. It shows the different link loads that would result from the three
most commonly used default settings for the routing metric and those
resulting from the optimal routing metric for the G-WiN network with
capacities and traffic demands of August 2001. The traffic is distributed
much more evenly for the optimized metric. The peak congestion is not
even half of that for the default settings, which significantly reduces
packet delays and loss rates and improves the network’s robustness
against unforeseen traffic changes and failures.
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Incomplete information is an omnipresent issue when dealing with real-
world optimization problems. Typically, such limitations concern the
uncertainty of given data or the complete lack of knowledge about fu-
ture parts of a problem instance. Our work is devoted to investigations
on how to cope with incomplete information when solving scheduling
problems. The particular problem class we consider is the class of ma-
chine scheduling problems which plays an important role within combi-
natorial optimization. These problems involve the temporal allocation
of limited resources (machines) for executing activities so as to optimize
some objective. Scheduling problems are apparent in many applications
including, for example, manufacturing and service industries but also
compiler optimization and parallel computing.

There are two major frameworks for modeling limited information
in the theory of optimization. One deals with stochastic information,
the other with online information. Within these models, we design
algorithms for certain scheduling problems. Thereby we provide first
constant performance guarantees or improve previously best known
results.

Both frameworks have their legitimacy depending on the actual ap-
plication. Nevertheless, problem settings are conceivable that comprise
both, uncertain information about the data set and the complete lack
of knowledge about the future. This rouses the need for a general-
ized model that integrates both traditional information environments.
Such a general model is designed as a natural extension that combines
stochastic and online information. The challenging question is whether
there exists any algorithm that can perform well in such a restricted

∗ This work has been supported by the DFG Research Center Matheon in Berlin.
The book version of this extended abstract is published as [6].
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information environment. More precisely, is there an algorithm that
yields a constant performance guarantee? We successfully treat this
intriguing question and give a positive answer by providing such al-
gorithms for certain machine scheduling problems. In fact, our results
are competitive with the performance guarantees best known in the
traditional settings of stochastic and online scheduling. Thus, they do
not only justify the generalized model but also imply – at least in the
considered problem settings – that optimization in the general model
with incomplete information does not necessarily mean to give up per-
formance.

1 Stochastic Scheduling

In stochastic scheduling we assume uncertainty about job processing
times. Any job j must be processed for Pj units of time, where Pj is
a random variable. We assume that all random variables of processing
times are stochastically independent. This restriction on the probability
functions is not part of the stochastic scheduling model; still, the inde-
pendence of random variables is crucial for our and previously known
results.

The solution of a stochastic scheduling problem is not a simple
schedule, but a so-called scheduling policy ; see [10]. A policy must not
anticipate information about the future, such as the actual realizations
of the processing times of the jobs that have not yet been completed;
we say a stochastic scheduling policy must be non-anticipatory.

Various research on stochastic scheduling has been published con-
cerning criteria that guarantee the optimality of simple policies for
rather special, restricted scheduling problems. Only recently research
interest addressed also approximative policies [11, 13, 2]. While all of
the results hold for non-preemptive scheduling, we are not aware of any
approximation results for problems that allow job preemption except
from the optimality of the Gittins index priority policy [12, 15, 4] for
the problem 1 |pmtn |E [

∑
wjCj ].

We derive first constant approximation guarantees for preemptive
stochastic scheduling policies on multiple machines and/or individ-
ual release dates. For jobs with general processing time distributions,
we give a 2-approximative policy for minimizing the expected sum of
weighted completion times.

In order to derive our results we introduce a new non-trivial lower
bound on the expected value of an unknown optimal policy. This bound
is obtained borrowing ideas for a fast single-machine relaxation [1]. The
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crucial ingredient to our investigations is then the application of the
above mentioned Gittins index priority policy which solves a relaxed
version of our fast single-machine relaxation optimally [12, 15, 4]. The
priority index used in this policy also inspires the design of our poli-
cies. Thereby, our preemptive policies extensively utilize information
on processing time distributions other than the first (and second) mo-
ments, which distinguishes them significantly from approximative poli-
cies known in the non-preemptive setting.

The Gittins index is defined as follows. Given that a job j has been
processed for y time units and it has not completed, we define the
expected investment of processing this job for q time units or up to
completion, which ever comes first, as

Ij(q, y) = E [min{Pj − y, q} |Pj > y ] .

The ratio of the weighted probability that this job is completed within
the next q time units over the expected investment, is the basis of the
Gittins index priority rule. We define it as the rank of a sub-job of
length q of job j, after it has completed y units of processing:

Rj(q, y) =
wjPr [Pj − y ≤ q |Pj > y]

Ij(q, y)
.

This ratio is well defined if we assume that we compute the rank only
for q > 0 and Pj > y, in which case the investment Ij(q, y) has a value
greater than zero.

For a given (unfinished) job j and attained processing time y, we are
interested in the maximal rank it can achieve. We call this the Gittins
index, or rank, of job j, after it has been processed for y time units.

Rj(y) = max
q∈ +

Rj(q, y).

With the definitions above, we define a policy based on the rank for
scheduling on parallel machines where jobs have release dates.

Follow Gittins Index Priority Policy (F-Gipp): At any time t,
process an available job j with highest rank Rj(yj,k+1), where (j, k) is
the last quantum of j that has completed and yj,k+1 is the amount of
processing that has been completed before the next quantum (j, k + 1)
starts. Define k = 0 if no quantum of job j has been completed.

The policy F-Gipp is a 2-approximation for the preemptive stochas-
tic scheduling problem P | rj , pmtn |E [

∑
wjCj ]. However, on restricted

problem instances it coincides with policies whose optimality is known;
see [9, 6].
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2 Online Scheduling

In online scheduling we assume that jobs and their characterizing data
become known to the scheduler only piecewise. Thus, an online algo-
rithm must take scheduling decisions based only on the partial knowl-
edge of the instance as it is given so far.

We investigate algorithms for scheduling with the objective to mini-
mize the total weighted completion time on single as well as on parallel
machines. We consider both, a setting with independent jobs and one
where jobs must obey precedence relations.

For independent jobs arriving online, we design and analyze algo-
rithms for both, the preemptive and the non-preemptive setting. These
online algorithms are extensions of the classical Smith rule [14] and
yield performance guarantees that are improving on the previously
best known ones. A natural extension of Smith’s rule to the preemp-
tive setting is 2-competitive. For the non-preemptive variant of the
multiple-machine scheduling problem, we derive a 3.281-competitive
algorithm that combines a processing time dependent waiting strategy
with Smith’s rule.

We are not aware of any existing results for the scenario in which
precedence constraints among jobs are given. We discuss a reasonable
online model and give lower and upper bounds on the competitive ratio
for scheduling without job preemptions. In this context, previous work
on the offline problem of scheduling jobs with generalized precedence
constraints, the so called And/Or-precedence relations [3], appears to
be adoptable to a certain extent.

3 Stochastic Online Scheduling

We consider the stochastic online scheduling (Sos) model that gener-
alizes both traditional models for dealing with incomplete information,
stochastic scheduling and online scheduling. Like in online scheduling,
we assume that the instance is presented to the scheduler piecewise,
and nothing is known about jobs that might arrive in the future. Even
the number of jobs is not known in advance. Once a job arrives, we as-
sume, like in stochastic scheduling, that the probability distribution of
its processing time is disclosed, but the actual processing time remains
unknown until the job completes.

The goal is to find an Sos policy that minimizes the expected ob-
jective value. Our definition of a stochastic online scheduling policy in-
tegrates the traditional definition of stochastic scheduling policies into
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the setting where jobs arrive online. In order to decide, such a policy
may utilize the complete information contained in the partial schedule
up to time t. But it must not utilize any information about jobs that
will be released in the future and it must not use the actual processing
times of scheduled (or unscheduled) jobs that have not yet completed.
In the performance evaluation we also generalize the definitions of an
approximative policy for stochastic scheduling and a competitive algo-
rithm in online scheduling; see [8, 6]. In this view, our model somewhat
compares to the idea of a diffuse adversary as defined by Koutsoupias
and Papadimitriou [5].

Various (scheduling) problems can be modeled in this stochastic
online setting. We consider the particular settings of preemptive and
non-preemptive scheduling with the objective to minimize the expected
total weighted completion times of jobs.

For the problem where jobs must run until completion without in-
terruption, P | rj | [

∑
wjCj ], we analyze simple, combinatorial on-

line scheduling policies and derive performance guarantees that match
the currently best known performance guarantees for stochastic and
online parallel-machine scheduling. For processing times that follow
NBUE distributions, a MinIncrease policy even improves upon pre-
viously best known performance bounds from stochastic scheduling,
even though it is feasible in a more general setting. This policy assigns
each job j to the machine where it causes the least increase in the ex-
pected objective value, given the previously assigned jobs (when release
dates are ignored). In the analysis we exploit the fact that the lower
bound for an optimal policy in the traditional stochastic scheduling
environment in [11] is by definition also a lower bound for an optimal
policy in the Sos model.

In the preemptive setting we can argue that the 2-approximative
policy for preemptive stochastic (offline) scheduling in Section 1 for
P | rj ,pmtn | [

∑
wjCj ] also applies in this more general model be-

cause the preemptive policy is feasible in an online setting as well.
Moreover, the currently best known online algorithm for deterministic
processing time has also a competitive ratio of 2; see [7].

4 Conclusion

These results do not only justify the general model for scheduling with
incomplete information. They also show for certain scheduling problems
that policies designed to deal with stochastic and online information,
can achieve the same theoretic performance guarantee as policies that
can handle only one type of limited knowledge.
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Summary. The article presents results of the PhD thesis [3] written at the
University of Hamburg. It is devoted to the study of stochastic networks with
unreliable servers at the nodes. It is shown that there exist large classes of
degradable networks for which the steady state distribution is of product
form leading to a comprehensive performance and availability analysis of the
systems.

1 Introduction

Stochastic networks are systems of nodes between which customers
move in order to receive service. Typical application fields are com-
puter and telecommunication networks, the internet, manufacturing
networks, logistics and supply chain networks, as well as population
dynamical systems and social migration systems. For all such systems
reliability and availability play a major role: Networks which we observe
in reality are never totally reliable; there are interruptions of service
or breakdowns of components of the system due to human or technical
failures or external catastrophes. Then the performance of the system
is degraded and its regular time-behavior is perturbed until the failure
is repaired. Thus, while modeling such systems, right from the start re-
liability aspects should be taken into account in parallel to the classical
paradigm of performance analysis. However, the factor reliability is not
considered in the classical theory of stochastic networks and there are
until now no striking results for systems with unreliable components.
Exact modeling approaches of such systems for a unified investigation
of performance and reliability aspects resisted up to now the deriva-
tion of easy to apply recipes for systems’ analysis. On the other hand,
explicit results for the (asymptotic) analysis are of great importance

´



24 Cornelia Wichelhaus

since they open the way for a comprehensive understanding of the sys-
tems. To overcome the lack of explicit steady state results for unreliable
models approximation techniques have been developed, see the survey
[2].

The central contribution of the thesis [3] is to describe and analyze
stochastic networks with unreliable nodes for which both, the perfor-
mance behavior and the breakdown and repair mechanisms are incor-
porated into a unified Markovian system description, and which still
show explicit access to the asymptotic and steady state behavior. For
large classes of unreliable networks explicit steady state distributions
are derived which are in parallel to the classical results of product form
networks. Based on these explicit results, the conditions for the systems
to stabilize as well as the interplay of performance evaluation and avail-
ability analysis can be studied. Moreover, in the combined performabil-
ity models generalized concepts and ideas from the classical theory of
product form networks can then be applied. These include the study of
job-observer properties by means of Palm martingale calculus as well
as the establishment of dependence ordering and comparison results for
two degradable networks. We refer the reader to [3].

To illustrate the basic ideas of the approach we present here a pro-
totype example of a degradable network of exponential type for which
the steady state can be explicitly computed.

2 Degradable Exponential Networks of Product Form

Consider a network of J nodes summarized in the set J̄ := {1, 2, . . . , J}.
Station j is a single server with infinite waiting room under FCFS
regime. Customers in the network are indistinguishable. At node j there
is an external Poisson-λj-arrival stream, λj ≥ 0. Customers arriving at
node j from the outside or from inside of the network request for an
amount of service time which is exponentially distributed with mean
1. Service at node j is provided with intensity µj(nj) > 0, if there are
nj > 0 customers present at node j, we set µj(0) := 0. All service and
interarrival times are assumed to be independent.

Movements of customers in the network are governed by a Marko-
vian routing mechanism. A customer on leaving node i selects with
probability r(i, j) ≥ 0 to visit node j next, and then enters node j
immediately, commencing service if he finds the server idle, otherwise
he joins the tail of the queue at node j; with probability r(i, 0) ≥ 0 the
customer decides to leave the network immediately. Thus, for all i ∈ J̄

nee Sauer´
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we have
∑J

j=0 r(i, j) = 1. Given the departure node i the customer’s
routing decision is made independently of the network’s history.

Let λ :=
∑J

j=1 λj, r(0, j) := λj

λ and r(0, 0) := 0. We assume that the
matrix R := (r(i, j) : i, j ∈ J̄ ∪ {0}) is irreducible and denote by η =
(η1, . . . , ηJ) the unique solution of the traffic equation corresponding to
the network in full availability status,

ηj = λj +
J∑

i=1

ηi r(i, j), j ∈ J̄ .

Thus, the vector η gives the visiting rates of customers at the nodes in
the network in full availability status.

The servers at the nodes are unreliable, i.e. the nodes may break
down. The breakdown events are of rather general structure and may
occur in different ways: Nodes may break down as an isolated event
or in groups simultaneously and the repair of nodes may end for each
node individually or in groups as well. It is not required that those
nodes which stopped service simultaneously return to service at the
same time instant. More precisely the control of breakdowns and
repairs is:
Let Ī ⊂ J̄ be the set of nodes in down status with ni ∈ N customers at
node i, i ∈ Ī , which are waiting there for service to be resumed.

• Let K̄ ⊂ J̄\Ī , K̄ 	= ∅, be some subset of nodes in up status.
Then the nodes of K̄ break down concurrently with intensity
α
(
Ī , Ī ∪ K̄, ni : i ∈ J̄

)
, if there are ni customers at node i, i ∈ J̄ .

• Let H̄ ⊂ Ī , H̄ 	= ∅, be some subset of nodes in down status. Then
the nodes of H̄ return from repair as a batch group with intensity
β
(
Ī , Ī\H̄, ni : i ∈ J̄

)
and immediately resume their services.

Thus, breakdowns and repairs may depend on local loads of the corre-
sponding nodes.

In this general setting the intensities α
(
Ī , Ī ∪ K̄, ni : i ∈ J̄

)
and

β
(
Ī , Ī\H̄, ni : i ∈ J̄

)
for occurrence of breakdown and repair events

cannot be chosen arbitrarily, but have to meet some constraints. By
considering breakdowns as births and repairs as deaths we have found
versatile rules for rather general classes of suitable intensities by apply-
ing results from the theory of multi-dimensional birth-death processes.
One possible definition:

Definition 1. Assume that Ī , Ī ⊂ J̄ , is the set of nodes in down status.
The intensities for breakdowns and repairs respectively are
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α
(
Ī , Ī ∪ K̄, ni : i ∈ J̄

)
:=

A(Ī ∪ K̄, ni : i ∈ Ī ∪ K̄)
A(Ī , ni : i ∈ Ī)

and

β
(
Ī , Ī\H̄, ni : i ∈ J̄

)
:=

B(Ī , ni : i ∈ Ī)
B(Ī\H̄, ni : i ∈ Ī\H̄)

respectively,

where A and B are nonnegative functions, A,B :
(
P(J̄)×

⋃
l∈J̄0

N
l
)
→

R+ = [0,∞). We assume all intensities to be finite and define
A(∅, ni : i ∈ ∅) := 1 =: B(∅, ni : i ∈ ∅) and 0

0 := 0.

Nodes in down status neither accept new customers nor continue
serving the old customers who have to wait there for the server’s re-
turn. Thus, we have to reroute the customers in the network. We de-
scribe here three regimes to handle routing connected with nodes in
down status. They are derived from principles used to resolve blocking
situations in networks with resource constraints, see [1]. It is surprising
that they can also be used here. Assume that Ī is the set of nodes in
down status.

Definition 2 (Stalling). If there is a breakdown of either a single
node or a group of nodes, then all arrival streams to the network and
all service processes at the nodes in up status are completely interrupted
and resumed only after all failed nodes are repaired.

Definition 3 (Blocking). A customer after being served at node i ∈
J̄\Ī chooses the next destination node j according to the routing matrix
R. If node j is in down status, the customer stays at node i to obtain
another service. When this additional service expires the customer se-
lects his destination node anew according to R.

Definition 4 (Skipping). If a customer at node i ∈ J̄\Ī selects for
the next jump’s destination node j ∈ J̄\Ī ∪ {0} in up status the jump
is allowed and immediately performed and the customer joins node j
for service. If the customer selects for the next jump’s destination node
k ∈ Ī , he only performs an imaginary jump to that node, spending no
time at node k, but immediately performs the next jump according to
the routing matrix R, i.e. with probability r(k, l) he selects the successor
node l; if l ∈ J̄\Ī ∪ {0} the jump is performed and the customer joins
node l for service, but if l ∈ Ī the customer has to perform another
random choice as if he would depart from node l; and so on.

Remark 1. In [3], Chapter 2, we derive a characterization of the set of all
rerouting mechanisms which are applicable here in case of a breakdown
for controlling the movements of customers since they lead to explicit
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access to the steady state of the corresponding unreliable network. We
represent this set as a subset of an affine space in explicit terms which
opens the way for optimization procedures when choosing the rerouting
matrix. The rationale behind all suitable rerouting mechanisms is that
the proportions with which customers are allocated to the respective
nodes in up status remain unchanged and are in particular independent
of the availability status of other nodes in the network. This property
is in many cases desirable. Of course, the traffic intensities at the nodes
may change in response to breakdowns or repairs.

For describing the system’s evolution over the time axis we introduce
states of the form

(Ī , n1, n2, . . . , nJ) ∈
(
P(J̄)× N

J
)

=: Ẽ.

The set Ī , Ī ⊂ J̄ , contains the nodes under repair. For node j ∈ J̄\Ī
operating in a normal up status there are nj ∈ N customers present and
if nj > 0 one of them is under service. For node i ∈ Ī in down status
there are ni ∈ N customers waiting for the return of the repaired server.

Operating on these states we define a Markov process X̃ = (Y,X)
describing the degradable network with state space Ẽ according to
the rules just explained. The following theorem shows that modeling
degradable networks in this way leads to explicit steady state distribu-
tions for the network process X̃.

Theorem 1. The describing network process X̃ on the state space Ẽ
has the stationary distribution

π(Ī , n1, n2, . . . , nJ) (1)

= C−1 A(Ī , ni : i ∈ Ī)
B(Ī , ni : i ∈ Ī)

J∏
j=1

nj∏
l=1

(
ηj

µj(l)

)
for (Ī , n1, n2, . . . , nJ) ∈ Ẽ,

if and only if the normalization constant C is finite.

The stationary distribution is of a remarkable nice product form. It
carries information about the performance and reliability behavior of
the network and allows a combined performance and availability analy-
sis of the system; availability measures and performance characteristics
like average loads and throughputs can directly be computed.

Remark 2. Consider the special case of Def. 1 with breakdown and re-
pair intensities which are independent of customer loads at the nodes,

A(K̄, ni : i ∈ K̄) := A(K̄) and B(K̄, ni : i ∈ K̄) := B(K̄) for all K̄ ⊂ J̄ .
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Then the marginal breakdown and repair process Y is Markovian on
its own on the state space P(J̄). It follows that in this case the steady
state distribution (1) factorizes into the steady state distribution of
Y and the steady state distribution of a classical exponential network
with reliable nodes, but all performance parameters the same as for
the network described by X̃. This means that the degradable network
is ergodic under the same conditions as the classical network. Further-
more, the steady state of the marginal queue length process X of the
degradable network - which is not Markovian on its own - coincides
with the equilibrium distribution of the classical network. Moreover,
at a fixed time instant in equilibrium the processes X and Y behave
as if they were independent which is not intuitive since the transition
mechanisms of X strongly depend on the actual state of Y. As a conse-
quence here the asymptotic performance and availability analysis can
be decoupled.

3 Generalizations and Complements

The results of the previous section can be generalized to more versa-
tile classes of network models which allow distinguishable classes of
customers, general service time distributions and general service disci-
plines. Moreover, the up and down times of the nodes may obey general
distributions or can be determined by generalized multi-dimensional
migration or spatial processes. For details we refer the reader to [3].

Therewith we are able to model and analyze various classes of
degradable complex systems with strongly dependent components which
interact by moving customers as well as by common mode failures and
simultaneous repairs.
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Summary. In this paper we give an overview of the heuristics which are inte-
grated into the open source branch-cut-and-price-framework SCIP. We briefly
describe the fundamental ideas of different categories of heuristics and present
some computational results which demonstrate the impact of heuristics on the
overall solving process of SCIP.

1 Introduction

A lot of problems arising in various areas of Operations Research can be
formulated as Mixed Integer Programs (MIP). Although MIP-solving is
an NP-hard optimization problem, many practically relevant instances
can be solved in reasonable time. The standard exact method for solv-
ing MIPs is branch-and-cut, a combination of LP-based branch-and-
bound and cutting plane techniques. Besides that, heuristics (Greek
ευρισκειν – to find) are incomplete methods which quickly try to con-
struct feasible solutions of high quality, but without any guarantee to
find one.

In state-of-the-art MIP-solvers like the branch-cut-and-price-frame-
work SCIP (Solving Constraint Integer Programs) [1, 3] heuristics play
a major role in finding and improving feasible solutions at early stages
of the solution process. This helps to reduce the overall computational
effort, guides the remaining search process, and proves the feasibility
of the MIP model. Furthermore, a heuristic solution with a small gap
to optimality often is sufficient for practical applications.

Overall, there are 23 heuristics integrated into SCIP version 1.00.
They can be roughly subclassified into four categories: rounding, div-
ing, objective diving, and large neighborhood search heuristics. In the
remainder, we will give a short introduction into these strategies and
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afterwards we will present some computational results. For more detail,
we refer to Achterberg [1] and Berthold [6].

2 Rounding Heuristics

All rounding heuristics in SCIP work in the following way: they take an
LP-feasible but fractional point – normally the optimum of some LP-
relaxation – and iteratively round the fractional variables. Thereby, the
number of fractional variables is reduced one by one in each iteration
step (except if a shift is performed, see below). Regarding rounding
heuristics, the most important issue is, not to loose the LP-feasibility
during the iteration process, or if so, try to immediately recover LP-
feasibility.
There are four rounding heuristics in SCIP:

• Simple Rounding only performs roundings, which assure to keep
feasibility;

• Rounding conducts roundings, which potentially violate some con-
straints and reduces existent violations by further roundings;

• Shifting is allowed to change (shift) the values of integral or contin-
uous variables in order to recover feasibility;

• Integer Shifting proceeds like Shifting, but does not consider con-
tinuous variables. If it succeeds, it solves an LP in order to set the
continuous variables to their optimal value.

Each of these procedures is an extension of the ones which are listed
before it. The latter are more powerful, but also more expensive in
terms of running time and therefrom they are applied less frequently.

3 Diving Heuristics

The principal idea of diving heuristics comes from the branch-and-
bound procedure. They iteratively round some fractional variable and
resolve the LP-relaxation, simulating a depth-first-search in the tree.
In doing so, diving heuristics use a special branching rule which tends
towards feasibility and not primary towards a good subdivision of the
problem, as common branching rules do.

The six diving heuristics implemented in SCIP mainly differ in the
applied branching rule. It chooses a variable with:

• Fractional Diving: smallest fractionality;
• Coefficient Diving: smallest number of potentially violated rows;
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• Linesearch Diving: greatest difference of root solution and current
LP solution;

• Guided Diving: smallest difference to the best known integral solu-
tion;

• Pseudocost Diving: smallest ratio of estimated objective increase if
rounding to either direction;

• Vectorlength Diving: smallest ratio of potential objective change and
number of affected constraints.

In [6], it is shown that none of them dominates the others in terms of
performance.

4 Objective Diving Heuristics

Heuristics of this category iteratively manipulate the objective function
and resolve the LP-relaxation in order to reach an integral vertex of the
LP-polyhedron. They perform “soft roundings” by adding punishment
terms to the objective instead of performing “hard roundings”, i.e.,
fixing variables like the heuristics of Sections 2 and 3.

There are actually three objective diving heuristics in SCIP: Objec-
tive Pseudocost Diving, Rootsolution Diving and the Objective Feasi-
bility Pump. In our computational studies, the latter one proved to be
superior to the others.

The Feasibility Pump was first described by Fischetti et al. [10, 5],
the version which is implemented in SCIP was introduced by Achter-
berg and Berthold [2]. By taking the original objective of the MIP into
account, the Objective Feasibility Pump is able to produce solutions of
a much better objective value in a comparable running time.

5 LNS Heuristics

Large neighborhood search (LNS) heuristics solve a sub-MIP of the
original MIP in order to investigate a neighborhood of a special point,
e.g., the best known integral solution (incumbent). This sub-MIP is cre-
ated by fixing a sufficient number of variables or adding very restrictive
constraints. The hope is that the sub-MIP is much easier to solve, but
still contains solutions of high quality.

Four of the five LNS heuristics available in SCIP are improvement
heuristics, i.e., they take some feasible solution as a starting point:
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• Local Branching [11] adds a distance constraint which allows only a
certain number of variables to differ from their value in the incum-
bent;

• RINS [9] fixes variables which take identic values in the current
node’s LP-relaxation and the incumbent;

• Crossover [6] fixes variables which take identic values in a certain
number of feasible solutions;

• Mutation [6] randomly fixes variables to their incumbent value.

In contrast to these four, RENS [6, 7] is an LNS rounding heuristic.
It fixes all variables which take integral values in the optimum of the
LP-relaxation (often more than 90%) and changes the bounds to the
nearest integers for fractional variables. This implies that all integer
variables of the sub-MIP are binary.

By completely solving the RENS sub-MIP, one is able to determine
whether a point can be rounded to an integral solution and which one
is the best possible rounding. Furthermore, a slightly restricted version
of RENS proves to be a reasonable start heuristic.

6 Computational Results

The computational experiments reported here were obtained with SCIP
version 0.82b running on a 3.80 GHz Intel Pentium 4 with 2 GB RAM,
using CPLEX 10.0 as underlying LP-solver. We chose a test set of 129
instances taken from the Miplib 3.0 [8], the Miplib2003 [4] and the
MIP collection of Mittelmann [12].

First, we evaluated the individual impact of the 15 heuristics which
are used by default. For each heuristic, we investigated the change of
performance caused by deactivating it. We compared the geometric
means of the running time and the number of branch-and-bound-nodes
taken over the 97 instances which could be solved to optimality within
an hour, using SCIP with default settings. For the other instances we
compared the primal-dual gap after running SCIP for an hour.

We observed that deactivating a single heuristic only has a small
impact; the geometric means of the running time and the number of
branch-and-bound-nodes always changed by less than 5%, except for
the Objective Feasibility Pump (12% and 30%, respectively).

On the other hand, deactivation of all available heuristics leads to a
significant deterioration: the geometric mean of the running time and
the number of branch-and-bound-nodes raises by a factor of two, the
remaining gap by about 50%. There are considerably less instances
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which are solved to optimality within an hour, or for which at least one
feasible solution is found, respectively.
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Fig. 1. Instance aflow30a: developing of primal and dual bound if SCIP runs
with (dark) and without any heuristics (light)

Figure 1 exemplarily shows the developing of the primal and dual
bound for two runs of SCIP 0.82b with an instance taken from the
Miplib2003 [4]: one with the default heuristics and one without any
heuristics activated.

As expected, SCIP with heuristics is faster in finding the first fea-
sible solution, an optimal solution and proving the optimality. We also
observe that the dual bound raises faster immediately after feasible so-
lutions were found and that even the first improvement by an integral
node LP-relaxation occurs at an earlier step in time. This is due to the
fact that with the knowledge of a good primal bound, one is able to
prune suboptimal nodes, fix additional variables, which itself leads to
stronger cuts and so forth.

All these results emphasize that heuristics are an important part of
a branch-cut-and-price-framework and point out the importance of the
interaction between different heuristics.
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Generation of electricity is influenced by the complex interplay of eco-
nomic and political forces, as well as environmental and technological
constraints. Sustainable energy-political acting not only has to consider
the pure satisfaction of demand and economic interests, but also to ac-
cept the challenge of minimizing the environmental impacts. In such
a complex system, market participants need reliable knowledge and
forecasts in order to act properly. These essential requirements can be
obtained through an abstract model providing comprehensive results.

The result of these theses under the supervision of Prof. Dr. Sándor
P. Fekete is an advanced model of so far unmatched temporal, regional
and physical granularity that minimizes total system costs of the U.S.-
American electricity generation, and an efficient and fully operational
implementation of the model with the algebraic modeling language
GAMS (General Algebraic Modeling System). The implementation en-
tirely satisfies the requirements to be used in practical application by
Greenmont Energy Consulting LLC, one of the leading American en-
ergy consulting firms.

Fig. 1. Integrated view of energy and relevant secondary markets
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The optimization model is based on a detailed analysis of the U.S.-
American energy market. It turned out that it is not sufficient to only
consider the structures of the primary market. Also, the relevant sec-
ondary markets, in particular the coal and emissions market, have to
be included into the analysis and subsequently into the model.

Since the U.S. possesses large domestic coal reserves, more than
half of U.S.-American electricity demand is covered by coal-fired power
plants. In other words, the power industry is responsible for more than
90% of the demand for coal. Therefore a comprehensive model must not
fail to consider the coal market. Aspects as production and transport
as well as the expansion of mine capacities for the different classes and
types of coal deserve attention. The term ”types of coal” points out that
coal is not a homogeneous commodity. The about 100 mined types differ
substantially, of course in their costs, but also in energy and pollutant
content, grindability, as well as long-term and short-term availability.
All of these characteristics are incorporated into the model.

The fact that burning fossil fuels emits several air pollutants makes
it clear that the generation of electricity is subject to manifold emission
regulations. Regionally and temporally differing emission rules limit the
pollutant output, both absolutely and relatively to the amount of elec-
tricity generated. Consequently, the approximately 125 electric utilities
are encouraged to invest in emission abatement technology for their
power plants and to use coal of higher quality. These strategies do not
only reduce risks of governmental interventions but also offer economic
opportunities in perspective of the increasing relevance of emission al-
lowance trading. Consequently, the trading of emission allowances is
regarded as the third substantial market.

The consideration of this complex triad of electricity, coal and emis-
sions market (see Figure 1) establishes the basis for the innovation of
this optimization model. In previous models used in consulting practice
only parts of the industries and markets involved in electricity gen-
eration were represented. Modeling the more complex interaction of
the individual markets was possible only by iterative sequential feed-
back between the separate models, if at all. That way, a great deal
of optimization potential remained unused. Where available, existing
integrated models renounce the required detailed representation of the
actual cause-effect relationships. This work succeeds to model the com-
plex interplay of the various markets holistically and still guarantees
high granularity.

The model abandons the option to group identically constructed or
geographically close power plants throughout. In order to achieve the
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required accuracy, the model treats each of the 2400 plants separately.
In case of coal-fired power plants even single boilers are modeled indi-
vidually in order to pay attention to the high relevance of coal-based
electricity generation. Thereby the number of units modeled rises to
about 3200. This approach has the advantage that not only technical
specifications but also historically originated ecological restrictions can
be distinguished. It is precisely this high granularity that allows the
model to decide in detail on the installation and use of appropriate
technologies to reduce pollutant emissions considering the economic
consequences (see Figure 2). Furthermore, the selection of fuels for the
individual coal-fired units is not limited artificially as this would antic-
ipate decisions and restrict the solution space. The resulting problem
of the determination of coal transportation costs between all mines and
all power plants is solved as a separate optimization model based on
the rail, water and truck network provided by the U.S. Department of
Transportation1.

Fig. 2. Modeling emission abatement technologies

Besides the physical granularity, the modeling of different temporal
resolutions leads to a better optimization model. It is necessary to be
able to make certain decisions on a finer time scale within the general
time horizon of one year. Seasonal emission regulations are one exam-
ple. They imply that decisions about used fuels and level of utilization
of clean-up equipment have to be revised several times a year. An even
higher temporal granularity is required by the integrated power plant
scheduling as it is coupled to the electricity demand depending on the

1 The data is taken from the National Transportation Atlas Database (NTAD), see
http://www.bts.gov/publications/national transportation atlas database/
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time of day. Contrariwise, it is possible to extend the model to a multi-
year model in order to render long-term forecasts. In doing so, several
years are modeled in series and the results of one year are passed into
the database of the subsequent one. The key here is the concept of
sunk costs which helps to compensate the disadvantage of the lack of
foresight.

Due to the resulting size of the optimization problem it is necessary
to avoid nonlinearities, for example when modeling emission abatement
technologies. An additional difficulty arises from the need for binary
variables for the modeling of operational and investment decisions. A
first mixed-integer optimization model had a size of 3.5 million con-
straints and 7.5 million variables (26 million non-zero entries). It turned
out that modern optimization tools, such as ILOG CPLEX 10.0, have
the ability to solve the problem with a duality gap of less than 0.5%
within 13 hours. Nevertheless, neither the runtime nor the high average
memory requirements of 6GB are acceptable in practical use since long-
term forecasts or scenario analyses require multiple runs. However, we
managed to reduce the size of the problem by 80% through a sophisti-
cated hierarchical grouping of coal classes without deviating more than
0.5% from the original solution (see Figure 3). It is highly important
to emphasize that this grouping is applied only to the scheduling of
emission abatement technologies and that the original granularity aim
is not violated. The required computing time is reduced by 95% to less
than an hour on average, so that even long-term forecasts of 20 years
can be done in acceptable time. The attained solution times as well as
the clearly structured and fully adaptable database do not limit the
model usage to just the near future.

Fig. 3. Hierarchical coal grouping and its impact on the model complexity

In addition to the formulation of the mathematical optimization
model of the U.S.-American coal, energy and emission markets the
main result of this work is the highly efficient GAMS implementation
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GEM™. The primal- and dual solutions of the mixed-integer optimiza-
tion problem provide comprehensive results as well as highly valuable
fine-grained outputs. As can be seen on www.greenmontenergy.com,
Greenmont Energy Consulting thus has the ability to successfully of-
fer reliable consulting services to such different market participants as
mine operators, transportation companies, electric utilities, investors,
brokers and government authorities.
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Summary. Acceptance sampling is one important part of logistic processes
and production. Because of that, we developed a new model, named DMGI
(Dynamic Mixed Goods Inspection) which uses past inspections in order to
support companies deciding which delivery should be inspected in goods in-
come.

1 Introduction

Since acceptance sampling is one important part of logistic processes
and production, numerous models about optimal inspection plans and
sample sizes have been developed to conclude from a small amount of
inspected items to the whole delivery. Unfortunately, this concept is
not suitable for monitoring the number of goods received.
There are some studies, which allow drawing conclusions regarding the
number of articles by weight of the whole delivery or number of palettes.
However, a large number of logistic centers get mixtures of different
articles, small delivery quantities, irregular weights and packages. So
they are not able to determine the number of articles exactly. In this
case, companies mostly use some ”rules of thumb” for deciding which
delivery to inspect and which not. As a result, these strategies are usu-
ally far from optimal. To overcome this problem, a new model, named
DMGI (Dynamic Mixed Goods Inspection) has been developed which
uses past inspections to cluster suppliers into different quality classes.
The clustering problem is solved by a p-median on the line using dy-
namic programming. Moreover a multiobjective, nonlinear program to
determine optimal time-periods between two inspections of any sup-
plier subject to his ranking is developed which is solved by dynamic
programming, too. DMGI considers stochastic shortages. In addition,
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adaptive learning and fast computation times allow a daily adjustment
of the decisions. Using simulated data, the new model has been com-
pared with the strategy of a medium-sized enterprise. It is shown, that
the number of detected shortfalls are considerably higher using DMGI.
This paper presents a new model which uses past observations to de-
termine optimal control strategies for incoming inspections.
The paper is structured as followed:
Section 2 gives an idea for a measure of supplier’s quality. Section 3
uses dynamic programming in order to cluster all the suppliers depend-
ing on their quality. In Section 4, we present a model that determines
optimal time-periods between inspections. Finally, we show some sim-
ulation results and give a short summary.

2 A Measure for Supplier’s Quality

First of all it is necessary to find a measure for the supplier’s quality
in order to make them comparable. Since it seems to be expedient to
consider the value of the articles as well as the relative shortage of any
delivery t of any supplier i, we define the expected loss for not inspecting
a delivery for any supplier E(Vi) as a measure for the supplier’s quality.

3 Clustering

Based on this measure, all suppliers should be clustered in k quality-
groups. An overview about the most important clustering methods is
given in Kaufman and Rousseeuw [7].
We use a k-medoids method. The pursued idea is the following. All
the expected disprofits are points on a line which should be clustered
in k different groups. Suppose these points represent customers and
they should be assigned to k facilities (here our medoids) so that the
sum over all distances between the customers and their facilities is
minimized. So the arising partitioning around medoids cluster can be
solved as a k-median-problem on the line. Because there exists at least
one optimal solution, where the facilities are located directly in the
points of the customers, this problem can become discretize without
changing the optimal solution. Therefor the clustering problem can be
written as follows.
Let locs (s = 1, 2, ..., S) be the location of the potential facilities.
So the distance between customer i ∈ 1, 2, ..., I and facility s ∈ 1, 2, ..., S
can be written as ci,s :=| E(Vi)− locs | .
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S is at most as large as I because it is possible, because there may exist
suppliers with equal expected losses. In such cases there are more than
one customer in one point, but it is not reasonable to consider more
than one facility there (because our problem is not capacitated).
In addition two types of variables are needed:

ys :=

{
1, if facility s is opened
0, else

and

xi,s :=

{
1, if customer i is assigned to facility s

0, else

Using these variables, the model can be written as:

Min
I∑

i=1

S∑
s=1

ci,s · xi,s

s.t.
S∑

s=1
ys ≤ k (1)

S∑
s=1

xi,s = 1 ∀i ∈ {1, 2, ..., I} (2)

xi,s ≤ ys ∀i ∈ {1, 2, ..., I}, s ∈ {1, 2, ..., S} (3)
ys ∈ {0; 1} ∀s ∈ {1, 2, ..., S}
xi,s ∈ R

+ ∀i ∈ {1, 2, ..., I}, s ∈ {1, 2, ..., S}
The objective minimizes the total distance between the facilities and
their customers. Constraints (1) state that no more than k facilities
are allowed to be opened. Constraints (2) guarantee every customer
to be assigned to exactly one facility. Constraints (3) ensure that any
customer can only be assigned to an opened facility.
Note that it is not necessary to define xi,s as an binary variable, since
the formulation forces it to zero or one.
Unfortunately this integer problem is NP-hard. Anyhow there exist
algorithms, which solve the problem in polynomial time if n is given
(see Daskin [2], Kaliv [3], Hassin [5] and Garey [4]). Therefore we solve
this problem using dynamic programming. In this way the complexity
is O(I2 · n) and we are able to solve realistic clustering problems with
250 suppliers and 6 groups within 2 seconds.

4 Optimal Time-Period Between Two Inspections

Finally the optimal time-period between two inspections is needed.
Therefore we need the assumptions, that all deliveries contain nearly
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the same number of articles, in order to make the model as clear as
possible. These assumptions can be abandoned easily by extending the
program.
There is a limited budget, that only allows inspecting P deliveries in
a special time horizon. As from now, we distinguishe between the val-
ues of a special supplier and of a special group. For this reason all the
variables and parameters become extended by a further index (l for
supplier and g for group). So, V l

i,t for example, is the disprofit in the
t-th realization of the i-th supplier, while V g

i,t is the t-th realization in
group i.
Every uninspected delivery causes a miss and the best estimator for
this loss is the expected loss of the previous realizations E(V g

i ).
Let Ag

i ∈ {1, 2, 3, ...} be the time period between two inspections of any
supplier in group i. (Time period denotes in this context the number
of deliveries between one inspection and the following, so that Ag

i = 1,
e.g., means, that every delivery will be inspected, while a time period
of two means, that every second will be inspected.)
If the time-period in a group is Ag

i ,
⌈
Lg

i /A
g
i

⌉
of Lg

i deliveries will be
inspected.
In order to keep the model as easy as possible,

⌈
Lg

i /A
g
i

⌉
will be approx-

imated by Lg
i /A

g
i . (This is a really good approximation, if Lg

i is large
enough.) So, the expected wastage would be

n∑
i=1

Lg
i ·

Ag
i − 1
Ag

i

· E(V g
i ).

These observations lead to the following program:

Min
n∑

i=1
Lg

i ·
Ag

i −1

Ag
i
· E(V g

i )

s.t.
n∑

i=1

Lg
i

Ag
i
≤ P (4)

Ag
i ≥ 1 ∀i ∈ {1, 2, ..., n} (5)

Ag
i ∈ N ∀i ∈ {1, 2, ..., n}

The objective minimizes the expected wastage because of uninspected
deliveries. Constraints (4) state, that not more than P deliveries are
inspected. Constraints (5) ensure that every delivery will be inspected
at least once.
In general the number of inspections is much smaller than the number
of deliveries, so that unreliable suppliers become inspected almost in
every delivery, while reliable suppliers would be inspected very seldom.
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Thereby the uncertainty, that a supplier still is in the right group,
increases by every uninspected delivery (suppliers could change their
quality by changing their employees, their consignment sale or it could
be possible that the first observations presented a wrong picture of any
supplier...).
Because of that, uncertainty should be incorporated. One well known
possibility is using the standard deviation σg

i or variance Var(V g
i ) =

(σg
i )2 (More about measures for uncertainty can bo found in Mulvey

[6].). So the variance between two observations is added to the objec-
tive, while the rest of the model stays the same:

Min
n∑

i=1

α · Lg
i ·

Ag
i − 1
Ag

i

· E(V g
i ) + (1− α) · (Ag

i − 1)2 · Var(V g
i ),

where α is a weight between 0 and 1 (for more information about
multiobjective optimization see Collette and Siarry [1]). As easily can
be seen, this program is not linear in Ag

i anymore.
Fortunately this program can be solved with dynamic programming
within 2 second for real problem instances.

5 Simulation Results

We simulated shortfalls of 240 suppliers over a time-horizon of 250 days.
In doing so, we assumed, that the incidence of receiving a shortfall is
binomial distributed. For the size of the shortfall we tested exponential,
lognormal, weibull as well as pareto distributions.
We compared our model, DMGI, with a model, used in a German
commercial enterprise and obtained the following results:

Fig. 1. Results
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Fig. 2. Results (continued)

6 Conclusions

We have presented a new model, named DMGI, that may support com-
panies deciding which deliveries should be inspected. Our dynamic pro-
gramming enables the company to adapt its decisions daily, because of
the negligible computing times. As the results show, it is possible to
observe up to 200% more shortfalls compared to using the selection
criteria of a German commercial enterprise.
More details concerning the dynamic programming approach and de-
tailed results can be found in Ziegler [8].
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gang bei Handelsunternehmen. 2006.



An Extensive Tabu Search Algorithm for
Solving the Lot Streaming Problem in a Job

Shop Environment

Liji Shen

Department of Business Administration and Economics, Dresden University
of Technology, 01062, Dresden, Germany
liji.shen@mailbox.tu-dresden.de

Summary. The purpose of this paper is to solve the lot streaming problem
in job shop scheduling systems, where both equal and consistent sublots are
considered. The presented algorithm incorporates a tabu search procedure
to determine schedules and a specific heuristic for improving sublot sizes.
Computational results confirm that, by applying the lot streaming strategy,
production can be significantly accelerated. Moreover, this algorithm yields
superior solutions compared to various approaches proposed in the literature
and all tested instances show a rapid convergence to their lower bounds.
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1 Introduction

In this paper I focus on solving the lot streaming problem in a job shop
environment, where both equal and consistent sublots are considered.
The job shop scheduling problem can be briefly described as follows
[6]: A set of jobs and a set of machines are given. Each machine can
process at most one job at a time. Each job consists of a sequence of
operations, which need to be processed during an uninterrupted time
period of a given length on a given machine. A schedule is an allocation
of the operations to time intervals on the machines. The objective is to
find a schedule of minimum length (makespan). This class of problems
is not only NP-hard but also belongs to the most difficult combinatorial
optimization problems [8].

With respect to lot streaming, a job is actually a lot composed of
identical items [3]. In classic job shop scheduling systems the entire
lot is not transferable before being completed on a machine, which,
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however, leads to low machine utilization and long completion time. Lot
streaming techniques, in comparison, provide the possibility of splitting
a lot into multiple smaller sublots, which can be transported to the
next stage upon their completion. As a result of operation overlapping,
production can be remarkably accelerated.

Of particular note is that each sublot can be viewed as an individual
job and the problem size drastically increases with the total number of
sublots. Moreover, the requirement of determining sublot sizes brings
additional difficulty in solving the lot streaming problem. Only small
instances can be solved employing optimization based software. In order
to solve larger instances, I adopt a specific iterative procedure which
alternates between the determination of schedules and the (sub)lot-
sizing problem [3].

The remainder of the paper is organized as follows: in the subse-
quent section, the implementation of the fundamental elements as well
as some enhancements of tabu search are presented. Section 3 describes
the so-called Kol-Heuristic for varying sublot sizes in more detail.
Computational results focusing on various aspects are summarized in
Section 4.

2 The Tabu Search Implementation

2.1 Neighbourhood Structure

In this neighbourhood only adjacent operations of the same block are
observed. In order to intensify the search process, a move may concern
three operations [4]. As a result, instead of the simple swap of two op-
erations, a move consists of a sequence of elementary swaps. First, two
adjacent operations of the same block are interchanged except when
they both are internal. The third operation of the same block, if it
exists, is then inserted in relation to the previously arranged two oper-
ations.

First of all, this neighbourhood effectively excludes infeasible so-
lutions and a majority of fruitless moves are successfully eliminated.
Most importantly, due to the possible insertion of the third operation,
this neighbourhood provides a more thorough change to the current
schedule and intensifies the search in promising areas.

2.2 Tabu Tenure

In order to properly determine tabu tenure, I incorporate reactive tabu
search into the algorithm [2]. As an extension, a simple mechanism is
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integrated to adjust tabu tenure according to the evolution of the search
process. Another important aspect of reactive tabu search consists in
its combination with diversification. As illustrated in Figure 1, tabu
tenure is actively adapted throughout the search. Moreover, abrupt
decrease of both values (tabu tenure and the number of often repeated
solutions) indicates the initiation of diversification.

Fig. 1. Reactive Tabu Search

2.3 Diversification

In the algorithm, a simple yet effective method is used to achieve diver-
sity. When diversification is activated, critical operations of the current
schedule are first identified. A pair of adjacent critical operations is then
arbitrarily selected and interchanged. After sufficient iterations of this
procedure, a considerable distance to local optima can be reached.

3 Kol-Heuristic

In this section a specific procedure – the Kol-Heuristic – for solving the
sublot-sizing problem is developed. As depicted in Figure 2, it is based
on the best known schedule and tests iteratively, if the simultaneous
variation of two sublot sizes of the same job can lead to an improved
solution.

In contrast to exact methods, the Kol-Heuristic requires negligible
computing time. On the other hand, this heuristic also exerts positive
influences on the search process. Since the variation of sublot sizes starts
from the best known solution, this heuristic can actually be viewed as
intensification, which represents another key element of tabu search.
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Fig. 2. Framework of the Kol-Heuristic

4 Computational Results

In order to demonstrate the efficiency of the proposed algorithm, com-
putational results are presented in this section. The tested 40 instances
are the well-known job shop benchmark problems, which range from 6
jobs on 6 machines to 20 jobs on 15 machines [1, 9, 5].

Since studies on the job shop problem with lot streaming are rather
limited, the algorithm is first used to solve standard job shop bench-
mark problems. More than 80% of the tested instances have reached
their global optima. For the remaining instances, the average deviation
from optimal solution is less than 1%. Moreover, as shown in Table 1,
this algorithm generates superior solutions compared to various tabu
search algorithms proposed in the literature [4, 7, 10].

Subsequently, these instances are solved by applying 2 to 4 sublots.
The adopted measurement indicates that at least one machine is work-
ing without idling time and therefore, this value represents a valid
lowest boundary of the problem. It can be seen from Figure 3 that all
results converge rapidly to their lower bounds as the number of sublots
increases. With 4 sublots, the average deviation from lower bound is
only around 1%. This outcome implies that the solutions are already
very close to their global optima.

In order to show the performance of the Kol-Heuristic, test results
of two famous benchmark instances (ft06, ft10) are presented in Table 2
and compared to those of modified shifting bottleneck procedure [3]. In
the case of equal sublots, solutions to ft06 are slightly worse, whereas
solutions to ft10 are already better. After sublot sizes being varied
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Table 1. Superior solutions compared to different Tabu Search algorithms

Problem size Instance Opt.∗ Makespan Nowicki1996¶ Geyik2004‡ Dellamico1993§

10·5 la04 590 590¶‡∗ 593 598 590

15·5 la06 926 926‡∗ 926 936 926
la07 890 890‡∗ 890 910 890
la10 958 958‡∗ 958 1034 958

20·5 la13 1150 1150‡∗ 1150 1159 1150
la14 1292 1292‡∗ 1292 1374 1292

10·10 la16 945 945¶‡∗ 946 959 945
la18 848 848‡∗ 848 861 848
la19 842 842‡∗ 842 860 842
la20 902 902‡∗ 902 909 902

abz05 1234 1236¶‡ 1238 1238 1236
abz06 943 943¶‡∗ 945 947 943
ft10 930 930‡∗ 930 971 930

15·10 la22 927 930¶‡§ 954 962 933
la24 935 941¶‡ 948 989 941
la25 977 978¶‡§ 988 995 979

20·10 la26 1218 1218‡∗ 1218 1240 1218
la28 1216 1216‡∗ 1216 1221 1216

15·15 la36 1268 1268¶‡§∗ 1275 1302 1278
la37 1397 1409¶‡ 1422 1453 1409
la39 1233 1238‡§ 1235 1269 1242
la40 1222 1228¶‡§ 1234 1261 1233
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with the Kol-Heuristic, all results are further improved and superior
to those of shifting bottleneck procedure.

Table 2. Solutions to Ft06 and Ft10 with sublots

Ft06 Ft10
The number of sublots The number of sublots

Algorithm Sublot Type 1 2 3 4 1 2 3 4

Tabu Search equal 55,00 47,50 45,33 44,50 930,00 736,50 674,00 651,75
consistent 55,00 45,67 44,00 43,40 930,00 732,62 673,67 649,57

Shifting Bottleneck consistent 55,00 46,19 44,31 43,41 950,00 776,64 696,60 672,88
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1 Introduction

In Section 2 we present a stock market model where prices satisfy a
stochastic differential equation with a stochastic drift process which is
independent of the driving Brownian motion. The investor’s objective
is to maximize the expected utility of consumption and terminal wealth
under partial information, meaning that investment decisions are based
on the knowledge of the stock prices only, cf. [2, 3]. Consumption and
investment processes as well as the optimization problem are intro-
duced in Section 3. Optimal consumption and optimal terminal wealth
can be expressed in terms of the filter for the Radon Nikodym density
of the risk neutral probability under which the price processes become
martingales. The solution to this classical optimization problem is pro-
vided in Section 4 where consumption and investment strategies are
computed based on Malliavin derivatives of the corresponding density
process. The results apply to both classical models for the drift pro-
cess, a linear Gaussian model (GD) and a continuous time Markov
chain (HMM). In Section 5 and 6 we look at these two cases, and show
that they satisfy all the conditions for the optimal strategies, see also
[3, 5]. For proofs and further details we refer to [4] if not mentioned dif-
ferently. In addition to [4] we compare in Section 7 the HMM with the
GD model when applied to historical prices. For parameter estimation
we use a modification of the MCMC methods derived in [1].
Notation. The symbol � will denote transposition, Diag(v) is the di-
agonal matrix with diagonal v, Idn denotes the n-dimensional identity
matrix, and FX = (FX

t )t∈[0,T ] stands for the filtration of augmented
σ-algebras generated by the F-adapted process X = (Xt)t∈[0,T ].
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2 The Basic Model

Let (Ω,G,P) be a complete probability space, T > 0 the terminal
trading time, and F = (Ft)t∈[0,T ] a filtration in G satisfying the usual
conditions. We can invest in a money market (bond) and n stocks. The
bond (S0

t )t∈[0,T ] has constant interest rate r. For S0
0 = 1 we have S0

t =
exp(rt) and the corresponding discount factor reads βt = exp(−rt).
The price process S = (St)t∈[0,T ], St = (S1

t , . . . , S
n
t )�, of the stocks

evolves like

dSt = Diag(St)(µt dt + σ dWt) , S0 = s0 ,

where W = (Wt)t∈[0,T ] is a n-dimensional standard Brownian motion
with respect to P. We assume that the drift vector µ ∈ n is adapted
to the filtration F and the volatility matrix σ ∈ n×n is constant
and non-singular. The return process R = (Rt)t∈[0,T ] associated with
the stocks is defined by dRt = Diag(St)−1 dSt and the excess return
process R̃ = (R̃t)t∈[0,T ] by dR̃t = dRt− r1n dt = (µt− r1n) dt+σ dWt.
We define the market price of risk θ = (θt)t∈[0,T ] by θt = σ−1(µt−r1n),
and the density process Z = (Zt)t∈[0,T ] by dZt = −Ztθ

�
t dWt.

Assumption 1 Suppose that
∫ T
0 ‖θt‖2 dt < ∞ a.s. and that Z is a

martingale under P w.r.t. the filtration F .

We consider the case of partial information, i.e., we can only observe
the stock prices. Thus only events of FS are observable and the strategy
has to be adapted to FS .

The conditional density ζt = E[Zt|FS
t ] and its discounted ver-

sion ζ̃t = βtζt will be crucial for filtering and optimization. Let
µ̂t = E[µt|FS

t ] denote the filter for µt. Next, we introduce the risk
neutral probability measure P̃ by dP̃ = ZT dP. We denote by Ẽ expec-
tation under P̃. Girsanov’s theorem guarantees that dW̃t = dWt + θt dt
defines a P̃-Brownian motion w.r.t. F . Thus, also the excess return
process dR̃t = (µt − r) dt + σ dWt = σ dW̃t is a martingale under P̃.

3 Consumption and Investment Processes

A consumption process c = (ct)t∈[0,T ] is a nonnegative, one-dimensional,
FS-adapted, measurable process satisfying

∫ T
0 cu du < ∞ a.s. An in-

vestment process π = (πt)t∈[0,T ] is a n-dimensional FS -adapted, mea-
surable process satisfying

∫ T
0

(
|π�

u µu|+ ‖π�
u σ‖2

)
du < ∞ a.s. Here, ct
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and πt represent the rate of consumption and the wealth invested in the
stocks, respectively, at time t. For initial capital x0 > 0 the wealth pro-
cess Xc,π = (Xc,π

t )t∈[0,T ] corresponding to the consumption/investment
pair (c, π) is well defined and satisfies

dXc,π
t = π�

t (µt dt + σ dWt) + (Xc,π
t − 1�

n πt)r dt− ct dt , Xc,π
0 = x0 .

A consumption/investment pair (c, π) is called admissible for initial
capital x0 > 0 if Xc,π

t ≥ 0 a.s. for all t ∈ [0, T ]. We denote the class of
admissible (c, π) for initial capital x0 by A(x0).
A utility function U : [0,∞) → ∪{−∞} is strictly increasing, strictly
concave, twice continuously differentiable, and satisfies limx→∞ U ′(x) =
0 and limx↓0 U ′(x) = ∞. Further, I denotes the inverse function of U ′.

Assumption 2 We demand that I satisfies I(y) ≤ Kya, |I ′(y)| ≤
Ky−bfor all y ∈ (0,∞) and some positive constants a, b,K.

Well known examples for utility functions are the logarithmic utility
function U(x) = log(x) and the power utility function U(x) = xα/α
for α < 1, α 	= 0.
Optimization Problem. For given initial capital x0 > 0 and utility func-
tions U1, U2 we consider the classical problem of maximizing the utility
from both consumption and terminal wealth, i.e.,

maximize E

[∫ T

0
γtU1(ct) dt + γTU2(XT )

]
over (c, π) ∈ A(x0)

under the constraint E
[∫ T

0 γtU
−
1 (ct) dt + U−

2 (XT )
]

< ∞, where the
discount factor γ = (γt)t∈[0,T ] is deterministic.

4 Optimization

We introduce the function X : (0,∞) �→ (0,∞] by

X (y) = E

[∫ T

0
ζ̃tI1(yγ−1

t ζ̃t) dt + ζ̃T I2(yγ−1
T ζ̃T )

]
.

In the following Dt will denote the Malliavin derivative. For a definition
of the spaces p,1 and an overview of the results concerning Malliavin
calculus we need for our purpose we refer to [4].

Theorem 1. Suppose that X (y) < ∞ for every y ∈ (0,∞). Then there
exists a unique number y∗ ∈ (0,∞) such that X (y∗) = x0. If
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(1) for some p, q > 1, 1
p + 1

q = 1, and for all s ∈ [0, T ] ζ̃s ∈ p,1 and
I ′1(y

∗γ−1
s ζ̃s) ∈ Lq(P̃),

(2) for some r > 1 sups∈[0,T ] Ẽ[|βsI1(y∗γ−1
s ζ̃s)|r] < ∞,

(3) sups∈[0,T ] Ẽ
[∫ T

0 ‖βsI
′
1(y

∗γ−1
s ζ̃s)y∗γ−1

s Dtζ̃s‖4 dt
]
< ∞,

(4) s �→ Dt(βsI1(y∗γ−1
s ζ̃s)) is continuous on (t, T ] for almost every

(t, ω) ∈ [0, T ]×Ω,

then the optimal consumption process and terminal wealth are given by

c∗t = I1(y∗γ−1
t ζ̃t) , X∗

T = I2(y∗γ−1
T ζ̃T ) ,

and the unique optimal trading strategy is given by

π∗
t = β−1

t (σ�)−1Ẽ

[∫ T

t
βuI

′
1(y

∗γ−1
t ζ̃u)y∗γ−1

u Dtζ̃u du

+ βT I
′
2(y

∗γ−1
T ζ̃T )y∗γ−1

T Dtζ̃T

∣∣∣∣ FS
t

]
.

5 Gaussian Dynamics (GD) for the Drift

In this section we model the drift as in [3] as the solution of the stochas-
tic differential equation dµt = κ(µ̄ − µt) dt + υ dW̄t, where W̄ is a n-
dimensional Brownian motion w.r.t. (F ,P), independent of W under P,
and κ, υ ∈ n×n, µ̄ ∈ n. We assume that υ is non-singular and that
µ0 follows a n-dimensional normal distribution with known mean vec-
tor µ̂0 and covariance matrix �0. Under some conditions on the drift
parameters Assumption 1 is satisfied; further we have to strengthen
Assumption 2 to a version which is still valid for a wide class of utility
functions, e.g. for power utility U(x) = xα/α with α < 0.2, cf. [3, 4].

We are in the situation of Kalman-Bucy filtering with signal µ and
observation R, and the conditional mean µ̂t = E[µt | FS

t ] satisfies

µ̂t = χt

[
µ̂0 +

∫ t

0
χ−1

s �s(σσ�)−1 dRs +
∫ t

0
χ−1

s ds κµ̄
]
,

where χ̇t =
[
−κ − �t(σσ�)−1

]
χt, χ0 = Idn and �̇t = −�t(σσ�)−1�t −

κ�t − �tκ
� + υυ�. For an explicit solution in the case n = 1 we refer

to [3, p. 84]. The process ζ−1 = (ζ−1
t )t∈[0,T ] satisfies the SDE dζ−1

t =
ζ−1
t (µ̂t − r1n)�(σ�)−1 dW̃t. We shall write ζGD for ζ as introduced in

this section.

Lemma 1. For ζGD conditions (1)–(4) of Theorem 1 are satisfied.



Optimizing Consumption and Investment 61

6 A Hidden Markov Model (HMM) for the Drift

In this section we model the drift process µ of the return as a con-
tinuous time Markov chain given by µt = BYt, where B ∈ n×d is
the state matrix and Y is a continuous time Markov chain with state
space {e1, . . . , ed}, the standard unit vectors in d. The state pro-
cess Y is further characterized by its rate matrix Q ∈ d×d, where
Qkl = limt→0

1
t P(Yt = el|Y0 = ek), k 	= l, is the jump rate or transition

rate from ek to el. Moreover, λk = −Qkk =
∑d

l=1,l �=k Qkl is the rate
of leaving ek. Therefore, the waiting time for the next jump is expo-
nentially distributed with parameter λk, and Qkl/λk is the probability
that the chain jumps to el when leaving ek for l 	= k.

The market price of risk becomes θt = ΘYt, Θ = σ−1(B − r1n×d).
Hence, the density process Z satisfies dZt = −Zt(ΘYt)� dWt. Since
(ΘYt)t∈[0,T ] is bounded, Novikov’s condition ensures that Z is a mar-
tingale and Assumption 1 is satisfied. Note that P̃ defined as in Sec-
tion 2 is also used for the filtering and that FS = FR = FW̃ . Hence,
we are in the situation of HMM filtering with signal Y and observa-
tion R. The normalized filter Ŷt = E[Yt|FS

t ] and the conditional den-
sity ζt = E[Zt|FS

t ] can be expressed in terms of the unnormalized filter
Et = Ẽ[Z−1

T Yt|FS
t ] which satisfies

Et = E[Y0] +
∫ t

0
Q�Es ds +

∫ t

0
Diag(Es)Θ� dW̃s , t ∈ [0, T ] .

The normalized filter is given by Ŷt = ζtEt and ζ−1
t = 1�

d Et.

Lemma 2. For ζHMM = ζ conditions (1)–(4) of Theorem 1 are satis-
fied.

7 Numerical Example

We consider daily prices for 20 stocks of the Dow Jones Industrial In-
dex for 30 years, 1972–2001, and the corresponding historic fed rates.
For each stock we use parameter estimates for the HMM based on a
Markov chain Monte Carlo method, cf. [1]. Also the parameters for
GD are obtained from a multiple-block MCMC sampler based on time
discretization similar to the sampler described in [1]. The parameter
estimates are based on five years and in the subsequent year the strat-
egy is computed. We start with initial capital X0 = 1. We compare
the strategy based on the HMM and the GD with the Merton-strategy
resulting from the assumption of a constant drift, where we include
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Table 1. Application to historical data

U1(x) = U2(x) = log(x) U1(x) = U2(x) = −x−5/5

HMM HMM[0, 1] GD GD[0, 1] Const. µ HMM GD Const. µ∫ T

0
γtU(c∗t ) dt + γT U(X∗

T )

mean -1.097 -1.117 -1.620 -1.202 -1.211 -10.407 -49.065 -9.282∫ T

0
γtc

∗
t dt + γT X∗

T

mean 1.805 1.067 0.478 1.017 1.070 1.046 0.947 1.018

bankrupt 14 0 73 0 2 0 1 0

bankruptcies with utility -1.
The numerical results in Table 1 highlight the two problems we face

when applying results of continuous time optimization to market data:
model and discretization errors. The 14 bankruptcies for the HMM
mainly fall on the Black Monday 1987, where single stocks had losses
up to 30%. Even without these jumps extreme long and short positions
can lead to high losses when trading only daily. For GD the positions
are even more extreme, since the drift process is unbounded, leading
to a very poor performance. A rigorous possibility to reduce the risk is
imposing constraints on the strategy. Using rectangular constraints (no
borrowing/short-selling: ηt ∈ [0, 1]) the HMM[0, 1] and GD[0, 1] clearly
outperform the Merton-strategy in expected utility. This seems to be
more reasonable than using very risk averse power utilities as e.g. with
α = −5 in Table 1. These also reduce the extreme positions but punish
a poor performance such heavily that the average utility is dominated
by a few outliers, even if no bankruptcy occurs.
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1 Introduction

Multistage stochastic programming problems can be defined as a finite
system of (mostly parametric) one–stage stochastic programming prob-
lems with an inner type of dependence (for details see e.g. [1], [2], [6]).
Employing this approach we can introduce the multistage (M+1–stage,
M ≥ 1) stochastic programming problem as the problem.

Find
ϕF (M) = inf {E

F ξ0g
0
F (x0, ξ0)| x0 ∈ K0}, (1)

where the function g0
F (x0, z0) is defined for k = 0, 1, . . . , M − 1

recursively

gk
F (x̄k, z̄k) =

inf{E
F ξk+1|ξ̄k=z̄k gk+1

F (x̄k+1, ξ̄k+1) |xk+1 ∈ Kk+1
F (x̄k, z̄k)},

gM
F (x̄M , z̄M ) := gM

0 (x̄M , z̄M ), K0 := X0.
(2)

ξj := ξj(ω), j = 0, 1, . . . , M denotes an s–dimensional random vec-
tor defined on a probability space (Ω, S, P ); F ξj

(zj), zj ∈ Rs, j =
0, 1 . . . , M the distribution function of the ξj and F ξk|ξ̄k−1

(zk|z̄k−1),
zk ∈ Rs, z̄k−1 ∈ R(k−1)s, k = 1, . . . , M the conditional distribution
function (ξk conditioned by ξ̄k−1); P

F ξj , P
F ξk+1|ξ̄k , j = 0, 1, . . . , M, k =

0, 1, . . . , M − 1 the corresponding probability measures; Zj := Z
F ξj ⊂

Rs, j = 0, 1, . . . , M the support of the probability measure P
F ξj . Fur-

thermore, the symbol gM
0 (x̄M , z̄M ) denotes a continuous function de-

fined on Rn(M+1)×Rs(M+1); Xk ⊂ Rn, k = 0, 1, . . . , M is a nonempty
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set; the symbol Kk+1
F (x̄k, z̄k) := Kk+1

F ξk+1|ξ̄k (x̄k, z̄k), k = 0, 1, . . . , M−1

denotes a multifunction mapping Rn(k+1) × Rs(k+1) into the space of
subsets of Rn. ξ̄k(:= ξ̄k(ω)) = [ξ0, . . . , ξk]; z̄k = [z0, . . . , zk], zj ∈
Rs; x̄k = [x0, . . . , xk], xj ∈ Rn; X̄k = X0 × X1 . . . × Xk; Z̄k :=
Z̄k
F = Z

F ξ0 × Z
F ξ1 . . . × Z

F ξk , j = 0, 1, . . . , k, k = 0, 1, . . . , M. Sym-
bols E

F ξ0 , E
F ξk+1|ξ̄k=z̄k , k = 0, 1, . . . , M − 1 denote the operators of

mathematical expectation corresponding to F ξ0
, F ξk+1|ξ̄k=z̄k

.
The definition of the multistage stochastic programs (1), (2) can be

“suitable” (see e.g. [6], [7], [11]) for a stability investigation, scenario
construction as well as for the investigation of empirical estimates. How-
ever, first, it is necessary to state assumptions guaranteing “necessary”
properties of the individual problems. To this end, we assume.

A.1 {ξk}∞k=−∞ follows a nonlinear autoregressive sequence

ξk = H(ξk−1) + εk, (3)

where ξ0, εk, k = 1, 2, . . . are stochastically independent; εk, k =
1, . . . , identically distributed. H := (H1, . . . , Hs) is a Lipschitz
vector function on Rs (we denote the distribution function of ε1 =
(ε1

1, . . . , ε
1
s) by F ε and suppose the realization of ξ0 to be known),

A.2 there exist functions fk+1
i, j , i = 1, . . . , s, j = 1, . . . , k + 1, k =

0, . . . , M − 1 defined on Rn and αi ∈ (0, 1), i = 1, . . . , s, ᾱ =
(α1, . . . , αs) such that

Kk+1
F (x̄k, z̄k) (:= Kk+1

F (x̄k, z̄k; ᾱ)) =
s⋂

i=1
{xk+1 ∈ Xk+1 : P

F ξk+1|ξ̄k=z̄k{
k+1∑
j=1

fk+1
i, j (xj) ≤ ξk+1

i } ≥ αi},

ξk+1 = (ξk+1
1 , . . . , ξk+1

s ).

(4)

A very similar case has been investigated in [9]. However, there were
not studied assumptions to be constraints sets of the problems (2)
nonempty. Of course, there are known (from the stochastic program-
ming literature) sufficient assumptions guaranteing this property in the
linear case (fixed complete recourse matrices) or generally relatively
complete recourse constraints (for more details see [1]). We try to ex-
tend a class of assumptions guaranteing this property. To this end we
employ the approach introduced in [10]. Furthermore, we mention as-
sumptions guaranteing to be individual objective functions finite. At
the end, we summarize the introduced assumptions to stability results
suitable for constructions of approximate solution schemes.
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2 Problem Analysis

The multistage problem (1), (2) is (from the probability point of
view) under the assumption A.1 determined by the distribution func-
tions F ξ0

, F ε. Employing this fact we can obtain a new relation for
Kk+1

F (x̄k, z̄k), k = 0, 1, ..., M−1. To this end we define k
F

ξk+1|ξ̄k=z̄k

i

(αi),

kF ε
i
(αi), αi ∈ (0, 1), i = 1, . . . , s, k = 0, 1, . . . , M − 1 by

k
F

ξk+1|ξk=zk

i

(αi) = sup
zk+1
i ∈R1

P
F

ξk+1|ξ̄k=z̄k

i

{zk+1
i ≤ ξk+1

i } ≥ αi},

kF ε
i
(αi) = sup

zi∈R1

PF ε
i
{zi ≤ εi} ≥ αi}.

F
ξk+1|ξ̄k=z̄k

i , F ε
i , i = 1, . . . , s are corresponding one–dimensional margi-

nal distribution functions. Since (under A.1) kF ε
i
(αi) = k

F
ξk+1|ξ̄k=z̄k

i

(αi)

−Hi(zk), we can under A.1, A.2 obtain

Kk+1
F (x̄k, z̄k) =

s⋂
i=1
{xk+1∈Xk+1 :

k+1∑
j=1

fk+1
i, j (xk+1) ≤ k

F
ξk+1|ξk=zk

i

(αi)},

=
s⋂

i=1
{xk+1∈Xk+1 :

k+1∑
j=1

fk+1
i, j (xk+1) ≤ kF ε

i
(αi)+Hi(zk)}}.

(5)
Defining (for given ᾱ) hk+1

i (x̄k, z̄k), i = 1, . . . , s, k = 0, . . . , M − 1 by

hk+1
i (x̄k, z̄k) := hk+1

i (x̄k, z̄k, kF ε
i
(αi)) = kF ε

i
(αi)+Hi(zk)−

k∑
j=1

fk+1
i,j (xj),

(6)
we obtain “classical nonlinear” constraints sets in the form

Kk+1
F (x̄k, ξ̄k) =

s⋂
i=1

{xk+1 ∈ Xk+1 : fk+1
i, k+1(x

k+1) ≤ hk+1
i (x̄k, ξ̄k)}. (7)

Evidently, for arbitrary functions hk+1
i (x̄k, z̄k), i = 1, . . . , s defined

on X̄k × Z̄k if Kk+1
E (x̄k, z̄k) denotes the set of efficient points of the

multiobjective problem.
Find

min hi(x̄k, z̄k), i = 1, . . . , s subject to x̄k ∈ X̄k, zk ∈ Zk, (8)
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then for X̄k, Z̄k compact sets

Kk+1
F (x̄k, z̄k) nonempty for (x̄k, zk) ∈ Kk+1

E (x̄k, zk) =⇒
Kk+1

F (x̄k, z̄k) nonempty for x̄k ∈ X̄k, z̄k ∈ Z̄k.
(9)

3 Some Auxiliary Assertions

According to (9), employing the proofs technique of [10] we can obtain
for

Λ = {λ ∈ Rs : λ = (λ1, . . . , λs), λi > 0, i = 1, . . . , s,
s∑

i=1

λi = 1},

Gλ, k+1(x̄k, z̄k) =
s∑

i=1
λih

k+1
i (x̄k, z̄k), x̄k ∈ X̄k, z̄k ∈ Z̄k, λ ∈ Λ,

KΛ, k+1(X̄k, Z̄k) = {x̄k ∈ X̄k, z̄k ∈ Z̄k : Gλ, k+1(x̄k, z̄k) =

min{Gλ, k+1(x̄k, z̄k) : x̄k ∈ X̄k, z̄k ∈ Z̄k} for some λ ∈ Λ, }
(10)

the next assertion (for more details see e.g. [3], [4]).

Proposition 1. Let k = 0, 1, . . . , M−1, Xk, Zk, be nonempty convex,
compact sets. If

1. K̄Λ, k+1(X̄k, Z̄k) denotes a closure of KΛ, k+1(X̄k, Z̄k),

2. hk+1
i (x̄k, z̄k), i = 1, . . . , s, k = 0, 1, . . . , M − 1 are convex, contin-

uous functions on X̄k × Z̄k,

then

Kk+1
F (x̄k, z̄k) is nonempty for every (x̄k, z̄k) ∈ K̄Λ, k+1(X̄k, Z̄k) =⇒

Kk+1
F (x̄k, z̄k) is nonempty for every x̄k ∈ X̄k, z̄k ∈ Z̄k.

Proposition 2. Let hk+1
i (x̄k, z̄k) fulfil the relation (6). If, moreover,

for i = 1, . . . , s, j = 1, . . . , k + 1, k = 0, 1, . . . , M − 1,

1. Hi(zk), fk+1
i, j (xj) are linear functions on X̄M × Z̄M ,

2. Xj , Zj are polyhedral compact sets,
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then

Kk+1
F (x̄k, z̄k) is nonempty for every (x̄k, z̄k) ∈ KΛ, k+1(X̄k, Z̄k) =⇒

Kk+1
F (x̄k, z̄k) is nonempty for every x̄k ∈ X̄k, z̄k ∈ Z̄k.

Evidently, it follows from (10) and [3] that to determine, under the
assumptions of Proposition 2, the set KΛ, k+1(X̄k, Z̄k), a modified sim-
plex algorithm (for parametric linear problem) can be employed. The
theory of convex parametric programming can be employed whenever
the assumptions of Proposition 1 are fulfilled. Furthermore, employing
the results of [5] and [7] the following assertion can be proven.

Proposition 3. Let k = 0, 1, . . . , M − 1, the assumption A.1 be ful-
filled, Xk be nonempty, compact sets. If

1. Kk+1
F (x̄k, z̄k) is nonempty for every (x̄k, z̄k) ∈ K̄Λ, k+1

E (X̄k, Z̄k),

2. for x̄k(i) ∈ X̄k, z̄k(i) ∈ Z̄k, i = 1, 2 there exists D > 0 such that

∆[Kk+1
F (x̄k(1), z̄k(1)), Kk+1

F (x̄k(2), z̄k(2))] ≤
D ‖h(x̄k(1), z̄k(1))− h(x̄k(2), z̄k(2))‖, hk+1 = (hk+1

1 , . . . , hk+1
s ),

3. gM
0 (x̄M , z̄M ) is a Lipschitz function on X̄M × Z̄M ,

4. a finite EF εε (ε := ε1) exists,

then gk
F (x̄k, z̄k) is a Lipschitz function on X̄k × Z̄k.

∆[·, ·] denotes the Hausdorff distance; ‖ · ‖ the Euclidean norm.

4 Stability and Approximation

Evidently, if we replace F ξ0
, F ε by another Gξ0

, Gε, we obtain an-
other problem with an optimal value by ϕG(M). Employing the sta-
bility results (for details see e.g. [8] and [9]) we can see that if
hk+1, k = 0, . . . , M−1 are Lipschitz in all arguments and the assump-
tions of Propositions 1, 2, 3 are fulfilled, then there exist Ci

W1
, Ci

K >
0 i = 1, . . . s such that

|ϕF (M)−ϕG(M)| ≤
s∑

i=1

Ci
W1

∫
R1

|F ε
i (zi)−Gε

i (zi)|dzi+
s∑

i=1

Ci
K |kF ε

i
−kGε

i
|,

(11)
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Gε
i , kGε

i
, i = 1, . . . , s are one–dimensional marginal distribution func-

tions and quantils.
The relation (11) can be employed for empirical estimates inves-

tigation and approximate solution schemes construction. However the
investigation in this direction is over the possibility of this contribution.
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7. Kaňková V, Šmı́d M (2004) On approximation in multistage stochastic
programs: Markov dependence. Kybernetika 40:625–638
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1 Introduction and Notation

We consider a Markov decision chain X = {Xn, n = 0, 1, . . .} with
finite state space I = {1, 2, . . . , N} and a finite set Ai = {1, 2, . . . ,Ki}
of possible decisions (actions) in state i ∈ I. Supposing that in state
i ∈ I action k ∈ Ai is selected, then state j is reached in the next
transition with a given probability pk

ij and one-stage transition reward
rij will be accrued to such transition.

We shall suppose that the stream of transition rewards is evaluated
by an exponential utility function, say uγ(·), with risk aversion coeffi-
cient γ > 0 (the risk averse case). Then the utility assigned to the (ran-
dom) reward ξ is given by uγ(ξ) := exp(γξ), and for the corresponding
certainty equivalent Zγ(ξ) we have (E is reserved for expectation)

uγ(Zγ(ξ)) = E[exp(γξ)] ⇐⇒ Zγ(ξ) = γ−1 ln{E [exp(γξ)]}. (1)

A (Markovian) policy controlling the chain, π = (f0, f1, . . .) where
fn ∈ A ≡ A1 × . . . × AN for every n = 0, 1, 2, . . . and fn

i ∈ Ai is the
decision at the nth transition when the chain X is in state i. A policy
which takes at all times the same decision rule, i.e. π ∼ (f), is called
stationary.

Let ξn =
∑n−1

k=0 rXk,Xk+1
be the stream of transition rewards re-

ceived in the n next transitions of the considered Markov chain X, and
similarly let ξ(m,n) be reserved for the total (random) reward obtained
from the mth up to the nth transition (obviously, ξn = rX0,X1 + ξ(1,n)).
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Supposing that the chain starts in state X0 = i and policy π = (fn)
is followed, then for expected utility in the n next transitions, the cor-
responding certainty equivalent, and for mean value of the certainty
equivalent we have (Eπ

i denotes expectation if policy π is followed and
X0 = i)

Uπ
i (γ, 0, n) := Eπ

i [exp(γ
n−1∑
k=0

rXk ,Xk+1
)] (2)

Zπ
i (γ, 0, n) := γ−1 ln {Eπ

i [exp(γ
n−1∑
k=0

rXk ,Xk+1
)]}. (3)

Jπ
i (γ, 0) := lim sup

n→∞
n−1Zπ

i (γ, 0, n). (4)

In what follows we shall often abbreviate Uπ
i (γ, 0, n), Zπ

i (γ, 0, n) and
Jπ

i (γ, 0) respectively by Uπ
i (γ, n), Zπ

i (γ, n) and Jπ
i (γ) respectively. Sim-

ilarly Uπ(γ, n) is reserved for the (column) vector whose ith element
equals Uπ

i (γ, n). The symbol e is a unit (column) vector. Q(f) is an
N×N nonnegative matrix with elements qij(fi) := pfi

ij · eγrij .
In this note we focus attention on the asymptotic behavior of the

expected utility and the corresponding certainty equivalents, similarly
as in [2, 4]. However, our analysis is based on the properties of a col-
lection of nonnegative matrices arising in the recursive formulas for the
growth of expected utilities is not restricted to irreducible matrices.

2 Risk-Sensitive Optimality and Nonnegative Matrices

Conditioning in (2) on X1 (since uγ(ξn) = E[uγ(rX0,X1)·uγ(ξ(1,n))|X1 =
j]) from (2) we immediately get

Uπ
i (γ, 0, n) =

∑
j∈I

q
f0

i
ij · Uπ

j (γ, 1, n) with Uπ
i (γ, n, n) = 1 (5)

or in vector notation

Uπ(γ, 0, n) = Q(f0) ·Uπ(γ, 1, n) with Uπ(γ, n, n) = e. (6)

Iterating (6) we get if policy π = (fn) is followed

Uπ(γ, n) = Q(f0) ·Q(f1) · . . . ·Q(fn−1) · e. (7)

To study the properties of (7) we shall employ following facts:

(i) (See e.g. [1, 3].) If every Q(f) with f ∈ A is irreducible, then there
exists f∗ ∈ A, and v(f∗) > 0 such that for any f ∈ A

Q(f) · v(f∗) ≤ Q(f∗) · v(f∗) = ρ(f)v(f∗). (8)
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Moreover, (8) can be fulfilled even for reducible matrices, on condition
that Q(f∗) can be decomposed as

Q(f∗) =
[
Q(NN)(f∗) Q(NB)(f∗)

0 Q(BB)(f∗)

]
(9)

where the spectral radius of Q(BB)(f∗) is equal to ρ(f∗) and the spectral
radius of (possibly reducible) Q(NN)(f∗) is less than ρ(f∗). (Observe
that (9) well corresponds to the canonical decomposition of transition
probability matrix with r classes of recurrent states.)

(ii) (See [6, 7, 8].) There exists suitable labelling of states such that:
Every Q(f) with f ∈ A is block triangular, i.e.

Q(f) =

⎡⎢⎢⎢⎣
Q11(f) Q12(f) . . . Q1s(f)

0 Q22(f) . . . Q2s(f)
...

...
. . .

...
0 0 . . . Qss(f)

⎤⎥⎥⎥⎦ (10)

where all Qii(f) have fixed dimensions, and are the “biggest” subma-
trices of Q(f) having strictly positive right eigenvectors corresponding
to the maximum possible spectral radii of the corresponding submatri-
ces, i.e. there exists Q(f∗) along with vi(f∗) > 0 (i. e. strictly positive)
such that for all i = 1, 2, . . . , s

ρi(f∗) ≥ ρi(f); ρi(f∗) ≥ ρi+1(f∗) (11)

Qii(f) · vi(f∗) ≤ Qii(f
∗) · vi(f∗) = ρi(f∗)vi(f∗) (12)

Observe that ρ1(f∗) = ρ(f∗) and that each diagonal block Qii(f) in
(10) may be reducible, and if Qii(f∗) is reducible then it can a decom-
posed according to (9).

Throughout this note we make the following assumption:
Assumption GA. A strict inequalities hold in the second part of
(11), i.e.:

ρ1(f∗) > ρ2(f∗) > . . . > ρs(f∗). (13)

Obviously, since eigenvectors are unique up to a multiplicative con-
stant, on condition that v(f∗) > 0 we can choose v(f∗) ≥ e and
v(f∗) ≤ e respectively, and on replacing in (7) e by v(f∗) recursion (7)
will immediately yields upper and lower bounds on Uπ(γ, n) respec-
tively.
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In particular, for an easy case with Q(f)’s irreducible, or if at least
condition (8) holds even for some reducible matrix Q(f∗), we can im-
mediately conclude that for v(f∗) ≥ e and any policy π = (fk)

n−1∏
k=0

Q(fk) · v(f∗) ≤ (Q(f∗))n · v(f∗) = (ρ∗)n · v(f∗) (14)

and hence the asymptotic behaviour of Uπ(γ, n) (or of Uπ(γ,m, n) if m
is fixed) heavily depends of on ρ(f∗) ≡ ρ∗, and elements of

∏n−1
k=0 Q(fk)·

v(f∗) must be bounded from above by (ρ(f∗))n · v(f∗).
Similarly, on selecting v(f∗) ≤ e, we get for stationary policy

π∗ ∼ (f∗):
(Q(f∗))n · e ≥ (ρ∗)n v(f∗). (15)

Hence the growth of Uπ∗
(γ, n) is also bounded from below by (ρ(f∗))n ·

v(f∗).
Now (cf. (10)–(12)) let us consider the reducible case. Obviously, if

we choose for all i vi(f∗) ≤ e and ignore in Q(f∗) all its off-diagonal
blocks, we can easily see that for π∗ ∼ (f∗) the growth of each Uπ

i (γ, n)
is non-smaller than (ρi(f∗))n. Moreover, we have already shown that
the maximal growth of Uπ

s (γ, n) is governed by ρs(f∗) and is attained
for stationary policy π∗ ∼ (f∗). Hence it suffices to show by induction
on i = s− 1, . . . , 1 that the growth of each Uπ

i (γ, n) is also dominated
by the appropriate powers of ρi(f∗).

We present only a sketch of the proof for s = 2, i.e., when each Q(f)
can be decomposed as

Q(f) =
[
Q11(f) Q12(f)

0 Q22(f)

]
(16)

with ρ1(f∗) > ρ2(f∗) and ε∗ := ρ2(f∗)/ρ1(f∗) < 1. Then by (12) we
have Qii(f) · vi(f∗) ≤ Qii(f∗) · vi(f∗) = ρi(f∗)vi(f∗), for i = 1, 2,
and since

(Q(f))n =

[
(Q11(f))n

∑
k+
=n−1

(Q11(f))kQ12(f)(Q22(f))


0 (Q22(f))n

]
(17)

we can conclude that if v1(f) ≥ e, v2(f) ≥ e we have for any policy
π = (fn)[

Uπ
1 (γ, n)

Uπ
2 (γ, n)

]
≤
[

(ρ1(f∗))n−1
{
ρ1(f∗) + α 1

1−ε∗ ·
}
· v1(f∗)

(ρ2(f∗))n · v2(f∗)

]
and the growth of Uπ

1 (γ, n) is dominated by ρ1(f∗).
In general, the growth of Uπ

i (γ, n) is dominated by ρi(f∗) that can
be obtained along with vi(f∗) > 0 (unique up to a multiplicative con-
stant) as a solution of (12). Denoting elements of vi(f) > 0 by v(i),j(f)
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(for j = 1, . . . , Ni) and elements of Ni×Ni matrix Qii(f) by q(i),jk(f)
(recall that q(i),jk(f) = pf

(i),jk · eγrij ) from (12) we get for g(i)(f),

w(i),j(f) (j = 1, . . . , Ni) defined by v(i),j(f) = eγw(i),j(f), ρi(f) =
eγg(i)(f) the following set of equations for � = 1, . . . , Ni

eγ(g(i)(f)+w(i),�(f)) = max
f∈A

{
∑

j∈I(i)

pf
(i),
j · e

γ(r(i),�j+w(i),j(f))} (18)

called γ-average reward optimality equation.
In the multiplicative form (used before) we write for � = 1, . . . , Ni

ρi(f) v(i),
(f) = max
f∈A

{
∑

j∈I(i)

pf
(i),
j · e

γr(i),�j · v(i),j(f)}. (19)

Observe that the solution to (18), resp. (19), is unique up to an additive
constant, resp. multiplicative constant.

3 Finding Optimal Solutions by Value Iterations

Consider the following dynamic programming recursion for n = 0, 1, . . . ,

Û (n+1) = max
f∈A

Q(f) · Û(n) = Q(f̂ (n)) · Û (n) with Û (0) = e. (20)

If there exists ρ∗ and v∗ > 0 such that

ρ∗v∗ = max
f∈A

Q(f) · v∗ = Q(f∗) · v∗ (21)

with Q(f∗) aperiodic then (see [5], Theorem 3.4)

i) Û(n) → v∗ as n →∞;

ii) Let ρmax(n) :=max
i∈I

Ûi(n+1)/Ûi(n), ρmin(n) :=min
i∈I

Ûi(n+1)/Ûi(n),

then the sequence {ρmax(n)} is nonincreasing, {ρmin(n)} is non-
decreasing, and

lim
n→∞

ρmax(n) = lim
n→∞

ρmin(n) = ρ∗. (22)

Hence for the corresponding values of certainty equivalents we get

Zπ∗
i (γ, n) = γ−1 · ln[Uπ∗

i (γ, n)] = γ−1 · [n ln(ρ∗) + wi] (23)

and for the mean value of certainty equivalents we have

Jπ∗
i (γ) = γ−1 · ln[ρ∗] for i = 1, 2, . . . , N. (24)

The above procedures also enables to generate upper and lower bounds
on the mean value of certainty equivalents. In particular, for

Jmax(γ, n) := γ−1 ln[ρmax(n)], Jmin(γ, n) := γ−1 ln[ρmin(n)]
the sequence {Jmax(γ, n), n = 0, 1, . . .}, resp. {Jmin(γ, n), n = 0, 1, . . .},
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is nonincreasing, resp. nondecreasing, and
lim

n→∞
Jmax(γ, n) = lim

n→∞
Jmin(γ, n) = Jπ∗

i independently of i ∈ I.

If there exists no v∗ > 0 such that (21) holds we can proceed as follows:
Suppose (for simplicity) that {Q(f), f ∈ A} can be decomposed into
block-triangular form with two diagonal blocks Q11(f), Q22(f) (i.e.
Q21(f) = 0 for any f ∈ A), and there exists f∗ ∈ A and v1(f∗) > 0,
v2(f∗) > 0 such that ρ1(f∗) > ρ2(f∗), and for any Q(f) with f ∈ A,
for i = 1, 2

Qii(f) · vi(f∗) ≤ ρi(f∗)vi(f∗) = Qii(f
∗) · vi(f∗). (25)

Let the rows of Q11(f), resp. Q22(f), be labelled by numerals from I1,
resp. I2. (Obviously, I = I1 ∪ I2.) Then on iterating (25) we get:

limn→∞ Ûi(n + 1)/Ûi(n) = ρ1(f∗), for any i ∈ I1

limn→∞ Ûi(n + 1)/Ûi(n) = ρ2(f∗), for any i ∈ I2, and for
ρ

(1)
max(n) := max

i∈I1

Ûi(n + 1)/Ûi(n), ρ
(1)
min(n) := min

i∈I1

Ûi(n + 1)/Ûi(n)

we can conclude that {ρ(1)
max(n)} nonincreasing, {ρ(1)

min(n)} nondecreas-
ing, and limn→∞ ρ

(1)
max(n) = limn→∞ ρ

(1)
min(n) = ρ1(f∗), where ρ1(f∗) is

the maximum possible growth rate that can occur in states from I1.
The same holds also for mean values of the corresponding certainty
equivalents, and also for states from I2.
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1 Introduction

Technology development involves research and development (R&D)
projects aimed to design, test and improve a technology, or the process
of building a technology. Technology development is often an essential
part of the operational strategy of an organization, during which de-
ployment or implementation decisions are made. In most cases, organi-
zations have several potential technologies with different characteristics
that they can choose to invest in and develop using available resources.
Selection of projects and allocation of the resources to the selected
projects are important decisions with huge economic implications for
an organization.

Despite the importance and economic significance of R&D project
portfolio selection and the existence of several operations research mod-
els, the industrial use of these models has been limited. This is mainly
due to the fact that none of the proposed models has been able to
capture the full range of complexity that exists in technology develop-
ment portfolios. The proposed models include capital budgeting mod-
els, which capture interdependencies between different projects, but fail
to model the uncertainty in returns and required investments[3]. More
recent project portfolio models capture both the uncertainty in returns
and interdependencies. However, these models assume that the required
cash flows for projects are known, and the investment decisions consist
of binary starting or stopping decisions for projects [1, 2]. In addition
to these models, most strategic planners and technology portfolio man-
agers rely on tools based on expert opinions. Clearly, these tools are
very limited in their ability to fully quantify the complicated return
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and investment structure inherent in technology portfolios. Hence, it
is essential that advanced decision tools to determine optimal technol-
ogy portfolios are developed. This study fills this gap by developing
a detailed model and practical solution techniques for the technology
portfolio management problem.

2 Mathematical Representation and Model

Assume a set N of technologies with annual performance levels Zi ∈
R+, implementation times ∆i ∈ R+, required investment levels θi ∈
R+, annual fixed activity costs fi ∈ R+ and a set of depending tech-
nologies Di ⊂ N , for each i ∈ N . Although only two-way dependencies
between technologies are used in this study, the proposed models can
be extended to handle multi-way dependencies in a similar fashion. We
let Zij ∈ R be the joint annual performance level for technology i ∈ N
and j ∈ Di, and define it as a function of Zi and Zj. Furthermore, a
sequence of investment planning periods t = 1, 2, ..., T with available
resource levels, i.e. budgets Bt ∈ R+, are assumed. The objective is to
determine an investment schedule such that some function of the total
discounted return over an infinite time horizon is maximized while total
investment in a given period t does not exceed Bt. In typical applica-
tions, the decision maker is interested in the investment schedule for the
current period only, which should take into account future realizations
of the parameters. Hence, a realistic assumption is that the problem
will be solved each planning period to determine the best investment
policy for that period, considering the past and future investments.

In practice, almost all of the above parameters may contain a certain
level of uncertainty. However, observational analyses suggest that the
level of variance is significant only in two of the parameters, namely the
returns Zi and required investment levels θi . Note that Zij is defined
as a function of Zi and Zj . Hence, we approximate all other param-
eters with their expected values, and assume that joint and marginal
probability distributions of the returns and required investment levels
for the technologies are known or well estimated.

The decision process in the technology portfolio management prob-
lem consists of recourse actions, by which the portfolio can be rebal-
anced at each period. Hence, an appropriate approach is to formulate
the problem as a recourse problem, in which recourse actions can be
taken after uncertainty is disclosed over the investment period. This
decision process can be described as follows.



A Stochastic Model for Technology Portfolio Management 77

The resource requirement θi for each technology i is known with
certainty at the end of period tiθ, in which total investment in the tech-
nology exceeds a threshold level Θθ

i , i.e. tiθ = mint{t|
∑

t′≤t xit′ ≥ Θθ
i },

where xit represents the investment for technology i in period t.
Similarly, we assume that the uncertainty in the return of a tech-
nology is revealed gradually over its development based on certain
threshold levels. This process is modeled by assuming that an ini-
tial performance assessment Ẑi will be available at the end of period
tiz = mint{t|

∑
t′≤t xit′ ≥ Θz

i } upon investing an amount of Θz
i in the

technology. As a result of this assessment, probabilities of different per-
formance levels are updated. This assumption enables the modeling of
the option of terminating a project if the initial assessment suggests
that the probability of a high return is low for the technology. Gradual
resolution of uncertainty can be explained further as follows. Assume
that Zi can be realized at one of two levels: L,H with pre-development
probabilities pL and pH , respectively. After investing an amount Θz

i

in this technology, an estimate Ẑi is made, which can be seen as an
intermediate realization of the uncertain parameter. If all uncertainty
is resolved when technology development is over, then the probabilities
for the actual realization of the possible outcomes can depend on the
intermediate realization. If the development phase is continued, return
Zi will be known with certainty once all of the required resources are
invested in technology i.

The described process can be modeled as a multistage stochastic
program, in which the uncertainty is in required investment levels,
updated return estimates and final return levels. As in many other
stochastic programs, it is reasonable to assume for the technology port-
folio management problem that the random vector ξ has finite support
or has a discrete distribution with K possible realizations, i.e. scenarios,
ξk := (θk

i , Ẑ
k
i , Z

k
i ), k = 1, . . . ,K with corresponding probabilities pk.

Then, it becomes possible to express the problem as one large math-
ematical program. The details of the resulting multistage stochastic
programming model are provided in [4].

3 An Efficient Solution Procedure

The formulation in [4] is significant, as it is directly amenable to sce-
nario decomposition, unlike the previous models suggested for stochas-
tic programming problems with endogenous uncertainty. However, a
sampling procedure is also necessary due to the large number of sce-
narios for realistic instances of the problem. Hence, we use the sample
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average approximation (SAA) method to handle large instances of the
problem. Let ξ1, ..., ξN be an i.i.d. random sample of N realizations of
the random vector ξ. Then the SAA problem is:

max
x∈X

{ĝN (x) =
1
N

N∑
l=1

G(x, ξl)} (1)

Since the computational complexity of the SAA problem increases ex-
ponentially with the value of N , it is more efficient to select a smaller
sample size N , and solve several SAA problems with i.i.d. samples.
However, effective implementation of the above sampling procedure re-
quires that the SAA problems can be solved efficiently for relatively
large values of the sample size N . As an efficient solution procedure for
the SAA problem, we propose a Lagrangian relaxation and decompo-
sition scheme coupled with a lower bounding heuristic, which we name
as the feasible dual conversion algorithm. The development of such a
procedure is important, since for most multistage stochastic problems,
even finding a feasible solution to serve as a lower bound is difficult.
This general solution algorithm for the technology portfolio manage-
ment problem can be summarized as follows:

Step 1. Obtain N samples from the set of scenarios, and form the
SAA problem with these scenarios.

Step 2. Perform Lagrangian relaxation on the SAA problem, decom-
posing the problem into individual scenario subproblems.

Step 3. Use subgradient algorithm with the proposed step size mea-
sure to obtain an upper bound for the SAA problem.

3a. If computationally feasible, solve the LP relaxation of the
deterministic equivalent of the multistage model, and set the corre-
sponding dual values as the initial Lagrangian multipliers. Use a round-
ing heuristic to obtain an initial lowerbound on the problem.

3b. At each iteration j of the algorithm, determine a lower-
bound for the scenario subproblems by calculating L̇l(ẋl, λj+1, µj+1),
and selecting the minimum.

3c. At every fo iterations, apply the feasible dual conversion
algorithm, to obtain a lowerbound for the SAA problem, as well as for
the scenario subproblems.

3d. Use the best lowerbounds for the scenario subproblems as
the starting solution for the subproblems at iteration j + 1.

4. Calculate the duality gap upon convergence of the subgradient
algorithm. If the gap is less than or equal to ε, go to step 5. Else,
use branch and bound to close the duality gap, by branching on the
nonanticipativity conditions.
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5. Repeat Steps 1-4 M times. Each solution is a candidate solution
for the true problem.

6. For some or all of the candidate solutions, perform N ′ replications
by fixing the values of the first stage variables according to the solution,
and repeating steps 1−4 with the fixed values to estimate the objective
value of the candidate solutions.

7. Select a solution as the best solution using an appropriate crite-
rion.

3.1 The Feasible Dual Conversion Algorithm

The objective function of the technology portfolio management prob-
lem is defined by the values of the binary variables βit, which represent
the periods that the return realizations begin. Hence, the correspond-
ing values in a given Lagrangian dual solution describe some infeasible
investment policy in which nonanticipativity constraints are not en-
forced but are only penalized. Clearly, the optimal objective value of
the primal problem is expected to be as close as possible or comparable
to that of this infeasible policy. Thus, one can obtain a “good” invest-
ment policy by converting the dual solution into a feasible solution by
a minimal change in the βit values in the Lagrangian dual solution. We
present below an algorithm to achieve this. The feasible dual conversion
algorithm performs such conversions in a systematic way that ensures
the quality of the resulting solution as well as computational efficiency.
The steps of the algorithm are as follows:

Step 1. Initialization : Let βj represent the vector of corresponding
values in a solution to the Lagrangian dual problem at iteration j of
the subgradient algorithm for dual variables λj and µj . Let βl

it
, ĝ

N
, Ll

be the lowerbounds on βl
it, ĝN and Ll. Choose a scenario subset size S.

Set βl
it

= 0 for all i, t, l, S = ∅, S′ = ∅, N = {l1, l2, . . . , lN}.
Step 2. Scenario subset selection : Rank all s ∈ N according to sce-

nario objectives Lj
s, and form subset S by selecting the first S scenarios

among the ranked scenarios in N. Let S′ = S′ ∪ S and N = N\S.
Step 3. Variable fixing : For each s ∈ S, determine tso in which s

becomes distinguishable from all other scenarios according to βs
it, i.e.

tso = min
t
{t|min

s′ �=s
{
∑

j∈Yss′

(βs
j,t+∆j

+βs′
j,t+∆j

)+
∑

j∈Hss′

(βs
j,t+∆j

+βs′
j,t+∆j

)} ≥ 1}

(2)
For each i ∈ N such that βs

i,t+∆i
= 1, and t ≤ tso; if βs

i,t+∆i
−βs

i,t+∆i−1 =
1, then set βs

i,t+∆i
= 1.
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Step 4. Feasibility determination: Check feasibility with the lower
bounds on βs

it for the scenario set S′. If feasible, let β̇s
it represent the

corresponding values in this solution, and fix βs
it = β̇s

it. If N 	= ∅, go to
Step 2.

Step 5. Minimum dual conversion : If infeasible, determine the min-
imum number of relaxations ro required on βs

it
= 1 for s ∈ S to obtain

a feasible solution. Find the best possible feasible solution that can be
achieved by relaxing at most ro of the bounds βs

it
. Fix βs

it = β̇s
it. If

N 	= ∅, go to Step 2.
Step 6. Bound calculation : Let ẋ and ġN represent the final solution

vector and objective function value. If ġN > ĝ
N

, set ĝ
N

= ġN . For each
scenario l, calculate L̇l(ẋ, λj+1, µj+1). If L̇l > Lj+1

l , set Lj+1
l = L̇l.

4 Conclusions

The technology portfolio optimization problem is a difficult practical
problem, for which a comprehensive model and solution methodology
has not been developed in several limited approaches in the litera-
ture. In this study, we fill this gap by formally defining and effectively
modeling several complexities that are inherent in this problem, and
developing an efficient solution procedure. Implementation of the pro-
posed models in project portfolio selection by organizations will lead to
significant increases in returns, as all relevant inputs and uncertainty
are captured in the models, as opposed to existing project portfolio
selection tools.
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Summary. The objective of this study is to develop a neural network based
decision support system for selection of appropriate dispatching rules for a
real-time manufacturing system, in order to obtain the desired performance
measures given by a user, at different scheduling periods. A simulation ex-
periment is integrated with a neural network to obtain the multi-objective
scheduler, where simulation is used to provide the training data. The pro-
posed methodology is illustrated on a flexible manufacturing system (FMS)
which consists of several number of machines and jobs, loading/unloading
stations and automated guided vehicles (AGVs) to transport jobs from one
location to another.

1 Introduction

Scheduling as being part of production planning and control, plays an
important role in the whole manufacturing process. Although schedul-
ing is a well researched area, classical scheduling theory has been little
used in real manufacturing environments due to the assumption that
the scheduling environment is static. In a static scheduling environ-
ment where the system attributes are deterministic, different analytical
tools such as mathematical modeling, dynamic programming, branch-
and-bound methods can be employed to obtain the optimal schedule.
However, scheduling environment is usually dynamic in real world man-
ufacturing systems and the schedule developed beforehand may become
inefficient in a dynamically changing and uncertain environment. One
of the most applied solutions to the dynamic scheduling problems is the
use of dispatching rules. Over the years, many dispatching rules have
been studied by many researchers [4, 5, 11, 12]. However, the choice of
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a dispatching rule depends on the performance criteria considered, and
the system configuration and conditions, in other words, on the state of
the system and no single rule has been found to perform well for all the
performance criteria and all possible states of the system. Therefore,
a flexible scheduling method that can handle system variation which
results from the change of manufacturing conditions is needed to select
the best dispatching rule for each particular state of the system.

Having the ability to learn and generalize for new cases in short
time, in recent years, artificial neural networks (ANNs) have provided
a means of tackling dynamic scheduling problems. A number of differ-
ent ANN approaches have been developed for the solution of dynamic
scheduling problems, most of which are based on the use of backprop-
agation networks [2, 3, 6, 7, 10]. However, the use of competitive net-
works in dynamic scheduling environments is sparse. Min et al. [8]
designed a dynamic and real time FMS scheduler by combining the
competitive neural network and search algorithm to meet the multiple
objectives given by the FMS operator. Min and Yih [9] integrated sim-
ulation and a competitive neural network and develop a multi-objective
scheduler to select dispatching rules for both machine and vehicle ini-
tiated dispatching decision variables (for a detailed survey, see [1]).

In this paper, we introduce a multi-objective scheduler based on the
integration of simulation and a competitive network, parallel to the
work of Min and Yih [9]. Here, we study a Flexible Manufacturing Sys-
tem (FMS), where the user considers to improve the value of only one
performance measure at each interval. However, by giving the possi-
bility to consider different performance measures at different intervals,
the proposed scheduler serves as a multi-objective tool.

2 Proposed Scheduler

The proposed scheduler is the combination of a simulation model and
a neural network. The data needed to train the proposed network is
generated through simulation using Arena software (version 10). Two
different 5000 minute scheduling intervals are taken into consideration
during the data collection step. 250 alternative scenarios implementing
different dispatching rules in each interval are used as training set for
the proposed network. Each scenario including two different sets of
decision variables was simulated for 5 replications and the performance
measures and the values of the system status variables at the end of
each interval are obtained as simulation outputs. Two sets of decision
rules, together with the simulation outputs form the offline training
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examples of the proposed network. The training data is put into the
network to classify the decision rule sets into classes according to their
similarities. Then, the trained network is used to satisfy the desired
performance measures determined by the FMS scheduler at specific
intervals.

3 The FMS Model

The performance of the proposed approach is evaluated on an FMS.
The FMS considered in this paper consists of seven jobs, six machines,
one loading/unloading station and a staging area. Three AGVs are used
to transport the parts within the system, each having a travel velocity
of 100 feet per minute. When a vehicle completes its task and there are
no other requests for transport, the vehicle is sent to the staging area to
await the next request. Each job requires five operations and must visit
a certain number of machines and in different sequences. The routes of
each job are shown in Table 1.

Table 1. Operation sequences of each job

Job type Operation
1 2 3 4 5

1 M4 M1 M4 M1 M6
2 M3 M1 M2 M3 M6
3 M5 M4 M5 M4 M6
4 M2 M3 M2 M5 M6
5 M3 M1 M4 M2 M6
6 M2 M1 M4 M2 M6
7 M3 M4 M3 M4 M6

Three decision variables are considered and different dispatching
rules are examined with respect to these decision variables. Decision
variables and the associated dispatching rules used are as follows: Se-
lection of a load by an AGV (SPT- shortest processing time, FCFS-first
come first served, LCFS-last come last served, EDD-earliest due date),
Selection of load by machine (SPT, FCFS, EDD, CR-critical ratio,
Slack, MDD-Modified due date, WSPT-Weighted shortest processing
time), and Selection of an AGV by a load (Cyclical, Random, Smallest
Distance First, Largest Distance First). Table 2 shows the performance
measures and system status variables considered in this study.
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Table 2. Evaluation criteria

Performance Measures System status

Mean tardiness (MT) Average number waiting
Mean flow time (MFT) in machine queues
Total number of tardy jobs (TNTJ) Average utilization of machines
Total weighted flow time(TWFT) Mean waiting time in queues

The proposed network is developed using the software, NeuroSolu-
tions 5. After training the network, classification results are obtained
for 250 scenarios which include the current and next decision rule pairs
to be implemented. The decision rule sets are assigned to 5 different
classes. According to this, out of 250 rule sets, 113, 15, 7, 35 and 80
of them belong to class 1, class 2, class 3, class 4 and class 5, respec-
tively. At the beginning, the system is scheduled using the randomly
determined decision rules. Then, to investigate the effectiveness of the
proposed approach, the manufacturing system is controlled at five dif-
ferent 3000 minute intervals, after a warm up period of 5000 minutes.
At each control point, current performance measure values, current sys-
tem status variable values, desired performance measure values of the
decision maker are fed into the network to determine the class of the
decision rule set to be used for the next interval. Among the decision
rule sets in the determined class, the rule set which improves the per-
formance measures the most, is chosen as the next decision rule set to
be used.

4 Experimental Results

The performance of the proposed approach is evaluated at differ-
ent scheduling points, relative to four different performance measures,
mean flow time, mean tardiness, total number of tardy jobs, and mean
weighted flow time. In the offline scheduling approach, the system is
scheduled using the randomly determined rule set 3-3-2 (LCFS rule for
the first decision variable, EDD rule for the second decision variable
and random selection rule for the third decision variable) in all the
intervals. In the proposed dynamic scheduling approach, after the cur-
rent interval ends which was scheduled by the rule set 3-3-2, the next
decision rules are determined by the neural network which considers
the desired objectives given by the decision maker. The rule sets deter-
mined by the proposed approach are 2-4-3, 1-5-3, 2-2-3 and 4-5-2 for
the second, third, fourth and the fifth interval, respectively.
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From examination of the performance measures at each rescheduling
point given in figure 1, it is seen that by employing the dispatching
rules determined using the proposed scheduler at each period, superior
solutions are obtained over the offline scheduling approach.

Fig. 1. Performance measures at each period (rescheduling point)

5 Conclusions and Future Research

This paper explored the combined use of competitive neural networks
and simulation, as a multi-objective scheduler, to select the appropriate
dispatching rules for an FMS. By the proposed method, it is possible
to discover dispatching rules that will be effective for the next pro-
duction interval. The results of the study showed that monitoring the
system conditions at intervals and changing the rule set correspond-
ingly, rather than using the same rule set during the whole production
period, provides significant improvements in the value of system per-
formance measures. An area for future research could be to develop a
methodology to select the appropriate rule set to be used for the next
interval, among the rule sets in each class. Another possible extension
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of the proposed method might be, to investigate the effects of the AGVs
on the selection of the next decision rules.
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1 Introduction

Many empirical data describing features of some persons or objects
with associated class labels (e.g. credit client features and the recorded
defaulting behaviors in our application [5], [6]) are clearly not linearly
separable. However, owing to an interplay of relatively sparse data (re-
lating to high dimensional input feature spaces) and a validation proce-
dure like leave-one-out, a nonlinear classification cannot, in many cases,
improve this situation but in a minor way. Attributing all the remain-
ing errors to noise seems rather implausible, as data recording is offline
and not prone to errors of the type occurring e.g. when measuring pro-
cess data with (online) sensors. Experiments with classification models
on input subsets even suggest that our credit client data contain some
hidden redundancy. This was not eliminated by statistical data pre-
processing and leads to rather competitive validated models on input
subsets and even to slightly superior results for combinations of such
input subset base models [3]. These base models all reflect different
views of the same data. However, class regions with highly nonlinear
boundaries can also occur if important features (i.e. other explaining
factors) are for some reason not available (unknown, neglected, etc.). In
order to see this, simply project linearly separable data onto a feature
subset with smaller dimension. This would account for a second type of
(perceived) noise: in the case of our credit clients, besides the influence
of all the client features available to a bank, the unfolding of personal
events of a client may still contribute to his defaulting behavior. As
such events unfold after model building, they cannot be part of the
client feature data at forecasting time in any sensible way. Deciding to



90 Ralf Stecking and Klaus B. Schebesch

which extent the errors are produced by as yet not detected nonlin-
earities which actually exist in a complete feature space, i.e. which are
caused by an inadequate model view of the data and to which extent
they are caused by an incomplete feature space (second type of noise)
is hardly possible in practice. Besides producing more experimental
evidence, adding fictitious training data may lead to making the non-
linearities more visible to the classification algorithm. In section 2 we
outline a very simple placement of fictitious data using a toy model
and we motivate and discuss the relation to other relevant parameters
of the Support Vector Machine (SVM) classifier. In section 3 we report
on using such fictitious data on our empirical credit client data. Here
SVM models with different kernels are used, leading to interpretations
based on certain properties of the resulting SVM, and in section 4 we
conclude and address some future directions of generating fictitious
training data.

2 Simple Effects of Added Fictitious Training Examples

Among nonlinear classification methods, Support Vector Machines
(SVM) [4] lend themselves to interpreting the resulting model com-
plexity by interpreting the role of the support vectors. Such special
data points are returned by the dual SVM optimization procedure and
they describe the region in input feature space where separation of
classes is more difficult. Starting out with N labeled training examples
{xi, yi}i=1,...,N , with x ∈ Rm (e.g. m client features) and associated
label yi = {−1, 1} (e.g. behavioral class of ith client), the SVM pro-
ceeds by placing a fat separating box between classes in some derived
abstract space (margin maximization [4],[5],[6]). This finally leads to a
separating function S(x) =

∑N
i=1 yiα

∗
i ki(xi, x) + b∗, with 0 ≤ α∗

i ≤ C,
i = 1, ..., N , where C > 0 is a user supplied control of allowable misclas-
sification and the sign of S(x) being the forecasted label of new points
x. Kernels ki(., .) are also user selected, a popular instance being the
RBF-kernel ki(xi, x) = exp(−σi||xi−x||2), where user supplied σi > 0 is
case specific, emphasizing i.e. the locality of the features of the ith case.
Easily separable data receive α∗

i = 0 (they are non support vectors) and
the more difficult (margin) cases receive 0 < α∗

i ≤ C. An important
difference within the set of support vectors is whether 0 < α∗

i < C
(termed unbounded or essential support vectors) or if αi = C (termed
bounded support vectors, the latter containing all cases which are falsely
separated by S(x) and hence contributing less to a useful separating
function S(x). Although appropriate variation of C and local σi leads
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in principle to similar effects as can be realized by some seeding with
fictitious training points, we stipulate that using such synthetic training
points can be more general and has some advantages.
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Fig. 1. A poor SVM separating function for six data points (lhs plot). Adding
three fictitious points in a close vicinity of each data point leads visibly to a
more adequate separation (rhs plot)

By using such additional training points, one can control both global
and local effects (class-wise, case-wise and feature-wise; far beyond
those studied in the present paper). Such control can be obtained by
persons which are not acquainted with the internals of the SVM-method
(or any other classification method) but which possess domain know-
ledge for producing such training points (e.g. credit officers in our ap-
plication of section 3). In a toy example, we point to the simplest of all
seeding by fictitious training points, namely adding a constant num-
ber of such points (indiscriminately) into the vicinity of every training
point and by assigning them the same label as the respective original
training point. This is done within a radius well below the minimal dis-
tance measured between any two original training points, which avoids
any interference with the “nature” of the original problem and simply
places “more stress” on each training example. As depicted in Fig. 1 we
train a SVM on a small two dimensional example consisting of six orig-
inal training points with opposite labels (signed dark points) which are
not linearly separable in inputs feature space (as is the case with our
empirical credit scoring data of section 3). Here we deliberately use a
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C and a global σi = σ for all i = 1, ..., N within the RBF kernels such
that a separating function S(x) =

∑6
i=1 yiα

∗
i exp(−σ||xi − x||2) + b∗

results, which is visibly a poor solution (in the figure, the two differ-
ent background shades indicate whether S(x) ≥ 0 or S(x) < 0 for
x ∈ [0, 1] × [0, 1]). By adding a set of fictitious training points in the
vicinity of each original training point (without changing any internals
of the SVM) the solution jumps to a much better separating function
(rhs plot). We note this effect can be in fact achieved by placing such
fictitious points arbitrarily close to their original points.

3 Fictitious Points for Different Kernels on Real Data

The real data set for our credit scoring models is a sample of 658 clients
for a building and loan credit with a total number of 40 input variables.
It contains 323 defaulting and 335 non defaulting credit clients [5]. Fic-
titious data points are calculated by generating normally distributed
random variables with zero mean and a standard deviation of s = 0.059
(which is half of the minimum distance between the credit client data
points). These random numbers are added to the real data values. To
each of the 658 credit clients five of these fictitious data points are
added, resulting in a final data set, consisting of 3948 (658 original
plus 3290 fictitious) data points. SVM with five different kernel func-
tions are then used for classifying good and bad credit clients. Detailed
information about kernels, hyperparameters and tuning can be found
in [6].

In table 1 for each kernel the number of support vectors (SV), the
number of bounded support vectors (BSV), the vector norm and the
training error is shown for models trained on the full fictitious data set
and on the the real credit scoring data set. In general, using fictitious
data seems to affect highly non linear kernel functions like polynomial
(especially 3rd degree) and RBF kernels stronger than linear and sig-
moid kernels. We detect only small differences in the training error as
well as in the vector norm for linear and sigmoid kernel when changing
from real data models to real plus fictitious data models. The polyno-
mial kernels and the RBF kernel, on the other hand, show huge dif-
ferences in training error and vector norm when comparing both data
sets. Especially the small amount of bounded support vectors for these
models indicates an improvement of the generalization error [2].
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Table 1. Evaluation and comparison of five SVM with different kernel func-
tions. Each model is trained and evaluated on a full fictitious data set (Full
Fict.), containing 658 real data points together with 3290 fictitious data points
in close neighborhood. Real data model is trained and evaluated without using
any additional fictitious data points, FF subset is trained on the full fictitious
data set and evaluated on the real data set

SVM- No. of No. of No. of SV+ Vector Training
Kernel Cases SV BSV BSV Norm Error

Linear
Full Fict. 3948 47 2012 2059 3.8535 22.92 %
FF subset 658 5 336 341 22.80 %
Real data 658 41 316 357 4.0962 22.64 %

Sigmoid
Full Fict. 3948 21 2568 2589 11.8922 25.97 %
FF subset 658 4 428 432 25.84 %
Real data 658 17 544 561 10.5478 25.84 %

Polyn. 2nd deg.
Full Fict. 3948 159 1877 2036 1.3913 12.41 %
FF subset 658 20 321 341 11.85 %
Real data 658 63 392 455 0.5868 19.60 %

Polyn. 3rd deg.
Full Fict. 3948 433 845 1278 0.8494 1.85 %
FF subset 658 47 135 182 1.82 %
Real data 658 216 211 427 0.3909 8.81 %

RBF
Full Fict. 3948 412 1104 1516 63.5659 3.29 %
FF subset 658 51 173 224 3.34 %
Real data 658 179 252 431 26.6666 10.94 %

4 Conclusions and Outlook

In this contribution we started investigating the effects of using fic-
titious training examples to a credit scoring problem, which we in-
tensively studied by means of SVM modeling in previous work. After
stating potential advantages of controlling the separating function by
this type of intervention as opposed to manipulating SVM internals,
we investigate the effect of the simplest placement of fictitious training
points, namely seeding the vicinity of each training point with ran-
domly drawn points having the same label as the original data point.
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Applying this to the intensively trained SVM models with different ker-
nels we observe that the linear models do not change much (as would
be expected by theory) but some non-linear models show some interest-
ing change in model capacity (relatively more parsimony), which still
needs further investigation.

Adding fictitious training data also points to the problem of whether
newly generated training points do actually express feasible domain
data. In the context of credit scoring and in many other classification
problems it is quite obvious that not every combination of input fea-
tures can be a feasible case description (e.g. a client) for any of the
classes. A profound debate in classification is connected to the impor-
tance of this generative modeling, especially relating to the question of
whether a good model should be able to generate a large number of
feasible class members from a small set of initial examples [1]. Future
work will use more refined seeding, generating fictitious credit clients,
e.g. with feasible ordinal feature instances, etc., to be used in comple-
ment with the original training data.

References

1. Duin, R.P.W. and Pekalska, E. (2005): Open issues in pattern recognition,
to be found at:
www-ict.ewi.tudelf.nl/˜duin/papers/cores−05−open−issues.pdf

2. Schebesch, K.B. and Stecking, R. (2007): Selecting SVM Kernels and
Input Variable Subsets in Credit Scoring Models. In: Decker, R., Lenz,
H.-J. (Eds.): Advances in Data Analysis. Springer, Berlin, 179–186.

3. Schebesch, K.B. and Stecking, R. (2007): Using Multiple SVM Models
for Unbalanced Credit Scoring Data Sets. Proceedings of the 31th Inter-
national GfKl Conference, Freiburg.

4. Schölkopf, B. and Smola, A. (2002): Learning with Kernels. The MIT
Press, Cambridge.

5. Stecking, R. and Schebesch, K.B. (2003): Support Vector Machines for
Credit Scoring: Comparing to and Combining with some Traditional
Classification Methods. In: Schader, M., Gaul, W., Vichi, M. (Eds.): Be-
tween Data Science and Applied Data Analysis. Springer, Berlin, 604–612.

6. Stecking, R. and Schebesch, K.B. (2006): Comparing and Selecting SVM-
Kernels for Credit Scoring. In: Spiliopoulou, M., Kruse, R., Borgelt, C.,
Nürnberger, A., Gaul, W. (Eds.): From Data and Information Analysis
to Knowledge Engineering. Springer, Berlin, 542–549.



Part V

Continuous Optimization



Artificial DMUs and Contingent Weight
Restrictions for the Analysis of Brazilian

Retail Banks Efficiency

Madiagne Diallo1, Marcus Vinicius Pereira de Souza2,
Luis Eduardo Guedes3, and Reinaldo Castro Souza2

1 Departamento de Engenharia Industrial, Pontif́ıcia Universidade Católica
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Summary. In this paper, we deal with the BCC-I model in Data Envelop-
ment Analysis comparing results of Artificial DMUs and the adjusted Contin-
gent Weight Restrictions approach in the analysis of Brazilian Retail Banks
efficiencies. The number of employees, fixed assets, leverage and delinquency
rate were considered as inputs, and the financial intermediation results and
the equities profitability as outputs. While the Contingent Weight Restric-
tions method makes only directed weight restrictions, Artificial DMUs method
simulates a set of weight restrictions and depends on the use of specialists’
opinions. The compared methods are relevant to increase the precision of the
market analysis. The results of both methods are compared in order to distin-
guish their advantages and inconveniences. A set of efficient banks is obtained
together with a market analysis.

Key words: Data Envelopment Analysis, Finance and Banking, Multi-
Criteria Decision Aids, Artificial DMUs, Contingent Weight Restrictions.

1 Introduction

The Brazilian economy is achieving a stable and robust condition. In
addition, the main Central Bank Interest Rate decreased 56.6% from
October 2002 to June 2007, from 26.5% to 11.5% per year, encour-
aging innovative and attractive popular credit offers. This drastically
increased the competition in the banking market. Thus, it is interest-
ing for each retail bank to identify with precision variables that could
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impact the market share. The analysis using financial indices helps the
analyst to evaluate the financial health of an organization and enables
the perception of the weak and strong points related to its structure,
liquidity, profitability and activity. The aim of this work was to an-
alyze the efficiency of the 21 largest Brazilian Retail Banks using the
BCC-I model in Data Envelopment Analysis (DEA), comparing results
provided by the artificial DMUs method and the adjusted Contingent
Weight Restrictions approach. While the Contingent Weight Restric-
tions method makes only directed restrictions on weights, Artificial
DMUs method simulates a set of weight restrictions and depends on
the use of the specialists’ opinions. For the purpose of the analysis, 6
variables composed of 4 indices as input variables and 2 indices as out-
put variables are defined. The selection of variables includes financial
indices with the characteristic of the lower the better for representing
the input variables, and financial indices with the characteristic of the
higher the better, for representing the output variables. The data used
in this work are real and available at Brazilian Central Bank http://
www.bcb.gov.br/fis/top50/port/default.asp?parmidioma=P&id=top50.

2 Description of Variables and Methodology

The application of DEA on the analysis of accountancy report tackles
with the negative values that accountancy results assume. The trans-
lation invariance approach discussed in [4] allows overcoming such dif-
ficulty. Thus, depending on the case studied, neither the negative val-
ues are converted into positive without impact on the efficiency anal-
ysis, or the inefficiency and efficiency classification is adapted. In our
case, for some banks one or both output variable may be concerned.
Input variables: (1) Number of employees: represents the total
number of persons with employment contract directly made with the
respective bank. People working through outsourcing contracts are not
taken into account.(2) Leverage: indicates the relation between the
resources of third and the bank’s proper capital. It measures the ag-
gressiveness of the institution. Higher its indice is, more is risk envolved
in the bank’s operations. (3) Delinquency rate: indicates the rela-
tion between the amount of credits in liquidation and the total value of
credit provided by the bank. It measures the amount of loans difficult
to be paid back. The lower, the better. (4) Fixed asset: indicates
the proportion of capital invested in permanent assets. The lower, the
better. Output variables: (1) Financial Intermediation result:
corresponds to the difference between revenues and expenses issued
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from capital markets, movable headings and values, change, compul-
sory applications and others.(2) Equity’s profitability: measures the
final return of stockholders regarding the own capital of the bank. The
higher, the better.

2.1 Artificial DMUs Method

The flexibility, considering the existence of weights in the classic DEA
method, is important for the identification of inefficient DMUs, i.e, The
one presenting low performance even with weights favorably defined.
However, in DEA, weights allocation is a complex task and a bad choice
of weights introduced in the Linear Program restrictions may lead the
problem to become unfeasible. The authors in [6] established that each
weight in DEA, strictly positive, is equivalent to a none observed DMU
(artificial DMU), introduced among the others during the analysis. The
observation was generalized in [1] for the case of multiple inputs and/or
outputs, applied to DMUs that operate with constant return scale or
to those operating with variable return scale. In this context, the in-
clusion of an artificial DMU in the original set of DMUs works as an
alternative method for the simulation of a set of weight restrictions,
where the efficiency indices relative to this new set are computed using
the classic BBC-I model that does not require weight restrictions. The
coordinates selected for the artificial DMUs are fundamental for the
solution effectiveness. The artificial DMUs can be defined using equa-
tions (II.1) or (II.2), without impact on the results.

yrjt = yrj

h∗
j

and xijt = xiij , ∀jt = j (II.1)

yrjt = yrj and xijt = xij × h∗
j , ∀jt = j (II.2)

As for the classic BBC-I model, efficiency depends on the orien-
tation of the model. Thus, the definition of the artificial DMU using
contraction of inputs as expressed in equations (II.3), does not produce
the same results if the expansion of outputs expressed in (II.4) is used.

yrjv = yrj and xijv = xij × v∗i , ∀jv = j (II.3)
yrjv = yrj

v∗j
and xijv = xij, ∀jv = j (II.4)

In the particular case of this work, the average equity’s profitability
has been defined as an efficiency cutting criteria. Thus, it has been es-
tablished that no bank with an equity’s profitability below the average
would be more efficient than another bank with an equity’s profitability
above it.
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2.2 Adjusted Contingent Weight Restrictions Approach

As illustrated in [1], there is a large variety of analyses relative to weight
restrictions, making it one of the most promising in the DEA theory. In
the basic multiplier models (CCR and BCC) [2], it was observed that
the weights u and v are variables restricted to be greater than or iqual
to an infinitesimal positive value ε so that no input or output value
could be totally ignored in the computation of the respective DMUs
efficiencies. Allowing some flexibility in the selection of weights is fre-
quently presented as an advantage in DEA applications [2]. A priori,
weight specification is in fact not required and each DMU is evaluated
to its best performance. However, in some situations, this complete flex-
ibility can give margin to undesirable consequences. After all, one may
evaluate a DMU as efficient in situations difficult to justify. Imposing
weight restrictions allows to incorporate some information based on the
specialists’s opinions, preferences on management style, or other judg-
ments. Therefore, the DEA model becomes more plausible and a more
coherent analysis about the performance of the DMUs is obtained. As
another alternative, the goal could be to better reflect the objectives
or values of the organizations. In most cases, this process presents an
important challenge for the analyst who would need to explain the rea-
son for which his company becomes inefficient when weight restrictions
are introduced in the model. However, it is important to stress that
there are controversies about these weight restrictions aspects. In [3],
it is advocated that the results obtained from the models with weight
restrictions cannot be interpreted in the same way as if they were ob-
tained with the original models. This occurs when weight restrictions
are imposed, the interpretation of the Production Possibility Set be-
comes invalid. The characteristic of the radial model is also lost. In [5]
it is argued that the weight restrictions should be imposed taking into
consideration the input and output levels of each DMU. Hence, it is
insured that only the inputs or outputs that in fact contribute signif-
icantly for the performance of a DMU are included in the analysis.
In [5], it is proposed to use restrictions not on vi, but rather on viXi,
where vi is the weight of input i and viXi is the product of input i
with its weight. The mathematic model is: viXi ≤ kviXi, (i 	= j)
The approach firstly models restrictions taking into account only the
DMUs of efficiency 1 using the classic DEA model. Then, the DMU that
appears on the left side of the inequation is the one which was more
frequently peer-grouped. In this case, 6 blocks with 9 restrictions each
(”Assurance Regions Type II”) like in [7] are added to the model. As
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for the value of variable k, it is obtained from a simple linear regression
between two inputs.

3 Analysis of Results and Comparisons

Fig. 1 summarizes the results obtained with the Classical BCC-I, ad-
justed CWR and artificial DMUs methods. Analyzing the results, one

Fig. 1. Results of the Classical BCC-I, adjusted CWR and artificial DMUs
methods

can see that the classical model (no weight restrictions), considered 9
efficient DMUs, while the adjusted CWR and the artificial DMUs meth-
ods considered only 7 efficient DMUs, being thus more discriminatory.
Surprisingly, both adjusted CWR and artificial DMUs methods found
an iqual set of efficient DMUs. With regard to the comparison of the
adjusted CWR and artificial DMUs methods discrimination powers, it
was concluded that the artificial DMUs method is more discriminatory
showing a lower efficiency average. All the DMUs have recorded at least

Fig. 2. Percentage of units by efficiency level:(HC - H=High, M=Medium,

L=Low, N=None and C means Contribution. Ex: HC=High Contribution)

one variable with weight 0 (NC), i.e, variable ignored in the DMU’s ef-
ficiency computation. Probably because, if it was considered, the Bank
(DMU) would become efficient. Or it may be that the solution found
by the model is the one that does not consider null weights for any
variables, and it may exist, in case that the DMU is considered in fact
efficient. The market analysis is based on the virtual participation of
variables in the computation of efficiencies. This analysis is only based
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on the artificial DMU approach, since in the adjusted CWR, the weight
restrictions is direct and does not allow such analysis.

Common market strategies of efficient banks: focus on con-
sumption credits (cf. high equity’s profitability in Fig. (2); association
or acquisition with credit specialty institutions, operations with head-
ings (cf. high Financial intermediation in Fig. (2).

4 Conclusion

The application of the artificial DMUs method in substitution to a
set of weight restrictions proved viability in the case here analyzed,
since aggregated opinions of specialists have come to the same conclu-
sions. The adjusted CWR approach has also shown efficiency since it
increased the discrimination power with respect to the classical model,
and has come to the result of artificial DMU method. However, the
adjusted CWR does not provide information for market analysis, since
it does not generate the virtual participations of the variables in the
computation of efficiencies. The adjusted CWR approach seemed to be
more appropriate for problems that require less interference from spe-
cialists such as pricing and regulations. For problems requiring a deep
analysis of the variables involved, artificial DMUs is more suitable.
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1 Introduction

Consider the nonlinearly constrained network flow problem (NCNFP)

minimize
x

f(x) (1)

subject to x ∈ F (2)
c(x) ≤ 0, (3)

where we assume throughout this paper that:

• F = {x ∈ IRn | Ax = b, 0 ≤ x ≤ x}, A is a node-arc incidence
m × n-matrix, b is the production/demand m-vector, x are the
flows on the arcs, and x are the capacity bounds.

• The side constraints (3) are defined by c : IRn → IRr, where the
components are nonlinear and twice continuously differentiable on
F .

• f : IRn → IR is nonlinear and twice continuously differentiable on
F .

∗ The research was partially supported by grant MCYT DPI 2005-09117-C02-01
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In this work we focus on the primal problem NCNFP and its dual
problem

maximize q(µ) = min
x∈F

l(x, µ) = min
x∈F

{f(x) + µtc(x)} (4)

subject to: µ ∈M, (5)

where M = {µ | µ ≥ 0, q(µ) > −∞}. We assume throughout this
paper that the constraint set M is closed and convex, q is continuous
on M, and for every µ ∈ M some vector x(µ) that minimizes
l(x, µ) over x ∈ F can be calculated, yielding a subgradient c[x(µ)] of
q at µ.

When, as happens in this work, for a given µ ∈M, the dual function
value q(µ) is calculated by minimizing approximately l(x, µ) over x ∈
F , the computation of the subgradient and q(µ) involves an error. Given
a scalar ε ≥ 0 and a vector µ with q(µ) > −∞, we say that c is an
ε-subgradient at µ if q(µ) ≤ q(µ) + ε + ct(µ − µ), for all µ ∈ IRr. The
set of all ε-subgradients at µ is called the ε-subdifferential at µ and is
denoted by ∂εq(µ).

An approximate subgradient method is defined by

µk+1 = [µk + skc
k]+, (6)

where ck is an εk-subgradient at µk, [·]+ denotes the projection on the
closed convex set M, and sk is a positive stepsize.

In our context, we minimize approximately l(x, µk) over x ∈ F by
efficient techniques specialized for networks [11], thereby obtaining a
vector xk ∈ F with l(xk, µk) ≤ infx∈F l(x, µk) + εk.

This work studies the influence of some parameters over the perfor-
mance of several approximate subgradient methods in the solution of
NCNFP. Furthermore, the efficiency of the implementation of these
methods is compared with that of filterSQP [5] and KNITRO [2].

The remainder of this paper is structured as follows. Section 2
presents the ways of computing the stepsize in the approximate sub-
gradient methods; Section 3 describes the solution to the nonlinearly
constrained network flow problem; and Section 4 puts forward experi-
mental results.

2 Calculation of the Stepsizes

2.1 Diminishing Stepsize Rule (DSR)

The convergence of the exact subgradient method using a diminishing
stepsize was shown by Correa and Lemaréchal [3]. Since ck is an ap-
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proximate subgradient, the convergence is analyzed by Proposition 2.3
in [6]. An example of such a stepsize is sk = s/k̂, for k̂ = �k/m� + 1
with s > 0. We use by default m = 5 and s = 100.

2.2 Variant of the Constant Step (VCS)

As is well known the classical scaling of Shor (see [10]) sk = s/‖ck‖
gives rise to a s-constant-step algorithm.

In our case ck is an approximate subgradient, hence it can exist
a k such that ck ∈ ∂εk

q(µk) with ‖ck‖ = 0, but εk not being
sufficiently small. In order to overcome this trouble we have considered
the variant sk = s/(δ + ‖ck‖), where s and δ are positive constants.
The convergence of this variant is analyzed by Proposition 1 in [7]. In
this work by default δ = 10−12, with s = 100.

2.3 Dynamic Stepsize with Adjustment Procedure (DSAP)

An interesting alternative for the ordinary subgradient method is the
dynamic stepsize rule (see [9]), where sk = γk[q∗− q(µk)]/‖ck‖2. In our
case, ck ∈ ∂εk

q(µk), q(µk) is approximated by qεk
(µk) = l(xk, µk), and

q∗ is replaced with an estimate qk
lev.

In this procedure (see [8] and [6]) qk
lev is the best function value

achieved up to the kth iteration, in our case max0≤j≤k qεj(µ
j), plus a

positive amount δk, which is adjusted according to algorithm’s progress,
i.e.

δk+1 =

{
ρδk, ifqεk+1

(µk+1) ≥ qk
lev,

max{βδk, δ}, ifqεk+1
(µk+1) < qk

lev,
(7)

where δ0, δ, β, and ρ are fixed positive constants with β < 1 and
ρ ≥ 1. The convergence of the ε-subgradient method for this stepsize
type is analyzed by Proposition 2.5 in [6]. In this work by default δ =
10−7|l(µ1, x1)|, δ0 = 0.5‖c(x1)‖, β = 1/ρ, and ρ = 1.2.

3 Solution to NCNFP

In order to solve NCNFP an algorithm is put forward below, which
uses the approximate subgradient methods given by (6) and the step-
sizes described in Section 2. The value of the dual function q(µk) is
estimated by minimizing approximately l(x, µk) over x ∈ F so that the
optimality tolerance becomes more rigorous as k increases (see [1]) and
qεk

(µk) = l(xk, µk), where xk minimizes approximately the nonlinear
network subproblem NNSk given by minx∈F l(x, µk).
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Algorithm 1

Step 0 Initialize. Set k = 1 and µ1 = 0.
Step 1 Compute the dual function estimate, qεk

(µk), by solving NNSk,
so that if xk ∈ F is an approximate solution, qεk

(µk) = l(xk, µk),
and ck = c(xk) is an εk-subgradient of q in µk.

Step 2 Check the stopping rules for µk. Without a duality gap, (xk, µk)
is a primal-dual solution.

Step 3 Update the estimate µk by means of the iteration (6), where sk

is computed using some stepsize rule from among DSR, VCS, and
DSAP. Go to Step 1.

The implementation in Fortran-77 of the previous algorithm, termed
PFNRN05, was designed to solve large-scale nonlinear network flow
problems with nonlinear side constraints. More details in [6].

4 Numerical Tests

In order to evaluate the performance of PFNRN05 with the different
stepsizes, some numerical tests have been carried out with NCNFP
problems. These test problems have until 4008 variables, 1200 nodes,
and 1253 side constraints. The objective functions are nonlinear and
convex, and are either Namur functions (n1) or polynomial functions
(e2). The side constraints are defined by convex quadratic functions.
More details in [7].

In Tables 1–3 heading “ ĉ ” means the opposite value of the decimal
logarithm of the maximum violation of the side constraints at the op-
timizer x (i.e. ĉ = − log10 ‖c(x)‖∞), “t” is the run time in seconds,
“iit” indicates the number of inner iterations, and “κ” represents the
decimal logarithm of an estimate of the conditioning at the optimizer.

After carrying out a series of tests over different problems, the study
of the parameters has given rise to some conclusions. For VCS, if δ is
increased, the iteration number increases and the solution quality is
reduced (see Table 1). For δ < 10−12 the changes are insignificant. For
DSR, if s is increased, the solution quality is slightly better, but the
numerical condition worsens clearly (see Table 2). For DSAP, as ρ is
moved away from 1 the solution quality gets worse, except for c24e2
with ρ = 1.2 (see Table 3).

In Table 4 the efficiency of our code when using VCS, DSR, and
DSAP is compared with that of KNITRO [2] and filterSQP [5] by means
of the run-times in CPU-seconds. These last two solvers are available
on the NEOS server [4]. PFNRN is executed on a Sun Sparc 10/41
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Table 1. Study of δ on VCS (s = 100)

δ = 0 δ = 10−16 δ = 10−4 δ = 1 δ = 102

prob ĉ t ĉ t ĉ t ĉ t ĉ t
c13e2 5 1.2 5 1.2 5 2.0 3 5.3 2 10.4
c15e2 6 4.5 6 4.5 5 6.2 4 24.4 2 36.9
c13n1 6 107.5 6 105.2 6 117.4 5 86.6 3 57.4
c15n1 6 77.9 6 75.9 6 78.4 4 331.6 3 596.3
c23e2 5 6.3 5 6.2 5 6.2 3 6.8 2 10.1

Table 2. Study of s on DSR

s = 1 s = 10 s = 102 s = 103 s = 104

prob κ ĉ t κ ĉ t κ ĉ t κ ĉ t κ ĉ t
c13e2 4 3 0.6 5 5 0.8 6 4 0.7 7 6 1.6 8 8 1.1
c15e2 5 1 11.1 5 2 2.2 7 4 2.7 8 5 5.4 8 8 33.6
c13n1 5 3 33.5 6 4 48.9 7 5 84.8 8 7 56.0 9 – –
c15n1 7 3 99.2 8 4 92.3 8 4 431.0 8 – – 10 – –
c23e2 4 1 6.1 6 2 5.5 6 3 5.0 7 5 7.2 8 7 7.9

Table 3. Study of ρ on DSAP

ρ = 1 ρ = 1.1 ρ = 1.2 ρ = 2 ρ = 3 ρ = 10
prob ĉ iit ĉ iit ĉ iit ĉ iit ĉ iit ĉ iit
c13e2 9 635 8 628 8 623 8 594 8 571 8 581
c15e2 7 1200 7 1230 6 1131 1 876 -1 562 -2 494
c13n1 7 2313 7 2357 7 2658 6 2270 6 2462 6 2620
c15n1 9 5444 9 4648 8 4413 7 5517 6 4163 1 3084
c23e2 7 1688 7 1505 7 1557 7 1656 7 1659 7 1956
c24e2 6 2957 6 2703 10 3238 -1 1673 -1 1588 -2 1564

work station under UNIX with a similar speed to that of the NEOS
machines. The value of the solution quality parameter ĉ appears in
parentheses together with the time. As can be observed the solution
quality of DSR is significantly worse than that obtained with VCS,
and that of this is slightly worse than that of DSAP.

We observe that while KNITRO has been more robust, filterSQP
has been more efficient except for the problem c12n1. In most problems
VCS and DSAP have been the most efficient and, if we also take into
account the solution quality (in parentheses), the best performance has
been obtained by DSAP. These results encourage to carry out further
experimentation with other stepsize types and with real problems.
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Table 4. Comparison of the efficiency

prob KNITRO filterSQP VCS DSR DSAP
c13e2 65.9 5.2 1.1 (5) 0.7 (4) 0.7 (8)
c15e2 819.0 11.5 4.4 (5) 2.7 (4) 1.6 (6)
c17e2 311.1 15.8 6.1 (5) 6.4 (4) 2.4 (5)
c12n1 10.0 362.0 59.5 (8) 81.0 (6) 57.4 (10)
c13n1 2883.6 550.3 115.5 (6) 84.8 (5) 68.8 (7)
c15n1 728.1 – 80.1 (6) 431.0 (4) 97.8 (8)
c17n1 971.8 – 78.8 (6) 358.8 (4) 198.8 (10)
c22e2 418.0 60.8 4.4 (6) 2.5 (4) 2.1 (6)
c23e2 461.9 98.5 6.5 (5) 5.0 (3) 6.9 (7)
c24e2 13482.5 – 15.4 (5) 40.0 (3) 5.1 (10)
c32e2 38.6 16.9 1.1 (9) 1.5 (9) 1.1 (8)
c33e2 2642.4 48.0 1.5 (6) 2.0 (7) 1.6 (7)
c35e2 10642.3 57.5 2.3 (6) 2.9 (7) 2.3 (9)
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Shortest-Path Algorithms and Dynamic Cost
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Summary. Shortest-path algorithms are used to find an optimal way through
a network. These networks often underlie dynamic changes, e.g. in a road
network we find congestions or road works. These dynamic changes can cause
a previously calculated route to be not up-to-date anymore. A shortest-path
algorithm should react on these changes and present a new route without
much overhead in time and space. The simplest way would be to calculate the
whole route again. Dynamic shortest path algorithms with different features
have been developed avoiding a full re-calculation. This paper describes the
advantages of dynamic algorithms and provides an overview.

1 Introduction

Shortest-path algorithms are a widely studied field where a lot of dif-
ferent characteristics have been developed. Part of the research in the
last years brought up dynamic shortest-path algorithm (sp-algorithm)
which can handle edge cost changes without re-calculating the whole
route(s) from scratch. An application for dynamic algorithms is the
road network where congestions can lead to a cost increase and if a
congestion disappears the costs need to be reset. A cost change in a
network may have impacts on a previously calculated route, it might
not be optimal anymore. Sp-algorithms should take this into account
and present a new optimal route as efficiently as possible.

2 Shortest-Path Algorithms in Dynamic Domains

This section deals with a detailed view on sp-algorithms used in dy-
namic domains. In the following we expect only positive link costs and
all algorithms are able to handle cost increases and cost decreases.
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Sp-algorithms used in dynamic domains can be split up into static
and dynamic algorithms. Static algorithms are characterized by re-
calculating a route after a cost change from scratch. The most popular
algorithms are the Dijkstra, Bellman-Ford-Moore and A* algorithm
(see [1]). The main drawback of a full re-calculation is the overhead of
the calculation if the affected part of the network is relatively small. All
nodes which need to be updated after a cost change are called affected
nodes. Static algorithms will re-calculate all node distances even if a
node is not affected.

Dynamic sp-algorithms try to avoid these unnecessary calculations.
Their intention is to use additional information for the determination of
the affected and non-affected parts of the network. They try to update
only the affected parts and to adopt the distance for each non-affected
node as it stands. This approach leads to a faster calculation of a new
optimal route in most cases. The drawback here is the computational
and memory overhead because of the additional data.

2.1 Features of Dynamic Shortest-Path Algorithms

We want to have a closer view on the properties and features of dynamic
sp-algorithms. Common to all algorithms is that they want to update
only the affected part of a network. The directly affected nodes are in
the subtree of the shortest-path tree below the end node of the changed
edge. These nodes must be updated at least.

A distinctive feature of dynamic sp-algorithms is the number of
nodes for which the optimal route is calculated. Algorithms solving the
1:1-problem calculate an optimal route between one start node and one
destination node. In the 1:n-problem we have one start node and an
optimal route to nodes in the graph will be calculated. The m:n-problem
handles several start nodes and calculates shortest paths to all other
nodes but in this paper we focus on the 1:1-problem and 1:n-problem.

Another interesting feature is the number of changes which can be
handled at a time. Some algorithms can take only single changes into
account and other algorithms are not limited in the number of changes.
Multiple changes can be split up into homogeneous changes which in-
clude only cost increases or cost decreases but not both and hetero-
geneous changes which include both types of changes. The dynamic
algorithms can also be distinguished by the required input. Some algo-
rithms are able to calculate a shortest-path tree on their own and there
are also algorithms which need a pre-calculated shortest-path tree.
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2.2 Comparison of Dynamic Shortest-Path Algorithms

We describe the functionality and methodology of dynamic sp-algo-
rithms for the 1:1-problem and 1:n-problem. All algorithms maintain a
sorted list of nodes (priority queue) in order to identify the next node
to process during the calculation.

Ramalingam provides two different algorithms. The first algorithm
[2] solves the 1:n-problem and is split up into two methods, one for
handling cost increases and one for handling cost decreases and there
are only single changes possible. The algorithm maintains a shortest-
path graph which is a shortest-path tree including all other edges which
are part of a shortest-path. The shortest-path graph is needed as an
input for this algorithm.

In the case of a cost decrease the algorithm inserts the end node of
the changed edge into the priority queue if the cost decrease improves
the distance of the end node. The sort key in the priority queue relates
to the inserted node and not to the start node. In the case of a cost
increase it proceeds in two phases. The first phase computes the set
of all affected nodes and updates the shortest-path graph. The second
phase is a Dijkstra-like calculation, but the priority queue is initialized
with all affected nodes having a non-affected predecessor node.

The second algorithm of Ramalingam is called DynamicSWSF-FP
[2] and bases on viewing the shortest-path problem as a special gram-
mar problem. Ramalingam focuses on the dynamic grammar problem.
The algorithm can handle cost increases, cost decreases, and hetero-
geneous sets of changes. It solves the 1:n-problem and needs no pre-
calculated input. For each node, two distance values are stored, the dis-
tance itself and a one-step-look-ahead value called rhs. This rhs value
is based on the distance values of the predecessors and is therefore
one-step ahead the distance.

The priority queue sorts the nodes by using the minimum of the
distance and the rhs value as key. During the calculation the node
with the actual minimum key in the priority queue is scanned and its
values are compared. If the rhs value is lower than the distance, then
the distance is set to the rhs value. Otherwise if the distance is lower
than the rhs value, then the distance is resetted to infinity. Afterwards
the rhs values of all successors are updated. If the rhs value differs to
the distance value of a node then it will be inserted into the priority
queue. In the case of a cost change the rhs value of the end node will be
updated and checked to be inserted into the priority queue. Afterwards
it will start the calculation phase.
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The algorithm of Frigioni [4] solves the 1:n-problem and needs a
calculated shortest-path tree as input. It can handle only single cost
changes and is split up into one method for handling a cost increase
and one method for handling a cost decrease. The algorithm maintains
values called backward and forward level for each neighbour of a node.
These values provide information about a shortest-path from the start
node to this node passing the neighbour. Another feature of this al-
gorithm is the assignment of each edge to one of its nodes. So each
node owns a subset of its incoming and outgoing edges. The calcula-
tion phase is based on Dijkstra but the number of scanned successor
edges can be limited using the ownership and the levels.

In the case of a cost decrease the end node of the changed edge will
be inserted into the priority queue. The calculation phase takes the
backward level into account indicating that a decrement will also affect
the end node of an edge. In the case of a cost increase the algorithm will
proceed in two phases. In the first phase the algorithm marks all nodes
with a colour schema. Nodes with no change are white, nodes with
a distance change are red and nodes which only change their parent
are pink. Afterwards all red nodes having a non-red predecessor are
inserted into the priority queue. In the calculation phase the ownership
and the forward level information is taken into account.

Demetrescu extends the first Ramalingam and the Frigioni algo-
rithm and presents an own approach [6]. The algorithms can handle
single cost increases or decreases and solve the 1:n problem. They need
to have a previously calculated shortest-path tree as input. He extends
the known algorithms for the use of negative edge weights. In a pre-
processing phase the edge costs are transformed into non-negative edge
costs. His own algorithm is split up into two methods, one for cost
increases and one for cost decreases.

In the case of a cost increase it traverses the affected subtree and
inserts these nodes into the priority queue. The sort key for each node
is the minimum of the increased value and the possible increase of
the node distance using a predecessor node outside the subtree. The
Dijkstra-like calculation will calculate the minimal distance variation
for all nodes in the subtree with respect to the previously calculated
shortest-path tree. In the case of a cost decrease the algorithm inserts
the end node of the changed edge into a priority queue and starts a
Dijkstra-like calculation phase. The keys used in the priority queue are
negative since they indicate the distance variation of each node.

Koenig [5] has developed an extension of the DynamicSWSF-FP
algorithm. The algorithm is called Lifelong Planning A* (LPA*) and
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uses a heuristic value to guide the route search towards the destination.
The algorithm solves the 1:1-problem and needs no previously calcu-
lated input. It can handle cost decreases and cost increases as well as
heterogeneous sets of changes.

The LPA* also maintains a distance value and a one-step-look-ahead
for each node. It stops the calculation if the distance between start and
destination cannot be improved in the next calculation steps. The sort
key of the priority queue consists of two values whereby the first value
takes the heuristic value into account. The priority queue is sorted lex-
icographically. The handling of cost changes and the calculation phase
is common to the DynamicSWSF-FP algorithm.

Narvaez presents a framework of algorithms [3] which includes the
static and dynamic algorithms of Dijkstra, BFM and D’Esopo-Pape. In
here we refer to the Dijkstra variant. This algorithm handles cost in-
creases, cost decreases, and homogeneous sets of cost changes. It solves
the 1:n-problem and needs no pre-calculated input.

In the case of a cost increase the algorithm will traverse the affected
subtree and will directly increase the distance of all affected nodes
by the same amount. Then the algorithm searches for edges whose
end node is inside this subtree. If such an edge improves the distance,
then the end node will be inserted into the priority queue. In the case
of a cost decrease the algorithm also traverses the affected subtree
and decreases the distance of all affected nodes by the same amount.
Afterwards the algorithm searches for edges whose start node is inside
this subtree. If such an edge improves the distance of the end node,
then the algorithm will insert the end node into the priority queue.
The following calculation phase is Dijkstra-like.

The algorithm of Baselau will be published in [7] and is called Dy-
namicA*. It extends the Narvaez algorithm using a heuristic value so
that the algorithm solves the 1:1 problem and can handle cost increases,
cost decreases, and heterogeneous sets of changes. It needs no pre-
calculated input. The initialization phase works like the phase in the
Narvaez algorithm except that all affected nodes will also be inserted
into the priority queue in order to hanlde heterogeneous cost changes
correctly. The sort key takes the heuristic value into account and the
calculation phase equals an A* algorithm.

3 Summary and Outlook

The comparison made in the previous sections is summarized in table
1. We focussed on the functionality and methodology of a subset of
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Table 1. Comparison of the dynamic shortest-path algorithms

Algorithm Problem Multiple Calculated Key properties
solved changes input needed

Ramalingam 1:n no yes shortest-path graph
DynamicSWSF-FP 1:n yes no one-step-look-ahead
Frigioni 1:n no yes level and owner
Demetrescu 1:n no yes negative edge weights
LPA* 1:1 yes no one-step-look-ahead

uses heuristic
Narvaez 1:n yes no directly change proceeding
Dynamic A* 1:1 yes no uses heuristic

directly change proceeding

dynamic sp-algorithms solving the 1:1-problem or 1:n-problem. All al-
gorithms try to find the affected subtree(s) of one or more changes and
to set up a new priority queue for the re-calculation of the node dis-
tances. The algorithms use additional information in order to reduce
the number scanned nodes or to sort the priority queue in a special
way. Since we had no look at the computational complexity of the al-
gorithms we would like to refer to [2] and [4]. Experimental studies of
dynamic sp-algorithms solving the 1:n-problem can be found in [4] and
[6] and for the 1:1-problem we refer to [7].
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Summary. The optimal track allocation problem (OPTRA), also known as
the train routing problem or the train timetabling problem, is to find, in a
given railway network, a conflict-free set of train routes of maximum value.
We propose a novel integer programming formulation for this problem that is
based on additional ‘configuration’ variables. Its LP-relaxation can be solved
in polynomial time. These results are the theoretical basis for a column gener-
ation algorithm to solve large-scale track allocation problems. Computational
results for the Hanover-Kassel-Fulda area of the German long distance railway
network involving up to 570 trains are reported.

1 Introduction

Routing a maximum number of trains in a conflict-free way through
a track network is one of the basic scheduling problems for a railway
company. The problem has received growing attention in the operations
research literature recently, see, e.g., [2], [5], [6], [1], [4], [3]. All of
these articles model the track allocation problem in terms of a multi-
commodity flow of trains in an appropriate time expanded graph, ruling
out conflicts by additional packing constraints.

The main problem with this approach is that the resulting integer
programs become notoriously difficult already for small problem sizes.
This is due to an enormous number of (weak) packing constraints in the
model. The purpose of this article is to propose a new formulation of
the ‘extended’ type, that handles conflicts not in terms of constraints,
but in terms of additional variables. Our formulation has a constant
number of rows, is amenable to standard column generation techniques,
and therefore suited for large-scale computation.

∗ Supported by the Federal Ministry of Economics and Technology (BMWi), grant
19M4031A.
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2 The Optimal Track Allocation Problem

The optimal track allocation problem can be formally described in
terms of a digraph D = (V,A). Its nodes represent arrivals and de-
partures of trains at a set S of stations at discrete times T ⊆ Z, its
arcs model runs of trains between stations. Denote by s(v) ∈ S the
station associated with departure or arrival v ∈ V , and by t(v) ∈ T
the time of this event; we assume t(u) < t(v) for each arc uv ∈ A such
that D is acyclic. Denote by J = {s(u)s(v) : uv ∈ A} the set of all
railway tracks. We are further given a set I of requests to route trains
through D. More precisely, train i ∈ I can be routed on a path through
some suitably defined subdigraph Di = (Vi, Ai) ⊆ D from a starting
point si ∈ Vi to a terminal point ti ∈ Vi; let Pi be the set of all routes
for train i ∈ I, and P =

⋃
i∈I Pi the set of all train routes (taking the

disjoint union). We say that an arc uv ∈ A blocks the underlying track
s(u)s(v) during the time interval [t(u), t(v)− 1], that two arcs a, b ∈ A
are in conflict if their respective blocking intervals overlap, and that
two routes p, q ∈ P are in conflict if any of their arcs are in conflict.
A track allocation or timetable is a set of conflict-free routes, at most
one for each train. Given arc weights wa, a ∈ A, the weight of route
p ∈ P is wp =

∑
a∈p wa, and the weight of a track allocation X ⊆ P is

w(X) =
∑

p∈X wp. The optimal track allocation problem (OPTRA) is
to find a track allocation of maximum weight.

We refer the reader to the articles [5], [6], [1] an [4]. for discussions
how this basic model can be set up to deal with various technical and
operational requirements such as preferences for departure, arrival, and
travel times, train driving dynamics, single and double tracks, zero-
level crossings, station capacities, headways, dwell and turnover times,
routing corridors, correspondences, complementarities, and synergies
between trains etc.

OPTRA is NP-hard [6]. It can be seen as a multi-commodity flow
problem with additional packing constraints, which can be modeled
in terms of inequalities [5], [6], [1] [4] and [3]. We propose here an
alternative formulation that is based on arc ‘configurations’, i.e., sets
of arcs on the same underlying track that are mutually not in conflict.
Formally, let Ast = {uv ∈ A : s(u)s(v) = st} be the set of all arcs
associated with some track st ∈ J ; a configuration for this track st is
a set of arcs q ⊆ Ast that are mutually conflict-free. Let Qj denote the
set of all configuration associated with track j ∈ J , and Q =

⋃
j∈J Qj

the set of all configurations.
Introducing 0/1-variables xp, p ∈ P , and yq, q ∈ Q, OPTRA can

be stated as the following integer program.
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(PCP) (i) max
∑
p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1, ∀i ∈ I

(iii)
∑

q∈Qj

yq ≤ 1, ∀j ∈ J

(iv)
∑

a∈p∈P
xp −

∑
a∈q∈Q

yq ≤ 0, ∀a ∈ A

(v) xp, yq ≥ 0, ∀p ∈ P, q ∈ Q
(vi) xp, yq ∈ Z, ∀p ∈ P, q ∈ Q.

The objective PCP (i) maximizes the weight of the track alloca-
tion. Constraints (ii) state that a train can run on at most one route,
constraints (iii) allow at most one configuration for each track. In-
equalities (iv) link train routes and track configurations to guarantee
a conflict-free allocation, (v) and (vi) are the non-negativity and inte-
grality constraints. Note that the upper bounds xp ≤ 1, p ∈ P , and
yq ≤ 1, q ∈ Q, are redundant.

3 Column Generation

Consider the LP-relaxation PLP of PCP, i.e., PLP = PCP (i)–(v); it
can be solved by column generation. In fact, it will turn out that the
pricing problems for both the route and the configuration variables can
be solved in polynomial time by computing longest paths in appropriate
acyclic graphs. To see this, consider the dual DLP of PLP.

(DLP) (i) min
∑
j∈J

πj +
∑
i∈I

γi

(ii) γi +
∑

a∈p λa ≥ wp ∀p ∈ Pi, i ∈ I

(iii) πj −
∑

a∈q λa ≥ 0 ∀q ∈ Qj, j ∈ J

(iv) γi, πj , λa ≥ 0 ∀i ∈ I, j ∈ J, a ∈ A.

Here, γi, i ∈ I, πj, j ∈ J , and λa, a ∈ A, are the dual variables
associated with constraints PLP (i), (ii), and (iii), respectively. The
pricing problem for a route p ∈ Pi for train i ∈ I is

∃ p ∈ Pi : γi +
∑
a∈p

λa < wp ⇐⇒
∑
a∈p

(wa − λa) > γi.

This is the same as finding a longest siti-path in Di w.r.t. arc weights
wa−λa; as Di is acyclic, this problem can be solved in polynomial time.
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The pricing problem for a configuration q ∈ Qj for track j ∈ J is

∃ q ∈ Qj : πj −
∑
a∈q

λa < 0 ⇐⇒
∑
a∈q

λa > πj.

Let j = st and consider the construction illustrated in Figure 1.
Denote by Ast = {uv ∈ A : s(u)s(v) = st} the set of arcs that run
on track st and by Lst := {u : uv ∈ Ast} and Rst := {v : uv ∈ Ast}
the associated set of departure and arrival nodes; note that all arcs in
Ast go from Lst to Rst. Let Ast := {vu : t(v) ≤ t(u), v ∈ Rst, u ∈ Lst}
be a set of ‘return’ arcs that go in the opposite direction. It is easy to
see that Dst = (Lst ∪ Rst, Ast ∪ Ast) is bipartite and acyclic, and that
LstRst-paths a1, a1, . . . , ak−1, ak in Dst and configurations a1, . . . , ak in
Qst are in 1-1 correspondence. Using arc weights λa, a ∈ Ast, and 0,
a ∈ Ast, pricing configurations in Qst is equivalent to finding a longest
LstRst-path in Dst. As Dst is acyclic, this is polynomial. It follows

Theorem 1. PLP can be solved in polynomial time.

In practice, tailing-off prevents the straightforward solution of PLP
to optimality. However, the path lengths maxp∈Pi

∑
a∈p(wa − λa) and

maxq∈Qj

∑
a∈q λa yield the following bound β = β(γ, π, λ).

Lemma 1. Let γ, π, λ ≥ 0 be dual variables2 for PLP and v(PLP) the
optimum of PLP. Let ηi := maxp∈Pi

∑
a∈p(wa − λa) − γi, i ∈ I, and

θj := maxq∈Qj

∑
a∈q λa − πj, j ∈ J . Then:

v(PLP) ≤
∑
i∈I

max{γi + ηi, 0}+
∑
j∈J

max{πj + θj, 0} =: β(γ, π, λ).

Fig. 1. Arc configurations on a track. From left to right: train routing digraph,
conflict-free configuration, configuration routing digraph, and LR-path
2 Note that these will be infeasible during column generation.



Solving Railway Track Allocation Problems 121

4 Computational Results

We have implemented a column generation algorithm for the PCP
along the lines of the preceding sections. We have used this code to solve
three large-scale railway track allocation problems for the Hannover-
Kassel-Fulda area of the German long-distance railway network involv-
ing 146, 250, and 570 trains, see Table 1. The instances are based on
a common macroscopic infrastructure model with 37 stations and 120
tracks, 6 different train types (ICE, IC, RE, RB, S, ICG), and 4320
headway times, see Figure 2 for an illustration and [1] for a more de-
tailed discussion.

Figure 3 illustrates the solution of the LP-relaxation PLP for the
two large scenarios 2 and 3. It can be seen that the upper bound
β(γ, π, λ) and the optimal value v(RPLP ) of the restricted master-
LP converge, i.e., we can indeed solve these LPs close to optimality.
This provides a good starting point to compute high-quality integer
solutions using standard rounding heuristics, see columns IP and gap
in Table 1. All computations were made single-threaded on a Dell Pre-
cision 650 PC with 2GB of main memory and a dual Intel Xeon 3.8
GHz CPU running SUSE Linux 10.1. The reduced master-LPs were
solved with CPLEX 10.0 using the barrier or dual simplex method,
depending on the column generation progress.
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Fig. 2. Infrastructure network (left), visualization of an allocation (right)
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Table 1. Solving large-scale railway track allocation problems

no |I| rows cols3 iter β v(RPLP ) IP gap time
in % in sec.

1 146 6034 120366 162 93418 93381 93371 0.05 4439
2 250 12461 213218 168 148101 147375 147375 0.75 39406
3 570 11112 250550 148 245278 239772 234538 4.58 59910

Fig. 3. Solving the LP-relaxations of scenario 2 (left) and 3 (right) by column
generation
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On a Class of Interval Data Minmax Regret
CO Problems
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Summary. Some remarks about the Kasperski and Zielinski approximation
algorithm for a class of interval data minmax regret combinatorial optimiza-
tion problems (Algorithm K&Z ) are presented. These remarks help to give
a better understanding of both the design of the algorithm and its possible
applications.

Key words: Approximation algorithm, minmax regret, interval data.

1 Introduction

Interval data minmax regret combinatorial optimization problems (IDM-
RCO) is a class of Combinatorial Optimization problems (CO) for which
a particular approach is used to model uncertainty associated to data.
This approach contains two specific ingredients: a minmax regret ob-
jective function and intervals to represent the uncertain parameters
in the objective function. Uncertainty can be structured through the
concept of scenario corresponding to an assignment of plausible values
to model parameters. Two ways of describing the set of all possible
scenarios are typically considered: interval data, where each numerical
parameter can take any value between a lower and an upper bound;
and discrete scenarios, where the scenario set is described explicitely.

The book by Kouvelis and Yu [6] presenting practical motivations
for studying minmax regret CO problems in the framework of CO prob-
lems with uncertainty associated to data, also discusses the existence of
other approaches considering uncertainty (the probabilistic approach,
for example), and as well gives a survey of the developments in this
area until 1996. IDMRCO problems such as minimum spanning tree,
shortest path and assignment problem have been analyzed. It is known
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these problems in their classical versions can be solved in polynomial
time; however, their interval data minmax regret versions are NP-Hard;
[2] and [10]. Several works have proposed both exact algorithms (for
example, see [7] and [9]) and heuristics for these problems ( [8] and [3]).

The study of efficient approximation algorithms for NP-Hard IDM-
RCO problems is an important challenge. The first published work on
this topic is an approximation algorithm with a performance ratio of
2, which could be applied to a wide class of IDMRCO problems [5].
In that paper, the approximation algorithm proposed is called algo-
rithm AM, but from now on we refer to this algorithm as algorithm
K&Z. This recent work is important by two reasons; it proves the ex-
istence of polynomial time approximation algorithms with a constant
performance ratio for this important class of IDMRCO problems and
it also provides good feasible solutions, which should help in the de-
sign of more sophisticated approaches to these problems. In fact, in
[3], algorithm K&Z was implemented and computational experiments
compared solutions from a heuristic proposed for the minmax regret
spanning arborescence problem with the solutions provided by algo-
rithm K&Z. Also, in [8], algorithm K&Z was applied in the develop-
ment of heuristics and preprocessing techniques for the interval data
minmax regret travelling salesman problem.

Our paper presents an analysis of the algorithm K&Z, making clear
the significance of considering the scenario S in which the costs of the
elements are the midpoints of their corresponding cost intervals.

2 Problem Formulation and Algorithm K&Z

For simplicity we will use almost the same notation given in [5]. Let
E = {e1, ....., en} be a finite set, | E |= n, and Φ ⊆ 2E be a set of
subsets of E. Set Φ is called the feasible solutions set. For every element
e ∈ E, there is given an interval Ie = [c−e , c+e ], which expresses a range
of possible values for the cost. A scenario is a vector S = (cs

e)e∈E that
represents a particular assignment of costs cs

e to elements e ∈ E and
Γ = ⊗e∈EIe is the Cartesian product of the corresponding intervals
Ie, e ∈ E. For a given solution X ∈ Φ, its cost under a fixed scenario
S ∈ Γ is defined as follows:

F (X,S) =
∑
e∈X

cs
e.

Furthermore, F ∗(S) will denote the value of the cost of the optimal
solution under scenario S ∈ Γ ,
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F ∗(S) = min
X∈Φ

F (X,S). (1)

When S is fixed, the classical combinatorial optimization problem
it is obtained. An important hypothesis assumed in this paper is that
there is a polynomial time algorithm which outputs an optimal solution
for problem (1) for a fixed scenario S. Now, the maximal regret for
X ∈ Φ is defined as follows:

Z(X) = max
S∈Γ

{F (X,S) − F ∗(S)} (2)

Scenario S which maximizes the right-hand side of (2) is called the
worst-case scenario for X.

The minmax regret combinatorial optimization problem P associ-
ated with problem (1) is to find a feasible solution for which the max-
imal regret is minimal:

P : minX∈Φ Z(X).

Note that problem (1) is a special case of problem P if set Γ consists
of a single scenario.

It is known that the worst case scenario for a given solution X ∈ Φ
can be characterized in the following way (see [1]).

Proposition 1. Given a solution X ∈ Φ, the worst case scenario SX

for X is the one where elements e ∈ X have costs c+e and all the other
elements have costs c−e ; i.e., cSX

e = c+e if e ∈ X, and cSX

e = c−e if
e ∈ E\X.

Thus, the maximal regret of a given solution X ∈ Φ can be formu-
lated as follows:

Z(X) = F (X,SX )− F ∗(SX).

Algorithm K&Z for solving P is presented now. Let AOpt(S) de-
notes a polynomial algorithm that outputs an optimal solution for the
underlying classical combinatorial optimization problem for a fixed sce-
nario S (see the problem (1)).

Algorithm K&Z
for all e ∈ E do
cS
e ←− 1

2(c−e + c+e );
end for
M ←− AOpt(S);
return M ;
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The main results obtained in [5] are presented now.

Proposition 2. Let M be the solution constructed by algorithm K&Z.
Then for all X ∈ Φ it holds that Z(M) ≤ 2Z(X).

Theorem 1. The ratio performance of algorithm K&Z is at most 2.

3 Remarks on Algorithm K&Z

Our first remark is centrated on the first step of algorithm K&Z ; that
is, on the definition of the scenario S fixing each arc cost as the midpoint
of [c−e , c+e ].

Lemma 1. Proposition 2 remains valid if we replace the number 1
2 by

any positive real number p when the scenario S is defined in the algo-
rithm K&Z.

Proof. It is enough to note that if P = argmin{
∑

e∈X pce : X ∈ Φ},
p > 0 then P is unique for any p > 0.

Our result shows that this property essentially comes from the sum
of the extreme values of each interval cost. Note that scenarios defined
by the values of p might not belong to Γ ; in fact, it is clear that cs

e ←−
p(c+e + c−e ) defines a valid scenario only if p ∈ [ c−e

c+e +c−e
, c+e

c+e +c−e
].

Our second remark (Lemma 2), analyzes the existence of multiple
solutions for AOpt(S).

In Theorem 1 it is proved that the performance ratio of algorithm
K&Z is at most 2. Therefore, if Y is an output for AOpt(S) in algorithm
K&Z, then Y ∈ Φ, Z∗ = minX∈Φ Z(X) ≤ Z(Y ) and Z(Y ) ≤ 2Z∗. So,
the optimal value Z∗ for P satisfies

Z(Y )
2 ≤ Z∗ ≤ Z(Y ).

Furthermore, since the problem F ∗(S) = minX∈Φ F (X,S) could
have multiple optimal solutions Yi, i = 1, ..., k, an algorithm to obtain
the k-best solutions for a combinatorial optimization problem could be
applied to obtain k feasible solutions for P and consequently k intervals
for Z∗, given by Ii = [Z(Yi)

2 , Z(Yi)]. Then, from this information, it is
easy to obtain a new interval for Z as detailed in the following result.

Lemma 2. If the resolution of problem P considers a scenario given
by {cs

e} = {p(c+e + c−e }, p > 0, and then an algorithm is applied to
obtain the k optimal solutions for the underlying problem F ∗(s); then
Z∗ ∈ [α, β], where: α = maxi=1,...,k{Z(Yi)

2 } and β = mini=1,....,k{Z(Yi)}.
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According Lemma 1 and Lemma 2 the following generalization of
algorithm K&Z is valid.

Algorithm AP

(Algorithm for the sum of the intervals extreme values)
Input: E = {e1, ......, en}, [c−e , c+e ] for each e ∈ E, p > 0
Output: P , a feasible solution, and I, an interval containing Z∗

for all e ∈ E do
cs
e ←− p(c+e + c−e );

end for
P ←− AOpt(S);

for all Y ∈ P do
zY ←− Z(Y );

end for
P ←− arg min{zY : Y ∈ P};
I ←− [α, β]
return P, I;

According to above results, we have the following theorem.

Theorem 2. The performance ratio of algorithm AP is at most 2.

A final open question about this issue refers to knowing if the bound
2 for the ratio Z(P )

Z∗ is tight.
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Fig. 1. The graph illustrates an example where AOpt(S) returns two different
solutions

Several algorithms have been designed for finding the best k solu-
tions for CO problem, especially, for the shortest paths in a network
(see [4]). Note that solving P using algorithm K&Z implies solving only
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two classic problems F ∗(S); one to find Y and one for finding Z(Y ).
To solve P when F ∗(S) has k optimal solutions takes time O(f(k, n))
+ k ·O(g(n)), where f(k, n) is the time for finding the best k solutions
for the classic CO problem, and g(n) is the time for finding Z(Y ).

Example 1. Consider the graph described in Figure 1 as an instance of
the IDMR Shortest Path Problem . Applying algorithm AP, we have
P = {{e1, e5, e9}, {e2, e6, e9}} = {Y1, Y2}. Then, Z (Y1) = 13 − 8 = 5
and Z(Y2) = 14 − 7 = 7; therefore, it results Z∗ ∈ [3.5, 5].
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1 Introduction

In the last two decades, among the large amount of literature available
on Hub Location Problems (HLP), applications in Public Transport
(PT) have received less attentions compared to other fields, for ex-
ample telecommunications. The first mathematical model for HLPs is
proposed by O’Kelly [5] in 1987. In a HLP network, the flow originated
from an origin i and destinated to node j is not shipped directly, rather,
it is sent via some selected intermediate nodes (called hub nodes) and
maybe intermediate edges (called hub edges) connecting these hubs.
The sub-network composed of these hub facilities is known as hub-level
network. The remaining nodes and edges are called spoke nodes or spoke
edges of the spoke-level network. For applications in public transport
planning, the hub level network consists of special types of transporta-
tion facilities which may be fast-lines, etc. Fig. 1 depicts a simple hub
location model applied to public transport planning.
The hubs can have three main functionalities, namely: (i) Consol-

idation (concentration) of the flows which they receive, in order to
have a larger flow and making use of economy of scale, (ii) Switch-
ing(transfer) stations, which allow the flows to be re-directed and (iii)
Distribution(decomposition) of large flows into smaller ones.

Among many reviews and contributions we refer readers to [1] and
references therein. For solution approaches to HLPs we refer to [2]. In
the scope of public transport we refer to [4] where the first mathematical
model for HLPs in public transport is proposed.
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Fig. 1. A typical Public Transport Network

2 Mathematical Formulation

In this section we derive a new mixed integer programming (MIP)
model for applying HLP in public transport (HLPPTs). Contrary to
the classical assumptions of HLPs, our hub-level network is not nec-
essarily a complete graph. Moreover, considering the nature of public
transportation, the triangle inequality does not hold in general. The
parameters of the model are as follows:

n : the number of nodes Fk : hub k setup cost,
ckl : traveling cost from k to l Ikl : hub edge (k, l) setup cost,
Wij : amount of passengers going α : hub edge discount factor.

from i to j

The variables in this model are defined as follows: xijkl = 1, i 	=
j, k 	= l if the optimal path from i to j traverses the hub edge (k, l) and
0, otherwise. Also, aijk = 1, j 	= i, k 	= i, j if the optimal path from i
to j traverses (i, k) and i is not hub and 0, otherwise and bijk = 1, j 	=
i, k 	= i, j if the optimal path from i to j traverses (k, j) and j is not hub
and 0, otherwise. In addition, eij = 1, i 	= j if the optimal path from i
to j traverses (i, j) and either i or j is hub and 0, otherwise. For the
hub-level variables, ykl = 1, k < l if the hub edge (k, l) is established
and 0, otherwise and hk = 1 if k is used as hub 0 otherwise.

The flow cost for a given flow with origin i and destination j is the
sum of, (i) the cost of sending flow from i to the first hub node, (ii) the
cost of traversing one or more hub edges discounted by the discount
factor 0 < α < 1 and (iii) the cost of connecting the last hub node to
the destination. The proposed mathematical formulation turns out to
be as follows:
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(HLPPT)

Min
∑

i

∑
j �=i

∑
k

∑
l �=k

αWijCklxijkl +
∑

i

∑
j �=i

∑
k �=i,j

WijCikaijk +

∑
i

∑
j �=i

∑
k �=i,j

WijCkjbijk +
∑

i

∑
j �=i

WijCijeij +

∑
k

Fkhk +
∑

k

∑
l>k

Iklykl (1)

s.t.
∑
l �=i

xijil +
∑
l �=i,j

aijl + eij = 1, ∀i, j 	= i (2)

∑
l �=j

xijlj +
∑
l �=i,j

bijl + eij = 1, ∀i, j 	= i (3)

∑
l �=k,i

xijkl + bijk =
∑
l �=k,j

xijlk + aijk, ∀i, j 	= i, k 	= i, j (4)

ykl ≤ hk, ykl ≤ hl, ∀k, l > k (5)
xijkl + xijlk ≤ ykl, ∀i, j 	= i, k, l > k (6)∑
l �=k

xkjkl ≤ hk, ∀j, k 	= j (7)

∑
k �=l

xilkl ≤ hl, ∀i, l 	= i (8)

eij ≤ 2− (hi + hj), ∀i, j 	= i (9)
aijk ≤ 1− hi, ∀i, j 	= i, k 	= i, j (10)
bijl ≤ 1− hj , ∀i, j 	= i, l 	= i, j (11)

aijk +
∑
l �=j,k

xijlk ≤ hk, ∀i, j 	= i, k 	= i, j (12)

bijk +
∑
l �=k,i

xijkl ≤ hk, ∀i, j 	= i, k 	= i, j (13)

eij + 2xijij +
∑
l �=j,i

xijil +
∑
l �=i,j

xijlj ≤ hi + hj , ∀i, j 	= i (14)

xijkl, ykl, hk, aijk, bijk, eij ∈ {0, 1}. (15)

3 Benders Decomposition Method for the HLPPT

Following the Bender’s algorithm, our HLPPT can be decomposed into
a master problem and a subproblem (separable for each i and j to an
independent smaller problem), such that the master problem is a re-
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laxation of the original problem, where its feasible region is iteratively
tightened using the cuts generated by the solution to the sub-problem.
To the best of our knowledge, only [2] has proposed a Benders algo-
rithm for an HLP similar to HLPPT, where they assume a complete
hub-level network in their model. In our model, the master problem
contains the hub-level cost terms of the objective function together
with the constraints that only contain hub-level variables, with one ad-
ditional constraint which ensures the existence of at least one hub edge
in every solution. Such an MP does not guaranty a connected hub-level
network. Therefore, an alternative MP is used.
Let G(H,E) be a connected and Gd = (H,A) be a directed graph,
where A = {(i, j), (j, i)|{i, j} ∈ E}. Two new graphs G0 = (V0, E0)
and G0

d = (V0, A0) where V0 = V ∪ {0}, E0 = E ∪ {{0, j}|j ∈ V },
A0 = A ∪ {{0, j}|j ∈ V } are defined.
Let h = (hi)i∈V ∈ {0, 1}|V |, y = (yu)u∈E0 ∈ {0, 1}|E0| two 0− 1 vectors
and zk

ij ≥ 0, (i, j) ∈ A0, k ∈ V ′ where V ′ is a subset of V , and zk
ij is a

real flow on the arc (i, j) ∈ A0 having 0 as source and k as destination.
Γ (i) is considered as the set of edges u ∈ E having an endpoint as i,
Γ+(i) = {j|(i, j) ∈ A0} and Γ−(i) = {j|(j, i) ∈ A0}, m = |E| and
n = |V | [3]. Then MP is defined as follows:

(MP)

Min
∑

k

Fkhk +
∑

k

∑
l>k

Iklykl

s.t.
∑

j∈Γ+(0)

zk
0j − hk = 0 ∀k ∈ V (16)

∑
j∈Γ+(i)

zk
ij −

∑
j∈Γ−(i)

zk
ji = 0 ∀i ∈ V − {k}, k ∈ V (17)

∑
j∈Γ+(k)

zk
kj −

∑
j∈Γ−(k)

zk
jk + hk = 0 ∀k ∈ V (18)

zk
ij ≤ yij, zk

ji ≤ yij, ∀{i, j} ∈ E0, k ∈ V (19)
yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E (20)∑
j∈V

y0j = 1 ∀i, j = 1, . . . , n (21)

zk
ij ≥ 0 ∀(i, j) ∈ A0, k ∈ V (22)

yij ∈ {0, 1}, {i, j} ∈ E0, hk ∈ {0, 1}, k ∈ V, η ∈ R
+ (23)
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Theorem 1. All vectors h and y satisfying (16-23) and (24) are asso-
ciated with connected sub-graphs of G with at least one hub edge.∑

u∈Y

yu ≥ 1 or
∑
i∈H

hi ≥ 2. (24)

The dual of sub-problems, for fixed values of ykl and hk results in a
linear program.

Each cut generated for the MP following the Benders algorithm is
in form of (25). It can also be generated by aggregation of n(n − 1)
sub-cuts, where each of them can be directly is achieved as the result
of each of i×j-th part of sub-problem corresponding to flow from i to j.
Hence, we can have two approaches, one single cut(SC) approach and
one multi-cut(MC) approach. In SC, a single cut and in MC, n(n− 1)
sub-cuts from the solution of the sub-problem are added to the MP.

−
∑
i,j �=i

((uij + vij) +
∑
k �=i,j

(sijk + wijk)hk + pjihi + qijhj +
∑
k,l>k

oijklykl

+
∑
k �=i,j

(aijk(1− hi) + bijk(1− hj)) + dij(hi + hj) + eij(2− hi − hj)))

−η ≤ 0. (25)

4 Computational Results

In Table 1, computational results comparing CPLEX 9.1 with the
single cut and multi-cuts Benders are given. One can observe that the
multi-cut approach outperforms the other methods both in terms of
problem size and computational time. Thereby, the well-known AP
data set with the hub facility setup cost of Fi := 5000 and hub edge
setup cost of Ikl := dkl × 500,∀k, l > k has been used. In Table 1,
N.A. stands for ”not available”, that is the solver was not able to solve
the instance and E.T. means that run time exceeds the time limit of
20 hours. These computational results have been obtained on a AMD
Opteron 250-2.40 GHz and 1 GB of RAM and with the AP data set.

5 Conclusions

A new mixed integer programming model is proposed for the applica-
tion of HLPs in public transport planning. The model generalizes the
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Table 1. Overall comparison

Instance CPLEX 9.1 SC MC
T. Cpu(sec.) T. Cpu(sec.) T. Cpu(sec.)

AP5 0.03 8.48 0.56
AP10 10.39 1500.79 7.75
AP15 591.57 E.T. 32.27
AP20 5597.2 E.T. 137.91
AP25 E.T. E.T. 695.03
AP30 N.A. E.T. 2657.16
AP35 N.A. E.T. 10793.37
AP40 N.A. E.T. 61032.52

classical HLPs for applications in public transport by relaxing some of
the classical assumptions in HLPs, making the problem more difficult to
solve. Due to the combinatorial behavior of HLPs, as the problem size
grows, general purpose standard solvers fail to solve larger instances.
Our computational results confirms the superiority of the Benders ap-
proach. Where, the standard solver CPLEX 9.1 was not able to solve
instances of size larger than 20, the multi-cut Benders approach pre-
sented here could solve instances of larger size in a significantly smaller
amount of time.
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Summary. We consider a fault tolerance version of the Uncapacitated Facil-
ity Location Problem with User Preferences. As a consequence, our problem,
which we wish to name the Uncapacitated Facility Location Problem with
user preferences and q-level of reliability (q-level UFLPP), is much more dif-
ficult to solve. A computational study shows the advantages and difficulties
of this approach.

Key words: Location, Optimization Modeling, Reliability

1 Introduction

In this paper we consider a fault tolerance version of the Uncapacitated
Facility Location Problem with User Preferences. In this problem, the
assignment of clients to facilities is not (necessarily) based on distances
or costs, but we are given a preference function for each client and
clients are assigned to new facilities in order of preference. The main
aim is to assign each client to a primary facility, the most preferable
of the new facilities for the client, that will serve it under normal cir-
cumstances, as well as to a set of backup facilities that serve it when
the primary facility has failed, in order of preference for the client in
question. Our problem, which we wish to name the Uncapacitated Fa-
cility Location Problem with user preferences and q-level of reliability
(q-level UFLPP), is NP- hard in strong sense, as it can be reduced to
the Multi Stage Uncapacitated Facility Location Problem (MSUFLP)
as the described by [3].
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Models considering only clients preferences can be found in [5, 4, 2,
1]. In the case of reliability models for facility location context some
approaches in this spirit can be found in [7, 6, 8]. As far as we know
our approach is new. The remaining part of this paper is organized
as follows. In Section 2 we give a tighter formulation of the problem.
Section 3 presents the results of a series of computational experiments
to analyze the inherent difficulty of the model. In the last section we
present conclusions and future works.

2 General Problem Formulation

Denote I = {1, . . . ,m} the set of customers and J = {1, . . . , n} the
set of potential sites for new facilities. The costs of supplying the whole
demand of customer i ∈ I from facility j ∈ J is defined by cij ≥ 0 and
for opening a facility at j is fj ≥ 0. Let q be the number of facilities
that a client i should be assigned to so that under failure of up to (q−1)
facilities, the client i can still be serviced. Moreover, each client i has a
strict level of preference for each facility j ∈ J . The problem is to find
a subset L ⊆ J of facilities in such a way that each client i is assigned
to q facilities in order of preference, and that the total cost of opening
facilities and connecting clients to open facilities is minimized.

Definition 1. (Facilities failure probability) We define that each fa-
cility j ∈ J has a probability of becoming nonoperational equal to
pijl ∈ [0, 1] with i ∈ I, l ∈ L ,|L| = q and q ≤ n. Therefore, a customer
i is assigned to one facility j at level l of reliability with a probability
(1− pijl)

∏l−1
t=1 pijt.

Definition 2. (Customer’s preferences) We say that j ∈ J is for cus-
tomer i the d-th prefered facility and we denoted this by dij . Moreover,
for j, k ∈ J and i ∈ I we say that k is worse than j, denoted k <i j,
if client i prefers facility j over facility k.

Thus, a customer i can be served by a d-th preferred facility j with
decreasing level of preference 1 ≤ d ≤ n. Moreover, each customer i can
be served by its level-l facility (call it j) if the (l − 1) more preferred
facilities have failed and j itself has not failed.

Note that not all possible combinations of facilities L ⊆ J yield a
feasible solution, because each set of facilities for a client i1 must also
allow to define a feasible set of facilities for each other client i 	= i1 ∈ I.
This idea is summarized in the following theorem.
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Theorem 1. (Global preference order). Let Si1 ⊆ J be a set of feasible
facilities for client i1 ∈ I for each l-level of reliability and let ji1,w ∈ Si1

be the facility with the worst preference ranking for i1 and ji1,p ∈ Si1 the
most preferred (i.e., ji1,w <i1 j, ∀j 	= ji1,w ∈ Si1 and ji1,p >i1 j, ∀j 	=
ji1,p ∈ Si1). Define Ti1 as the set of facilities with worse preference than
ji1,w for the client i1, Ti1 = {j ∈ J : j <i1 jw}. Thus, if Si1 is a solution
for the client i1, then all feasible combinations of solutions for all i 	= i1
are defined in a set where there exists a facility k := k ∈ (Si1 ∪ Ti1).

Proof. It is easy to see that if Ti1 = ∅, then the only solution for all i 	=
i1 ∈ I is the set of facilities contained in Si1. Now there exists a client
i∗ 	= i1 ∈ I for which there is a facility j∗ such that j∗ /∈ (Si1 ∪ Ti1),
then necessarily it has a ranking better than a j ∈ Si1 , but by definition
the facilities j ∈ Si1 must be the most preferred facilities for the client
i1, which is a contradiction. �

In the following, this theorem will be of vital importance for mod-
eling the relation between the reliability of the model and the order of
preference of the clients. Let xijl be a decision variable that takes value
1 if customer i is associated with the facility j at level-l of reliability,
when j is the d-th preferred facility for customer i, and 0 otherwise.
Let yj, j ∈ J , be 1 if a facility j is opened, and 0 otherwise.

Observe that only the preference order for each client i is of im-
portance. We define the set Pij = {k ∈ J : k >i j} for all j ∈ J . By
Theorem 1, an optimal solution of this problem at level-1 of reliabil-
ity can be found if xij1 = 1 then yk = 0, k ∈ Pij . For the level-2 if
xij2 = 1 then yk = 0, k 	= k1 ∈ Pij and yk1 = 1 for only one. For the
level-3 of reliability, if xij3 = 1 then yk = 0 for all k 	= {k1, k2} ∈ Pij

and {yk1, yk2} = 1. Because for all clients i ∈ I the level-1 of as-
signment must have a better preference order that level-2, for level-2
of assignment must have a better preference order that level-3 and
so on. Thus, we can rewrite the last result for all the client i in the
equivalent form

∑
k∈Pij

yk ≤ |Pij | (1 − xijl) + (l − 1). Only a facil-
ity j with ranking dij ∈ W(i, l) can be a feasible assignation, where
W(i, l) := {j ∈ J : dij ∈ [l, n− q + l]}. This result can be summarized
in the following theorem.

Theorem 2. Let i ∈ I,j ∈ J , l ∈ L and let us define the sets
W(i, l) := {j ∈ J : dij ∈ [l, n− q + l]}, with W(i, l) ⊆ J ,∀l. A fea-
sible assignation for a client i to a facility j at level of reliability l
represented by xijlcan only be feasible if dij belong to W(i, l).

Proof. Assume that there exists other possible facility assignation k
for the customer i to a l-level of reliability, then xikl = 1with dik ∈
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J \ W(i, l). Case: dik < dij , it is not possible because l levels have to
be assigned before. Case dik > dij , implies that q − l levels have to be
assigned, but there are only q− dik free feasible facilities, which results
in an infeasible solution. �

Thus, for example, for level 1 of reliability only the j ∈ J , which
have a ranking of preference between [1, n − q + 1] can be a feasible
solution, because (n − q) levels have to be assigned jet, therefore, this
is the minimal set. The formulation of our problem is now as follows:

min
∑
i∈I

∑
l∈L

∑
j:dij∈W(i,l)

cijxijl (1− pijl)
l−1∏
t=1

pijt +
∑
j∈J

fjyj (1)

s.t
∑

j:dij∈W(i,l)

xijl = 1 ∀i ∈ I,∀l ∈ L (2)

xijl ≤ yj ∀i ∈ I, ∀l ∈ L, j : dij ∈ W(i, l) (3)
xijl = 0 ∀i ∈ I,∀l ∈ L, j : dij ∈ J \W(i, l) (4)∑

l∈L: dij∈W(i,l)

xijl ≤ 1 ∀i ∈ I, j ∈ J (5)

∑
k∈Pij

yk ≤ {|Pij | (1− xijl) ∀i ∈ I, ∀l ∈ L, j : dij ∈ W(i, l) (6)

+(l − 1)}
yj ∈ {0, 1} ∀j ∈ J
xijl ∈ {0, 1} ∀i ∈ I, ∀l ∈ L, j : dij ∈ W(i, l)

The objective function (1) is straightforward. Constraints (2) require
that each customer i is assigned to a level-l facility j. Constraints (3)
and (4) prohibit an assignment to a facility that has not been opened.
The inequalities (5) prohibit a customer from being assigned to a given
facility at more than one level. Constraints (6) model the preferences
of customers. It means that, if a facility j is opened every customer i
will be served by either j or by a facility which i prefers to j at level l.
As in the UFLP, there is always an optimal solution in which variables
xijl take binary values because the problem is uncapacitated. In this
context, it does not make any sense to consider all possible scenarios,
because otherwise the worst case scenario is always the one in which
all facilities fail and the assignment is trivial. We might consider all
scenarios in which, at most q < n facilities fail, with a probability
pijl ∈ (0, 1).
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3 Experimental Results

The experiments were conducted as follows. For each of n = 50,
m ∈ {50, 100}, q ∈ {1, 3} and p ∈ {0.01, 0.1, 0.9} parameters we gen-
erated random costs based in an uniform distribution with set.seed(1)
in the statistical software R. For the costs cij on the interval [100, 300]
and for the fixed costs fj on the interval [500, 1000]. For the client’s
preference we sample the rankings of the set randomly. All test have
been performed on a Pentium IV , with CPU 2.4 GHz processors, 512
RAM memory under Windows XP as operative system. The solver used
was Xpress optimizer version 1.17.12.

The results are reported in Table 1. CPU T. gives the total number
of CPU seconds, S.I is the total number of iterations of the simplex
dual algorithm, gap % correspond to the percentage of the difference
between the optimal value of the linear relaxation and the integer prob-
lem, #N are the number of nodes of the branching tree and O.f is the
optimal value of the integer problem.

Two trends are evident from this results. The first is that the com-
plexity of the instances increases excessively when the amount of clients
augment and when the number of reliability levels q is approximatly
�n/2� , because the number of feasible combinations of facilities increase
considerably. The second trend show that in general the problems with
probability to fail close to 1 are easier to solve that problems close
to 0. In principle because the main parameters that contribute to the
minimization of the problem are the fixed costs, when p is close to 1.
However, for highly regular cost structures it is very difficult to solve
it as it is well known in the literature.

Table 1. Results for the q-level UFLPP with n = 50, m = {50, 100} and
different values for the failure probability p and the level of reliability q

q=1 q=3

n × m p #F CPU T S.I #N gap% O.f #F CPU T S.I #N gap% O.f

0.01 3 382 1207 499 27.18 9693.3 3 13501 6166 42149 26.07 10469.1

50 × 50 0.1 1 226 1247 241 11.84 8859.1 3 13154 5207 16890 17.88 10595.1

0.9 1 1 2344 1 0 1443.9 3 11 5479 1 0.18 4178.16

q=1 q=3

n × m p #F CPU T S.I #N gap% O.f #F CPU T S.I #N gap% O.f

0.01 1 5062 2335 3765 38.38 19310.6 3 195562 10194 152192 41.97 20144.3

50 × 100 0.1 1 3512 2023 2193 29.88 17633.2 14 140280 9775 50890 36.84 20133.8

0.9 1 1 3799 1 0 2472.4 3 868 10948 7 7.96 6928.7
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4 Conclusions

This paper presented an original approach to reliable models of facility
location with client’s preferences. This model attempts to find solutions
that are both inexpensive and reliable for the locator, and attractive
from the point of view of the clients. We have shown empirically some
results for a general instance, but the difficulties to solve this formula-
tion is in evidence. A proof of the hardness is still indispensable.

In an extend version of this paper we consider the case in which the
probability of failure is dependent, where we define this dependence in-
side of subsets, which contain a determined amount of facilities, where
this dependence is defined in relation to spatial characteristics of the fa-
cilities. Some upper bounds can be derived for the general formulation,
which are useful to determine a good starting solution.

Acknowledgments

It is a pleasure of the first author to express his gratitude to Prof. Dr.
Stefan Nickel and the people of the chair for Operation Research at the
Saarland University for their warm hospitality and to acknowledge the
support provided by the ALFA program of the European Union under
the project SistIng (no. II-0321-FA).

References
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1 Introduction

Vehicle routing problems (VRPs) appear in distributing and/or collect-
ing of goods by commercial or public transport. The aim of a VRP is to
determine a route and schedule of vehicles in order to satisfy customer
orders and minimize operational costs. In the past, vehicles execut-
ing routes and dispatchers in the control center were acting separately,
without or with only little information exchange. The position of vehi-
cles en route was not known to the dispatcher and it was not always
possible to establish a good connection with drivers. Recent advances
in information and communication technologies improve dramatically
the quality of communication between drivers and the dispatching of-
fice. New customer orders as well as route changes can now be easily
communicated to drivers, thus enhancing service quality and reducing
costs. Moreover, state-of-the-art navigation systems provide real-time
traffic and weather conditions allowing to escape hampered roads.

2 Problem Description

We consider a vehicle routing problem with online travel time informa-
tion. The problem is defined on a complete graph G = (V,A), where V
is the vertex set and A the arc set. Vertex 0 represents a depot whilst
other vertexes represent geographically dispersed customers that have
to be served. A positive deterministic demand is associated with every
customer. The demand of a single customer cannot be split and should
be serviced by one vehicle only. Each customer defines its desired pe-
riod of time when he wishes to be served. A set of K identical vehicles
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with capacity Q is based at the single depot. Each vehicle may per-
form at most one route which starts and ends at the depot. The vehicle
maximum load may not exceed the vehicle capacity Q. The objective
is to design routes on G such that every customer belongs to exactly
one route and the total travel time of all vehicles is minimized.

The frequently considered constant travel time function is not real-
istic. In practice, it fluctuates because of changing traffic and weather
conditions like, for example, congestion during rush hours, accidents,
etc. Furthermore, available models for the dynamic vehicle routing usu-
ally imply that a vehicle en route must first reach its current destination
and only after that it may be diverted from its route. Exactly on the
way to its immediate destination, however, the vehicle may encounter
an unpredicted congestion or other traffic impediment. So, the vehicle
has to wait unreasonably long, instead of deviating from its route and
serving other customers in the meantime.

Thanks to mobile technology we can overcome the mentioned short-
comings and model vehicle routing in more realistic settings. State-of-
the-art mobile technologies substantially facilitate the dynamic vehicle
routing. First, they allow locating vehicles in real time. This gives the
decision center the overview over the routes execution. Second, they en-
able the online communication between the drivers and the dispatching
center. Thus, new instructions can be sent to drivers at any time, re-
gardless of their location and status. And finally, mobile technologies
are capable to capture varying traffic conditions in real time and in the
short run predict with high accuracy the travel time between a pair of
nodes. All these factors enable modelling approaches that even better
approximate the real-world conditions.

We formulate the real-time VRP as a series of static vehicle routing
problems with heterogeneous fleet at a specific point of time. We use
the concept of time rolling horizon and run a re-optimization procedure
to find new vehicle routes every time when the travel time between a
pair of nodes is updated. For the vehicles that at time of routes adjust-
ment are in transit to their destinations we create artificial intermediate
nodes. The re-optimization algorithm is then performed on the graph
that includes also the artificial intermediate nodes.

3 Solution Algorithm

The time-dependent vehicle routing problem is a generalization of the
classical travelling salesman problem (TSP) and thus belongs to the
class of NP-complete problems [4]. Exact solution algorithms can solve
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to optimality only small instances of the problem, working unreason-
ably long for larger problems. Hence, to solve the described problem
we implemented a genetic algorithm metaheuristics. Genetic algorithms
were successfully deployed to VRPs and have proved to produce good
quality solutions [1, 3, 5, 8].

Initial population. Unlike many heuristics, a genetic algorithm works
with groups of solutions, instead of considering one solution at the time.
Therefore, an initial population of feasible solutions has to be generated
at the beginning of the algorithm performance. We develop a fast and
effective method to initially assign all customers to routes. At first
we sort the customers by the starting time of the time window. The
customer with the earliest starting time is taken as the first customer
in the first route. Further customers are chosen randomly one after the
other and appended to the route until the time schedule and capacity
constrains are satisfied. If after hundred attempts no valid customer for
the given route can be chosen, we initiate a new route. ¿From the rest
of the customers we again select the one with the earliest time window
starting time and set this client as the first for the next route. The
procedure is repeated until no unserved customers are left and enough
individuals for the initial population are created.

Selection criteria. To select a set of parents for further reproduction
we implement the stochastic tournament selection operator [2, p. 88].
The core of the operator is a tournament set which consists of k in-
dividuals randomly chosen from the population. These individuals are
replaced in the population, what increases the variance of the process
and favours the genetic drift.

Crossover operator. We adopt the special crossover operator called
best cost route crossover (BCRC) [8], which is particularly suitable for
VRP with hard time windows. The operator produces two feasible off-
spring from two parents p1 and p2 by executing the following procedure.
In the first step, a random route is selected from each parent (route r1

is selected from parent p1 and r2 from p2). Then the customers that
belong to the route r2 are removed from the parent p1. Analogously,
the customers belonging to the route r1 are removed from parent p2. To
yield the feasible children, the removed customers should be selected
randomly and re-inserted back into the corresponding solution at the
least cost. For that purpose the algorithm scans all possible locations
for insertion and chooses the feasible ones. The removed customer is
then inserted into the place that induces the minimum additional costs.
If no feasible insertion place can be found, a new route containing the
removed customer alone is created and added to the offspring.
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Mutation operator. Finally, a mutation operator is applied to the
population to ensure that the algorithm does not converge prematurely
to a local optimum. As mutation introduces a random alteration to
diversify the search, it can be a relatively destructive element, dete-
riorating the fitness of the solution. Therefore, the mutation operator
is applied to only small fraction of the offspring, determined by the
mutation rate. We applied a widely-used swap mutation algorithm, ex-
changing two customers with similar time windows [1].

Construction of a new population. In the new generation the off-
spring created by the sequential application of the selection, crossover,
and mutation operators, completely replace the parents. Only the small
number of the worst offspring are left aside and instead of them the best
individuals from the old generation, called elite, are included into the
new generation. Such strategy is called elitism [6, p. 168]. It ensures that
the best solutions can propagate through generations without the effect
of the crossover or mutation operators. Therefore, the fitness value of
the best solution is monotonically nondecreasing from one generation
to another [2, p. 91]. In the new generation, however, the elite individ-
uals have to compete with the fittest offspring, forcing the algorithm
to converge towards an optimum.

4 Computational Results

The proposed genetic algorithm was tested in two stages: Stage one
with constant travel times and stage two with variable travel times.
Even though the considered problem is dynamic and time-dependent,
the algorithm was initially tested on the constant travel time data to
prove its efficiency. For this purpose we take the Solomon’s benchmark
problems with the long scheduling horizon [9]. The received results for
the constant travel time tests are comparable with best known so far.
In fact, for eight instances out of eleven from the random problem set
and for five instances out of eight from the semi-clustered problem set
we were able to outperform the best known solutions. For more details
about constant travel time test please see [7].

The second stage of the computational experiments simulates the
vehicle routing in more realistic settings. Here we assume that travel
times between a pair of nodes undergo two types of disturbances. On the
one hand, a link travel time function depends on the time of day when
a vehicle drives along this link. Thus we capture time dependency due
to periodic traffic congestions which is based on historic data and hence
known a priori. On the other hand, we incorporate unpredicted short-
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Table 1. Test results for real-time travel times

Average Average Average Average
Problem with without Rejected Problem with without Rejected

re-optim. re-optim. in % re-optim. re-optim. in %

R201 1211.06 1218.51 15 RC201 1319.02 1320.84 0
R202 1084.57 1111.92 20 RC202 1148.95 1168.27 5
R203 910.07 929.85 0 RC203 987.44 995.53 20
R204 759.15 757.26 5 RC204 817.23 829.63 10
R205 1003.64 1022.87 10 RC205 1197.12 1179.83 0
R206 910.32 915.43 15 RC206 1098.97 1130.09 15
R207 831.21 836.95 15 RC207 1021.00 1021.01 10
R208 731.18 732.54 20 RC208 825.43 834.00 5
R209 890.04 896.07 10
R210 948.58 956.41 5
R211 794.88 811.11 10

term fluctuations of travel times that occur due to unexpected dynamic
events like accidents. Therefore, we assume that the dispatching centre
has the real-time overview over traffic conditions. Based on these data
it updates the optimal solution and periodically adjusts the vehicle
routes in order to avoid hampered roads.

The test results for the real-time case are presented in Table 1.
Column “Average with re-optim.” contains average travel time value
calculated over twenty runs when routes re-optimization was under-
taken after every perturbation of the travel time matrix. On the con-
trary, column “Average without re-optim.” states the results for the
case when travel times are periodically updated but the routes are not
correspondingly adjusted. Consequently, the vehicles have to follow the
initial routes constructed at the beginning of the planning period. The
value difference between the two columns shows that even for small per-
turbations of travel times the periodic route adjustment leads to better
results. Finally, column “Rejected” indicates the fraction of problem
instances containing customers that could not be served in the case
without route re-optimization. This is due to the fact that the tra-
versed routes are definitely less-than-optimal while being determined
for obsolete travel times. Hence, the vehicles arrive to the customers
after the ending time of the time windows and are not able to serve
them. From these experiments we can see that if solutions computed for
constant travel times are deployed in real-time settings, their optimal-
ity and even feasibility are subject to substantial changes. Therefore,
to be able to serve all customers and decrease costs one has to make
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use of modern technologies and real-time data and promptly react to
the ever-changing settings of the real world.

5 Conclusions

The paper deals with a vehicle routing problem with real-time travel
times. We assume the deployment of mobile information and commu-
nication system that allows us to consider time-dependent travel times
which are updated on a permanent basis. Thus we incorporate the pos-
sibility to react to traffic impediments and divert a vehicle en route
from its current destination. To solve the developed problem we im-
plement a genetic algorithm. We perform an extensive computational
study in order to prove the efficiency of the proposed algorithm on well-
known static benchmarks as well as to test its performance in dynamic
settings. The achieved results are competitive with best published so-
lutions and prove the efficiency of the proposed solution method.
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Summary. We report on the development of a Decision Support System
(DSS) to plan the best assignment for the weekly promotion space of a TV
station. Each product to promote has a given target audience that is best
reached at specific time periods during the week. The DSS aims to maximize
the total viewing for each product within its target audience while fulfilling
a set of constraints defined by the user. The purpose of this paper is to de-
scribe the development and successful implementation of a heuristic-based
scheduling software system that has been developed for a major Portuguese
TV station.

Key words: Decision support systems, scheduling, heuristics.

1 Introduction

Decision Support Systems (DSS) are used to support decision making
in almost every area of business. In this work we report on a DSS specif-
ically developed for a Portuguese TV station. As noted by Kendall and
Kendall ([7], pp. 320-329), all DSS methodology can fall into the two
categories of analytic or heuristic. Analytic DSS that use optimiza-
tion procedures have been used to support the scheduling of personnel,
equipment and even value chain activities [8]. Unfortunately, the size
and time requirements to generate even small assignment schedules
using an analytic method can be prohibitive. Hence, a heuristic DSS
assignment schedule is proposed.
∗ Research supported by SIC and FCT/POCI 2010/FEDER through Project

POCTI/MAT/61842/2004.
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Optimization techniques have been successfully employed in various
fields, however only a few studies exist that address the optimization
problems in the television and media industry. The majority of these
studies focus on scheduling television programs and on modelling audi-
ence and audience behaviour rather than scheduling breaks. The liter-
ature dealing specifically with TV breaks scheduling problem is sparse
and deals only with commercial breaks. Bollapragada et al. [2, 3] stud-
ied the commercial scheduling problem to generate sales plans to meet
the requirement of a single advertiser. The problem was modelled as
an integer program and solved sequentially for each advertiser with an
objective to make the least use of premium inventory. Bollapragada [4]
then studied the problem on scheduling commercials over a specific pe-
riod so that the airing of the same commercials are spread as evenly as
possible. Jones [6] introduced the advertising allocation problem as an
example to design incompletely specified combinatorial auctions where
potentially hundreds of advertisers can submit combinatorial bids for
the airing of their commercials in the advertising slots. The problem
was modelled as an integer program and heuristics based on constraint
programming were used to find feasible solutions. Based on this work,
Zhang [9] proposed a two-step hierarchical approach. First, a winner
determination problem is solved to select advertisers and assign them to
shows. Then, a pod assignment problem is used to schedule selected ad-
vertisers’ commercials to slots within a specific show. In another recent
work Mihiotis and Tsakiris [5] have studied the advertising allocation
problem but from the advertising company point of view. More specif-
ically, they solve the problem of deciding where the commercials are to
be place, given the set of available places, their costs, and the number
of people viewing each one of them. The choices are to be made in
order to have the maximum total of people viewing subject to a bud-
get constraint. They developed a binary mathematical programming
model that, due to the enormous number of variables, is then solved
heuristically.

The problem considered in this paper takes as input a list of breaks,
a list of show spots, and a list of requirements for shows that the mar-
keting department would like to satisfy. The objective is to build an
assignment schedule that maximizes the total viewing for each product
within its target audience satisfying several constraints and fulfilling
the audience targets. We name this problem TV Self-Promotion As-
signment Scheduling Problem (TSPASP).
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2 Problem Description and Formulation

In a TV channel week there are several self promotion breaks, that is,
slots of time in between shows that are not allocated to commercial
purposes. These breaks, from now on referred to simply as breaks, are
to be used to advertise shows that are still to be broadcasted and also
own merchandizing. There are a number of advertising campaigns, that
we call spots, from which we must choose the ones to be used in the
aforementioned breaks.

The TSPASP described below essentially consists in assigning a sub-
set of the existing spots, each of which can be used more that once,
to the available breaks, subject to audience, operating and legal con-
straints. Each break is characterized by the broadcasting time, its du-
ration, and its forecasted audience in each segment, called target. Each
existing advertising spot is characterized by the show/product (for the
sake of exposition form now on we will use show only) they advertise,
by its duration, and by the nature o the advertised show (i.e a spot re-
ferring to show that shows alcohol or sex may only be broadcasted after
22:30). However, there are other issues that must be accounted for. For
instance, a show must not be advertised after it has been broadcasted.
Associated with each show there are requirement that must be satis-
fied, such as number of times a show must be advertised, how show
advertisements should be spread over the week, the number of people
that has seen at least one spot for the show, and the number of times
that a show has been advertised to its intended audience.

Let cit be the number of contacts forecasted at break i for target
t and let pjk and qij be binary parameters denoting whether spot j
is of product k and spot j is intended for target t. Since we must
allocate spots to breaks, we define binary variables xij that are to be
set to 1 if at break i spot j is broadcasted and set to 0 otherwise. The
mathematical programming model (P), allows to determine the spot
broadcast decisions, which are made in order to maximize total viewing
for each product within its target audience, as given by equation (1),
and must satisfy the constraints given in equations (2) to (9).

The first 4 constraints, equations (2) to (5), are show constraints
and establish that each show must have a minimum percentages Skmin

of broadcasted spots within pre-specified time intervals Il (i.e. up to 2
hours before the show being broadcasted and in each day Id, until it is
broadcasted; has advertising maximum and minimum limits; and must
have a pre-specified minimum cover Cktmin

in its targeted audience. The
following 2 constraints specify maximum and minimum limits for the
number of times that each spot is broadcasted and also intervals of time
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Fi when spot broadcasting is forbidden, either due to legal constraints
or to operational ones. In equation (8) we imposed that the duration sj

of the spots broadcasted in each break does not exceed break duration
bi. Finally, the binary nature of the decisions to be made is given by
equation (9).

(P) Maximize GRP ′s =
∑

i

∑
j

∑
k cit · xij · qjt (1)

subject to
Skmin

∑
i

∑
j xij · pjk ≤

∑
i∈Il

∑
j xij · pjk ∀ k, Il. (2)

Dmin

∑
i

∑
j xij · pjk ≤

∑
i∈Id

∑
j xij · pjk ∀ k, Id. (3)

Kmin ≤
∑

i

∑
j xij · pjk ≤ Kmax ∀ k. (4)∑

i

∑
j xij · pik · cit ≥ Cktmin

∀ k, t . (5)
Smin ≤

∑
i xij · pjk ≤ Smax ∀ j. (6)∑

j xij = 0 ∀ j ∈ Fi.(7)∑
j sj · xij ≤ bi ∀ i. (8)

xij ∈ {0, 1}0 ∀ i, j. (9)

3 Methodology

The methodology proposed is a decision support system, that we have
named PlanOptimUM, which includes a heuristic procedure to generate
solutions. After discarding the non feasible solutions, the remainder are
evaluated. The best solutions are then suggested to the operator that
through editing can include some extra elements, not provided to the
PlanOptimUM. These changed solutions can then be re-evaluated in
order to choose the most convenient one.
Solutions Generation: In order to generate solutions we have imple-
mented an heuristic procedure that outputs spot-break assignment bi-
nary matrices. The solution procedure has basically 4 stages: In stage
(i) the show-defined constraints are converted into spot-constraints.
Therefore, except for the break duration constraints which are dealt
with differently, we only have spot-constraints. Although some con-
straints are easily converted, others have required complex procedure
to do so. This is the case of the minimum coverage constraints. We
have developed an estimator for the number of times each show would
need to be advertised since the coverage is a nonlinear and unknown
function of the broadcasted spots. In stage (ii) we compute the maxi-
mum Mbj and the minimum mbj number of times that spot j may be
used. In stage (iii) we generate the binary matrix by resorting to an
iterative greedy heuristic procedure based on the following

• select the spot having the largest value of the remaining times to be
used. (Initially mbj .)
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• from the breaks that still have free time, select the break having the
highest audience rate for the target of selected spot.

In stage (iv) even if the solution is feasible (which typically happens)
we look for breaks with available time in order to improve the solution.
For each break we iteratively select a spot/show for which the target
has the highest audience rating whose duration is compatible with the
remaining break time.

User Interface: The software system used in the development of the
computer programs that comprise the PlanOptimUM was MATLAB
and C for model solving and Visual Basic for the interface.

Given the complexity of the problem many of the objectives that
management wanted to maximize and minimize have been converted
into constraints. In seeking a maximum amount of autonomy in the use
of this system the interface developed allows for constraint introduc-
tion. Furthermore, the PlanOptimUM, through the use of the interface
can easily be used to experiment other schedules and scenarios without
consuming much time.

PlanOptimUM generates the spot-break assignment schedules. The
schedules can then be edited by an operator, that can directly alter
in order to incorporate his/her own personal and subjective judgment
into the assignment process. Editing and customization features of the
system included the ability to override the schedule and make pre-
assignments of spots to breaks.

In Figure 1 we show how the interface looks like, when the operator
is changing show characteristics and editing the solution.

Fig. 1. Solution tuning
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4 Conclusions

The application of the PlanOptimUM took place at the SIC-Sociedade
Independente de Comunicação SA, in Carnaxide, Portugal. SIC is an
over-the-air commercial television that frequently leads audience shares
in Portugal. The management of SIC intended to use the PlanOpti-
mUM to prepare weekly schedules for spot assignments to the breaks.

On average there are about 50 shows and products to be advertised
each week and the number of different spots to advertise each one of
them varies between 1 to 5. On one week there are about 230 self pro-
motion breaks to which spots must be assigned to. SIC management
wanted a reduction in the time required to establish weekly spot assign-
ment schedules. This has been greatly achieved since the work of more
than one person during a week is now done by the one person in one
afternoon. A comparison of three months observations on both man-
ually generated schedules and the PlanOptimUM generated schedules
has shown a substantial qualitative improvement in scheduling.

A natural improvement, which is already being explored, is to in-
clude in this system optimization scheduling techniques.
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1 Introduction

The multidimensional knapsack problem (MDKP) is a generalized vari-
ant of the NP-complete knapsack problem (KP). The MDKP assumes
one knapsack being packed with a number of items xj so that the to-
tal profit

∑
pj of the selected items is maximized. In contrast to the

standard KP, each item has m different properties (dimensions) rij

(i = 1, . . . ,m; j = 1, . . . , n) consuming ci of the knapsack:

maximize

n∑
j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ ci, i = 1, ...,m (2)

with xj ∈ {0, 1}, j = 1, ..., n, pj, ci ∈ N, rij ∈ N0.

A number of relevant real-world problems can be modelled as MD-
KPs such as allocation problems, logistics problems, or cutting stock
problems [6]. Recently [4], it has been noticed that also the winner de-
termination problem (WDP) in the context of multi-unit combinatorial
auctions (MUCA) can be modelled as MDKP. MUCAs are combinato-
rial auctions (CA) where multiple copies of each good are available. In
CAs, bidding is allowed on bundles of goods, which allows bidders to
express synergies between those goods they want to obtain. First, the
agents submit their bids and then, the auctioneer allocates the goods
to the agents so that his revenue is maximized. The revenue is the sum
of all submitted bids which are accepted by the auctioneer. This alloca-
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tion problem is called the WDP1. The application of CAs is of special
interest for logistics, procurement, scheduling problems, and others.

As the literature had ignored the close relationship between MDKP
and WDP for a long time, two independent lines of research have
emerged. In WDP literature, mostly small test instances are used which
can be exactly solved, whereas MDKP literature considers more com-
plex instances, that are mainly solved with heuristic optimization. Since
complex bidding structures have to be considered for MUCAs, this pa-
per compares and studies the heuristic optimization approaches used in
the two different research communities for the more difficult MDKP test
instances. We focus on different greedy heuristics and Raidl’s weight-
coded evolutionary algorithm (EA) [7], and examine the EA’s trade-off
between the quality of the solution and the number of generations.

2 Heuristic Optimization Approaches

2.1 Literature Review

For the MDKP, heuristic optimization methods such as tabu search,
ant colony optimization, or EAs have been applied. The two current
state-of-the-art EAs are one with repair steps using a direct encoding
(proposed by Chu and Beasley [1]), and a weight-coded approach (pro-
posed by Raidl [7]). Other promising approaches are hybrids such as
the combination of EAs with tabu search[11], linear programming [12],
or branch and bound [2].

While many heuristic optimization methods have been applied for
the MDKP, research on CA has focussed on exact algorithms. In heuris-
tic optimization, some simple greedy heuristics have been discussed
[4, 13], stochastic local search [5], limited discrepancy search [10], and
a simulated annealing approach [3]. However, these approaches are very
limited and only [4] considered the multi-unit problem extension.

Since this paper compares heuristics from both MUCA and MDKP
literature, we employ greedy heuristics for CAs that can easily be ex-
tended to MUCAs and one of the MDKP state-of-the-art methods,
namely the EA from Raidl [7]. Both methods can also be combined.

2.2 Greedy Heuristics

A common heuristic is the so-called primal greedy heuristic, which first
sorts all items (bids) in decreasing order according to some criteria
1 The profit pj used in the MDKP corresponds to the price of bid j, while the

resource consumption rij corresponds to the number of units of good i requested
in bid j. The decision variable xj denotes whether bid j wins (is accepted by the
auctioneer) or looses (is not accepted by the auctioneer).
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(usually rij , pj, or a combination of both) and then adds the items one
by one to the knapsack as long as no restrictions are violated. There
are four common ways for sorting the items. All are easy to implement
and fast.

• Normalized Bid Price (NBP): NBPj := pj

(
∑m

i=1 rij)l , l ≥ 0.
• Relaxed LP Solution (RLPS): This approach calculates the op-

timal solution of the relaxed problem (xj ∈ [0, 1]) and sorts the
continuous decision variables (xj) in a decreasing order.

• Scaled NBP (SNBP): Relevance values µi measure the scarcity of
capacities. The underlying idea is to choose a high µi for dimensions
with low ci. µi = 1/ci [6] results in: SNBPj := pj∑m

i=1

rij
ci

• Shadow Surplus (SS): Surrogate multipliers ai are taken as rel-
evance values µi by aggregating all capacity constraints to a single
one. A straightforward approach consists in using the dual variables
of the relaxed LP which serve as an approximation of how valuable
a unit of a good is (and are therefore called shadow prices). We
define the shadow surplus of a bid j as SSj := pj∑m

i=1 airij
, where ai

(i ∈ {1, . . . ,m}) are the solutions of the dual LP.

2.3 Weighted Encodings

In the EA proposed by [7], the genotypes are real-valued vectors
(w1, . . . , wn), where the weight at position j indicates the importance
of the jth item. A decoder constructs a solution from the genotype in
two steps. In the first step, the profits pj of the items are biased ac-
cording to the corresponding wj either as p′j = pjwj or p′j = pj + wj.
Subsequently, the items are ordered in decreasing order according to p′j.
In the second step, a primal greedy heuristic (see Sect. 2.2) is applied
to the sorted list to obtain a complete problem solution.

Based on extensive experiments, Raidl chose the SS heuristic and
biased weights of the form p′j = pjwj = pj(1 + γ)N (0,1) during the ini-
tialization and mutating steps. This favors small weights due to the use
of a normal distribution N . Raidl recommended setting γ to 0.05. Stan-
dard uniform crossover is applied with the probability 1 and mutation
with the probability 3/n. A steady-state EA with a population of 100 is
used with phenotypic duplicate elimination. EA runs are stopped after
evaluating 100,000 individuals without finding a new best solution.

The indirect representation used by Raidl results in a strong bias
toward solutions which are constructed using the underlying greedy
heuristic. This bias might mislead the search if the optimal solution is
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not very similar to the solution generated by applying just the greedy
heuristic [9]. Additional problems can occur due to the redundancy of
the encoding, as many mutations of wj do not result in a new pheno-
type. This problem can be addressed by using duplicate elimination (as
proposed by Raidl) resulting in an additional search effort.

3 Experiments

We compare the solution quality of Raidl’s EA to the heuristics from
Sect. 2.2. Furthermore, the influence of structural properties of the
test instances (the tightness ratio) on the algorithm’s performance is
studied. Finally, the trade-off between the solution quality and the
running time of the EA is analyzed and inefficiencies are revealed.

All experiments were run on a Linux machine (2.2 GHz and 2GB
RAM). We used the 270 MDKP test instances from the OR library2.
They consist of 30 instances for each of the nine combinations of
m = {5, 10, 30} and n = {100, 250, 500}, from which only the ones with
m <= 5 or n <= 100 can be solved optimally with CPLEX 9.0. The
structure of instances is described by the tightness ratio αi =

∑n
j=1

ci
rij

,
which expresses the scarcity of capacities. A tightness ratio of 0.25,
for instance, expresses that only about 25% of the bids can be satis-
fied (WDP), or about 25% of all available goods can be packed into
the knapsack (MDKP). Lower tightness ratios indicate more restricted
problem instances.

Method performance is measured by the gap between the best found
solution and the optimal solution (gap), if known, and the relaxed opti-
mal solution (gap′, xj ∈ [0, 1]). Table 1 summarizes some of the experi-
mental results. We only show running times for the EA, since running
times of heuristics are negligible.

The results reveal the good performance of the primal greedy heuris-
tic despite their simplicity. RLPS (gap = 0.93 %) and SS (gap = 1.56
%) are the best heuristics. As expected [7], the gaps are lower for the
weight-coded EA than for the heuristics. However, the EA need a run-
ning time of up to 364s for complex instances (m = 30, n = 500).

Table 1 indicates that the gaps decrease with larger α. This influ-
ence was also partially studied by [8] who only considered gap′, and
concluded that there is no general evidence that the performance of
greedy heuristics increases with larger α. Instead, they argued, the
trend is due to the tighter bound of the relaxed LP for higher α. In
contrast to these results, we are able to confirm with an ANOVA for

2 http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 1. Performance of greedy heuristics and Raidl’s EA. Each row repre-
sents the average over 10 instances (due to place restrictions not all results
can be printed). In the last row, the average over all 270 instances is displayed

NBP[%] SNBP[%] RLPS[%] SS[%] Raidl[%]
m n α gap’ gap gap’ gap gap’ gap gap’ gap gap’ gap time[s]

5 100 .25 9.611 8.706 7.453 6.525 2.452 1.478 2.530 1.557 1.011 0.023 33.26
.50 4.595 4.163 3.203 2.764 1.283 0.835 1.621 1.175 0.465 0.014 36.71
.75 2.696 2.386 1.695 1.381 0.877 0.561 0.981 0.665 0.325 0.007 35.98

10 250 .25 7.912 - 6.005 - 1.429 - 1.998 - 0.653 - 132.87
.50 3.952 - 3.435 - 0.737 - 0.924 - 0.294 - 125.33
.75 1.852 - 1.575 - 0.383 - 0.516 - 0.169 - 102.55

30 500 .25 6.972 - 5.515 - 1.259 - 2.155 - 0.884 - 356.4
.50 3.199 - 2.829 - 0.659 - 0.979 - 0.356 - 294.13
.75 1.624 - 1.542 - 0.315 - 0.603 - 0.206 - 364.74

average 5.039 4.974 3.897 3.592 1.272 0.931 1.864 1.560 0.617 0.06 154.37

a level of significance of 5% that with increasing α, the gap decreases
significantly (M = 3.74 vs. 1.86 vs. 1.07, F = 8.749, p < 0.001, n=150).
As a dependent value we used gap averaged over all five algorithms.

Finally, we analyze the trade-off between solution quality and run-
ning time. We postulate that excellent solutions are already created
during initialization, while EA performance in later generations is low.

Figure 1 shows the average gaps over the number of generations for
three MKNAPCB test instances. The results indicate that a popula-
tion size of N = 100 already results in very small avg. gaps (1.59%)
in the initial population. Initial solutions have high fitness as they are
only slightly different from the solutions generated by the underlying
greedy heuristic. In the first few generations, the gap decreases and
stays approximately constant after a few hundred or thousand gen-
erations (fitness evaluations). Therefore, the high number of fitness
evaluations proposed by Raidl [7] is not necessary and can be greatly
reduced with only a minor effect on the resulting solution quality.
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Fig. 1. Raidl’s EA: Solution quality vs. running time
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4 Conclusions

Since simple and fast greedy heuristics show an excellent performance,
we recommend using simple local search nearby the solution of a greedy
heuristic instead of putting additional effort in more complex and time-
consuming algorithms, like EAs. Furthermore, since the main quality
improvement of EAs occur at early stages of a run, the high running
times proposed by [7] can be greatly reduced with only minor effects
on the resulting solution quality.
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Summary. The well-known Vehicle Routing Problem (VRP) has been gen-
eralized toward tactical or strategic decision levels of companies but not both.
The tactical extension or Periodic VRP (PVRP) plans trips over a multi-
period horizon, subject to frequency constraints. The strategic extension or
Location-Routing Problem (LRP) tackles location and routing decisions si-
multaneously as in most distribution systems interdependence between these
decisions leads to low-quality solutions if depots are located first, regardless
the future routes. Our goal is to combine for the first time the PVRP and LRP
into the Periodic LRP or PLRP. A metaheuristic is proposed to solve large
size instances of the PLRP. It is based on our Randomized Extended Clarke
and Wright Algorithm (RECWA) for the LRP and it tries to take into consid-
eration several decision levels when making a choice during the construction
of a solution. The method is evaluated on three sets of instances and results
are promising. Solutions are compared to the literature on particular cases
such as one-day horizon (LRP) or one available depot (PVRP).

Key words: Heuristic, Periodic Location-Routing Problem.

1 Introduction

Researches have shown that separation of location and routing deci-
sions often leads to suboptimal solutions [11]. The Location-Routing
Problem (LRP) overcomes this drawback. However, only very recent
papers consider both capacitated routes and depots [13, 2, 8, 7, 9].

Beside the strategic aspect of depot location, a focus on tactical de-
cision such as Vehicle Routing Problems (VRP) leads to consider some
extensions. One of these consists in integrating frequency constraints
on visited customers under a given multiperiod horizon. The resulting
problem is known as periodic VRP or PVRP. The methods used to
solve PVRP are mainly heuristics [4, 12, 3, 6].
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In this paper, the LRP and the PVRP are combined for the first
time into an even more realistic problem: the periodic LRP or PLRP.
It is defined on an horizon H and a complete, weighted and undirected
network G = (V,E,C). V is a set of nodes comprised of a subset I
of m possible depot locations and a subset J = V \I of n customers.
cij is the traveling cost between any two nodes i and j. A capacity Wi

and an opening cost Oi are associated with each depot site i ∈ I. Each
customer j ∈ J has to be served with a given frequency over H, and
Combj is its set of possible combinaisons of serviced days. djlr is the
demand of customer j on the day l of combinaison r ∈ Combj. A set K
of identical vehicles of capacity Q is available each day. A vehicle used
at least once from a depot during H incurs a fixed cost F and it can
perform one single route per day. The following constraints must hold:
i) each customer j must be served exclusively on each day l of exactly
one of the combinaison r ∈ Combj by one vehicle and at the amount
djlr; ii) the number of routes performed by day must not exceed N ; iii)
each route must begin and end at the same depot within the same day
and its total load must not exceed Q; iv) the total load of the routes
assigned to a depot on any day l ∈ H must fit the capacity of that
depot. The objective is to find which subset of depots to open, which
combinaison of visit days to assign to each customers and which routes
to perform, in order to minimize the total cost. The PLRP is NP -hard
since it reduces to the VRP when m = 1 and |H| = 1.

The proposed method to solve it is a metaheuristic that tries to keep
a global vision on the problem by taking into consideration several deci-
sion levels when making a choice during the construction of a solution.
Section 2 describes the framework of the proposed algorithm. The per-
formances of the method are evaluated in Section 3. Some concluding
remarks close the paper.

2 Iterative Metaheuristic

2.1 Depot Location

The location phase of the algorithm begins by considering a fictive day
during which the whole set of customers has to be served. The proposed
aggregation of the data comes from the fact that the same depots has to
be opened all over H. Thus, we should choose the depots in accordance
to the entire set J . A fictive capacity, equal to Wi×|H|, is given to each
depot i ∈ I. The demand of customer j is taken as its total demand
over H divided by its required visit frequency.
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The resulting problem on that fictive day is an LRP solved using
RECWA. This is a generalization of the classical Clarke and Wright
algorithm [5] for the multidepot case in which a set SD of depots is
available. RECWA keeps a global view on the data during the construc-
tion of a solution. It is applied in its diversification mode with the same
parametrization as proposed in [8] except that at the beginning of each
construction of the bunch of flowers, |SD| = 1 (instead of |SD| = 2).
NbDivMax calls to RECWA are executed and the depots appearing in
the best solution then obtained are kept opened during the end of the
global iteration of the metaheuristic.

2.2 Combination Allocation

Once a subset of depots is opened, the aim is to construct a feasible
solution for the PLRP by assigning the customers to a visit combinaison
while taking into account the routing part. We assume that consecutive
customers in a solution of the LRP, solved on the fictive day during
the location phase, have great chance to be successive in the PLRP,
whether one of their combinaisons of visit days allows it. Thus, edges
linking customers, that appear in solutions of the LRP from the location
phase, are recorded in a list L sorted in decreasing frequency order. The
construction of a solution for the PLRP operates by trying to iteratively
insert the first elements of L (with a given probability prob to avoid
premature convergence, and beginning by the most frequently used
edges). Most of the time, when combinaisons are not already assigned
to both customers involved by the edge, several possibilities have to be
evaluated. If feasibility holds, the chosen assignment is the one inserting
the edge in a maximum number of days at minimum cost.

The procedure stops when all the customers have an assigned visit
combinaison or when the whole list L has been explored. If some cus-
tomers are not in the solution, new dedicated routes are opened to serve
them in such a way that the total cost is minimized. A feasible solution
is then available. It is improved by a local search LS dedicated to the
LRP used in [8, 9, 7], applied on each day l ∈ H.

2.3 Routing

At this point, we have a multidepot VRP by day. An intensification on
the routing intends to improve the results from the day combination
assignment. The RECWA is thus run on its intensification mode [8] on
each period of H, followed by LS. The solution is recorded if it improves
the best one found until now. This scheme iterates NbIntMax times.
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2.4 Local Searches for the PLRP

In addition to LS applied on each day, we propose two local searches
having a view over the horizon. The first one intends to find a new
combinaison of visit days to customers that reduces the routing cost.
The move is performed if the best insertion cost of the customers in
the new combinaison is lower than the cost to serve it in the current
one. Of course, the capacity constraints must hold to accept the move.

The second technique tries to reduce the number of vehicles assigned
to a depot over H. Let til be the current number of routes beginning
from depot i on day l and Ti = maxl∈H til. The aim is, for each i ∈ I,
to try to reduce Ti without increasing Tj, ∀j ∈ I\{i}. Let Ril be the
set of routes from depot i on day l, r ∈ Ril, and p and q be respectively
the first and last customers in r. Thus, on each day l such as til = Ti,
we evaluate for each j ∈ I\{i}: gjl = cjp + cqj − cip − cqi providing
that the capacity constraints are respected and the current tjl < Ti−1.
If it is possible to evaluate such a move on every day l with til = Ti,
then the possible saving ∆ is calculated as shown below. The routes
are reassigned if ∆ is positive, and LS is applied.

∆ = F −
∑

l∈H|til=Ti

Gl with Gl = min
j∈I\{i}

gjl

3 Computational Study

3.1 Instances

The proposed method is evaluated on three sets of instances. The first
set contains 30 LRP instances with capacitated routes and depots, that
may be found at [10]. The second set of 30 PLRP instances have been
especially generated for this study. The third set has 28 instances for
the PVRP available at [1].

3.2 Implementation, Parameters and Algorithms Compared

The proposed algorithm is coded in Visual C++ and has been tested
on a Dell PC Optiplex GX260, with a 2.4 GHz Pentium 4, 512 MB of
RAM and Windows XP. The following parameters have been selected
after a preliminary testing phase, to provide the best average solution
values: NbDivMax= 7, NbIntMax= 7, prob = 0.8 and the maximal
number of global iterations NbItMax= m ∗ |H| ∗ 2.
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3.3 Discussion of Results

In Table 1, times T are given in seconds. The Gap is the deviation
in percentage between each method and the best-known results taken
as reference. On PLRP instances, these best-known results have been
obtained by trebling the number of iterations. On PVRP and LRP
instances, they come from the respective websites [1, 10].

The results show that the proposed method deals well with the depot
location as the gaps are small on both LRP and PLRP instances. The
results even improves the ones from [8] (0.73% better on average) with
similar CPU times. Only 2 gaps (10.88% and 17.61%) are far from the
best known solutions on 2 hard LRP instances with n = 100 and m = 5,
and only one gap is high (37.02%) on a PLRP instance with n = 50
and m = 5. This confirm the importance on the choice of depots.

Gaps are often higher on PVRP instances showing how the periodic
aspect is hard to deal with. However, the results are good with an
average at less than 5% on instances until more than 100 customers and
less than 5 periods. Note also that the proposed method is not especially
designed for PVRP problems but for much more combinatorial ones.

CPU times mainly depend on |V | but remain reasonable while tak-
ing decisions from several levels. Indeed, below n = 200, the proposed
method requires less that 2 minutes, on any kind of instances.

Table 1. Results with gap to the best-known results

LRP instances PLRP instances PVRP instances
n/m T Gap n/m/|H | T Gap n/|H | T Gap

20/5 0.19 0.12 20/5/5 0.63 2.04 ≤ 50/≤ 5 1.02 5.62
50/5 2.52 1.21 50/5/5 6.55 4.99 51-100/≤ 5 6.35 4.37

100/5 19.02 1.30 100/5/5 52.45 0.44 51-100/5-8 3.41 5.51
100/10 46.20 7.22 100/10/5 117.72 1.41 > 100/≤ 5 44.16 4.53
200/10 331.79 2.61 200/10/5 950.66 0.44 > 100/6 28.40 9.15

Average 80.10 2.56 226.00 2.06 16.67 5.84

4 Conclusion

In this paper, we propose a metaheuristic to deal for the first time with
the Periodic Location-Routing Problem (PLRP) with both capacitated
depots and vehicles. The method handles several decision levels when
making a choice during the construction of a solution. it is tested on
three sets of instances with up to 200 customers. The results show that
the proposed algorithm is able to find good solutions even on particular
cases such as LRP or PVRP.
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Summary. The capacitated discrete ordered median location model with
binary assignment admit several formulations, some of them based on the
binarization of the continuous models introduced in [2]. In this paper we
consider a new formulation for the binary assignment problem based on a
coverage approach. We derive some basic properties of the model and compare
its performance with respect to previously known formulations.

1 Introduction

In the last years, the family of discrete ordered median location prob-
lems has been introduced. (See e.g. [1, 4] and [5].) Recently, the un-
capacitated models, mentioned in the above references, were extended
to deal with capacities in [2]. However, although the approaches in
that initial paper leads to satisfactory results concerning motivations,
applications and interpretations the solution times of larger problem
instances were somehow poor.

The goal of this paper is to develop a new formulation, which makes
use of the coverage ideas in [3], for the capacitated version of the Dis-
crete Ordered Median Problem with binary assignment and to compare
its performance versus the known formulations for the same problem
in [2].

The rest of the paper is organized as follows. First we introduce
the problem and give the new formulation. In Section 2.1 we recall
the formulations given in [2]. Then, Section 3 is devoted to test the
efficiency of the different approaches by providing extensive numerical
experiments.
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2 The New Formulation and First Properties

In this section, we introduce the new formulation that was first pre-
sented at CORAL meeting in [7].

Let A denote the given set of M sites and identify these with the
integers 1, . . . ,M , i.e., A = {1, . . . ,M}. We assume that the set of
candidate sites for new facilities is identical to the set of clients. Let
C = (cij)i,j=1,...,M be the given non-negative M×M cost matrix, where
cij denotes the cost of satisfying the demand of client i from a facility
located at site j. Let N ≤M be the number of facilities to be located.
Each client i has a demand ai that must be served and each server j has
an upper bound bj on the capacity that it can fulfill. We assume further
that the demand of each client must be served by a unique server.

A solution to the location problem is given by a set of N sites; we
use X ⊆ A with |X| = N to denote a solution. Then, the problem
consists of finding the set of sites X with |X| = N , which can supply
the overall demand at a minimum cost with respect to the ordered
median objective function. (See [5], [1], [3] or [2], for details.)

We first define G as the number of different non–zero elements of
the cost matrix C. Hence, we can order the different values of C in
non–decreasing sequence: c(0) := 0 < c(1) < c(2) < · · · < c(G) :=

max
1≤i,j≤M

{cij}.
Given a feasible solution, we can use this ordering to perform the

sorting process of the allocation costs. This can be done by the following
variables tjk := 1 if the M − j +1–th smallest allocation cost is at least
c(k), and 0 otherwise (j = 1, . . . ,M and l = 1, . . . , G).

With respect to this definition the M−j+1–th smallest cost element
is equal to c(k) if and only if tjk = 1 and tj,k+1 = 0. Therefore, we can
reformulate the objective function of the CDOMP (i.e. the ordered

median function), using the variables tjk, as
M∑

j=1

G∑
k=1

λM−j+1 · (c(k) −

c(k−1)) · tjk.
We need to impose some sorting constraints on the tjk–variables:

tj+1k ≤ tjk j = 1, . . . ,M − 1; k = 1, . . . , G . Nonetheless, we need
to guarantee that exactly N plants will be opened among the M pos-
sibilities. This can be ensured by the variables yj := 1 if the server at
j is open, and 0 otherwise; ∀j = 1, . . . ,M .

Then, we ensure that demand is covered and capacity is satisfied.
Thus, we introduce the variables xij := 1 if the client i is allocated
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to plant j, and 0 otherwise; and the corresponding constraints xij ≤

yj ∀i = 1, . . . ,M, j = 1, . . . ,M ,
M∑

j=1
yj = N .

We assume that allocation is binary. Thus,
∑M

j=1 xij = 1, i =
1, . . . ,M. All the demands and capacities must be satisfied:

∑M
i=1 aixij ≤

bjyj, j = 1, . . . ,M.

Next, the relationship that links the variables t and x is:
∑M

j=1 tjk =∑M
i=1

∑M
j=1

cij≥c(k)

xij. They mean that the number of allocations with a

cost at least c(k) must be equal to the number of plants that support
demand from facilites at a cost greater than or equal to c(k).

Summing up all these constraints and the objective function, the
CDOMP can be formulated as

Min
M∑

j=1

G∑
k=1

λM−j+1 ·(c(k) − c(k−1)) · tjk (1)

s.t.
∑M

j=1 xij = 1, i = 1, . . . ,M (2)∑M
i=1 aixij ≤ bjyj, j = 1, . . . ,M, (3)

xij ≤ yj ∀i, j (4)
M∑

j=1
yj = N (5)

M∑
j=1

tjk =
M∑
i=1

∑
j=1...,M
cij≥c(k)

xij l = 1, . . . , G (6)

tj+1k ≤ tjk j = 1, . . . ,M − 1; k = 1, . . . , G(7)
tjk ∈ {0, 1} j = 1, . . . ,M ; k = 1, . . . , G (8)
xij ∈ {0, 1} i = 1, . . . ,M ; j = 1, . . . ,M (9)
yj ∈ {0, 1} j = 1, . . . ,M . (10)

Since the proposed formulation contains O(M2) binary variables
and O(M2) constraints, fast solution times for larger problem instances,
using standard software–tools, are very unlikely .

First of all, (CDOMP ) admits a formulation with yj ∈ [0, 1] and for
each optimal solution of the relaxed problem one can obtain an optimal
solution of the original problem.

The above formulation admits some valid inequalities that, at times,
reinforce the linear relaxation improving the lower bound and reducing
the computation time to solve the problem.
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The first ones are the natural inequalities tjk ≥ tjk+1, j =
1, . . . ,M, k = 1, . . . , G − 1. They come from the fact that the rows
of the t-matrix are sorted. We have observed in our experiments that
these constraints are not always satisfied by the optimal solution of the
linear relaxation. This family of inequalities were introduced in [3].

Our next set of inequalities state that columns of the x-matrix
contain at most as many ones as their corresponding columns in
the t-matrix. Then, if there are r ones in any places of a x-column,
since the columns in the t-matrix are ordered in non-decreasing se-
quence, we get the following:

∑
i∈S

∑M
k=1

cik≥c(j)

xik ≤
∑r

i=1 tij, ∀ S ⊆

{1, . . . ,M}, |S| = r, r = 1, . . . ,M. Note that there are an exponential
number of inequalities in this family.

Another set of valid inequalities are those stating that either client
i is allocated at a cost at least c(k) or there must exist an open plant j
such that the allocation cost of client i is smaller than c(k). This results
in:
∑M

j=1
cij≥c(k)

xij +
∑M

j=1
cij<c(k)

yj ≥ 1, i = 1, . . . ,M.

2.1 Alternative Formulations

One can adapt to the binary assignment case two of the formulations
provided in [2]. The interested reader is referred to [2] for further details.

The first formulation is based on 3-indexes variables and therefore
we will refer to it by 3-indexes. The last formulation is based on the
approach by [6] and it is only valid for those cases where the λ-vector
is in non-decreasing sequence. We will refer to it by O-T.

3 Computational Results

In order to test the performance of the three considered formula-
tions, we propose an experimental design that consists of the following
factors: 1) Size of the problem: M. We consider three different lev-
els of M = 10, 20, 30. 2) Number of suppliers: N with two levels
for each choice of M : N = �M/5� + 1, �M/2�. 3) Type of prob-
lem: Each λ-vector is associated with a different objective function.
Its levels are designed depending on the value of M as follows: a)
λ-vector of the N -median problem, i.e. λ = (1, . . . , 1) ∈ R

M ; b) λ-
vector of the N -center problem, i.e. λ = (0, . . . , 0, 1) ∈ R

M ; c) λ-
vector of the �M/4�-centrum problems; and d) λ-vector of the (k1, k2)-
trimmed mean problem, i.e. λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ R

M

where k1 = �0.2M�, k2 = �0.2M�. 4) Demand of facilities: Integer
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and uniform in [10, 20]. 5) Capacity of suppliers: Integer uniformly dis-

tributed in [1.1
∑M

i=1 ai

N , 1.4
∑M

i=1 ai

N ]. 6) Transportation cost: Free self ser-
vice and integer costs. The values cij , i 	= j, are drawn uniformly in
[0, 200].

We solve 5 instances for each possible combination of levels and
we report the average and maximum running time, the gap at the
root node and number of nodes in the branch and bound tree for each
formulation. All computational studies have been performed on a PC
with a Pentium IV processor with 2.0 GHz and 1 RAM GB. To solve
the different instances of the problems we have used XPRESS-IVE
solver version 1.17.04, with a code implemented in XPRESS-MOSEL
version 1.6.2.

Table 1. Numerical comparison of the three formulations for the median and
center problems

MEDIAN CENTER
M 10 20 30 10 20 30
N 3 5 5 10 7 15 3 5 5 10 7 15

A − CP U 1.75 4.93 101.26 10881∗
M − CP U 3 6.75 176.3 54110

3
-i
n
d
e
x
e
s

A − Nod 158 672 127201 9727686
M − Nod 263 1181 281546 48200555

A − GAP 3.27 9.71 6.11 43.75 6.20 34.07 199.10 310.63 204.26 331.03 216.39 287.84
M − GAP 19.27 19.15 9.08 70.73 7.78 42.45 287.30 367.77 257.47 580.85 236.02 481.39
A − CP U 0.27 7.25 16.58 1838.79 15.26 74.9 47.89 153.09 187.33 1143.51 857.61 3055.98
M − CP U 0.84 18.47 27.21 114.98 96.27 3645.74 36.88 251.94 359.14 3794.84 1444.89 3639.27

C
o
v
e
ra

g
e

A − Nod 13 12.6 373 1398 825 6320 56 169 889 15084 1677 2434
M − Nod 65 47 841 3461 1661 12720 525 701 1827 45664 3189 2889

A − CP U 0.11 0.12 1.49 3.03 32.57 325.18 0.19 0.14 15.69 9.76 539.95 821.5
M − CP U 0,16 0.13 2.1 4.43 39.49 1160.5 0.23 0.18 29.3 20.07 1587.5 3839.2∗

O
-T A − Nod 18 22 711 2099 11266 120164 73 43 13072 6394 285710 364258∗

M − Nod 45 31 1145 23231 13631 407897 89 83 30337 14111 909365 1743737

Table 1 is devoted to the results for the median and center prob-
lems and 2 to the k-centrum and trimmed-mean problems. The columns
show the results for the different sizes of M and N . Each table has three
blocks of rows. The first block refers to the formulation 3-indexes, the
second block to the new formulation based on covering (1)-(6) (cover-
age) and the last one to the model O-T.

Within each block of rows we report on the GAP at the root node,
CPU -time to solve the integer problems and number of NODES in the
branch-and-bound tree (average and maximum). Empty blocks mean
that the solver was unable to find an optimal solution of the model;
asterisks mean that some of the problems were not solved to optimality
within the 2 hours time limit.

Next, we analyze the results of the experiments. We first observe
that formulations 3-indexes and O-T always provide a zero value to
the linear relaxation of the problem. Thus, we do not report on their
GAP . Quality of the lower bounds provided by coverage depend on the
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Table 2. Numerical comparison of the three formulations for the k-centrum
and trimmed-mean problems

k-CENTRUM TRIMMED-MEAN
M 10 20 30 10 20 30
N 3 5 5 10 7 15 3 5 5 10 7 15

A − CPU 8.25 15.17 13.51 7.98
M − CP U 16.73 37.55 25.5 13.12
A − Nod 1193.8 3419 1463 1227

3
-i
n
d
e
x
e
s

M − Nod 3197 7967 2787 2139

A − GAP 30.84 66.42 39.28 59.29 38.89 64.73 36.93 55.02 35.20 39.47 35.76 44.78
M − GAP 38.51 109.72 52.57 81.36 44.11 94.44 48.51 95.26 37.73 50.08 40.48 63.93
A − CPU 18.23 97.83 117.89 213.93 1571.93 1850.49 7.72 29.32 83.19 28.91 306.58 63.84
M − CP U 41.12 245.95 345.86 521.56 2653.49 3433.25 11.26 70.25 106.68 39.93 557.88 143.96

C
o
v
e
ra

g
e

A − Nod 189 273 523 1418 3684 22162 34 55 238 63 469 244
M − Nod 267 791 1723 3681 6649 79621 91 172 341 93 1003 422

A − CPU 0.14 0.16 2.20 2.57 105.85 318.47
M − CP U 0.22 0.25 3.84 5.4 272.56 537.48

O
-T A − Nod 50 96 1027 1517 30135 109642

M − Nod 85 251 2043 3297 80267 177577

type of problem being rather good for median problems (least than 7%
in average), reasonable for k-centrum and trimmed-mean (least than
50%) and poor for the center (above 100%).

The computational experiments also show that 3-indexes formula-
tion is far behind the other two formulations in all respects. Overall,
model O-T outperforms the others, whenever it is applicable. Neverthe-
less, when the size of the problem increases coverage and O-T tend to
perform similarly. This can be observed for the problems with M = 30
and it was clearer for larger instances. In addition, one can strengthen
formulation coverage by using the valid inequalities in Section 2.
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Special economic zones (SEZ) are aimed at creating a favorable environ-
ment (in terms of taxation, custom rights and administrative burden)
for businesses. Particularly, the SEZ are dedicated to the development
of certain types of industries or to the revitalization of several eco-
nomically depressed areas. The institutional role of SEZ in economic
development is largely referenced in the literature (see for example [3]).
Tax exemptions are one of the most used stimuli in order to attract in-
vestment in SEZ.

In this paper we build a model of investment waiting which describes
the behavior of an investor who wishes to invest in a project of creation
of a new enterprise in a SEZ. The model takes into account the uncer-
tainty of the cash flows from the future enterprise. Those cash flows are
generated by the stochastic dynamics of market prices on goods pro-
duced and resources consumed. In our model we will take into account
the following tax exemptions, which are common in SEZ of numerous
countries: tax holidays on enterprises property tax, accelerated depre-
ciation, reduced rates of corporate profit tax and of unified social tax.
The optimal rule of choice of investment timing and its analytical de-
pendence on tax exemptions introduced below and other parameters
of the tax system, are obtained. Based upon the example of Russian
SEZ, we conduct a modelling analysis of the potential impact of the
introduction of those tax exemptions on tax revenues in regional and
federal budgets, from newly created enterprises.
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1 Investment Waiting Model in Special Economic Zones

As object of investment, we will consider a project of creating a new en-
terprise in a SEZ. Investment necessary to the realization of the project
is supposed to be instantaneous and irreversible. We also assume that,
at any time, the investor can either accept the project and start with
the investment, or delay the decision until he obtains new information
about its environment (prices, demand, etc.). The starting point of this
model is the real option theory (McDonald-Siegel model, see [4],[2]).

Let us suppose that the investment in the project starts at moment
τ , the cost of necessary investment (without VAT) is Iτ .

At time τ + t, t ≥ 0 the before-tax profit of the firm is equal to

(1 + γva)πτ
τ+t − Sτ

τ+t, (1)

where πτ
τ+t is value added (the difference between income and material

costs without VAT), γva is the VAT rate, and Sτ
τ+t is payroll cost.

Taxes, which are paid by the firm, consist of the following:
• value added tax γvaπ

τ
τ+t;

• payroll tax (called in Russia “unified social tax”) γsS
τ
τ+t where γs

is the relevant tax rate;
• property (or asset) tax P τ

τ+t whose base is the residual cost of assets;
• corporate profit tax (with the rate γi) which base is profit (1) minus

VAT, depreciation charges Dτ
τ+t and other costs, including both

payroll tax and asset tax.3

We divide all assets into two aggregated parts: one of them (“ac-
tive” part) refers to machinery, tools, equipment etc.(its share in the
balance costs of all assets will be denoted as ψ, 0 ≤ ψ ≤ 1); and the
other (“inactive” part) refers to buildings and structures, whose useful
lifetime is long enough.

Depreciation charges at time τ + t for the project started at τ will
be Dτ

τ+t=ψIτat+(1−ψ)Iτ bt, t ≥ 0, where (at, t ≥ 0), (bt, t ≥ 0) are the
depreciation “densities” of of active and inactive parts of assets such
that at, bt ≥ 0,

∫∞
0 at dt =

∫∞
0 bt dt = 1.

Since the economic environment can be subject to the influence of
various random factors (uncertainty in market prices, demand, etc.), we
will consider that the cost of required investment (It, t≥0) is a random
process, and the value added (πτ

τ+t, t≥0) is modeled by a family (in
3 Actually, the corporate income tax equals zero if its tax base (1) is negative.

Nevertheless, we shall write the term (1) even if it is negative. This can be viewed
as an approximation of the principle of losses carry forward (like deductions from
tax base in the future)
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τ≥0) of random processes, given on some probability space (Ω,F,P)
with the flow of σ-fields F=(Ft, t≥0) (the observable information about
the system), and random processes are assumed to be F-adapted.

In SEZ, firms can be subject to tax on property tax, and let ν be the
length of the period of time during which property tax is not levied.

The expected present value of the firm can be expressed as

Vτ =E

⎛⎝ ν∫
0

[(1−γi)(Zτ
τ+t+P τ

τ+t)+Dτ
τ+t]e

−ρtdt

+

∞∫
ν

[(1−γi)Z
τ
τ+t+Dτ

τ+t]e
−ρtdt

∣∣∣∣∣∣ Fτ

⎞⎠ , (2)

where Zτ
τ+t=πτ

τ+t−(1+γs)Sτ
τ+t−P τ

τ+t−Dτ
τ+t is the tax base for corpo-

rate profit tax, and ρ is the discount rate.

Optimal timing problem

The behavior of the investor is supposed to be rational in the sense
that he chooses the time for investment τ (investment rule), in order
to maximize his expected net present value (NPV):

E (Vτ − Iτ ) e−ρτ → max
τ

, (3)

where the maximum is considered over all Markov times τ .
Tax payments from the firm are splitted each year between both

regional and federal budgetary levels. Hence, federal budget receives
VAT, a part of the UST (at the rate γf

s ), and the federal part of the
corporate profit tax (at rate γf

i out of γi). Regional budget gets en-
terprise property tax, personal income tax and the regional part of
corporate profit tax (at the rate γr

i =γi−γf
i ). Moreover, as far as tax

entries into the budget are concerned, we will take into account the
personal income tax γpiS

τ
τ+t (where γpi is the relevant tax rate). Simul-

taneously one can calculate (using formula (2)), the present tax revenue
into federal T f

τ and regional T r
τ budgets from the firm after investment.

Main assumptions

The amount of required investment It is described by geometric Brow-

nian motion It=I0+
∫ t

0
Is(α1ds+σ1dw

1
s), t≥0, where (w1

t , t≥0) is a

Wiener process, α1 and σ1 are real numbers, and I0 is a given initial
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state of the process. The dynamics of value added πτ
τ+t, t ≥ 0 is specified

by a family of stochastic equations πτ
τ+t=πτ+

∫ t

τ
πτ

s (α2ds+σ2dw
2
s), t ≥

0, where πτ is Fτ -measurable random variable, (w2
t , t≥0) is a Wiener

process, α2 and σ2 are real numbers. The pair (w1
t , w

2
t ) is two-dimensional

Wiener process with correlation r. We assume that at any moment τ ,
observing the current prices on both input and output production one
can calculate πτ = πτ

τ , which is the value added at the “initial moment”
of creation of firm, and, hence, can evaluate the future profits from the
project before the actual creation of the firm. We suppose that the
process πτ is a geometric Brownian motion with parameters (α2, σ2).

The payroll fund Sτ
τ+t is supposed to be proportional to the value

added , i.e. Sτ
τ+t = µπτ

τ+t, where µ is a given constant (“labor inten-
sity”, wage per unit of value added). Such a hypothesis is in accord with
the principle of dependence between wages and production activity.

2 Optimal Investment Time and Present Tax Revenues

The optimal timing problem (3) faced by the investor is an optimal
stopping problem for the two-dimensional stochastic process (πt, It)
with the reward function defined by formulas (3), (2).

Let β be a positive root of the quadratic equation
1
2 σ̃

2β(β−1)+(α2−α1)β−(ρ−α1)=0, where σ̃2=σ2
1−2rσ1σ2+σ2

2 is “to-
tal” volatility of the investment project.

The following theorem specifies an optimal rule for investing.

Theorem 1. Let the amount of required investment It and value added
πt be described by geometric Brownian motions with parameters (α1, σ1)
and (α2, σ2), respectively. Suppose that σ̃>0, α2−1

2σ
2
2 ≥ α1−1

2σ
2
1, and

ρ>max(α1, α2). Then the optimal investment time for the problem (3)
is τ∗=min{t ≥ 0 : πt≥p∗It}, and the threshold p∗ is defined as

p∗ =
[
1−γiK+

(1− γi)γp

ρ
Hν

]
· ρ− α2

[1−(1+γs)µ](1−γi)
· β

β−1
,

where K = ψ

∫ ∞

0
ase

−ρsds + (1−ψ)
∫ ∞

0
bse

−ρsds,

Hν = ψ

∫ ∞

ν
(e−ρt−e−ρs)ase

−ρsds + (1−ψ)
∫ ∞

ν
(e−ρt−e−ρs)bse

−ρsds.

Knowing the optimal investment time one can find the expected
present tax revenues into the budgets at different levels under the op-
timal behavior of the investor.
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Theorem 2. Under the above conditions the following formulas hold:

E(Vτ∗ − Iτ∗)e−ρτ∗
= I0 [π0/(I0p

∗)]β [1−γiK+(1− γi)γpHν/ρ] /(β − 1);

ET f
τ∗e−ρτ∗

= I0 [π0/(I0p
∗)]β
[
γfp∗ − γf

i (K + γpHν/ρ)
]
;

ET r
τ∗e−ρτ∗

= I0 [π0/(I0p
∗)]β
[
γrp∗ − γf

i K + (1− γr
i )γpHν/ρ

]
,

where p∗ is defined in Theorem 1, γr={γpiµ+(1−(1+γs)µ)γr
i }/(ρ−α2)

and γf={γva+γf
s µ+[1−(1+γs)µ]γf

i }/(ρ−α2).

These formulas can be derived similarly to those in [1] (for simpler
model).

3 Budgetary Effects of the Creation of New Enterprises:
The Example of Russian SEZ

The main results of this paper are related to the study of the depen-
dence of present tax revenues in federal and regional budgets on the
duration of tax holidays on property tax. Let us emphasize upon the
twofold influence of tax exemptions on budgets. On the one hand, tax
entries in budgets are reduced. On the other hand, investment occurs
earlier, and can lead to an increase of present amount of taxes levied.

The above presented formulas have been applied to the analysis of
currently existing SEZ in Russia.

Starting from 2006, it is possible to create three types of SEZ on
the Russian territory: industrial (ISEZ) and technological, or technical-
innovation, (TSEZ) and recreational (RSEZ). Zone residents are offered
a wide range of benefits (including administrative, customs and tax
benefits). In particular, enterprises in SEZ have the 5-years exemption
from property and land taxes. Beside that a reduced rate of unified
social tax has been introduced in TSEZ (14% instead of 26%). In ISEZ,
an increase of the depreciation coefficient is allowed (not exceeding
twice the standard rate), and the 30% limit of losses carry forward
on future tax periods is cancelled. Local authorities can also cut the
corporate profit tax rate to 20% (exerting their right to decrease this
rate by up to 4%).

It is shown that the revenues of the federal budget from the created
enterprise raise with an increase of tax holidays for both types of zones.
ISEZ always provide better revenues in federal budget (as compared
with the standard, outside SEZ, taxation system). This increase can
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reach 10-15%, but decreases with a rise of volatility of the project. For
enterprises located in TSEZ, tax entries in federal budget can be lower
than under the standard tax regime. Such situation arises for projects
with high volatility and “moderate” labour intensity (under existence
of 5-years property tax holidays). However the decrease of fiscal entries
is very low and never exceeds 1-2%.

The dependence of tax revenues in regional budget on the length
of tax holidays on property tax is more complex, labour intensity µ
(wage per unit of value added) plays a substantial role. There are two
threshold values µ1 and µ2 (which depend on parameters of the project
and type of SEZ) which characterize three types of dependencies of tax
revenues in regional budget on tax holidays. When µ<µ1 the present
tax revenues decrease monotonically with the increase of tax holidays;
and when µ>µ2 – increase monotonically with the increase of tax hol-
idays. When µ1<µ≤µ2, we observe a “Laffer effect”: present revenues
in regional budget increase initially with the rise of tax holidays, then
decrease. However, under the 5-years property tax holidays in SEZ,
those tax entries can either be higher or lower than under the stan-
dard tax regime. This depends on parameters of the project, among
which volatility and technical performance. As calculation shown, the
increase of tax revenues in regional budget as compared to the standard
tax regime, is generally observed when the values of labour intensity
are relatively high and the corresponding “threshold value” is lower for
TSEZ than for ISEZ.

Thus, the system of tax exemptions for SEZ currently applied in
Russia could be efficient (as far as tax entries in federal and regional
budgets are considered) only for investment projects with relatively
high level of labour intensity and moderate volatility.

This work is supported by RFH (project 07–02–00166).
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Summary. We present a game in which, if one of the players improves his
payoff upon obtaining more information, the other player’s payoff worsens in
such a way that there is a net social loss due to having more information.
How can we ensure this does not occur? The results of this paper are (1) the
mathematical expression of the (social) value of information in a quadratic
non-cooperative game, and (2) the conditions that ensure the social value of
information is non-negative.

1 Introduction

This article poses the question of the amount a decision-maker is will-
ing to pay to increase the quantity of available information and thus
improve his decision. The answer will depend on which of two basic
contexts are under consideration: a decision-maker who has no inter-
action with other players, or one who does have strategic interaction
(typically a non-cooperative game). In general terms, the value of infor-
mation is always non-negative for a decision-maker without interaction,
but in a game situation it can be negative. This article presents the non-
negativity conditions for the value of information in the case of a game
with quadratic cost functions.

There are many examples in the literature of non-cooperative games
in which players prefer not to have additional information in order
to improve their payoff (see for example [7], [10], [4]) for the general
Bayesian games, and [2], [8] for a non-cooperative transportation net-
work). We present a game in which, if one of the players improves
his payoff upon obtaining more information, the other player’s payoff
worsens in such a way that there is a net social loss due to having
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more information. How can we ensure this does not occur? What is the
expression of the information value?

2 An Example of Negative Information Value

Consider two players who are attempting to approximate a common
objective1 denoted ω. The loss function of Player t (t ∈ {1, 2}) is given
by the distance between this objective and xt, his best approximation.
However, each player’s approximation can be affected by the action
mtrxr of the other player. The effect mtrxr of Player r on Player t may
be interpreted as the action taken by Player r to disturb Player t’s
approximation (i.e. xr). If ω is a random variable, the loss function of
Player t is expressed as

ft(xt, xr) :=
1
2
E(xt + mtrxr − ω)2 with r 	= t.

A large class of games of this type may be found in the literature.
For example, the equilibrium solution to the classic Cournot duopoly
(Fudenberg and Tirole, 1991, [3], p. 215ss.) can be restated as an ap-
proximation game in which each player must approximate the demand
of a single homogeneous good. In Hinich and Enelow’s spatial voting
theory (1984, [5]) the authors model voters’ objective function as an ap-
proximation of their ideal policy. Pursuit-evasion (Isaacs, [6], p. 67ss.)
can also be modeled as an approximation game of this type.

To illustrate the conditions that ensure a non-negative information
value, we consider three cases of static Bayesian games. In the first case
(Case A), both players only have common information on ω. In Case
B, one of the players has an additional observation ξ containing infor-
mation on ω. Finally, in Case C both players have the same additional
observation. Case B is thus an asymmetric information Bayesian game,
whereas cases A and C are Bayesian games with symmetric informa-
tion.

To determine the three games’ respective equilibria we begin by
specifying more precisely certain items introduced above. The variable
ω is a real random variable that has an a priori normal density function
with mean ω and standard deviation σω. This information is common
to both players in all cases. If xt is the best approximation of Player
t, then, since each player knows that the opposing player (r) will play
1 For simplicity we temporarily assume that the players have common objectives;

later, we will solve the problem assuming that the objectives are not necessarily
the same.
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xr, the equilibrium solution is given by the system of equations x1 =
E(ω−x2) and x2 = E(ω−x1). Solving this system yields the following
loss functions2

f1(x1, x2) = f2(x1, x2) =
1
2
σ2

ω.

In Case B, Player 1 observes the real random variable ξ. We assume
that the marginal density of observation ξ is also normal, with mean
ω and standard deviation σξ. Both players in this instance know that
Player 1 has the additional observation ξ. The equilibrium solution is
then given by the system of equations x1 = E(ω − x2|ξ) and x2 =
E(ω − x1), whose result is

f1(x1, x2) =
1
2

σ2
ω

σ2
ω + σ2

ξ

σ2
ξ and

f2(x1, x2) =
1
2

σ2
ω

σ2
ω + σ2

ξ

(σ2
ξ + σ2

ω(m21 − 1)2).

Case C, in which both players observe ξ, is solved in analogous
fashion with the following result

f1(x1, x2) = f2(x1, x2) =
1
2

σ2
ω

σ2
ω + σ2

ξ

σ2
ξ .

Having set out the foregoing results we now propose the following
game. Assume that each player has the option of using the additional
observation ξ and knows whether or not the opposing player is using
the same information. As before, both players play simultaneously. The
gain from using the information obviously depends on whether or not
the other player is also using it. Thus, Player 1 can opt to not use the
information (Decision 1) or to use it (Decision 2), and Player 2 must
also decide whether to not use it (Decision I) or to use it (Decision II).
The gain or loss to Player t from using the information is obtained as
the difference between the respective values of the cost function for the
equilibrium strategies with and without the additional information. If,
for example3, m12 = m21 =

√
3 + 1 and we define the positive number

a :=
1
2
σ2

ω

σ2
ω

σ2
ω + σ2

ξ

,

then the gain matrix of the game is as shown in Table 1.
2 In order to calculate this results, certain algebraic manipulations were performed

using the software program Maple V. The Nash equilibrium solutions (xt) are not
presented here as they do not contribute significantly to our analysis.

3 This value of m12 does not limit the generality of the analysis.
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Table 1. Information game

I II
1 (0, 0) (−2a, a)
2 (a,−2a) (a, a)

Observe that this game has a pure strategy Nash equilibrium that
consists in both players preferring to use the additional information. In
other words, the Nash equilibrium is (2, II). Recall that this result is
obtained if m12 = m21 =

√
3 + 1 with any value of the mean ω.

In this work we are interested in the problem represented in Table
1. Assume, then, that Player 2 cannot use the available information or
that the observation is too expensive for him to obtain it. In this situa-
tion, Player 1 will use the available information to achieve a decrease a
in his costs while bringing about an increase 2a in Player 2’s costs. In
other words, while Player 1 gains unilaterally, Player 2 loses twice what
Player 1 gains. But of particular significance is that Player 1’s unilat-
eral decision has a social cost equal to a. How can we ensure that this
does not occur? What conditions must be imposed on the information
available to the players and/or the interaction between them to ensure
the social benefits of the information are non-negative?

3 The Generalized Quadratic Stochastic Game

In a more general context, let us define following information struc-
tures. Let (Ω,B,P) be the information structure of the game. It is a
probability space defined by the set Ω, a σ-algebra B defined on Ω and
the probability measure P. The available information structure to each
player can be modeled as (Ω, C,P), where C is a sub-σ-algebra of B (i.e.
C ⊂ B). For example, the sub-σ-algebra corresponding to both players
in Case A of the previous example is B(�) ⊗ {∅,�}, where B(�) are
the Borel subset of �. In Cases B and C, the sub-σ-algebra of players
that have the information ξ is B, i.e. they have all the information of
the game.

With the above definitions, we define the event space as V :=
L2(Ω,B,P), that is, the set of all random variable with finite variance.
This space, endowed with a scalar product 〈v,w〉 := E(vw) for all
v,w ∈ V , is a Hilbert space, and | · | := 〈·, ·〉1/2 is a norm on V . It is
known, that the set L2(Ω, C,P), for any C ⊂ B, is a closed subspace
of V . With the help of this abstraction level, it is easier to obtain the
main results of this paper.
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The generalized quadratic bayesian game is defined as follows: There
are two players, each of whom chooses a decision from his respective
closed subspaces E1 ⊂ V and E2 ⊂ V . The cost function for each player
t is

ft(x1, x2) :=
1
2
|xt + Mtrxr − ut|2 with r 	= t,

where Mrt is a bounded linear operator from V to V (we write Mrt ∈
L(V )) for {r, t} ∈ {1, 2}. The problem (Q2) is then expressed as

(Q2) Find x1 ∈ E1 and x2 ∈ E2, such that

f1(x1, x2) = min {f1(x1, x2) : x1 ∈ E1}
f2(x1, x2) = min {f2(x1, x2) : x2 ∈ E2}

Before continuing, we require certain definitions given that we are
working in V × V space. Let M be defined as {Mv}t := vt +Mtrvr for
every v ∈ V × V and v = {vt, vr}. Assume that M is an isomorphism
over4 V . We also define ME as {PEM}t = vt + PEtMtrvr, where PE is
the orthogonal projector onto the subspace E1×E2 given by {PEv}t =
vt + PEtvr with r 	= t. The problem (Q2) has a unique solution and a
proof is found in Aubin (1979, [1]), while Laengle (2000, [9]) gives the
solution for the restricted case on closed subspaces.

Lemma 1 (Nash equilibrium). The problem (Q2) has a unique so-
lution. Also, the equilibrium solution is

x = M−1
E PEu.

4 Non-negativity Conditions of Information Value

We now define the information value for the problem (Q2). Let F1, F2

be two closed subspaces of V such that E1 ⊂ F1 and E2 ⊂ F2. Assume
also that y1, y2 are the Nash equilibrium solutions in the subsets F1, F2.
We define the information value of the problem Q2 of F with
respect to E as

I2(E,F ) := f1(x1, x2) + f2(x1, x2)︸ ︷︷ ︸
Solution in E

− (f1(y1, y2) + f2(y1, y2))︸ ︷︷ ︸
Solution in F

.

4 It can be shown that this condition is equivalent to operator M being bounded
below, that is, 〈Mv, v〉 ≥ |v|2 for every v ∈ V .
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In what follows, we prove that the condition which must be imposed
on the interaction operator M to ensure the value of information for the
game is non-negative is that the subspaces E and F must be invariant
under the operator M , that is, M(E) ⊂ E and M(F ) ⊂ F . This
invariance condition may relate to the information symmetry of the
interactions if the operator m is a constant multiplier: If all players’
strategies are observable by each player, the game’s information value
is non-negative.

The following theorem demonstrates that the non-negativity condi-
tion of the value of information is that the observation subspaces E and
F are invariant under operator M . The proof of this theorem requires
certain intermediate results found in [9].

Theorem 1 (Non-negativity of I2, [9]). If the interaction operator
M is an isomorphism and E,F are invariant subspaces under M , then
the game’s information value is non-negative, that is, I2(E,F ) ≥ 0.
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Summary. The probability that an individual is decisive in an election is an
important criterion for the evaluation of voting rules. It depends on factors
such as the number and the behaviour of the other voters, the available alter-
natives and, of course, also on the voting rule itself. Classical power indices
like the Banzhaf- or the Shapley-Shubik-Index are only applicable in special
cases. In this paper, an approach is proposed that can be viewed as a nat-
ural extension of the Banzhaf-Index for more than two alternatives and for
different stochastic assumptions.

The approach is applied to plurality voting with two and more alterna-
tives and computed for variations of the number of voters and alternatives.
For three alternatives the pivotality is also computed for the Borda-Rule. The
comparison of the computations for three alternatives shows that the proba-
bility of being decisive under the Borda-Rule is uniformly larger than under
plurality voting.

1 Introduction

The influence of a participant in a decision or voting procedure is an
important criterion for many aspects regarding the evaluation of voting
rules: On the one hand, a voter can use his influence to manipulate the
result of an election, i.e. she can give a vote that does not correspond
to her true preferences over the alternatives. The well-known Gibbard-
Satthernwaite Theorem states that every social choice function over
three or more alternatives can be manipulated by misrepresentation
of preferences. An important question is which voting rules have a
high chance and which a low chance of being susceptible to strategic
manipulation.

On the other hand in democratic decision procedures like parliament
elections the participation of many voters is desired, and therefore the
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chance that one’s vote makes a difference should be high. There is
the well known problem of lack of incentive for voters to participate
in (large) elections when the probability that they are decisive is low.
Also, in decision procedures like committees the probability that a par-
ticipant has influence on the outcome should be high, in order to induce
committee members to carefully consider their decisions.

One way to measure influence is via so-called power indices like the
Banzhaf- and the Shapley-Shubik-Index, originally used in cooperative
game theory. In fact, these indices are only applicable in special situa-
tions with two alternatives and under specific probabilistic assumptions
about the behaviour of voters. For example, the probabilistic assump-
tion of the Banzhaf-Index is that voters act independently and vote
with 0.5 for the first and 0.5 for the second alternative (see [5]).

In this paper we propose a general approach to measure the influ-
ence of an individual in a voting situation called pivotality. By piv-
otality we mean the probability that one’s vote can change the winner
of an election, i.e. that one is a pivotal figure in the voting situation.
Manipulability is a special case: a voting rule is said to be manipulable,
if by misrepresenting her preferences a voter can change the result of
the election to her own benefit.

Pivotality depends on four factors: the number n of voters and the
number k of alternatives, the behaviour of the voters (modelled by a
discrete probability distribution P over the possible votes) and finally
the voting rule itself (denoted by f). Furthermore we assume in what
follows that voters act independently.

2 The Model

Let X be a finite set of alternatives (e.g. candidates, policies) and
|X| = k. Formally, a voting rule is a social choice function f : V → X
which maps a vector v = (�1, . . . ,�n) of the votes of n individuals to
a chosen alternative (”the winner”) r ∈ X. Each vote is a preference
ordering (i.e. a strict linear ordering) of the k alternatives. Note that
with k alternatives there are m = k! different votes.

We will only consider voting rules that satisfy anonymity, i.e. we
assume f(v) = f(σ(v)) for all permutations σ of the votes. Thus, the
relevant information for determining the result of an election is the
anonymous profile, i.e. the frequency distribution of the different votes,
which will be denoted by a = (a1, . . . , am), where ai is the frequency
of votes of the i-th type, where votes (“types”) are ordered in some
way. The behaviour of a voter is modelled by a discrete probability
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distribution P = (p1, . . . , pm) over the possible votes. The probability
to observe a particular anonymous profile follows a multinomial distri-
bution with parameters n and P :

p(a = (a1, a2, . . . , am)) =
(

n

a1, a2, . . . , am

)
pa1
1 pa2

2 . . . pam
m (1)

To calculate the pivotality of a voting rule in dependence of n, k
and P we have to sum the probability of all anonymous profiles at
which an additional voter can change the outcome of the voting rule.
We denote the set of all anonymous profiles by A and the subset of
the pivotal profiles by Ap. This set, in turn, consists of two subsets
Ap

1 and Ap
2 corresponding to two different ways to be pivotal: first, one

can influence the election in a way that one’s own vote unambiguously
decides the winner, for example if there is a tie among the other votes
(set Ap

1); alternatively, it is possible that one can only produce a tie
and the final outcome is decided by a random device (set Ap

2). The
pivotality of every voting rule that satisfies anonymity and where voters
act independently (and are identically distributed) is described by:

∑
a∈Ap

1

(
n

a1, a2, . . . , am

)
pa1
1 pa2

2 . . . pam
m (2)

+1
2

∑
a∈Ap

2

(
n

a1, a2, . . . , am

)
pa1
1 pa2

2 . . . pam
m (3)

The pivotality of a voter consists of two sums: the first is the sum
of the probability of those situations, where one can unambiguously
decide the winner, and the second is the sum of those situations, where
one can produce a tie. The latter is weighted by 1

2 , the probability that
the following tie-breaker leads to an alternative outcome1.

The elements of Ap and thus the value of the expression above were
computed using Matlab. First, the elements of Ap

1 and Ap
2 are deter-

mined. Subsequently, the probabilities of their occurrence are computed
using the multinomial distribution. Although the runtime of this proce-
dure can be long, the advantage of the approach is that the pivotality is
computed exactly instead of estimating it by Monte-Carlo-Simulation
(for more details see [3]).
1 From the viewpoint of pivotality, ties with more than two alternatives are sub-

sumed under the set Ap
1. This is in contrast to the case of manipulability, i.e. the

probability of being able to influence the outcome to one’s own benefit.
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For most voting rules, pivotality is equivalent to the (non-normalized)
Banzhaf-Index β′, provided that there are only two alternatives with
P = (0.5; 0.5). To see this, let Z be a random variable that counts
the votes for the first alternative and let s be the number of so-called
swing coalitions (i.e. situations with a pivotal voter). If n is even, one is
pivotal if and only if n

2 individuals are voting for one alternative (there
is a tie and one breaks it with one’s vote). But these are exactly the
situations in which one is the “swing voter.” For p = 0.5 one obtains
the Banzhaf-Index:2

P
(
Z =

n

2

)
=
(
n
n
2

)
· pn

2 · (1− p)n−
n
2 (4)

=
(
n
n
2

)
·
(

1
2

)n
2

·
(

1
2

)n−n
2

(5)

=
s

2n
= β′ (6)

The expression in (4) has been first described by [4] and [1] and can be
approximated by Stirling’s Formula for large n.

3 Applications

We will use now our general approach to measure pivotality in three
examples; in each pivotality is calculated under a variation of one of
the four influencing factors.

3.1 Comparison of Stochastic Assumptions

As already noted in the introduction, the Banzhaf-Index is only appli-
cable for special cases. We examine the pivotality of a simple election
with two alternatives under majority rule by computing the values of
(4) for p ∈ (0; 1) and n = 2, 3, . . . , 100 which is displayed in Figure 1.
The result is “knife-edged”: For p = 0.5 the pivotality of this election
is just the Banzhaf-Index; even for small deviations from p = 0.5 the
pivotality is declining rapidly (see also [2]).

One important application is to determine for a given level of piv-
otality the appropriate groupsize of voters, if p is known or can be
estimated reliably. For this, we have to calculate “iso-pivotality-lines”,
2 If n is odd, then there two situations where one’s vote can produce a tie - in each

there is a chance of 0.5 to win.
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i.e. combinations of p and n with the same pivotality (see Figure 1
right).

Fig. 1. Pivotality of majority rule with two alternatives

3.2 Comparison of the Quantity of Alternatives

While more voters usually yield less pivotality we can also examine the
influence of more alternatives in an election. We calculate the pivotal-
ity of the plurality rule for k = 2, . . . , 10 under the impartial culture
assumption (i.e. under the assumption that each preference ordering
has equal probability for each voter). Therefore, we can compare the

Fig. 2. Pivotality of plurality rule for different quantities of alternatives

pivotality for variations of the number of alternatives. The values are
shown in Figure 2: more alternatives give rise to more pivotality under
our assumptions.
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3.3 Comparison of Voting Rules

Finally, we compare different voting rules in a given situation. We ex-
amine the pivotality of the plurality rule and the Borda Count for
n = 2, . . . , 30 voters and three alternatives under the impartial culture
assumption. The comparison in Figure 3 shows that the pivotality of
the Borda Count is uniformly larger than the one of the plurality rule
in this situation.
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Fig. 3. Comparision of plurality rule and Borda Count

References

1. N. Beck. A note on the probability of a tied election. Public Choice,
23(1):75–79, 1975.

2. S. Kaniovski. The exact bias of the banzhaf measure of power when votes
are not equiprobable and independent, 2006.

3. T. Lindner. Zur Pivotality von Abstimmungsregeln. Diplomarbeit am In-
stitut für Wirtschaftstheorie und Operations Research, January 2007.

4. L. S. Penrose. The elementary statistics of majority voting. Journal of the
Royal Statistical Society, 109(1):53–57, 1946.

5. P. D. Straffin. Homogeneity, independence, and power indices. Public
Choice, 30(1):107–118, 1977.



Part VIII

Energy, Environment and Life Sciences



A System Analysis on PEFC-CGS for a Farm
Household

Kiyoshi Dowaki and Takeshi Kawabuchi

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan 278-8510

Summary. Since 2005, the Japanese government has had great efforts to
promote PEFC-CGS (Polymer Electrolyte Fuel Cell Co-generation System)
to a household sector in order to mitigate CO2 emissions. Because of this sit-
uation, there is a plan in which 480 units of 1kW PEFC-CGS for a household
sector will be installed. However, the heat supply through PEFC-CGS can be
often excess energy against heating and/or hot water demands. This is likely
to aggravate the cost condition.
On the other hand, in Japan, the number of farm household which possesses
green houses is more than 260 thousand points as of 2005. Thus, we focused
on the energy demand in which a house and a greenhouse were combined.
Using GAMS program, we analyzed the operation condition of PEFC-CGS
so as to decrease the excess energy supply, maximizing CO2 emission reduc-
tion and/or the energy cost reduction. On the performance of PEFC-CGS, we
calculated the performance model based on electrochemistry and thermody-
namics in VBA program. As a result, the power efficiency of 30.3 to 35.2 %
and the heat recovery efficiency of 31.6 to 37.3 % were obtained. The part-load
operation of PEFC-CGS was considered, too. That is, the part-load operation
means that PEFC-CGS shuts down unless the power supply is higher than a
minimum electricity demand. Thus, the optimization model on CO2 emissions
or an operational cost is a nonlinear mixed integer model.
Finally, assuming that the total area of a green house was 100 m2, the maxi-
mum reduction of CO2 emission was 3.46 to 4.06 t-CO2/yr, compared to the
conventional energy supply through fossil fuels origin. Likewise, that of an
operational cost was 61,530 to 64,770 yen/yr.

Key words: PEFC-CGS, Farm house, Green house, A nonlinear mixed in-
teger model.



194 Kiyoshi Dowaki and Takeshi Kawabuchi

1 Introduction

Since the Kyoto protocol became effective, in Japan, we have tried to
promote PV system, gas-engine CGS, PEFC-CGS and the energy sav-
ing system (ex. an air conditioner or an advanced boiler) at the time
when we build a new house. Especially, Ministry of Economy, Trade
and Industry (METI) of Japan has a plan to promote 480 units of
1kW PEFC-CGS into a household sector. However, the heat supply
through PEFC-CGS can be often excess energy against heating and/or
hot water demands. As a result, this is likely to bring the worse cost
condition. On the other hand, the number of farm household which
possesses green houses is more than 260 thousand points as of 2005.
Against such a background, we proposed the new PEFC-CGS consider-
ing the combination of a farm house and a greenhouse. Since there are
four seasons in Japan, the temperature difference between the lowest
one and the highest one is likely to be approximately 30 ℃ through the
year. That is, the more heat demand would be ensured.
In this paper, we selected the farm houses in Yamaguchi prefecture of
Japan as model houses. They cultivate cucumbers and orchids in green-
houses. The energy demands of the house and the greenhouse were es-
timated by the interviews to farmers, the annual report on the family
income and expenditure survey, and the past related data book[1]. We
calculated the performance of PEFC-CGS due to VBA program, based
on the theories of electrochemistry and thermodynamics[2,3]. Note that
the scale of PEFC, whose fuel is town-gas (natural gas), is assumed to
be 2kW.
Finally, based on the annual energy demand of a farm house with a
green house, and on the performance of PEFC-CGS, we solved the op-
timization problem on CO2 emission and/or an operational cost, using
GAMS program.

2 Peformance of PEFC-CGS

We set up the parameters of PEFC-CGS and calculated the perfor-
mance. As a result, the power efficiency was 30.3 to 35.2 % and the
heat recovery efficiency was 31.6 to 37.3 % . The output curve for a
part-load operation can be approximated as a quadratic function and a
monotone function. That is, the net output through PEFC-CGS at i-th
month and j-th hour (FCp(V)), the power efficiency (ηe(V)) and the
heat recovery efficiency (ηh(V)) in each cell voltage can be shown as
Eqs. (1)-(3), using the constants evaluated by a least squares method.
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Note that the operating voltage is from 0.650 to 0.755 Volts.

FCp(V) = 40.76V(i, j)2 − 64.48V(i, j) + 25.71 (1)

ηe(V) = −0.293V(i, j)2 + 0.882V(i, j) − 0.147 (2)

ηh(V) = 0.0147V(i, j)2 − 0.559V(i, j) + 0.730 (3)

3 Energy Demand of a Farm House with a Greenhouse

Due to the interviews into a few farmers, we acquired that the growing
temperature of cucumbers and that of orchids was 13 ℃ and 20 ℃
respectively. The minimum atmospheric temperature on January drops
to 1.0 ℃ in Yamaguchi prefecture. Assuming that the thermal demand
for a greenhouse was in proportion to the temperature differences, the
specific energy demand of cucumbers was 0.87 MJ/m2℃ and that of
orchids was 0.66 MJ/m2℃Ȯn the energy demand in a farm house,
we estimated it using the past specific energy demand of a household
sector and the energy prices of electricity, gas and heating oil in the
model area[1]. In this study, the average gross floor area of a farm
house in Japan is 95.02 m2. Assuming that the greenhouse area of
cucumbers and/or orchids was constant in 100 m2, the thermal demand
was approximately 2.5 times in comparison to that of a farm house only.

4 System Analysis

Using the specific CO2 emissions and the energy prices[4], we executed
the optimization problem which is a nonlinear mixed integer model.
In the conventional case, the electricity demand is supplied through
the commercial power company. Likewise, the heating and hot water
demands are supplied through a boiler in use of fossil fuel.
In contrast, in our proposal cases, the energy demand is supplied
through PEFC-CGS, and a boiler is used as a backup system. On the
surplus power supply through PEFC-CGS, it is assumed that the sur-
plus power can be sold to the commercial electric companies due to the
regulation of RPS (Renewable Portfolio System).
Thus, if the annual reduction of an operational cost Red Cost [yen/yr]
and the annual reduction of CO2 emission and Red CO2 [t-CO2/yr] for
the conventional case are shown as the following equations.

max.(Red CO2),Red Cost ≥ 0 or max.(Red Cost),Red CO2 ≥ 0
(4)
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Subject to

X(i, j)FCp(V) + Conp(i, j) = Fe(i, j) + Fh(i, j)/5.4 + Ge(i, j) + ∆(i, j)
(5)

X(i, j) = 1 (FCp(V) ≥ SPow), X(i, j) = 0 (FCp(V) ≤ SPow)

PF(i, j) = X(i, j)FCp(V)/ηe(V) (6)

Fhw(i, j) + Ghw(i, j)/(1 − ε) ≥ PF(i, j)ηh(V) + BF(i, j)ηb (7)

Where, Conp(i, j), Fe(i, j), Fh(i, j), Ge(i, j), ∆(i, j), Fhw(i, j), Ghw(i, j),
PF(i, j) and BF(i, j) are the power supply through PEFC-CGS [kW], the
conventional power [kW], the electricity demand of a farm house [kW],
the heating demand [MJ/h], the electricity demand of a greenhouse
[kW], the salable electricity [kW], the hot water demand of a farm
house [MJ/h], that of a green house [MJ/h], the fuel rate of PEFC-CGS
[MJ/h] and that of a boiler [MJ/h], respectively. X(i, j) is an integer of
0 or 1. Also, SPow, ε and ηb are the shutdown power [kW](=0.5 kW),
the heat trasportation loss (=5% ) and the boiler efficiency (=80% ).
The maximum reduction of CO2 emission and that of an operational
cost compared to the conventional case are shown in Figs. 1 and 2.

Fig. 1. Max. CO2 emission reduc-
tion

Fig. 2. Max. operational cost re-
duction

As a result, Red CO2 was 3.46 to 4.06 t-CO2/yr(see Fig. 1). In contrast,
Red Cost was 61,530 to 64,770 yen/yr(see Fig. 2). These results indicate
that there are benefits on a house with a greenhouse to some extent,
compared to the case of a farm house only. In addition, the excess
heat supply through PEFC-CGS, which is usually waste energy, can be
decreased significantly.
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5 Conclusions

We applied PEFC-CGS for a farm house with a greenhouse in which
cucumbers and/or orchids were harvested. Consequently, we concluded
that we were able to obtain good benefits on the operational cost reduc-
tion and/or CO2 emission reduction through 2kW PEFC-CGS, com-
pared to the conventional case.
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1 Background

The use of wind to generate electrical energy is becoming more pop-
ular around the world as global efforts are made to deal with green
house gas emissions from more traditional sources of energy. In Aus-
tralia wind energy is one of the technologies being promoted by manda-
tory renewable energy targets set by the government [1]. Even though
wind energy is more economical and eco-friendly it has one significant
problem. The electricity production is inherently highly variable and
difficult to predict. Over longer time scales it means that it is difficult
to match electricity generation to the daily and seasonal patterns of
demand. On shorter time scales the higher frequency “noise” in elec-
tricity output causes problems for network stability and managing the
short term dispatch of generators to meet demand.

Previous work in this area is on battery-management system [2].
Although, we will focus on how to smooth the output over shorter
timer periods which has benefits mainly in terms of network stability.
The CSIRO is developing a prototype system in Australia that will
use specially developed batteries to store some of the wind energy. The
aim is to use a relatively small amount of storage in order to smooth
the wind output making it more predictable and reliable in the short
term. In the Australian market the shortest time scale for bidding and
scheduling of generation is a five minute interval. Thus it is important
to ensure smoothness and stability over five minute intervals. Figure 1
shows that the wind power output is very variable, and that even for
two windfarms in very different locations some of the rise and fall events
may be synchronised.
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Fig. 1. Example of wind power output for two Australian windfarms

1.1 Formulation

We consider a system where a variable power source is linked to the elec-
tricity grid through a device that contains a controller, a battery stor-
age mechanism and an inverter for converting between the AC power
of the generator (and as required by the grid) and the DC power of the
battery. For the purposes of this paper several assumptions are made:
the battery has a fixed capacity; the rate at which it can accept or de-
liver electrical energy is unrestricted; the controller can instantaneously
make a decision on how much power to put into the grid and/or to the
battery; and the wind power is only measured at discrete time steps,
for example every second.

In this paper the ramp rate at time t is defined as the difference
between the maximum and minimum power output over the preceding
five minutes. Smoothness of output is then defined in terms of a limit on
the maximum ramp rate. Let Wt be the instantaneous wind production
at time t, C the battery capacity, R the limit on ramp rate and D the
number of time steps that make up the five minute ramp rate window.
We define decision variables xt as the power going into the grid during
time interval t and st as the battery storage at the end of time interval
t. We can now define the tactical wind energy optimisation problem
(TWEOP), which is to minimise the average ramp rate violation over
some fixed time period T :



Taming Wind Energy with Battery Storage 201

min
1
T

∑
t∈T

max
{

0, max
i=0,...,D−1

{xt−i} − min
i=0,...,D−1

{xt−i} −R

}
(1)

Subject to: st = st−1 + Wt − xt ∀ t ∈ T (2)
0 ≤ st ≤ C ∀ t ∈ T (3)
xt ≥ 0 ∀ t ∈ T (4)

The state equation (2) for determining the battery storage level is
based on wind input and power output, where for simplicity we have
chosen to measure energy in units corresponding to the power multi-
plied by the time step size.

In principle, this problem be solved as a linear program by intro-
ducing additional O(DT ) variables and constraints to linearise the ob-
jective (1). Though, for big values of T this problem quickly becomes
very large. An approximate solution to large TWEOP instances can be
obtained through a kind of co-ordinate descent in which a solution is
improved by reducing power output at some time t and increasing it at
another time t′ until either a storage constraint is hit or until neither
t nor t′ contribute to any ramp rate violations. We refer to this as the
descent method for TWEOP.

The TWEOP is not particularly useful by itself as it requires exact
knowledge of the wind over the whole time period, but it forms the
building block for several other methods.

2 Estimating Battery Capacity

A strategic question is how large the battery capacity should be in
order to avoid having any ramp rate violations. We can use historical
data to obtain estimates of the battery capacity required.

To get a lower bound on the battery capacity required the historical
data can be used to solve a modified version of TWEOP in which the
battery capacity is a decision variable and the objective is to minimise
C. The ramp rate limit then becomes a hard constraint of the form:

max
i=0,...,D−1

{xt−i} − min
i=0,...,D−1

{xt−i} ≤ R. (5)

We refer to the (linearised) version of this problem as the capacity min-
imisation LP (CminLP). Since this problem is too large for big data
sets we also consider an approximate version of the problem in which
the ramp rate constraint (5) is replaced by the much simpler require-
ment −R/D ≤ xt−xt−1 ≤ R/D. We refer to this approximation linear
program as the ACminLP. Since any feasible solution to ACminLP is
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feasible for CminLP, the optimal capacity calculated with ACminLP is
at least as large as that obtained from CminLP.

An alternative approach is to start with a control strategy and an
arbitrary battery capacity. Repetitive simulations of the operations at
a facility can be used to determine the minimum battery capacity re-
quired in order to avoid ramp rate violations for a given strategy. This
brings us to the question of what is a suitable method for determining
how to use the battery in each time interval.

3 On-line Heuristics

We consider three on-line heuristics that differ in the way they manage
the battery capacity:

Reactive The reactive heuristic only uses the battery when failing to
make use of the facility would cause a ramp rate violation. In that case
just enough power is stored or released to stay within the ramp rate
limits (or the maximum amount of power possible if the battery limit
is reached). At all other times the reactive method uses an exponential
decay to bring the battery towards a half-full level so as to maximise
the flexibility in either direction.

Proactive: The proactive method tries to manage the battery ca-
pacity more actively through a series of rules of thumb. For example it
aims to keeping the battery nearly full when the current power output
is high as future output is more likely to drop significantly than rise
much further.

Low Battery: The essential idea of this method is that for high ramp
rates or large batteries it makes sense to keep the battery level as low
as possible at all times while always outputing at most R with any
peaks being absorbed into the battery. The method we implemented
is a slightly more sophisticated variant that allows the output level to
increase above R when there the wind power level is significantly above
R for some time.

4 Results

We present results for estimates of the minimum battery capacity re-
quired depending on a given ramp rate limit and using the data from a
small 30kW turbine at the CSIRO laboratories in Newcastle. This data
set has power measured every second and we have selected a period
of a million seconds to test our methods on. We present results for six
different methods: simulation of the three on-line heuristics described
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in Section 3; solving the TWEOP for the whole data set; using the de-
scent method; and by solving CminLP and ACminLP using CPLEX.
For CminLP and ACminLP the complete data sets are far too large to
solve so the numbers reported are the maximum over 5 smaller data
subsets of 2000 points each, selected to pick out some of the most vari-
able periods. In order to evaluate the effect of this sampling we also
tested the descent method on the smaller data sets and report the bat-
tery requirement found in this way as Descent(5). Figure 2 shows the
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Fig. 2. Battery required (kWhr) for a 30kW as function of R (kW/5min)

battery required in order to avoid ramp rate violations. In principle all
lines should be strictly deacreasing. However due to the heuristic nature
of the (non-LP based) algorithms, sometimes more storage is required
when the ramp rate limit is increased slightly. The maximum ramp
rate allowed has a significant impact on the effectiveness of the various
algorithms. For very small ramp rates (less than about 5kW/5min),
the descent method produces quite poor solutions compared to the LP
methods, some of which can be explained by the choice of samples
but some of this difference is due to the inexact nature of the descent
method. The on-line heuristics perform badly with the exception of the
Low Battery heuristic.

In the middle range of ramp rates (5-12), the descent method is very
similar in performance of the ACminLP method though slightly worse
than the CminLP. The on-line heuristics have similar performance with
the Proactive and Low Battery methods being slightly better than the
Reactive method.
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For high ramp rates the Low Battery method and ACminLP meth-
ods become quite ineffective, with the Proactive method dominating
the on-line heuristics. The descent method on the whole data set pro-
duces some even lower results than the Descent(5) method, as the latter
is constrained to start each sample with a half full battery.

In terms of computational efficiency a single run of the on-line
heuristics (with a given battery capacity) requires about a second of
CPU time on a 2GHz PC to process a million points, while the descent
method takes about 10 times as long. Multiple runs with different bat-
tery capacities were used to determine the minimum battery require-
ments. In contrast the ACminLP method requires about a second of
CPU time per thousand points, with the CminLP being significantly
slower again.

5 Conclusions

We have presented an application arising from the current global trend
towards increasing the participation of wind generators in the elec-
tricity supply mix. A mathematical formulation and several methods
are presented for determining battery capacity that can achieve given
level of smoothness in wind energy. The results show that battery re-
quirements grow exponentially as the maximum ramp rate decreases,
though reasonable ramp rates can be maintained with less than 10% of
the maximum hourly output. The computational results also indicate
that there is no single “best” approach that is going to work equally
well across all data sets and operating conditions. Further research is
still needed for example to determine whether forecasts can be used
to improve the performance of the on-line algorithms1. More work also
needs to be done to make the mathematical models more realistic and
to incorporate constraints of the energy storage technology into the
formulation.
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Summary. This paper deals with the topic of cooperation among economic
agents in a repeated game with unknown length. There is still little empirical
evidence why and under which conditions people cooperate at all in situations
such as the prisoner’s dilemma game (PDG). There is extensive literature on
the theory of infinitely repeated games and also a large number of explana-
tions for cooperative behaviour. Experimental evidence on the question how
future features will affect the behaviour is rare and the classification of the
participants into social and selfish oriented types is new in this context.

Modern contract theory deals a lot with the willingness to cooperate.
Therefore we raise the question under which conditions cooperation is cre-
ated in special economic situations (for example in energy contracts).

The present study examines the influence of pre-existing individual differ-
ences in social value orientations measured by the outcomes to oneself and
others according to the ring measure by McClintock [10]. We run an experi-
ment in the lab and we are able to figure out the high percentage at coopera-
tion in a PDG in which the number of future rounds is unknown and the fact
that cooperation is significantly dependent on the type of the subjects’ social
value orientation.

1 Introduction

In situations in which there is always a future as it can be simulated
by repeated games with unkown length the credible threat of future
retaliation can cause opportunistic behaviour and it can be a reason
for supporting cooperation. Dal Bo (2005) [1] calls it ‘the shadow of
the future’. In our paper, we report on a series of an experiment which
consists of 2 parts: a questionnaire which aims to classify the partici-
pants into categories used by psychologists and the repeated prisoner’s
dilemma (PD) game by which the cooperative and defective behaviour



206 Robert Feyer, Ulrike Leopold-Wildburger, and Stefan Pickl

respectively can be measured. It will be shown that according to Dal
Bo [1] the possibility of future action modifies the players’ behaviour;
however we figure out that this result is significantly depending on the
classification of the player. The pro-social value orientation of a player
realizes far fewer opportunistic actions and supports significantly more
often cooperation than the selfish type does.

2 Social Value Orientation

It has been established that there are individual differences in prefer-
ences for expressing social values (e.g., [4]), that social values system-
atically affect choice behaviour in two person situations (e.g., [5]) and
in n-person experimental games (e.g., [7, 6]).

Kelley and Thibaut [3] as well as Olekalns and Smith [11] provide
insight into the social values that underlie the social decision making of
individuals in outcome interdependent situations. Social values can be
defined as distinct sets of motivational or strategic preferences among
various distributions of outcomes for self and others [8]. Traditionally
the following social values derived from the conceptual framework for-
mulated by Griesinger and Livingston [2] and McClintock [9] are dis-
tinguished: altruism, cooperation, individualism, and competition.

According to Kuhlman and Marshello [5] and Liebrand and Van
Run [7] four functions have been identified as utility functions that
underlie the choice behaviour of a significant proportion of subjects in
interdependent decision tasks.

Social values are defined as distinct sets of motivational or strategic
preferences with the weighting rule [8] depending on the weights w1

and w2:

a) altruism is maximizing another’s outcome (w1 = 0, w2 = 1);
b) cooperation, maximizing joint outcomes (w1 = 1, w2 = 1);
c) individualism, maximizing one’s own outcome (w1 = 1, w2 = 0) ;
d) competition, maximizing one’s outcome relative to other (w1 = 1,

w2 = −1).

To investigate differences in the interpretation of others’ behaviour
in interdependency situations, a subject’s choice behaviour is separated
into two components, the outcomes the subject chooses for oneself and
the outcomes that are chosen for the other. This allows us to see if the
socialisation effect obtains for both the outcomes given to self and the
outcomes given to the other: pro-social and pro-selfish.
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3 Experimental Design and Procedure

We conducted a prisoner’s dilemma experiment with the payoffs given
in Table 1 in which players interacted repeatedly with the same part-
ner. The continuation rule, however, is unknown to the participants.
After a certain number of rounds not known to the participants in ad-
vance, each player was matched with a new partner (s)he did not play
against before. Four players participated in a session. Therefore each
player was matched with a different opponent three times, i.e., we had
3 matchings per session. Each matching consisted of 15 repeated inter-
actions, whereas the number of interactions has not been known by the
participants.

The experimental protocol we used in all sessions was as follows:
Each subject had to make a decision. (S)he repeatedly played against
another subject in a dyad. Inter-subjects contacts were anonymous,
and the choices of the opponent group were shown on the screen. Each
subject was paid the amount retained by his/her decision.

A well-known characteristic of the prisoner’s dilemma game is the
ambiguous relation between cooperation and performance. On the one
hand, each player can increase her/his payoff by defecting instead of
cooperating. On the other hand, the payoffs of all interacting players
increase if a higher share of them cooperates. The theoretical basis
for these contradicting tendencies is clearly established. In this study,
we will analyse the empirical implications and characteristics of these
ambiguous motives depending on the social values orientation of the
subjects.

Table 1. Notation for outcomes and payoffs in the prisoner’s dilemma game
experiment. Each point (payoff) was converted into Euro at an exchange rate
of 35 Eurocents

Row-player/column-player Cooperation (A) Defection (B)

Cooperation (A) c/c (3/3) s/e (0/5)

Defection (B) e/s (5/0) d/d (1/1)
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4 Hypotheses and Results

H1a: There is a positive correlation between cooperation and payoff.
H1b: Pro-social oriented participants attain a higher share of coop-

eration and consequently achieve higher payoff than pro-selfish
oriented participants.

H2: If two pro-social oriented participants play against each other, they
obtain a higher share of cooperation and payoff than two pro-selfish
oriented participants or one pro-social and one pro-selfish oriented
participant interacting / playing against each other.

The prisoner’s dilemma game has been performed with 64 participants
during the winter term 2005/06 at the University of Graz. We can
summarize our findings in the following way: First, the questionnaire
with the 24 questions requiring the participants to decide on one of two
possible options referring to their social value orientation divided the
participants into 2 groups: 32 participants were categorized as partic-
ipants with pro-social value orientation and 32 participants with pro-
selfish value orientation.

Second, the prisoner’s dilemma game showed an obvious decline in
cooperation within a matching indicated the attempt to exploit the
opponent. There is obviously a decrease in the level of cooperation,
especially within the second and the third matching. This is because of
the so called end-effect. Each player tends to defect towards the end of
the matching to exploit the opponent or to avoid being exploited.

4.1 Results Referring to H1a and H1b
Payoff Depending on Share of Cooperation

There is a positive correlation between share of cooperation and pay-
off. Pro-social oriented participants attain a higher share of cooperation
and consequently achieve higher payoff than pro-selfish oriented par-
ticipants (see Table 2).

All values are statistically significant on the 0.1% level according to
the Wilcoxon rank-sum test.

4.2 Results Referring to H2

If two pro-social oriented participants (forming a Matching Group 1)
play against each other, they obtain a higher share of cooperation and
payoff than two pro-selfish oriented participants (forming a Matching
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Table 2. Average payoff and share in cooperation among both social value
orientations

Social Value Pro-social Pro-social Pro-selfish Pro-selfish

Orientation Cooperation Payoff Cooperation Payoff

Mean 58.47% 99.97 38.68% 88.75

Standard dev. 26.78% 22.84 22.75% 20.21

Minimum 2.22% 50 0.0% 45

Maximum 100% 132 88.89% 130

Group 3) or one pro-social and one pro-selfish oriented participant
(Matching Group 2) interacting / playing against each other.

Table 3 gives the means and standard deviations in all matching
groups. The values of Matching Group 1 (MG 1) compared with Match-
ing Group 3 (MG 3) show a significant difference in amount of payoff
and percentages of cooperation according to the Wilcoxon rank-sum
test (p smaller than 0.1% level).

Table 3. Means and standard deviations of payoffs and percentages of coop-
eration for all matching groups

Matching Social Mean Standard Mean Standard
group value deviation deviation
(MG)

Payoff Payoff Cooperation Cooperation

MG 1 Soc:Soc 36.72 10.53 67.20% 33.34%

MG 2a Soc:Self 29.63 10.32 48.99% 32.61%

MG 2b Self:Soc 32.22 11.22 43.33% 32.13%

MG 3 Self:Self 27.16 9.61 34.40% 28.96%

5 Summary

The results revealed that participants with pro-social orientation, con-
trary to those with pro-selfish orientation were perceived as more coop-
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erative and were able to manage higher payoffs. The further effect ap-
peared to be more pronounced among pro-selfs rather than pro-socials:
The matching of two pro-selfish oriented participants leads the lowest
percentage of cooperation and also significantly the lowest payoff.
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Summary. In this contribution, a concept for a techno-economical decision
support system for the production and distribution of bio-fuels will be pre-
sented. The production of bio-fuels is carried out in multi-stage processes and
thus, is characterized by complex production structures. Furthermore, a vari-
ety of economical and technical risks need to be considered during planning.
Therefore, decision support methods considering logistical as well as process
technology aspects in an integrated approach are required.

1 Introduction

By the year 2020, the EU directive 2003/30/EG requires a 20% substi-
tution of fossil fuels through alternative fuels in the road traffic sector.
This attempt is both ecologically and politically motivated.[1]

To attain this aim, the extensive build-up of efficient production
capacities for bio-fuels will be necessary by the year 2020. Today, 1st

generation bio-fuels are being used. However, since their production is
characterized by a low specific energy production per unit of biomass,
they are expensive. In the long-term, a competitive alternative will
be provided by 2nd generation bio-fuels. The production of those is
characterized by a high specific energy production, due to all cellulose
input being converted into fuel. Furthermore, 2nd generation bio-fuels
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promise a good compatibility with today’s and future engine genera-
tions. Today, production schemes for 2nd generation bio-fuels are still
under development or at a pilot plant stage. The current production
schemes vary in processing steps, biomass treatment, gasification and
synthesis processes. [2]

2 Network Planning for 2nd Generation Bio-Fuels

Currently, potential investors and network planners are challenged by
the configuration and future operation of production networks for 2nd

generation bio- fuels. Firstly, there is a lack of decision support methods
that are able to consider the specifics of material conversion processes.
Secondly, a range of uncertainties e.g. related to the new technologies,
political decisions and market developments on the raw materials as
well as on the product side need to be considered.

Adequate decision support methods need to consider the technical
and logistical specifics of the potential sourcing, production and distri-
bution processes in an integrated manner. Advanced-Planning-Systems
(APS) provide economic decision models for an efficient planning and
control of complex production and logistic networks [3]. However, up
to now APS focuses mainly on planning tasks for the manufacturing
industry, i.e. common production and assembly processes based on con-
verging structures, which can be described sufficiently by bills of mate-
rial and operation charts. However, since the production of 2nd gener-
ation bio-fuels is carried out in material conversion processes, planning
models for the processing industry are necessary. The processing indus-
try is characterized by chemical transformations, converging, diverging
as well as cyclic structures, joint production, recirculation and various
intermediate products. Within single process entities no linear transfor-
mation functions exist that can be deduced based on reaction and phase
equilibria. Furthermore, the possible substitutions between equipment
related and energy related input factors lead to numerous input fac-
tor combinations that need to be considered. [4] In addition to these
aspects, which are typical for processing industry, production of 2nd

generation bio-fuels is characterized by a variety of alternative options
on the input, process and output side. Different feedstocks and feed-
stock qualities can be used, substitutional relations between process
parameters exist, and the output relation of diesel and gasoline can be
controlled within boundaries. The results are summarized in flow charts
as fundamentals for the technical system design. Therefore, modeling
can not be based on bills of material, but has to be based on material
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and energy balances originating from the chemical and thermodynamic
specifications of the single unit operations.

Uncertainties about new technologies are typically related to the
long-term stability, selectivity and yield of the catalyst, leveling-up of
trace components under recycling conditions, decreasing of equipment
effectiveness due to fouling or corrosion ect.. These uncertainties may
lead to alternative processing structures, equipment design and/or op-
erating conditions, thus significantly affecting investments as well as
operating costs. The input of biomass leads to uncertainties concerning
the availability, consistency and price of biomass. These parameters
depend not only on technical or availability aspects and on environ-
mental effects, but also on developments and decisions in the political
arena, and on developments in the food processing industry. Decisions
about subsidies as well as long-term guidelines that go beyond the year
2020 have not yet been made. Finally, the competitiveness and thereby
the distribution of 2nd generation bio-fuels is directly related to the
development of fossil fuel prices, which is very volatile.

Hence, the aim is to develop a techno-economical decision support
system for the sourcing, production and distribution of 2nd generation
synthetic bio-fuels. This will take into account technical and logistical
specifics of the supply chain for the production of 2nd generation bio-
fuels as well as related uncertainties.

3 Planning Concept

Against this background, a hierarchical planning concept for integrated
technical and logistical system design is presented in the following. The
concept is based on coupling material and energy balancing models
and economic decision support models for long-, mid- and short-term
planning problems [see Figure 1].

On the long-term planning level, production facility and capacity
allocation in a staged and distributed production network are deter-
mined. For this purpose, a multi-stage dynamic warehouse location
problem will be developed. Input data to this model are long-term
market forecasts, distances between potential network nodes, existing
structures, technically feasible production schemes, potential in- and
outputs of the processes, as well as estimated production, transporta-
tion and storage costs. However, not all necessary data is available,
since no reference data from large-scale production capacities for 2nd

generation bio-fuels yet exist. Thus, relevant information on material
and energy flows as well as technical parameters and costs must be
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Fig. 1. Hierarchical planning concept for integrated technical and logistical
system design

obtained from technical models, determining basic process operations,
technical process parameters as well as interlinking and time coher-
ences between logistical and conversion steps. In particular, options
for the decoupling of processing steps and the results of the up-scaling
of processes will be examined in order to provide information on de-
centralization options and economies of scale. Based on such technical
models, simulations of material and energy flows will be carried out,
and results will be integrated into strategic network planning models. If
production processes can be decoupled, there are opportunities for de-
centralized first processing steps, e.g. pre-treating voluminous biomass
such as straw and transporting only the resulting high-energy, low-
volume intermediate goods. If technical models show that economies of
scale can be realized, it might be beneficial to centralize processes for
further processing steps.

The planned sites and capacities as nodes of a – decentralized or cen-
tralized – logistical network are the basis for the site-related plant con-
figuration that is taking place at the mid-term planning level. From an
economical point of view, decisions have to be taken whether a fixed or
rather a flexible production structure should be implemented. Flexibil-



Sustainable Supply Chains for 2nd Generation Synthetic Bio-Fuels 215

ity of the production structure may relate to the use of different educts
or raw materials, optionally as intermediates after a pre-treatment,
capacity variations accounting seasonal fluctuations, or shifts in prod-
uct specification. The design options with different flexibility degrees
have to be economically assessed through the modeling of specific pro-
duction costs and returns for the alternatives. Therefore, more detailed
information on material and energy flows, sourcing and distribution op-
tions, inter-stage distances, and reliability assessments of single plant
components as well as mid-term market forecasts are needed. Technical
flow sheeting models provide the material and energy flow information.
[5, 6] In flow sheeting systems, the technical configuration of conver-
sion and separation processes will be modelled based on unit operations
like chemical reactions, rectifications, and extractions building on reac-
tion, physical property and phase equilibrium informations. As a result
local material and energy flow data, along with the corresponding pro-
cessing conditions (pressure, temperature, and concentrations) will be
given. With these detailed flow sheeting models, intra-process mate-
rial and energy flow information becomes available, and restrictions on
the operational mode are revealed, providing information on flexibility
constraints of the processes, which are needed for economic evaluation.

On the short-term level, production planning and scheduling has
to be carried out. In the literature, specific economic planning mod-
els for the processing industry have been developed, so far mainly for
the scheduling of batches and charges. Within these models, batch and
charge sizes are determined and the sequencing of available resources
is carried out, taking into account demand as well as technical restric-
tions. Until now, only a few models have been developed for continuous
and semi-continuous production [7], although the associated planning
problems are of great importance for processing industry. Addition-
ally, within existing models for scheduling in the processing industry,
technical restrictions are only implicitly taken into account, as spe-
cific restrictions of the optimization problem. This leads to customized
models, which need to be changed as soon as even minor changes in
the plant structure or in process parameters (e.g. pressure, tempera-
ture or dwell time) occur. In reality, operational parameters can not
be considered as static variables, but instead are subject to change
with varying batch size and sequence. Thus, it is necessary to explic-
itly consider technical restrictions within models. Therefore, we aim
to develop generic models by explicitly integrating technical aspects
into production planning based on the integrated approach developed
by [8]. Based on flow-sheeting models of the procedural processes, a
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nonlinear planning model with a monetary objective function will be
developed. The interrelation of inputs and outputs is described using
thermodynamic, stochiometric, and technical transformation functions.
Decision variables are the monetarily evaluated inputs and outputs, as
well as technical model variables such as disintegration or integration
of process steps or the allocation of capacities. The approach of [8] will
be extended incorporating scheduling aspects.

4 Conclusions

The extensive build-up of production capacities for 2nd generation bio-
fuels due to politically and ecologically motivated guidelines presents
decision makers with a range of challenges. In this enviroment, techno-
economical decision support models for a sustainable network config-
uration and operation for the production of 2nd generation bio-fuels
are urgently needed. In this paper, a hierarchical framework was pre-
sented that provides the integration of technical and economical mod-
els. Within this framework, sophisticated planning models have to be
developed and applied to the design and control of supply chains for
2nd generation bio-fuels. This is part of an ongoing research project.
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1 The Mirage of Spreadsheet Applications

Spreadsheets are ubiquitously applied in end-user applications rang-
ing from simple adding calculations to complex decision problems. As
most people avoid utilizing different software packages for each prob-
lem, they routinely use (Excel) spreadsheets to perform modeling or
to aid decision making. The wide acceptance of spreadsheets has also
led to an overwhelming application in financial planning in business
venturing. Almost all standard entrepreneurship textbooks (see for ex-
ample, Barringer et al., 2005; Hisrich et al., 2005; Scarborough et al.,
2006) propose (Excel) spreadsheets to create a financial plan as part
of a business plan. The major advantage of spreadsheet applications is
the ease of handling and the automation of calculation.

Beside some practical weaknesses the user faces the major and most
obvious drawback by opening a spreadsheet that contains a financial
plan of a start-up. The user instantaneously sees forecasted numbers
without understanding the coherences behind these values. They are as-
signed to functions and one can see either the numbers or the functions,
but not both (Denardo, 2001). To understand the business concept of
these values, the user deeply digs into all worksheets of the spread-
sheet model and the underlying interrelated functions, which is both
difficult and time consuming. The user develops some kind of an imag-
inary graphical image of the financial plan. Thus, a spreadsheet model
consisting of forecasted values conveys a mirage with respect to the
actual business concept. It encourages users to focus on the forecast-
ing numbers themselves by leaving out a fundamental understanding of
the strategic interrelationship between complex financial and business
decisions. Entrepreneurs need to understand such complex interrela-
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tionships as entrepreneurial decisions are in most cases characterized
by one-off new situations requiring subjective judgment under a limited
amount of information. The primary aim of such planning approaches
in entrepreneurship literature is the creation of pro forma financial
statements.

The question arising is whether there is a superior approach that
overcomes these drawbacks. At the same time the approach has to cre-
ate a pro forma financial plan. Concerning the issues the paper proposes
modeling with influence diagrams, particularly at the graphical level
which goes beyond the narrow boundaries set by conventional planning
with spreadsheets. Beside their representational compactness, influence
diagrams are intuitive to understand and facilitate the formulation, as-
sessment, and evaluation of decision problems as perceived by decision
makers (Howard, 1990; Shachter, 1986). They describe the structure
of a decision problem in a concise way, and are effective means for
communicating with decision makers, computers, among people, and
experts (Howard, 1990; Kirkwood, 1992; Owen, 1978). There exists an
important distinction between the ubiquitous applied decision making
tool ‘spreadsheet’ and the decision making methodology ‘influence di-
agram’. The paper proposes the application of the methodology that
may be implemented by spreadsheet tools.

2 Beyond Conventional Spreadsheet Applications: An
Illustrative Example of an Influence Diagram Model

Conventional spreadsheet applications are used in several standard en-
trepreneurship textbooks. A general income statement is derived ac-
cording to Barringer and Irland (2005), Hisrich et al. (2005), Scarbor-
ough and Zimmerer (2006). It contains numerical predictions based on
deterministic functions. Such an income statement only allows manip-
ulation of the values, but it cannot model the inherent financial and
strategic interrelationships and decisions. It provides no methodology
to aid decisions and makes only a negligible contribution to under-
stand the business concept. The spreadsheet model operates solely at
the numerical and functional level of specification. To gain a deeper in-
sight into the decision problem the concept of the value of perfect and
imperfect information is applied. Modeling a situation with perfect in-
formation provides an upper boundary for gathering real information.
In addition, the influence diagram has to be transferred into Howard’s
canonical form (Howard, 1990; Howard et al., 1981). This allows eval-
uation of any information gathering as the modeling does not create
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a loop. The value of perfect information can be determined for each
chance node separately, in combination and in total. For the example,
table 1 provides an overview of values of perfect information given dif-
ferent uncertain variables. The value of perfect information of market
share given high price is more than twice as much as the value of mar-
ket share given low price which provides important information for real
information gathering. Perfect information of the variable market size
is worthless to the entrepreneur as it has no impact on the optimal
pricing strategy decision. This provides guidance of where to focus real
information gathering.

Table 1. Values of perfect information

Variable Expected Value of perfect
value information

Market share given high price 47,775 19,150
Market share given low price 36,690 8,065
Market size 28,625 0
Market share given high price and market
share given low price

51,675 23,050

Market share given high price and market size 47,775 19,150
Market share given low price and market size 36,690 8,065
All variables 51,675 23,050

In real situations the information is usually not perfect. A market
analysis for example results into imperfect yet relevant information.
With such information the entrepreneur may be better able to estimate
the potential market share. An influence diagram allows modeling of
results of a market analysis. This requires assigning a conditional prob-
ability distribution on the analysis result given the variable of interest.
A more convenient way allows the estimation of a general quality of the
market analysis where the quality of such an analysis is measured by
the probability that the analysis result is of perfect information. The
probability p can take any value between zero and one, i.e. 0 ≤ p ≤ 1.

A sensitivity analysis on the quality variable shows the value of im-
perfect information with respect to different qualitative levels of market
analyses (shown in Figure 1). The diagram is distinguished into three
regions indicating different optimal strategies. A market analysis with
pI < 0.078 (region I) has no value to the entrepreneur as it does not
change the initial low pricing strategy. Region II is of value if p falls
within 0.078 < pII < 0.260. This means that a market analysis with
a relatively low quality level has still an impact on the optimal pric-
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ing strategy. Region III consists of pIII > 0.260 where a high pricing
strategy is optimal given favorable and neutral analyses results.

Fig. 1. Sensitivity analysis on the quality variable

3 Implications

The paper introduced a simplified pro forma income statement which
does not provide a decision aid and operates solely at the numerical and
functional level. A method that allows effective yet convenient modeling
of a decision problem still requires the creation of an income statement.
This can be extracted from an influence diagram. It is assumed that the
entrepreneur has access to a market analysis given high price with an
accuracy level of 0.5 incurring costs of $5,800. As this is below the upper
value of imperfect information of such a quality level the entrepreneur
performs the analysis. A favorable and neutral analysis outcome results
into a high pricing strategy whereas an unfavorable outcome results into
the opposite strategy. The influence diagram model allows the creation
of pro forma income statements for different decisions and scenarios.

4 Conclusion and Discussion

The paper argues that common spreadsheet models, proposed by stan-
dard entrepreneurship textbooks consisting of a financial plan for start-
ups, encourage entrepreneurs to focus on the forecasting numbers them-
selves by leaving out a fundamental understanding of the strategic in-
terrelationship between complex financial and business decisions inher-
ent to a financial planning model. The primary aim is the creation of
a pro forma financial statement. This is, however, a limited approach.
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The paper proposes modeling with influence diagrams. The en-
trepreneur gains insight by means of a decision model about something
that the entrepreneur was not aware at the beginning. An improved
understanding results ultimately into better decisions. The concept of
the value of perfect and imperfect information is applied to show that
uncertain variables have different values of information. This provides
guidance of where to focus real information gathering. The paper also
introduces a quality parameter that allows modeling and comparison
of any information gathering ranging from a perfect to a useless one.
A pro forma income statement can still be extracted from an influence
diagram model. Differently from conventional spreadsheet approaches,
such an income statement represents the logical result of the decision
maker’s subjective and unique decision making process. This goes be-
yond the narrow boundaries set by conventional planning with pure
spreadsheet models in business venturing.
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1 Introduction

The potential value created with a new product or service provided
by a firm is given by the difference between its (monetary) benefit, in
the view of the firm’s customers, and the unit production cost to the
firm. To what extent this potential value can be exploited as a market
opportunity depends on the firm’s success in obtaining a competitive
advantage over other firms in the market. In order to acquire a com-
petitive advantage, a firm must outperform its rivals in value creation
(cf. Besanko et al. [1]).

In order to enhance value creation, the firm has two generic options:
It can raise the value for the customer, e. g., by differentiation of the
product’s features, or it can lower the costs for providing the product.
However, as Porter ([5], p. 18) points out, ‘achieving cost leadership
and differentiation are (. . . ) usually inconsistent, because differentia-
tion is usually costly.’ Therefore, the firm should view the two generic
strategies as alternatives between which it must make a choice, since
otherwise it may become ‘stuck in the middle,’ thereby sacrificing its
competitive advantage.

It appears somewhat surprising, though, that Porter’s view on the
trade-off between differentiation and cost leadership is taken for granted
in most of the literature on business strategy. From a decision-analytic
perspective, it fails to acknowledge the multiple dimensions which typ-
ically characterize the benefits of consuming and the costs of produc-
ing a product or service. Hence, it should seem quite natural to con-
sider a firm differentiating its product in one aspect while simulta-
neously reducing costs in another. Strategy selection then becomes a
multi-attribute decision problem with important implications for mar-
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ket analysis. Since the weights that consumers attach to the different
attributes of a product depend on the consumer group that makes up
the market, value creation can be influenced by shifting the market fo-
cus to other (potential) customers that not only place different weights
on the attributes, but also value different attributes.

Kim and Mauborgne [2] offer an innovative approach to strategy
development along this line. At the core of their approach is the real-
ization that it is much more valuable for firms to focus their energy
on finding or creating new, uncontested market space (a ‘blue ocean’)
than to compete against incumbent firms on existing markets (‘blood-
red oceans’). The main instrument for finding blue oceans is a ‘strategy
canvas,’ a visual depiction of strategies as value curves allowing the
comparison and differentiation of industries and competitors.

However, the strategy canvas, as presented by [4], seems useful
mainly for ex-post diagnosis and explanation of successful blue-ocean
strategies. For the strategy developer in the ex-ante perspective it re-
mains unclear how exactly a blue-ocean strategy is recognized among
possible alternatives. This is particularly a problem in an entrepre-
neurial context, where an unencumbered start-up usually has a large
space of strategy choices. In order to use the qualitative concept of
the strategy canvas for strategic planning, we consider the selection of
a strategy profile as a multi-attribute decision problem. Within this
framework the blue-ocean strategy can then be derived as the opti-
mal choice. The decision-analytic approach allows the entrepreneur to
quantitatively derive the optimal market strategy from the preceding
market analysis. Moreover, sensitivity analysis allows one to test the
robustness of the strategy with respect to changes in the relevance of
strategy factors and their values. In addition, the quantification of the
strategy canvas enables one to assess its impact on the market potential
of different customer groups.

2 The Strategy Canvas: A Qualitative Tool for Ex-post
Strategy Diagnosis

The strategy canvas, as developed by Kim and Mauborgne [4], depicts
strategies as value curves allowing the comparison and differentiation
of industries and competitors. As an example, Fig. 1 shows the strategy
canvas for the U. S. wine industry in the late 1990s, and illustrates the
strategy followed by Australian wine maker Casella Wines in entering
the U. S. beverage market.
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Fig. 1. U.S. wine industry in the late 1990s (cf. [4], 32)

The strategic factors that the industry competes on and invests in
are displayed on the horizontal axis in Fig. 1. The vertical axis shows
the offering level buyers receive for each strategy factor. Thus, strategic
factors can be viewed as attributes of the products or services being
offered. Competitors are judged on the level of their offerings to the
customer in each factor and may be sorted into strategic groups, which
are defined by equal or similar offering levels in each strategy factor.
The result is a set of value curves for competing strategic groups in a
given industry.

Fig. 1 shows two major strategic groups within the US wine industry.
One group of firms competes on premium wines, investing heavily in
strategic factors that allow them to differentiate their products. The
other group offers budget wines, competing with low-value products
that are also cheaper. In order to obtain a competitive advantage in
this industry, a firm would have to offer a product with a higher value
curve at overall lower unit production costs. The more competitive
(blood red) the market is, the more difficult this is to achieve.

Kim and Mauborgne [2], [4], therefore, suggest to shift the market
focus to alternative customers, who place less weight on the compet-
itive strategy factors under consideration, while valuing other (new)
strategy factors more strongly. As a consequence, investments can be
reduced or eliminated altogether for strategy factors of lower impor-
tance, while relevant strategy factors can be expanded and new ones
created. In Fig. 1 the multi-dimensional strategy profile (value curve)
for Casella Wine’s new product [yellow tail] illustrates the contrast to
the two dominating strategic groups. By shifting the customer focus
to non-wine drinkers, more interested in ‘easy drinking,’ ‘ease of se-

Premium Wines

Budget Wines

[yellow tail]
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lection’ as well as ‘fun and adventure’ than traditional wine drinkers,
Casella Wines was able to reduce costs in less valued strategic fac-
tors, which were of high relevance for the traditional wine market. The
multi-dimensional strategy profile, thus, allows strategy developers to
achieve both cost reductions as well as product differentiation at the
same time. This is the essence of value innovation (cf. [3]), driven by
consumer preferences rather than technology.

3 The Strategy Canvas: A Quantitative Tool for Ex-ante
Strategy Development

The strategy canvas, as conceived by Kim and Mauborgne [4] is an ele-
gant qualitative and didactic tool for understanding and explaining, ex
post, the strategic deviation of high performers from traditional market
incumbents in creating value. However, ex-post it is easy to argue that
a firm’s deviating strategy must have been ‘better’ than those of its
competitors, knowing that the firm turned out to be successful.

In contrast, a strategy developer, e. g. an entrepreneur analyzing his
or her entry into the market, ex ante, usually has a range of strategy
alternatives for the new venture. The task in this case is to find the op-
timal strategy, given the observed strategies of competitors. If strategy
curves are viewed as bundles of offerings for relevant strategy factors,
the optimal strategy becomes the solution to a multi-attribute decision
problem. We, therefore, propose to interpret the strategy canvas as a
quantitative assessment of strategy profiles.

In Fig. 1 we interpret the different strategy factors as attributes of
the offered products, which are valued and also weighted differently
by customers. The vertical axis would then measure the benefit of the
attribute, as perceived by customers. In addition, the individual at-
tributes of the product, i. e. the strategy factors for the firm, must be
weighted according to their importance to the customer, in order to
assess the overall value of a strategy profile (for the customer) and,
thus, to allow meaningful comparisons between strategy alternatives.
By using standard multi-attribute rating methods or conjoint analy-
sis, strategy alternatives (represented by value curves in the strategy
canvas) can be quantified and ranked according to their overall values.

Both the valuation and the weighting of strategy factors from the
customers’ perspective are subjective. However, by interpreting the
strategy canvas as a multi-attribute characterization of the firm’s strat-
egy alternatives, one can employ sensitivity analyses in order to test
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the robustness of the firm’s decision, i. e. its selection of a strategy
alternative.

In competing in value creation, one can see how the firm benefits
from shifting its market focus. As new customers place positive value on
new attributes, previous attributes decrease in importance. In Fig. 1
the value curves of competitors remain the same, but the strategic
factors they are focused on receive less weight. As a consequence, the
existing strategies of competitors decline in overall value. As market
competitors lose their bite, the ocean in which the strategy-developing
firm is swimming becomes more blue.

4 Conclusion

The multi-attribute nature of the strategy canvas overcomes the one-
dimensional, either-or decision over generic strategies, thus providing
a more differentiated perspective of value creation. Value innovation is
induced by adding new strategy factors which enable the innovator to
deliver higher value than existing competitors, while offsetting costs by
eliminating other factors which are not valued by customers. Yet, the
strategy canvas in its basic form is a descriptive tool useful mainly for
an ex-post characterization of successful market strategies.

By expanding the qualitative concept of the strategy canvas for the
quantitative measurement of consumers’ preferences, we showed how
the strategy developer can perform ex-ante comparisons of strategy
alternatives to select an optimal strategy. Uncertainties introduced by
the subjective valuation and scoring methods can be minimized by
using sensitivity analysis to test the robustness of the final selection.
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1 Introduction

In many cases, the financial situation of start-up companies only al-
lows equity financing of growth investments. Every increase in capital
needs a post-money valuation of the firm. Therefore, it is important
to have appropriate methods to evaluate these companies. Firm valu-
ation methods include flexible planning techniques and real option ap-
proaches. These methods are based on the present value method and/or
the binomial model. They assume that the firm’s cash flows can be du-
plicated by financial contracts and, therefore, imply a complete market,
at least for this market segment.

However, due to choices of action by the management, start-up com-
panies often show cash flow streams that cannot be duplicated at the
financial market. From an option pricing point of view, this incomplete-
ness can be interpreted as an ambiguous martingale measure to value
the firm’s state-dependent payoffs. On the other hand this ambiguity
can be regarded as a vague outcome. Hence, an exact valuation of the
company is not possible. Our model allows to determine bounds of the
firm’s value, if only an incomplete market exists, by taking option-style
alternatives of the management into consideration.

2 Rigid and Flexible Planning

To illustrate our approach, we proceed with an example and assume
an entrepreneur in the IT industry who plans to create a software. The
cash flow of his project depends on the future economic situation and
his decisions. In a simple two-period setting, the entrepreneur faces the
sequential decision problem shown in Figure 1.
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Fig. 1. Decision tree

At the beginning at point in time t = 0, the entrepreneur decides
between action S (creation of a small software) and action B (creation
of a big software). Subsequently, a chance move decides whether the
demand is high or low. High demand H1 occurs with physical probabil-
ity p(H1) = 0.8 and low demand L1 arises with probability p(L1) = 0.2.
In t = 1 the entrepreneur decides on extending (E) or not extending
(no E) the software, as shown in Figure 1. Afterwards, a second chance
move determines the demand, where high and low demand H2 and L2

again occur with physical probability 0.8 and 0.2, respectively. This
finally results in payoffs at t = 2.

According to Figure 1, the entrepreneur can choose one of the strate-
gies Ai = (a0, a1) with action choices a0 and a1 at t = 0 and t = 1,
respectively: A1 = (S,E), A2 = (S,no E), A3 = (B,no E), A4 = (S,E if
H1 and no E if L1), and A5 = (S,E if L1 and no E if H1). The strate-
gies A1, A2, and A3 are rigid, whereas A4 and A5 represent flexible
strategies. The corresponding decision matrix is shown in Table 1.

To value the strategies based on market prices we start with a com-
plete financial market that consists of a risky and a risk-free asset. The
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Table 1. Flexible planning with physical probabilities

Demand H1,H2 H1,L2 L1,H2 L1,L2

Prob p 0.64 0.16 0.16 0.04 Expected
Strategy Payoff value Rank

A1 1,000 100 400 70 722.80 2
A2 500 200 600 60 450.40 4
A3 720 490 490 405 633.80 3
A4 1,000 100 600 60 754.40 1
A5 400 70 500 200 355.20 5

price of the risky asset in a binomial setting can only increase (up-state)
or decrease (down-state) in every period by fixed factors. From risk-
neutral valuation technique it is well-known that in this situation it is
possible to compute risk-neutral probabilities p̂ and 1 − p̂ for up- and
down-state, respectively, as shown in the example in Figure 2. These
risk-neutral probabilities avoid arbitrage opportunities between flexible
planning projects and financial assets.

t = 0 t = 1 t = 2

1 1.1 1.21

81
90

108

144
120

100Risky asset

Risk-free asset

p̂ = 2/3

1− p̂
= 1/3

Fig. 2. Binomial market model

It is possible to compute the value of the flexible planning option
based on market prices of financial assets (see, e.g., Dixit/Pindyck
(1994) and Trigeorgis (1996)). Applying the risk-neutral instead of the
physical probabilities to the project payoffs yields the results presented
in Table 2. However, the expected values and the ranking of the strate-
gies in Table 2 differ from those in Table 1. Employing option pricing
theory, every strategy can be duplicated by a portfolio consisting of the
risky and the risk-free asset. Therefore, the present values in Table 2
not only characterize fair values, but are also obtainable by replication
via the financial market.
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Table 2. Flexible planning with market-oriented valuation

Demand H1,H2 H1,L2 L1,H2 L1,L2

Prob p̂ 4/9 2/9 2/9 1/9 Expected Present
Strategy Payoff value value Rank

A1 1,000 100 400 70 563.33 465.56 3
A2 500 200 600 60 406.67 336.09 4
A3 720 490 490 405 582.78 481.63 2
A4 1,000 100 600 60 606.67 501.38 1
A5 400 70 500 200 326.67 269.97 5

3 Valuation in an Incomplete Market

Below, we assume an entrepreneur whose payoff does not only depend
on his decisions and on chance moves that determine the financial
market development, but also on chance moves that merely affect his
project. Imagine, e.g., that marketing activities determine whether the
demand for his product increases with probability q, but these activi-
ties do not have any influence on the financial market. This situation
might be regarded as realistic since most investors are too small to have
an impact on prices at the financial market.

We model this situation by modifying the final payoffs in Figure 1.
At least for some states, the final payoffs are binary lotteries [q,max, 1−
q,min] with max > min instead of secure payoffs. The market prices of
financial assets do not vary if the payoff of the project changes from max
to min. In this situation, only an ambiguous market value of the project
exists. We can derive market values if the final outcome is equal either
to max or min. But due to its incompleteness, the financial market does
not provide risk-neutral probabilities for these states so that we cannot
combine both payoffs to receive an unambiguous market price. Instead,
we only have a market-oriented value for the lower outcome min and
the higher outcome max.

One possibility to deal with this ambiguity is to apply a preference
based approach to the market-oriented values V (max) and V (min). One
approach would be to assume a utility function u(x) and compute the
expected utility E(u([q, V (max), 1− q, V (min)])). A special case would
be to assume a linear utility function which would result in a value of
q · V (max) + (1 − q) · V (min). Thereby, we not only assume a linear
utility function, but also have to use the physical probability q.

We also propose the Hurwicz (1951) criterion which was designed
for the case of vagueness (see also Lindstaedt (2004)). This criterion
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characterizes a person by a parameter α which describes his attitude
towards ambiguity. The valuation resulting from this principle is α ·
V (max)+(1−α) ·V (min). The case α = 1 corresponds to the maximax
criterion, i.e. selecting the alternative that gives the highest payoff in
the best cases. The case α = 0 represents the maximin criterion.

If we look at our example in Figure 1 and only change the payoff for
the small software strategy with extension in state H1,H2 from 1,000 to
the binary lottery [q, 1,000, 1− q, 800], we obtain the decision problem
illustrated in Figure 3.

�

�

A3A4

400

300

500
Present value

Fig. 3. Present value interval for vague payoffs

The value of strategy A3 (”big software”) is constant since no am-
biguity is connected with this alternative. The value of strategy A4

(”small software plus flexible extension”) is vague. If the lower outcome
of 800 occurs, A3 is better and if the higher outcome of 1,000 arises, A4

is superior. Obviously, the choice of the decision maker now depends
on his preferences and/or his attitude towards ambiguity. However, the
preference-based calculus should not be applied directly to the payoffs,
but only to the ambiguous market-oriented values.
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1 Introduction

The relationship between donors and social entrepreneurs is often ac-
companied by diverse interest conflicts. According to Andreoni (1998,
2006), the significant and often largest part of the initial financial need
of a social entrepreneur or a major new initiative of an existing charity
originates from a lead donor. In this paper we consider a contracting
situation in which the lead donor and the entrepreneur disagree on the
optimal level of fundraising. More specifically, the lead donor dislikes
high fundraising. Irrespective of the exact cause of the preference mis-
match, the analysis examines how the grantor’s direct regulation of the
fundraising share affects the entrepreneurial decision calculus.

As a reaction to the restricted use of donations for fundraising, we
find that the entrepreneur takes measures to become independent of
donor claims by substituting for the leadership gift. In its extreme,
fundraising remains unchanged, the size of the social project increases
but the level of mission fulfilment is significantly lowered.

2 The Model

The social entrepreneur and the lead donor draw positive utility from
the overall public good expenditures G. Without explicitly character-
izing the decision calculus of the lead donor, her chosen size of the
seed grant X enters the model as an exogenous parameter. The en-
trepreneur then decides on its allocation to the direct provision of the
public good and further fundraising campaigns. Depending on the level
of the fundraising investment F , the total further donations resulting



238 Christoph Starke

from these campaigns are denoted by ψ(F ), with ψ(0) = 0, ∂ψ
∂F > 0 and

∂2ψ
∂F 2 < 0.

In addition to the previously characterized decision, the entrepreneur
has the opportunity to charge a fee from service recipients, which gen-
erates the aggregated return S. Since such a fee would exclude the
poorest from participation, her utility drawn from the provision of a
given size of the public good is lower than without charging a service
fee. This assumption is plausible since social entrepreneurs typically
engage in problems in which a certain population group is assumed to
be disadvantaged by the market allocation. By charging a fee, the so-
cial project approaches the market solution and, hence, is less desirable
for the entrepreneur. The general utility function of the entrepreneur
is given by

U(F ) = β(S)G(F ) with G(F ) = X + S − F + ψ(F ), (1)

where β is a discount factor, with β(0) = 1 and ∂β
∂S < 0.

We consider two versions of public good provision. In the first ver-
sion, the entrepreneur covers expenditures exclusively by donations.
Hence, with S1 = 0 and β(0) = 1, the utility function reduces to

U1(F1) = G1(F1) = X − F1 + ψ(F1). (2)

The second version features a positive service fee income S2 > 0.
With β(S2) < 1, the utility function can be written as

U2(F2) = β(S2)[X + S2 − F2 + ψ(F2)]. (3)

By taking into account that the entrepreneur can maximally spend
the leadership donation as well as the service charges on fundraising,
we can formalize her constrained optimization problem for each project
version i, i = 1, 2:

max
Fi

Ui(Fi)

s.t. Fi ≤ X + Si (4)
Fi ≥ 0

Without loss of generality, we assume that there exists an interior
solution for the first and, hence, the second problem. Consequently, the
optimal choices F ∗

i satisfy the first order condition

1 =
∂ψ(Fi)
∂Fi

. (5)
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Because marginal costs and returns from fundraising are equal for
both versions of public good provision, the optimal choices of solic-
itation expenditures coincide: F ∗

1 = F ∗
2 . Employing these quantities

in equations (2) and (3) yields the condition by which the social en-
trepreneur prefers version one over two:

G1(F ∗
1 ) ≥ S2

1
β(S2) − 1

. (6)

As a consequence, U1(F ∗
1 ) ≥ U2(F ∗

2 ) holds if the service fee revenues
and the utility function parameter are relatively small. That is, the
lower utility of one Euro public good expenditure in the second variant
cannot be compensated by the additional income to the amount of S2.
This decision outcome is now taken to be the status quo of the following
analysis.

3 Donor Restrictions on Fundraising Expenditures

Suppose now, the lead donor finds the chosen fundraising level of the
social entrepreneur excessive and limits that part of the seed grant
which can be used for solicitations. As Thornton (2006) observes, ”[. . . ]
many government funders place explicit restrictions on the use of public
funds by nonprofits, and these restrictions frequently prohibit nonser-
vice spending, such as fundraising.”

The entrepreneur is now permitted to use only F of the leader-
ship gift to solicit for further donations. Certainly, an effective cap
would require F to be strictly lower than F ∗

i . Without services fees,
this restriction prevents the entrepreneur from generating the maxi-
mum fundraising income and leaves condition (5) unmet. The scope of
the public good provision and, equivalently, the entrepreneur’s utility
reduces to

U1(F ) = G1(F ) = X − F + ψ(F ). (7)

This inferiority is mitigated in the second version by the allocation of
service fee income to fundraising until, given the charges are sufficiently
high (S2 ≥ F ∗

i − F ), the optimal level is reached again.

U2(F ) = β(S2)[X + S2 − F̃2 + ψ(F̃2)], (8)
with F̃2 = F + S2 −R∗ and R∗ ≥ 0.

The residual fraction, denoted by R∗, is directly invested into pub-
lic good provision. Equation (8) elucidates that the entrepreneur also
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draws less utility from the second project variant if S2 < F ∗
i − F .

However, compared to project version one, the absolute amount of re-
duction differs. Furthermore, from the comparison of utility equations
(7) and (8) one can infer that public good provision without fees is still
preferred if and only if

G1(F ) ≥ R∗ + [ψ(F + S2 −R∗)− ψ(F )]
1

β(S2) − 1
. (9)

The numerator on the right hand side characterizes the difference
in the size of the public good between both project versions. In their
maxima, the size of version two exceeds that of the first by the amount
of the service fee income which is not used for fundraising, R∗, and the
part of the fundraising cash flow which is generated by the invested
service fee income [ψ(F +S2−R∗)−ψ(F )]. A switch in the preference
relation is now advanced by two factors. First, in the status quo the
difference in the size of the public good between version two and one
has been S2. With the donor’s restriction, the entrepreneur devotes the
amount S2−R∗ to the fundraising campaign, which yields an expected
outcome of more than S2 − R∗, so that the numerator in equation (9)
is larger than S2. Second, the marginal reduction of utility due to a
decrease in the size of the public good is relatively lower for version
two. Consequently, the utility loss because of Gi(F ) < Gi(F ∗

i ), i = 1, 2
is relatively larger in the first project variant, which makes it relatively
less attractive.

Depending on the arrangement of F , S2 and β, the fundraising cap
results in a breach of inequality (9) and, thus, in a choice of project
version two with an observed fundraising share being larger than F .
This scenario is depicted in figure 1. In the most drastic case with a
sufficiently high service fee income (S2 ≥ F ∗

i −F ), the final fundraising
expenditures remain completely unaffected by the regulation and the
size of the public good is larger than in the status quo. Solely, the util-
ity of the entrepreneur from providing the public good is significantly
lower, which indicates a departure from the social mission.

4 Conclusion

The previous analysis showed how the lead donor’s efforts to restrict
the entrepreneur’s fundraising expenditures can negatively affect the
project’s mission but, simultaneously, remain ineffective to reduce the
level of solicitations itself. This, however, is likely to occur only with
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Fig. 1. Effects of a limit on fundraising expenditures

those social projects in which potential service fee revenues are rela-
tively high and the entrepreneurial utility loss from charging the fee
is relatively limited. Examples for such cases are not rare, in partic-
ular with regard to social entrepreneurship projects in industrialized
countries. Indeed, prices of cultural institutions generally vary up to
production costs, churches usually claim contributions, and even soup
kitchens in European metropolian areas are not for free. Thus, one can
observe that recipients are able to afford some expenditure to satisfy
their basic needs and the marginal rate of exclusion by charging an
additional Euro seems to be sufficiently low. Consequently, potential
regulation attempts of the lead donor to restrict the entrepreneur’s
level of solicitations should largely remain ineffective.
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Summary. Generally, data mining is the process of analyzing data from
different viewpoint and summarizing it into valuable information. This area
presents new theories and methods for processing large volumes of data and
has obtained noteworthy consideration among researchers. In this paper, a
new approach for decision-making process is developed based on the rough
set theory of data mining and neural networks combined with data envelop-
ment analysis method. The proposed procedure assesses the effect of personnel
attributes on efficiency, utilizing DEA tool in estimating the efficiency of alter-
native decision making unites. By developing decision system, rough set theory
is applied for feature selection (reducts) and all of plausible and meaningful
ANN models are constructed for each reduct. Finally DEA method is used
for selecting the best reduct and also most important personnel attributes
for efficiency analysis. Persian bank branches employed for data generation
and the characteristics of its personnel are analyzed on effectiveness of bank
branches.

Key words: Data Mining, Data Envelopment Analysis, Rough Set Theory,
Artificial Neural Network, Decision Making.

1 Introduction

Too many immeasurable influences and complex relationships among
attributes impact efficiency in companies. The rough set, proposed by
Z.Pawlak, is one of the techniques for the identification and recognition
of common patterns in data [1, 2]. This technique has found too many
applications in knowledge discovery. At the present, the study on rough
set theory is focusing on feature selection techniques with much success
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[3, 4, 5, 6, 7, 8, 9]. However, existing heuristic rough set approaches to
feature selection are insufficient at finding optimal reductions. On the
other hand, it is not feasible to search for optimal in even average sized
datasets. So the combination of this method by other robust data min-
ing tools may help practitioners to go further into feature selection to
obtain more accurate results. In this paper, a new approach for feature
selection by the combination of rough set theory, neural network and
data envelopment is proposed. An effective algorithm is formulated,
which will verify the critical attributes influencing efficiency in organi-
zations. Persian bank branches employed for data generation and the
characteristics of its personnel are analyzed on effectiveness of bank
branches.

2 An Integrated Algorithm for Decision Making
Procedure

Efficiency relevant to human attributes is a goal that is rarely ques-
tioned in contemporary organizations. As Personnel specifications have
greatest impact on efficiency, they can help us designing work environ-
ments for maximizing efficiency. The model described in this section
proposes an analytic function which predicts these factors exactly. This
model is applicable for all problems associated with making decision in
companies comprises of decision making units and will be valuable for
executive and senior managers. This algorithm has the following gen-
eral basic steps:

Step 1: Calculate efficiency of each Decision making unit.
Step 2: Determine decision system and collect related information.
Step 3: Data pre-processing.
Step 4: Apply rough set algorithm to determine plausible reducts.
Step 5: Select preferred ANN for each reduct by cross validation.
Step 6: Select best reduct by Data Envelopment Analysis.

3 Case Study

Explanation of implementing every stage of mentioned procedure is
described through a case study. The case study focuses on Persian
bank branches to analyze the effect of personnel specifications on bank
branches efficiency.
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3.1 Calculate Efficiency of Each Decision Making Unit

Efficiency scores of bank branches are calculated on major features of
production financial firms, containing, number of employees and fixed
assets as inputs and loans, deposits and operating income as outputs
according to the nature of financial firms in Iran. Related data was
obtained for 102 branches of Persian bank for the year of 2006 and
Output-oriented BCC Model for efficiency calculation is used to calcu-
late efficiency scores.

3.2 Determine Decision System and Collect Related
Information

To construct decision system of this case study, four groups of person-
nel are identified in each branch. First group are associated as tellers
who conduct most of a bank’s routine transactions. The second group
consists of supervisors who cashing checks and performing controlling
task on tellers transactions. Branch mangers and their assistants are
in third and fourth groups. Each branch has one branch manager and
may have several branch assistants. We have recognized 28 conditional
attributes of personnel specifications in this study with the decision at-
tribute of efficiency. Personnel attributes are categorized in four groups
of quantity, education, age and work experience as follows:

*Quantity : No. of males,No. of singles,No. of Tellers
*Education :No. of MS, No. of BS,No. of upper Diploma,No. of
Diploma, No. of below Diploma
*Age :Average,Minimum,Maximum Age of each personnel group
*Work Experience : Average,Minimum,Maximum Work Experience
of each personnel group

3.3 Data Pre-processing

Naturally, we perform the data pre-processing tasks by applying data
normalization. Data in decision system are normalized as follows:

*Quantity (divided by) Number of personnel in each branch
*Education (divided by) Number of personnel in each branch
*Work Experience (divided by)Maximum work experience in each
branch
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3.4 Apply Rough Set Algorithm to Determine Plausible
Reducts

In this step we calculate reducts of rough set theory for constructed
decision system. The reducts are generated by genetic algorithm [10].
12 reducts were extracted as follows :

1. Average Work Experience of Supervisor, Average Age of Teller, Number of Male
2. Number of Male, Average Age of Supervisor, Average Age of Teller
3. Number of Male, Number of Teller, Average Work Experience of Assistant
4. Minimum Age of Teller, Maximum Work Experience of Teller, Minimum Work

Experience of Assistant
5. Number of Male, Work Experience of Branch manager, Minimum Work Expe-

rience of Supervisor
6. Number of Male, Maximum Age of Supervisor, Maximum Work Experience of

Supervisor
7. Number of Single, Number of BS, Average Work Experience of Teller
8. Minimum Age of Supervisor, Average Work Experience of Assistant, Maximum

Work Experience of Supervisor
9. Number of Single, Maximum Age of Teller, Work Experience of Branch Manager

10. Work Experience of Branch Manager , Minimum Age of Supervisor, Maximum
Age of Assistant

11. Average Work Experience of Teller, Number of BS, Number of Single, Number
of Male

12. Number of Teller, Number of BS, Number of Single, Number of Male

3.5 Select Preferred ANN for Each Reduct by Cross
Validation

Much of the emphasis here is selecting a good subset of conditional
features according to different data set of reducts. As all reducts have
classification quality of 100% in training data set, we may differentiate
their performance by calculating their accuracy in predicting efficiency
of unseen objects. For this reason, neural networks are constructed for
each reduct. To estimate the quality of constructed neural networks,
cross validation test technique is used. As discussed by Cybenko and
Patuwo et al., a single hidden layer is sufficient in constructing neural
nets [11]. To find the appropriate numbers of hidden nodes in ANN
analysis of each reduct, following steps are performed to construct net-
works with one to q nodes, where q is an optional parameter and will
be changed until the desired goal error met by the algorithm.

- Training step, using scaled conjugate gradient training algorithm [12]
- Evaluate the model using the test data and obtaining MAPE error

Where we define,
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- Variable MAPEijk is defined as: Mean Absolute Percentage Error of
ANN, with regard to kth part of data, used as test data and j node in
hidden layer, both related to ith reduct.

- Variable ERRij is defined as: ERRij= Average [MAPEijk: k=1, 2, ..]
or average of MAPE in all constructed ANN for ith reduct with regard
to j node in hidden layer.

- Variable AERRi is defined as: AERRi =Average (ERRij)

- Variable VarERRi is defined as: VarERRi =Variance (ERRij)

- Variable MaxERRi is defined as: MaxERRi = Max (ERRij)

- Variable MinERRi is defined as: MinERRi = Min (ERRij)

Finally these variables will use to rank the performance of each
reduct according to their constructed ANN. In order to calculate error
variables,Cross validation test technique is employed with 4 folds. The
value of the desired minimum error has been defined between 6 and 8
percent and the value of q has been defined 40. Table 1 shows error
variables of MAPEijk calculated for reduct 1 versus number of nodes
in hidden layer.

Table 1. Mean Absolute Percentage Error of Reduct 1

Neuron# 40 35 30 25 20 15 10 9 8 7 6 5 4 3 2 1

Run I: 0.440 0.544 0.692 0.119 0.093 0.109 0.160 0.172 0.056 0.070 0.066 0.055 0.060 0.088 0.080 0.028

Run II: 0.777 0.480 0.592 0.388 0.093 0.237 0.225 0.506 0.181 0.157 0.169 0.155 0.153 0.176 0.170 0.195

Run III: 0.111 0.136 0.829 0.416 0.101 0.105 0.103 0.336 0.037 0.053 0.039 0.028 0.083 0.039 0.053 0.047

Run IV: 0.474 0.328 0.675 0.469 0.824 0.288 0.229 0.153 0.358 0.171 0.184 0.177 0.206 0.188 0.190 0.175

ERR1j 0.451 0.372 0.697 0.348 0.568 0.185 0.182 0.267 0.158 0.113 0.115 0.104 0.125 0.123 0.123 0.111

3.6 Select Best Reduct by Data Envelopment Analysis

DEA have been utilized to rank reducts according to error variables.We
treated scores of AERRi, VarERRi, MaxERRi and MinERRi for each
reduct as inputs of efficiency with the specific output of 1 to calculate
efficiency of each reduct. 9th reduct identified as the best one, with
gratest full rank efficiency score. By constructing neural network on
9th reduct,we will obtain effective expert systems, which can be uti-
lized by senior manager of the bank for sensitive analysis or efficiency
prediction of inefficient or new bank branches according to their per-
sonnel specifications values.
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4 Conclusion

The methodology proposed in this paper provided a six-stage analysis
to help companies formulate an effective decision-making procedure to
demonstrate critical factors impacting efficiencies of decision making
unites.This approach has been applied to the particular case of Per-
sian bank, evaluating personnel specification impact on bank branches
efficiency. The study shows that three futures of 9th reduct from 28
conditional features, have a critical impact on the efficiency of bank
branches. This reduction in features number decrease the time of deci-
sion making and consequently reduces the cost of efficiency evaluation.

References

1. Z. Pawlak, 1982,Rough sets, International Journal of Computer and In-
formation Sciences, Vol 11, pp. 314-356.

2. Z. Pawlak, 1991, Rough Sets: Theoretical Aspects of Reasoning about
Data. Boston, MA: Kluwer.

3. J. Stefanowski, 1997, Rough sets as a tool for studying attribute depen-
dencies in the urinary stones treatment data set, in Rough Sets and Data
Mining: Analysis and Imprecise Data, pp. 177-196.

4. Andrew Kusiak, 2000. Autonomous Decision-Making: A Data Min-
ing Approach. 274 IEEE Transactions on Information Technology in
biomedicine, Vol 4 Issue 4, pp. 274-284.

5. Weijun Xia, 2007, Supplier selection with multiple criteria in volume dis-
count environments, Omega, Vol 35, Issue 5, October 2007, pp. 494-504.

6. Tzu-Liang, 2007, Rough set-based approach to feature selection in cus-
tomer relationship management, Omega, Vol 35, Issue 4, pp.365-383.

7. Lian-Yin Zhai,2002, Feature extraction using rough set theory and ge-
netic algorithms-an application for the simplification of product quality
evaluation ,Computers & Industrial Engineering, Vol 43, Issue 4, pp.661-
676.

8. Xiangyang Wang, 2006, Rough set feature selection and rule induction
for prediction of malignancy degree in brain glioma Computer Methods
and Programs in Biomedicine, Vol 83, Issue 2, pp.147-156.

9. Andrew Kusiak,2000, Data mining in engineering design: a case study,
IEEE International Conference on Robotics and Automation, Proceed-
ings Vol 1,pp.206 - 211.
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1 Introduction

Today, there is no doubt that modern portfolio selection theory was
initiated by the famous contribution of Markowitz [5]. However, even
more than fifty years later the practical relevance of Markowitz’s work
lies far behind the theoretical impact of his ideas. Practical applications
of the Markowitz approach are mostly impeded by the necessity of the
adequate estimation of expectation values, variances, and covariances
of security returns. While historical estimations for variances and co-
variances work quite satisfactorily, return realizations are only a poor
proxy for actual expected future returns. We want to examine the effi-
ciency of portfolio management decisions based on estimated expected
returns derived from analysts’ dividend forecasts (thereby allowing for
non-flat term structures of interest rates and German tax rules) in
comparison to nine other portfolio selection strategies. Moreover, we
analyze consequences of expectation biases in dividend forecasts and
estimate market risk premia.

2 Theoretical Background

We make use of a variant of the multi-period CAPM by Wiese [7].
Consider a firm j with expected dividends E(d̃j,t) according to analysts’
forecasts. Let rf,t stand for the riskless interest rate from t − 1 to
t, r̃j,t for the security returns, and r̃m,t for market portfolio returns.
We introduce τ (equ) as the tax rate for dividends and capital gains.
Moreover, we need τ (debt) to denote the tax rate for fixed income (debt)
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financial instruments. The risk premium Φj,t shall be the same for all
t = 1, . . . , T . We assume a constant dividend growth rate gj from t = 3
on. Forward rates are available up to T̂ = 15. We assume rf,t = rf,T̂

for t ≥ T̂ . Thus, our adaption of the formula of Wiese [7] is:

Vj,0 =
3∑

t=1

E(d̃j,t) · (1− τ (equ))t∏t
κ=1 (1− τ (equ) + rf,κ · (1− τ (debt)) + Φj)

+
15∑
t=4

E(d̃j,3) · (1 + gj)t−3 · (1− τ (equ))t∏t
κ=1 (1− τ (equ) + rf,κ · (1− τ (debt)) + Φj)

(1)

+
1

(1− τ (equ) + rf,15 · (1− τ (debt)) + Φj − (1 + gj) · (1− τ (debt)))

· E(d̃j,3) · (1 + gj)13 · (1− τ (equ))16∏15
κ=1 (1− τ (equ) + rf,κ · (1− τ (debt)) + Φj)

.

(1) is to be solved with respect to Φj for four different scenarios (see
below) in order to derive estimators for expected stock returns.

3 Empirical Setting

We base our empirical examination on monthly data of (all) 16 out
of 30 equity shares that belong to the DAX from 01/01/1994 until
07/01/2004. For any point in time t from 12/01/1996 until 06/01/2004
we apply the following portfolio selection strategies (the first four are
based on dividend forecasts and the calculation of Φj according to for-
mula (1)): (1) flat interest rate structure without German taxation,
(2) non-flat term structure without taxes, (3) flat term structure with
taxes, (4) non-flat term structure with taxes, (5) market portfolio, (6)
equally weighted portfolio, (7) variance minimal portfolio, (8) and (9)
portfolios based on historical data (without/with taxes), (10) and (11)
three-factor model portfolios according to Fama and French [2] (with-
out/with taxes), (12) and (13) Bayesian portfolios according to Kempf
et al. [4] (without/with taxes). We estimate excess return variances
and covariances on the basis of historical excess returns with or with-
out taxes. We determine several performance measures: Sharpe ratio,
Jensen’s alpha, Treynor ratio, and Treynor-Black ratio.3 For all 13 cases
we compute 91 successive optimal portfolios with a time horizon of one

3 See i.e. [1].
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month each subject to short sales constraints. Without loss of gener-
ality, we define an arbitrary level of risk of σP = 3%, and maximize
expected excess return. We apply the average of the last 5 years of the
annual growth rate of the gross national income just before the point in
time when the portfolio selection takes place. In the revolving portfolio
optimization process we determine corresponding realized portfolio ex-
cess rates of returns after taxes. In order to examine the performance
of our strategies for different market settings we compute them sepa-
rately for two subperiods. While the time period from 12/01/1996 to
08/01/2000 is characterized by rising stock prices, the second period
from 09/01/2000 to 06/01/2004 describes a situation with falling ones.

4 Empirical Results

Table 1 presents the Sharpe ratios for the 13 cases. Obviously, portfolio
management based on analysts’ dividend forecasts performs quite well
particularly in comparison to the three benchmark strategies 5, 6, and
7. Moreover, taking non-flat term structures and/or taxes into account
actually increases the resulting Sharpe ratio. Furthermore, strategy 4
performs well both in the first period and in the second period. All
dividend oriented portfolio selection strategies outperform the market
portfolio on a 5 % significance level in the second period, according to
the Memmel efficiency test [6]. Strategies 6 and 7 are outperformed by
strategies 1 to 4 in the second period at least on a 20 % significance
level. No other portfolio selection strategies (from 8 to 13) are able to
outperform the three benchmark strategies 5, 6, and 7 on a significance
level of 20 % or better.

Our results of Table 1 are verified by the findings for the other per-
formance measures: portfolio strategies based on dividend forecasts are
quite advantageous, in particular when based on non-flat term struc-
tures and after-tax returns. Once again, dividend based approaches
perform particularly well in times of falling stock prices (period 2).
Only portfolio strategy 4 is able to reach a positive value of Jensen’s
alpha on a 10 % significance level in both periods. All other significantly
positive values for Jensen’s alpha are also only achieved by dividend
based portfolio selection strategies. Moreover, portfolio strategy 4 is the
only one that – on a 10 % level – implies a significantly higher Treynor
ratio than the market portfolio in both subperiods.4 The same holds

4 The significance was determined according to the test statistic by Jobson and
Korkie [3].
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Table 1. Sharpe ratios for thirteen portfolio optimization strategies

period 1 period 2

# strategy ϕS rank ϕS rank

1 div: flat, without taxes 0.2729 2 0.0650 3
2 div: nonflat, without taxes 0.2426 6 0.0838 2
3 div: flat, with taxes 0.2605 4 0.0492 4
4 div: nonflat, with taxes 0.3923 1 0.0955 1
5 market portfolio 0.2647 3 -0.1652
6 equally weighted 0.2581 5 -0.0869
7 variance minimal 0.2107 9 -0.1067
8 math. hist. without taxes 0.1769 10 0.0182 5
9 math. hist. with taxes 0.1769 11 -0.0253
10 3-factor-model without taxes 0.1357 12 -0.0296
11 3-factor-model with taxes 0.1357 12 -0.0365
12 Bayes without taxes 0.2111 7 -0.0809
13 Bayes with taxes 0.2111 8 -0.0912

Table 2. Jensen’s alphas and Treynor ratios for thirteen portfolio optimiza-
tion strategies

Jensen’s alpha Treynor ratio

period 1 period 2 period 1 period 2

# ϕJ rank ϕJ rank ϕT rank ϕT rank

1 0.00267 3 0.00483 4 0.01703 2 0.00459 3
2 0.00096 5 0.00507 3 0.01587 4 0.00654 2
3 0.00350 2 0.00557 2 0.01635 3 0.00350 4
4 0.00437 1 0.00698 1 0.04322 1 0.00753 1
5 0.00099 4 -0.00248 13 0.01361 6 -0.01038 11
6 0.00094 6 0.00015 9 0.01366 5 -0.00555 9
7 0.00068 7 -0.00129 12 0.01311 7 -0.00832 10
8 -0.00094 12 0.00157 5 0.01046 12 0.00179 5
9 -0.00144 13 0.00090 6 0.01046 13 -0.00255 6
10 -0.00052 10 0.00034 7 0.01070 11 -0.00340 7
11 -0.00079 11 0.00027 8 0.01070 10 -0.00432 8
12 0.00004 9 -0.00065 10 0.01240 8 -0.01271 12
13 0.00006 8 -0.00124 11 0.01240 9 -0.01478 13
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true for strategy 4 in comparison to strategy 6 and (on a 20 % sig-
nificance level) to strategy 7. Once again, all other significantly better
performance results in comparison to the market portfolio are related
to the also dividend oriented strategies 1 to 3. The dividend strategies
also have the best four rankings according to the Treynor-Black ratio.

The good performance of portfolio selection strategies that are based
on dividend forecasts may be surprising, as there is an extant literature
on the biases in analysts’ dividend forecasts. In order to examine the
consequences of too optimistic/pessimistic market assessments by an-
alysts, we analyze four additional scenarios with all dividend forecasts
adjusted by +10 %, +20 %, –10 %, or –20 % in comparison to the
”true” dividend forecast. We find that such a general forecasting bias
is not able to considerably alter the resulting ranking of the four divi-
dend oriented strategies in comparison to the other portfolio selection
strategies. 16 out of 32 cases have no changes in the ranking, in twelve
cases there is a ranking difference of one and in the remaining four cases
the ranking difference is greater than one. This may be viewed as an
indirect evidence that general expectation biases in analysts’ forecasts
are only of minor relevance for issues of portfolio management.

Each approach for the estimation of expected security returns may
also serve as a means for estimating market risk premia. After estimat-
ing individual expected security returns, one simply has to compute the
implied expected excess return of the market portfolio for given current
security prices. For strategies 1-4 and 8-13 we estimated market risk
premia from 12/01/1996 until 07/01/2004. The market risk premia es-
timators are lowest for strategies 1 and 3 (about 1 to 2 %). Moreover,
strategies 1 and 3 are the only ones that do not imply risk premia of or
below zero during the period 2 with falling stock market prices. Accord-
ingly, estimates of risk premia vary much more over the two subperiods
when looking at the six approaches not based on dividend forecasts
which is certainly not very plausible. Nevertheless, strategies 2 and 4
are also based on dividend forecasts, but lead to negative estimators
for market risk premia in both subperiods (from −0.003 to −0.016).
But in contrast, strategy 4 is the one with the best overall performance
according to Tables 1 and 2. Such a constellation verifies the contradic-
tion between applying a method of expectation formation for portfolio
optimization on the one side and for assessing market risk premia on
the other side. This is not too surprising, because investors are not re-
ally acting according to analysts’ dividend forecasts, because in such a
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situation of homogeneous expectations everyone would hold the market
portfolio. This is not the case, because strategy 4 does not result in a
reproduction of strategy 5. As a minimum requirement for reasonable
estimates of market risk premia, one has to choose a scenario that is
consistent with market equilibrium.

5 Conclusion

Even after fifty years of intense research it still remains quite diffi-
cult to design ”active” portfolio management strategies that are able
to beat ”passive” approaches like simply holding the market portfolio.
The main objective of this paper was to examine how analysts’ div-
idend forecasts might be utilized for portfolio management purposes.
In our empirical section we showed the superiority of portfolio selec-
tion strategies based on analysts’ dividend forecasts over alternative
approaches. Moreover, we found out that biased dividend forecasts are
of only minor relevance for the efficiency of the dividend strategies. We
demonstrated that superior performance results are not in line with
the conjecture that analysts’ dividend forecasts are helpful in calculat-
ing market premia. From all these findings, we conclude that analysts’
dividend forecasts are indeed helpful in portfolio optimization, but not
for the estimation of market risk premia.
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Department of Business Administration, Uludag University, Bursa, Turkey
ggokay@uludag.edu.tr, ctaskin@uludag.edu.tr

Summary. Efficiency analysis is a survival tool for bank managers due to
severe competition in retail banking industry. Certainly, it is important to
identify the inefficient branches of a bank in building better service manage-
ment and marketing strategies. The problem here is to eliminate the causes of
their inefficiencies in order to improve the inefficient branches. In this study, a
two-stage methodology consisting of Data Envelopment Analysis (DEA) and
data mining is proposed for solving the problem. Firstly, DEA is used for
measuring the relative efficiencies of a bank’s branches. Secondly, data min-
ing is used to extract useful information from given data consisting of the
characteristics of bank branches, thus allowing bank managers to identify the
underlying causes of inefficiencies and helping them to improve their service
management. The approach is used in the valuation of the one’s branches of
the biggest banks in Turkey.

Key words: Data Envelopment Analysis, Data Mining, Finance and Banking

1 Introduction

The service industry has emerged as the fastest growing industry com-
pared to the other economies. Efficiency is a significant issue in the
service industry. In current economic systems, efficiency analyses have
become an important decision support tool for the banking industry.
Bank managers want to identify and eliminate the underlying causes of
inefficiencies, thus helping their firms to gain competitive advantages
or, at least, meet the challenges from others [11]. There exist a large
number of earlier parametric and non-parametric studies on the effi-
ciency of bank branches. DEA is an important method of the efficiency
analysis. In spite of this, the results of a DEA do not give information
about the differing characteristics of efficient and inefficient branches.
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The aim of this paper is to propose a two-stage methodology for identi-
fying and improving relatively inefficient bank branches. The integrated
form of DEA and data mining is used here to compensate each other.
Two-stage methodology includes the use of data envelopment analy-
sis, CCR (Charnes, Cooper and Rhodes) model, and association rule
mining method. Firstly, CCR model is implemented to evaluate the
relative operational efficiencies of the bank branches from a produc-
tion perspective [7]. Then, Apriori association rule mining algorithm is
employed to discover useful knowledge from the data which consists of
the characteristics of efficient and inefficient bank branches in order to
guide the improvement of inefficient branches.

2 Research

2.1 Data Envelopment Analysis and Association Rule Mining

DEA provides a nonparametric methodology for evaluating the effi-
ciency of each comparable decision making units (DMUs) relative to
one another. An important feature of DEA is its capability to pro-
vide efficiency scores, while taking into account of both multiple inputs
and multiple outputs [4],[3],[2],[11]. DEA employs linear programming
techniques to establish an input-output based efficiency ratio. It also
examines the effects of changes in input and output values. One of the
fundamental assumptions of DEA is that of a functional similarity of
the DMUs. It is assumed that DMUs in the sample of a DEA model are
similar if they utilize the same set of inputs and outputs. But in real
world, there is diversity in the set of DMUs and DEA does not take
the diversity into consideration [8]. DEA model can be divided into an
input-oriented and an output-oriented model, depending on the reason
for conducting DEA [9],[12].

Inducing association rules is one of the basic tasks of data mining
which can be defined as a process of extracting relationships in huge
databases [1]. Unlike traditional rule induction which examines one
variable at a time, association rules evaluate a combination of variables
simultaneously; therefore represent correlated features better [6]. Thus,
it can be used as a method for inquiring into the differences between
efficient and inefficient DMUs. Literature about bank branch efficiency
mostly includes the use of one method alone and pays little attention to
the use of DEA and data mining together. Therefore, the integrated use
of these two methods will be a significant contribution to the literature.
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2.2 Methodology

The population of the study consists of 48 branches of a big bank in
Turkey. In the first stage, an output-oriented model of CCR is imple-
mented to evaluate the relative operational efficiencies of 48 branches
from a production perspective. Firstly, input and output variables are
selected for DMUs after a literature survey [10],[3],[7],[11],[12],[5]. The
operational efficiency assessment considers data from January 2007 to
June 2007. The input-output set used in this analysis is shown in Ta-
ble 1, where (t) denotes time period and ∆ denotes change in values
between the start and the end of period t.

Table 1. Input-Output set

Input Set Output Set
Number of managerial personnel(t) ∆ in personal accounts(t)
Number of clerical personnel(t) ∆ in commercial accounts(t)
Number of computers(t) ∆ in savings accounts(t)
Working space(t) ∆ in personal credit applications(t)

∆ in commercial credit applications(t)

In the second stage, Apriori algorithm is employed to discover useful
knowledge from the collected data consisting of the characteristics of
efficient and inefficient bank branches in order to guide the improve-
ment of inefficient bank branches. Clementine 8.1 data mining software
is used for this task.

2.3 Findings

The results of DEA show that only one branch has an efficiency score
equal to one and the other branches have been found to be inefficient.
When the characteristics of this efficient branch is examined, it is found
that the branch has minimum input and maximum output values just
because of its location. So, it is defined as an outlier and DEA is imple-
mented for the 47 branches. The efficiency scores of some branches are
shown in Fig. 1. As seen, only 9 out of 47 bank branches have efficiency
scores equal to one. In addition, efficiency scores of 11 branches which
are the most inefficient ones can be seen in Fig. 1. After the identifica-
tion of inefficient bank branches, the underlying causes of inefficiencies
should be first identified, then eliminated.

That’s why, a database including the characteristics of both the ef-
ficient and inefficient branches are explored by Apriori algorithm in
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Fig. 1. Efficiency scores of bank branches

Table 2. Sample association rules

Consequent Antecedents
Branch Name = B
(Efficient)

Number of PhD graduates=’0’ & Open at lunch time
=’yes’ & Safe-deposit box=’yes’ & ATM plus=’yes’

Branch Name = B
(Efficient)

Open at lunch time=’yes’ & Safe-deposit box=’yes’
& ATM plus=’yes’ & Open at weekends=’yes’

Branch Name = D
(Efficient)

Number of personnel working more than 15 years=
’14’ & Number of high school graduates=’14’ & Open
at lunch time=’yes’ & Safe-deposit box=’yes’

Branch Name = D
(Efficient)

Number of personnel working more than 10 years
=’15’ & Number of high school graduates=’9’ & Open
at lunch time=’yes’ & Number of MSc graduates=’0’

Branch Name = F
(Efficient)

Number of personnel working more than 10
years=’11’ & Number of high school graduates=’8’
& Safe-deposit box=’yes’ & ATM plus=’yes’

Branch Name = A
(Inefficient)

Number of personnel working more than 15 years=’6’
& Number of BSc graduates = ’10’ & Open at lunch
time=’no’ & Safe-deposit box=’no’

Branch Name = C
(Inefficient)

Open at lunch time=’no’ & Safe-deposit box=’no’ &
ATM plus=’yes’ & Number of PhD graduates=’2’

Branch Name = E
(Inefficient)

Number of personnel working less than 5 years=’8’
& Number of BSc graduates=’12’ & Number of high
school graduates=’3’ & Open at weekends=’no’

Branch Name = S
(Inefficient)

Open at lunch time=’no’ & Safe-deposit box=’no’ &
ATM plus=’yes’ & Open at weekends=’no’

Branch Name = Z
(Inefficient)

Number of personnel working more than 15 years=’3’
& Number of MSc graduates=’5’ & Open at lunch
time=’no’ & Safe-deposit box=’no’
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order to obtain useful knowledge. Some of the extracted association
rules are shown in Table 2. As illustrated in Table 2, association rules
show the differences between efficient and inefficient branches’ charac-
teristics. ”Working experience”, ”open at lunch time”, ”open at week-
ends” and ”safe-deposit box” variables are found to be important for
the efficiency scores of the branches.As seen, working experience of the
staff of efficient bank branches is higher than inefficient ones’. Besides,
efficient bank branches employ high school graduates more than inef-
ficient branches. It is important for the branch to have a safe-deposit
box and working hours of the personnel seem to have a serious effect on
the efficiency scores. An association rule has two important measures,
support and confidence, which give information about the accuracy of
the rule. The results of the rule accuracy analysis are given in Table 3.

Table 3. Rule accuracy analysis

Rules (Efficient Branches) Support: 11.1%
Confidence: 100.0%

Rules (Inefficient Branches) Support: 9.1%
Confidence: 100.0%

3 Conclusion

Severe competition in banking industry urges banks to be more effi-
cient. So, bank managers should not only identify the inefficient bank
branches, but also understand the causes of the inefficiencies. DEA is
a powerful method of efficiency analysis, but it only evaluates the ef-
ficiency of comparable DMUs relative to one another. Therefore, an
integrated form of DEA and data mining is proposed here. In the first
stage, DEA is implemented to evaluate the efficiencies of the branches.
Then, Apriori association rule mining algorithm is employed to dis-
cover the factors that lead to diversity in the DMUs. The findings
reflect that there are clear differences between efficient and inefficient
branches’ characteristics. These differences may help bank managers to
guide the improvement of inefficient branches and lead to the formula-
tion of service management strategies. However, this research work has
limitations like many others. In the study, the relative operational effi-
ciencies of the bank branches are evaluated only. Future studies should
also include the measurement of quality and profitability efficiencies
with the help of the proposed two-stage approach. The results of these
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efficiency analyses will support bank managers in their service manage-
ment and marketing decisions.
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1 Introduction

One key driver of a bank’s total interest rate risk is the position of
non-maturing deposits. Several papers such as [6], [8], and [7] value
non-maturing deposits in an arbitrage-free framework and analyze their
risk profile. All these models consist of three major components: first,
the short rate process, i.e. the dynamics of the default-free interest
rate term structure; second, the interest rate pass-through, i.e. the link
between the development of the deposit rates and the development of
default-free interest rates, in general the short rate; third, the develop-
ment of the deposit volume over time. In this paper, we concentrate on
the interest rate pass-through. We provide some term structure model-
free results on the valuation of deposits, when the deposit rates are
linearly linked to some long-term swap rate (rather than a short-term
interest rate) as the reference rate with an unnatural time lag.

2 Deposits

2.1 Preliminaries

Let (Ω, (Ft)t∈{0,T ′}, P ) be a filtered probability space that fulfills the
usual conditions. Like the aforementioned articles, we assume markets
to be arbitrage-free, frictionless and complete. Let P (t, T ), 0 ≤ t ≤
T ≤ T ′, denote the value in t of a default-free zero bond with face
value 1 maturing in T . The filtration is assumed to be generated by
these zero bonds. The M -year swap rate SR(t,M), M ∈ N, in t and
the corresponding today’s M -year forward swap rate FSR(t,M) are
given by
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SR(t,M) =
1− P (t, t + M)∑M

j=1 P (t, t + j)
, (1)

FSR(t,M) =
P (0, t)− P (0, t + M)∑M

j=1 P (0, t + j)
. (2)

Qt denotes the unique equivalent t-forward martingale measure (see
[3]) and Et

0() the respective expectation operator conditional on today.
Under QT , the value of a non-dividend paying security discounted by
P (t, T ) is a martingale. As a special case, the expected value for the
point in time t of a zero bond maturing in T under the t-forward
measure equals its forward price:

Et
0(P (t, T )) =

P (0, T )
P (0, t)

. (3)

2.2 Valuation

Define 0 = t0, t1, t2, ..., tN = T with ti − ti−1 = ∆t = 1.1 For simplicity,
we consider a deposit with a constant face value 1 and maturity date T .
The deposit rate for the period ]ti−1, ti] paid in ti is given by DR(ti−1).
We assume that DR(ti−1) is fixed at tki−1 := ti−1 + k with −1 ≤ k ≤ 1.
The ‘shift’ k has a straightforward interpretation: if k = 0 the deposit
rate is fixed at the beginning of the period ]ti−1, ti]. In this case we
have a ‘natural’ time lag between the fixing date and the date at which
the deposit rate is paid. If k < 0 the deposit rate is fixed before the
beginning of the respective period. If k > 0 it is fixed within the period.
In both cases there is an ‘unnatural’ time lag. We assume that the
deposit rate for the period ]ti−1, ti] is linearly linked to the M -year
swap rate SR(tki−1,M) observed in tki−1 as the reference rate:2

DR(ti−1) = b1 + b2 SR(tki−1,M). (4)

By construction, DR(ti−1) is measurable with respect to Fti . It can be
interpreted as a European derivative on the term structure that is due
in ti. Therefore, we obtain the following representation of the present
value PV of the deposit:

PV = b1

N∑
i=1

P (0, ti)+P (0, tN )+ b2

N∑
i=1

P (0, ti) Eti
0 (SR(tki−1,M)). (5)

1 The assumption ∆t = 1 can easily be relaxed.
2 Obviously, the deposit is close to a portfolio consisting of a money market floater

and a constant maturity swap. See, e.g., [1] and [4] for the valuation of constant
maturity swaps.
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Clearly, the key to the calculation of PV is the determination of the
present value of SR(tki−1,M) paid in ti as the other components of (5)
can be calculated easily. Define

PV (SR(tki−1,M), ti) = P (0, ti) Eti
0 (SR(tki−1,M)). (6)

In the following, we aim to calculate an adjustment AD(ti) on the
respective forward swap rate, so that

PV (SR(tki−1,M), ti) = P (0, ti) (FSR(tki−1,M) + AD(ti)) (7)

is fulfilled. As the present value of SR(tki−1,M) paid in ti equals the
present value of P (tki−1, ti) SR(tki−1,M) paid in tki−1

PV (SR(tki−1,M), ti) = P (0, tki−1) E
tki−1

0 (P (tki−1, ti) SR(tki−1,M)) (8)

must hold. By equating (6) and (8) and using the definition of the
covariance we obtain3

Eti
0 (SR(tki−1,M)) =

P (0, tki−1)
P (0, ti)

E
tki−1

0 (P (tki−1, ti) SR(tki−1,M))

=
P (0, tki−1)
P (0, ti)

E
tki−1

0 (P (tki−1, ti)) E
tki−1

0 (SR(tki−1,M))

+
P (0, tki−1)
P (0, ti)

CoV ar
tki−1

0 (P (tki−1, ti), SR(tki−1,M)).

(9)

Substituting (3) into (9) and rearranging terms leads to

Eti
0 (SR(tki−1,M))

= E
tki−1

0 (SR(tki−1,M))

+
P (0, tki−1)
P (0, ti)

CoV ar
tki−1

0 (P (tki−1, ti), SR(tki−1,M))

= FSR(tki−1,M) + CA(ti) + TA(ti),

(10)

where

CA(ti) = E
tki−1

0 (SR(tki−1,M)) − FSR(tki−1,M), (11)

TA(ti) =
P (0, tki−1)
P (0, ti)

CoV ar
tki−1

0 (P (tki−1, ti), SR(tki−1,M)). (12)

3 The first line of (9) is a special case of the change of numéraire theorem, see [3].
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Equations (6), (10), (11), and (12) clarify that the forward swap rate
has to be adjusted by two terms: first, by the difference CA(ti) between
the tki−1-forward measure expectation of the swap rate and the corre-
sponding forward swap rate. Second, by the scaled covariance TA(ti)
between the discount factor from ti to tki−1 and the swap rate under
the tki−1-forward measure. The two adjustments sum up to the total
adjustment AD(ti) = CA(ti) + TA(ti).

2.3 Convexity and Timing Adjustment

We first analyze the so called ‘convexity adjustment’ CA(ti). Based on
the definition of the covariance and of the swap rate (1) we obtain

E
tki−1

0 (SR(tki−1,M))

= E
tki−1

0

(
1∑M

j=1 P (tki−1, t
k
i−1 + j)

)
E

tki−1

0 (1− P (tki−1, t
k
i−1 + M))

+ CoV ar
tki−1

0

(
1∑M

j=1 P (tki−1, t
k
i−1 + j)

, 1− P (tki−1, t
k
i−1 + M)

)
.

(13)

As the function x → 1/x is convex Jensen’s inequality, (3) and (2)
imply

E
tki−1

0

(
1∑M

j=1 P (tki−1, t
k
i−1 + j)

)
E

tki−1

0 (1− P (tki−1, t
k
i−1 + M))

≥ 1∑M
j=1 E

tki−1

0 (P (tki−1, t
k
i−1 + j))

E
tki−1

0 (1− P (tki−1, t
k
i−1 + M))

=
1∑M

j=1

P (0,tki−1+j)

P (0,tki−1)

P (0, tki−1)− P (0, tki−1 + M)
P (0, tki−1)

= FSR(tki−1,M).

(14)

As the covariance term in (13) is positive in general, we obtain the
following inequality for the expected swap rate:

E
tki−1

0 (SR(tki−1,M)) ≥ FSR(tki−1,M). (15)

This implies that the convexity adjustment CA(ti) is positive in gen-
eral. Note that it only depends on the fixing date tki−1 and not on the
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payment date ti of the deposit rate. Therefore, it is also independent of
the difference between these two dates, i.e. the time lag. The convexity
adjustment would also be necessary if the deposit rate fixed in tki−1

were paid in tki−1 rather than in ti.
In contrast, the second adjustment TA(ti) depends only on the dif-

ference between the fixing date and the payment date, i.e. the time lag.
Therefore, it is called ‘timing adjustment’.4 If the time lag is zero, i.e.
if k = 1, we have P (tkt−1, ti) = 1 in (12). Therefore, the covariance term
equals zero so that the timing adjustment vanishes, i.e. TA(ti) = 0.
Since generally all interest rates are positively correlated the covari-
ance in (12) and, hence, the timing adjustment is negative for k < 1.
Note that the timing adjustment is even necessary if we have a natural
time lag, i.e. if k = 0.

Fig. 1. Convexity and timing adjustments

This figure shows numerical results for the convexity adjustment CA, the
timing adjustment TA and the total adjustment AD for different maturities
M of the swap rate in dependence of the time lag k. The adjustments are
calculated for ti = 5. Calculations are based on the short rate model of Hull
and White (see [5]) with the following input parameters: today’s spot rate
structure = flat at 5%; mean reversion speed = 0.1; short rate volatility =
0.02

Of course, the concrete size of the convexity adjustment, the timing
adjustment, and the total adjustment depends on the term structure
model. Figure 1 shows some numerical results for the model by Hull
and White (see [5]). The timing adjustment equals zero for k = 1 and

4 See also [4].
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is becoming negative and smaller for smaller k. The convexity adjust-
ment is always positive and is becoming larger for larger k. The total
adjustment is increasing in k and is positive in general. For k < 0 and
small maturities M of the reference swap rate it can become negative.
Obviously, most effects are more pronounced for longer maturities of
the swap rate.

3 Concluding Remarks

In this paper, we analyzed the valuation of deposits when the deposit
rates are linearly linked to long-term swap rates. We allowed for natural
and unnatural time lags and provided term structure model-free results
on the valuation of these deposits. We especially focused on the struc-
ture of necessary adjustments on the forward swap rates: the convexity
and the timing adjustment. Our analysis can easily be transferred to
the case of other capital market yields such as spot rates or yields of
fixed-coupon bonds (see [2]).
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1 Einführung

Im Asset Management stellt sich dem Investor die zentrale Aufgabe
der systematischen Verteilung des Anlagekapitals auf die verschiede-
nen Investitionsalternativen. Das moderne Asset Management basiert
auf der Portfolio Selection nach Markowitz und damit auf der An-
nahme gegebener zukünftiger Rendite- und Risikoerwartungen bzgl.
der Anlagealternativen. Diese Annahme impliziert ein theoretisch wie
praktisch bedeutsames Prognose- bzw. Schätzproblem.

Einige empirische Befunde legen nahe, dass für den Zweck des Asset
Managements Renditeschätzungen bedeutsamer als Risikoschätzungen
sind (vgl. z.B. [2]). Während für Renditeprognosen mehr oder weniger
elaborierte Modelle zum Einsatz kommen, werden als Risikoschätzer
häufig noch (gewichtete) empirische Varianz-Kovarianz-Matrizen ver-
wendet (vgl. [1]). Der Zielkonflikt zwischen akzeptiertem Risiko und
erwarteter Rendite ist jedoch eines der grundlegensten Probleme in
der Finanzwirtschaft, so dass die durch (Ko-)Varianzen gemessene Un-
sicherheit für die finanzwirtschaftliche Theorie und Praxis eine große
Rolle spielt.

Der bedingten Heteroskedastizität von Kapitalmarktrenditen tra-
gen das ARCH-Modell und seine vielfältigen Erweiterungen Rech-
nung. Nach einer Idee von Petersmeier (vgl. [6]) lassen sich alterna-
tiv mit nichtparametrischen Kernregressionsschätzern Renditen und
(Ko-)Varianzen in einem integrierten Modell prognostizieren, ohne sich
an eine Parametrisierung oder ausschliesslich autoregressive Prädiktoren
zu binden. Die inkonsistente Zusammenführung von Prognosen unter-
schiedlicher Rendite- und Risikomodelle entfällt.
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Gegenstand dieses Beitrags ist die Einordnung dieser Idee in den
Rahmen der ARCH-Modelle sowie eine adäquate Formulierung der Idee
in einem integrierten ökonometrischen Modell. Dies umfasst die Un-
tersuchung der theoretischen Eignung, praktischen Umsetzbarkeit und
empirischen Leistungsfähigkeit insbesondere der nichtparametrischen
Modellierung der bedingten Heteroskedastizität. Ein solches integrier-
tes nichtparametrisches Rendite- und Risikoprognosemodell besitzt auf-
grund seiner Flexibilität und Automatisierbarkeit auch praktische Re-
levanz für das quantitative Asset Management.

Nach einer Darstellung der Methodik im zweiten Kapitel beschreibt
das dritte Kapitel eine empirische Untersuchung. Eine Zusammenfas-
sung schließt den Beitrag ab.

2 Nichtparametrische Prädiktorselektion und
Kernregressionsschätzer

Ein ökonometrisches Modell formuliert einen Zusammenhang zwischen
ökonomischen Variablen, indem eine erklärte (endogene) Variable in
einen funktionalen Zusammenhang zu einer oder mehreren erklärenden
(exogenen) Variablen gesetzt wird. Die Auswahl von erklärenden Vari-
ablen erfolgt i.d.R. abhängig von der übrigen Modellspezifikation,
man entscheidet sich daher zuerst für eine Modellgleichung und se-
lektiert dann die bei Verwendung dieser Modellgleichung relevanten
Einflussgrößen.

Der funktionale Zusammenhang ist selten a priori bekannt. Es muss
daher entweder eine Funktion angenommen oder der Zusammenhang
ohne Parametrisierung rein aufgrund von beobachteten Daten der rel-
evanten Variablen geschätzt werden. Der wesentliche Vorteil nicht-
parametrischer Modelle besteht in der Vermeidung restriktiver An-
nahmen, z.B. der Annahme linearer Zusammenhänge oder spezieller
Verteilungen.

Ein geeignetes nichtparametrisches Modell ist der sog. Kernre-
gressionsschätzer. Man verwendet lokale gewichtete Mittelwerte als
Schätzfunktion (vgl. [3] S. 14f). Durch die entsprechende ökonometri-
sche Modellierung in (1) erhält man zu gegebenen Werten der Ein-
flussgrößen eine Schätzung der Zielgröße durch einen anhand der Dis-
tanz der Einflussgrößen gewichteten Durchschnitt früherer Beobach-
tungen. Der sog. Nadaraya-Watson-Schätzer gibt eine erwartungstreue
Schätzung für den bedingten Erwartungswert der abhängigen Variablen
über gewichtete Durchschnitte bisheriger Beobachtungen an:
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Ê(y|x) =
N∑

i=1

ωi(x) · yi (1)

wobei

ωi(x) =
K
(
‖x−xi‖

h

)
∑N

j=1 K
(
‖x−xj‖

h

) (2)

Hier bezeichnet x den Vektor der jeweils aktuell betrachteten Ein-
flussgrößen, xi (i = 1, ..., N) enthält die ite Beobachtung der Einfluss-
größen, K steht für die geeignet zu wählende sog. Kernfunktion und h
ist eine an die beobachteten Daten geeignet anzupassende Bandbreite.
Zulässige Kernfunktionen sind nicht negativ und ordnen den kleinsten
Distanzen die höchsten Gewichte zu. Gängig ist z.B. eine exponen-
tielle Kernfunktion K(z) = exp(−z2/2). Auf Basis der beobachteten
Schätzdaten und der herangezogenen Kernfunktion wird die Bandbrei-
te durch ein Optimierungskalkül so gewählt, dass der Schätzfehler mini-
mal ist (vgl. [3]).

Die Gewichte ωi ergeben sich in Abhängigkeit von Kernfunktion
und Bandbreite aus der Distanz des aktuellen x von den beobachteten
Werten xi. Je kleiner die Distanz, desto größer wird das Gewicht
der entsprechenden Beobachtung yi (vgl. (1)). Es werden im Allge-
meinen nur die nächsten Nachbarn berücksichtigt, da die Gewichte
weiter entfernter Beobachtungen sehr klein werden. Die Berechnung
einer Schätzung lässt sich daher anhand der Gewichtung ωi nachvoll-
ziehen.

Den Nadaraya-Watson-Schätzer haben u.a. Pagan und Schwert
zur Formulierung eines nichtparametrischen ARCH-Modells verwendet
(vgl. [5]). Da die Asset Allokation auf Renditen und (Ko-)Varianzen
beruht, liegt die Idee nahe, diese beiden Größen integriert in einem
Prognosemodell zu schätzen (vgl. [6] S. 120-123). Dies führt zu einer
nichtparametrischen Risikomodellierung unter Berücksichtigung exoge-
ner Variablen. Die bedingte Varianz einer betrachteten Größe berech-
net sich als Erwartungswert der quadrierten Abweichungen vom be-
dingten Erwartungswert. Dessen Schätzung erfolgt mittels des Nada-
raya-Watson-Schätzers analog zu (1):

V̂ar(y|x) = Ê
(
(y − Ê(y|x))2

)
= Ê(r2|x) =

N∑
i=1

ωi(x) · r2
i , (3)

wobei r = y − Ê(y|x) die Residuen des Renditeprognosemodells be-
zeichnet. Für die bedingte Kovarianz zweier Zielgrößen y1 bzw. y2 und
deren Residuen r1 bzw. r2 gilt Ĉov(y1, y2|x) = Ê(r1 · r2|x).
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Für dieses Risikomodell benötigt man die Residuen des Rendite-
modells. Insbesondere modelliert man wie bei ARCH-Modellen als
Risikogröße die als Residuen bezeichneten Abweichungen der wahren
Werte von den jeweiligen Renditeerwartungswertschätzungen anstatt
vom empirischen Mittelwert, der bei der Berechnung der empirischen
(Ko-)Varianz heranzuziehen wäre. Die Risikomodellierung und damit
die resultierenden Prognosen sind daher im Rahmen des Asset Mana-
gements stets im Verbund mit den berücksichtigten Renditeprognosen
zu verwenden.

Die Aufgabe der Auswahl geeigneter Prädiktoren aus einer Menge
exogener Variablen ist ein zentrales Forschungsfeld nichtparametrischer
Prognosemodelle. Lavergne und Vuong (vgl. [4]) haben einen Test
vorgeschlagen, dessen Teststatistik es erlaubt, die Signifikanz des Ein-
flusses einer zusätzlichen Variable x(p+1) auf ein vorhandenes Kernre-
gressionsmodell E{x(1),...,x(p)}(y|x) mit p Prädiktoren zu berechnen. Die
Nullhypothese

H0 : E{x(1),...,x(p)}(y|x) = E{x(1),...,x(p),x(p+1)}(y|x) (4)

des statistischen Tests postuliert daher die Gleichheit der beiden Model-
le, eine Ablehnung der Nullhypothese impliziert mit hoher Wahrschein-
lichkeit einen tatsächlich vorhandenen Einfluss des zusätzlichen Prädik-
tors x(p+1). Dieser Signifikanztest lässt sich sowohl auf das Rendite-
modell (1) als auch auf das Risikomodell (3) anwenden, um eine
Prädiktorselektion durchzuführen.

3 Empirische Untersuchungen

Zur Untersuchung der Leistungsfähigkeit der Methodik soll aufgrund
historischer Daten eine Fallstudie zum Asset Management vorgestellt
werden. Die historischen Daten der endogenen Variablen bestehen aus
Aktien- (Welt, Deutschland sowie Emerging Markets) und Bondindizes
(Europa und USA), als exogene Variablen stehen neben diesen und
weiteren Aktien- und Bondindizes auch Zins- und Wechselkursänderung-
en, Konjunkturdaten sowie Rohstoffdaten zur Verfügung. Alle Daten
liegen als Monatsschlusskurse des Zeitraums 12/1998 – 01/2007 vor.
Die stetigen Renditen des Zeitraums 01/1999 – 01/2005 bilden die
Schätzmenge, aufgrund der pseudo-ex-ante Prognosen für den Zeitraum
02/2005 – 01/2007 wird die Prognoseleistung validiert. Die Schätzungen
wurden dynamisch mit rollierenden Zeitfenstern durchgeführt. Die
exogenen Variablen wurden um ein bis einschließlich drei Monate
zeitverzögert berücksichtigt.
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Zu Vergleichszwecken wurden als Renditeprognosemodelle eine mul-
tivariate lineare Regression sowie der rollierende empirische Mittelwert
und eine naive Prognose als einfache Benchmarkmodelle berücksichtigt.
Zum Vergleich der Risikoschätzung wurde ein GARCH-Modell herange-
zogen. Die signifikanztestbasierte Kernregressionsschätzung liefert die
beste Prognosegüte in Bezug auf den über alle Märkte gemittelten
Anteil des mitgenommenen Renditepotenzials (Wegstrecke). Bei den
Risikoprognosen zeigt sie den kleinsten Prognosefehler (RMSE) und
das höchste Bestimmtheitsmaß R2 (vgl. Tab. 1).

Table 1. Mittlere Prognosegüte 02/2005–01/2007

Renditemodell RMSE Trefferquote Wegstrecke

Kernregr. 3,45 % 0,60 0,32
Lin. Reg. 4,58 % 0,55 0,12
naiv 4,40 % 0,53 0,11
hist. MW 3,21 % 0,60 0,22

Risikomodell RMSE R2

Kernregr. 0,28 % 0,44
GARCH 0,34 % 0,14
hist. Var. 0,39 % 0,03

Der kombinierte Effekt der Berücksichtigung der Rendite-und Risiko-
prognosen wird mittels der Renditedifferenz des jeweils aufgrund der
Standard-Markowitz-Optimierung mit Risikoaversionsparameter λ = 3
gebildeten Portfolios gegenüber dem gleichgewichtetem Benchmark-
portfolio untersucht. Die Kernregression zeigt hier die höchste Über-
rendite und die beste Sharpe-Ratio. Insbesondere durch die Verwen-
dung der nichtparametrischen Risikoprognosen anstatt der empirischen
(Ko-)Varianzmatrix der Residuen in Verbindung mit der Kernregres-
sionsschätzung der Renditen ergab sich eine höhere Rendite bei niedri-
gerer Volatilität. Die Verwendung des GARCH-Modells erzielte hinge-
gen keine Verbesserung der Performance (vgl. Tab. 2).

4 Zusammenfassung

Die Methode der nichtparametrischen Kernregressionsschätzung in Ver-
bindung mit dem Signifikanztest nach Lavergne und Vuong ist für die
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Table 2. Annualisierte Performance 02/2005–01/2007

Renditeprognose Risikoprognose Überrendite Volatilität Sharpe-Ratio

Kernregr. Kernregr. 6,45 % 9,18 % 0,70
Kernregr. hist. (Ko-)Var. 4,71 % 10,87 % 0,43
Lin. Reg. GARCH -10,95 % 10,09 % -1,08
Lin. Reg. hist. (Ko-)Var. -11,44 % 9,17 % -1,25
naiv hist. (Ko-)Var. 0,06 % 18,84 % 0,00
hist. MW hist. (Ko-)Var. -6,47 % 7,91 % -0,82

Verwendung zur integrierten Schätzung von Rendite- und Risikopa-
rametern im Rahmen des quantitativen Asset Managements theoretisch
geeignet und mit gängigen statistischen Softwarepaketen relativ einfach
zu implementieren.

Das GARCH-Modell bzw. die Prädiktorselektion der nichtparametri-
schen Kernregression zeigten für die herangezogenen Monatsrenditen
Autokorrelationen in den Residuen bzw. signifikante Zusammenhänge
mit den berücksichtigten exogenen Variablen. Die Ergebnisse der Un-
tersuchung zeigen, dass mit dem vorgestellten Modellansatz eine Per-
formancesteigerung erzielt werden konnte.

Detailliertere theoretische Betrachtungen und weitere empirische
Untersuchungen der nichtparametrischen Modellierung bedingter He-
teroskedastizität müssen zeigen, woraus diese bessere Prognoseleistung
resultiert und ob eine solche Verbesserung auch in der Deutlichkeit
durchgängig zu erwarten ist.
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Summary. Paired comparisons are a widely used technique for evaluating
decision elements. If measured on a ratio scale, the judgments form a pairwise
comparison matrix that can be interpreted as a ratio preference network. The
collection of paired comparisons is often accompanied by manifold response
errors driven by variations in attention, mood, mental efficiency, or the general
mental state of the respondents. Such erroneous statements might seriously
impair the consistency of the responses, and thus, the relative weights derived
from the ratio preference network. This paper presents a new error detection
approach that identifies deficient elements in pairwise comparison matrices
and significantly reduces the mentioned effects with regard to the weights
of the considered decision elements. It is based on the geometric mean of
all connecting paths of the respective pairwise comparison matrix. Its basic
applicability is demonstrated by means of Monte Carlo simulations.

1 Introduction

Paired comparison models address data that arise from situations in
which two objects are directly compared to determine the degree of
preference. Various approaches have been proposed to investigate the
preference structure of respondents including the Bradley-Terry model
for paired comparisons based on binary data and ordinal pairwise com-
parison models for measurements on an ordinal scale (see, e.g. [1]).
Moreover, various methods have been proposed to derive preference
weights from paired comparisons measured on a ratio scales, most
prominently the Eigenvalue method of Saaty’s Analytic Hierarchy Pro-
cess (AHP) [4]. In this paper, we will concentrate on ratio-scaled paired
comparison data represented by a matrix A = (ai,j)i,j=1,...,n.

Here, ai,j equals the observed ratio for all possible pairs of n decision
alternatives and expresses the strength with which decision alternative
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i dominates alternative j with respect to a given criterion. Usually,
these paired comparisons are collected from consumers’ or experts’ in
marketing research surveys. Matrix A specifies a directed graph (as
displayed in Figure 1 for n = 4) and is also referred to as a ratio
preference network [4].
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Fig. 1. Ratio preference network with 12 paired comparisons

Ideally, matrix A is symmetrically reciprocal. In this case, ai,j = 1/aj,i

holds for all entries. Moreover, the ratio preference network is fully
consistent if ai,j = ai,k ·ak,j holds for all entries (transitivity condition)
with k = 1, . . . , n. In the above description of ratio preference networks
the transitivity condition can be extended to connected paths with
more than two elements:

ai,j = ai,k1 · ak1,k2 · · · · · akr,j ∀i, j and k1, . . . , kr ∈ {1, . . . , n}
That is, a pairwise comparison matrix is fully consistent if each con-
nected path results in the same preference ratio (see Figure 1).

In marketing practice, however, the surveyed paired comparisons
are rarely fully consistent. Cognitive psychology and human informa-
tion processing literature teach us that there is considerable noise in the
human central nervous system at any given moment influencing the ac-
curacy of preference statements [6]. While small perturbations do not
seriously harm the elicitation of the underlying preference structure
(see, e.g. [5]), deficient judgments with considerable deviations from
the actual preferences of the respondent might seriously impair the re-
sulting preference weights. Therefore, the aim of this paper is twofold.
We investigate the structure of erroneous statements in pairwise com-
parison matrices and propose a new detection approach that identifies
deficient elements and significantly reduces the mentioned effects.
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In Section 2, we present the concept of consistency in pairwise com-
parison matrices and discuss sources of erroneous statements in paired
comparisons. Section 3 outlines the new error detection approach. In
Section 4, the new approach is tested in a Monte Carlo simulation
study. The paper concludes with a discussion of the results.

2 Errors in Preference Measurement

Assuming that a respondent has preference structure w = (w1, . . . , wn)
for the n decision alternatives, the above transitivity and symmetric
reciprocality conditions hold, if ai,j = wi/wj ∀i, j = 1, . . . , n. However,
some of the decision-maker’s statements might deviate from his or her
real preference structure when quoting the preferences. The respondent
might misstate the direction of his or her real preference structure
for instance (i.e. alternative i is preferred to j, but the opposite is
stated). We denote this perturbation as error type A. Moreover, the
real strength of preference might be over- or underestimated in a stated
paired comparison (denoted error type B in the following). Obviously,
both errors result in inconsistent ratio preference networks.

We measure violations of the transitivity criterion in order to iden-
tify the perturbation of each entry ai,j with respect to the structure
of the ratio preference network associated with A. If there exist sub-
stantial inconsistencies or erroneous statements in matrix A, then the
product of all elements included in one elementary path differs for dif-
ferent elementary paths connecting the elements i and j. However, the
aggregation of these estimates provides a robust measure for each entry
ai,j which levels out large proportions of errors in the paired comparison
data [3]. Therefore, we calculate the estimated average paired compar-
ison value ai,j by means of the geometric mean of all elementary paths
connecting alternative i and j:

ai,j = q

√√√√ q∏
g=1

(ai,kg
1
· akg

1 ,kg
2
· · · · · akg

r ,j) ∀kg
1 , . . . , k

g
r ∈ {1, . . . , n}

A comparison of the stated values ai,j and the average estimated paired
comparison values ai,j reveals those erroneous elements that do not
fit in the ratio preference network. Carré’s [2] backtracking algorithm
provides an easy means to solve the NP-hard problem of deriving all
elementary paths connecting any two elements in the network.
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3 Identification of Erroneous Statements in Ratio
Preference Networks

To identify those entries ai,j that do not fit in the structure of the ratio
preference network, the following three steps have to be conducted:

1. Calculate the deviation between the stated and the estimated av-
erage paired comparison di,j = |ai,j − ai,j| for each element of A.

2. Rank the paired comparisons by di,j in decreasing order.
3. Normalize the deviations by the overall maximum (d∗i,j = di,j/d

max
i,j ).

The resulting deviations d∗i,j are used to examine the structure of
the pairwise comparison matrix. Figure 2 visualizes the rationale of our
approach for a matrix comprising eight alternatives. Here we assumed
that the decision maker gave reciprocal answers (i.e. ai,j = 1/aj,i) so
that the number of paired comparisons necessary to compare n ele-
ments reduces to n(n−1)/2. We further assumed that the respondent’s
judgements are standard normally distributed around his or her true
preferences (error type B). Moreover, we changed the direction of some
of the paired comparisons to build in errors of type A.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

28 type B & 0 type A errors 28 type B & 1 type A error 28 type B & 2 type A errors

28 type B & 3 type A errors 28 type B & 4 type A errors

Fig. 2. Visualization of error structures in pairwise comparison matrices by
means of ordered deviations d∗i,j

Obviously, errors of type A can easily be separated from the consider-
able noise (error type B) in the paired comparisons. It is easy to see
which perturbations result from the ubiquitous noise in human judg-
ments and which elements of the pairwise comparison matrix incor-
porate a significant deviation from the average estimated values ai,j.
Consequently, the above visualization of the matrix structure provides
information about serious errors in the ratio preference network.

To automate the detection of the distorted elements ai,j in matrix A,
we make use of the foundations of the theory of (random) measurement
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error. Presuming that the measurement errors are standard normally
distributed on all entries [8], we suggest to remove those paired compar-
isons for which di,j > d+ 2σd holds, with d denoting the mean and the
σd standard deviation of di,j . In this way, entries ai,j with deviations
lying outside the 95 percent confidence interval are removed and auto-
matically replaced by the average estimated paired comparison values
ai,j. In doing so, the unknown preference structure w can be derived
by standard preference estimation methods. In the following simulation
study, we apply Saaty’s Eigenvalue method, which is also based on the
geometric mean of all paths included in matrix A, and thus, is a good
match to our error detection approach.

4 Simulation Study

To illustrate the power of the new error detection approach, we conduct
a Monte Carlo simulation study. Since the scale used for preference
measurement significantly affects the impact of the above errors, we
applied Saaty’s 9-point scale, which is the standard in AHP. Thus,
the range of the entries ai,j is restricted to the interval [1/9; 9]. We
constructed 80 fully consistent pairwise comparison matrices of size
n = 8. Then, all paired comparisons were perturbed by adding values
taken from a standard normal distribution (error type B). Scholz et
al. [7] have shown that these errors hardly impair the quality of the
resulting preference structures. Furthermore, errors of type A have been
added to include serious perturbations in matrix A.

To test the effect of these errors on data quality, we compared the
MSE between the initial and the distorted preference structures with
and without the application of the proposed error detection approach.
Table 1 presents the average MSEs for varying numbers of type A and
a constant type B error on each entry ai,j of the 80 initial matrices.

Table 1. Average mean squared errors (MSE) for varying numbers of type A
errors and type B errors with σ = 1 for all paired comparisons

Number of type A errors 0 1 2 3 4
MSE without detection 0.0430 0.1186 0.1627 0.1795 0.1914
MSE with detection 0.0520 0.0435 0.0520 0.0669 0.0678

The results show that the perturbations caused by the type B errors
are small (see column “0 errors”). However, without error detection,
the type A errors cause considerable perturbations in the respective
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matrices and the corresponding preference structures. The error detec-
tion approach limits the MSE to an almost constant level when type A
errors are added. Thus, type A errors are generally correctly identified
and eliminated. In all, the new error detection approach enables the
robust estimation of the preference structure in case of type A errors.

5 Discussion and Conclusions

This paper presents a new approach to analyze and visualize the struc-
ture of perturbations in pairwise comparison matrices. By using a confi-
dence interval, the approach is fully “automated” and needs no further
adjustment. It can be run prior to preference estimation and can be
combined with any preference elicitation method. Monte Carlo simu-
lations have illustrated the practicability and efficiency of the new ap-
proach and showed that in most cases serious errors, such as misstated
preference directions, can be predicted and eliminated adequately.

Social and market researchers who deal with paired comparison sur-
vey data might benefit from our findings in two ways: First, the visu-
alization of errors helps to understand the quality of the initial data.
Second, the automatic error detection approach provides more robust
results without further ado. However, further research is necessary to
analyze its behavior in case of other error structures.
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1 Einleitung

Die Optimierung der vorgehaltenen Geldmengen in Geldautomaten so-
wie deren Bestückungsintervalle erfordert eine genaue Prognose der täg-
lich an Geldautomaten abgehobenen Geldmengen. In dieser Arbeit wird
im Rahmen einer Fallstudie der Nutzen konkurrierender Prognosever-
fahren verglichen, wobei der Fokus auf SARIMAX-Modellen liegt.
Diese berücksichtigen neben saisonalen Effekten auch kausale Kalen-
dereffekte. Zusätzlich werden naive Prognoseverfahren sowie neuronale
Netze als Benchmark herangezogen.

Als Datenbasis dieser Fallstudie dient eine Zeitreihendatenbank der
Umsätze mehrerer Geldautomaten einer Bank. Exemplarisch wird eine
Zeitreihe von 105 Beobachtungen, die den Zeitraum vom 1. Januar bis
zum 15. April 2003 abdeckt, ausgewählt. Ziel ist die Konstruktion einer
präzisen Prognosefunktion über einen Prognosehorizont von 14 Tagen
für jeden Geldautomaten.

Die für diese Fallstudie verwendete Zeitreihe GAA.31 der täglich
entnommenen Geldmengen weist ein saisonales Muster auf, das sich vor
allem durch geringe Geldentnahmen an Sonntagen bemerkbar macht.
Inspiziert man das Saisonmuster mit Hilfe eines Boxplots, so fallen die
relativ geringen Schwankungen der Geldentnahmen unter der Woche
auf. Lediglich an Donnerstagen und Freitagen nimmt die Geldentnahme
geringfügig zu. Darüber hinaus weist die Zeitreihe auch einen schwa-
chen Anstieg der abgehobenen Geldmengen an Monatsenden auf. Die
geringe Zeitreihenlänge von drei Monaten ermöglicht aber nur einen
eingeschränkten Rückschluss auf systematische Muster.

Problematisch ist der Prognosezeitraum mit einem Horizont von 14
Tagen. Die letzte Beobachtung der Zeitreihe, der 15. April 2003, ent-
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spricht dem Dienstag der Karwoche. Damit ist die Modellierung eines
zu Ostern zugehörigen Kalendereffektes schwierig. Einerseits liegen kei-
ne Informationen aus den Vorjahren über das Geldentnahmeverhalten
vor, während und nach den Osterfeiertagen vor. Auf der anderen Seite
unterscheiden sich die beiden Feiertage Neujahr (1. Januar) und Heilige
Drei Könige (6. Januar) nur geringfügig von einem Sonntag. Dement-
sprechend schwierig ist die Berücksichtigung eines Ostereffektes. Daher
werden die Osterfeiertage einschl. Karfreitag wie Sonntage behandelt.

2 Prognoseverfahren

Aufgrund der oben beschriebenen Effekte werden drei Verfahrensfa-
milien verwendet:

1. SARIMA(p,d,q)(P,D,Q)-Modelle, mit denen lediglich Saisoneffekte
berücksichtigt werden können (saisonale Box-Jenkins Modelle [2]).

2. SARIMAX-Modelle, mit denen zusätzlich auch Regressoren und In-
terventionen und somit auch Feiertagseffekte berücksichtigt werden
können (Transfer- und Interventionsmodelle [9]).

3. Neuronale Netze in Form von Multi-Layer-Perzeptronen, die aus-
schlieslich als Benchmark verwendet werden [1].

Zur Parameterschätzung werden bei allen Verfahren die ersten 91 Beob-
achtungen {y1, ..., y91} als Kalibrationsstichprobe verwendet. Die nach-
folgenden 14 Beobachtungen {y92, ..., y105} dienen als Teststichprobe
zur Evaluation der Güte konkurrierender Prognosemodelle. Die erst
nach Abschluss der Modellbildung zur Verfügung gestellten Beobach-
tungen {y106, ..., y119} dienen zur Validierung der Ergebnisse.

Saisonale Box-Jenkins Modelle [2] bilden den Datengenerie-
rungsprozess einer saisonalen Zeitreihe yt durch ein SARIMA(p,d,q)-
(P,D,Q)-Modell der Form

φ(B)Φ(B)∇d∇D
s yt = θ(B)Θ(B)at (1)

ab. Dabei ist φ(B) = 1−φ1B− ...−φpB
p ein autoregressives Polynom

der Ordnung p, Φ(B) = 1−Φ1B
s− ...−ΦPBPs ein saisonal autoregres-

sives Polynom der Ordnung P , θ(B) = 1 + θ1B + θ2B
2 + ... + θqB

q ein
nicht-saisonales Moving-Average-Polynom der Ordnung q und Θ(B) =
1+Θ1B

s+...+ΘQBQs ein saisonales MA-Polynom der Ordnung Q ([9],
S. 33 und S. 152) mit s als Saisonperiode. Die Differenzoperatoren∇d =
(1−B)d und∇D

s = (1−Bs)D der Ordnungen d und D eliminieren nicht-
saisonale und saisonale stochastische Instationaritäten. Der Innovation-
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sterm at ist eine Folge stochastisch unabhängiger, identisch N(0, σ2)-
verteilter Zufallsvariablen. Die Identifikation der Polynom- und Inte-
grationsordnungen p, d, q, P,D und Q kann über visuelle oder semi-
automatische Verfahren erfolgen. Zur Festlegung der Integrationsgrade
bieten sich zusätzlich saisonale und nicht-saisonale Unit Root Tests
an [3]. Spezialfälle des SARIMA(p,d,q)(P,D,Q)-Modells können als
Äquivalente oder Approximationen für einige klassische Prognosemod-
elle verwendet werden. Das SARIMA(0,0,0)(0,1,0)-Modell entspricht
einem saisonalen Random Walk. Das SARIMA(0,1,1)(0,1,1)-Modell
stellt eine Approximation des Holt-Winters-Modells mit additivem
Trend und additiver Saison dar [5].

Ein Interventionsmodell

yt = ν0 +
k∑

i=1

νi(B)xit +
θ(B)Θ(B)

φ(B)Φ(B)∇d∇D
s

at , (2)

das in der Ökonometrie als SARIMAX-Modell bezeichnet wird, kom-
biniert dynamische Regressoren mit einem Fehlerterm, der einem SAR-
IMA-Modell (1) folgt. Dabei dient der dynamische Regressionsterm
ν0 +

∑k
i=1 νi(B)xit der Beschreibung von Effekten der Variablen xit auf

die abhängige Variable yt. Die direkten, zeitlich verzögerten und vorge-
lagerten Einflüsse der Variablen xit auf yt werden durch die Gewich-
tungspolynome ν(B) = ω(B)Bb/δ(B) abgebildet [9]. In diesem Aufsatz
werden als Regressoren nur Kalendereffekte verwendet.

Neuronale Netze in Form von Multilayer-Perzeptronen (MLP) [1]

yt

maxt=1,...,T{yt}
= λ

(
α +

H∑
h=1

ωhλ

[
αh +

k∑
i=1

ωhixit

])
+ at (3)

für die normierte Variable y∗t = yt/max{yt} werden als Benchmark für
das SARIMAX-Modell verwendet. Hier ist λ(z) = exp(z)/(1 + exp(z))
eine logistische Aktivierungsfunktion. ωh für h = 1, . . . ,H stellt die
Gewichte der H Knoten der verdeckten Schicht und ωhi die Gewichte
der unabhängigen Variablen xit dar. Die Schätzung der Gewichte ωh

und ωhi erfolgt durch das von Venables und Ripley [8] in R [7] imple-
mentierte BFGS-Verfahren.

3 Modellselektion

Neben der Nutzung prespezifizierter Modelle, die unter anderem das
SARIMA(0,1,1)(0,1,1)-Modell, das SARIMA(0,0,0)(0,1,0) und die Buys-
Ballot-Tabelle [9] beinhalten, werden diverse SARIMA-, SARIMAX-



286 Stephan Scholze und Ulrich Küsters

und MLP-Modelle mit Hilfe von automatischen Modellsuchverfahren
und Signifikanztests auf Grundlage der Kalibrationsstichprobe ermit-
telt. Mit Hilfe der Teststichprobe werden anschließend Modelle aus-
gewählt. Zur Bestimmung der Modellordnungen des SARIMA-Modells
wird u.a. das enumerative Modellselektionsverfahren nach Hyndman
und Khandakar [4] benutzt. Dieses minimiert das Akaike-Informations-
Kriterium AIC [9] und führt zu einem SARIMA(0,0,1)(2,0,0)-Modell.

Optimale SARIMAX-Modelle werden ebenfalls mit einem enume-
rativen Suchverfahren ermittelt. Anstelle des AIC erfolgt die Auswahl
jedoch über den minimalen MAPE [6], der über alle Prognosehorizonte
h der Teststichprobe gemittelt wird. Für das Enumerationsverfahren
werden folgende Modellparameterbereiche festgelegt:

• SARIMA-Polynomordnungen: p ∈ {0, 1, 2}, q ∈ {0, 1, 2},
P ∈ {0, 1, 2}, Q ∈ {0, 1, 2}, d ∈ {0, 1}, D ∈ {0, 1}.

• Exogene Effekte (xit): Monatsende (me), Montag (mo), Dienstag
(tu), Donnerstag (th), Freitag (fr), Samstag (sa), Sonntag (su), Fe-
rien (fe).

Die Parameter des Interventionspolynoms ν(B) = ω(B)Bb/δ(B) sind
durch b ∈ {0, 1, 2}, ω(B) = 1+ω1B +ω2B

2 +ω3B
3 und die Voreinstel-

lung δ(B) = 1 restringiert. Das enumerative Suchverfahren ermittelt
das SARIMAX-Modell SM1

yt =
∑

i∈{mo,th,sa,su,me}
ωixit +

(1− θ1B)(1−Θ1B
s)

(1− φ1B)(1− Φ1Bs)(1 −B)
at . (4)

Im anschließenden Schritt werden insignifikante Parameter aus dem
Modell durch ein Abwärtsselektionsverfahren sukzessiv eliminiert (Sig-
nifikanzniveau α = 5%). Das zweite SARIMAX-Modell SM2 entsteht
nach Entfernen der insignifikanten saisonalen Parameter Φ1 und Θ1.
Werden in einem dritten Schritt zusätzlich alle insignifikanten Regres-
soren aus SM2 gestrichen, ergibt sich das SARIMAX-Modell SM3.

Ein ähnliches Suchverfahren wird zur Bestimmung des optimalen
MLP implementiert. Zur Abbildung der Eigendynamik des Prozesses
werden verzögerte abhängige Variablen spezifiziert: y∗t−1, y

∗
t−2, ..., y

∗
t−7.

Zusätzlich werden 10 unabhängige Variablen zur Einbettung der Saison-
und Kalendereffekte als Regressoren eingebettet. Das Selektionsver-
fahren minimiert ebenfalls den MAPE, der über alle Prognosehorizonte
h der Teststichprobe gemittelt wird. Ergebnis ist ein neuronales Netz
mit den um zwei und drei Perioden verzögert normierten Inputvariablen
y∗t−2 und y∗t−3, den kontemporären Variablen met, sat und sut sowie der
um zwei Perioden nach vorne verschobenen Lead-Variablen met+2.
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Table 1. Vergleich der Prognosegüte durch MAPE und RMSE für die einzel-
nen Teilstichproben {y1, ..., y91}, {y92, ..., y105} und {y106, ..., y119}

Modell {y1, ..., y91} {y92, ..., y105} {y106, ..., y119}
MAPE RMSE MAPE RMSE MAPE RMSE

SARIMA(0,0,1)(2,0,0) 71.01% 16234 10.55% 6321 43.40% 26519
SARIMA(0,0,0)(0,1,0) 73.59% 20657 14.74% 18902 97.90% 26065
SARIMA(0,1,1)(0,1,1) 50.18% 13508 21.72% 11751 114.73% 29118
Buyes-Ballot 52.55% 14007 7.36% 6552 38.83% 12764
SM1 45.90% 13407 2.22% 2287 13.46% 7510
SM2 45.75% 13853 5.33% 4028 13.58% 7404
SM3 46.28% 14181 6.09% 4756 23.48% 9243
MLP 59.51% 11067 3.01% 3196 14.56% 9437

4 Ergebnisse und Prognosen

Die Prognosegüte wird durch den MAPE und den RMSE gemessen. Da-
bei werden einerseits die einstufigen Prognosefehler für die Kalibrations-
stichprobe {y1, ..., y91}, andererseits die über den Prognosehorizont H
kumulierten Fehlermaße für die Teststichprobe {y92, ..., y105} und die
außerhalb der Schätzbasis liegende Kontrollstichprobe {y106, ..., y119}
inspiziert. Das Ergebnis in Tabelle 1 zeigt deutlich, dass die SARIMAX-
Modelle sowohl prespezifizierten als auch automatisch bestimmten
SARIMA- und MLP-Modellen überlegen sind. Gemessen am MAPE
schneiden die geringfügig überspezifizierten SARIMAX-Modelle SM1
und SM2 am besten ab. Den geringsten RMSE für den einstufigen ex-
post Prognosefehler weist das MLP-Modell aus. Dieser geringe Anpass-
sungsfehler des MLP in der Kalibrationsstichprobe lässt sich aber nicht
auf die Prognosegüte in der Test- und Kontrollstichprobe übertragen.
Dies deutet auf eine Überparametrisierung des MLP-Modells hin. In
der Kontrollstichprobe weist das Interventionsmodell SM2 den gering-
sten RMSE auf.

Im SM2-Modell wurden nur die insignifikanten saisonalen SARIMA-
Parameter des SM1-Modells, nicht aber die Kalendereffekte eliminiert.
Dies impliziert, dass eine leichte Überspezifikation exogener Saison- und
Kalendereffekte auch bei insignifikanten Parameterschätzern nützlich
ist. Bei den anderen Zeitreihen ergeben sich ähnliche Ergebnisse. Abbil-
dung 1 zeigt die Prognose des SM1-Modells einschließlich der 95%-igen
Konfidenzintervalle.
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Abgehobene Geldmengen an einem Geldautomaten
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Fig. 1. Prognose der Beispielzeitreihe GAA.31 mit einem SARIMA(1,1,1)
(1,0,1)-Modell und den zusätzlichen exogenen Effekten Montag, Donnerstag,
Samstag, Sonntag sowie Monatsende für den Prognoseursprung t = 106 und
den Prognosehorizonten h = 1, ..., H = 14
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Summary. Due to a limited ICU capacity patients can be rejected at both
the Operating Theater (OT) and at the Intensive Care Unit (ICU) within
hospitals. The corresponding ICU-rejection probability is an important service
factor for hospitals. A simple expression for this probability is not available.
With c the ICU capacity (number of ICU beds), this paper provides analytic
support for:

(i) An M |G|c|c-approximation.
(ii) A secure M |G|c -1|c -1 upper bound.

The upper bound can be of practical interest so as to dimension the size of
an ICU to secure a sufficiently small rejection probability.

1 Introduction

1.1 Motivation

At an ICU patients are admitted for intensive care, such as monitoring
and artificial ventilation. Patients may also require an ICU bed for
postoperative care after a heavy operation. Unfortunately, due to the
limited number of beds, a request for an ICU bed may be rejected.

For patients a rejection may lead to further delay in a critical sit-
uation which may even put lives at risk. For the hospital (or public
health) a rejection may lead to an idle operating room, which is re-
garded as a loss of precious capacity. The size of an ICU thus needs to
be dimensioned carefully.

A careful estimation of the ICU rejection probability is thus re-
quired. Unfortunately, measurements might not be available or be suf-
ficiently predictive for different number of beds. An analytic or numeric
approach would therefore be of practical interest.
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1.2 Literature and Objectives

By a number of references the standard M |G|c|· multi-server queue
has already been argued as a reasonable approximate for the ICU in
isolation (see [1] and references therein). Nevertheless, these results do
not contain:

• A formal justification.
• The inclusion of the OT and its interaction with the ICU.
• A secure lower and upper bound for the ICU-rejection probability.

These are the main objectives of this paper.

2 Original Model Formulation

2.1 Patient Types and Case Study

The inflow of the ICU consists of emergency patients (the majority)
and elective patients and can be subdivided into various patient groups.
However, as we are particularly interested in the effect of the limited
ICU capacity and its interaction with the OT, in this paper we only
make a cross distinction in patients, that need to visit the ICU af-
ter having undergone an operation, and patients that enter the ICU
directly without operation. These patients will be referred to as:

- OT (or type 1-) patients.
- Direct (or type 2-) patients.

This distinction is made:

- To capture the interaction between OT and ICU.
- As the average sojourn times at the ICU significantly differ.

A Case Study

Data were collected for a case study over a one year period. The per-
centages of type 1 and type 2-patients were 39% and 61%.

The average sojourn time spend in the ICU over all patients was
5.2 days, for roughly 4 days for type 1-patients and 6 days for type
2-patients. Other important characteristics were:

- OT capacity (number of operating rooms): 8.
- ICU capacity (number of beds): 12.
- ICU occupancy: 85%.
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2.2 Original Model

To study the ICU-rejection probability R and its interaction with the
OT a number of assumptions are made. In [2] each of these assumptions
has been argued and justified by simulation to be quite reasonable
for practical modeling. The corresponding tandem queue system under
these assumptions (1)-(8) will be referred to as the original OT-ICU
model, and will be studied in sections 4 and 5 as our system of interest.

Rejection

Type 1
OT ICU

2

(1) Patients that do not require an ICU bed are not included.
(2) A Poisson arrival rate λ1 of OT-patients (type 1) at the OT.
(3) A Poisson arrival rate λ2 of Direct patients (type 2) at the ICU.
(4) An exponential service time for the surgery at the OT with rate µ1.
(5) A (possibly non-exonential) sojourn time at the ICU with mean τ1

for OT-patients and τ2 for Direct patients.
(6) The OT has c1 identical operating rooms with a infinite waiting

facility; The ICU has a limited capacity for at most c2 patients
and no waiting facility.

(7) When no ICU bed is available, type 1-patients are rejected upon arrival
at the OT and type 2-patients are rejected upon arrival at the ICU.

(8) An ongoing operation is always continued. When no ICU bed is
available, the patient is kept in the recovery.

3 A Modified OT-ICU System

The original OT-ICU system of interest has no analytic solution. How-
ever, in line with literature (e.g. [1]), the ICU-rejection probability
seems to be approximated reasonably well by Erlang’s loss expression
(6); more precisely that is, by an M |G|c|c-queue with c = c2 the number
of ICU beds. This section provides formal support for this approxima-
tion as based upon the following artificial modification of (8):
(8’) When the ICU becomes congested, operations are immediately

interrupted and stopped. The operations are resumed as soon
as the ICU is no longer congested.

Under this modification, the tandem system will be referred to as the
modified OT-ICU system. For this system the following result can be
proven.
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Theorem 1. Let (n1;m1,m2) denote that there are n1 patients at the
OT and mi patients at the ICU of type i (i = 1, 2). For the modified
OT-ICU system, with m = m1 + m2 ≤ c2,

F1(n1) = [n1!]−1 for n1 ≤ c1 and [c1!c
(n1−c1)
1 ]−1 for n1 > c1 (1)

and with normalizing constant α, we have:

π(n1;m1,m2) = α F1(n1)
(
λ1

µ1

)n1 1
m1!

(λ1τ1)
m1

1
m2!

(λ2τ2)
m2 (2)

Proof. For selfcontainedness of this paper we restrict to a compact proof
for the exponential case with exponential parameters γt = 1/τt, t = 1, 2
at the ICU. The proof for the general non-exponential case can be found
in [2]. For t = 1, 2, let

µ1(n1;m1,m2) =

⎧⎨⎩n1µ1 ,m1 + m2 < c2 and n1 < c1
c1µ1 ,m1 + m2 < c2 and n1 ≥ c1
0 ,m1 + m2 = c2

(3)

µ2t(mt) = mtγt , λt(m1,m2) =
{

λt ,m1 + m2 < c2
0 ,m1 + m2 = c2

(4)

We need to verify the global balance equation for any state (n1;m1,m2)
to equate the total outrate (the left hand side) and the total inrate (the
right hand side). It will be convenient to order the detailed outrates
and inrates as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π(n1;m1,m2)µ1(n1;m1,m2)+
π(n1;m1,m2)µ21(m1)+
π(n1;m1,m2)µ22(m2)+
π(n1;m1,m2)λ1(m1,m2)+
π(n1;m1,m2)λ2(m1,m2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.1)
(5.2)
(5.3)
(5.4)
(5.5)

=⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π(n1 − 1;m1,m2)λ1(m1,m2)1(n1>0)+
π(n1 + 1;m1 − 1,m2)µ1(n1 + 1,m1 − 1,m2)1(m1>0)+
π(n1;m1,m2 − 1)λ2(m1,m2 − 1)1(m2>0)+
π(n1;m1 + 1,m2)µ21(m1 + 1)1(m1+m2<c2)+
π(n1;m1,m2 + 1)µ22(m2 + 1)1(m1+m2<c2)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.1)′

(5.2)′

(5.3)′

(5.4)′

(5.5)′

(5)

This global balance equation (5) is ordered as if it can be decomposed
into five local balances. The proof can be completed directly by sub-
stituting (2) which equates each of the detailed equations (5.i)=(5.i)′,
i = 1, . . . , 5. ��
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Remark 1 (Literature). Even for the exponential case the product form
result (2) can be regarded as ’new’ as it combines

• a non-reversible routing with blocking and
• multiple job types.

Remark 2 (Erlang loss expression). The product form expression (2)
decomposes as if the OT and ICU can be regarded as indepenent. As
a consequence, theorem 1 directly justifies an M |G|c|c-loss approxi-
mation for the ICU rejection probability with c = c2. More precisely,
straightforward arranging terms of (2) for π(m1 + m2 = c2) yields:

Corollary 1. For the modified OT-ICU system with m = m1+m2 ≤ c2
and arbitrary nonnegative ICU-sojourn time distributions for OT (type
1-) and Direct (type 2-) patients, the ICU-rejection probability for type
1-(at the OT) and type 2-(at the ICU) patients is determined by the
loss expression:

B(c) = ρc/c!
[∑c

k=0
ρk/k!

]−1
with ρ = (λ1τ1 + λ2τ2) (6)

4 Bounds

Intuitively, as the modified OT-ICU tandem system only differs from
the original OT-ICU tandem system for a patient in operation when
the ICU becomes congested, one may expect that the M |G|c|c-loss ex-
pression, as based upon corollary 1, is a quite reasonable if not accurate
approximation for the original OT-ICU system. This appears to be true
(as has already been used in the literature, but without formal justifi-
cation). In fact, by using the modified system for c2 = c and c2 = c−1,
and result 1, the following main result can be proven, which provides
secure bounds.
Theorem 2. With

• R the ICU-rejection probability upon arrival at the OT for a type 1-
patient and at the ICU for a type 2-patient for the original OT-ICU
system and

• B (c) the loss probability of an Erlang loss system with c servers with
arrival rate λ = λ1 + λ2 and mean service time τ as in (6):

B (c) ≤ R ≤ B (c− 1) (7)

Proof. Despite intuition, a proof as based upon a sample path compar-
ison approach can be expected to be highly complicated and have as
yet not been established. A technical analytical proof can be found in
[2] as based upon a Markov reward proof technique. ��
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5 Application: Case Study

The case study situation is within the range of realistic figures as re-
cently reported by the Dutch ministry of health. It reports that roughly
10% of ICU requests are strictly rejected, 3% admitted by a predis-
charge and 4% placed differently. Furthermore an occupancy of 75% is
mentioned as norm.

Simulation results for the case study consistently support the lower
and upper bound. Particularly, for smaller rejection probabilities, say
in the order of 5 -10% as for larger hospitals with a high occupancy
level, the bounds appear to be quite accurate (in absolute sense). The
results seem useful, at least, for practical purposes such as to guarantee
a sufficiently small rejection percentage by the upper bound.

For the case study, an occupancy of 85% and 12 beds were used.
The results lead to a lower bound of .127 and an upper bound of .172
(the simulation result was .128). As a direct application of the secure
M |G|c -1|c -1 upper bound computation the required number of ICU
beds could be computed to guarantee a specified rejection probability
R, such as:

• 16 beds for at most 5%.
• 19 beds for at most 1%.

6 Conclusion

The rejection probability for an ICU bed is of considerable interest
within hospitals. This paper provided support in a twofold manner:

(i) In a practical way, by an easily computable approximation
and a secure upper bound for the ICU-rejection probability.

(ii) In a theoretical way, by an analytic justification of this
approximation and bound.

As such the paper illustrates how Operations Research can provide both
practical and formal support for decision making in health care.
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Summary. Home health care (HHC) services provide nursing assistance to
the elderly with the advantage of allowing them to continue living at their
homes. Usually a HHC service has a fleet of vehicles that are used by nurses
to get to the patients, where they have to perform a specified job.

The HHC problem consists of the following task: assign a nurse to each job
such that several conflicting objective functions are minimized, while a number
of constraints are met. From a mathematical point of view, this problem is
hard to solve, since it combines two well-known NP-hard problems: the vehicle
routing problem and the nurse rostering problem. Our main objective is to
minimize the number of nurses that visit a patient during the schedule: the
nurse-patient loyalty. We consider this loyalty as a main indicator for a good
schedule. Additionally, we have a periodic model, i.e. we do not only want
to assign the nurses for one day, but we usually want to plan for a whole
scheduling horizon, typically a week. As a solution approach, we propose a
hybrid approach that combines the strengths of constraint programming and
the large neighborhood search metaheuristic.

1 Introduction

Home Health Care (HHC) services are becoming increasingly impor-
tant. Their patients receive medical treatments at home. Therefore a
HHC service provider has a fleet of vehicles used by nurses to travel to
the patients. Usually, there are various shifts that can differ in the set
of nurses available and jobs required. A periodic aspect is also involved,
since the jobs need to be performed repeatedly during the schedule. In
practice, the HHC problem is solved manually by a senior nurse, who
often spends a whole day creating next week’s schedule.

From a mathematical point of view, this problem is of special inter-
est, because it involves two NP-hard subproblems: the nurse rostering
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problem (NRP) and the vehicle routing problem (VRP). The former
arises from the fact that each nurse is only available for some of the
shifts. Furthermore, their working times are usually restricted to a max-
imum number of hours a week. The VRP is also part of the planning
problem, since travel distances should be minimized. It is periodic and
has time windows. The time windows arise from the patients’ preference
to be treated at certain times. Hence, the HHC problem encapsulates
a periodic vehicle routing problem with time windows (PVRPTW).

Only limited research has been conducted into the Home Health
Care problem. It seems to have been first described by Cheng and
Rich [2]. In their paper, they tackle the problem with two MIP formu-
lations and a two-phase construction heuristic. A more recent article
by Bertels and Fahle [1] combines constraint programming (CP) with
meta-heuristics to solve the HHC problem. Finally, a paper by Eveborn,
Flisberg, and Rönnqvist [4] models the Home Health Care problem for
a single day as a set partitioning problem.

This paper is organized as follows: section 2 presents our model,
while section 3 presents the hybrid constraint programming – large
neighborhood search approach. We conclude by presenting first com-
putational results.

2 A Model for Home Health Care Planning

In this section, we present our new model for the Home Health Care
problem, which combines a Nurse Rostering problem with a Periodic
Vehicle Routing problem. Usually, the literature considers the problems
separately, or Home Health Care problems with a single shift only.

In general, the problem consists mainly of two elements: jobs and
nurses. The task is to assign to each job a nurse such that the assign-
ment is feasible. This takes place in a planning horizon consisting of S
shifts. Each shift has a time window [0..H].

A job in the planning horizon represents a task at a patient’s home.
Different jobs can affect the same patient. A job j is characterized by a
hard time window [hbsj ..hbej ] and a processing time ptj. Furthermore,
it has a frequency fj, which states how many times the job must be
processed during the planning horizon. The shifts in which the job
has to be performed are given by a set of possible shift combinations
Rj =

{
Rj,1, . . . , Rj,Kj

}
. The sets Rj,l are subsets of shifts, and it yields

|Rj,l| = fj ∀l. Finally we have a distance matrix D = (dij) that states
the driving distance between two jobs i and j.
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For each nurse n, we have an a priori availability as
n ∀s with as

n = 1,
if nurse n is available for shift s, 0 otherwise. If a nurse is unavailable in
this sense, she cannot be made available – not even by paying a penalty
cost. Furthermore, a nurse has a designated working time wtn for the
whole schedule. If she is assigned to a shift, the whole length of the
shift is added to her working time. Any work of a nurse in addition to
her designated working time is penalized by costs cn per time unit.

A solution to the Home Health Care problem is evaluated by the
following criteria:

1. Nurse-patient loyalty : We believe that it is important for the pa-
tient’s satisfaction that he does not have to deal with many different
nurses. Advantages are twofold: on the patient’s side, it is easier to
develop a close relation to the nurse, while on the nurse’s side, time
can be saved. This is for example because the nurse knows her way
around in the patient’s household.

2. Nurse costs: Usually, a nurse’s contract includes a number of hours,
e.g., per week, that are covered by her salary. Additional work must
be paid with an overtime cost per extra time unit. As soon as a
nurse performs at least one job in a shift, we take the whole shift
as working time into account.

3. Traveling distance: Lastly, we seek to minimize the total travel dis-
tance.

We combine these three objective functions with a weighted sum. Then,
the optimal schedule is found, if the following term is minimized:

α1

J∑
j=1

(|Xj |−1)︸ ︷︷ ︸
criterion 1

+α2

N∑
n=1

cn

(
max

{
0,H

S∑
s=1

Y s
n−wtn

})
︸ ︷︷ ︸

criterion 2

+α3

S∑
s=1

N∑
n=1

T s
n︸ ︷︷ ︸

criterion 3

,

where |Xj | is the number of nurses used for job j throughout the sched-
ule, and T s

n is the distance traveled by nurse n in shift s. The positive
weights αi scale the criteria such that they are comparable and state
their relative importance.

3 Hybrid Approach

As mentioned before, our model consists of two distinct problems, which
have different solution approaches. For the nurse rostering problem,
constraint programming (CP) is successful (see [6]), while for the vehi-
cle routing problem metaheuristics are a good choice (see [3]). To tackle
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the HHC, we combine the strengths of both approaches. First, we ap-
ply a CP goal to compute an initial feasible solution to the problem.
Then, a metaheuristic tries to improve the solution, while an under-
lying constraint programming layer assures feasibility with the nurse
rostering problem. In this way, we find a feasible solution quickly with
CP, while the metaheuristic lets us navigate through the search space
towards optimal solutions. In the rest of this section, we describe the
constraint programming approach and the metaheuristic in turn.

The initial solution is found with a constraint programming goal
and a guided branch & bound search. In this search, we first fix the
shift combinations and then by increasing earliest start times assign
the jobs to nurses.

As a metaheuristic for the vehicle routing problem, we chose the re-
cently developed Adaptive Large Neighborhood Search (ALNS) (see [5]).
It follows a different approach to local search techniques. Instead of
changing a solution only slightly, the solution is changed significantly.
To perform moves from one solution to another, remove and insert op-
erations are defined. A remove operation determines the parts of the
solution that are allowed to be changed, while the insert operation de-
cides how the removed parts are inserted again, such that we obtain a
new feasible solution. For each move, the remove and insert operation
are selected randomly. By using weights, the search becomes adaptive.
In the beginning, each remove and insert operation has the same weight,
i. e. a probability to be chosen. During the search, the weight is adapted
by a score that depends on the success of a move. The ALNS is guided
by a local search, in our case a Simulated Annealing metaheuristic.

A remove operation is used to identify those jobs which can be
shifted to achieve a new solution. These jobs are stored in a request
bank. In our current approach, we used the following three remove op-
erations: In Random removal, q jobs are randomly removed. In Worst
removal, we seek to remove the jobs that have the highest cost. There-
fore, we sort the routes of the nurses according to the number of jobs
they include. Then, we remove routes, starting from the one with the
least jobs in it, until we have removed at least q jobs. The reasoning
behind this approach is that a job that uses only a single nurse in a
shift causes a high cost, since the entire shift is opened for it. Finally, in
Shift combination removal, we change the shift combinations of q jobs.

An insert operation is a construction heuristic to find a new feasible
solution. It is time consuming and difficult to construct a new solution,
since many constraints have to be considered. The following insertion
operations are available: The In Order insertion tries all possible inser-
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tions in routes of nurses for the first given job. Then the job is inserted
at the position into the route that creates the smallest objective func-
tion. Afterwards this procedure is repeated for the second job in the
request bank and so on. The Greedy insertion determines the inserting
position causing a minimal objective function for all jobs in the request
bank. Then the job with the minimal cost is inserted. Afterwards, for all
remaining jobs, the best insertion position is recomputed and the best
job is inserted. This procedure is repeated until no more jobs remain
in the request bank.

4 Computational Results

We evaluated the performance of our algorithms with some randomly
generated data. Since to our knowledge no standard benchmark in-
stances exist for the Home Health Care problem, we took instances for
the Periodic Vehicle Routing Problem with Time Windows (PVRPTW)
created by Cordeau (see [3]) and extended them for our problem with a
nurse rostering part. Therefore, we made the following design decisions:
For each nurse n, we assumed that she is designated to work half of
the shifts. Hence, wtn =

⌈
# shifts

2

⌉
· 300, where 300 is the general shift

length. For each overtime unit, a cost of 1 was assumed (cn = 1 ∀n).
Finally, a nurse is available in a shift with probability 0.75.

For parameter q, the number of jobs to be removed in a move, we
followed the suggestions of [5]. Therefore q is randomly drawn from the
interval [a, b], where a = min {0.1 · J, 30}, b = min {0.4 · J, 60}, and J
is the total number of jobs.

The results of this computational example are given in table 1. It
reads as follows: First, we generated for each instance an initial solu-
tion with the Constraint Programming goal. Then, the adaptive large
neighborhood search tried to improve the solution until either 1000
moves were performed, or a time limit of 120 minutes was reached.
The results show that the LNS could improve the solution significantly
in 50% of the instances. For the other instances, only a few LNS moves
could be performed, and hence the solution was only improved slightly
(or not at all). We believe that these initial computational results prove
that the adaptive large neighborhood search is a successful approach to
solve the Home Health Care problem if a significant number of moves
can be computed.
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Table 1. Computational results for the tests with the Cordeau instances

Inst. Para- meter Initial Comp. LNS Result
Instanz Nurses Jobs Tasks solution Time Best sol. Improv. Min

pr01 6 48 96 0.6893 0.33 s 0.3709 46.2% 36
pr02 12 96 192 0.8757 0.63 s 0.5030 42.6% 120
pr03 18 144 288 0.9358 2.44 s 0.7169 23.4% 120
pr04 24 192 384 1.0268 8.98 s 0.8270 19.5% 120
pr05 30 240 480 0.9426 21.94 s 0.9145 3.0% 120
pr06 36 288 576 1.0563 44.45 s 1.0466 0.9% 120
pr07 10 72 216 1.3281 0.58 s 0.9882 25.6% 114
pr08 20 144 432 1.4847 8.05 s 1.2642 14.9% 120
pr09 30 216 648 1.6167 40.33 s 1.5915 1.6% 120
pr10 40 288 864 1.7102 119.88 s 1.7102 0.0% 120
pr11 6 48 96 0.8400 0.34 s 0.3330 60.4% 37
pr12 12 96 192 0.9448 0.63 s 0.4379 53.6% 120
pr13 18 144 288 0.9448 2.53 s 0.6322 33.1% 120
pr14 24 192 384 0.9606 9.00 s 0.8797 8.4% 120
pr15 30 240 480 0.9622 21.86 s 0.9622 0.0% 120
pr16 36 288 576 0.9854 44.49 s 0.9854 0.0% 120
pr17 8 72 n.a. n.a. 120
pr18 16 144 432 1.5509 5.25 s 1.2357 20.3% 120
pr19 24 216 648 1.4984 27.03 s 1.4376 4.1% 120
pr20 32 288 864 1.6817 80.00 s 1.6731 0.5% 120
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Summary. Finding an appointment for elective surgeries in hospitals is a
task that has a direct impact on the optimization potential for offline and
online daily surgery scheduling. A novel approach based on bin packing which
takes into account limited resource availability (e.g. staff, equipment), its uti-
lization, clinical priority, hospital bed distribution and surgery difficulty is
proposed for this planning level. A solution procedure is presented that ex-
plores the specific structure of the model to find appointments for elective
surgeries in real time. Tests performed with randomly generated data moti-
vated by a mid size hospital suggest that the new approach yields high quality
solutions.

1 Introduction and Problem Description

Scheduling elective surgeries at a tactical level deals with finding an ap-
pointment for a surgery over a planning horizon of several weeks, while
booking individual or generic resources for the particular appointment
day. Its output is used as input for the operational planning level prob-
lem, which consists in assigning an estimated start and end time to
each surgery, as well as solving the corresponding rostering problem.

The importance of an efficient management of operating theatre
(OT) resources has been widely documented (refer e.g. to [1]). An im-
portant part of a hospital’s budget is spent in the OT. Guaranteeing
a reduction in idle times of equipment and operating rooms, which
in turn results in a more efficient use of the staff’s available time, is
motivation enough to study this problem in depth.
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In practice, the tactical operating theatre scheduling problem (TOT-
SP) is hardly ever considered as surgery appointments are given on a
“first come, first served” basis. The goal of this paper is to present
a mathematical model which provides a decision support for finding
not only an available and feasible appointment, but also one that will
achieve desired criteria. In this sense, the TOTSP will be modelled
as a multi-dimensional online packing problem with time windows.
Sect. 2 describes the mathematical formulation for the TOTSP. Sect. 3
presents the exact solution method. Sect. 4 reports the computational
experience and compares the performance of the proposed approach
with the “first fit” (FF) method often used in practice. Finally, Sect. 5
presents some conclusions and directions for further research.

2 Mathematical Formulation of the TOTSP

The problem of finding an appointment for a surgery is considered over
a desired time window which describes the patients’ preferences for the
surgery day and the medical requirements predefined by the surgeon.
It is assumed that all departments of the hospital have information
regarding resource availabilities and that staff qualifications have been
identified. The required notation is introduced as follows:

Index sets T = Set of days resulting from the discretization of
the planning horizon (e.g. a year is divided into 365 days); S = Set of
elective surgeries, of which the first si−1 already have a fixed appoint-
ment and surgery si is the surgery that needs to be assigned to t ∈ T ;
R = Set of resources (e.g. rooms, equipment, staff, beds); Rs = Set
of resources required to carry out surgery s; I = [I, I] = Set of days
during which surgery si is desired to take place (I ⊂ T ).

Parameters c1, c2 = penalty weights awarded to scheduling a
surgery with overtime or outside the time window I, respectively; �rsk

=
amount of time required of resource r for surgery sk; ursk

= number of
days in which surgery sk requires resource r; qrt = regular capacity of
resource r on day t; vrt = additional capacity of resource r on day t;
M = maxr∈R,t∈T {qrt}.

Decision variables xsit = 1 if surgery si is assigned to day t, and
0 otherwise; yrt = 1 if resource r does not require additional capacity
on day t, and 0 otherwise.

The following packing formulation is proposed to model the TOTSP,
given that surgery si has a desired time window [I, I] during which the
surgery should be scheduled and that all previous surgeries s1, . . . , si−1

already have a fixed appointment.
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Min c1
∑

t∈T\I
xsit + c2 [ 1− (

∑
t∈T

(xsit ·
∏

r∈Rsi

yrt) ) ] (1)

subject to
|T |∑
t=I

xsit = 1 (2)

I−1∑
t=1

xsit = 0 (3)

i∑
k=1

�rsk
[xskt +

ursk∑
j=2

xskt−j+1] ≤ qrt + M(1− yrt),∀r ∈ Rsi , t ∈ T (4)

i∑
k=1

�rsk
[xskt +

ursk∑
j=2

xskt] ≤ Myrt + qrt + vrt,∀r ∈ Rsi , t ∈ T (5)

xsit ∈ {0, 1}, ∀t ∈ T (6)
yrt ∈ {0, 1}, ∀r ∈ Rsi , t ∈ T (7)

The objective function (1) consists of two terms, namely the penalty
factor c1 when time window I is not satisfied and the penalty factor
c2 when at least one resource r required by surgery si uses additional
capacity. Equation (2) ensures that upon the existence of a feasible
solution, the surgery is appointed to a day of the planning horizon T .
Equation (3) ensures that a surgery is not scheduled before the start
of the time window I. Inequalities (4) and (5) represent the common
notation for disjunctive constraints and describe whether the surgery’s
requirement for resources r ∈ Rsi can be satisfied under consideration
of the previously reserved capacities for surgeries s1, . . . , si−1. In par-
ticular, Inequalities (4) are soft constraints since the capacity may be
expanded by the parameter vrt as in Inequalities (5), where the auxil-
iary variable yrt indicates which of the two inequalities is binding for a
particular r and t. Finally, Relations (6) and (7) define the domain of
all decision variables as being binary.

The use of the above formulation presents a close relation to practice
relevant criteria when determining an appointment for a surgery. Due to
medical and patient preferences, an appointment is searched within the
desired time window I. Such an appointment will be selected taking into
account that a low over- and under-utilization of resources is desired,
that hospitalization bed use is levelled, that no staff overtime is incurred
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and that such a solution can be found in real time. Based on field work
carried out in several German hospitals, satisfying the desired time
window is more important than incurring permissible overtime (i.e.
c1 > c2 > 0). The proposed solution method described in the next
section makes use of this fact and of the structure of the feasible space
of the TOTSP to find an optimal and practice relevant solution using
a hybrid algorithm based on simple bin packing rules.

3 Solving the TOTSP

The feasible space of the TOTSP can be divided into equivalence
classes according to their objective values. All feasible appointment
days within the time window I that can be assigned to a surgery with-
out any resources incurring overtime have the same objective function
value, namely zero. Furthermore, all feasible appointment days within
the time window and where at least one resource incurs overtime, have
the same objective function value, namely c2. Likewise, feasible ap-
pointment days lying outside I and that do not require overtime for
any of the resources, have the same objective function value, namely
c1. Finally, feasible appointment days that lie outside I and which re-
quire overtime for at least one of the surgery’s required resources, have
an objective function value of c1 + c2. Based on this structure of the
feasible space, finding an optimal solution for the TOTSP consists in
selecting one solution amongst those solutions in the best equivalence
class. Such a selection will be carried out according to the practical
situation arising in each instance of the TOTSP.

Finding a solution within the first equivalence class will be done
either with a FF or with a “best fit” (BF) strategy. The parameter
that triggers either strategy is the desired time window I. Instances
vary depending on its size and how immediate the start of the inter-
val is. Since unused capacity corresponding to immediate days is lost
when these become part of the past, it is important that days in the
immediate future are filled to capacity. The FF strategy thus looks for
the first appointment day that does not require overtime for any of the
resources within candidate days belonging to the set FF = I ∩ TFF ,
assuming that FF is non-empty and where TFF is a hospital depen-
dent and predefined number of days in the future that are desired to
be filled. If such a solution is found, it will be optimal as it belongs
to the first equivalence class. Otherwise, a BF strategy will be applied
to the set of candidate appointment days BF = I ∩ TFF

C . The BF
strategy searches for each day in the set BF , the resource r ∈ Rs with
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the tightest fit. For the day to be eligible, no overtime is incurred for
any of the resources. The BF strategy then selects the appointment day
as the day t ∈ BF that has the resource with tightest fit. If there are
several candidate days with the same tightest fit, a tie breaking rule
is applied according to the sum of squares (SSq) rule. The SSq rule
analyzes the bed distribution for a portion of the days of the planning
horizon T , say T̃ = [I−p, I+q], with p, q parameters selected in such a
way that T̃ ⊆ T . The optimal solution is then obtained by finding the
solution to the following expression (and assuming that βt represents
the number of available beds on day t):

t∗ = argmint∈T̃

{∑
t∈T

β2
t +

∑
t∈T̃\{I+q}

(βt+1 − βt)2
}

(8)

If no feasible solution is found using either the FF or the BF strategy,
then the first equivalence class is empty and solutions belonging to
the second equivalence class (time window I is fulfilled and overtime
is incurred for at least one of the required resources) will be optimal.
Assuming that there exist feasible solutions, the optimal solution is thus
found by selecting the day in time window I with the lowest incurred
overtime as a result of the soft capacity constraints in the TOTSP.
Should the equivalence class be empty, then the optimal solution will
belong to the third equivalence class, which includes those solutions
where the time window I is violated and no overtime is incurred. For
this, a FF strategy is employed to find the first day after I for which
an appointment can be found and all resources do not require the use
of overtime. Only in the case that this third equivalence class is empty,
will a FF strategy be required to find an appointment after I .

4 Computational Experience

The proposed hybrid method was implemented in C++ and solved on
a Pentium 4 PC with a 1.7 GHz processor and 512 MB RAM. Ran-
domly generated instances were created based on a pool of 18 frequent
surgeries in a mid size hospital in Germany. These instances consisted
of patient arrival over a course of 11−36 weeks and requiring a surgery
appointment within a time horizon of six months. Four surgery rooms,
21 staff members (surgeons, anesthesiologists), one nursing ward with
21−35 beds and one intensive care unit with nine beds were modelled.
A surgery team consisted of at least two members and at most four.
Finally, the set TFF corresponded to the next week.
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The results of the proposed hybrid approach are compared in Table 1
with the FF strategy commonly used in practice. It can be seen that
the proposed solution approach performs better than the classical FF
approach. Moreover, on average, an appointment was found within 0.3
seconds with the new method.

Table 1. Results of the hybrid and FF strategy to solve the TOTSP

Instance Satisfaction of I Avg. deviation from I Overbooking of ORs
(%) (days/surgery) (total hours)
Hybrid FF Hybrid FF Hybrid FF

I-1 93 89 0,48 0,77 174 235
I-2 79 76 2,24 2,43 224 266
I-3 53 48 8,69 10,65 262 303
I-4 86 83 1,45 1,77 43 59
I-5 81 76 2,08 2,56 42 65
I-6 87 84 1,34 1,70 42 59
I-7 96 93 0,38 0,59 17 31
I-8 93 91 0,70 0,67 22 31
I-9 77 69 1,53 2,82 130 133
I-10 69 62 2,46 3,98 118 115
I-11 86 83 1,57 1,95 27 27

5 Conclusions and Outlook

The TOTSP formulation and solution method proposed in this pa-
per support the process of finding an appointment for a surgery and
yield a solution in real time. The model considers practice relevant
aspects like a desired time interval during which the surgery has to
be carried out, thus keeping waiting times within grasp. It utilizes re-
sources efficiently which allows downstream levels of planning (next-day
surgery scheduling and online scheduling) to return larger overall im-
provements in comparison to common practices in hospitals. Possible
extensions to the model include allowing previously fixed appointments
to be rescheduled to other days or to collect all incoming appointment
requests during the course of a certain time period (e.g. one day) and
then assign the appointments accordingly.
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1 General Research Question

In the accounting system of the International Financial Reporting Stan-
dards (IFRS) pension plans are covered by the International Account-
ing Standard (IAS) 19 ”Employee Benefits”. As ”accounting for defined
contribution plans is straightforward” (IAS 19.43) we concentrate on
defined benefit plans. In case of defined benefit plans, the employer
has promised to make future pension payments according to a plan
formula. We focus on pension plans without external accumulation of
capital (unfunded plans) as we want to analyze pure accounting effects.

According to IAS 19.48 ”accounting for defined benefit plans is com-
plex”. Due to experience deviations from the financial and non-financial
assumptions actuarial gains and losses will occur. IAS 19.92-93A offers
several alternative options to cope with actuarial gains and losses. IAS
19.95 assumes that actuarial gains and losses will offset in the long run.
Because of the long horizon, the difficult calculations, the different ad-
ditional elements in the system and the probabilistic nature, human ex-
pectations and heuristic approaches generally fail [3]. We are interested
in the ability of offsetting actuarial gains and losses and investigate the
effects of selected different options of coping with actuarial gains and
losses.

2 A Brief Overview of the IAS 19 System

The defined benefit obligation (DBO) has to be measured by the pro-
jected unit credit method (IAS 19.64). For short, the DBO for a single
individual is the present value of the expected future pension payments
that are ”earned” by the cumulated past work of the individual up to
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the current balance sheet date according to a plan formula. For the
calculation of the obligation we have to assume the following major
parameters:

• expected future salary/wage increases
• expected future pension increases
• expected future fluctuation
• expected future mortality

IAS 19.78 requires to determine the discount rate from current mar-
ket yields of long-term highly quality corporate bonds. The financial
assumptions have to be mutually compatible (IAS 19.75).

The actuarial gains and losses derive from experience deviations
from the actual to the expected values of these parameters. To some
extend they are unavoidable, e.g. the realized mortality and fluctuation
are either 0 or 1 and differ from the expected which are in the open in-
terval (0, 1). IAS 19 provides alternative options to cope with actuarial
gains and losses. We differentiate between four basic approaches:

1. cumulation and recognition of a corridor excess over the expected
remaining working lives of the participating individuals (IAS 19.92)

2. cumulation and a faster recognition of a corridor excess, in particu-
lar recognition of a corridor excess in the current period (IAS 19.93,
93A)

3. immediate recognition in profit and loss (IAS 19.93, 93A).
4. immediate recognition outside profit and loss in a separate state-

ment directly within equity (IAS 19.93A) (equity approach)

No. 1 and 2 are variations of the corridor approach. For the considered
unfunded pension plans, the corridor is 10 % of last years DBO (IAS
19.92). In the following we concentrate on options No. 1 (which we call
the ”standard” corridor approach) and 4.

As the corridor approach allows to defer actuarial gains and losses,
we have to differentiate between the DBO and the Defined Benefit
Liability (DBL). Only the DBL will be shown in the balance sheet.
Applying the corridor approach, the transition of the DBO, the cu-
mulated unrecognized actuarial gains and losses, and the DBL from
balance sheet date t-1 to t derives from the pension cost and the pen-
sion payments in the period t (Fig. 1). In the corridor approach the
pension cost in period t are set up by the interest cost on the DBOt−1,
the current service cost in t (i.e. the present value of expected addi-
tional future pension payments due to the work in period t), and the
actuarial gains and losses recognized in period t.
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Fig. 1. Transition of elements in the corridor approach from t-1 to t

In the equity approach the DBL is identical to the DBO as there
are no unrecognized actuarial gains and losses. The actuarial gains and
losses are not part of the pension cost.

3 General Structure of the Simulation Model

Because of the complexity of the system an analytic solution to an-
swer the question on offsetting actuarial gains and losses is impossible.
Therefore, we use the Monte Carlo simulation technique in a discrete
simulation model. In this paper we focus on the degenerating workforce
version of the model, i.e. the initial workforce declines because of re-
tirement, fluctuation or death of the employees. In the discrete model
we work with a time interval of one year for a projection horizon of 88
years. The model has been implemented in Microsoft Excel by use of
the Add-In Crystal Ball. We assume that the first pension payment for
a retiree is calculated as a fixed percentage for each active year of the
last salary before retirement (a final pay plan).

The simulation model consists of a valuation model at state t and a
stochastic transition from state t to state t+1 (Fig. 2). The mortality
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and the fluctuation have been implemented as binomially distributed
events.
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Fig. 2. General structure of the simulation model

The assumptions concerning the parameters are based on official
German statistics (for details see [1]). We assume that the annual pen-
sion increase follows the non-negative inflation rate. Because of miss-
ing data, the yield of long-term high quality corporate government
bonds has been modeled by a combination of related time series. Espe-
cially for the long-term projection of financial parameters we explicitly
consider the correlations and autocorrelations. Based on the annual
data of the financial parameters for 1957-2003, we generated a vector-
autoregressive model of order 1 – VAR(1) – (see [2]) and integrated it
into the simulation model.

yt = B× yt−1 + β0 + ut

with

yt =

⎛⎝ inflationt

salary increaset

yieldt

⎞⎠B =

⎛⎝ 0.433 0.162 0.396
−0.644 0.904 0.515
0.016 0.089 0.677

⎞⎠β0 =

⎛⎝−2.128
−1.382
1.730

⎞⎠
The residuals ut are normally distributed with the mean 0 and the
standard deviations 0.86 (inflation), 1.90 (salary increase), and 0.96
(yield). The Bravais/Pearson correlation coefficients between the resid-
uals are 0.18 (inflation & salary increase), 0.50 (inflation & yield), and
0.24 (salary increase & yield). Despite the fact that the generation
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of random numbers works with Spearman rank correlations these val-
ues have been used as parameters. There are only marginal differences
between the assumed and the simulated Bravais/Pearson correlation
coefficients. After an in-swinging phase of 20 years, finally we get a
stationary and homoscedastic model with long-term expected values of
2.62 % (inflation), 5.30 % (salary increase), and 6.95 % (yield).

4 Fundamental Results

Financial reporting should provide useful information for investing de-
cisions (F 12-21). The options to cope with actuarial gains and losses
may cause biased information as some depend on the assumption of
offsetting of actuarial gains and losses in the long run. This fundamen-
tal assumption can be examined best for the equity approach which
cumulates the actuarial gains and losses separately within equity. In
case of a degenerating workforce we get a final state at the end of the
projection horizon.

-7,000,000

-6,000,000

-5,000,000

-4,000,000

-3,000,000

-2,000,000

-1,000,000

0

1,000,000

2003 2023 2043 2063 2083

end of year

€

95%
75%
50%
mean
25%
5%

Fig. 3. Cumulated actuarial gains and losses - recognized directly in equity

As we apply the VAR(1)-model for projecting the financial parame-
ters and make some minor modifications the numbers differ from those
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in [1], but the general shape and outcome is identical (see Fig. 3). There-
fore, the fundamental results can be taken as robust. It is obvious that
there is only a poor chance of offsetting cumulated actuarial gains and
losses in the long run. In case of the degenerating workforce on aver-
age 29.8 % of the total pension payments will never be recognized as
pension cost if we decide to work with the equity approach.

If we apply the standard corridor approach, then the line of the mean
for the cumulated unrecognized actuarial gains and losses is shaped like
a bowl. After the initial downward trend of the mean, it improves from
the mid of the projection horizon. Finally the mean is 0. Compared
with the equity approach the downward trend is buffered by the fact
that there is an amortization of the corridor excess. The subsequent
upward trend can be explained mathematically. Because of the decline
of population and remaining lifetime, the DBO and the corridor de-
creases. An (larger) excess of the (smaller) corridor will be amortized
faster.

5 Conclusions

The major result is the fact that cumulated actuarial gains and losses
are not symmetrical. Especially the equity approach causes a system-
atic and permanent bias in accounting information. As the Interna-
tional Accounting Standards Board (IASB) has announced to develop
a new standard by 2010, we strongly recommend rejecting the equity
approach. Finally we prefer an immediate recognition of any actuar-
ial gains and losses – or, at least, the corridor approach that avoids a
permanent bias.
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1 Introduction

This study regards a two-stage value chain of a decentralized company.
The separated investment centers can implement a firm-wide differen-
tiation strategy by making specific investments. The focus is set on
a situation where the upstream manufacturing department invests in
product quality improvements and the downstream marketing depart-
ment invests in marketing operations. The specific investments are to-
tally defrayed by the units acting on their own authority. Because both
specific investments affect the whole revenue in the same way increas-
ing customers demand and customers willingness to pay, the allocation
of the profit induced by the specific investments is not made cost reflec-
tive. An underinvestment problem arises, witch endangers the objective
of firm-wide profit maximization.

This article compares a contribution margin sharing rule, a rev-
enue sharing rule and a transfer pricing scheme as coordination instru-
ments for achieving goal congruence between the departments induc-
ing efficient production and investment decisions as well as overall firm
profit maximization. Contribution margin or profit sharing (e.g. [3])
and transfer pricing (for an overview see [4]) are well known. In con-
trast, revenue sharing is an as far as possible unknown instrument for
coordinating decentralized companies. Starting points for considering
revenue sharing systems and the effects of revenue affecting specific in-
vestments in a decentralized company are shown by Chwolka/Simons
[1] and Martini [2].

The remainder of this paper is organized as follows: Section 2
presents the framework and the solution of an equilibrium model us-
ing a contribution margin sharing rule, a revenue sharing rule and a
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transfer pricing scheme. In section 3 the performance of these coordi-
nation instruments is compared on the basis of the overall firm profit.
Circumstances are identified, under witch a single coordination instru-
ment dominates the others.

2 Model

2.1 Assumptions

The considered company consists of two decentralized departments or-
ganized as investment centers. At the first stage investment center
A produces an intermediate product at constant unit cost cA. After
transfer to investment center B the intermediate product is completed
at constant unit cost cB and sold on an anonymous market. B is in
charge for the sales volume x, A adapts the sales volume generating
a nonnegative profit. The risk-neutral investment center managers are
compensated according to their reported success after profit allocation
by using a contribution margin sharing rule, a revenue sharing rule or
a transfer pricing scheme.

The assumed multiplicative demand function with constant price
elasticity ε = 2 is given by

p(x, IA, IB , ã) =

√
ã(v

√
IA + w

√
IB)

x
with the attributes

∂p(x, IA, IB ã)
∂x

< 0 ,
∂p(x, IA, IB , ã)

∂Ii
> 0 and

∂2p(x, IA, IB , ã)
∂2Ii

< 0 , for i ∈ A,B as well as
∂2p(x, IA, IB , ã)

∂IA ∂IB
= 0 .

The demand function depends on the sales volume, the specific in-
vestments IA and IB as well as the random variable ã. Both investment
centers can support a firm-wide differentiation strategy by making spe-
cific investments. The specific investments affect the demand function
with different efficiencies v and w. With v > w, the influence of IA on
the demand function is larger than IB . The random variable ã reflects
uncertainty of market conditions at the selling moment. The random
variable ã with mean µ = a implies that the expected price is given by

E[p(x, IA, IB, ã)] =

√
a(v

√
IA + w

√
IB)

x
.
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Investment and 
sales volume
decisions

Arrangement of 
the coordination
instrument by
investment
center A or B

Choosing coordination
instrument and 
delegation of the rights
of arrangement by
administrative 
management

Realization sales
price, selling
products and 
allocating profits

Fig. 1. Decision making and time sequence of the production process

The decision making and time sequence of the production process is
pictured in fig. 1. At the outset, the administrative management of the
company chooses a coordination instrument delegates the right of ar-
rangement either to A or to B. Before investments and production take
place, A or B determine the transfer payment by fixing the contribu-
tion margin share, the revenue share or the transfer price (monopolistic
decision). Then, the investment centers make their specific investments.
Without additional information B determines the sales volume and or-
ders from A the corresponding quantity of the intermediate product.
Finally, the market price is realized and the profits are allocated.

The specific investments are not observable and can not ascertain ex
post because of random variable ã. But each investment center manager
knows the investment decision problem of the other manager. There-
fore, they are able to calculate the optimal investment level in their
view. The investment center managers are planning their decisions on
the basis of their individually expected department profit. The fol-
lowing analysis uses an equilibrium model solving the several decision
problems by reverse induction.

2.2 Solution

The points of departure are the expected profit functions of A and B
using contribution margin sharing

πA(x, IA, IB , τCM ) = τCM

(√
(v
√

IA + w
√

IB) a x− (cA + cB)x
)
− IA

πB(x, IA, IB , τCM ) = (1−τCM)
(√

(v
√

IA+w
√

IB) a x−(cA + cB)x
)
−IB,

revenue sharing

πA(x, IA, IB, τRS) = τRS

√
(v
√

IA + w
√

IB) a x− cAx− IA

πB(x, IA, IB, τRS) = (1− τRS)
√

(v
√

IA + w
√

IB) a x− cBx− IB
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or transfer pricing

πA(x, IA,T TP ) = T TP x− cA x− IA

πB(x, IA, IB ,T TP ) =
√

(v
√

IA + w
√

IB) a x− (cB + T TP )x− IB.

B specifies the optimal sales volume depending on the investment
levels IA and IB as well as the allocation parameter. Anticipating the
quantity decision the investment centers determine their specific invest-
ments depending on the allocation parameter. Finally, either A or B set
the allocation parameter maximizing their department profit regarding
contribution margin sharing

A τCM ∈
{

w2

2w2 − v2
, 1
}

B τCM ∈
{

0,
v2 − w2

2w2 − v2

}
,

revenue sharing

A τRS =
2v2c2A + 5v2cAcB − 4w2cAcB + 2v2c2B − 5w2c2B

2 (v2c2A + 4v2cAcB − 2w2cAcB + 4v2c2B − 4w2c2B)
+

cB
√

v4c2A + 4v4cAcB − 2v2w2cAcB + 4v4c2B + 9w4c2B
2 (v2c2A + 4v2cAcB − 2w2cAcB + 4v2c2B − 4w2c2B)

B τRS ∈
{

2v2cA + v2cB − w2cB

2v2cA + 4v2cB − w2cB
,

cA

ca + 2cB

}
or transfer pricing

A T TP =
3cA(v2 + w2) + (v2 − w2)cB + (cA + cB)

√
v4 + 2v2w2 + 9w4

2 (v2 + 2w2)

B T TP ∈
{
cA ,

3v2cA + (v2 − w2)cB

2v2 + w2

}
.

Using forward induction the decision interdependencies can be re-
solved and the investment levels, the sales volume, the expected depart-
ment profits as well as the expected overall firm profit can be calculated.

3 Performance Evaluation

The expected overall firm profit reflects the ability of the coordination
instruments inducing efficient investment and sales volume decisions.
Therefore, the coordination instruments are compared on the basis of
the overall firm profit. Fig. 2 shows the overall firm profit depending on
relative unit costs and relative efficiencies of the specific investments
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for contribution margin sharing, revenue sharing and transfer pricing
determined either by A or B.

Depending on relative unit costs and relative efficiencies of the spe-
cific investments the implementation of every single coordination in-
strument determined either by A or B can be expedient. The relation
of the efficiencies of the specific investments has a greater impact on
the performance of the coordination instruments than the relation of
the unit costs. Conspicuous are three areas dominating by a single co-
ordination instrument.

Fig. 2. Overall firm profit depending on relative unit costs and relative ef-
ficiencies of specific investments with a = 10, cA ∈ ]0, 2[ , cB ∈ ]0, 2[ ,
cA + cB = 2, v ∈ ]0, 2[ , w ∈ ]0, 2[ and v + w = 2 (top view with blow
up)

1. v < w: The influence of IA on the demand function is larger than
IB . Contribution margin sharing or transfer pricing by B cause the

B TP

v = w v > wv < w

c A
=

 c
B

c A
>
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B
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B

B RS

A RS

B CM

A CM
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highest expected overall firm profit. In that case, B sets BτCM = 0
or BT TP = cA. A makes no specific investments BICM

A = BITP
A = 0

and realizes the expected department profit BπCM
A = BπTP

A = 0.
Only B makes specific investments. Because of the weak influence
of IA the investment decisions are reduced to a single investment
decision of B. The expected overall firm profit corresponds with the
expected department profit of B.

2. v > w: The influence of IA on the demand function is lower than IB.
The highest expected overall firm profit is generated by A setting
the contribution margin share at AτCM = 1. The hole contribution
margin is allocated to B. Concerning contribution margin sharing
the sales volume decision of B is independent of its contribution
margin share. In this particular case, only B makes specific invest-
ments and shows the hole expected profit.

3. v ≈ w: Revenue sharing by A induces the highest expected overall
firm profit, if the influence of IA on the demand function is compa-
rable with IB . A and B make specific investments and implement
as a result a firm-wide differentiation strategy. Both expect a de-
partment profit.

In the cases v < w and v > w, efficiencies of the specific invest-
ments are so different that only the specific investment with the higher
efficiency is implemented. If both specific investments have an impor-
tant effect on the expected overall firm profit, revenue sharing performs
best. In contrast to that, transfer pricing is not qualified for improving
the investment tendency of the upstream investment center. Invest-
ment center A can only profit from a larger sales volume but not from
a higher sales price. Hence, transfer pricing should not be used for
implementing a firm-wide differentiation strategy.
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1 Introduction

Theoretical models as Expected Utility Theory (EUT) start from the
premise that decision making individuals follow subjective rules which
they found e. g. on their personal probability judgements. Thus, EUT
requires that the decision maker has a complete knowledge of all rele-
vant states of the world and consequences of possible actions. Often,
there is a lack of information basis to attribute probabilities to states
of the world and to evaluate the utility of potentially occurring con-
sequences. In such cases, alternative decision theories to EUT are to
be applied for a reality adequate explanation of decision-making pro-
cesses. Such a theory, being presented in the following, is Case-Based
Decision Theory (CBDT), which will be analysed experimentally with
respect to its empirical validity. The results shall substantiate the va-
lidity of the premises and the methods of the CBDT in the context of
a repeated-choice problem.

2 Funding Repetitive Decisions by Case-Based Decision
Theory

In a multitude of decision problems, individuals observably do not con-
struct probabilities for potential states of the world, but tend to evalu-
ate their actual decision problem with information about past decision
situations. Based on this paradigm of human behaviour, CBDT pos-
tulates that individuals tend in their decisions under uncertainty to
action alternatives having led to desirable consequences in the past. In
this, the decision maker of CBDT refers to decision situations he/she
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has been confronted with in the past, instead of referring to states of
the world (cf. [3] and [5] in the following).

Reconstructing the subjective system of objectives in a case, CBDT
provides the starting premises for the decision making process. For-
mally, such a case can be represented by a problem q ∈ Q, a possible
action a ∈ A and a resulting consequence r ∈ R. The decision cri-
terion is composed of a function s : Q × Q → [0, 1] and a utility
function u : R → IR+. In general the function s(·) is called similarity
function, because it expresses the similarity perceived by the decision
maker between two problems. In the case of an identical perception of
both problems, the similarity function s(·) takes the value one, while
it takes the value zero in case of entirely different evaluated problems.

Additionally, an aspiration level is considered as differentiation of
the decision criterion in order to display ambitious and at the same time
careful decision behaviour. To determine the aspiration level, various
adjustment rules are suggested (cf. [4]). In the following, let the function
ct(a) describe the number of previous periods in which the act a was
chosen. The average utility dt(a), accruing for the decision maker when
the act a is chosen, can be formally determined using the relation

dt(a) =

∑
τ∈ct(a) u(rτ )

ct(a)
, where ct(a) > 0 (1)

In that, it is postulated that when considering an aspiration level,
the utility of the action alternative a chosen should not be smaller than
the utility of the action alternative(s) ã not chosen. For more than two
alternatives to be evaluated, the result is consequently a linear system
of equations whose solution is described by a set of feasible aspiration
levels in the form of αt ∈ [αt, αt]. In the case of there being no solution
to the system of equations, the aspiration level should take on the value
of the previous period. The assumptions can be summarised formally
using the following heuristics:

αt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α0 if t = 1
max
a∈A

dt(a) if t ≥ 2, ct(a) > 0 and αt ∈ [αt;αt]

αt if t ≥ 2, ct(a) > 0 and αt < αt

αt if t ≥ 2, ct(a) > 0 and αt > αt

αt−1 else

(2)

Are these requirements cumulatively met, the utility of an action
can be determined as follows:
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Ut,α(a) =
t−1∑
τ=1

s(qt, qτ ) · [u(rτ )− αt] (3)

In this situation of uncertainty it is to be analysed, whether different
models of behaviour are in a comparable or stronger way empirically
valid than the behavioural hypotheses of CBDT. Therefore it shall be
investigated in the following, if EUT can explain decision behaviour
experimentally observed. Often EUT is considered as an approximation
of economical behaviour (cf. among others [2], 66 ff.).

Application of the EUT requires the existence of a risk situation, i. e.
of probabilities of action consequences. As the Bayesian actor does not
know the specific distribution of the consequences of the various action
alternatives in this situation of uncertainty, he regards the probabilities
of consequences p(r) as randomised and therefore models them on the
basis of their frequency m(r). Is no information available and are no
action alternatives realised, the Bayesian actor assumes a rectangular
distribution of the consequences. Thus, the situation of uncertainty is
interpreted as a situation of risk. The idea of a distribution of conse-
quences being considered in textbooks as adequate, has to be succes-
sively adjusted with realisation of the consequences (cf. [1]). On the
basis of a sequence of choices, the development of the probabilities of
the consequences can be determined with (4) in which n is the number
of possible consequ! ences:

pa (ri) =
m (ri) + 1∑n

i=1 m (ri) + n
(4)

The actor will evaluate the available action alternatives on the basis
of (5) by weighting the possible consequences with probability resulting
from (4):

E [U (a)] =
n∑

i=1

pa (ri) · u (ri) (5)

On the basis of the observed decision behaviour of students of Man-
agement and Economics at the University of Osnabrück (Germany)
aspects of the formal structure of the evaluation calculus of CBDT and
of its empirical validity in comparison to the validity of EUT shall be
discussed in the following.
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3 An Experimental Study on Case-Based Decision
Theory

On account of its simple variability and its intelligible structure, an
urn experiment is conducted. It is divided into three passes that differ
with regard to the number and composition (resp. distribution) of the
balls to be drawn. Each ball shows three colour fields (”red”, ”black”
and ”blue”) within which whole numerical values as an element of the
set [−5, 5] are written, so that altogether for each ball there are a to-
tal of 113 possible colour-number combinations. The test persons know
merely the number of balls contained in the urn. However, they have
no knowledge about the number-colour combinations of the individual
balls. The task of the test persons is to choose a colour ai. After select-
ing a colour, a ball is drawn randomly and the corresponding numerical
value is announced, that is r(ai) = ri ∈ [−5, 5]. The test person is not
given any further information about the composition of the ball, that is,
the two remaining co! lour-number combinations. The ball is returned
to the urn immediately after the drawing. In this respect, each of the
three passes describes a so-called repeated-choice situation.

In the beginning situation (Pass A) the urn is stocked with nine
balls. After 15 drawings, three balls are removed from the urn without
announcing their composition to the experiment participants. Again,
15 drawings (Pass B) take place. After the 30th drawing, five balls
whose composition is not known by the participants are added to the
six balls already in the urn. Another 15 drawings are carried out (Pass
C).

A total of 269 test persons takes part in the experimental study. In
order to avoid arrangements being made among the test persons with
regard to a common game strategy, the test persons are divided into
five groups by a random generator, and each of these groups stands for
a specific stocking of the urn (or writing on the ball). In reconstructing
the decision behaviour of the test persons, there are, in addition, the
following assumptions: the outcome values correspond at the same time
to the partial utility values u(ri) = ri and the similarity measure s(·)
is constant and equal to one within one pass. This means, that the
test person notices the identity of the decision problem, that is, the
repeated-choice situation as such.

Providing the decision principles of CBDT (3) and of EUT (5), the
percentages of conformity between observed decision behaviour and
theoretical behaviour hypotheses result as shown in Tab. 1, which dif-
ferentiates in five groups, in single decisions, and in decision sequences.



Case-Based Decision Theory: An Experimental Report 327

Table 1. Percentages of observed decisions conforming to theoretical be-
haviour hypotheses

Group 1 Group 2 Group 3 Group 4 Group 5 All

Single Decisions
CBDT [Ut,α (·)] 82.65 89.18 88.09 92.33 88.99 88.73
EUT [E [U (·)]] 49.33 61.22 53.07 58.80 64.23 57.51

Decision Sequences
CBDT [Ut,α (·)] 23.64 16.98 7.84 25.00 9.68 16.36
EUT [E [U (·)]] 0.00 3.74 0.00 4.17 1.61 1.86

The percentages of empirically observed behaviour (single decisions)
conforming to the theoretical hypotheses evidently deviate between
CBDT (88.73%) and EUT (57.51%). By considering sequences of deci-
sions, only 1.86% of the observed decision behaviour conforms to EUT,
whereas 16.36% conforms to CBDT.

We sum up that in the context of our experiment CBDT has a higher
empirical validity than EUT. Thus our results confirm the hypothesis,
that decision making on the basis of similarity measures s(·) and under
consideration of an aspiration level α describes a decision process being
intuitive and plausible but also empirically valid.

4 Conclusion and Outlook

The results of our experimental study prove that CBDT can contribute
to the explanation of subjective decision behaviour. However, the reli-
ability of results is linked to the design of the study and the validity
of the (partially restrictive) assumptions regarding the heuristics used
as a basis. Future research must therefore gradually extend the basic
conditions of our experimental study, and analyse the functional struc-
ture of similarity measures and the development of aspiration levels in
a strengthened manner. Provided the decision premises of CBDT can
be confirmed in further empirical studies, its prescriptive application
becomes possible and CBDT can be considered in economic model con-
struction and analysis. Altogether, it can be attested that CBDT opens
possibilities of looking into economic problems in a new, more strongly
intuitive way, integrating cognitive restrictions of decision makers in
economic models.
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1 Introduction

In Thailand, the chopper-type mechanical sugarcane harvester is wide-
spread. This type of harvester usually operates with some trucks. When
sufficient numbers of trucks are available, the chopper can carry out
continuous harvest operation. However, there are not enough trucks in
the surveyed region to cover the transportation needs. Hence, effective
allocation planning of trucks is vital. By determining the optimum
number of trucks needed for the sugarcane fields, it is possible to make
efficient use of the chopper.

Our field study found that there are three groups involved in these
processes: sugarcane farmers, the owners of mechanized resources, and
sugar factories. The problem of harvesting and transportation is cru-
cial for all three. As well, they each have their own needs in the har-
vesting and transportation processes. Both the owners of mechanized
resources and sugarcane farmers would like to minimize the number of
operating days required to harvest the fields, and the owners of trucks
would also like to minimize the total traveling distance of trucks to
reduce fuel costs. The sugarcane farmers and sugar factory want to
minimize deterioration time of the harvests. Therefore, in this study,
both efficiency and the appropriate distribution of profit were con-
sidered through multi-objectives planning reflecting the desires of all
groups.
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2 Data Sources and Simulation

The field investigation was performed from August through Decem-
ber, 2005 in Udon Thani province, northeastern Thailand. Field size,
field shape, distance to a sugar factory, and geographical location of
each sugarcane plot were measured. Time studies of the operation of
mechanical harvesters and trucks were carried out.

Models simulating mechanical sugarcane harvesting and transporta-
tion in Thailand were developed based on [1]. For this simulation, the
results obtained from our time studies and survey of trucks were used
to determine the parameters for calculation of the transported amount
of sugarcane by use of a truck, or a trailer from a certain field.

The truck loading time (TLT) is the time in minutes required to fill
one truck. It can be given by:

TLT =
(
COT

AOS

)(
FS × 10000
RL×RS

)(
RL

CSP
+ TTT

)
+

TTC

60
(1)

, where COT is the capacity of the truck, ton; RL is the row length
of the field, m; RS is the row spacing of the crop which is set equal
to 1.5m; AOS is the amount of sugarcane, ton; FS is the field size, ha;
CSP is the average cutting speed of the mechanical harvester, m/min;
TTT is the turning time of the harvester and truck at the head land,
min., and TTC is the time required for truck changing, seconds.

A round trip time involves the travel time from the field to the
factory and the return time, as well as the amount of time the truck
waits in a queue at the factory, and the time for reception and unloading
of sugarcane at the factory, that is given by:

TRTR =
(
DMF

ASF
+

DMF

ASE

)
× 60 + DPT + BDT + (WTM + TRO)

(2)
Or the TRTR can be rewritten with the summation of TGO, TFACT,
and TBACK; these terms are defined as follows.

TGO =
(
DMF

ASF

)
× 60 +

(
DPT + BDT

2

)
(3)

TFACT = WTM + TRO (4)

TBACK =
(
DMF

ASE

)
× 60 +

(
DPT + BDT

2

)
(5)

where TGO is the time consumed delivering the sugarcane from the
field to the sugar factory, min; TFACT is the time consumed by the
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truck at the sugar factory, min; TBACK is the return trip time of the
truck from the sugar factory to the field, min; DMF is the distance from
the field to the sugar factory, km; ASF is the average speed of a loaded
truck, km/h; ASE is the average speed of an empty truck, km/h; DPT
is the driver’s personal time per truck per round trip, min; BDT is the
time spent on refueling of the truck per round trip, min; WTM is the
waiting time of the truck in queue at a sugar factory, min, and TRO is
the time for reception and unloading operations at a sugar factory in
minutes.

Prior to transport, the time for adjustment of the harvested sugar-
cane in the truck, TAD, was added approximately 5 and 10 minutes
for a 10-wheeled truck and a trailer, respectively.

The deterioration time (DT) of the harvested sugarcanes could be
estimated by using following equation:

DT = TAD + TGO + (TFACT − 5) (6)

In this formula, the time for weighing the empty truck, around 5 min-
utes, was subtracted from the time the truck spends at the sugar fac-
tory.

The obtained values and the number of working-hours per day are
required in order to determine the number of round trips per day that
a 10-wheeled truck (STRIP) makes and that a 10-wheeled truck with
a trailer (LTRIP) makes. Also, the amount of delivered sugarcane per
day that a 10-wheeled truck (SD) makes, and that a 10-wheeled truck
with a trailer (LD) makes can be determined. These values were used as
the input parameters of the allocation plans to determine the optimum
number of trucks for each sugarcane field.

3 Application of MOO to Allocate Mechanized
Resources

3.1 Development of Allocation Plans

The number of 10-wheeled trucks and 10-wheeled trucks with trailers
allocated in fields i, STi and LTi respectively, are defined as the deci-
sion variables of the allocation plans.

Objective function 1: Minimize number of operating days
If the harvesting and transportation processes can be accomplished in
a shorter period of time, the owners of mechanized resources can begin
operations on fields waiting for harvest. Post-harvest operations, such
as land preparation for the next crop, can also be begun earlier.
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When assuming that one mechanical harvester is allocated to one
field, minimization of the number of harvesting and transportation days
can be expressed as

Minimize

h∑
i=1

Yi

(STi × SDi + LTi × LDi)
(7)

where h is the number of mechanical harvesters; Yi is the yield of the
field i in which the harvester i operates, ton.

The objective function is usually constrained by the availability of
mechanized resources. It is also subjected to the daily milling capacity
of the factory. Thus, the set of constraints can be expressed as follows.

h∑
i=1

STi ≤ Numbers of 10-wheeled trucks available for transporting

the harvests
h∑

i=1
LTi ≤ Numbers of 10-wheeled trucks with trailers available for

transporting the harvests
h∑

i=1
(SDi + LDi) ≤ Maximum of daily amount of mechanical har-

vested sugarcanes supplied to the sugar factory
h∑

i=1
(SDi + LDi) ≥ Minimum of daily amount of mechanical har-

vested sugarcanes supplied to the sugar factory

Objective function 2: Minimize total traveling distance of
trucks
Minimizing the distance is crucial due to the current high price of fuel.
Thus, truck owners would like to minimize the total traveling distance
of their trucks.

Minimize
h∑

i=1

(STi × STRIPi + LTi × LTRIPi)DAYi ×DISi × 2

(8)
where DAYi is the amount of operating days of harvester i operating
on field i, and DISi is the distance from the field i to the factory, km.

Objective function 3: Minimize deterioration time of the har-
vested sugarcanes
If this time is long, the loss in the weight and quality of the harvested
sugarcane will increase [2]. This will result in a decrease in the income
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of sugarcane farmers. This also leads to a reduction in the amount of
sugar produced and thus in the income of the sugar factory.

Min.

h∑
i=1

(STi×SDTi×STRIPi×DAYi)+(LTi×LDTi×LTRIPi×DAYi)

(9)
where SDTi is the deterioration time of the sugarcane transported by
a 10-wheeled truck worked with harvester i, min, and LDTi is the
deterioration time of sugarcane transported by a trailer worked with a
harvester i, min.

3.2 Solution Method of MOO Problem

The proposed objective functions reflecting the considerations men-
tioned above tend to be competitive with each other. In this study,
the minimum deviation method [3], one solution method of MOO, was
used to find the preferred compromise solution. The general statement
of programming with k objective functions is given as follows:

MinimizeF =
k∑

n=1
wn

[
fn(ST ∗

i ,LT ∗
i )−fn(STi,LTi)

fn(ST ∗
i ,LT ∗

i )

]
where fn (ST ∗

i , LT ∗
i ) is the value of objective function n at its indi-

vidual optimum ST∗andLT∗; fn (STi, LTi) is the function itself, and wn

indicates the relative importance that the decision maker attaches to
objective function n which must be specified for each of the k objective
functions.

4 Computational Experiment

All 248 investigated fields were classified into nine datasets depending
on their field size and distance to the factory. The randomly selected
fields of 9 datasets were put into the simulation models to calculate
the parameters, as described in Section 2. All obtained values for each
dataset were used simultaneously to perform SOO and MOO based on
the proposed objective functions and the minimum deviation method
respectively. In order to compare the outputs of mechanized resource
allocation obtained from SOO and MOO, the costs of each working
group engaged in these processes were calculated.

5 Results

By using the minimized deterioration time as an objective function,
this plan gives sugarcane farmers and sugar factories an advantage
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over machinery owners. The machinery owner would have to pay more
money for fuel costs due to increases in the total travel distance.
By using minimized the total traveling distance, the difference in the
number of working days required to bring the sugarcane to the factory
was unacceptable, especially for sugarcane farmers waiting for harvest
to occur. This difference would cause them to lose the opportunity to
obtain a better price, because their fields would possibly be harvested
late or delayed the chance of harvesting the sugarcane when its sugar
content is high. The sugar factory would also lose sugar productivity
due to this delay.
The total number of trucks allocated by the minimization number of
operating days was larger than the total number of trucks allocated
by MOO. Thus, by using minimization of the number of operating
days sometimes would be inappropriate in regions where the number of
available trucks is limited, especially the number of 10-wheeled trucks.

6 Conclusions

6.1 Under the limited mechanized resources of Thai sugarcane har-
vesting and transportation, the usage of multi-objective optimization
(MOO) has demonstrated more proper allocation of mechanized re-
sources to sugarcane fields than single-objective optimization in the
aspects of the distribution of operating costs and the operation time.

6.2 When comparing the result of the MOO with the currently used
truck allocation plan, cost reduction and efficient operation in the pro-
cesses have been achieved by applying MOO via truck allocation plan-
ning. The percentage of reduction in operating cost was in the range
of 4 to 9%. The cost could be possibly reduced to the range of 0.06 to
0.14 US$ per ton (or 2 to 5 baht/ton). The percentage of decrease in
the number of working days per unit area was in the range of 4 to 43%.
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Summary. Traditional Data Envelopment Analysis (DEA) characterizes de-
cision making units by a vector of external inputs and outputs. By the use of
a scalarizing function the inputs and outputs are aggregated to an efficiency
measure for each unit. DEA models are based on the assumption that the
production process is a ”black box”, i.e. inputs are transformed in this box
into outputs. In many cases more information about the production process is
available. This is especially the case in multi-stage production systems. Deci-
sion making units of the underlying network employ intermediate and external
inputs simultaneously. Unlike external inputs, which are assumed in classical
models, intermediate inputs are provided directly by decision making units
of the network. This means that intermediate goods affect the performance
measure of at least two decision making units, the unit providing services and
the unit applying these services. For this very reason a general DEA-model is
introduced, which takes the special features of units in a multi-stage system
into consideration.

1 Introduction

Leading-edge companies have realized that the real competition is not
company against company, but rather supply chain against supply chain
[3]. This statement points out that a comparison of companies requires
an analysis of the underlying supply chain. If we want to meet the
above-mentioned claim, we have to measure the efficiency of multi-
stage systems rather than the efficiency of companies on its own.

The Data Envelopment Analysis (DEA) is an approach to compare
relative efficiency of decision making units (DMUs) in general. Tradi-
tional DEA approaches deal with the production process as a black
box [4, 12]. Each DMUj (j ∈ J) is characterized by external inputs xe

mj
and external outputs ye

nj (m ∈ Me, n ∈ Ne, cf. Fig. 1). Often, more
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Fig. 1. Inputs and outputs of DMUj

detailed information on the allocation process is available. In addition
to classical external (direct) factors we possibly have information on in-
terdependencies. An efficiency analysis has to include these additional
intermediate inputs and intermediate outputs.

DMUs of the service sector are often characterized by multi-stage
systems. Look for example at a bank with several agencies. All agen-
cies are usually organized in the same manner. Now, the question raises,
which agency is the best? Each agency consists of departments which
apply intermediate and external factors, e.g. a loan division has em-
ployees – external input – and gets information on costumers from a
revision department – intermediate input. The quantity and quality
of loan decisions depends on both qualification of staff and validity
of information. Moreover, these decisions do not only affect the perfor-
mance of the agency as a whole, but they can influence the performance
of other departments as well. A performance measurement should take
into consideration these interdependencies.
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Fig. 2. Interdependent inputs and outputs of sub-DMUj2

Figure 2 shows a simple example of a multi-stage system with three
sub-organizations: DMUjk (k = 1, 2, 3). On the one hand sub-DMUj2

requires external input xe
mj2, on the other hand it applies intermediate

inputs xi
mj2 which are provided by DMUj1. Moreover, DMUj2 supplies

intermediate outputs yi
nj2(= xi

mj3) for DMUj3 and external outputs
ye

nj2 for the market. The efficiency of sub-DMUs is subject of this arti-
cle.
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Attempts to model DMUs that exhibit an intermediate structure are
known in literature. Golany, Hackman and Passy [8] construct a DEA
approach for particulars multi-stage system, Zhu et al [5, 12] analyze
a specific seller-buyer chain incorporating cooperative structures, Färe
et al [6, 7] present a dynamic DEA network model. In the following we
introduce a linear nonoriented performance model which is based on
non-discretionary factors. Section 2 summarizes a global DEA efficiency
measure for a whole DMU, section 3 develops a measure for sub-DMUs
in multi-stage systems.

2 Global Efficient DMUs

By the help of traditional DEA models we can directly analyze the
efficiency of a multi-stage system as a whole. External inputs at the
beginning of a chain and external outputs at the end characterize a
multi-stage DMU. Often special external inputs and outputs are used
for an adequate specification of a supply chain [2, 11], e.g. cycle time,
service level etc.

In accordance with figure 1 DMUj (j=o) is called global efficient,
if there does not exist an external input-output-combination which is
better in at least one external input or output and which is not worse in
all other external inputs and outputs. The following model determines
the global efficiency of multi-stage DMUo. In contrast to [10] we use
a nonoriented model because it is assumed that external inputs and
outputs can be directly influenced by each multi-stage DMU:

max θo + ε
(∑

m de−
m +

∑
n de+

n

)
s.t∑

j λj xe
mj + de−

m = xe
mo (1− θo) (m ∈ Me)∑

j λj ye
nj − de+

n = ye
no (1 + θo) (n ∈ Ne)

de−
m , de+

n � 0 (m ∈ Me, n ∈ Ne)

(λ1, . . . , λJ )T ∈ Λ ⊆ RJ

Theorem 1. A multi-stage DMUo is global efficient, iff optimal θ∗o=0
and de−∗

m = de+∗
n = 0 (m ∈ Me, n ∈ Ne).

The proof of theorem 1 follows from well-known theorem of classical
DEA [9, p.181]. If a multi-stage DMU is inefficient, external inputs
and outputs are improvable θ-times. Note that ε is a small positive
’non-Archimedean’ number in order to guarantee an efficient solution.
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Whether a DMU is global efficient depends on inputs and outputs of
multi-stage DMUs and the technology assumed in Λ, e.g. constant re-
turns to scale (crs), variable returns to scale (vrs), free disposal hull
(fdh) etc.

3 Efficiency of Interdependent DMUs

In the following we investigate the efficiency of sub-DMUjk which is
located on stage k of DMUj (k ∈ K = {1, . . . ,K}). A performance
measurement of sub-DMUs requires extra information on the interde-
pendent multi-stage system. It is assumed that the production process
of all DMUs is organized in the same way. Each sub-DMUjk at stage k
may require intermediate inputs xi

mk (m ∈ Mi
k) besides external inputs

xe
mk (m ∈ Me

k). Similarly, intermediate outputs yi
nk (n ∈ Ni

k) and/or
external outputs ye

nk (n ∈ Ne
k) are provided by each sub-DMUjk (confer

fig. 2).
A sub-DMUjk is efficient at stage k of the multi-level system, if

there does not exist a better input-output-combination with respect to
all intermediate and external factors at stage k.
In the following it is assumed that intermediate inputs and outputs
are not directly controllable [1]. These non-discretionary intermediate
factors influence the efficiency measure indirectly. Thus we can measure
the efficiency of a sub-DMUok at stage k:

max θok + ε
(∑
m∈Me

k

de−
mk +

∑
m∈Mi

k

di−
mk +

∑
n∈Ne

k

de+
nk +

∑
n∈Ni

k

di+
nk

)
s.t∑

j λjk xe
mjk + de−

mk = xe
mok (1− θok) (m ∈ Me

k, ext. input)∑
j λjk xi

mjk + di−
mk = xi

mok (m ∈ Mi
k, int. input)∑

j λjk ye
njk − de+

nk = ye
nok (1 + θok) (n ∈ Ne

k, ext. output)∑
j λjk yi

njk − di+
nk = yi

nok (n ∈ Ni
k, int. output)

de−
mk, d

i−
m′k, d

e+
nk , d

i+
n′k � 0 (m ∈ Me

k,m
′ ∈ Mi

k, n ∈ Ne
k, n

′ ∈ Ni
k)

(λ1k, . . . , λJk)T ∈ Λ ⊆ RJ

Theorem 2. Sub-DMUok is efficient at stage k, iff optimal θ∗ok = 0 and

de−∗
mk = di−∗

m′k = de+∗
nk = di+∗

n′k = 0 (m ∈ Me
k,m

′ ∈ Mi
k, n ∈ Ne

k, n
′ ∈ Ni

k).

If we are interested in the efficiency of a multi-stage system as a
whole with a simultaneous consideration of interdependencies between
sub-DMUs, a combination of the above models is necessary. We measure
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total efficiency of DMUo over all stages k = 1, . . . ,K by the use of a
meta-variable θ′0. This measure is applied to each stage k ∈ K:

max θ′o + ε
(∑
m∈Me

k

de−
mk +

∑
m∈Mi

k

di−
mk +

∑
n∈Ne

k

de+
nk +

∑
n∈Ni

k

di+
nk

)
s.t∑

j λjk xe
mjk + de−

mk = xe
mok (1− θ′o) (m ∈ Me

k, k ∈ K)∑
j λjk xi

mjk + di−
mk = xi

mok (m ∈ Mi
k, k ∈ K)∑

j λjk ye
njk − de+

nk = ye
nok (1 + θ′o) (n ∈ Ne

k, k ∈ K)∑
j λjk yi

njk − di+
nk = yi

nok (n ∈ Ni
k, k ∈ K)

de−
mk, d

i−
m′k, d

e+
nk , d

i+
n′k � 0 (m ∈ Me

k,m
′ ∈ Mi

k, n ∈ Ne
k, n

′ ∈ Ni
k, k ∈ K)

(λ1, . . . , λJ)T ∈ Λ ⊆ RJ

Theorem 3. The optimal performance measure θ′∗o of DMUo cor-
responds to the minimum of optimal solutions over all stages θ∗ok:
θ′∗o = min

{
θ∗o1, . . . , θ

∗
oK

}
.

The proof of this theorem is based on a familiar transformation of a
maximin formula into a linear program with an additional variable,
here θ′o [10].

According to theorem 3 it is not necessary to compute the solu-
tions of the recent model. The optimal solution is directly deducible:
The best sub-DMUok determines total efficiency of DMUo. Hence, the-
orem 3 points out that a detailed examination of all sub-DMUs is in-
dispensable.

If we do not use fixed intermediate factors, but rather change-
able ones – i.e intermediate inputs and outputs are multiplied by an
additional variable – the model will correspond to an approach by Zhu
[12]. The performance measure θ′0 is a lower bound of Zhu’s model.

4 Conclusion

The introduced approach is based on the assumption that the under-
lying multi-stage systems are directly comparable, i.e. all sub-DMUs
are similarly organized. However, this condition is only limited to sub-
DMUs compared, so that we can neglect remaining connections.

The approaches are for example applicable for measuring perfor-
mance of agencies arranged in the same manner, e.g. agency of car
rentals, banks, insurers etc. Moreover, we can detect inefficiencies of
specific departments which for instance offers IT services [12]. If the
analyze of supply chains is focused on buyer-seller connections, we can
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directly apply these approaches as well. In addition we are able to
measure efficiency of multi stage systems over several periods of time
in order to detect improvements or problems in a particular system. In
these cases performance measure of multi-stage DMUs provide helpful
information on the efficiency of sub-DMUs and the underlying organi-
zational structure.
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Summary. In the connection location-allocation problem we are given a set
of material flows between pairs of existing facilities each of which must be
routed through a connection facility. The objective is to minimize the total
transportation costs by locating a given number of connections and allocating
the flows accordingly.

For this problem many properties and solution methods of the well-known
facility location-allocation problem can be transferred, among others the con-
struction line algorithm, an exact solution method based on discretization
results under polyhedral gauge distances.

We have implemented construction line algorithms for the connection
location-allocation problem without restrictions as well as in the presence
of forbidden regions or barriers. We considered various distance functions,
ranging from the Manhattan distance to mixed polyhedral gauge distances
and applied hull properties to further reduce the dominating set.

1 The Connection Location-Allocation Problem

The connection location-allocation problem (CLP) addresses the ques-
tion of optimally locating bottleneck locations like junctions, transship-
ment points or storage buildings of a shipping company. It can also be
applied for the planning of passages and alleyways between a given set
of buildings or installations as, for example, exhibition centers or facto-
ries. Possibly, when taking further restrictions like barriers or forbidden
regions into account, one may think of applications as the location of
entrances of big constructions like stadiums, hospitals, theme parks or
nature preserves or, in a larger scale, the location of bridges, border

∗ This work was partially supported by DFG grant Kl 1076/8-1.
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crossings or tunnels. See [8] for further example of real-world applica-
tions covered by this location problem.

The (CLP) can formally be described as follows. We are given a set
of L existing facilities A = {a1, . . . ,aL}, al ∈ R

2, l = 1, . . . , L and a
set of M flows with index set M = {1, . . . ,M}. Each flow m ∈ M
is associated with a source facility asm , a target facility atm , sm, tm ∈
{1, . . . , L} and an intensity wm > 0. We are interested in minimizing
the total transportation cost by locating a given number of connection
facilities xn ∈ R

2, n = 1, . . . , N , and allocating the flows accordingly.
The costs of flow m ∈M are given by

cm(x) = wm

(
dsm(asm ,x) + dtm(x,atm)

)
, ∀x ∈ R

2,

where dl : R
2 × R

2 → R, l ∈ {1, . . . , L}, are distance functions in the
plane.

The allocation of connection facilities to flows is established by the
binary variables ymn, m = 1, . . . ,M , n = 1, . . . , N , where

ymn =

{
1 if connection facility n is allocated to flow m,
0 otherwise.

Since every flow must be allocated to exactly one connection facility, we
require that

∑N
n=1 ymn = 1 for all m ∈M. Thus, the set of all feasible

assignments Y ∈ {0, 1}M×N which satisfy this restriction is given by

Y =
{
Y ∈ {0, 1}M×N : Y = (ymn)m=1,...,M

n=1,...,N
,

N∑
n=1

ymn = 1, ∀m ∈M
}
.

We therefore obtain the following problem formulation for the (CLP):

min
M∑

m=1

N∑
n=1

ymnwm

(
dsm(asm,x) + dtm(x,atm)

)
s.t.

N∑
n=1

ymn = 1, m = 1, . . . ,M

ymn ∈ {0, 1}, m = 1, . . . ,M, n = 1, . . . , N

xn ∈ R
2, n = 1, . . . , N

This problem has previously been considered in [8, 9, 2, 1]. It bears a
strong resemblance to the facility location-allocation problem (FLP),
also denoted as multi Weber problem, which was introduced by [3] and
nowadays is one of the best-known multi facility location problems. In
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contrast to (CLP), where connections are located with respect to flows,
the objective of (FLP) is to minimize the sum of weighted distances
from new facilities to existing facilities to model, e.g., the location of
warehouses. For a detailed survey and further references on (FLP), we
refer to the textbook [4].

2 The Construction Line Algorithm

In order to apply the construction line algorithm, the distances in the
objective function of (CLP) must be induced by polyhedral gauges, i.e.,
dl(x,y) = γl(y − x).

A gauge γ : R
2 → R in the plane with unit ball S is defined as

γ(x) := inf{λ > 0 : x ∈ λS}, ∀x ∈ R
2,

where S is a compact and convex set in R
2. A polyhedral gauge is a

gauge with a polyhedral unit ball which has a finite number of extreme
points [13]. If S additionally is symmetric, then γ is a block norm [14].
Let {v1, . . . ,vI} be the set of extreme points of S. The corresponding
vectors v1, . . . ,vI are denoted as fundamental vectors of γ. The convex
cone spanned by the extreme points vjk

∈ {v1, . . . ,vI}, k = 1, . . . ,Kj ,
of the same face of S is denoted as fundamental cone.

Based on the fact that a polyhedral gauge is linear in each of its
fundamental cones [5], a tessellation of the plane can be defined with
regions in which the Weber objective function with polyhedral gauge
distances is linear. Consequently, an optimal solution of the Weber
problem consists of subsets which are either grid points, line segments
or whole cells of the grid corresponding to this tessellation. Further,
there exists a grid point which is an optimal solution of the Weber
problem and it is therefore sufficient to restrict the search to the set of
grid points.

This grid is known as construction grid and the corresponding dis-
cretization result has been transferred to various location problems sim-
ilar to the Weber problem. For the Weber problem in the presence of
forbidden regions or barriers corresponding discretization results have
been investigated, see respectively [7] and [12]. Based on the fact that
for arbitrary allocations Y ∈ Y also the objective function of (CLP)
results in a sum of weighted polyhedral gauge distances, [9] specified
a construction grid for (CLP) with polyhedral gauges. An equivalent
construction grid for (CLP) with mixed polyhedral gauge distances is
given by
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G =
L⋃

l=1

Il⋃
i=1

{al + λvli, λ ∈ R},

where vli, i = 1, . . . , Il denotes the i-th fundamental vector of the
polyhedral gauge corresponding to existing facility am, m = 1, . . . ,M .
Accordingly, the construction grid consists of grid lines passing through
the existing facilities in the directions of their corresponding fundamen-
tal vectors.

The construction line algorithm determines the optimal solution of
(CLP) by evaluating all possibilities of locating the connections on the
grid points. Note that the number of combinations of N connections
out of the set of grid points increases exponentially with the complexity
of the problem.

We therefore applied hull properties to reduce the set of grid points
to a dominating subset which contains at least one optimal solution.
For block norms we applied the metric hull [5], which results in the
rectangular hull if the distance function is the Manhattan distance [10].
A description of how the metric hull can be computed for block-norm
distances in the plane is given in [6].

Construction Line Algorithm:

1. Compute the set of all grid points.
2. Reduce the number of grid points by applying hull properties.
3. For all combinations of selecting N elements out of the grid points:

Evaluate the objective value of that solution where the connections
located on the N selected grid points.

4. A solution which yields the smallest objective is a global optimal
solution.

Furthermore, we derived construction grids for the (CLP) with
mixed distances in the presence of forbidden regions and barriers, see
respectively [7] and [12] for their corresponding definitions for the We-
ber problem. Besides a more sophisticated computation of distances in
the presence of barriers which is based on the visibility graph [11], the
three main steps of the construction line algorithm as described above
remain the same for both model extensions.

If the underlying gauge distance is symmetric, also for these re-
stricted location problems hull properties can be applied. In particular
we used the iterative convex hull [11] to restrict the grid points to a
dominating subset in the presence of barriers. In case of forbidden re-
gions we applied what we call the extended convex hull, which is the
union of the convex hull and the borders of all its intersecting barriers.



Construction Line Algorithms for the Connection Location Problem 349

3 Numerical Results and Conclusions

We implemented the proposed construction line algorithms for (CLP)
in Matlab, Release 14 and used an Intel Core2 Duo, 2x 1.60 MHz with
2048 MB RAM for evaluation. In the following we provide a short
overview of the most relevant results.

Obviously, the computation time increases drastically with the num-
ber of flows, connection locations, the complexity of the underlying
gauge distances and the given restrictions. Under Manhattan metrics
without restrictions it took less than five minutes to solve problems
with 435 flows and two connections, 105 flows and three connections or
55 flows and four connections. For a relatively small problem instance
with 21 flows and three connections to locate, it took only 0.36s to
determine the optimum solution under the Manhattan metric, whereas
for a block norm distance with six fundamental directions the compu-
tation time increased to 5.32s. In the presence of two forbidden regions,
the problem was optimally solved in 3.96s and 32.89s for the Manhat-
tan metric and the block norm, respectively. The computation time
for both distance functions increases drastically to 43.87s and 1130.20s
if the forbidden regions are replaced by two barriers. Mixed distances
induced by non-symmetric gauges additionally have an impact on the
computation time. Consider the difference of 2.18s and 33.99s for a
(CLP) with 45 flows and three connections under uniform Manhattan
metrics on the one hand, and mixed polyhedral gauge distances with
not more than four unit vectors on the other hand.

The reduction of the continuous solution space to a finite dominating
set is useful not only for the construction line algorithm. Once the
distances between the existing facilities and the grid points are known,
the continuous multi-facility location problem results in a discrete p-
median problem. Instead of the total enumeration approach described
in this paper, p-median heuristics can be applied after the reduction in
order to tackle larger-size problems.
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Universität zu Köln, Seminar für Allgemeine Betriebswirtschaftslehre,
Supply Chain Management und Produktion, 50923 Köln
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Summary. In this paper, we analyze lot sizing under stochastic demand.
The lot sizes are determined such that a target service level is met. This
optimization procedure requires the calculation of the shortages and their
probability distribution considering the inventory dynamics. For an example,
we compare different production plans that reveal the influence of a service-
level constraint on lot sizing.

1 The Model

In practical applications, stochastic demand is taken into account by
overestimating the demand, usually with a certain multiple of the mean
forecast error. Having done such a demand data manipulation, a com-
mon deterministic lot-sizing algorithm can be used which is a trade-off
between setup and holding costs. In addition, under stochastic demand,
lot-sizing affects the service that is offered to the customers. This is
what we analyze in this paper by integrating both views. For a given
setup pattern, the lot sizes are determined such that the service-level
requirements are met, i. e. as small as possible to reduce holding costs
but subject to a desired service level. Hence, the problem is to find min-
imal lot sizes for each production period τ that contains the demands
up to period t such that a target service level β∗ is met:

Minimize qτt s. t. β(qτt) = 1−
E
{

t∑
i=τ

Bi(qτt)
}

E
{

t∑
i=τ

Di

} ≥ β∗ (1)
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The service level β is defined (in terms of expected values) as the por-
tion of immediately delivered units, whereas 1 − β is the fraction of
backorders comparing to the demand over the periods the lot covers.
Bi(qτt) is the amount of backordered demand observed in period i for a
given lot size qτt (τ ∈ {1, 2, . . . , T}, t = τ, τ + 1, . . ., i = τ, τ + 1, . . . , t).
Di denotes the demand in period i which is a generally distributed
random variable according to the stochastic demands.

2 Literature Review

In this paper, we analyze the effect of stochastic demands on lot-sizing.
There are (roughly) four major areas of research in the literature deal-
ing with that. First, the early works from Bodt et al. [2], Callarman and
Hamrin [1], and Wemmerlöv and Whybark [10] investigate the impact
of demand uncertainty if common heuristics for the deterministic case
are used. Secondly, one can find approaches that take into account the
service given to the customers by introducing backorder or shortage
costs (for recent examples see Haugen et al. [4], Sox [6]). As opposed
to that, other authors use known service-level constraints by employ-
ing dynamic variants of order-up-to inventory policies. For pre-specified
setup (or replenishment) periods, the lot sizes are determined by the
difference of the dynamic target inventory level and the current inven-
tory level (see for example Tempelmeier [9], Tarim and Kingsman [7]).
Our contribution belongs to the fourth area of research. One of the
earliest works in this field was Silver [5]. The lot sizes are determined
such that a target service level is met. For this purpose, it is required
to calculate the shortages and their probability distribution considering
the inventory dynamics which is shown in the next section.

3 Calculating The Service Level

The amount of backorders per period in Eq. (1) depends on the change
in the net inventory. If the net inventory is negative, a stock-out situ-
ation occurs. Let Ii be the net inventory in period i (i = 1, 2, . . . , T ).
Then, IB

i = −min{Ii, 0} is the amount of shortage in that period. The
difference between the shortage at the beginning (after replenishment
by production) and at the end (after demand satisfaction) of period i
gives the amount of backorders of a particular period:

Bi(qτt) = IB,end
i − IB,prod

i (2)
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In general, the shortages are an excess of demand over production.
Let D(i) denote the cumulative demand, and q(i) the cumulative pro-
duction quantity up to a certain period i. The initial inventory at the
beginning of the first period of the planning horizon may be larger,
equal to, or smaller than 0. If it is smaller than 0, then some unde-
livered demand exists. For initialization, these backorders increase the
demand in the first period. On the other hand, if the initial inventory
is positive with stock on hand, it has the same effect as an increase of
the production quantity in the first period.

For the calculation of the resulting β service level, the expected
shortages have to be determined. Given D(i) and q(i), we can calcu-
late these values by using the first-order loss function, G1

X(y), which
describes in general the expected excess over y for a common non-
negative random variable X (see for instance Tempelmeier [8], Zip-
kin [11], Hadley and Whitin [3]). Because replenishments are assumed
to be realized at the beginning of a period, i. e. before demand, the
shortage after production (IB,prod

i ) in period i is the excess of the cu-
mulated demand of i − 1 time periods over the production quantity
during this time plus the actual replenishment of period i:

E
{
IB,prod
i

}
= G1

D(i−1)(q(i)) (i = 1, 2, . . . , T ) (3)

The shortage at the end of a particular period i (IB,end
i ) contains the

demand of period i. Hence, it follows:

E
{
IB,end
i

}
= G1

D(i)(q(i)) (i = 1, 2, . . . , T ) (4)

Using (2)–(4), the service level according to (1) that can be met up to
period t with the lot size qτt can be written as:

β(qτt) = 1−

t∑
i=τ

(
G1

D(i)(q(i))−G1
D(i−1)(q(i))

)
E
{

t∑
i=τ

Di

} (5)

4 Determining The Lot Sizes

As described in Eq. (1), we determine the lot sizes as small as possible
such that a given β∗ service level is met, β(qτt) ≥ β∗. We use a very
straight-forward iterative procedure to determine the lot sizes for all
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production periods given by a particular setup pattern. After having
initialized the lot sizes as small as possible, an iterative procedure starts
until the lot sizes remain unchanged. For a current lot size qτt, the
achievable service level β(qτt) is calculated. In a number of cases, there
is a positive difference between β∗ and β(qτt) which signifies that the
lot size is too small to meet the service requirements. In that case, with
respect to the expected total demand during the periods the lot covers,
the lot size qτt is increased by an appropriate amount.

Let us consider an example with 1 product, 4 periods, stochastic
demands that are normally distributed with expected forecasts of 20,
80, 160, and 85 units, and a standardized coefficient of variation of
10 % for the periods under consideration. All the lots are determined
to be minimal such that a target service level of β∗ = 0.95 is met. For
the particular setup pattern that suggests a production in τ = 1, 3, 4
(i. e. the first lot covers the first two periods), the optimal lot sizes are:
q12 = 97.01, q33 = 161.41, and q44 = 95.55.

5 Numerical Experiments

The stochastics become evident by the fact that the demands will not
exactly be matched with the forecasts. In fact, a certain forecast er-
ror E is inevitable due to the stochastic nature of demand. Based on
describing these forecast errors, the stochastic demand is modeled in
this paper.

To reveal the effects of lot sizing under a service-level constraint,
we compare two different situations: (I) production quantities equal to
the β∗-fraction of the demand per period, and (II) — in the sense of
Section 4 — optimal production quantities such that a target service
level β∗ is met with minimal lot sizes over the planning horizon. This
means, lot sizing with a type-I policy is emulated by simply summing-
up the production quantities according to a specified setup pattern. For
a lot-for-lot production, both lot-sizing policies are identical.

In Tab. 1 and 2, the results for different stationary forecast-error
distributions (represented by a standardized mean µE = 1 and varying
standard deviation σE) and different target service levels β∗ are shown.
The right half-sides of the tables show the results of type-II lot-sizing
policy by which the production quantities are optimized in the sense
of Eq. (1). For the same setup patterns, the results for the type-I lot-
sizing policy are depicted. This policy simply sums up the production
quantities that are a β∗-fraction of period demands. This is shown on
the left-hand sides of the tables.
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For comparison reasons, there is always a production scheduled in
period 1, and, therefore, the lot sizes in this period can be compared for
both policies. The column entitled ∆q shows the relative change in the
lot size for the first period by the optimization procedure mentioned
above (type-II policy) in comparison with the lot sizes according to
the summing-up policy (type-I). The column β(q1∗) shows the service
level as is achieved by the first lot for the summing-up policy. With
optimized lot sizes, the target service level is realized exactly for every
service pattern, i. e. in every row of the tables.

Table 1. Lot-sizing results: β∗ = 0.95, E ∼ Normal(µE = 1, σE = 0.1)

first lot type-I policy type-II policy ∆q

up to t = ∗ t = 1 t = 2 t = 3 t = 4 β(q1∗) t = 1 t = 2 t = 3 t = 4 [%]

1 19.62 79.04 159.75 95.55 0.950 19.62 79.04 159.75 95.55 0.0

2 98.67 — 159.75 95.55 0.960 97.01 — 161.41 95.55 1.7

3 258.42 — — 95.55 0.969 250.37 — — 103.60 3.1

4 353.97 — — — 0.988 330.45 — — — 6.6

Table 2. Lot-sizing results: β∗ = 0.98, E ∼ Gamma(µE = 1, σE = 0.3)

first lot type-I policy type-II policy ∆q

up to t = ∗ t = 1 t = 2 t = 3 t = 4 β(q1∗) t = 1 t = 2 t = 3 t = 4 [%]

1 27.79 103.98 199.01 114.21 0.980 27.79 103.98 199.01 114.21 0.0

2 131.76 — 199.01 114.21 0.984 128.34 — 202.43 114.21 2.6

3 330.77 — — 114.21 0.988 314.89 — — 130.09 4.8

4 444.98 — — — 0.995 398.02 — — — 10.6

6 Observations and Insights

As one can see from Tab. 1 and 2, the ∆q values are always non-negative
which means that the lot sizes can be reduced by using a service-level
oriented optimization procedure. In addition, this reduction intensifies
with an increasing number of periods a given lot covers, with the vari-
ance of the demands, and with the target service-level.

For any particular lot, the service level is exactly met at the end
of the time interval the lot covers. This holds also for the last period
of the planning horizon. Hence, both of the lot-sizing policies that are
considered in this paper ensure a certain β∗ service level in the sense
that the β∗-fraction of the expected demand over the planning horizon
is to be produced. That means, the overall production quantity of the
planning horizon is the same. Therefore, the optimization of lot sizes
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is a re-allocation of production quantities. Lots that cover more than
one period are reduced. The size of the next lot (which is always a
single-period demand lot in the examples above) is increased by the
same amount.

The more periods a lot covers, the more its size can be reduced due to
the risk diversification effect of accumulated demands. Period demands
below average compensate for demands above average. A shortage sit-
uation occurs only towards the end of a lot cycle, therefore, the larger
the lot sizes, the more risk absorbed. This explains why the lot-sizing
effects increase with the number of periods a lot covers and with the
stochastics of the demand.
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Summary. We introduce new elevator group control algorithms that are real-
time compliant on embedded microcontrollers. The algorithms operate a group
of elevators in a destination call system, i. e., passengers specify the destination
floor instead of the travel direction only. The aim is to achieve small waiting
and travel times for the passengers. We provide evidence, using simulation,
that the algorithms offer good performance. One of our algorithms has been
implemented by our industry partner and is used in real-world systems.

1 Introduction

Algorithmic control of elevator systems has been studied for a long time.
A suitable control should achieve small average and maximal waiting
and travel times for the passengers. The waiting time / travel time of
a passenger is the time span between the release of the call and the
arrival of the serving elevator at the start / destination floor.

Recently, the paradigm of destination call elevator control emerged.
In destination call systems, a passenger enters the destination floor
(and possibly the number of passengers traveling to this floor). Such a
destination call system is very interesting from an optimization point
of view, since more information is available earlier, which should allow
improved planning.

In this paper we report on elevator control algorithms designed for
Kollmorgen Steuerungstechnik, our partner from industry. The algo-
rithm designed is supposed to run on embedded microcontrollers with
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computation times of at most 200 ms using not more than 200 kB of
memory. Thus computational resources are very scarce.

Related Work Many elevator control algorithms have been proposed,
but only few of them seem to be used in practical systems. Moreover,
there is not much literature on destination call systems yet. Tanaka
et al. [5] propose a Branch&Bound algorithm for controlling a single
elevator, which uses too much computation time to be implemented
on an embedded microcontroller. Friese and Rambau [3] developed an
algorithm for cargo elevator group control with capacity one based on
Integer Programming. Although the algorithm runs in real-time on a
PC, it is still too time-consuming for embedded microcontrollers. The
book of Barney [1] deals mainly with engineering aspects.

Contribution We introduce new destination call control algorithms
suited to run on an embedded system offering very scarce computing
resources. Since exact optimization is not feasible on such hardware,
the algorithmic approach is an insertion heuristic using a non-trivial
data structure to maintain an elevator tour. We assess the performance
of our algorithms by simulation. We also compare to algorithms for a
conventional system and a more idealized destination call system. This
gives an indication of the relative potentials of these systems.

2 Modeling the Destination Call System

The real-world destination call system envisioned by Kollmorgen works
as follows. Upon arrival, a passenger enters his destination floor (is-
sues a call) and is immediately assigned to one of the elevators of the
group. The passenger is supposed to go to the corresponding elevator
and board it as soon as it arrives and indicates the correct leaving di-
rection. If the designated elevator arrives and the cabin is full so that
a passenger cannot enter, he is supposed to reissue his call.

The anticipated operations of the elevator group can be described
by tours for each elevator, specifying the order floors are visited. These
tours are used to predict the waiting and traveling times of the passen-
gers, thus allowing to evaluate different control alternatives.

The tours have to fulfill some requirements modeling the real sys-
tem. (a) Tours need to respect the assignments fixed so far. This re-
quirement differs from the assumptions of Tanaka et al. since there
the assignment is done on arrival of an elevator at a floor. (b) A tour
must not contain a turn for a passenger, i. e., a passenger must never
move in the wrong direction. (c) For each floor and leaving direction,
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we assume that all passengers assigned to an elevator enter the cabin
at its first stop at this floor with the corresponding leaving direction.
The rationale for this rule is the following. The elevator control has no
way to detect which passengers enter at a certain floor (there are no
panels in the cabin). Therefore it does not know which stops are really
required by the loaded passengers and the elevator has to stop at all
registered destination floors. In fact, this is equivalent to assuming that
all waiting passengers enter the elevator and thus the capacity of the
elevator is ignored for the planning.

We make some other reasonable assumptions as discussed by Tanaka
et al. [5], e. g., that if no passenger has to be served by an elevator, the
elevator stays at its last floor and the cabin cannot stop or reverse
direction halfway between floors.

Note that due to requirement (c) there may be phantom stops, i. e.,
stops for dropping a passenger who is not really in the cabin. Phantom
stops and the immediate assignment are features which might allevi-
ate the advantages of a destination call system since both restrict the
optimization potential.

3 Algorithms

The results of Tanaka et al. [5] and Friese and Rambau [3] suggest that
it pays off to use thorough optimization for computing new schedules.
However, the scarce computing resources available on embedded micro-
controllers make exact optimization methods infeasible. We therefore
propose insertion heuristics, which are well-known for e. g., the Travel-
ing Salesman Problem. The structure of a tour for an elevator is much
more complex, making the insertion operation particularly non-trivial.

A tour T is a list of stops T = (S0, . . . , Sk), where each stop is
described by its halting floor, its scheduled arrival and leaving times,
and the sets of calls picked up and dropped at this floor. Moreover, we
also store the set of currently loaded calls (after dropping and picking
up) at each stop. A new call c can be inserted into an existing tour T
via the operation AddCall(T, Si, c), where Si indicates the insertion
position. If the floor of Si does not match the start floor of call c, a
new stop is created before Si. The insertion position for the drop stop
is uniquely determined by Si, the remainder of T , and the no-turn
requirement. It may be necessary to split an existing stop into two new
stops to avoid direction changes for passengers. Of course, not every
choice of Si is feasible for insertion but it has to be ensured that a
feasible tour is obtained afterwards.
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Fig. 1. Inserting call 4 : 1 → 2 at Si needs repair. A square represents a stop
at a floor. Numbers above/below a stop indicate calls picked up/dropped

AddCall is non-trivial due to the cases that may arise. For in-
stance, consider the tour in Figure 1(a) and suppose we want to insert
the new call 4 : 1 → 2 at the first stop at floor 1 (which is the only
feasible insertion position). We need to create a new stop at floor 2,
leaving upwards due to call 1. But then call 3 will enter and we need
to go to floor 5 before we can leave floor 3 downwards. Therefore we
need to adjust the tour, keeping it close to the original one. There are
more complex cases of this repair operation to take into account.

We use the insertion procedure AddCall to set up a group eleva-
tor algorithm Best Insertion (BI) as follows. Once a new call enters the
system, BI inserts the new call at all feasible positions in the already
scheduled tours. The call is assigned to the elevator and insertion po-
sition with minimum cost increase. The cost function captures waiting
and travel times for all calls. This way, the algorithm balances stability
of the plans for old calls with good service for new calls.

In order to achieve real-time compliance and to avoid deferment
of single calls leading to high maximum waiting times, we selected a
suitable subset of insertion positions. The algorithm CBI (controlled
BI) eventually implemented by our industry partner works like BI, but
using just this restricted subset of insertion positions.

4 Evaluation and Computational Results

We now use simulation to evaluate our algorithms and compare them
to algorithms for a conventional system and a more idealized destina-
tion call system. To measure the quality of a control algorithm we use
quantiles. We look at the 50%, 75%, 90%, and 100% quantiles of the
waiting and travel times.

Simulation Model and Instances The precise rules of the simulation are
as follows. At each stop of an elevator the passengers enter the cabin in
first-come-first-served (FCFS) manner. Of course this is only relevant
if the cabin capacity does not suffice to pick up all waiting passengers.
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We consider a building with an elevator group serving 16 floors. The
passenger data used in our experiments came from the software tool
Elevate [2]. We look at eleven templates defined by Elevate representing
different traffic patterns. These include up traffic (U), down traffic (D),
and interfloor traffic (I), as well as combinations of different traffic pat-
terns, e. g., UDi denotes a situation with up and down traffic and a little
interfloor traffic. Instances with changing predominant type of traffic
are indicated by a “*”. For each template we compute the quantiles
over ten samples. A more extensive evaluation can be found in [4].

Real Destination Call System For the destination call system described
in Section 2, we compared our algorithms BI and CBI to an adapted
version of the Kollmorgen algorithm for conventional systems, which
is based on collective control [1]. The criterion for assigning calls to
elevators aims to minimize the required waiting time. Our results show
that BI seems to be superior to the straightforward adaption of the
Kollmorgen algorithm, in particular for the travel times and the higher
quantiles of the waiting times.

System Comparison For comparison, we also studied two different ele-
vator control systems. In the conventional system we have no informa-
tion about the destination floor of a call until the passenger has entered
the cabin. On the other hand, it is not necessary to assign each call to
an elevator immediately. Passengers again enter a cabin in FCFS order.
For this setting we implemented an algorithm called CGC [1] designed
to perform well in most traffic situations.

Moreover, we consider an idealized destination call system. Here we
have complete boarding control, i. e., at each stop of an elevator the
control algorithm determines which passengers are picked up. Conse-
quently, the capacity of the elevator cabin is taken into account in this
model. We compared BI to another adapted variant of the Kollmor-
gen algorithm. Similar to the real destination call system, BI performs
better in most situations. Finally, we compare the best algorithms of
the different systems with each other: CGC (conventional system), CBI
and BI-FCFS (real destination call system), and BI-planned (idealized
destination call system).

The results for travel times are given in Figures 2(a) and 2(b). BI-
planned outperforms the other algorithms with three elevators, while
CGC achieves the worst travel time quantiles. CBI performs similarly
to BI-FCFS, but CBI always achieves a smaller maximal travel time.
Using four elevators, CBI yields similar results as BI-planned and gives
an even better maximal travel time on most instances. CGC performs
quite well on the I and UDi* instances.
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Fig. 2. Travel times quantiles (in seconds) for the eleven call templates

We summarize the most important results. CBI is almost as good
as BI-FCFS and even better for maximal waiting and travel times.
Destination call systems seem to be superior to conventional systems
in high load situations, the opposite seems to hold for low load at least
for the waiting times. Moreover, control about the passengers entering
the cabin at a stop pays off for destination call systems.
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Summary. In recent years Industrial Product Service Systems (IPSS), char-
acterized by an integrated supply of products and services, have emerged as
new business models. The aim of this paper is to compare the traditional
business model for simple transactions and the full-service business model.
The question of whether the full service business model can contribute to the
degree of vertical integration is supposed to be answered.

1 Introduction

Integrating the supply of products and services is accompanied by a
change from a transaction- to a relationship-oriented business connec-
tion.[6] As a consequence new, long-term business models have emerged
in the plant and machinery industry in form of IPSS by incorporating
components of products and services. Typical for such business models
is an increased level of interaction between the manufacturer and the
customer due to the higher degree of service components. The ques-
tion arises to what extent such business models can contribute to the
optimization of the degree of vertical integration.

We compare two institutional arrangements: the traditional business
model ’make or buy’ and the full-service business model. Regarding the
full-service business model, we consider a manufacturer who is respon-
sible for both developing and assuring the operational readiness of a
bundle of technological infrastructure.

The paper is structured as follows. In section 2 we introduce the
(formal) model. Section 3 compares the business models and section 4
concludes.
∗ Financial support from the German Science Foundation (DFG) through

SFB/TR29 is gratefully acknowledged.



364 Henry O. Otte, Alexander Richter, and Marion Steven

2 Model Description

We consider a business relationship between a customer and a manu-
facturer of a machine. The customer has to face the decision whether
he wants to delegate all activities which lead to operational readiness
to the manufacturer or if he wants to purchase the product alone. As
depicted in the timeline in figure 1, the analysis is restricted to two
periods, the development phase and the operating phase.

The business relationship starts with a contract in t = 0. The con-
tract specifies the ownership structure, the basic characteristics of the
product (service system) to be delivered and the payment P0 to be
made by the customer. It is assumed that the specified characteristics
are observable and verifiable.

development phase operating phaset = 0 t = 1 t = 2

contract
a, b K(a, b)

option to buy
C(a), B(a)

Fig. 1. Timeline

Prior to the production and delivery of the machine, the manufac-
turer is offered the opportunity to modify the product service system
by choosing specific investments, without violating the contract. These
non-contractible investments in innovations determine the productivity
of the industrial product service system. However, it is important to dis-
tinguish between productivity of products and services. For products
the correlation of productivity and customer satisfaction (perceived
quality) can be assumed to be positive, whereas for customized ser-
vices it is negative.2 For instance, on the one hand the manufacturer
is able to increase the productivity of the service components by intro-
ducing remote services like remote repair, remote diagnosis and remote
maintenance. On the other hand, the customer’s desire for face-to-face
contact tends to result in poor acceptance of such technologies. In ad-
dition security concerns arise and can lead to potential barriers due to
the customer’s fear of having a transparent production.

Therefore, we model a two dimensional investment decision in ac-
cordance to [5]. The levels and costs of these two investments are de-
2 See [1] for an empirical study on this proposition.
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noted by a and b respectively. In particular, investment b describes
a quality innovation of the machine, whereas investment a reflects the
service innovation. Both investments are independent and influence the
value of the machine for the customer, V (a, b), and for the manufac-
turer, R(a, b). It is assumed that the value functions R(a, b) and V (a, b)
are concave and increasing in both arguments. For simplicity we also
assume that Va(a, b) = Ra(a, b) and Vb(a, b) = Rb(a, b).3 Moreover,
investment a in service innovation is accompanied by a reduction of
customer’s benefit from consuming the service, B′(a) < 0. Whether
an innovation is implemented or not, depends on the approval of the
owner. Thus, the allocation of ownership is simply the allocation of
control rights. After construction, the costs of building the machine
K(a, b) incur, where Ka(a, b) = Kb(a, b) = 1 and K(0) > 0.

When the initial ownership is assigned to the manufacturer, the
customer has the option to buy the improved machine in t = 1. It is
assumed that the machine has greater value for the customer than for
the manufacturer, that is V (a, b) > R(a, b). For reasons of efficiency,
the customer always buys the machine. Hence, investment a can be
interpreted as hybrid and investment b as cooperative in the sense of
[3].

Finally, in the operating phase not only the customer’s benefit, B(a),
but also the costs of service delivery, C(a), are realized. The cost and
benefit functions are supposed to be convex and decreasing in a. Fur-
thermore, we assume that C(0) > 0 and B(0) > 0. In order to make the
implementation of the service innovation efficient ex post, we suppose
the cost reduction to be greater than the benefit reduction.

Both parties are risk neutral. The first-best solution (a∗,b∗) is then
characterized by the following first order conditions:

Va(a∗, b)− C ′(a∗) + B′(a∗) = 1 (1)
Vb(a, b∗) = 1 (2)

We now consider the second-best with non-verifiable investments.

3 Comparison of the Two Business Models

Firstly, we will analyze the problem of bundling goods and services for
given ownership structures. In a following step the ownership structures
are compared.4

3 In what follows, subscripts are used to denote partial derivatives.
4 See for such a procedure [2] who analyze the bundling of two tasks in an incom-

plete contracts framework, too.
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3.1 Manufacturer Ownership

As a result of assigning the ownership to the customer ex post, the
surplus, S(a, b) = V (a, b)−R(a, b), is supposed to be divided according
to the bargaining power, which is for the manufacturer and (1 − )
for the customer.5 The customer’s payment to the manufacturer after
renegotiation will then be:

P (a, b) = R(a, b) + S(a, b)

In case of a full-service business model the manufacturer maximizes the
sum of the machine price P (a, b) and the ex ante determined payoff P0

less the costs C(a, b) and K(a, b). The profit maximizing choice a = afs

and b = bfs satisfies the following first order conditions:

(1− )Ra(afs, b) + Va(afs, b)− C ′(afs) = 1 (3)
(1− )Rb(a, bfs) + Vb(a, bfs) = 1 (4)

By contrast, in case of traditional business model the choice is a = atm

and b = btm to solve:

(1− )Ra(atm, b) + Va(atm, b) = 1 (5)
(1− )Rb(a, btm) + Vb(a, btm) = 1 (6)

When comparing (4) and (6) it becomes obvious that in both business
models b equals the reference solution in (2). Moreover, concerning a in
both business models the reduced customer benefit (B′(a) < 0) is not
internalized by the manufacturer. Hence, an overinvestment follows in
(3), whereas (5) results in an underinvestment due to the disregard of
C ′(a). However, it cannot be answered in general, which of the business
models is best. For instance, if the benefit reduction is negligible, so is
the overinvestment. Thus, the full-service business model would be pre-
ferred. This is especially the case for |2B′(a)| ≤ |C ′(a)|. Then, given our
assumptions, the level of the corresponding underinvestment |B′(atm)|
will be greater than the level of the overinvestment | −B′(afs)|.

3.2 Customer Ownership

To implement the innovation, now the approval of the customer is re-
quired. Therefore, renegotiation occurs concerning the surplus of an
implemented innovation.[5] This implies that the adverse effect of the
cost reducing investment b is in part internalized. Furthermore, the
5 See [4] for non-renegotiation proof option contracts.
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highest possible profit is independent of the business model. Specifi-
cally, from now on we only refer to a full-service business model when
the manufacturer possesses the initial ownership.

The manufacturer sets a = aco and b = bco to solve the first order
conditions:

[Va(aco, b) + B′(aco)−C ′(aco)] = 1 (7)
Vb(a, bco) = 1 (8)

A comparison with the first-best solution reveals that the manufacturer
underinvests in both components, since he only receives an -fraction
of his investment’s contribution to surplus.

3.3 The Choice of Ownership Structure

To restrict the analysis to the full-service business model, we assume
|C ′(a)| ≥ |2B′(a)|. The investment levels under the different ownership
structures can then be ranked as follows:

aco ≤ a∗ < afs

bco ≤ bfs = b∗

In case of full-service the investment level concerning b matches the
first-best solution and is greater than the one in case of customer own-
ership unless = 1. More difficult to evaluate are the investment in-
centives concerning a. On the one hand there is overinvestment when
the manufacturer initially owns the machine, while on the other hand
underinvestment may occurs. We find that the degree of overinvest-
ment is of lesser importance than the degree of underinvestment, if the
following condition holds:

1− <

∣∣∣∣Vb(a, b)
B′(b)

∣∣∣∣ (9)

The right-hand side of (9) compares the costs and benefits of a service
innovation to the customer. If the machine value, which has been in-
creased by the service innovation, is greater than the benefit reduction,
the right-hand side will always be greater than one. In this case the
condition holds for a sufficiently small bargaining power ≤ 1

2 . No-
tice, if = 1, the traditional business model will always be superior
unless the negative benefit effect does not apply. However, then in both
business models the first-best solution is achieved.
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4 Concluding Remarks

In this paper, we consider the supply of IPSS as a long term develop-
ment and service contract between a manufacturer and a customer. We
discuss the effect of the special design of IPSS on the incentive struc-
ture of the inter-firm relationship. Relative to the traditional business
model, the full-service model as a specific form of IPSS only creates
additional value, when the initial ownership is assigned to the man-
ufacturer. Moreover, we were able to show that the advantage of the
full-service model is dependent on both the costs and benefits of a
service innovation as well as the bargaining power of the manufacturer.

With regard to the quality innovation, IPSS are always superior. The
service innovation, however, results in a negative externality. Because
of non-internalizing this externality, IPSS turn out to be superior only
when the customer’s bargaining power is relatively great. The reason is
quite simple and stems from the hold-up problem in case of traditional
procurement. In such a situation the possible opportunistic behavior of
the customer would be more disruptive than the adverse effect of the
service innovation.

To counteract the negative externality an integrated design, char-
acterized by interactions between product and service components, is
necessary. Future research should therefore take into account a more
complex cost-effort function in which a and b are substitutes.
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1 Introduction

In recent years many companies have extended the focus of their lo-
gistic processes to a closed-loop supply chain perspective in order to
meet the growing environmental awareness of their customers. To an-
alyze such systems theoretically the research field of Reverse Logistics
has been established which adds to the traditional view of logistics the
flow of goods coming back from the customers to the company. Af-
ter receiving the products back the company can choose one from the
manifold options on how to handle these products. Among others, re-
manufacturing has been proven to be a worthwhile option in several
businesses. The process of remanufacturing begins with the disassem-
bly of the returned products. The obtained components are afterwards
cleaned and reworked until a good-as-new quality is assured. Finally,
when meeting the required quality standards those components can be
used in the final product assembly as a low-cost alternative to newly
manufactured ones. Thus, a part of the embedded economic value of
the returned products can be saved by remanufacturing. While analyz-
ing the process of remanufacturing, a multi-level inventory system has
to be evaluated in order to gain insight into the process. Since fixed
as well as holding costs prevail on each system level a multi-level lot
sizing problem needs to be solved which shall represent the main focus
of this contribution.

The remaining paper is structured as follows. While the next chapter
describes the problem setting and introduces a heuristic on how this
problem can be solved, chapter 3 adapts this heuristic in a way that
it finds a good solution for any parameter setting. The last chapter
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summarizes the results of this contribution and gives an outlook to
future research directions.

2 Problem Setting and Model Formulation

A company engaged in the area of remanufacturing that remanufac-
tures several old products (e.g. engines) coming back from their cus-
tomers shall be the background for the problem setting. To keep the
analysis simple the focus shall be restricted on only one specific reman-
ufactured product named A. Figure 1 presents the general structure of
this simplified system. Further simplifications are made regarding the
fact that all input data is assumed to be deterministic and that there
are neither lead nor processing times.

The demand for the final product A is assumed to be constant and
continuous with the rate of λ units per period. In order to satisfy that
demand the company manufactures the final product solely by using the
only required component B. As there are no considerable fixed costs for
the assembly process the final product is assembled with the smallest
possible lot size of one and is delivered immediately to the customers.
When the customers have no further use for their product A (e.g. it is
broken or its leasing contract ends) they have the opportunity to return
the product to the company. For the sake of simplicity, these returns
which are denoted A′ are also assumed to be constant and continuous
at which α represents the percentage of old products returned to the
company. By disassembling A′ the worn component B′ is obtained.
Although the process of disassembly typically consists of manual work
fixed costs prevail for setting up required disassembly tools and/or
measuring devices that allow an improved evaluation for the reusability
of components before disassembly. Within this model Kd represents the
fixed costs for a disassembly batch while hd is the holding cost incurred
for storing one old product for one period. Due to different stages of
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Fig. 1. Material flows in a manufacturing/remanufacturing system
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wear not all returned products contain a reworkable component B′. The
fraction of reworkable components B′ with respect to the total demand
rate is denoted by β. As the remanufacturing process incurs fixed costs
of Kr for setting up the cleaning and mechanical rework tools a batching
of reworkable components takes place as well. Hence, some reworkable
components need to be stored resulting in costs of hr per unit and
period. After successfully reworking the components B′ they become a
good-as-new component B which is held in a serviceables inventory for
hs per unit and period. In order to secure the final product assembly
of A some components of B have to be manufactured in addition(as
β is commonly smaller than one). The decision relevant fixed costs
are denoted by Km representing the cost for setting up a production
lot for component B. Newly manufactured components are held in the
same serviceables inventory as remanufactured ones and it is assumed
that the holding costs do not differ between both sourcing options. In
general, the holding costs (when interpreted as costs for capital lockup)
of all levels are connected by the following inequality since more value
is added to the component on each level: hd < hr < hs.

In a recent work, Teunter et al. [2] have analyzed a quite similar
system by a mixed-integer linear program (MILP). Despite the fact that
their system does not contain the stage of disassembly and includes the
possibility of variable demands and returns the introduced MILP can
also be applied to the problem description above. Nevertheless, Teunter
et al. conjecture that finding an optimal solution to their problem is
NP-hard and adapt therefore well-known simple dynamic lot sizing
heuristics. The performance of those heuristics in a stationary demand
environment appears to be rather poor (around 8% at average) which
motivates the search for a distinct heuristic approach.

Ferretti and Schulz [1] present a common cycle approach which bases
on a multi-level EOQ-type analysis to control the system described
above in a heuristic manner. In their contribution, three different pa-
rameters are identified which are needed to control the system. The
first parameter T describes the length of the common cycle and it is
presumed that within a cycle exactly one disassembly lot is begun.
Furthermore, the number of remanufacturing lots R and manufactur-
ing lots M (both per cycle) have to be defined. In order to simplify
the analysis it is presumed additionally that all remanufacturing lots
are of equal size. This presumption is valid for all manufacturing and
disassembly lots as well. Analyzing this multi-level inventory system an
EOQ-like total cost function TC can be derived.
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TC =
F

T
+

λTH

2
with

F = Kd + RKr + MKm and
H = αhd + R−1

R β2hr + (β2

R + (1−β)2

M )hs
(1)

By calculating the first derivative of the total cost function with
respect to T one obtains the following optimality condition that mini-
mizes the total cost per cycle for a given R and M .

TC(R,M) =
√

2λFH (2)

As this function is not defined continuously since R and M have to
be integer valued an enumerative procedure is recommended in order
to find the optimal solution as presented in [1].

3 Extension of the Model

One of the most critical assumptions of the model from Ferretti and
Schulz is that it only allows for one single disassembly lot per cycle to be
disassembled. Thus, at least one remanufacturing lot and one manufac-
turing lot have to be set up in every cycle. This restrictive assumption
is made because the obtained total cost function can be analyzed eas-
ily. However, following this policy can result in significant errors under
specific circumstances. To give an example, if the fixed cost for man-
ufacturing Km is comparatively large it can be beneficial to pool the
necessary requirements for new components of more than one disas-
sembly lot. A more general heuristic solution structure must therefore
ensure that the number of remanufacturing and manufacturing lots per
cycle need not necessarily be integer multiples of the number of disas-
sembly lots in a cycle. Although this general approach promises better
results for any given set of parameters no closed form expression can
be found for the total cost function of this generalized problem. That is
because both the recoverables and the serviceables inventory lose their
characteristic that they have to be zero at the moment a disassembly
lot is disassembled. As a consequence, the remanufacturables inven-
tory per cycle cannot be expressed as a simple function that depends
on the number of remanufacturing lots R, manufacturing lots M , and
disassembly lots D (all per cycle).

In order to determine the total remanufacturables inventory one
needs to define when the remanufacturing lots are started. The follow-
ing iterative procedure can be used for a given T , R, M , and D to
calculate those times. The assumptions and notation remain as in the
preceding chapter only supplemented by IL that denotes the current
remanufacturables inventory level and i as a time index.
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1. start i=0, IL=0
2. update time index i and inventory level IL (every T/D periods

there is an inflow of λαT/D units)
3. if i < T

a) then if at time index i remanufacturing lot size (λαT/R) < IL
then remanufacture one lot and goto 2.
else manufacture one lot of λ(1− α)T/M and goto 2.

b) end if
4. end if
5. end

At the beginning (step 1) the time index i as well the remanufac-
turables inventory level are set to zero. The second step updates those
decisions when necessary. Thereby, the time index i is updated in that
way that it indicates the next point in time when the serviceables in-
ventory level runs out of stock. The remanufacturables inventory level
IL has to be updated after an inflow from disassembly which takes
place every T/D periods as well as after every outflow due to a reman-
ufacturing batch. In the third step the procedure checks for a specific
i whether there are enough remanufacturable components in inventory
for setting up a remanufacturing lot. If the inventory level is not suffi-
cient a manufacturing batch is set up instead. This loop repeats until
the end of the common cycle T is reached. The procedure of prefer-
ring remanufacturing to manufacturing appears to be conclusive as the
immediate manufacturing option shall only be used if there are not
enough remanufacturables on hand.

By applying this iterative procedure it is possible to determine the
total inventory level throughout the whole cycle as it determines the
timing of every remanufacturing lot. Nevertheless, it has to be men-
tioned that not all parameter combinations are possible without break-
ing the assumption of equal lot sizes throughout the cycle. For all pos-
sible parameter combinations the total cost function can be defined
in the same way as for formula 1 except that the part describing the
remanufacturables inventory has to be reformulated. An enumerative
procedure can be used as in the preceding chapter to find the optimal
solution to the problem. For illustrative purposes, figure 2 confronts
both procedures. On the left hand side, the old method from [1] is used
that defines the best possible heuristic solution respecting all assump-
tions for D=1, R=2, and M=1. Contrary, the right hand side illustrates
the best possible heuristic solution for the same problem with the im-
proved method (for D=2, R=4, and M=1). From the figures it can
be concluded that the fixed costs for manufacturing must be compara-
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Fig. 2. Comparison of both heuristics

tively high, as it is better to combine the manufacturing requirements
of two disassembly lots into one manufacturing batch.

4 Conclusion and Outlook

This contribution introduces and describes a simple production system
with remanufacturing and manufacturing options. The following anal-
ysis focusses especially on the three-level serial inventory structure of
the system and proposed a heuristic for solving this type of problem.
Furthermore, this heuristic approach was extended to a more general
structure as the solution quality for some parameter constellations ap-
pears to be poor. Although losing its simple cost structure some pilot
tests have shown that cost improvements of more than 10% in compar-
ison to the old approach are possible.

Future research efforts can concentrate on many different directions.
For the sake of brevity only one possible options shall be mentioned here
being to compare the introduced heuristics with the optimal solution
found by a mixed-integer linear program and with other multi-level lot
sizing heuristics.
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Summary. The SEMCAIP (Simulation-based Evolutionary and Multiob-
jective Configuration of Active Ingredient Plants) decision support system
offers support in designing active pharmaceutical ingredient plants within an
interdisciplinary group decision-making process. Instead of sequential decision
finding, an integrated consensus is reached between different decision makers.
The system combines business management models derived from production
theory with the process simulation used in process technology. Control of the
model calculation with the selection of suitable solutions according to the
Pareto principle is exercised by a hierarchical evolution strategy developed in
this study. The elaborated decision support system is intended as an instru-
ment to replace conventional, stand-alone use of an investment calculation
following the establishment of a technical plant concept.

1 Introduction

It is becoming increasingly difficult in the pharmaceutical industry to
find chemical substances that can be developed into new active ingre-
dients for pharmaceutical medications. At the same time, the generic
competition has speeded up the pace of its activities. Since the phar-
maceutical industry is one of the most research intensive sectors, the
necessity to continue investing in research is putting it under increasing
pressure to lower costs in other operating areas. The aim was therefore
to develop a decision support system for the multicriterial design of ac-
tive pharmaceutical ingredient plants using methods of computational
intelligence as a means of resolving the described problem situation.
The SEMCAIP (Simulation-based Evolutionary and Multiobjective
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Configuration of Active Ingredient Plants) decision support system
combines business management models derived from production the-
ory with the process simulation used in process technology. The goal is
firstly to use the well-proven process technology methods as a basis for
determining the technical model variables employed in business man-
agement models, and secondly to ensure the acceptance of a solution in
a group of decision makers with differing task definitions and special-
ized backgrounds. Control of the model calculation with the selection
of suitable solutions according to the Pareto principle is exercised by
a hierarchical evolution strategy developed in this study. Metaheuris-
tics, one of the categories of evolutionary algorithms, were assembled
as a modular system from the components known from the literature
to solve the specific design problem.

2 Structure of the Decision Support System

The decision support system consists firstly of a technical-economic
model to reflect the design of pharmaceutical production plants, and
nature-analogous metaheuristics for tuning the decision variables of the
model.

The business management partial model is based on a linear activ-
ity analysis3. The basis of linear activity analysis is the activity. This
is understood as a permissible combination of factor input quantities
which lead to a certain combination of output quantities when using
a given production method. Production processes usually generate not
only the intended, marketable products, but also unavoidable accom-
panying products such as solid, liquid or gaseous residues, waste heat
or radiation. Linear activity analysis is an approach that describes pro-
duction relationships after installation. Since the design task requires a
description prior to installation, in this approach the activity analysis
is combined with the putty clay model4. This production theory model
distinguishes between an ex-ante production function which reproduces
the choice of technology before installation, and an ex-post production
function which reproduces the productivity relationships after the in-
stallation of plants. This approach is particularly suitable for solving
the problem of designing production plants by integrating the linear

3 For detailed expositions of activity analysis see e.g.; Debreu (1959), page 46 ff.;
Kistner (1993), page 54 ff.; and Steven (1998), page 62 ff.

4 See Kistner (1993), pp. 133 ff.; Steven (1998), pp. 236 ff.
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activity analysis into the putty clay model. The design choice before
installation is represented by introducing binary structure parameters.

In this approach, process technology-based process simulation is in-
tegrated as a technical partial model to represent the influence of
technology-related parameters on the input-output relationships. This
process simulation explicitly includes the design of apparatus in the
modelling process and thereby satisfies the requirements of initially de-
termining, as a technical partial model, the efficient processes as a basis
for the activity analysis. The coefficients for production planning based
on the activity analysis can be determined with the aid of process sim-
ulation.

To derive the target functions, the quantity level is transformed into
the value level. In this approach, economic objectives are represented
by the capital value:

KW = −A0 +
T∑

t=1

(
m∑

j=1

pj,txj,t −
n∑

i=1

qi,tri,t −
M∑

I=1

PI,tXI,t

+
N∑

J=1

QJ,tRJ,t)(1 + γ)−t (1)

The capital value KW is generated by the payments of every single
period t. Basis for the calculation are the product prices pj (j =
1,. . . , m), prices of input factors qi (I = 1,. . . , n), pollutant releases PI

(I = 1,. . . , M), recycling credits QJ (J = 1,. . . , N) and the associated
volumes xj , ri, XI and RJ . The number of periods is denoted by T,
the interest rate by γ.

When formulating ecological target functions it is possible to make
use of environmental indicators5 by placing environmentally relevant
data from the input/output balance in relation to each other. In this
approach, the following environmental indicators are used as target
variables:

5 See e.g. Pape/Pick/Goebels (2001), page 185.
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1. Solvent recovery LM in kg per kg product:

LM =

T∑
t=1

ri,t −RI,t

T∑
t=1

xt

(2)

2. Raw material R input in kg per kg product:

R =

T∑
t=1

ri,t −RI,t

T∑
t=1

xt

(3)

3. Emission volume EM in kg per kg product:

EM =

T∑
t=1

XI,t

T∑
t=1

xt

(4)

A nature-analogous metaheuristic approach for the derivation of so-
lutions is integrated into the technical-economic model. The basis is
the evolution strategy, a representative of the evolutionary algorithms
which has been extended into a mixed-whole number, multicriterial
evolution strategy using approaches known from the literature.

3 Case Example from the Pharmaceutical Industry

The target function values are presented to the decision makers in
the representation component of SEMCAIP. For the presentation of
the identified alternative designs for active pharmaceutical ingredient
plants with reference to the multidimensional objective, all metrically
scaled individual target indices KEi are converted to a corresponding,
dimensionless ratio index KVi for each of the i = 1,. . . , m individual
objectives:

KVi =
KEalt

i −KEworst
i

KEbest
i −KEworst

i

× 100% (5)
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The numerator is formed by the difference of the values of the consid-
ered and the worst alternatives with reference to a specific individual
objective. The denominator represents the difference of the best and
the worst alternative. A benchmark oriented approach is therefore be-
ing pursued by comparing the identified potential design alternatives
for possible active ingredient plants with reference to the individual
objectives. The best and worst alternatives are used for the maximum
and minimum parameter value (100 % and 0 %). This prevents the
scale for the individual objective from becoming too broad and facil-
itates a visual presentation for the decision makers in the form of a
polar diagram:

Fig. 1. Target function presentation in Pareto diagram

In the polar diagrams, all index data of an alternative are displayed
simultaneously after preliminary selection through a filter. Figure 1
shows three different alternatives with the pertinent index data as an
example. The values derive from the Pareto quantity determined by the
evolution strategy. They therefore represent non-dominated function
values. Further branching is also possible for more detailed analyses.

4 Summary and Prospects

The multicriterial design of active pharmaceutical ingredient plants as
a strategic task within plant controlling requires support with suit-
able instruments. The SEMCAIP decision support system developed
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in this study can be used very effectively for the multicriterial design
of active pharmaceutical ingredient plants in the early phases of plant
development. The great advantage offered by the system developed
here is that it provides support for the design of active pharmaceuti-
cal ingredient plants within an interdisciplinary group decision-making
process. Instead of sequential decision finding, an integrated consensus
between different decision makers is reached. The decision support sys-
tem elaborated in this study therefore has the potential to supersede as
an instrument the conventional, stand-alone application of investment
calculation following the establishment of a technical plant concept.
As a modular system, it can conceivably be elaborated further in many
directions. Firstly, the basic models and objectives can be modified, al-
lowing the system also to be used outside active ingredient production.
Under technical model aspects, a particularly valuable addition would
be the representation of uncertainty in the model components of the
developed decision support system, for example to take into account
uncertainties in demand and in process technology based production.
Several successful approaches in this area have already been published
in the literature6. Future studies could examine the extent to which the
methods used in these project could be integrated into the SEMCAIP
decision support system presented here.
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Projekte, in: Biethan, J. (Ed.): Proceedings zum 9. Symposium: Simula-
tion als betriebliche Entscheidungshilfe: Neuere Werkzeuge und Anwen-
dungen aus der Praxis, Göttingen 2004, pp. 95-114

6. Völkner, P., Werners, B.: A simulation-based decision support system for
business process planning, in: Fuzzy Sets and Systems, Vol. 125, No. 3,
2002, pp. 275-287

6 See e.g. Werners/Wolf (2004) or Völkner/Werners (2002).



Part XVI

Retail, Revenue and Pricing Management



Optimizing Flight and Cruise Occupancy of a
Cruise Line

Philipp Kistner, Nadine Rottenbacher, and Klaus Weber

AIDA Cruises, Am Strande 3d, 18055 Rostock, Germany
klaus.weber@aida.de

1 Introduction

The problem described here belongs to the field of revenue man-
agements which origins from the airline industry where it is highly-
developed [5, 7]. It has also achieved sophistication to various degrees
in other fields of business, e.g. in the cruise industry. We first give a con-
cise introduction to revenue management and its particularities in the
cruise industry in section 2 (see [4, 7, 8] for a thorough introduction).
Then section 3 introduces and motivates the mathematical model. Re-
sults of the optimization are discussed in section 4. Finally, section 5
gives a summary and indicates how this work will be continued. Due
to lack of space, this cannot be a comprehensive description. A full
description is presented in [3].

2 Revenue Management and Its Particularities in the
Cruise Industry

Generally speaking, revenue management aims to optimize the revenue
gained from selling a commodity or service which can be characterized
as follows [9]:

• Commodity or service capacity is fixed.
• Major part of cost is fixed. Marginal cost is insignificantly low.
• The commodity or service cannot be sold after a specified point in

time, i.e., it is ”perishable”.
• Demand is uncertain.
• The customers’ willingness to pay is diverse according to properties

of the commodity or service or conditions of their purchase.
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A seat on a flight or a cabin of a cruise is a service with above character-
istics and, thus, revenue management methods are applicable. Typically
following means are applied [9]:

• Market segmentation with respect to willingness to pay and accord-
ing price discrimination.

• Capacity control by dynamical partition of the amount of commodi-
ties or quantity of service at a period of time offered at a specific
price.

• Price control by dynamical (re-)setting of price(s).
• Forecast of customer demand according to commodity properties or

service conditions or price.

Whereas major airlines maximize their overall network net revenue,
cruise lines seek to maximize cruise occupancy – at a ”good” price.
The main reason for the difference is on-board revenues. On flights
they are negligible. Aboard a cruise ship they make a significant part
of overall revenue, e.g., for shore excursions, spa treatments, and at
bars. As on-board revenues are not well understood, yet, they cannot
be taken into account for booking control. Current research aspires to
resolve this deficit (e.g., [6]).

In order to carry passengers to remote base ports, AIDA Cruises
charters flights. As it bears the full economic risk of the flights, it
needs to simultaneously maximize cruise and flight occupancy. It is
insufficient to optimize single cruises and their related flights: Due to
various passenger journey durations, all outbound and inbound flights
and cruises are interconnected.

3 Model Building

The model is introduced step by step. Due to lack of space the model is
neither described completely nor in detail, and it is slightly simplified
(e.g., group business is omitted). A full description is given in [3].

Figure 1 illustrates a typical situation at AIDA Cruises which is
covered by the model: The vessel moves to a base port in the region
of destination, e.g., the Caribbean (incoming transit cruise). There it
stays for a couple of months and repeats the same route until the end
of the season. Then it moves to another region of destination (outgoing
transit cruise). Outbound flights carry passengers from various hubs,
e.g., in Germany to the base port. Inbound flights bring them back
home.
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Fig. 1. Situation at the base port of a remote destination

Parameter Sets (Selection)

Let C ⊆ Tc × Dc the set of cruises starting from the base port. Tc

indicates the set of cruise departure dates and Dc the set of cruise du-
rations. F+ ⊆ T+

f × H × FN+ and F− ⊆ T−
f × H × FN− indicate

outbound and inbound flights, respectively, where Tf is the set of flight
dates, H is the set of hubs, and FN is the set of flight numbers. (Su-
perscripts +/- indicate outbound/inbound.) Ctrans

in and Ctrans
out denote

the sets of incoming and outgoing transit cruises.
Passengers who book a cruise with flight choose a specific itinerary

type:

• ”CO” is an itinerary without hotel, i.e. C ruise Only.
• ”CH” is an itinerary with a hotel stay after the cruise.
• ”HC” is an itinerary with a hotel stay before the cruise.
• ”NA” designates any itineraries different from the above.

So, IT := {CO,CH,HC,NA} is the set of itinerary types. Possible du-
rations of cruise and hotel stays are given by the itinerary distribution
set Ddist

i ⊆ N
2
0. I := IT × Ddist

i is the itinerary set. Passengers may
choose a booking class from set CL = {Y,C}.

Following sets reflect the interdependency of flights and cruises:

• FC+(c, i) is the set of outbound flights feeding cruise c ∈ C with
itinerary type i ∈ I\{NA}.

• FC+
emb(c, i) is the set of outbound flights with passengers embarking

for cruise c ∈ C with itinerary type i ∈ I\{NA}.
• FF+(f−, i) is the set of outbound flights feeding inbound flight

f− ∈ F− with itinerary type i ∈ I\{NA} passengers.

Parameters (Selection)

The model comprises two types of parameters. All parameters are re-
lated to the date of optimization topt.

• Supply figures, e.g.,
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– Cruise (only) booking levels: bkdc(c), bkdco
c (c) for c ∈ C.

– Empty cruise cabins: ecb(c) for c ∈ C.
– Current cruise capacity: capcurr

c (c) for c ∈ C.
– Outbound flight capacity: cap+

f (f+, cl) for f+ ∈ F+, cl ∈ CL.
– Outbound flight booking levels: bkd+

f (f+, cl, i) for f+ ∈ F+, cl ∈
CL, i ∈ I.

• Demand figures, e.g. cruise demand: dmdemb(c, cl, i) for c ∈ C, cl ∈
CL, i ∈ I.

Optimization Variables (Selection)

The objective of the optimization is twofold:

1. Compute values of booking controls in the reservation system as
to maximize occupancy of all cruises and flights. Corresponding
optimization variables are:
• Cruise only contingents: contco(c) for c ∈ C.
• Outbound and inbound flight contingents: m+(f+, cl, i),

m−(f−, cl, i) for f+ ∈ F+, f− ∈ F−, cl ∈ CL, i ∈ I.
2. Indicate whether preset flights (F+, F−) are sufficient, or flights

should be added or deleted. Related optimization variables are flight
multipliers: mult+f (f+), mult−f (f−) for f+ ∈ F+, f− ∈ F−.

In addition, model variables exist, e.g., empty berths: eb(c), empty flight
seats: e+

s (f+, cl), e−s (f−, cl) and transit cruise contingents: transin(c, cl),
transout(c, cl) for c ∈ C, f+ ∈ F+, f− ∈ F− and cl ∈ CL. All opti-
mization variables are integer and non-negative.

Objective function

It is assumed that the cost of empty cruise berths equals the cost of
empty flight seats. Thus, we can reduce the multi-objective problem to
a single-objective one: Minimize the sum of empty berths on all cruises
and of empty seats on all outbound and inbound flights.∑

c∈C

eb (c) +
∑

cl∈CL

∑
f+∈F+

e+
s

(
f+, cl

)
+
∑

cl∈CL

∑
f−∈F−

e−s
(
f−, cl

)
→ min

Constraints (Selection)

Following types of constraints restrict the search space:

• Constraints coupling outbound and inbound flight contingents, e.g.∑
f−∈F−:f−

1 =t−f ,f−
2 =h

m− (f−, cl, i
)

=
∑

f+∈FF+(t−f ,h,i)
m+
(
f+, cl, i

)
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• Cruise capacity constraints, e.g.

capcurr
c (c) � contco (c) +

∑
cl∈CL

∑
i∈I:i1 �=NA

∑
f+∈FC+(c,i)

m+
(
f+, cl, i

)
+
∑

cl∈CL

transin (c, cl) +
∑

cl∈CL

transout (c, cl) + eb (c)

• Flights capacity constraints, e.g.

e+
s

(
f+, cl

)
= mult+f

(
f+
)
· cap+

f

(
f+, cl

)
−
∑
i∈I

m+
(
f+, cl, i

)
(1)

• Flight booking constraints, e.g.

m+
(
f+, cl, i

)
� bkd+

f

(
f+, cl, i

)
(2)

• Demand constraints, e.g.∑
f+∈FC +

emb(c,i)

m+
(
f+, cl, i

)
�

max

⎡⎢⎣dmdemb (c, cl, i) ,
∑

f+∈FC +
emb(c,i)

bkd+
f

(
f+, cl, i

)⎤⎥⎦
(Index sets are omitted due to lack of space.)

4 Optimization Results

The MIP was implemented in the modeling language Zimpl [2] and
solved with ILOG CPLEX [1]. The initial flights in the sets F+ and
F− are defined by the Flight Operations Department based on expe-
rience. At first, the problem was solved for this case, i.e. the flight
multipliers mult+f (f+) and mult−f (f−) were fixed to 1. In the next
step, constraints were modified to allow the solver to add or delete not
more than n outbound and inbound flights, where 1 ≤ n ≤ 3. Actually,
values beyond 3 are unrealistic.

Solutions indicated both addition of flights and keeping the flights
as they are. No solution recommended deletion of flights. Since usually
all flights are partially booked this follows from (1), (2) and e+

s ≥ 0.
The economic effect of the optimization is twofold. First, the num-

ber of empty seats and berths is minimized. As the more berths are
occupied, the more money is spent on-board, this results in higher rev-
enue. The second effect is avoidance of unnecessary additional flights
(which saves hundreds of thousands euros). If the solution indicates
that flights should be added, then it needs to be evaluated whether the
additional passengers aboard compensate for the additional flight cost.
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5 Conclusion

For its remote destinations AIDA Cruises needs to manage both oc-
cupancy of cruises and charter flights. Means to steer occupancy are
booking controls for flight contingents. In the article we desribed an
optimization model (MIP) which maximizes occupancy by minimizing
the sum of empty berths aboard the cruises and empty seats on flights
simultaneously. Additionally, the model indicates whether the foreseen
flights are sufficient to fill the ships or additional flights should be
ordered. It also indicates when flights shall be deleted. Prototype op-
timization runs achieved applicable results. In future research we will
investigate how the consideration of occupancy could be replaced by
the consideration of cost and revenue figures. Furthermore, the possi-
bility to model deletion of flights and re-booking to other flights will
be examined.
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Summary. We consider a profit-maximizing firm that produces two products
with a single capacity. The products are characterized by different demand
patterns and the initial capacity is allocated such that the entire demand of
one product is satisfied before the other. We develop and analyze a model
that determines the optimal initial capacity investment and the selling prices
for both products simultaneously. We provide analytical results and develop
an algorithm. In a numerical example, we compare this centralized planning
approach with decentralized planning where two product managers plan the
selling prices and the required production capacity separately but manufac-
turing produces both products on a common resource. We show that through
coordination of pricing and capacity decisions a better capacity utilization can
be achieved.

1 Introduction

Over the years, researchers and managers have recognized that the
coordination of manufacturing and marketing decisions can improve
company performance significantly. However, in most companies mar-
keting and manufacturing operate organizationally separated. Haus-
man, Montgomery and Roth [2] present an exploratory investigation
of the manufacturing-marketing interface. They provide empirical evi-
dence that the ability of marketing and manufacturing to work together
matters significantly to business outcomes. Shapiro [5] identifies eight
general areas of conflicts that describe the functional interdependencies
between manufacturing and marketing.

There is an extensive stream of literature that analyzes simultane-
ous optimization of price and capacity/inventory in a single-product
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case, e.g., see Petruzzi and Dada [3] and Raz and Porteus [4]. This
paper studies a capacity investment and pricing problem of a firm that
produces two products on a single resource. The products are sold on
independent but price-sensitive markets. The products are character-
ized by a different priority in the production sequence and different
demand patterns. One product is an innovative product with an un-
certain and moderately price-sensitive demand. The other product is
a functional product with a certain but highly price-sensitive demand.
This follows Fisher [1] who categorizes products into innovative and
functional products. Pricing and capacity decisions are made under
uncertainty. After demand realization the demand for innovative prod-
ucts is satisfied before the functional product demand is satisfied.

2 Model

The innovative product is denoted by H (high class) and the functional
product is denoted by L (low class). The H product demand is modeled
by an additive random, downward-sloping, and linear demand function
DH := D(PH , Ψ) = Ψ − bPH . Ψ defines a random market potential
that is uniformly distributed on the interval [A,B] and b ≥ 0 defines
the slope of the demand function. We assume that for all PH in a
compact decision space Pr(DH ≤ 0) = 0. Let f(z) and F (z) be the
probability density function and the cumulative density function of Ψ ,
δ = B − A, and the expected value is denoted by µ = (A+B)

2 . The L
product is modeled by a deterministic, downward-sloping, and linear
price response function with dL := d(PL) = α−βPL for 0 ≤ PL ≤ α

β and
0 otherwise. Furthermore, let C define the capacity. We assume that
L is only used to fill leftover capacity after satisfying the H demand.
Therefore, we constrain the capacity by C ≤ B − bPH . The capacity
required to produce a unit of product H and L is one capacity unit
for both products. The capacity cost is c per unit and the cost for
production is cH per unit of H and cL per unit of L. For given demands,
the profit can be expressed as the difference between revenue, variable
manufacturing, and capacity investment costs by the following function:

Π(C,PH , PL) = (PH − cH)min{DH , C}
+ (PL − cL)min{dL,max{0, C −DH}} − cC.

Taking the expectation value and by substituting K := C + bPH (see
Petruzzi and Dada [3]), DH := Ψ − bPH , and dL := α − βPL, some
algebraic transformations yield the expected profit:
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Π(K,PH , PL) = (PH − c− cH)(µ− bPH) + (PL − c− cL)dL

− c

K−dL∫
A

(K − z − dL)f(z)dz − (PL − c− cL)

K∫
K−dL

(dL + z −K)f(z)dz

− (PH − c− cH)

B∫
K

(z −K)f(z)dz − (PL − c− cL)

B∫
K

dLf(z)dz.

Using the uniform distribution and regarding the capacity constraint,
we get the following constrained optimization problem

Π(K,PH , PL) = (PH − c− cH)(µ− bPH) + (PL − c− cL)dL

− c

2δ
(K −A− α + βPL)2 − (PL − c− cL)

2δ
(α− βPL)2

− (PL − c− cL)
δ

(α− βPL)(B −K)− (PH − c− cH)
2δ

(B −K)2 (1)

s.t. K ≤ B. (2)

For solving this problem, the Lagrangian Multiplier method and the
Karush-Kuhn-Tucker (KKT) conditions are used. The Lagrangian func-
tion is L(K,PH , PL, λ) = Π(K,PH , PL)+λ(B−K) where λ represents
the Lagrangian Multiplier. The KKT conditions give

PH(K) =
1
2b

(
µ + b(c + cH)− (B −K)2

δ

)
, (3)

PL(K) =
2
3β

(α +
βcL

2
−K + A)

+
1
3β

√
4(K −A)2 + (α− βcL)(α − βcL − 2(K −A)), (4)

K(PH , PL) =
(PH − cH)B + (PL − cL)(α − βPL)− (c− λ)(B −A)

(PH − cH)
,

(5)
as well as ∂L

∂λ ≥ 0, λ∂L
∂λ = 0. The derivation of PH(K), PL(K), and

K(PH , PL) is illustrated in Transchel, Minner and Pyke [6].

Proposition 1 PL(K) is decreasing and convex in K and PL(A) = α
β .
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Proposition 2 Given PH and relaxing (2), K(PH , PL) is concave in
PL with

K(PH ,
α

β
) =

(PH − c− cH)B + cA

(PH − cH)
∈ [A,B] and

K(PH , 0) =
(PH − c− cH)B − cLα + cA

(PH − cH)
≤ K(PH ,

α

β
).

The proofs of Proposition 1 and 2 follow directly from (4) and (5).
Because K is defined on [A,B], an upper bound P ub

H and a lower bound
P lb

H can be derived for PH with P ub
H = 1

2b (µ + b(c + cH)) and P lb
H =

max{(c + cH), 1
2b (µ + b(c + cH)− δ)}. Propositions 1 and 2 yield that

given PH , an evaluation of the KKT conditions gives that either there
exists an inner solution which solves (4) and (5) (see Figure 1), or the
optimal solution is a boundary solution with K∗ = B, P ∗

H = P ub
H and

P ∗
L = PL(B) (see Figure 2).
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Fig. 1. PL(K) and K(PH , PL) for a
given PH - inner solution
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Fig. 2. PL(K) and K(PH , PL) for a
given PH - boundary solution

To solve this problem, the following algorithm can be used. In an
outer loop, we enumerate over all PH from P lb

H to P ub
H . The inner loop

uses the results of the above propositions where for each PH , the opti-
mal K∗

PH
and P ∗

LPH
are determined. Starting from PL = α

β , for each PH

a procedure calculates iteratively KPH
(PL) and PLPH

(K). This proce-
dure converges to K∗

PH
and P ∗

LPH
, which is either an inner solution or

a boundary solution. Let ε be the precision which represents the stop-
ping criterion of the inner loop. In Figure 1 the inner loop is illustrated
graphically.
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Algorithm
FOR PH from P lb

H to P ub
H DO

Set pl0 := α
β and pl1 := 0,

WHILE |pl0 − pl1| > ε DO
Calculate k1 := K(PH , pl0) using (5),
IF k1 > B, THEN K∗

PH
= B and P ∗

LPH
= PL(B),

ELSE Calculate pl1(k1) using (4) END IF
pl0 := pl1,

END WHILE
K∗

PH
= k1 and P ∗

LPH
= pl1

Calculate Π(K∗
PH

, PH , P ∗
LPH

)
END FOR

Thus, the optimal profit is Π∗ = max
PH

{Π(K∗
PH

, PH , P ∗
LPH

)} as well as

K∗ = argmax{Π∗}, P ∗
H = argmax{Π∗}, and P ∗

L = argmax{Π∗}.

3 Numerical Example

In this section, we compare two planning approaches. In a centralized
approach as described above, the selling prices and the required capac-
ity of both products are planned simultaneously. In the decentralized
case, there exist two product managers who plan the selling prices and
the required capacity of each product separately. Due to both products
are produced on a common resource, manufacturing installs a capac-
ity which is the sum of the capacity levels planned by both product
managers. The index d defines the results of the decentralized decision
making. Let Ψ ∼ Unif [250, 750], b = 20, α = 500, β = 40, cH = 3,
and cL = 1. Figures 3 and 4 show the impact of capacity costs c on P ∗

H
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L

and P d
H as well as P ∗

L and P d
L. For H, P ∗

H is always larger than P d
H . For

L however, if c is low, P ∗
L is larger than P d

L. In this case a boundary
solution is optimal where K∗ = B and a decreasing c influences only
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the selling prices. If c increases, P ∗
L falls below P d

L. Both pricing effects
result from the fact that in the centralized case the decision maker takes
into account that leftover capacity from H can be used to produce L.
Therefore, P ∗

H can be set larger, which actually leads to a lower H de-
mand but each unit of H becomes more beneficial. Because L is used to
utilize leftover capacity, the capacity cost c can be regarded as sunk for
L. Therefore, P ∗

L is only slightly increasing with c. Thus, a centralized
planning of prices and capacity leads to a higher flexibility and higher
profits than in the decentralized case, where the product managers do
not take into account the utilization of leftover capacities.

4 Conclusion

This paper analyzed the problem of a centralized determination of op-
timal initial capacity investment and the selling prices of two products
which are characterized by different demand patterns and a priority in
the production sequence. We presented a model that determines the
optimal capacity investment and pricing decisions and developed an
algorithm. By a numerical example we indicated the impact of capac-
ity costs on the selling prices. Future research will provide a detailed
sensitivity analysis regarding the impact of production costs, demand
uncertainty, and price-sensitivity. The assumptions of a constrained
capacity, additive demand function, and uniformly distributed demand
are very restrictive and need to be generalized.
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1 Introduction

We use relation algebra to model an abstract timetabling problem and
to compute solutions. The problem was posed to us by the adminis-
tration of our university and stems from the current change from the
classical German university education system to the undergraduate-
graduate system. In particular with regard to the undergraduate edu-
cation of secondary school teachers this change causes some difficulties.
A very serious one is to enable a three years duration of study with-
out to abolish Germany’s tradition of (at least) two different fields of
study. Exactly this demand is the background of our specific univer-
sity timetabling problem. We will show how to transform an informal
problem description into a formal relation-algebraic model. Using it as
starting point, we then develop an algorithm for obtaining solutions. In
essence the algorithm is given by a relation-algebraic expression that
immediately can be translated into the programming language of the
RelView tool. Because of the moderate size of the timetabling problem
and the very efficient BDD-implementation of relations in RelView,
this even allows to compute all existing solutions of the problem or
to message that no solution exists. Due to space restrictions we omit
many details. This material will be included in [3].

2 Relation-Algebraic Preliminaries

We denote the set of all relations with domain X and range Y by
[X↔Y ] and write R : X↔Y instead of R ∈ [X↔Y ]. As operations,
test, and specific constants we use RT (transposition), R (comple-
ment), R∪S (join), R∩S (meet), RS (composition), R ⊆ S (inclusion),
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O (empty relation), L (universal relation) and I (identity relation). We
also apply often matrix notation and terminology. Especially, we write
Rx,y instead of (x, y) ∈ R.

There are some relational possibilities to model sets. First, we will
use vectors, which are relations v with a singleton set 1 = {⊥} as
range. In these cases we omit the subscript ⊥. A vector v : X↔1 can
be considered as a Boolean column vector and represents the subset
{x ∈ X | vx} of X. A nonempty vector v is a point if vvT ⊆ I. This
means that it represents an element of its domain. In the matrix model
a point v : X↔1 is a Boolean column vector in which exactly one
entry is 1. We also will apply membership-relations M : X↔ 2X , which
are for all x ∈ X and Y ∈ 2X defined by Mx,Y iff x ∈ Y . Third, we
will use injection-relations. If Y is a subset of X and ı : Y ↔X such
that ıy,x iff y = x for all y ∈ Y and x ∈ X, then the vector ıTL : X↔1
represents Y as a subset of X in the sense above. Clearly, the transition
in the other direction is also possible, i.e., the generation of an injection-
relation inj(v) : Y ↔X from the vector representation v : X↔1 of the
subset Y of X such that for all y ∈ Y and x ∈ X we have inj(v)y,x iff
y = x. A combination of injection-relations with membership-relations
allows a column-wise representation of sets of subsets. More specifically,
if v : 2X ↔1 represents a subset S of 2X in the sense above, then for
all x ∈ X and Y ∈ S we get that (M inj(v)T)x,Y iff x ∈ Y . This means
that the elements of S are represented precisely by the columns of
M inj(v)T : X↔S.

Given X × Y , there are two projections which decompose u =
〈u1, u2〉 into its first component u1 and second component u2. For our
approach it is useful to consider the corresponding projection relations
π : X×Y ↔X and ρ : X×Y ↔Y such that πu,x iff u1 = x and ρu,y iff
u2 = y. Projection relations algebraically allow to specify the parallel
composition R ||S : X×X ′↔Y×Y ′ of R : X↔Y and S : X ′↔Y ′

such that (R ||S)u,v is equivalent to Ru1,v1 and Su2,v2 . We get this
property if we define R ||S = πRσT ∩ ρSτT, with π : X×X ′↔X and
ρ : X×X ′↔X ′ as projection relations on X ×X ′ and σ : Y×Y ′↔Y
and τ : Y×Y ′↔Y ′ as projection relations on Y ×Y ′.

We end this section with functions which establish an isomorphism
between the Boolean lattices [X↔Y ] and [X×Y ↔1]. The direction
from [X↔Y ] to [X×Y ↔1] is given by v(R) = (πR ∩ ρ)L, and that
from [X×Y ↔1] to [X↔Y ] by r(v) = πT(ρ∩vLT). Here π : X×Y ↔X
and ρ : X×Y ↔Y are projection relations and L has type [Y ↔1].
Using components the definitions say that Rx,y iff v(R)〈x,y〉 and v〈x,y〉
iff r(v)x,y.
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3 Informal Problem Description

The background is as follows: Presently at our university there exist 34
subjects for the undergraduate education of secondary school teachers.
According to the examination regulations each student has to select two
subjects. Experience has shown that all possible combinations (pairs of
subjects) can be divided into two categories, viz. the very frequently
ones (first category) and those which are hardly ever selected (second
category). Besides the division of the combinations a further feature of
our timetabling problem is the arrangement of the timeslots. There are
four disjoint base timeslots t1, . . . , t4 of the same duration. But there
are some subjects that require two base timeslots. Hence there are two
further timeslots t5 and t6, where t5 consists of the hours of t1 and t2
and t6 consists of those of t3 and t4. This leads to time conflicts.

Given the input of the timetabling problem in form of the set of sub-
jects, the set of timeslots, the categories of combinations as relations in
each case, the availability of the timeslots for the subjects and the time
conflict relationship between the timeslots, the goal is to construct a
timetable that enables a three years duration of study for the impor-
tant combinations of the first category and leads to a longer duration
of study only in the case of non-important combinations. Concretely
this means that we have to construct a function from the subjects to
the timeslots such that for all subjects s and timeslots t if s is mapped
to t then t is available for s, and there are no conflicts between the
courses of two different subjects s and s′ if the pair (s, s′) constitutes
a combination of the first category.

4 Relation-Algebraic Model and Algorithmic Solution

To formalize and generalize the informal problem description to an ab-
stract mathematical timetabling problem, we assume S as set of sub-
jects and T as set of timeslots. For modeling the partitioning of the pairs
of subjects into the two categories, we assume a relation F : S↔S
such that Fs,s′ iff s and s′ form a combination of the first category for
all subjects s, s′ ∈ S. Then F is symmetric (F = FT) and irreflexive
(F ⊆ I ), where the latter property follows from the fact that combina-
tions have to consist of two different subjects. It should be remarked
that the relation F suffices for completely describing the two categories
introduced in Sect. 3, since the symmetric and irreflexive relation F ∩ I
exactly specifies the pairs which are hardly ever selected. Besides F we
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assume a further relation A : S↔T that specifies availability, i.e., de-
fine it component-wise by As,t iff s can take place in t for all subjects
s ∈ S and timeslots t ∈ T. And, finally, we assume a third relation
C : T↔T such that Ct,t′ iff t and t′ are in time conflict for all timeslots
t, t′ ∈ T. Since the latter means that the timeslots t and t′ contain
common hours, C is a reflexive (I ⊆ C) and symmetric relation. The
relations F : S↔S, A : S↔T, and C : T↔T constitute the input
of the university timetabling problem. Having fixed the input, now we
relation-algebraically specify its output.

Definition 1. Given the three input relations F : S↔S, A : S↔T,
and C : T↔T, a relation S : S↔T is a solution of the university
timetabling problem, if S ⊆ A, FSC ⊆ S , STS ⊆ I and L ⊆ SL.

These inclusions are a relation-algebraic formalization of the require-
ments of Sect. 3. Based on an idea of [2], the non-algorithmic specifi-
cation of a solution of our problem now will be reformulated in such
a way that instead of S : S↔T its so-called corresponding vector
v(S) : S×T↔1 is used. As we will see later, this change of represen-
tation will lead to an algorithmic specification. The following theorem
is the key of the approach. It presents a relation-algebraic expression
of type [1↔1] that depends on a vector v : S×T↔1 and evaluates
to the universal relation of [1↔1] iff v represents a solution S of our
problem with input relations F , A and C.

Theorem 1. Assume F , A and C as in Definition 1, a relation S :
S↔T and a vector v : S×T↔ 1 such that v = v(S). Then S is a
solution of the university timetabling problem iff

L((v ∩ v(A) ) ∪ ((F ||C)v ∩ v) ∪ ((I || I )v ∩ v) ∪ LπTv ) = L.

Here π : S×T↔T is the first projection relation of S×T.

Generalizing v to a variable, the left-hand side of the equation of The-
orem 1 leads to the following function Φ on relations, where the first
L in the definition of Φ has type [1↔S×T] (i.e., is a universal row
vector), the second L has domain 1 and the same range as X (i.e., is
also a universal row vector), the third L has type [S×T↔S] and X is
the name of the variable.

Φ(X) = L((X ∩ v(A) L) ∪ ((F ||C)X ∩X) ∪ ((I || I )X ∩X) ∪ LπTX )

When applied to v : S×T↔1, this function returns L : 1↔1 iff v
corresponds to a solution of our timetabling problem and O : 1↔1
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otherwise. A specific feature is that Φ is defined using the variable
X, constant relations, complements, joins, meets and left-compositions
only. Hence, it is a vector predicate in the sense of [2]. Using matrix
terminology this means that if Φ is applied to a relation R : S×T↔Y
with the family (v(y) : S×T↔1)y∈Y of vectors as its columns, then
for all y ∈ Y the y-entry of the row vector Φ(R) : 1↔Y equals the
only entry of Φ(v(y)), i.e., is the truth value 1 if v(y) corresponds to a
solution of our problem and the truth value 0 otherwise.

With the specific choice of the powerset 2S×T for Y and the
membership-relation M : S×T↔ 2S×T for R, we therefore apply Φ
in parallel to all possible vectors of type S×T↔1, i.e., test all subsets
(relations) of S×T for being a solution. As a consequence, transposi-
tion yields a vector t = Φ(M)T : 2S×T↔1 such that for all subsets Q
of S×T the entry tQ is 1 iff the Q-column of M (considered as a vector
v(Q) : S×T↔1) corresponds to a solution of our timetabling problem.
From t a column-wise representation of all vectors which correspond
to a solution of our timetabling problem may be obtained using the
relations inj(t) and M in combination with the technique described in
Sect. 2. But the vector t also allows to compute a (or even all) single
solution(s) in the sense of Definition 1. The procedure is rather simple:
First, a point p ⊆ t is selected. Because of the above property, the vector
Mp : S×T↔1 corresponds to a solution S of our timetabling problem.
Now, r(Mp) = r(v(S)) = S shows that S is obtained as r(Mp) : S↔T.

5 Implementation and Results

At the University of Kiel we have developed a tool for the visualization
and manipulation of relations and for relation-algebraic programming,
called RelView. It is written in C, uses BDDs for implementing re-
lations, and makes full use of the X-windows graphical user interface.
Details and applications can be found, e.g., in [1].

It is straightforward to translate the function Φ into a RelView-
program. We have applied the latter to the original problem with 34
subjects and 6 timeslots. Since this led to the membership-relation of
size 204×2204, we have not been able to to obtain a result within an ad-
equate time. But the following fact helped to reduce the problem size.
There was only one subject (chemistry, abbreviated as c) that required
two timeslots. Hence, the model with the six timeslots wasn’t appropri-
ate in this case. Instead, chemistry was splitted into two subjects c1, c2,
so that each of them had to be mapped to one of the four base times-
lots. This led to a modified input F ′, A′, C ′ for the timetable problem.
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The relation F ′ had type [S′↔S′], where S′ = (S \ {c}) ∪ {c1, c2}.
For all s, s′ ∈ S \ {c} we defined F ′

s,s′ iff Fs,s′ and F ′
ci,s′ iff Fc,s′ resp.

F ′
s′ci

iff Fs′,c. To guarantee, that c1 and c2 are assigned to different
timeslots, we finally defined (c1, c2) as a combination of the first cat-
egory, which meant F ′

c1,c2 and F ′
c2,c1. The relation A′ : S′↔T′, where

T′ = {t1, . . . , t4}, could be defined as universal relation because now
every subject could take place in every timeslot. Since there are no
conflicts between base timeslots, finally C ′ : T′↔T′ could be the iden-
tity relation. By modifying the input relations in this way, the func-
tion Φ could be used to compute all solutions, since the size of the
membership-relation has reduced to 140× 2140.

As result of the first computation the solution vector t turned out
to be empty, i.e., the given problem was not solvable. With the help
of an additional RelView-program we then determined all maximum
cliques of F ′ since large cliques caused the impossibility to find solu-
tions. Step by step 1-entries of F ′ had been changed to 0, until we
obtained an input that led to a nonempty solution vector. The knowl-
edge of the cliques was important for this process to modify the relation
F ′ in a goal-oriented way. We started with 133 combinations in the first
category and reduced them to 119 until being successful. This version
of F ′ led to 32 solutions of the timetabling problem. The one that was
chosen, enables to study 408 of 561 possible combinations without any
overlapping. It also should be mentioned that we could use another
property of the given problem to reduce the problem size even more,
viz. that each of the four Romanic languages Spanish, Portuguese, Ital-
ian and French must be combinable with the other three. This led to
a membership-relation of size 124× 2124, which allowed to compute all
solutions within a few seconds.
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1 Introduction

Round robin tournaments (RRT) cover a huge variety of real world
sports tournaments. Given a set of teams T we restrict all what follows
to single RRTs, i.e. each pair of teams i ∈ T and j ∈ T , j < i, meets
exactly once and each team i ∈ T plays exactly once in each period of
the tournament. We denote the set of periods by P where |P | = |T |−1.
Team i ∈ T is said to have a break in period p ∈ P if and only if i plays
at home or away, respectively, in p−1 and p. In most professional sports
leagues in Europe the number of breaks has to be minimized. It is well
known that the number of breaks cannot be less than n− 2. Moreover,
this number can be reached for each even |T |. We consider cost ci,j,p,
i, j ∈ T , i 	= j, p ∈ P , for each match of team i at home against team
j in period p. The objective is to minimize the overall cost. Models for
sports league scheduling have been the topic of extensive research. For
the sake of shortness we refuse to give a survey and refer to Briskorn
and Drexl [1] for integer programming (IP) models for sports scheduling
and to Knust [3] for an extended overview of literature. In section 2
we formulate IP models whose linear programming (LP) relaxation are
strengthend in the following by means of valid inequalities. Section 3
provides computational results obtained by employing state of the art
solver Cplex and a short conlcusion.

2 Models

2.1 One Class of Break Variables

We propose the following IP model to represent the problem to find
the minimum cost single RRT with the minimum number of breaks.
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min
∑
i∈T

∑
j∈T\{i}

∑
p∈P

ci,j,pxi,j,p (1)

s.t.
∑
p∈P

(xi,j,p + xj,i,p) = 1 ∀ i, j ∈ T, i > j (2)

∑
j∈T\{i}

(xi,j,p + xj,i,p) = 1 ∀ i ∈ T, p ∈ P (3)

∑
j∈T\{i}

(xi,j,p−1 + xi,j,p)− bri,p ≤ 1 ∀ i ∈ T, p ∈ P≥2 (4)

∑
j∈T\{i}

(xj,i,p−1 + xj,i,p)− bri,p ≤ 1 ∀ i ∈ T, p ∈ P≥2 (5)

∑
i∈T

∑
p∈P≥2

bri,p ≤ n− 2 (6)

xi,j,p ∈ {0, 1} ∀ i, j ∈ T, i 	= j, p ∈ P
(7)

bri,p ∈ {0, 1} ∀ i ∈ T, p ∈ P≥2 (8)

Binary variable xi,j,p is equal to 1 if and only if team i plays at
home against team j in period p. Binary variable bri,p equals 1 if and
only if team i has a break in period p. Then, the objective function
(1) represents the goal of cost minimization. Restrictions (2) and (3)
arrange a single RRT. Restrictions (4), (5), and (6) assure that no
more than n − 2 breaks are arranged. As can be seen in Briskorn and
Drexl [1] solving this problem using state-of-the-art solver Cplex leads
to long runtimes due to the weak lower bound given by the model’s
LP relaxation. There are lots of implicit restrictions on the venues of
a team’s matches imposed by the structure of the minimum number of
breaks. These structural restrictions are severely weakened in the LP
relaxation. Therefore, we propose valid inequalities assuring several of
the structural properties of solutions to the IP. By doing this we aim at
strengthening the lower bound and, consequently, reducing runtimes.
It is well known from Miyashiro et al. [4] that no team can have more
than one break and there can not be more than 2 breaks per period if
the overall number of breaks is minimum. However, according to the
LP relaxation neither of both holds. Therefore, we add restrictions (9)
and (10).
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i∈T

bri,p ≤ 2 ∀p ∈ P≥2 (9)∑
p∈P≥2

bri,p ≤ 1 ∀i ∈ T (10)

As shown in Briskorn and Drexl [2] there can not be more than two
periods with breaks in a row. Again, this is possible in solutions to the
LP relaxation. Consequently, we add restriction (11).∑

i∈T

(bri,p−2 + bri,p−1 + bri,p) ≤ 4 ∀p ∈ P, 4 ≤ p ≤ n− 1 (11)

According to restriction (11) no more than four breaks might occur in
three consecutive periods. This would mean three periods having breaks
in a row. Note that constraint (11) does not prevent three periods
to contain a single break each which of course is not possible either.
According to Miyashiro et al. [4] the two teams having no break in a
single RRT with the minimum number of breaks can be seen as having
breaks in the first period. Hence, the first period can be seen as a special
case in (11). In order to cover this special case we employ restrictions
(12) to (14). ∑

i∈T

(bri,n−2 + bri,n−1) ≤ 2 (12)∑
i∈T

(bri,n−1 + bri,2) ≤ 2 (13)∑
i∈T

(bri,2 + bri,3) ≤ 2 (14)

Constraints (12) to (14) prevent two periods (completed to a sequence
of three consecutive periods by the first period) from having more than
2 breaks. Note that (12) and (14) imply (11) for p = n− 1 and p = 4.
Therefore, we restrict (11) to 5 ≤ p ≤ n− 2.

2.2 Two Classes of Break Variables

We replace binary variable bri,p by two binary variables hbri,p and abri,p

for each i ∈ T and p ∈ P≥2. Variable hbri,p (abri,p) equals 1 if and only
if team i has a break at home (away) in period p. Then, restrictions
(4) to (6) are replaced by restrictions (15) and (16).
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j∈T\{i}

(xi,j,p−1 + xi,j,p)− hbri,p + abri,p = 1 ∀ i ∈ T, p ∈ P≥2 (15)

∑
i∈T

∑
p∈P≥2

(hbri,p + abri,p)− (n− 2) = 0 (16)

By doubling the number of break variables we obtain several advan-
tages according to the lower bound given by the LP relaxation. Vari-
ables hbri,p and abri,p equal the number of breaks of i in p at home and
away, respectively, while variable bri,p represents an upper bound of
the number of breaks of i in p. Therefore, formulating (16) as equa-
tion restricts the set of valid constellations of match variables. An
equivalent reformulation of (6) is not possible since bri,p = 1 does
not imply

∑
j∈T\{i} (xi,j,p−1 + xi,j,p) 	= 1 for LP solutions. Note that∑

i∈T hbri,p =
∑

i∈T abri,p holds for each p ∈ P according to the IP
as well as the LP relaxation. Taking this into account, we formulate
restrictions (9) and (10) as (17) and (18), here.∑

i∈T

hbri,p ≤ 1 ∀p ∈ P≥2 (17)∑
p∈P≥2

(hbri,p + abri,p) ≤ 1 ∀i ∈ T (18)

When reformulating (11) to (14) we, again, take advantage of the more
meaningful variables hbri,p and abri,p. Restriction (19) is tighter than
(11) since it prevents three consecutive periods from having a single
break each. Constraints (20) to (22) are tighter than (12) to (14), anal-
ogously.∑

i∈T

(hbri,p−2 + hbri,p−1 + hbri,p) ≤ 2 ∀p ∈ P, 5 ≤ p ≤ n− 2 (19)∑
i∈T

(hbri,n−2 + hbri,n−1) ≤ 1 (20)∑
i∈T

(hbri,n−1 + hbri,2) ≤ 1 (21)∑
i∈T

(hbri,2 + hbri,3) ≤ 1 (22)

3 Computational Results

We executed our test runs on a 3.8 GHz Pentium IV PC with 3 GB
RAM. Instances were solved using Cplex 10.0. While instances having
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less than 8 teams can be solved to optimality within fractions of seconds
instances having 10 teams can not be solved due to lack of memory.
Therefore, we focus on instances having 8 teams and solved 30 instances
for each model. Moreover, for the most promising models we started
test runs for 10 teams but restricted run times to 1 hour. Costs ci,j,p

are randomly chosen from [−10, 10]. In Table 1 results according to the

Table 1. Run times for one class of break variables

constraints run times (8) solved (10) rel gap (10)
(4),(5),(6) 24.39 sec 60 % 131.3
(4),(5),(6),(9) 20.16 sec — —
(4),(5),(6),(10) 13.18 sec — —
(4),(5),(6),(9),(10) 14.56 sec — —
(4),(5),(6),(11) 20.53 sec — —
(4),(5),(6),(11),(12),(13),(14) 18.93 sec — —
(4),(5),(6),(11),(12),(13),(14),(10) 17.07 sec — —
(4),(5),(6),(11),(12),(13),(14),(9),(10) 15.49 sec — —

models with one class of break variables are given. It can be clearly seen
that each constellation of valid inequalities leads to lower run times for
8 teams. Restricting the number of breaks to no more than 1 per team
turns out to be more effective than restricting the number of breaks per
period to be no more than 2. Preventing three periods having breaks
in a row is considered in the second section and reduces run times, as
well. Moreover, the fraction of runs giving at least one feasible solution
for 10 teams and the average relative gap between lower bound and
upper bound after 1 hour of run rime is given for the basic model.
In Table 2 results according to the models with two classes of break
variables are given. The first section shows results where constraint
(16) is formulated as inequality. The second section considers (16) as
an equality, and we observe that the second variant leads to shorter run
times. Considering rows of 3 periods shortens run times. Surprisingly,
added to (17) and (18) it does not achieve a run time reduction. As
we can see, for each problem at least one feasible solution for 10 teams
is given by each of the tested models. Additionally, the relative gap is
significantly lower than for the basic model in table 1. Summarizing,
models with two classes of break variables and employing both, (17)
and (18), lead to best results.

We can conclude that in this paper several models are proposed
to find the minimum cost single RRT having the minimum number of
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Table 2. Run times for two classes of break variables

constraints runtimes (8) solved (10) rel gap (10)
(15),(16)≤ 20.12 sec — —
(15),(16)≤,(17) 17.22 sec — —
(15),(16)≤,(18) 10.45 sec 100% 41.7
(15),(16)≤,(17),(18) 9.53 sec 100% 36.3
(15),(16)= 18.18 sec — —
(15),(16)=,(17) 17.28 sec — —
(15),(16)=,(18) 9.65 sec — —
(15),(16)=,(17),(18) 9.29 sec 100% 34.3
(15),(16)=,(19) 20.81 sec — —
(15),(16)=,(19),(20),(21),(22) 15.27 sec — —
(15),(16)=,(19),(20),(21),(22),(17),(18) 10.66 sec 100% 36.0

breaks. Valid inequalities were derived from the structure of such tour-
naments. Each single valid inequality proofs to be run time reducing.
The model variant employing two classes of break variables yields lower
run times because these variables are more meaningful and, therefore,
several inequalities can be formulated tighter.
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Many complex timetabling problems have an underpinning bounded
graph colouring component, a pattern penalisation component and a
number of side constraints. The bounded graph colouring component
corresponds to hard constraints such as “students are in at most one
place at one time” and “there is a limited number of rooms” [3]. Despite
the hardness of graph colouring, it is often easy to generate feasible
colourings. However, real-world timetabling systems [5] have to cope
with much more challenging requirements, such as “students should
not have gaps in their individual daily timetables”, which often make
the problem over-constrained. The key to tackling this challenge is a
suitable formulation of “soft” constraints, which count and minimise
penalties incurred by matches of various patterns. Several integer pro-
gramming formulations are presented and discussed in this paper.

Throughout the paper, the Udine Course Timetabling Problem is
used as an illustrative example of timetabling with soft constraints.
The problem has been formulated by Schaerf and Di Gaspero [6, 7] at
the University of Udine. Its input can be outlined as follows:

• C, T , R, D, P are sets representing courses, teachers, rooms, days,
and periods, respectively

• U is a set representing distinct enrolments in courses (“curricula”),
with Inc being the mapping from curricula to (possibly overlapping)
subsets of C

• F is a set of pairs 〈c, p〉 ∈ C ×P , representing deprecated periods p
of courses c
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• HasEC maps courses to numbers of weekly unit-length events
• HasStud maps courses to numbers of enrolled students
• HasMinD maps courses to recommended minimum numbers of days

of instruction per week
• Teaches maps teachers to disjunctive sets of elements of C
• HasCap maps rooms to their capacity
• HasP maps days to tuples of corresponding periods in ascending

order.

Given this input, the task is to assign events to rooms and periods so
that: for each course, HasEC[c] events are timetabled; no two events
take place in the same room at the same period; no two events of one
course are timetabled at the same period; events of no two courses in a
single curriculum are taught at the same time; events of no two courses
taught by a single teacher are timetabled at the same period; for all
〈c, p〉 ∈ F , events of course c are not taught at period p. The objective
is to minimise the following weighted sum: the number of students left
without a seat, summed across all events, with weight 1; the number
of events timetabled for a curriculum outside of a single consecutive
block of two or more events per day, summed across all curricula, with
weight 2; the number of missing days of instruction, summed across all
courses, with weight 5.

In integer programming, most researchers [9, for example] use a
natural assignment-type formulation to model graph colouring. A brief
survey of six other possible formulations is given in [4]. For timetabling
applications, the following clique-based formulation has been proposed
recently [4]: array T of binary decision variables is indexed with periods,
rooms and courses. T [p, r, c] being set to 1 indicates course c is being
taught in room r at period p. Notice that we do not specify which
event of course c is taught at which period. The corresponding hard
constraints are:

∀c∈C

∑
p∈P

∑
r∈R

T [p, r, c] = HasEC[c] (1)

∀p∈P
∀r∈R

∑
c∈C

T [p, r, c] ≤ 1 (2)

∀p∈P
∀c∈C

∑
r∈R

T [p, r, c] ≤ 1 (3)
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∀p∈P
∀t∈T

∑
r∈R

∑
c∈Teaches[t]

T [p, r, c] ≤ 1 (4)

∀p∈P
∀u∈U

∑
r∈R

∑
c∈Inc[u]

T [p, r, c] ≤ 1 (5)

∀〈c,p〉∈F
∑
r∈R

T [p, r, c] = 0 (6)

Soft constraints in timetabling problems vary widely from insti-
tution to institution, but most notably penalise patterns in timeta-
bles [10]. Their integer programming formulations, although often cru-
cial for the performance of the model, are still largely unexplored. Al-
though instances of up to two hundred events with dozens of distinct
enrolments are now being solved to optimum almost routinely [2], larger
instances are still approached only via heuristics.

Out of the three soft constraints in the Udine Course Timetabling
problem, the minimisation of the number of students left without a seat
can be formulated using a single term in the objective function:∑

r∈R

∑
p∈P

∑
c∈C

HasStud[c]>
HasCap[r]

T [p, r, c] (HasStud[c]−HasCap[r]) .

The second soft constraint, minimising the number of missing days
of instruction summed across all courses, can be formulated using two
auxiliary arrays of decision variables. The first binary array, CTT, is
indexed with courses and days. CTT[c, d] being set to 1 indicates there
are some events of course c held on day d. The other array of integers,
Miss, is indexed with courses. The value of Miss[c] is bounded below
by zero and above by the number of days in a week and represents the
number of days course c is short of its recommended days of instruction.
This enables addition of the following constraints:

∀c∈C
∀d∈D

∀p∈HasP[d]

∑
r∈R

T [p, r, c] ≤ CTT[c, d] (7)

∀c∈C
∀d∈D

∑
r∈R

∑
p∈HasP[d]

T [p, r, c] ≥ CTT[c, d] (8)

∀c∈C

∑
d∈D

CTT[c, d] ≥ HasMinD[c]−Miss[c] (9)

The term 5
∑

c∈C Miss[c] can then be added to the objective function.
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The natural formulation of penalisation of patterns of classes and
free periods in daily timetables for curricula goes “feature by feature”,
where feature is described relatively to a particular position in a daily
timetable, for instance as “a class in period one with period two free”.
This formulation then uses an auxiliary binary array M , indexed with
curricula, days and features, where M [u, d, f ] being set to 1 indicates
feature f is present in the timetable for curriculum u and day d. The
number of features to check, |Check|, obviously depends on the number
of periods per day. With four periods per day, we have:

∀u∈U,d∈D,∀〈p1,p2,p3,p4〉∈HasP[d]∑
c∈Inc[u]

∑
r∈R

(T [p1, r, c] − T [p2, r, c]) ≤ M [u, d, 1] (10)

∑
c∈Inc[u]

∑
r∈R

(T [p4, r, c] − T [p3, r, c]) ≤ M [u, d, 2] (11)

∑
c∈Inc[u]

∑
r∈R

(T [p2, r, c] − T [p1, r, c] − T [p3, r, c]) ≤ M [u, d, 3] (12)

∑
c∈Inc[u]

∑
r∈R

(T [p3, r, c] − T [p2, r, c] − T [p4, r, c]) ≤ M [u, d, 4] . (13)

The third term in the objective function is then

2
∑
u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] . (14)

We refer to this formulation as T, for “traditional”. Considerable im-
provements can be gained by applying the concept of the enumeration
of patterns. Let us pre-compute set B of n+2 tuples w, x1, . . . , xp/|D|,m,
where xi is 1 if there is instruction in period i of the daily pattern and
−1 otherwise, w is the penalty attached to the pattern, and m is the
sum of positive values xi in the patterns decremented by one. In For-
mulation E, the array M is replaced with an array W indexed with
curricula and days, and constraints (10)–(13) are replaced with:

∀〈w,x1,...,xp/|D|,m〉∈B ∀u∈U ∀d∈D ∀〈p1,p2,p3,p4〉∈HasP[d]

w (
p/|D|∑
i=1

xi

∑
c∈Inc[u]

∑
r∈R

T [pi, r, c]) − wm ≤ W [u, d] . (15)

The corresponding Term 14 in the objective function is then replaced
with 2

∑
u∈U

∑
d∈D W [u, d]. In an alternative Formulation ET, both
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arrays M and W are used, together with constraints (10)-(15). Term
14 in the objective function is replaced with:∑

u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] +
∑
u∈U

∑
d∈D

W [u, d] . (16)

This could perhaps guide the search better than terms involving only
M or only W . In yet another Formulation ETP, Formulation ET is
strengthened using constraints:∑

u∈U

∑
d∈D

W [u, d]−
∑
u∈U

∑
d∈D

∑
s∈Check

M [u, d, s] = 0 (17)

∀u∈U

∑
d∈D

W [u, d]−
∑
d∈D

∑
s∈Check

M [u, d, s] = 0 (18)

∀u∈U
∀d∈DW [u, d]−

∑
s∈Check

M [u, d, s] = 0 . (19)

Finally in Formulation TP, the original Formulation T is strengthened
using constraints resembling (15), whose right-hand sides are replaced
with

∑
s∈Check M [u, d, s].

These five formulations, together with Formulation C of the decision
version of graph colouring, have been encoded in Zimpl [8] and tested
on four real-life instances from the University of Udine School of En-
gineering [6] and 6 semi-randomly generated instances. The results in
Table 1 have been obtained with SCIP 0.82 using SoPlex [1], running

Table 1. Performance of five formulations of pattern penalisation: instance
name, number of events, occupancy in percent, and either the run time needed
to reach the optimality, or the gap remaining after two hours of solving. A
blank indicates no feasible solution has been found

Instance Ev. Occ. C T TP E ET ETP

udine1 207 86 (2 s) (1417 s) (1231 s) 500.00 % (655 s) (916 s)
udine2 223 93 (10 s) 42/0 49/0 44/0 48/0
udine3 252 97 (25 s) 638.21 % 470.54 % 755.46 %
udine4 250 100 (28 s) 4800.00 % 4500.00 %
rand1 100 70 (3 s) (345 s) (434 s) 37/0 (1134 s) (567 s)
rand2 100 70 (2 s) (888 s) (610 s) 0.28 % (615 s) 0.02 %
rand3 100 70 (1 s) (561 s) (440 s) 0.52 % (751 s) (1228 s)
rand4 200 70 (21 s) 1.62 % 2.25 % 2.25 % 0.50 %
rand5 200 70 (30 s) 2.89 % 0.11 % 0.03 % 0.31 %
rand6 200 70 (25 s) 0.57 % 0.82 % 0.79 %
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on Linux-based Sun V20z with dual Opteron 248 and 2 GB of memory.
Notice that all constraints were given explicitly in these experiments.
Results for other semi-randomly generated instances, together with the
instances themselves, are available from the authors’ website3.

The formulation of soft constraints penalising patterns in timetables
of individual students or groups of students is crucial for the perfor-
mance of integer programming formulations of timetabling with soft
constraints. The presented formulations penalise patterns not only by
feature, but also by enumeration of patterns over daily timetables. They
might prove to be a good starting point for further research into branch-
and-cut algorithms for timetabling with soft constraints.
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Summary. In this paper we present an ant based approach for the problem
of scheduling a color sorting assembly buffer online. In the automotive indus-
try, all car bodies are painted at a paint shop, where it is important that the
number of color changes is minimized. The car bodies on the assembly line are
unsorted with respect to their color, thus a color sorting assembly buffer may
be used to reduce the number of color changes. The problem of finding an op-
timal strategy for controlling a color sorting assembly buffer (CSAB) consists
of two closely related sub-problems: the color retrieval problem (CRP) and
the color storage problem (CSP). Their combination, the color storage and re-
trieval problem (CSRP) is NP-complete, existing methods are not applicable
on larger problems. In this paper we introduce two ant colony optimization
(ACO) algorithms that probabilistically solve the CRP and the CSP, respec-
tively. They significantly outperform the conventional rule based approach.

1 Introduction

In the automotive industry car bodies are mostly produced in assembly
belt production. When using the build to order strategy each body gets
assigned to a customer order at the beginning of the manufacturing
process, hence the color of a car is specified before assembly. However,
the bodies on the assembly line are not sorted by desired color.

The car bodies are sequentially processed in the painting station.
It is crucial to minimize the number of color changes to reduce costs
and time resulting from these changes. We consider the average color
block length (CBL), i. e. the average number of consecutive bodies with
the same color as a appropriate measure for the quality of a car body
sequence to be painted. After the body shop the CBL is quite short, so
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Fig. 1. Scheme of a CSAB and its connection to the production environment.
The letters s, r, si and ri are defined in Section 2

the goal is to increase the CBL for the paint shop by using a CSAB as
shown in Figure 1. The CSAB is a group of parallel FIFO queues (buffer
lines). Each line may contain bodies with different desired colors. There
are two control decisions that affect the average CBL: Into which line
should an incoming body be stored (color storage problem, CSP) and
from which line should the next body be retrieved for painting (color
retrieval problem, CRP). Both problems are highly connected and of-
ten treated together as the color storage and retrieval problem (CSRP)
which is NP-complete [3]. Epping and Hochstätter have suggested so-
lutions for the CSRP and exact dynamic algorithm in [2]. However,
the authors “doubt the practical use” since the feasible problem size is
extremely small due to the enormous computational costs. The idea of
a CSAB was also applied for accelerating graphic processing in [4]. The
ACO used here was introduced by Dorigo [1] in 1992 and since then
was applied to various discrete optimization problems, such as logistic
systems [5]. In ACO a set of agents (artificial ants) probabilistically
construct solutions S through of a collective memory, the pheromones
(stored in matrix τ), together with a problem specific heuristic η.

2 Rule Based Approach for the CSRP

Voß [6] introduced a rule based approach for the CSRP that proved
to be superior to other heuristics for this problem. For each body it
considers the color and its “age” represented by the cycle number in
which the body gets stored in the buffer. We denote the input and
output sequence with seqin and seqout, respectively, and define:

s := color of the next body in seqin to be stored.
r := color of the last body in seqout that was retrieved from the buffer.
si := color of the body in buffer line i that was stored last.
ri := color of the body in buffer line i that will be retrieved next.

Retrieval Rules:
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ai := age of the body in buffer line i that was stored last.
bi := age of the body in buffer line i that will be retrieved next.
ni := number of bodies with color ri at the retrieval end of line i.

R1 Choose the storage line l with rl = r and bl being minimal.
R2 If R1 is not applicable, choose the storage line l with minimal bl.
Storage Rules:

S1 Choose a non-full storage line l with sl = s and ai being maximal.
S2 If S1 is not applicable, choose empty line.
S3 If S2 is not applicable, try to optimize the overall performance.

For each storage line i count the number of bodies with color si in
seqin. Choose non-full storage line l with the lowest count.

3 Supplementation of Storage Rules

In order to improve the performance we suggest additional storage rules
that exploit two circumstances.

First, when R1 is applied it may happen, however, that within the
next n =

∑
i:ri=r ni bodies in the input queue there are some of color r.

In this case we suggest to store the next n bodies in a way such that we
can append the r-colored bodies to the color block that is retrieved at
that moment. This is possible if one line, the fast line, is only filled with
color r or empty. Then the r-colored bodies “within reach” for retrieval
in the input queue pass all earlier assigned non-r-colored bodies in the
buffer through this fast line.

Second, assume that in storage line i there are two different colored
blocks (ri 	= si) and storage line j has the same color as si. This implies
a temporary order relation in the buffer, i. e. ri ≺ si. If we now want
to store a body with s = ri we would violate this order when storing
it in line j since si = sj ≺ s = ri. This would result in at least two
separate ri-colored blocks in seqout after retrieval. Thus when storing
a new body in the buffer we select a storage line k without ri-colored
bodies, if possible. By this means we determine all lines that s can
be storied in without violating the order relation. Note that this order
relation is transitive, i. e. ri ≺ si = rj , rj ≺ sj ⇒ ri ≺ sj. We derive the
following rules (applied in this order until one is applicable: S1, S1a,
S2, S2a, S3):

S1a If S1 is not applicable, choose single-colored line with color r (the
fast line must not be used, if it exists). Note that color s 	= r.

S2a If S2 is not applicable, apply S3 on all lines that would not violate
the temporary order of the buffer when a body is stored.
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4 ACO for CRP

Retrieval rule R1 makes sure that the color block is continued if possi-
ble. Retrieval rule R2, however, might produce suboptimal color block
lengths depending on the color distribution on the input and storage
lines. To increase the CBL we replace R2 by a modified version of a
special ACO algorithm called Min-Max-Ant-System (MMAS).

Whenever rule R1 does not apply, for determining the next retrieval
color we assume that seqout is empty and seqin is frozen, i. e. no bodies
are stored into the buffer. We want to empty the whole buffer optimally.
The next color to be retrieved is the first color of the optimal temporary
output sequence T that results from emptying the buffer.

In the pheromone matrix τ each position represents the probability
of body d being retrieved to the q-th position in T . In each iteration of
the algorithm T is constructed as follows: If there are ri that hold c 	≺ ri

(transitive!) for any color c in the buffer, one of lines i (otherwise one
of all lines) is chosen by selecting the line of body d with probability
pdq = τdq∑

τdq
. Only these ri can be stored in a row in T . After making a

color change in T , try to apply rule R1. Repeat these two steps until the
buffer is empty. For each color block cb in T we determine its length
lcb and vcb, that is defined as the number of bodies that precede cb
in T . T is evaluated by: ev =

∑
cb∈T lcb · vcb. Less color blocks result

in less summands. The products ensure that larger color blocks tend
to be retrieved earlier in order not to block the buffer. The algorithm
proceeds by choosing out of n temporary output sequences the one with
the smallest ev and updates the pheronomes corresponding to this T
by τdq = τdq + 5 (see Algorithm 1).

Algorithm 1: ACO-CRP
Initialization of the pheromone matrix τ with 1;
while iteration < maximum number of iterations do

for n ants do
for d = 1 to (# of bodies in the buffer) do

Try to apply rule R1;
Otherwise determine lines i with c 	≺ ri, ∀c in the buffer;
Choose one line of i probabilistically using values of ri in τ ;

Compute evaluation ev =
∑

cb∈T lcb · vcb;
Choose out of the last n constructed T the one with smallest ev.
Update τ : τdq = τdq + 5 when body d at q-th position in T ;

Return best solution Topt;
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5 ACO for CSP

We now use rule R1 and the ACO-CRP for retrieval and rules S1–
S2a for storage decisions. S3 is replaced by ACO. Assume that the
retrieving order Topt of all car bodies in the buffer is estimated by
ACO-CRP whenever Algorithm 2 is called. Furthermore assume that
seqin will shorten when a body is retrieved, i. e. it is running empty. The
algorithm is similar to ACO-CRP. It determines which body from seqin

should be stored in which line until all colors from Topt are retrieved
from the buffer. The algorithm runs as follows: If rules S1–S2a do not
apply, one of the lines i is chosen probabilistically using the pheromone
matrix τ̂ . If the buffer already contains s, only lines are considered
for storage that do not violate the buffer’s order relation (as in ACO-
CRP), if possible. One body is retrieved according to Topt. This is
repeated until all colors from Topt are retrieved in the given order. The
assignment A is then evaluated: ev stands for the total number of color
blocks in the buffer and seqout and should be minimized. The update is
analogous to ACO-CRP except that all pheromones in τ̂ additionally
evaporate with the factor 0.9.

Algorithm 2: ACO for CSP
Initialization of the pheromone matrix τ̂ with 1;
while iteration < maximum number of iterations do

for n ants do
while Topt is not retrieved completely do

Try to apply rules S1–S2a;
Determine lines i which s could be assigned to without
violating the induced order relation;
Choose one line of i probabilistically using τ̂ ;

Compute evaluation of A: ev = # blocks in buffer and in seqout;
Choose out of the last n constructed A the one with smallest ev.
Update τ̂ : τ̂dq = τ̂dq + 5 when body d at q-th storage line in A;
τ̂ = τ̂ · 0.9

Return best solution Aopt;

6 Computational Results

The results in this section are based on real world data that was pro-
vided by a major German car manufacturer. The data included the
number and length of the buffer lines and an input color sequences
with length of 47000 bodies covering about two months of production.
For ACO-CRP (ACO-CSP) we used 20 (10) ants for 500 (850) itera-
tions. The buffer’s filling ratio is optimal around 70 % with respect to
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the CBL. In the beginning no car bodies were retrieved until the filling
ratio was reached.

Table 1 shows that results from the ACO approaches are 34.9 % and
41.8 % better than the pure rule based approach. Although they need
much more computational time this is irrelevant here.

Table 1. Results for proposed combinations of storage and retrieval strategies

Storage R[1, 2] R1, ACO-CRP R1, ACO-CRP
Retrieval S[1, 2, 3] S[1, 1a, 2, 2a, 3] S[1, 1a, 2, 2a], ACO-CSP

avg. CBL 9.89 13.34 (+ 34.9%) 14.02 (+41.8%)
avg. time [sec] 184 11451 (+6123%) 76111 (+41265%)

7 Conclusions and Future Work

The ACO approaches clearly outperform the rule based approach. Nev-
ertheless, there are circumstances that would result in ACO-CSP being
too slow (e. g. a larger buffer). In ACO-CSP the computation of the best
storage decision is consuming most of the time, thus future work should
focus on accelerating this part, e. g. by making it dynamic, using gath-
ered information about storage decisions for several stages. This can
potentially be used in order to find a very good solution much faster.
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Summary. We address a scheduling problem in the automobile industry
where hundreds of tests must be performed on vehicle prototypes. The ob-
jective is to minimize the number of required prototypes, while all tests are
executed with respect to several kinds of constraints. We apply Constraint
Programming (CP) to solve the complete problem. Then to complement CP
in finding a good lower bound, we separately solve an Integer Programming
(IP) model which is simplified to cope with the large scale of the problems
involved. This model is based on two main principles: set covering to select
prototypes with suitable components for all tests; and energetic reasoning to
determine the number of prototypes definitely required over the time inter-
vals between the distinct values of the release and due dates. Computational
results show that CP can achieve good feasible solutions as confirmed by the
results obtained from solving the simplified IP model.

1 Introduction

A car manufacturer must conduct several hundred tests on vehicle pro-
totypes before starting mass production of a vehicle series. The schedul-
ing problem arises as most prototypes can be used for several tests
if the tests are appropriately arranged. The prototypes are handmade
and thus very expensive. Therefore, the manufacturer aims at minimiz-
ing the number of required prototypes, while all tests are on schedule.
Moreover, there are hundreds of prototype variants depending on the
combinations of various components. Each test must be assigned to
an appropriate prototype variant according to its component require-
ments. Tests are also subjected to several temporal constraints and
some specific constraints, for instance, any crash test must always be
the last test executed on a prototype. The details of this problem are
discussed in [6].



422 Kamol Limtanyakul

There are some similar projects related to test scheduling in the
automobile industry. The problem characteristics are slightly different
but they have the common objective of reducing the cost of proto-
type production. Due to the large problem size, either a multi-stage
mathematical programming method [5] or a heuristic approach [2] are
suggested. Integer Programming (IP) can be applicable for small size
cases [2]. Constraint Programming (CP) is then used to minimize the
makespan as the manufacturer also wants to complete all tests as soon
as possible [6]. As a tuning parameter, the number of prototypes may
be initially set to a large value and iteratively reduced to find the mini-
mum value which still leads to a valid schedule. We found that CP can
achieve a feasible solution even for the largest problem [6]. However,
CP can prove that the problem is infeasible only if the given number of
prototypes is very low. Between both extremes there is a large unknown
gap where the feasibility cannot be proved within reasonable time.

In this paper, we formulate another CP model which directly min-
imizes the number of required prototypes. Although CP helps us get
a feasible solution, we still need to find a good lower bound for the
optimality gap measurement. CP is not suitable in this situation as
it can tighten the lower bound only for nodes locally explored in the
same branch of the search tree. On the contrary, IP provides a global
perspective as the branch-and-bound process always raises the lower
bound. Hence, we suggest a simplified IP model which can be solved
for a large instance and provide a solution regarded as a lower bound
for this problem.

2 Formal Problem Description

To describe the complete problem, we define the following notations:
let V , I, and J be the sets of prototype variants, prototypes, and tests,
with |V | = l, |I| = m, and |J | = n. Each prototype i ∈ I belongs
to variant vi ∈ V . Mj ⊆ V is the set of prototype variants that can
perform test j ∈ J . Nv ⊆ J is the set of tests that variant v can execute.

Each test j ∈ J has a processing time pj, a release date rj, and a
due date dj. Each prototype i ∈ I has an available time ai plus a set-up
time svi depending on variant vi. Also, the construction of variant v
might be delayed due to the delivery time yv of some components which
cannot be compensated for within prototype manufacturing. Therefore,
a test cannot be executed on prototype i before time max{ai +svi , yvi}.

Furthermore, we consider the following relations between two dif-
ferent tests j, k ∈ J : j ≺ k iff test j must be completed before test k is
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started; j ∼ k iff tests j and k must be executed on the same prototype;
and j % k iff tests j and k cannot be executed on the same prototype.
JLast ⊆ J is the set of tests that must not be followed by any other
test on the same prototype. Finally, the objective is to determine the
smallest number of prototypes m and their corresponding variants such
that no late test occurs.

3 Complete CP Model

It is common in CP to define a resource constraint by using the term
cumulative(t,p, c, C), where t = [t1, .., tn], p = [p1, .., pn], c = [c1, .., cn]
are the vectors of starting time, processing time, consumption rate of
jobs, and C is the machine capacity. The constraint is satisfied if the
condition

∑
j∈Jt

cj ≤ C holds for all time instances t in the valid time
frame, where Jt = {j ∈ J |tj ≤ t < tj + pj} is the set of tasks that
are in process at time t. Therefore, the total consumption of all jobs
j ∈ Jt does not exceed the capacity C. In our case, each prototype has
capacity C = 1 and each test requires a single prototype, cj = 1,∀j ∈ J .

Moreover, let us define the following variables. First, the starting
time tj of a test j must be in the interval [rj , ..., dj − pj] to obey the
release date and due date constraints. Second, xj ∈ I,∀j ∈ J repre-
sents the allocation of test j to prototype i. Third, vi ∈ G∪{0},∀i ∈ I
indicates the variant of prototype i. Here, we introduce a dummy vari-
ant 0 to help us represent the objective function. If prototype i is given
variant 0 (vi = 0), it cannot be used to execute any test because variant
{0} /∈ Mj,∀j ∈ J . Also, this prototype becomes redundant as it does
not perform any test. Finally, the binary variable zi,∀i ∈ I indicates
whether prototype i is required or not. zi = 1 if this prototype is still
necessary for any test and it does not belong to the dummy variant,
i.e. vi 	= 0. As the objective function is to minimize the total number of
required prototypes, it means the dummy variant should be assigned
to as many prototypes as possible in the given set I. The complete CP
model is to

minimize
∑

i∈I zi

subject to
vi 	= 0 ⇒ zi = 1 ∀i ∈ I (1)
cumulative(tj|xj = i, pj |xj = i, cj = 1|xj = i, 1) ∀i ∈ I (2)
vi /∈ Mj ⇒ xj 	= i ∀i ∈ I, ∀j ∈ J (3)
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xj = i ⇒ tj ≥ ai + svi ∀i ∈ I, ∀j ∈ J (4)
xj = i ⇒ tj ≥ yvi ∀i ∈ I, ∀j ∈ J (5)
tj + pj ≤ tk ∀j ≺ k, j, k ∈ J (6)
xj = xk ∀j ∼ k, j, k ∈ J (7)
xj 	= xk ∀j % k, j, k ∈ J (8)
xj = xk ⇒ tj ≥ tk + pk ∀j ∈ JLast,∀k ∈ J. (9)

Constraint (1) ensures that prototype i is required if its correspond-
ing variant is not the dummy variant. Constraint (2) is a resource con-
straint with the term (tj |xj = i) denoting the tuple of starting times
for tests that are assigned to prototype i. Constraint (3) prevents a test
from being assigned to a prototype whose variant does not belong to
the eligibility set of the test. Constraint (4) and Constraint (5) ensure
that a test on machine i cannot start before the availability of the pro-
totype according to our model. Precedence constraints are represented
by Constraint (6). Constraint (7) forces that any pair of tests (j, k)
with j ∼ k is executed on the same machine. Furthermore, tests j and
k with j % k must be processed on different machines which is achieved
by Constraint (8). Finally, Constraint (9) ensures that test j ∈ JLast

will be the last job executed on the machine to which it is allocated.

4 Simplified IP Model

We develop the simplified model which is based on two principles. First,
the selection of a set of prototype variants for all tests is a set covering
problem, as mentioned by Lockledge et al. [5]. To tighten the model
further, we modify the IP model suggested by Hooker [3]. The original
purpose of his model is to find a tight lower bound of the number of late
jobs according to the given capacity of cumulative resources. But in our
case the capacity of resource (or the number of prototypes) is minimized
such that no late job (or test) happens. In fact, this concept is similar
to energetic reasoning used for constraint propagation in CP [1].

The main idea here is to consider the minimum processing time of
jobs for any interval between times t1 and t2. Let J(t1, t2) be a set
of jobs whose release dates and due dates lie between t1 ≤ rj and
dj ≤ t2. In case of a single machine, the necessary condition to ensure
that no late job occurs is

∑
j∈J(t1,t2)

pj ≤ t2 − t1. Also, the important
values for t1 are in set R̄ = {r̄1, ..., r̄nr} which contains the distinct
elements in set of release dates R = {r1, ..., rn} and for t2 are in set
D̄ = {d̄1, ..., d̄nd

} which contains the distinct elements in set of due
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dates D = {d1, ..., dn}. As the model does not consider the effect of
processing jobs at every point in time, we regard the solution of this
IP model as the lower bound of the minimum number of prototypes.

Let us define the following variables: the binary variable wvj equals
one if test j is assigned to prototype variant v, otherwise zero; integer
variable yv is the required number of each variant. The IP model is to

minimize
∑

v∈V yv

subject to∑
v∈Mj

wvj = 1 ∀j ∈ J (10)

yv ≥ wvj ∀j ∈ J,∀v ∈ V (11)∑
j∈Nv∩J(t1,t2)

wvjpj ≤ yv(t2 − t1) ∀v ∈ V, t1 ∈ R̄, t2 ∈ D̄, t2 > t1 (12)

wvj = wvk ∀j ∼ k,∀v ∈ Mj ∩Mk (13)
wvj + wvk ≤ yv ∀j % k,∀v ∈ Mj ∩Mk (14)∑
j∈JLast∩Nv

wvj ≤ yv ∀v ∈ V . (15)

The model minimizes the total number of required prototypes. Con-
straint (10) assigns each test to exactly one appropriate variant. Con-
straint (11) ensures that the number of each variant is greater than one
if it is required by at least one test. The energy consumption require-
ment is represented in Constraint (12). Furthermore, we can loosely
include some additional constraints into the model. Constraint (13) en-
sures that tests executed on the same prototype must also be assigned
to the same variant. If tests which must be performed on different pro-
totypes are allocated to the same variant, Constraint (14) demands at
least two vehicles for that variant. Similarly, Constraint (15) ensures
that the number of last jobs assigned to any variant must be less than
the number of that prototype variant.

Moreover, note that it is possible to consider the available time
of each prototype as the processing time of m additional jobs at the
starting time. However, we have to neglect this part in order to keep the
model simple and remain solvable in the case of quite large instances.

5 Computational Results

We apply our approach to solve problems with data obtained from a
real-life test scenario. There are four data sets of different sizes ranging
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from about 40 to almost 500 tests. We use OPL Studio 3.7 [4] to formu-
late and solve both CP and IP models. All computations are performed
on a Pentium IV, 3.0 GHz. The computation time is limited at 1 hour.

The computational results are shown in Table 1. As CP solves the
complete problem, its solution represents the valid number of required
prototypes. For small problems like data set 1, the optimal solution can
be found. But when a problem grows bigger, the search tree explodes
rapidly. Only feasible solutions can then be achieved. In case of solv-
ing the simplified IP model, we obtain the lower bound values of the
number of required prototypes. The results show that the gaps between
solutions obtained from CP and IP models are just one prototype at the
most. It means not only CP can already achieve good feasible solutions
but also the simplified IP model can provide close lower bounds.

Table 1. Minimizing the number of required prototypes

Data n Complete CP Simplified IP
#Prototype Time(s) #Prototype Time(s)

1 41 5a 0.98 5a 2.74
2 100 5 1.11b 4a 0.38
3 231 19 14.82b 18a 7.63
4 486 111 242.03b 110a 844.21

a Optimal solution
b Computation time of the achieved solution

References

1. P. Baptiste, C. L. Pape and W. Nuijten (2001) Constraint-Based Schedul-
ing: applying constraint programming to scheduling problems. Kluwer.

2. J.-H. Bartels and J. Zimmermann (2005) Scheduling Tests in Automo-
tive R&D Projects, In: Operations Research Proceedings 2005, Springer,
volume 11, pages 661–666.

3. J. Hooker (2005) A Hybrid Method for the Planning and Scheduling.
Constraints 10(4):385–401.

4. ILOG S.A. (2003) ILOG OPL Studio 3.7 Language Manual.
5. J. Lockledge, D. Mihailidis, J. Sidelko, and K. Chelst (2002) Prototype

fleet optimization model. Journal of the Operational Research Society
53:833–841.

6. K. Limtanyakul, and U. Schwiegelshohn (2007) Scheduling Tests on Ve-
hicle Prototypes using Constraint Programming. In: Proceedings of the
3rd Multidisciplinary International Scheduling Conference: Theory and
Applications, pages 336–343.



Complexity of Project Scheduling Problem
with Nonrenewable Resources

Vladimir V. Servakh1 and Tatyana A. Shcherbinina2

1 Omsk Branch of Sobolev Institute of Mathematics SB RAS, Pevtsov street
13, 644099 Omsk, Russia. svv usa@rambler.ru

2 Department of Mathematics, Omsk State University, Mira prospect 55A,
644077 Omsk, Russia. shcherbinina@bk.ru

1 Introduction

In the paper we consider the project scheduling problem (PSP) un-
der resource constraints. By the project, we mean some set of jobs the
processing of which is aimed at achievement of a definite purpose. Ex-
amples of such projects are: mining, development and reconstruction of
territories, military and space programs. The planning of the project
consists in setting the starting times of job processing. The difficulty
is connected with limitation of various material, labor and financial
resources.

Project scheduling problem with renewable resources is NP-hard in
the strong sense [1]. In paper [2] is proved polynomial solvability of
the project scheduling problem with nonrenewable resources and dead-
line with criterion of minimization of the total completion time of the
project. In this work we consider two variants of the project scheduling
problem with nonrenewable resources: minimization of average comple-
tion time of the jobs of the project and maximization of net present
value (NPV ). We prove that these problems are strongly NP – hard
by reduction the maximum clique problem.

2 Problem Definition

Problem 1

Let the project consist of a set of interrelated jobs V = {1, 2, . . . , N}.
The interrelation is set by the technology of processing of the project
and defined by the relation of a kind i → j where job j can not start
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before completion of the job i. The given structure can be presented
in a form of a directed acyclic graph G = (V,E), where V is the set
of vertexes, and E = {(i, j)|i, j ∈ V, i → j} is the set of edges. There
are M kinds of nonrenewable resources that may be used to perform
a job. At any moment there are Rm units of a resource of a kind m.
Each job j ∈ V is characterized by its processing time pj ∈ Z+ and
the number of units rmj of the resource of the kind m (m = 1, . . . ,M).
Preemptions of jobs are not allowed. It is required to find the starting
times of job processing in the project satisfying the technological order
and restrictions on resources, minimizing some goal function.

By sj we denote the starting time of the job j ∈ V . Then cj = sj+pj

is the time of its completion. Vector S = (s1, s2, . . . , sN ) is the schedule
job processing of the project. If all pj are integers, it is possible to
consider only the schedules with integer sj (j ∈ V ). We denote Nt =
{j ∈ V |sj < t ≤ cj} as a set of jobs performed within an interval of
(t− 1, t], t ∈ Z+.

Schedule S is feasible if:
1. The partial order job processing is held:

si + pi ≤ sj, (i, j) ∈ E; (1)

2. At any moment the constraints on resources are satisfied:

t∑
t′=1

∑
j∈Nt′

rj(t′ − sj) ≤
t∑

t′=1

K(t′), t ∈ Z+\{0}. (2)

The purpose of the project is the minimization of average completion
time project jobs:

CΣ =
1
N

∑
j∈V

cj → min . (3)

Problem 2

Let the project consist of a set of interrelated jobs V = {1, 2, . . . , N}.
The interrelation is given by a directed acyclic graph G = (V,E), where
V is the set of vertexes, and E = {(i, j)|i, j ∈ V, i → j} is the set of
edges. There is one kind of nonrenewable resources (financial). At any
moment t there are K(t) units of a financial resource. Each job j ∈ V
is characterized by its processing time pj ∈ Z+ and the cash flow cj ,
where cj(t) is a cash flow j ∈ V at moment t, t = 0, 1, . . . , pj . So if
cj(τ) < 0 then at time τ investments exceed the profit; if cj(τ) > 0
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then the profit is greater than investments by that value. Preemptions
of jobs are not allowed.

The purpose of the project is Net Present Value (NPV) criterion.
The NPV for the cash-flow of the job j ∈ V is determined by the
formula:

NPVj =
pj∑

t=0

cj(t)
(1 + r0)t

,

where r0 is the market value of capital. If NPVj > 0, that job j ∈ V
should be considered profitable.

The objective is to compute a schedule S = {sj} that meets all
resource and precedence constraints and criterion of NPV :

NPV (S) =
∑
j∈V

NPVj

(1 + r0)sj
→ max, (4)

with constraints on the variable of {sj|j ∈ V, sj ∈ Z+}:

1. The partial order job processing is held:

si + pi ≤ sj, (i, j) ∈ E; (5)

2. At any time moment t∗ ≥ 0 the constraints on resources are
satisfied:

t∗∑
t=0

∑
j∈Nt

cj(t− sj)
(1 + r0)t

≤
t∗∑

t=0

K(t)
(1 + r0)t

, t∗ ∈ Z+. (6)

3 NP-hardness of the Project Scheduling Problem

We consider a maximum clique problem. A clique of a graph Γ =
(V Γ, EΓ) is a subset V 0 of V Γ, such that every two nodes in V 0 are
joined by an edge of EΓ. The maximum clique problem consists of
finding y0 as the largest cardinality of a clique. We denote v = |V Γ|
and e = |EΓ|. This problem is NP-hard in the strong sense [3].

Project scheduling problem (1)– (3) is correspondent to the follow-
ing problem of recognition: if there exists such an feasible schedule
S0, with respect to G which can perform j ∈ V project jobs so that
C∑(S0) ≤ y for the given value of y.
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We show that the maximum clique problem is reduced polynomially
to the above formulated problem of recognition. Its basic idea is offered
[4].

The set V is formed as follows. Each vertex j of the graph Γ is
associated with a vertex job Vj, and each edge of the graph Γ is as-
sociated with an edge job Ei,j. Let us define a strict order relation on
the constructed set V : Vi → Ei,j and Vj → Ei,j for all (i, j) ∈ EΓ. Let
each vertex job and each edge one consume one unit of a nonrenewable
resource. Let the volume of the resource available be as K(1) = y0 for
the first period of time, as K(2) = (v − y0) + y0(y0−1)

2 for the second
period and as K(3) = e− y0(y0−1)

2 for the third period.
Therefore while searching feasible schedules with respect to G we

can restrict our search to examining such schedules in which:

a) y0 vertex jobs will be performed during time interval of [0, 1];
b) e− y0(y0−1)

2 edge jobs will be performed during time interval of [2, 3];
c) the remaining vertex jobs (v−y0 pieces) and the edge jobs (y0(y0−1)

2
pieces) will be performed during time interval of [1, 2].

Assume y = y0 + 2((v − y0) + y0(y0−1)
2 ) + 3(e− y0(y0−1)

2 ).
Let us suppose that in the graph Γ there exists a clique containing

not less than y0 vertices. Then, there is such a clique Γ
′

= (V
′
, E

′
),

that |V ′ | = y0. We will consider the schedule S0, in which:

a) y0 vertex jobs corresponding to the vertices of Γ
′

have been per-
formed during the time interval of [0, 1];

b) all the rest vertex and edge jobs corresponding to the edges of the
graph Γ

′
(there are y0(y0−1)

2 pieces of them since the clique exists)
are performed in the time interval of [1, 2]. The jobs are performed
in the order that is feasible with respect to G (G is a graph of the
relation reduction →);

c) the remaining edge jobs corresponding to the graph Γ\Γ′
are per-

formed during the time interval of [2, 3].

Since the resource requirements for edge and vertex jobs have been
fulfilled, and all the available resources have been used it means that
S0 is an feasible schedule with respect to G and C∑(S0) = y0 + 2((v−
y0) + y0(y0−1)

2 ) + 3(e− y0(y0−1)
2 ) = y.

For the problem (1)–(3) let S0 be the optimal schedule that satisfies
the condition that C∑(S0) ≤ y0+2((v−y0)+

y0(y0−1)
2 )+3(e− y0(y0−1)

2 ).
Then during the time interval of [0, 1] exactly y0 vertex jobs are per-
formed. Let us denote the set of these vertex jobs as V 0. Edge jobs
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cannot be performed during this time interval since any edge job, Ei,j

is preceded with two vertex jobs, Vi and Vj, where (i, j) ∈ E. During the
time interval of [1, 2] the number of y0(y0−1)

2 edge jobs are performed.
We denote this set as E0. The remaining vertex jobs of the set V \V 0

are performed as well. During the time interval of [2, 3] the vertex jobs
from the set V \V 0 cannot be performed since there are no isolated
vertices in the graph G. Hence, the remaining edge jobs are performed
during the time interval of [2, 3]. Since the schedule S0 is feasible, edge
jobs E0 are not associated with vertex jobs from V \V 0. But then edge
jobs from E0 are associated with them. Then it follows that we have a
subgraph consisting of vertices corresponding to the set V 0 and edges
corresponding to the set E0. But since |E0| = y0(y0−1)

2 ) and |V 0| = y0,
it follows that this subgraph is complete.

Finally, we come to the conclusion that the schedule S0 satisfying
the above-mentioned condition (a)–(c) will be feasible if and only if
the graph Γ has a clique possessing not less than y0 vertices. Under
this condition vertex jobs corresponding to the vertices of the clique
are to be performed during the time interval of [0, 1], and edge jobs
corresponding to the edges of the clique are to be performed during the
time interval of [1, 2]. Reduction implementation requires performing
not more than O((v + e)2) operations.

The same result is obtained for problem 2.
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1 Introduction

Much research has gone into the development of fast graph optimization
algorithms and many problems, such as shortest-path [1] or minimum-
cut [2], can now be routinely solved for large graphs. In many practical
applications, e.g. in bioinformatics or computational chemistry [3, 4],
the solution of graph optimization problems is very important, but
hampered by the fact that the graph is not completely known. Espe-
cially edge weights, which may represent, for example, reaction rates
in a reactive network, are often unknown or only known within some
error bounds. Usually, methods for determining these edge weights are
available, but the precise determination of a single edge weight may
require long computations or expensive experiments. The objective is
thus not to minimize the runtime of the graph optimization problem
with a given set of edge weights, but instead to minimize the number
of edge weights that need to be determined in order to be able to solve
the graph optimization problem.

To our knowledge, this problem has so far not been addressed in
operation research literature. In the present paper we present a simple
heuristic for solving the graph problem while trying to compute exact
weights only for few edges and to avoid determining the weights of other
edges which have no or little impact on the problem. The algorithms are
applied to shortest paths and minimum cuts in biomolecular reaction
networks and the results demonstrate that only few edge weights need
to be determined in order to solve these graph optimization problems.
This encourages further research in this area.
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In the following, let G = (V,E, c) denote a graph with node set V ,
edge set E and a vector of edge weights c. The weight of an edge
e = uv is denoted by ce or cuv. In a general problem setting we have a
set I ⊆ 2E of feasible solutions and an objective function f : 2E → R.
The optimization problem consists of finding I∗ ∈ I such that f(I∗) =
min{f(I) | I ∈ I}. We denote by f∗(G) the optimum objective function
value and by OPT(G) an optimal edge set. In this paper we require that
the objective function f has the following edge-monotonous property : if
the weight ce of one edge e ∈ E is increased, then f remains the same
or increases. If ce is decreased, then f remains the same or decreases.
We start with no exact edge weights being given, but instead some
finite lower and upper bounds le and ue are available for every edge e.
Correspondingly we can define the two graphs Gl = (V,E, l) and Gu =
(V,E, u). Due to the monotonicity property, f∗(Gl) ≤ f∗(G) ≤ f∗(Gu).
Furthermore, we are given some means for refining bounds by replacing
le and ue of a given edge e by new bounds l′e and u′

e such that l′e ≥ le
and u′

e ≤ ue.

2 Algorithms

2.1 Basic Algorithm

From the given lower and upper bounds on the edge weights of
G = (V,E, c) we can construct the two graphs Gl = (V,E, l) and
Gu = (V,E, u). We assume that we have an algorithm to com-
pute OPT(Gl) and OPT(Gu) and a method for refining edge weight
bounds as described above. The following iterative algorithm deter-
mines OPT(G).

Algorithm 1 Compute OPT(G)

(1) Compute OPT(Gl) and OPT(Gu). Output f∗(Gu) and f∗(Gl).
(2) If f∗(Gu)− f∗(Gl) ≤ ∆, then return(OPT(Gl)).
(3) Select an undetermined edge h ∈ OPT(Gl) with maximum weight lh =

max{le | e ∈ OPT(Gl) and le < ue}. (We call such an edge a critical
edge). Refine h and goto (1).

Theorem 1. Assuming that at most nrefine edge refinements are nec-
essary to exactly determine its weight (le = ue), then, for ∆ = 0,
Algorithm 1 computes OPT(G) in finitely many steps.
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Proof. Edges with determined weight are never selected as critical
edges in step (3). Therefore each edge can only be determined once.
The algorithm terminates in step (2) at the latest when all edges are
determined. (Although it is expected to terminate earlier.) Thus at
most |E| · nrefine edge refinements are required.
The correctness of the algorithm follows immediately from the fact that
f∗(Gl) ≤ f∗(G) ≤ f∗(Gu) always holds. Thus the theorem is proved.
�

For ∆ > 0 the algorithm is no longer exact, but will return an ap-
proximate solution I with f∗(I) ≤ f∗(G)+∆. In many practical cases,
such an approximate solution may be sufficient and save considerable
amounts of CPU time.

2.2 Parallelization

Algorithm 1 can be parallelized in a rather straightforward way. To es-
tablish a communication between the individual processes, a “database”
of bounds is required which every process has read and write access to.
The database contains the vectors L and U of the current lower and
upper edge weight bounds, and an edge is marked “busy” when a pro-
cess is about to change its weight. Every processor keeps own graphs
Gl and Gu and executes Algorithm 2.

Theorem 2. The parallel algorithm computes OPT(G) in finite time.

Proof. Assume that each edge weight refinement takes finite time.
When iterating the loop (2)–(7), one edge weight is refined in each
iteration and since each edge is determined only once in a given process,
this will terminate after at most |E| · nrefine cycles. Loop (2)–(6) is
iterated only if all e ∈ OPT(Gl) are determined. If F = ∅, then the
algorithm will terminate in the next iteration in step (5). If F 	= ∅,
then the process will wait in (5) and other processes are currently
in step (6), determining the edges e ∈ OPT(Gl) which are also in
F . As these other process will finish the determination in finite time
and afterwards update L and U , eventually F = ∅ and the process
terminates in the next iteration in (5). �

Only in the first part of step (7) possibly incorrect edge weights are
assigned and added to F . They are only removed from F in step (2)
if their true values have been determined. Thus, F = ∅ only if all
weight bounds L and U are correct, and only in this case the algorithm
returns. Thus Algorithm 2 produces the same result as Algorithm 1
and the theorem is proven. �
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Algorithm 2 Parallel computation of OPT(G)

(1) Let F = ∅. (F is a set of edges with estimated weights.)
(2) Remove every member e from F that is not busy.
(3) Update le = Le and ue = Ue, for all edges e ∈ E.
(4) Compute OPT(Gl) and OPT(Gu).
(5) If all edge weights of OPT(Gl) are determined, i.e., le = ue, for all e ∈

OPT(Gl), then
(5.1) If F = ∅ return(OPT(Gl)), otherwise wait for some time interval τ .

(6) Select an undetermined edge h with maximum weight from OPT(Gl). If
no such edge exists, goto 2.

(7) Distinguish the following cases:
(7.1) If h is busy, then assign a hypothetical edge weight to h and set

F = F ∪ {h}.
(7.2) If h is not busy, then mark h as busy, refine h, set Uh := uh, Lh := lh,

and mark h as not busy.
Then goto 2

3 Applications to Molecular Transition Networks

We describe an application of shortest paths in the computation of the
dynamics of biomolecules where it is very expensive to obtain exact
edge weights [3, 4], typically requiring minutes to hours of CPU time
for each edge weight. Biomolecules, such as proteins, undergo tran-
sitions between metastable “end-states” which correspond to different
atomic coordinates and have different biological functions. For example,
Ras p21 is a cell signaling protein which exists in an active state that
promotes cell growth and an inactive state that inhibits cell growth.
These states are “connected” via intermediate states which are typi-
cally short-lived and have no particular biological function.

In a transition network, a state is modeled as a vertex v ∈ V , and
a possible transition between a pair of states is modeled by an (undi-
rected) edge uv ∈ E.

3.1 Shortest Paths

When the mean residence times are used as edge weights in a transi-
tion network, the shortest paths between two given vertices u and v
represent the most populated transition pathways for the molecule to
change between the two associated structures [4].
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Using the algorithms presented in Section 2, we have computed
the best paths of four different transitions in biomolecules while de-
termining only a small number of edge weights: the pathways for the
αL � β, β � αR and αL � αR transitions in the Ala8 peptide and the
active�inactive transition in the Ras p21 molecular switch. Detailed
descriptions of these molecular systems can be found in [4, 3]. For com-
puting the shortest paths for a given set of edge weights, Dijkstra’s
algorithm was employed [1].

We first used trivial initial edge weight bounds (0 and ∞). For the
Ala8 and Ras p21 networks the number of edge weights required to be
computes are up to three orders of magnitude below |E|. Table 1 dis-
plays in the second column the number of edges of the networks and in
the third column the actual number of refinement steps of Algorithm 1.

Table 1. Number of determined edge weights for shortest path computation

|E| nec, normal nec, highest weight
Ala8, αL � β 772420 870 63
Ala8, β � αR 772420 865 450
Ala8, αL � αR 772420 1016 71
Ras p21, active�inactive 47404 2252 n/a

We have also used the algorithm in such a way as to provide an
approximate result for the shortest path, with ∆ being small enough
so that at least the highest edge weight along the shortest path was
unambiguously identified. The highest edge weight is biologically the
most interesting one, as it provides the molecular structure correspond-
ing to the bottleneck of the transition. The results shown in the fourth
column of Table 1 are very encouraging. The numbers of edge weights
required are three to four orders of magnitude less than |E|. With these
savings, the times required for the best-path calculations are reduced
from several CPU years to a few CPU days.

3.2 Minimum Cuts

When the inverse mean residence times are used as edge weights in a
transition network, the minimum (s, t)-cut is of special relevance as it
yields the set of edges corresponding to the slowest, or rate-limiting,
part of the transition connecting vertices s and t, also known as tran-
sition state ensemble [3].

We have computed the minimum cut for the Ras p21 transition net-
work using Algorithm 1. For the computation of a minimum (s, t)-cut
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with given edge weights the algorithm of Nagamochi and Ibaraki was
employed. [2]. This minimum cut, which consists of 174 edges, required
the computation of 1092 out of a total of |E| = 47404 edges. When
choosing ∆ such that only the highest-weighted edge was computed,
nec = 805 edge computations were required, thus reducing the required
CPU time to about 5% compared to the trivial solution.

4 Conclusions

In the present paper we have investigated the problem that an opti-
mum solution OPT(G) needs to be computed for some edge weighted
graph G, where initially the weights are not available and can only be
obtained at high cost. This is different from the usual setting where
complete information is given and the fastest optimization algorithm
is sought for.

We have presented a serial and parallel version of a simple heuristic
approach and shown that it is very successful for analyzing molecular
dynamics using transition networks and that only a very small number
of the edge weights need to be known exactly. The approach has reduced
the computer time necessary to perform the graph optimization from
several CPU years to a few days, which facilitates calculations that
would otherwise be out of reach.

These results suggest that graph optimizations in the case where
edge weights are not (fully) known is a worthwhile field for further
research that may benefit many application areas.
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Summary. The intend of this paper is to illustrate the need for comple-
menting the conceptual development of decision models with a structured
configuration process. The objective of which is to adjust normative models
to the requirements of decision situations that are either multi-criterial or
characterized by an open decision field. The argumentation is illustrated for
the case of order-driven planning.

1 Introduction

In implementing mass customization, most companies rely on demand
driven order fulfillment concepts. When this is done, product config-
uration is being postponed until the placement of customer orders
whilst component production and procurement are being executed
based on forecasts. This strategy, commonly denominated as build-to-
order (BTO), allows companies to set up order fulfillment systems that
are characterized by a balanced mix of efficiency (i.e. scale effects, stan-
dardized processes, a high quality) and flexibility (i.e. short lead times,
large variability). The major organizational challenge in implementing
BTO lies in coping with reduced decoupling mechanisms against the
variability and dynamics of the market. With real-world production
systems being limited in terms of flexibility, the synchronized adjust-
ment of capacity with the volatility of the market is not viable. Instead,
control concepts are needed, to match the supply of resources with the
demand for products. The associated planning tasks are referred to as
order-driven planning.

Requirements regarding order-driven planning systems are quite di-
verse. While the demand side is characterized by a high number of
customer requests and short response time expectations, the supply
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side requires the full complexity of the decision situation to be taken
into consideration, while being less demanding with respect to response
time. It thus seems to be reasonable to conceptualize order-driven plan-
ning as a hierarchical system, comprising distinct modules for order
promising (OP) and master production scheduling (MPS) [2]. This ap-
proach is likewise reflected by the architecture of most state-of-the-art
advanced planning systems.

When decomposing order-driven planning, issues arise concerning
the coordination of the dynamic interaction between the planning mod-
ules. Given conceptual models, coordination can be achieved by setting
the parameters of these models, such that the overall performance is op-
timized. The associated process will be denominated as configuration.
This process is, however, hampered by the fact, that the performance
is subject to stochastic influences, because the arrival and configura-
tion of customer orders is not known in advance. The aim of the paper
is to illustrate the need to complement the conceptual development of
decision models with a configuration process. The objective of which is
to adjust normative models to the requirements of a particular decision
situation. The approach is illustrated for order-driven planning.

2 Conceptual Framework

In order-driven planning two planning functions can be distinguished.
These are the customer interaction (i.e. the quotation of customer re-
quests considering capacities available) and the transformation of these
quoted requests into production plans, while taking into account input
from the subordinate planning (i.e. the aggregate resource availability).
Spengler et al. [2] identify two planning modules, being OP and MPS.
The resulting framework is depicted in Figure 1.

A conceptual approach for the development of mathematical pro-
grams for order-driven planning is given by [2]. These models have also
been evaluated using discrete-event simulation [3]. Accordingly, the pro-
posed approach can be used to significantly improve the performance
of order-driven planning systems. Based on these contributions we will
in the following present an approach to configure the models up the
characteristics of a particular industry setting. In line with this objec-
tive, the description of the models will be restricted to their structural
basics.

OP seeks to determine due dates for specified customer requests.
Due to response time requirements, each order is processed individually
(i.e. real-time approach). This yields the objective function given in (1).
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Fig. 1. Framework for order-driven planning

The objective is to minimize time-dependent costs of assigning an order
i to a period t within the planning horizon [t, t+Tmax]. To this end, the
costs of the assignment ciτ reflect customer preferences. The assignment
is represented by the binary variables xiτ .

min
t+T max∑

τ=1

ciτ · xiτ (1)

The objective of MPS is, in the following, to determine production
periods for those orders i ∈ Ψ that have been quoted for production
in the planning horizon [t, t + T − 1]. We therefore differentiate three
terms of the objective function. The first term is set up to incorporate
leveling aspects. In doing so, we minimize shortfalls ctp−rτ to the lower
level of the targeted capacity utilization of resource r (r ∈ Ω) in period
τ and weight them using the function P leveling

rτ (·). The objective of
the second term is to maximize the available capacity ctp+

rτ weighted
by the function P service

rτ (·) as a measure to assess the ability to service
new orders. In addition to that, we incorporate costs ciτ that are due to
deviations between the due date assigned by OP and that quoted by the
MPS procedure (e.g. holding costs). The assignment is modeled using
the binary variables xiτ . A central feature of the modeling approach
is the segmented objective function, which differentiates two intervals
marked by the parameter k. A more detailed description is given by
[3]. This yields the following objective function:

min

t+k∑
τ=t

∑
r∈Ω

P leveling
rτ (ctp−

rτ ) −
t+T−1∑

τ=t+k+1

∑
r∈Ω

P service
rτ (ctp+

rτ) +

t+T−1∑
τ=t

∑
i∈Ψ

ciτ · xiτ (2)
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The implementation of the objective function requires the econom-
ical assessment of the particular terms. The explicit determination of
monetary consequences often raises difficulties in real-world settings,
since data is not available in the sufficient quality and quantity or
because the computational complexity does not allow for an explicit
determination. This essentially leads to a multi-criteria decision situ-
ation, which requires the specification of additional parameters in or-
der to identify preferred solutions. In addition to that, the decision
situation is subject to a stochastic demand process. Accordingly, the
informational basis (i.e. the customer orders placed) evolves in time.
This constitutes an open decision field [2, pp. 39]. In order to cope with
this fact, [3] argue for MPS to be executed based on rolling horizons.
As a consequence, it is not the single execution that matters but the
aggregated performance of the planning system which results from the
repeated interaction of the models. This fact, however, hampers the in-
terpretability of the parameters of the objective function. Thus there is
a need for a structured process to identify beneficial parameter combi-
nations for a particular setting. We will provide a more formal analysis
in the following.

3 Configuration of Order-Driven Planning

Generally speaking, two methods of setting model parameters can be
distinguished. In many situations it is not possible to quantify or ob-
serve all the measures (model parameters) necessary to set up an ade-
quate model. Different techniques exist which allow for the determina-
tion of these parameters, such that a match can be obtained between
the model and the underlying real-world phenomenon. The objective
of this is to minimize the explanatory error – typically using past data.
The associated process is commonly referred to as calibration and is
most suitable for explanatory and forecasting models respectively (e.g.
time series forecasting).

A different situation can be found when considering the task of
setting parameters in decision models. In contrast to the explanatory
application of models, the aim in this case is to provide normative deci-
sion support. Accordingly, parameters need to be identified, such that
the model generates solutions in line with the decision maker’s prefer-
ences. The most prominent case of this situation is that of multi-criteria
decision making. In this domain, Hanne [1] provides an approach based
on techniques from artificial intelligence. A second one, which is under-
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represented in literature, regards decision situations with open decision
field. We will denote the associated tasks as configuration.

As the performance of planning schemes in the presence of on open
decision field can only be assessed on an aggregated basis, the configu-
ration process requires the planning modules to be run multiple times.
The configuration task therefore constitutes a meta-problem subordi-
nate to the original decision model(s). The complete setting can be
summarized as shown in Figure 2. The decision model is executed with
a certain set of parameter values against specific environmental condi-
tions. The resulting performance is fed back into the configuration mod-
ule, which evaluates the performance with respect to the preferences
of the decision maker. The process is re-iterated until defined stopping
conditions are obtained (e.g. solution quality, run time). This leads to

Fig. 2. Framework for the configuration process

the following formal problem definition. The objective of the configu-
ration procedure is to identify the deterministic parameter (vector) θ∗

out of all feasible (vectors) θ ∈ Θ, that optimizes the performance H
of the planning system M . If there is more than one performance mea-
sure, they need to be aggregated into the scalar function J by means
of the preference vector ξ, prior to the analysis. The performance of
the planning system might, furthermore, be influenced by (stochastic)
environmental conditions. If the complexity of the setting does not al-
low for an analytical solution, J needs to be estimated adequately. A
promising solution approach lies in the application of simulation-based
analysis. Doing so, J is commonly given by the expected mean based
on the sample ω (simulation replications). The configuration calculus
can thus be given as:

θ∗ξ = argoptθ∈ΘJξ(θ) = Jξ(E[H(M(θ), ω)]) (3)
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As elaborated upon above, the decision situation of order-driven
planning requires normative modeling and exhibits both multiple ob-
jectives and an open decision field. In order to provide decision support
for particular settings, the planning system therefore needs to be config-
ured. Given the objective functions (1) and (2), the configuration task
regards the definition of the functions P leveling

rτ (·) and P service
rτ (·). [3]

provide evidence, that when using additive weighting for both terms,
the associated scalar weights can be used to control the aggregated
performance. The process to configure decision models for order-driven
planning therefore comes down to the determination of scalar weights
of the first and the second term of the MPS objective function such that
the performance is optimized for a given demand pattern and resource
characteristics.

4 Conclusions

The decision situation of order-driven planning is characterized by mul-
tiple criteria and an open decision field. Mathematical models for de-
cision support therefore need to be adjusted to the requirements of
particular situations. We refer to the associated process as configura-
tion. Since configuration requires the model(s) to be run multiple times,
efficient search routines to identify beneficial parameter combinations
are essential. Corresponding techniques can be found in the realm of
simulation optimization. Future research needs to be done to illustrate
the potentials of this approach.
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Summary. “The timetable is the essence of the service offered by any
provider of public transport” (Jonathan Tyler, CASPT 2006). Indeed, the
timetable has a major impact on both operating costs and on passenger com-
fort. Most European agglomerations and railways use periodic timetables in
which operation repeats in regular intervals. In contrast, many North and
South American municipalities use trip timetables in which the vehicle trips
are scheduled individually subject to frequency constraints. We compare these
two strategies with respect to vehicle operation costs. It turns out that for
short time horizons, periodic timetabling can be suboptimal; for sufficiently
long time horizons, however, periodic timetabling can always be done ‘in an
optimal way’.

1 The Timetabling Problem

The construction of the timetable is perhaps the most important
scheduling activity of a railway or public transport company. It has a
major impact on operating costs and on passenger comfort. The prob-
lem has been extensively covered in the operations research literature,
see [2] for a recent survey. There are two main timetabling strategies
that differ w.r.t. to structural dependencies between individual trips.
In a periodic timetable, there is a fixed time interval between two trips;
if a single trip is scheduled on a directed line, all other trips of this line
are determined. In contrast, in a trip timetable, each trip is scheduled
individually, subject to frequency constraints. Stipulating appropriate
constraints, a trip timetable can be forced to become periodic, or, to
put it the other way round, trip timetables feature more degrees of
freedom than periodic ones. We investigate in this paper the question

∗ Supported by the DFG Research Center Matheon (http://www.matheon.de).
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whether this freedom can be used to lower operation costs in terms of
numbers of vehicles. Of course, such improvements (if any) come at the
price of diminishing the regularity of the timetable.

We consider the timetabling problem for a single, bidirectional line
between two stations A and B. The line is operated by homogenous ve-
hicles with running times tab and tba in directions A → B and B → A,
respectively (these include minimum turnaround times in the respec-
tive terminus stations). We want to construct a timetable that covers
N time periods of length T with a trip frequency of f vehicles per time
period, and such that the minimum headway between two consecutive
trips is at least � and at most u. We assume that f divides T and call
T/f the period time of the timetable (to be constructed). We further
assume � ≤ T/f ≤ u ≤ T and that all mentioned numbers are positive
integers except for �, which is supposed to be a non-negative integer.
The timetable that we want to construct involves m := N ·f departures
at station A, that we denote by U = {u1, . . . , um}, and the same num-
ber of departures at station B, that we denote by V = {v1, . . . , vm}; let
U ∪V be the set of all these departure events. A timetable is a function
t : U ∪ V �→ Z that maps departures to times such that the following
conditions hold:

(i) t(ui) ≤ t(ui+1) i = 1, . . . ,m− 1

t(vi) ≤ t(vi+1) i = 1, . . . ,m− 1

(ii) �(i− 1)/f�T ≤ t(ui) < (�(i − 1)/f�+ 1)T i = 1, . . . ,m− 1

�(i− 1)/f�T ≤ t(vi) < (�(i − 1)/f�+ 1)T i = 1, . . . ,m− 1

(iii) � ≤ t(ui+1)− t(ui) ≤ u, i = 1, . . . ,m− 1

� ≤ t(vi+1)− t(vi) ≤ u, i = 1, . . . ,m− 1.

Constraints (i) ensure that the departure times at both stations ascend
in time, (ii) guarantees f departures in each period at each station, and
(iii) enforce a minimum and maximum headway of � and u between two
consecutive departures of trips. A timetable is a periodic timetable if
condition (iii) is replaced by

(iii′) t(ui+1)− t(ui) = t(vi+1)− t(vi) = T/f, i = 1, . . . ,m− 1,

otherwise it is a trip timetable. Note that a timetable can be forced to
be periodic by stipulating � = T/f = u. The timetabling problem is
to determine a feasible timetable that can be operated with a minium
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number of vehicles3. We remark that our problem definition deliber-
ately omits technical constraints, such as passing sidings, in order to
focus upon purely structural implications.

2 Periodic vs. Trip Timetables

Lemma 1. Consider a public transport line between stations A and B
with running times tab and tba which include the minimum turnaround
times in the respective terminus stations, such that tab+tba is an integer
multiple of T . Then, operating this line for a time duration of at least
N · T > tab + tba requires at least

Z :=
tab + tba
T/f

(1)

vehicles in an arbitrary timetable.

Proof. At least f vehicles have to be scheduled in each of the first Z/f
time periods until the first vehicle can be reused for a second trip in
the same direction. ��

Lemma 2. Consider a public transport line between stations A and B
with running times tab and tba (again including minimum turnaround
times). Operating this line at shorter running times t′ab ≤ tab and
t′ba ≤ tba does not increase the number of vehicles that are required
for operation in the respectively best arbitrary timetables for this line.

Proof. For the optimal timetables for running times tab and tba there
exist timetables with running times t′ab and t′ba that can be operated at
the same number of vehicles. In fact, add a turnaround waiting time
at terminus station B of tab − t′ab, and a waiting time of tba − t′ba at
station A. ��

A B

Fig. 1. The so-called Pesp-graph (see, e.g., [2]) for the situation of the peri-
odic vehicle circulation as it is considered in Prop. 1

3 This definition is made in our context; there are other types of timetabling prob-
lems in the literature.
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Proposition 1. Consider a public transport line between stations A
and B with a period time T

f and running times tab and tba (again in-
cluding minimum turnaround times in the terminus stations) such that
tab + tba < NT − T/f . Then, any periodic timetable requires at least

Z0 :=
⌈
tab + tba
T/f

⌉
(2)

vehicles for operation. Moreover, any periodic timetable for this line
can be operated with at most Z0+1 vehicles. Indeed, there exist periodic
timetables that can be operated with Z0 vehicles.

Proof. Using the cycle inequalities due to Odijk [4], it had been ob-
served by Nachtigall [3] that there exists some appropriate ε > 0 such
that the following general bounds on the number Z of vehicles are valid
for all periodic timetables, and tight for some timetables:

Z0 :=
⌈
tab + tba
T/f

⌉
≤ Z ≤

⌊
tab + T

f − ε + tba + T
f − ε

T/f

⌋
≤ Z0 + 1. (3)

��

Lemma 3. Consider a public transport line between stations A and B
with running times tab and tba which once more include the minimum
turnaround times in the respective terminus stations. Then, operating
this line for at least a time duration of N ·T > tab + tba requires at least

Z1 :=
⌊
tab + tba

T

⌋
· f (4)

vehicles in an arbitrary timetable.

Theorem 1. For each public transportation line with running times tab

and tba (including minimum turnaround times), there exists a num-
ber N0 ∈ N such that operating the line for a time duration of at least
N0 · T requires at least Z0 vehicles for operation. In other words, for
sufficiently long time horizons, the minimum number of vehicles needed
to operate a trip timetable is equal to the minimum number of vehicles
needed to operate a periodic timetable.

Proof. In a time duration of N · T , for the two directions of the line
together there must be scheduled at least 2Nf trips. In turn, one vehicle
can cover no more than

⌈
2NT

tab+tba

⌉
of these trips.
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Now, choose N0 such that 2N0T
tab+tba

becomes integer. Then, the number
of required vehicles is bounded from below by

2N0f
2N0T

tab+tba

=
f

T
· (tab + tba) =

tab + tba
T/f

. (5)

Since we must only consider integer quantities of vehicles, the claim
follows. ��

3 Example

Let the balancing intervalequal T = 60 minutes, and let the number
of required trips within this interval be f = 3. We consider a param-
eterized one-way running time tab = tba = 60 − c, which includes the
minimum turnaround times, for c ∈ {1, 2, . . . , 10}.

First, observe that whenever c < 10, then the number of vehicles
that are required in the best periodic timetables equals

Z0 =
⌈
tab + tba
T/f

⌉
=
⌈

120− 2c
60/3

⌉
=
⌈

120 − 2c
20

⌉
=
⌈

60− c

10

⌉
= 6. (6)

Second, it can be verified that in any trip timetable, we need at least
five vehicles for operating this line over at least three hours. Last, recall
from the proof of Theorem 1 that after at least 100−2c hours we can be
sure to also require six vehicles when scheduling each trip individually.
Yet, in this example we will show that, for certain running times, as
early as after at least six hours we are sure to need the sixth vehicle
also in any trip timetable.

The first simple observation is that within each hour, when consid-
ering both directions of the line together, there must be six trips in the
schedule. Hence, in order to need only five vehicles, there must be one
vehicle within each hour that covers two of these six trips. Of course,
these two trips must be in opposite direction.

Now comes the key observation: If some fixed vehicle covers two
trips in hour X, then it cannot cover two trips in any of the hours {X+
1, . . . ,X +

⌊
T
c

⌋
− 2}. As a consequence, if the one-way running time

was tab = 52, and thus c = 8, then no vehicle can cover two trips in
two of the hours {1, . . . , 6}, because of X +

⌊
T
c

⌋
− 2 = 1 + 7 − 2 = 6.

Hence, in the sixth hour of operation, the latest, a sixth vehicle has to
be put into operation, cf. Fig. 2.
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BA
1:00

2:00

3:00

4:00

5:00

6:00

7:00

emtset

Fig. 2. A timetable for tab = tba = 52, that uses only five vehicles. In the first
five hours, there are three departures from each terminus station. But in the
sixth hour, there are only two departures from B, which makes this timetable
infeasible for N = 6. The lines on the right indicate the vehicle that covers
two trips in the corresponding hour
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Summary. Using the A*-algorithm to solve point-to-point-shortest path
problems, the number of iterations depends on the quality of the estimator for
the remaining distance to the target. In digital maps of real road networks,
iterations can be saved by using a better estimator than the Euclidian estima-
tor. An approach is to integrate Segmentation Lines (SegLine) into the map
modelling large obstacles. An auxiliary graph is constructed using the Seg-
Lines wherein a shortest path is calculated yielding a better estimate. Some
computational results are presented for a dynamic version of this approach.

1 Speeding up the A*-Algorithm

The A*-algorithm ([9], [10] and [15]) is among the most popular algo-
rithms to solve point-to-point problems from a starting point s to a
target t. Storing its results in a search tree, the number of iterations
taken is closely correlated to the amount of memory consumed.

Applied to huge graphs, like digital maps of real road networks, the
search tree may become very large. This is a problem in environments
where resources are limited, e.g. mobile car navigation-systems with
limited memory and map data loading over small bandwidth-interface.

Different preprocessing approaches have been researched to reduce
the number of iterations taken and to limit the size of the search tree:

• Upper bounds (‘radius’, ‘reach’) for arcs to exclude them from pro-
cessing when they cannot be part of the optimal path ([2] and [6]).

• Simplification of the map, e.g. subsuming into hierarchical levels
with a lower number of nodes and arcs ([17], [18]).

• Pruning the map ([19]) or tree ([14]) using geometric information.
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A more direct way focusses on the estimator function ht used by
the A*-algorithm. Function ht estimates the distance of the currently
scanned node to the target. During the iteration process, the next item
selected from the list of possible items will be the one minimizing ds+ht,
with ds being the length of the best known path from s. Thus the area
searched is driven into the direction of t.

An estimator never over-estimating the real distance to t, thus satis-
fying Bellmann’s condition, is called dual feasible or consistent. Using
such an estimator, the shortest path is found ([12], [16]). By inten-
tionally over-estimating (‘overdoing’) the real distance the algorithm
becomes a greedy heuristic ([7], [11]).

In digital maps of real road networks, the standard dual feasible es-
timator is the Euclidian (air-line) distance. As shown in [3] and [9], the
A*-algorithm makes optimal use of the information contained within
this estimator. Empirical analysis on such maps in [7] and [11] show
the number of iterations taken (closely correlated: the amount of mem-
ory used) by the A*-algorithm decreases roughly by the factor of four
compared to Dijkstra’s algorithm.

Better (tighter) estimators lead to fewer iterations: if E1 yields con-
stantly better results than E2, then the nodes scanned by the A*-
algorithm using E1 are a subset of those scanned using E2 ([4]).

Using a ‘perfect’ estimator P always yielding the exact real distance,
you only have to choose the best successor of the current node; the
search tree is nearly limited to the shortest path itself ([8], [4]). In road
networks with an average node degree of around three, the number
of iterations using P goes down to 5% compared using the Euclidian
estimator ([8]). However, calculating P is equal to solving the original
problem itself.

So there is a trade-off between runtime and memory: the more you
invest in the calculation of the estimator, the less iterations and mem-
ory the A*-algorithm consumes. When using preprocessed information,
there is a second trade-off: the preprocessed data must not be too large
or need too much time to be retrieved.

2 Better Estimators for the A*-Algorithm

2.1 Computing Lower Bounds from Landmarks

A newer approach ([4], [5], and [13]) is the ALT-algorithm (‘A* with
landmarks and triangle inequality’). It selects a small number of nodes
as landmarks and precomputes the shortest paths to all other nodes.
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Lower bounds for the distance dnt between node n and t are derived
from the triangle inequality: dnt ≥ dL1t − dL1n and dnt ≥ dnL2 − dtL2 .
The tightest lower bound is the maximum over all such bounds.

Fig. 1. Using Landsmarks to derive lower bounds

2.2 Modelling Obstacles Through Segmentation Lines

The SegLine-approach ([1]) incorporates obstacles like mountains or
pedestrian areas—areas containing no arcs used by the shortest path
algorithm. The idea is to describe their extent by additional SegLines,
which must not be crossed by Euclidian estimator lines. Fig. 2 shows
several SegLines (thick grey lines).

Fig. 2. Modelling obstacles with segmentation lines

The improved estimator for the distance between s and t is the
shortest path in an auxiliary graph which is constructed as follows:

• The set of nodes consists of all endpoints of segmentations lines and
the two nodes s and t (black dots in Fig. 2).

• The set of arcs comprises all Euclidian lines between nodes not cross-
ing SeLines (solid black lines in Fig. 2); all arc-lengths are Euclidian.
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The resulting shortest path (thick black lines) is a better estimator
than the Euclidian estimator (dotted line), but still a lower bound.

Implemented naively, the complexity is O(m2) with m the number
of SegLines. The following preprocessing is suggested in [1]:

• Determine for each node of the original graph the set of ”‘visible”’
endpoints, i.e. reachable by Euclidian lines without crossing Seg-
Lines (to be performed just once).

• In the auxiliary graph, calculate the shortest paths between all end-
points of SegLines and the target (to be redone for each target).

Then checking the endpoints visible from the current node deter-
mines the estimator in O(m).

In [1] a main roads map of Switzerland with some 13,000 nodes,
20,000 arcs and 142 SegLines (ratio: 141 arcs per SegLine) was used.
The average decrease in number of scanned nodes was approx. 25%.

3 Using Segmentation Lines Without Preprocessing

Both approaches require a complete workthrough of the nodes of the
map plus the storage of several attributes. Especially the landmark ap-
porach is vulnerable to changes in the map, which require costy updates
of the shortest paths to the landmarks.

3.1 The Dynamic Segmentation Line-Estimator

The following approach is a dynamic version of the one described in
section 2.2 requiring no preprocessing. The differences are:

• The SegLines used for the auxiliary graph are only those cut by the
Euclidian line between the current item and the target. E.g. in Fig.
2 the leftmost SegLine would be neglected. The determination of
this subset is done during runtime.

• The shortest path in the auxiliary graph is calculated online as well
using the A*-algorithm with the Euclidian estimator.

The result is a small auxiliary graph with just relevant SegLines.

3.2 First Computational Results

Empirical tests were done on a map of the city of Hildesheim (6,200
nodes, 9,000 arcs). 870 shortest paths are calculated between 30 selected
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Fig. 3. Benchmark Hi30 with 30 segmentation lines

nodes evenly spread on the map (Benchmark ”‘Hi30”’, [7]). Sets of 10,
20, 30 and 40 manually selected SegLines are added. Acceleration is
measured comparing the number of iterations to those taken by the
A*-algorithm with Euclidian estimator:

Table 1. Computational Results

#Segmentation lines Average reduction
10 7.4%
20 10.1%
· · · · · ·
60 22.3%

The average reduction is, lower than in [1], as a higher ratio of
SegLines is used (max. ratio: 226 arcs per SegLine) and not all SegLines
are used. Running time is higher, but only a little extra memory is used.

4 Conclusion and Future Works

The concept of only using cut SegLines seems to extract most of the
information, no preprocessing is necessary and very little memory used.
The approach is quite robust concerning map changes, as SegLines only
have to be corrected when arcs are added which are cut by SegLines.

Further research goes into developing criteria for a good SegLine,
into automatically finding them and into statistic evaluati on of their
use within the estimator.

To speed up, one idea is not to use the improved estimator in every
iteration. Results from [8] show that even an estimator with erratic
behaviour can greatly help reducing the number of iterations.
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1 Introduction

In the last 15 years periodic timetable problems had been found much
interest in combinatorial optimization. The results presented in [5, 9,
2, 3, 6, 7, 1] are based on a periodic event scheduling model published
by Serafini and Ukovich [10].

Periodic event-activity networks allow a flexible modelling of fixed
interval timetables in public transport. A lot of practical requirements,
like sequencing of trains, safety headway distances and limits for rolling
stock can be incorporated into this network theoretical model. In this
paper we will focus on the optimisation task to minimise a weighted
sum of undesirable slack times, e.g. waiting time for passengers.

Define a periodic railway system by a system of lines L and stations
S. Each line L ∈ L is understood to be a transportation chain, where
the trains of L are serving a certain sequence of stations in fixed time
intervals of T minutes (see e.g. [11]). If line L serves stations S, then
define (L, arr, S) and (L, dep, S) to be the arrival (departure) event of
L at S.

A schedule assigns event times πi ∈ IR to all events i = (L, dep, S)
or i = (L, arr, S). An activity a : i → j is a time consuming process,
which then will consume the amount xa := πj − πi of time.

A line can be understood as an alternative sequence of

• run activities : (L, dep, S) → (L, arr, S′) and
• stop activities : (L, arr, S) → (L, dep, S).

Run and stop activities are assigned with time spans ∆a = [�a, ua],
where �a is the minimum running or stopping time and ua is an upper
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bound.1 A schedule π is said to be feasible, if xa = πj − πi ∈ ∆a for
all a : i → j. Apart from running and stopping activities, in real world
problems there are many other types of constraints arising from oper-
ational, safety- or marketing-related restrictions. The most important
operational are headway constraints, which separate trains running on
the same part of the infrastructure.

Those non-periodic timetable problems are very easy to solve by
using shortest path calculations. Fixed interval timetables, where that
all departure and arrival events will be repeated periodically, such a
simple model is no more pro appropriate. The reasons are manifold:
A priori it is not clear between which trains passengers are changing
or in which sequence trains are leaving or entering stations. All this
can only be decided after if the time ordering of all events is known.
A periodic schedule assigns periodic event times πi ∈ IR to all events,
which will take place at all time points πi + zT (z ∈ ZZ). The integer
multiples z of the period are called modulo parameter and code the
periodic sequence of all events. The resulting planning problems are
known to be NP-hard.

For reasons of simplicity we assume one common period T for the
complete system. Different periods for the lines can be handled by using
the least common divisor (compare for [4]).

A solution of the periodic timetable problem is defined by π ∈ IRn,
which defines for each event i one point of time πi, such that i will
be periodically repeated at all times πi + zT (z ∈ ZZ). An activity
a : i → j is a time consuming process, which then will consume the
amount xa := πj−πi of time. The process times are given by the period
tension vector x := Θ tπ − zT. Define �a and ua to be the minimum
and maximum allowed process time. Then a timetable π is feasible, if
and only if �a ≤ πj − πi − zaT ≤ ua.

Lower and upper slack time measures that amount of time for which
the tension on this arc may be increased or decreased. Since lower and
upper slack times may be exchanged by inverting the direction, the
opimisation problem can be defined in terms of lower slack time. The
collection of all slack times is given by:

y = Θ tπ − �− zT =
[
Θ tπ − �

]
T

Now, the periodic timetable slack problem can be formulated as
mixed integer problem

1 If the runnwing time is fixed, a running activity and the following stop activity
can be simply described by one combined constraint.
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(Θω)t π − ωt� → min
� ≤ Θ tπ − zT ≤ u
π of any sign

(1)

2 The Periodic Timetable Polyhedron

2.1 Periodic Tensions, Cuts and Flows

Instead of using potential, we may use the associated tension x := Θ tπ,
which are characterized by the use of the network matrix Γ in terms
of Γx = 0. A periodic tension x fulfills Γx ≡T 0. The orthogonal
projection of the tension space is known to be the space of all flows
([8]), i.e. it holds {x | Γx = 0}⊥ = {ϕ | Θϕ = 0} . In the periodic case,
we obtain

{x ∈ ZZm | Γx ≡T 0}⊥T = {ϕ ∈ ZZm | Θϕ ≡T 0} (2)

Theorem 1. Let Q 	= ∅. Then ϑ tπ − f tz ≥ r can only be a valid
inequality for the polyhedron

Q := conv.hull

({(
π
z

) ∣∣∣∣ � ≤ Θ tπ − Tz ≤ u; vecz ∈ ZZm;π ∈ IRn

})

with ϑ tπ (0) − f tz (0) = r for at least one
(

π (0)

z (0)

)
∈ Q, if and only if f

is a flow with bilance ϑ, i.e. it holds Tϑ = Θf and

Tr = min
{
f tx
∣∣ x ∈ X}

2.2 A Modulo-Simplex Method

The integrality of the modulo parameter z makes the problem hard. For
this reason we will eliminate those variables and keep them implicitly in
the model by using modulo calculations. The modulo simplex method
explores the extreme points of this polyhedron by spanning trees, which
induce basic solutions.

By using b :≡T −Γ � and δ := u − �, the periodic slack space is
defined by

Y := {y ∈ ZZm | Γy ≡T b;0y ≤ δ}
and the optimization task is to determine min

{
ω ty

∣∣ y ∈ Y} . The
tree and co-tree arcs of the underlying spanning tree split the network
matrix Γ = [NT , Eco

T ] into its basic (= co-tree) and non-basic (= tree)
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components. Therefore a periodic basic solution is given by
(

yT
yco
T

)
=(

0
b

)
, which is feasible if b ≤ δ. Any period tension x ( with Γx ≡T 0)

leads to a new solution y′ := [y + x]T = y + x− z′T of Γy ′ ≡T b and
stays feasible, if y ′ ≤ δ.

A basic exchange can be described by exchanging a leaving co-tree
arc al with an entering tree arc ae, which belong to the uniquely de-
termined co-tree cycle of the actual tree. The resulting cut η (al,ae) is
given by adjoining the leaving tree component to the al− associated
column of N. This vector η (al,ae) is a period tension and stays feasible,
if η (al,ae) ≤ δ. Note, that the objective changes by

ω ty′ = ω ty + ω tη (al,ae) − Tω tz′

Modulo Network Simplex Method

Initialisation: Determine an initial feasible tree structure (T �,T u) with
feasible solution x

Iteration: while there exists an improving cut η do
1. apply this cut by transforming the solution x → x + η
2. solve a minumum cost flow problem to transform the actual

solution to become a tree solution

3 Computational Results for a Real World Scenario

3.1 The Traffic Sample

We applied the described algorithm to a real world traffic sample, which
was derived from the south-west area of the German Railway Network
(see Figure 1).

The timetable problem contains 92 different railway lines with pe-
riods of 20, 30, 60 and 120 minutes, which results in an overall period
of T = lcm(20, 30, 60, 120) = 120 minutes. The problem size of the
resulting periodic event scheduling problem contains 669 event nodes
and in total 3831 (with 3287 headway) constraints.

The feasibility problem without any passenger connection con-
straints, we used a constraint programming approach, which finds a
feasible solution within approximately one minute computation time.

Next, for an origin destination matrix we applied a traffic assign-
ment, by routing passengers on best paths. In this way we obtained for
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each possible connection between different lines a weight for the number
of passengers using this change activity. The origin destination matrix
contains only values given in percent of the total (unknown) traffic
volume. The results are given by table 1. For this reason, the change
activity weights is primary that percentage of total volume which uses
this connection. Due to the huge amount of approximately 1200 change
activities with positive passenger weight, we only the most important
ones, which are 570.

Nordheim (Württ)
Kirchheim (Neckar)

Neuenburg (Baden) Grenze

Bad Krozingen

Freiburg (Breisgau) Gbf

Kollmarsreute

Kenzingen

Orschweier

Friesenheim (Baden)

Offenburg

Renchen

Ottersweier

Baden-Baden
Rastatt

Ettlingen West

Karlsruhe-Hagsfeld

Friedrichstal (Baden)

Philippsburg Molzau

Neulußheim

Oftersheim
Mannheim-Friedrichsfeld

Lützelsachsen

Worms Hbf

Singen (Hohentwiel)
Reichenau (Baden)

Hausach

Niederwasser

Illingen (Württ)

Basel Grenze Muttenz

Eimeldingen

Rheinweiler

Bad Saulgau
Sigmaringen

Engen

Straßberg-Winterlingen
Frommern

Bisingen
Bodelshausen

Dußlingen

Donaueschingen

Trossingen Bahnhof

Loßburg-Rodt

Stuttgart-Feuerbach

Günzburg
Neu Ulm

Lonsee

Geislingen (Steige)
SalachPlochingen

Grünholz

Bondorf (b Herrenberg)
Herrenberg

Böblingen Hulb

Lambrecht (Pfalz)
Hochspeyer

Hauptstuhl
Homburg (Saar) Hbf

Saarbrücken Saardamm

Erbach (Württ)

Laupheim West

Warthausen (Hp)

Mochenwangen

Ravensburg

Kehlen

Langenargen

Osterburken
Roigheim

Züttlingen

Neckarsulm

Kornwestheim Karlshöhe

Crailsheim

Wilhelmsglück

Fichtenberg

Böbingen(Rems)

Goldshöfe
Ellwangen

Albbruck
Erzingen (Baden)

Salem

Rinnthal

Grünstadt

Aha

Buchen Ost

Rippberg

Bachheim

Binau

hölzbach
aar) Stadtmitte

lingen (Saar)

Fig. 1. The Traffic Sample contains 92 from the south-west area of the Ger-
man railway network
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Table 1. Computational results for the Modulo-Simplex-Algorithm

iteration objective description
620952.00 initial solution from constraint propagation
462111.00 min cost flow with fixed modulo parameter z

1 436881.00 modulo-netwok simplex
2 415182.00 modulo-network simplex

... .... .......
68 254711.00 final solution
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Summary. Recent studies consider trip shifting as a possible way to include
timetabling partially into vehicle scheduling for urban mass transit system
planning. The aim of our research is to find an usable model to integrate trip
shifting into Simultaneous Vehicle and Crew Scheduling (VCSP). The problem
is solved usually by column generation, so trip shifting has to be modeled both
at master problem and subproblem level. We present in detail an extension of
the Resource Constrained Shortest Path Problem, which allows us to model
the subproblem of the VCSP-TS problem.

Key words: Transportation and Logistics, Large Scale Optimization, Schedul-
ing

1 Introduction

Sequential approches in the planning of an urban or sub-urban bus
transportation system are outdated, because the global solution could
be of very bad quality even it is easy to get an optimal solution for
each step.

There are two important directions of the research for simultaneous
approaches. One of them is based on the Simultaneous Vehicle and
Crew Scheduling Problem (VCSP). The other one uses the trip shifting
technique and tries to partially incorporate the timetabling into the
vehicle scheduling problems (VSP-TS).

The aim of our research is to find a model, which combines trip shift-
ing with the VCSP problem, and which can be solved within acceptable
time on real-life instances.

∗ supported by DFG resarch grant 2843/3-1
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2 The Model

Our approach is constrained to single depot, and homogeneous fleet
problems. However, the model can be easily extended to multi-depot
and heterogenous fleet.

It is a multicommodity network flow model, similar to that described
in [3]. The column generation technique is well suited to solve it, so we
have divided the model into a main and a subproblem.

The main problem is a generalized set covering problem with side
constraints, where the variables are the feasible paths. The subproblem
- which is a multicommodity-flow network with resource constraint on
arcs - is responsible for generating the feasible paths. It can be solved
as a Resource Constrained Shortest Path Problem (RCSPP).One can
use a branch-and-cut algorithm or a round-up heuristic to obtain an
integer solution.

For modelling trip shifting, we assign to each trip a set of possible
shifting times, which is a relative value to the original starting time
resulted from the timetabling step.

2.1 The Main Problem

Let W be the set of trips, indexed by w. Each trip is divided into tasks
(d-trip), which have to be performed by drivers. Let V represent the
set of tasks, indexed by v. The set of possible shifting times of trip w
is denoted by Sw. Let H represent the set of the depot leaving times,
indexed by h. Let U be the set of duty-types, indexed by u. The set of
feasible duties are Ωu, u ∈ U , indexed by ρ.

The following binary parameters are used in the model: dρ
v is 1, if

task v is covered by duty ρ, otherwise 0. eρ
w is 1, if duty ρ contains a

driving movement which ends at the start station of trip w, otherwise
0. fρ

w is 1, if duty ρ contains a driving movement which starts at the
end station of trip w. Let qρ

h equal to one, if duty ρ contains a driv-
ing movement starting before time point h ∈ H, and ending after h,
otherwise 0.

The binary variable θu
ρ , ρ ∈ Ωu, u ∈ U represents whether duty ρ

is performed or not. The integer variable B is the minimal number
of buses required to cover the schedule. The binary variable Xw,t is a
time-indexed variable, it is equal to one if the trip w is shifted by t
time units (t ∈ Sw).

The model of the combined vehicle and crew scheduling with trip
shifting is the following:
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min cBB +
∑
u∈U

∑
ρ∈Ωu

cρθ
u
ρ (1)

∑
u∈U

∑
ρ∈Ωu

dρ
vθ

u
ρ = 1, ∀v ∈ V, (2)

∑
u∈U

∑
ρ∈Ωu

eρ
wθu

ρ = 1, ∀w ∈ W, (3)

∑
u∈U

∑
ρ∈Ωu

fρ
wθu

ρ = 1, ∀w ∈ W (4)

∑
u∈U

∑
ρ∈Ωu

qρ
hθ

u
ρ ≤ B, ∀h ∈ H (5)

∑
t∈Sw

Xw,t = 1, ∀w ∈ W (6)

Xw,t, θ
u
ρ are binary, B is integer. (7)

The objective function (1) minimizes first the number of buses (here
cB is a large enough number), then the crew cost. The equations (2)
represent the task-covering constraints. Each task v has to be covered
exactly once. (3) and (4) are the so-called bus flow conservation equa-
tions. There should be exactly one driving movement ending at the
start station of trip w, and one driving movement starting at the end
station of trip w. (5) are the bus counting inequalities. The equations
(6) force that for each trip will be exactly one shifting time assigned.

The solution contains only the duties that have to be performed by
the crew. However, with a polynomial time algorithm one can generate
the vehicle blocks from this solution.

2.2 The Subproblem

The sub-problems are Resources Constrained Shortes Path Problems,
and the underlying networks are time-space networks. Each node in the
network has a fixed time point and a fixed location. The arcs represent
driver movements, which can be a walking movement, or a driving
movement. The labour regulations are modeled by resources. For each
type of duties (normal duty, night duty, trippers, etc.) exists different
labour regulations, thus we have as many sub-problem as the number
of duty types. A more detailed description can be found in [3].

For modeling trip shifting, we use the same approach as described
in [1]. Namely, each task is represented by as many task-covering arcs as
the number of possible shifting times of the corresponding trip. Figure 1



470 András Kéri and Knut Haase

illustrates this. There are two trips on it, both of them having three
possible shifting time {−2, 0, 2}.

The reduced cost of the task-covering arcs can be calculated from
equalities (2) and (6).

T
2 =0

T
1 =

2

T
1 =+2

T
2 =

2

T
2 =0

T
2 =+2

Station
     A

Station
     B

Walking movement Driving movement
or waiting

Fig. 1. Modelling trip shifting in the sub-problem

For solving the subproblem, we are using a labelling algorithm de-
scribed in [2]. To accelarate the method, we do not explore all of the
labels in a node, just the n-most-negative-reduced-cost ones. Exploring
all label is only neccessary for prooving the optimality in the final steps.

3 Extensions of the Model

3.1 Precedence Constraint

If for some reason the connections between trips are important, we can
model this by adding precedence constraints on Xw,t variables to the
model. With this construction, we can reduce the waiting time of the
passangers.

Suppose that there are two trips w1 and w2, where the end-station
of w1 is the same as the start-station of w2, and the ending time of w1

is larger than w2 by one minute. This prevents passengers to change
from trip w1 to trip w2. If we would like to allow one minute changing
time for the passengers, we have to force that the end time of trip w1

will be smaller than the start time of w2 by one minute. It means that
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the shifting time of w1 has to be smaller at least by two minutes than
the shifting times of w2, since the shifting times are relative times. We
can model this with the following precedence relation:

Xw2,t2 +
∑

t∈Sw1
t>t2−2

Xw1,t ≤ 1 ∀t2 ∈ Sw2 (8)

In the subproblem, these constraint can be modeled by generating
only those kind of intertrip arcs, that fulfills the required precedence
relations.

3.2 Flexible Groups

An interesting extension of the model is when one partitions the set of
trips into distinct subsets, and the trips in the same subset have the
same shifting time. We call these subsets flexible groups.

Let g ∈ G be the set of flexible groups. Wg is the set of trips in the
flexible group g ∈ G. The group corresponding to trip w is denoted by
gw. The set of possible shifting times of the trips in group g is Sg. The
parameter kρ

g,t is 1, if duty ρ fixes the shifting time of group g at time
point t. The binary variable Yg,t is a time-indexed variable, it is equal
to one if the flexible group g is shifted by t time units (t ∈ Sg).

To using flexible groups, one has to replace (6) with (9)-(10) in the
main problem.∑

u∈U

∑
ρ∈Ωu

kρ
g,tθ

u
ρ ≤ cLYg,t ∀g ∈ G,∀t ∈ Sg (9)

∑
t∈Sg

Yg,t = 1, ∀g ∈ G (10)

(9) are compatibility contraints, namely, they ensure that a solution
contains only such a paths, for which the same group has the same
shifting time. The equations (10) force that each group has exactly one
starting time.

In the subproblem, since more trips share the same shifting time,
we have to keep track of the selected shifting times for all group. We
store the shifting time of each group in the labels. Since the groups
contains more than one trips, it is possible that more task covering arcs
corresponding to different trips represent the same group and shifting
time combination. To avoid the situation, that a path selects different
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shifting times for the same group, it has to be always checked on a task-
covering arc, whether the corresponding group has already a shifting
time, or not. If it is so, the given arc can only be used, if the shifting
time is equal with the previously selected value.

The dominance rule also has to be slightly modified. Two labels in
a node are only compatible (the domince rule can be applied on them)
if the already selected group shifting times are equal for both of them.

The advantage of flexible groups is that it can be used to avoid one
of the side effects of trip shifting, the non-constant time headways, and
can reduce the size of the main problem.

It is also possible to define precedence constraints between two flex-
ible groups. This makes sense, if the headway between the trips in both
groups are equal.

4 Conclusions

In this article we have presented a new model for the VCSP-TS. The
model is based on a column generation approach. We proposed two
possible extensions: i) the addition of precedence constraints between
trips, that can be used to reduce the waiting time of changing pas-
sangers, and ii) the usage of flexible groups, which can help to avoid
non-constant time headways and it can reduce the size of the problem.
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1 Introduction

Line planning is one of the strategic tasks a transport company is faced
with. The aim is to create a line plan with line routes and service fre-
quencies. Line optimization means to determine a line plan that is
optimal regarding to a defined objective like the number of direct trav-
elers [3], the total ride time, number of changes [5], the total cost [2] or
the total traveling time. The literature offers approaches with choos-
ing lines from a given set as well as construct line routes from the
scratch [1], [4].

All of these approaches presume a given origin-destination-matrix.
At least for urban areas this is not realistic. The most important ques-
tions of a traffic planner of a transportation company are: ”How much
does the new line plan cost?” and ”How many passengers will go by
public transport under the new circumstances?”. Obviously it is neces-
sary to consider the movement in demand for public transport within
line optimization.

In this paper we include frequency depending changing times. In
urban public transport systems often more than one line connects two
points in a direct way. The expected traveling time is therefore lower
than riding time plus half of the frequency time of the used line(s). The
waiting times will decrease if there are e.g. two lines that connect two
points by parallel line routes.

In practice, transport companies take advantage of lines that are
parallel in the city and separate in the periphery to give a good ser-
vice in the area with a great demand and connect the suburbs more
efficient with the city. By experience (i.e. tested with data of Dresden)
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minimizing traveling times without regarding parallel line routes yields
unrealistic results for the waiting times.

2 Model

In this section we present a model that can cope with (partially) parallel
lines and traveling time dependent passenger demand.

2.1 Assumptions

Let G [V,A] be a directed graph with a set of nodes V and a set of node
connecting arcs A. The nodes represent stops for public transport. The
arcs symbolize connections between nodes that can be passed by public
transport vehicles. For each arc a ride time tij is defined. Furthermore,
we know a set of line routes L. The arcs (i, j) which are part of the
route of line l are given by set Âlij . F is a set of possible frequencies a
line can be operated with.

Every node pair that is connected by at least one potential line route
yields for each combination of potential line routes l and frequencies
f one arc. The larger the pool of lines L is, the more such arcs are
required. For practical reasons we generate combinations with no more
than five parallel line routes. Thus for each combination the expected
traveling time can be estimated. Furthermore, we are able to calculate
the proportion of passengers for each line frequency combination within
a subset of lines. We assume that a path p ∈ P is a connection between
one pair of nodes u, v i.e. possibility for passengers to get from node u
to node v. While the arcs are direct connections by one or more lines a
path can be a combination of more than one arc. So necessary changes
on the way from u to v can be modeled.

Example We show the computation of traveling times for one path.
In Figure 1 you can see the connection between node u and node v with
three lines. Line 2 connects the origin and the destination directly with
a detour of four minutes and a frequency of 2 vehicles per hour while
line 1 and line 3 offer only a part of this connection. We are now able
to calculate traveling times (including the expected waiting times) of
the given connections. Exemplary the traveling times of two generated
arcs are shown in Figure 2.

The traveling times of the arcs are calculated as follows:
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Fig. 1. Generated path with three involved lines

t∗pui =
60

2 · (2 + 6)︸ ︷︷ ︸
waiting time

+
2 · (10 + 10) + 6 · (10 + 6)

(2 + 6)︸ ︷︷ ︸
riding time

= 20.75 (1)

t∗piv =
60

2 · (2 + 6)
+

2 · 2 + 6 · 2
(2 + 6)

= 5.75 (2)

The expected traveling time of the shown path is t∗puv = 20.75+5.75 =
26.5 minutes. If only line 2 is available for the path, the expected trav-
eling time is 15 + 22 = 37 minutes. Similar to this we can calculate the
proportions of the demand of each original arc and each line frequency
combination as follows:

βp,1,6,i,j =
6

6 + 2
= 0.75 (3)

This means that 75% of the demand of passengers from u terminating
in v will go by line 1 with the frequency of 6 vehicles per hour on arc
(i, j) when the line plan contains path p. We assume that 75% of the

Fig. 2. Traveling times under the condition of parallel line routes
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passengers will go by line one because six out of eight vehicles per hour
belong to line 1.

On the basis of generating a large set of paths before optimization
(e.g. by a n-shortest-path-algorithm) we get the following model:

maxF =
∑

p

dp · zp (4)∑
p,u,v∈p̄puv

zp ≤ 1 ∀ (u, v) ∈ V 2|u 	= v (5)

∑
f

ylf ≤ 1 ∀l ∈ L (6)

∑
p∈P̂plfij

dp · βplfij · zp ≤ Klf · ylf ∀ (l, i, j) ∈ Âlij,∀f ∈ F (7)

∑
l,f

clf · ylf ≤ C (8)

zp ∈ {0, 1} ∀p ∈ P (9)
ylf ∈ {0, 1} ∀l ∈ L,∀f ∈ F (10)

The objective function (4) maximizes the expected total number of
passengers. To every path p an expected traveling time is assigned, that
defines the expected number of passengers dp. The binary variables zp

decide whether path p is selected or not. Obviously one pair (u, v) of
nodes can be connected by many different paths. The constraints (5)
ensure that the demand of one node pair (u, v) can be met by maxi-
mum one path p. The set p̄puv gives for each path p the corresponding
origin and destination. It is allowed to choose at most one frequency f
for every line path l (6). The binary variable ylf take the value 1, when
line route l with the frequency f is selected. The capacity constraints
(7) for all arcs (i, j), belonging to the line route l and the frequency
f , give at least the capacity to handle the number of passengers mov-
ing along it. The demand of a path dp multiplied by βplfij represents
the expected number of passengers. Set P̂plfij denotes line routes l fre-
quencies f and arcs (i, j) which correspond to path p. The parameter
Kllf gives the capacity per vehicle of line l and frequency f . Let clf be
the (proportional to the riding time) operating cost of line route l and
frequency f . So the constraint (8) bounds the total operating cost to a
given maximum of total cost C.
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2.2 Discussion

One obvious problem is the large amount of possible and reasonable
paths. When generating them before the optimization process we en-
large the model unnecessarily because most of the paths will not be part
of a solution. So it seems to be appropriate to generate only those paths
which will be probably part of a solution. A decomposition method for
problems with many possible but only a few reasonable alternatives
could be helpful.

3 Example

To clarify the above statements we present a small example. Starting
with a directed graph with 10 nodes and 36 arcs. Before the optimiza-
tion process we defined 16 possible line routes. Based on it 4320 arcs
have to be created to model all (parallel) line frequency combinations.
After that 24728 possible paths are generated by a modified n-shortest-
path-algorithm. These paths contain the line routes, the frequencies and
the passenger demand for each arc of the original graph.

For each pair of nodes we assume linear demand functions dpuv =
auv − buv · t∗puv with random parameters auv and buv.

Now we are in a position to solve the problem and vary the maximum
total cost. The results are shown in table 1. One obvious result is that
the increase of the maximum total cost yields no fundamental increase
of the total number of expected passengers at a certain point.

Table 1. Results of the example

No max. Cost objective computing time [s] gap
1 100 1016 1.92 -
2 200 1852 33.04 -
3 400 2840 1000.00 0.038
4 500 3228 1000.00 0.033
5 700 3621 31.28 -
6 800 3631 14.26 -
7 1600 3656 7.62 -

For all scenarios, which took more than 1000 seconds the gap be-
tween the best possible and the actual integer solution is denoted. For
example in Figure 3 we show the solution of scenario 5 with the maxi-
mum total cost of 700 minutes of total vehicle operating time and the
objective of 3621 passengers.
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Fig. 3. Solution of scenario 5

4 Conclusions

In this article we have presented an approach on line optimization in
urban public transport systems. It is shown that it is possible to take
into account parallel line routes (with decreasing waiting times) and
changing demand. There is still a lot of work to be done in the field
of estimation of relation specific demand regarding to the expected
traveling time and e.g. the number of changes needed or socioeconomic
structures of corresponding districts. Moreover, the solution process
should be made more efficient to get the ability for solving real world
instances. An advantage of our approach is that it is possible to include
non-linear demand functions in the data but nevertheless the model will
stay linear.
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Summary. We consider a legislation-driven recycling network treating dis-
carded products. Our goal is to develop a decentralised coordination mech-
anism that allows the network to comply with requirements given by envi-
ronmental legislation, existing for Waste Electric and Electronic Equipment
(WEEE). Two decision levels are identified. Tactical decisions concern the
negotiation of frame contracts between a focal company representing the net-
work, and the recycling companies for a defined period of time. According
to these frame contracts, current orders are assigned to recycling companies
and an operational coordination may be applied to (re-)allocate parts of the
order in the network. The mechanisms are outlined conceptionally and their
interaction is described.

1 Introduction

Legal regulations in the field of WEEE recycling assign extended
product responsibility to Original Equipment Manufacturers (OEMs).
Hence, OEMs have to pay for the recycling of their own products and
they are obliged to guarantee the fulfilment of certain collection and
recycling targets. However, since recycling normally falls outside the
core competence of OEMs, these tasks are usually transferred to third-
party recycling companies. Empirical studies show that WEEE recy-
cling companies are often small and medium sized companies, operating
locally and cooperating in networks [3].

One focal company and multiple recycling companies exist within
these networks. The focal company is often founded by the network
members, and therefore aims at maximising network-wide profit. It’s
job is to acquire national or Europe-wide recycling contracts with
OEMs specifying the collection and recycling of a certain amount of
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discarded products accumulating at certain collection points for a de-
fined period of time. Subsequently, the focal company has to make sure
that these contracts are adequately fulfilled. The physical treatment of
the discarded products is performed by independent recycling compa-
nies. They pick up discarded products at the sources of the network
which are public collection points. Products are then transported to
recycling companies where disassembly and bulk recycling are carried
out. Thereby, the grade of disassembly and bulk recycling may influence
the obtained recycling targets as well as the recycling costs. Thereafter,
generated material fractions are either delivered to sinks of the network,
which are either recovery or disposal facilities (e.g. metal works, incin-
eration) or to other recycling companies in the network which perform
an advanced treatment of the fractions in order to reach higher recy-
cling targets. To determine recycling targets, we assume that a fraction-
and sink-specific recycling coefficient can be assigned to every material
fraction leaving the network. The companies have to agree upon the
material flows by generating appropriate contracts. Contractual agree-
ments and material flows are summarised in Figure 1.

Fig. 1. Material flows and con-
tractual agreements in recy-
cling networks

Fig. 2. Overview of the entire coordination
process

The goal of this paper is to highlight the need for coordination in
such a network and to identify coordination levels. The coordination
levels and their interaction are described in the following section (see
also Figure 2).
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2 Coordination Levels in Recycling Networks

Considering the situation described above, extended need for inter-
company coordination becomes apparent, since decisions are made by
independent decision makers. First, the focal company and the recy-
cling companies have to agree upon the allocation of the masses accu-
mulating at the sources to the recycling companies. Second, after the
recycling companies have decided on the recycling grade, they have to
agree with each other whether either a specialised processing of frac-
tions within the network is necessary (which would result in flows be-
tween the recycling companies) or if fractions are directly delivered to
the sinks of the network. Coordination should be carried out in an effi-
cient way taking into account global restrictions (recycling and collec-
tion targets) and respecting the decision authority of the independent
companies.

If full information was available at any point in time and one partner
– e.g. the focal company – had the power to implement network-wide
plans, central optimisation approaches could be implemented [4]. Since
this case rarely exists in a network consisting of independent compa-
nies, a decentralised coordination approach is required. As decisions are
not generally taken at the same time and require different degrees of
aggregation, a hierarchical decomposition of planning modules is rea-
sonable [1]. As with classical hierarchical planning within a single firm,
it is reasonable to decompose the coordination of a network into dif-
ferent levels. On a tactical level, the focal company negotiates frame
contracts with the recycling companies picking up the products from
the sources and performing the first treatment step. These contracts
contain specifications on the masses that each company has to pick up
in specified period of time (e.g. a year) and recycling targets to fulfil
individually. Such contracts also exist in real world recycling networks.
On an operational level, current orders that have been assigned by the
focal company according to frame contracts eventually have to be ex-
changed or divided up within the network. In the following the levels
are described in more detail.

2.1 Tactical Coordination

In the tactical coordination phase the focal company negotiates with
the recycling companies about the masses to be picked up from the
sources and corresponding recycling targets to be fulfilled within a de-
fined period of time. Further, associated payments are determined. In
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this level, simultaneous coordination of flows between recycling com-
panies is not considered. Each recycling company considers the other
recycling companies as sinks (”dummy sinks”). To determine recycling
targets, we assume the each recycling company has enough knowledge
to anticipate fraction-specific recycling coefficients for fractions deliv-
ered to other recycling companies inside the network and the respec-
tive prices, as it has for the real sinks (see Section 1). Based on these
simplifications, an independent optimisation model for each recycling
company can be established. The prices paid by the focal company for
the masses picked up from sources and the prices paid for each recycled
mass unit influence the objective function of each recycling company.
These prices result from the (Lagrangian) relaxation of network-wide
recycling and collection constraints and are iteratively updated until a
feasible solution is found. This procedure can be interpreted as a hi-
erarchical negotiation procedure where the focal company acts as the
Top-Level and the recycling companies as the Base-Level (see again
Figure 1). Details and numerical evaluation of this model can be found
in [2]. These frame contracts are valid for specified periods of time and
can be updated on a rolling basis (see Figure 2).

2.2 Operational Coordination

Current orders for the collection of WEEE are collected by a central
agency of the WEEE management system and assigned to the service
provider (=focal company, representing an OEM) according to a prede-
fined scheme. As shown in Figure 2, the focal company can then assign
the order to a recycling company according to the frame contracts nego-
tiated, as described in Section 2.1 (If the negotiated contingent is fully
utilised, a renegotiation of contracts may be necessary). The recycling
company to which the order has been assigned, may need services from
other recycling companies in the network in order to reach the specified
recycling targets. This means that parts of the order may have to be
allocated to other recycling companies. To this end, we propose the
following simple rule-based mechanism to achieve coordination on the
operational level. In the following, we assume that the focal company
has assigned recycling company u an order to collect masses of differ-
ent product types i at different collection points q (Aiqu) and a certain
amount of mass that has to be recycled (yRec

u ). According to the frame
contract the focal company pays piq per mass unit collected and λ per
mass unit recycled [2]. The mechanism can be outlined as follows.
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1. recycling company u:
• F denotes the set of fractions (including products), Q the set

of sources, R the set of sinks outside the network and D the
”dummy sinks” within the network (other recycling companies).
yR

iur denotes the mass of fraction i which is delivered to sink
(resp. dummy sink) r and eV

ir the associated costs/revenues. xju

state the number of executions of recycling activity j and cju

are the associated costs. The recycling company u then solves
the following problem:

∑
i∈F

∑
q∈Q

piq · Aiqu + λ · yRec
u + max

∑
r∈R∪D

∑
i∈F

e
V
ir · y

R
iur −

∑
j∈J

cju · xju (1)

s.t. ∑
q∈Q

Aiqu +
∑
j∈J

xju · vij =
∑

r∈R∪D

y
R
iur ∀i ∈ F (2)

yRec
u ≤

∑
i∈F

∑
r∈R∪D

yR
iur · χir (3)

The objective function (1) consists of the fixed payments from
the focal company and variable costs/revenues resulting from
material fractions delivered to sinks or to other recycling com-
panies as well as recycling costs. (2) is the mass balance equation.
vij is the recycling coefficient, which represents the mass units
generated (+)/consumed(-) from each fraction i by each execu-
tion of recycling activity j. (3) is the recycling target that has
to be fulfilled for the current order. χir denotes the recycling
coefficient which denotes to what extent fraction i is recycled
when delivered to sink/dummy sink r.

• The assignment of material fractions to the dummy sinks is ten-
tative and based on presumed data. Since companies in the net-
work, their recycling costs, or their abilities to process certain
types of fractions may have changed, a request for recycling of
fractions that have been assigned to dummy sinks is sent to all
other recycling companies in the following way:
Choose fractions that have been assigned to the dummy sinks
(r ∈ D) and compute assigned recycled masses for each fraction

• For each fraction submit a bundle containing mass and assigned
recycled mass to all other recycling companies in the network.

2. all other recycling companies:
• Compute cost/revenue that is caused by treating the additional

bundle(s) of fractions with the required recycling target.
• Submit associated cost/revenue back to recycling company u
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3. recycling company u:
• Choose cheapest recycling company.
• Agree with recycling company upon a price.
• Update prices for the dummy sinks (eV

ir) that can be used for
the tactical negotiation of frame contracts (see Figure 2).

The operational coordination procedure is still subject to research.
Open questions concern the exchange of cost data that is necessary
for the proper operability of the mechanism and the determination of
prices to pay. Also not only parts of an order (generated material frac-
tions for further processing), but also complete orders (pick up and first
treatment step) may be exchanged between the recycling companies if
the cost situation has changed significantly.

The whole coordination procedure containing tactical and opera-
tional coordination and their interaction is summarised in Figure 2.

3 Conclusions and Outlook

In this paper we outlined a negotiation mechanism for recycling net-
works operating in the highly legally restricted area of WEEE recy-
cling. We identified two coordination levels that exist in such networks
and described their interaction. Future research will concentrate on the
implementation of the operational coordination procedure.
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1 Einleitung

Die Implementierung einer geeigneten Bevorratungssystematik ist eine
Aufgabe, die von jedem produzierenden Unternehmen gelöst werden
muss. In der Literatur existieren vielfältige Lagerhaltungsmodelle für
unterschiedliche Anwendungszwecke, ebenso gibt es eine große Anzahl
kommerziell verfügbarer Softwarepakete, die diese Planungsaufgabe un-
terstützen sollen. Sowohl die grundlegende Entscheidung, für welche
Produkte überhaupt ein entsprechender kundenauftragsanonymer La-
gerbestand vorgehalten werden muss, die Bestimmung von Anzahl und
Ort von Lagern, als auch die Parametrisierung des gewählten Lagerhal-
tungsmodells, erfordern eine Analyse der entsprechenden Rahmenbe-
dingungen. Diese bleibt in der Regel dem Anwender überlassen.

In den Jahren 2002 – 2004 wurde bei der Infineon Technologies AG,
München, eine praktikable Systematik zur Festlegung der Produkt-
bevorratungsebene entwickelt. Es entstand ein proprietäres Entschei-
dungsunterstützungssystem mit dessen Hilfe die Festlegung der Bevor-
ratungsebene für das Produktionssortiment durchgeführt wird. Die
Kernidee dieses Modells ist die Segmentierung der Produkte hin-
sichtlich ihrer Bevorratungsebene.

Klassischerweise erfolgt dies mit Hilfe einer ABC-Klassifikation, oft
auch unter Hinzuziehung eines zusätzlichen Kriteriums (zur Kritik einer
eindimensionalen ABC-Betrachtung siehe [1].) Dies ist auch in der Hal-
bleiterindustrie die typische Vorgehensweise.
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2 Fertigungs- und Produktstruktur der Infineon
Technologies AG

Hinsichtlich der Fertigungsstruktur werden üblicherweise zwei Ferti-
gungssegmente unterschieden: Das Frontend und das Backend. Die De-
tails dieser Struktur, sowie der Produktion einem Netzwerk von Fer-
tigungsstandorten werden in [2] ausführlich diskutiert. Frontend und
Backend werden durch die sogenannte Diebank entkoppelt. Sie stellt
ein klassisches Zwischenlager dar, für das Backend ein Eingangswaren-
lager. Fertigprodukte werden in den regionalen Verkaufslagern (Dis-
tribution Center, DC) gelagert; standardmä”sig werden alle Aufträge
über diese Lager bedient. Im Sinne einer kundenanonymen Vorfertigung
gibt es weiterhin innerhalb des Frontends ein so genanntes Masterlager
(Master Storage). Bis hierhin werden Wafer bis zu einem gewissen Grad
angearbeitet, dann wird auf die entsprechende Kundenspezifikation der
letzten Strukturschichten gewartet. Diese Bevorratungsstufe findet nur
für einzelne Produkte Anwendung. Zur Identifikation von Produkten
im Produktionsablauf existiert die Baunummer. Die DC-Baunummer
stellt die kleinste Lageridentifikationseinheit (engl.: stock-keeping unit)
dar. Viele planungsrelevante Attribute können nur auf dieser Endpro-
duktebene vergeben werden.

3 Festlegung der Bevorratungsebene

Auch in der Halbleiterindustrie kommt den Kundenanforderungen an
die Produktvielfalt und -verfügbarkeit eine verstärkte Bedeutung zu.
Dies ist kritisch besonders im Hinblick auf die Einhaltung kurzer
Lieferzeiten trotz kundenindividueller Variantenvielfalt. Dabei sind für
ein Unternehmen des Weiteren Kosten- und Effizienzziele zu beachten,
so dass zur Lösung dieses Konfliktes zusätzliche Anforderungen an die
Logistik- und Supply-Chain-Management-Systeme der Unternehmen
gestellt werden. Olhager [4] sieht zudem durch verringerte Produkt-
lebenszyklen einen erhöhten Handlungsbedarf bei der Entscheidung
über die zu wählende Bevorratungsebene.

Die Segmentierung des Produktsortiments ermöglicht eine systema-
tische, standardisierte Planung der Lagerbestände. Ziel ist es, die Pro-
dukte zu identifizieren, für die eine kürzere Lieferzeit angeboten wer-
den soll und diesen eine entsprechende Bevorratungsebene zuzuweisen.
Diese Bevorratungsebene wird in diesem Kontext in der Literatur u. a.
als Order Penetration Point (OPP) bezeichnet. Dieser sei definiert als
derjenigen Punkt, an dem ein Halbfertig-Produkt einem bestimmten
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Kunden zugeordnet wird (vgl. [5]). D.h. ab dem OPP ist der Mate-
rialfluss kundenauftragsgetrieben: Oberhalb des OPP erfolgt die Fer-
tigungsauftragsfreigabe kundenanonym, unterhalb auftragsspezifisch.
Die Wahl eines OPP steht dabei mit einem Merkmal zur Klassifika-
tion von Produktionssystemen in enger Relation. Unter dem Ausdruck
Segmentation soll das systematische Festlegen der Bevorratungsebene
verstanden werden. Die Segmentation ist endproduktbezogen, und ist
von der Fertigungssegmentierung abzugrenzen.

Im Rahmen der Segmentation wird bei Infineon ein so genannter
Service Level Code vergeben. Dieser legt die letzte Lagerstufe fest, an
dem für ein Produkt noch ein kundenanonymer Lagerbestand gehalten
wird. Für diesen und die davor liegenden Lagerpunkte werden Sicher-
heitsbestände systematisch geplant. Der Service Level Code kann auch
als Bezeichnung für den Order Penetration Point angesehen werden.
Zur Auswahl stehen die oben vorgestellten Lagerstufen. Der Service
Level Code wird in einem quartalsmäßigen Review festgelegt.

Der Erstentwurf des Segmentationsprozess bei Infineon fokussierte
sich auf die Hauptkriterien Anzahl und Wichtigkeit der unterschiedlich-
en Endkunden eines Produktes und die Marktklassifikation. Obwohl
weitere Kriterien in der Prozessbeschreibung erwähnt waren, konnten
diese nicht automatisiert bei der Vorschlagserstellung berücksichtigt
werden. Ein weiterer Kritikpunkt an diesem Prozess war hauptsächlich
auf die Verknüpfung der Kriterien bezogen. Die harten Grenzen führen
bei Nichterfüllen bereits eines Kriteriums zu einem Ausschluss einer
Entscheidungsmöglichkeit. Diese Kritikpunkte haben eine erfolgreiche
Umsetzung der erstellten Service Level Code Vorschläge erschwert und
sind auf Akzeptanzprobleme bei den Logistikplanern gestoßen.

4 Die Wahl der Bevorratungsebene

Bei der Wahl eines optimalen Order Penetration Point sind teilweise
gegenläufige oder schwer quantifizierbare Einflüsse zu beachten:

• Höhe des Obsoleszenzrisikos.
• Entstehende Lagerkosten durch die (Teil-) Vorfertigung.
• Akquisitorisches Potential durch verkürzte Lieferzeiten. (Durch das

zielgenaue Erfüllen von Kundenlieferzeitanforderungen kann ein ho-
hes Niveau an Kundenzufriedenheit erreicht werden.)

• Auswirkungen der Vorfertigung auf eine wirtschaftliche Produktion
und die Arbeitsbedingungen.
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4.1 Vorgehensweise

Bei der Wahl der Bevorratungsebene können durch Hinzuziehen vieler
zu berücksichtigender Systemparameter leicht komplexe Entscheidungs-
situationen entstehen. Zur Unterstützung des Entscheidungsprozesses
bietet sich daher die Fuzzy–Logik in Form eines Expertensystems an.
Vorteile sind eine bessere Transparenz und damit Akzeptanz durch
den einzelnen Planer, im Vergleich zu Optimierungslösungen mit den
notwendigen, die Optimallösung beeinflussenden Kostenannahmen. Da
die Fuzzy–Logik zu den qualitativen Planungsmethoden gehört, besitzt
diese einen heuristischen Charakter, so dass nicht zwangsläufig eine
Konvergenz zu einer optimalen Lösung gegeben ist. Nichtsdestotrotz
bietet sich die Entwicklung eines Entscheidungssystems durch Formal-
isierung von heuristischen Expertenregeln an, um den entsprechenden
Logistikplaner durch Vorschlagsunterbreitung und eine standardisierte
Informationsversorgung zu unterstützen.

Ziel der Fuzzy–Logik [6] ist es, toleranzbehaftete Aussagen automati-
siert mittels eines mathematischen Systems verarbeiten zu können. Die
Grundproblematik scharfer Grenzen in vielen Anwendungsfällen kann
durch die Fuzzy–Logik vermieden werden. Wissen kann in Form von
Fuzzyregeln vom Typ Mamdani [7] strukturiert und verarbeitet wer-
den, indem Fuzzymengen in den Wenn–Dann–Regelstrukturen verwen-
det werden.

4.2 Festlegung der Kriterien und Regeln

In einem Brainstorming wurden mögliche Segmentationskriterien ent-
wickelt. Das Resultat zeigte, dass folgende Kriterienklassen berücksich-
tigt werden sollten:

1. Produkt-/produktionsrelevante Faktoren (z.B. Produktlebenszyk-
lusphase, Variantenbildungsgrad im Materialfluss),

2. marktrelevante Faktoren, wie Stärke der Nachfrageschwankungen,
3. kosten- und gewinnorientierte Faktoren (wie ABC–Klassifikation

des Umsatzbeitrags),
4. weitere, spezielle kundenrelevante Faktoren.

Um im Interview mittels einer strukturierten Vorgehensweise eine
möglichst konsistente Regelbasis zu entwickeln, wurden fünf Haupt-
kriterien ausgewählt, deren vollständige Kombinationen ausformuliert
wurden. Die resultierenden 243 Möglichkeiten der Kombination der lin-
guistischen Variablen der jeweiligen Eingangsvariablen wurden dann
mit einem Service Level Code als Entscheidungsempfehlung versehen.
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Nach interner Abstimmung wurden problematische Entscheidungen
identifiziert. Diese Problemfälle wurden zusammengestellt und in einem
Expertenteam durchgesprochen. Auf dieser Basis dieser Expertenrunde
wurde jeweils nach Diskussion ein Service Level Code vergeben.

4.3 Implementierung und Anwendung

Die informationstechnische Umsetzung der dargestellten Entscheidungs-
findung erfolgte mit Hilfe zweier Microsoft Access Datenbanken und
wurde in SQL in Verbindung mit Visual Basic for Applications pro-
grammiert. Nach Betriebsdatenerfassung aus den Bereichen Produkt-
grunddaten, Kostendaten und Daten der Auftragshistorie werden diese
in die erste Datenbank eingelesen und dort verarbeitet. In dieser Ana-
lyse–Datenbank werden die notwendigen Berechnungsschritte durch-
geführt, um produktbezogen die einzelnen Kriterienausprägungen zu
ermitteln. Diese Werte sind grö”stenteils bisher nicht in dieser Form
automatisiert abrufbar und müssen daher erst ermittelt und in eine
Datenquelle zusammengeführt werden.

Eine zweite Datenbank übernimmt diese Werte und führt die be-
schriebenen Schritte aus. Diese Datenbank überführt die scharfen Krite-
rienausprägungen in Fuzzy–Werte, berechnet die Regelaktivierungsgra-
de und wählt den höchsten Regelaktivierungsgrad aus. Mit Hilfe der
neuen Segmentationsliste soll der Forderung nach Transparenz der Ent-
scheidungsfindung nachgekommen werden, indem die einzelnen (schar-
fen) Kriterien zusätzlich pro Endprodukt angegeben werden. Zusätzlich
wird die ausschlaggebende Regel jeweils mit angezeigt. Die Analyse-
datenbank erlaubt weiterhin Auswertungen bezüglich der Veränderung
der Segmentierungsmatrix, die Auswertung der prozentualen Änderun-
gen je Geschäftsgebiet und eine Anzeige einer Regelstatistik.

5 Zusammenfassung und Schlussfolgerungen

Der Inhalt des Order Penetration Point Konzeptes und der logistis-
chen Produktionsprinzipien ist nicht neu und findet sich schon in der
Literatur zur Entwicklung von Betriebstypologien, beispielsweise bei
[8]. Die Festlegung des Order Penetration Point stellt dabei ein äußerst
wichtiges Element dar bei dem Übergang von einer reinen Produktions-
planung und -steuerung zu einem aktiven Auftragsmanagement. Dabei
ist besonders der Einhaltung des Kundenwunschtermins und der dafür
vom Kunden zugestandenen Lieferzeit verstärkte Beachtung zu wid-
men. Das Konzept der neuen Produktionssystematik bezieht diese Kri-
terien ein, die Lagerbestandsplanung mit Fokus auf eine stärkere Kun-
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denorientierung wird so verbessert. Umgesetzt werden konnte die Fest-
legung der Bevorratungsstufe mit Hilfe von Kriterien, die über eine
reine ABC-orientierte Entscheidung hinausgehen. Ferner ist festzuhal-
ten

• Das Framework von Olhager konnte erfolgreich in ein praktisch an-
wendbares Entscheidungsunterstützungssystem umgesetzt werden.

• Fuzzy–Logik hat sich als gutes mathematisches Instrumentarium bei
der Entscheidungsfindung erwiesen.

• Die Berücksichtigung der vom Kunden gewünschten Lieferzeit als
Entscheidungskriterium zur Festlegung der Bevorratungsebene kon-
nte umgesetzt werden.

• Ein strukturierter systematischer Entscheidungsvorschlag kann in-
nerhalb kurzer Zeit erstellt werden.

Die Reaktionen der Geschäftsbereiche sind sehr positiv ausgefallen.
Die in ihrer Kompaktheit zur Verfügung gestellte Produktinforma-
tionen auf der niedrigen Aggregationsstufe wurde sehr begrü”st. Die
systematischen Vorschläge zur Festlegung der Bevorratungsebene sind
insgesamt von den Logistikplanern positiv aufgenommen und in den
überwiegenden Fällen auch umgesetzt worden. Die strukturierte Bes-
timmung der Bevorratungsebene ist bei ca. 75% der betrachteten Pro-
dukte möglich.
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Summary. We analyse a dynamic variant of the vehicle routing problem with
soft time windows in which an average punctuality must be guaranteed (e.g.
lateness is allowed at some customer sites). The existing objective function
does not support both the aspiration for punctuality and least cost so that
additional efforts are necessary to achieve an acceptable punctuality level at
least possible costs. Within numerical experiments it is shown that static
penalties are not adequate in such a situation but that an adaptation of the
objective function before its application to the next problem instance supports
the search for high quality solutions of the problem.

1 Introduction

We consider a vehicle routing problem in which the adequate fulfilment
mode of consecutively arriving customer requests is to be selected. Ar-
riving requests are fulfilled using the cheap but not necessarily reliable
self-fulfilment mode (SF) or the more expensive but reliable subcon-
tracting mode (SC). We propose to adaptively adjust the weights of
the costs of the two fulfilment modes in a mono-criterion objective
function. Doing so, we refine the idea of Gutenschwager et al. [1] who
initially propose to adjust higher-ranked objective functions to the re-
cent decision situations while solving the next instance in a sequence
of optimisation models in online-fashion. This adaptive approach is
compared in numerical experiments with the typically used penalty
approach in which a static unchangeable value is used to depreciate
late visits at customer sites.

Section 2 introduces the investigated decision problem. Section 3
outlines the decision algorithms. The computational experiments are
reported in Section 4.
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2 Dynamic Decision Problem

We investigate the following generalisation of the vehicle routing prob-
lem with time windows.

Soft time windows. Lateness at a customer site is possible but
causes penalty costs. The portion pt of the requests completed or sched-
uled for completion in the interval [t−t−; t+t+] is observed. At least pt

of all requests of the interval around the current time t must be started
within the agreed time windows.

Subcontraction. Each request can be served by a vehicle from the
own fleet in the SF-mode or it can be subcontracted (SC-mode) to
a logistic service provider (LSP). In the former case, late arrivals at
customer sites cannot be prevented but in the latter case, an in-time
service is assured. A once subcontracted request cannot be re-integrated
into the routes of the own vehicles.

Uncertain demand. Only a subset of all requests is known to the
planning authority at the time when the decision concerning subcon-
tracting is made and the routes for the own vehicles are generated. The
planning authority decides about the fulfilment mode of a request as
soon as it becomes known.

Additional requests arriving at time ti trigger the update of the so
far followed transportation plan TPi−1 which contains the decision how
the waiting requests will be served. For the update of TPi−1 to TPi we
have introduced an optimisation model [2] whose solving identifies a
least costs refresh of the transportation plan. Each possible update is
evaluated by the resulting costs using the objective function (1).

C1(RP(Rint
i )) + C2(RP(Rint

i ))︸ ︷︷ ︸
self-fulfilment costs

+ C3(SC(Rext
i ))︸ ︷︷ ︸

SC usage costs

→ min . (1)

The set Rint
i contains all requests for which the self-fulfilment mode

has been selected and the set Rext
i comprises all subcontracted requests

at time ti. With RP , we denote the least cost collection of paths for
the own vehicles and SC refers to the minimal-charge bundling of sub-
contracted requests. Then, C1(RP(Rint

i )) denotes the travel costs of
the own vehicles, C2(RP(Rint

i )) gives the penalty costs to be paid for
late customer site visits of own vehicles. Finally, C3(SC(Rext

i )) gives
the costs of the subcontracted requests.

If both fulfilment modes would lead to the same costs for a given
request r, e.g. if
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α :=
C3(TP3(r))

C1(TP1(Rint
i )) + C2(TP1(r))

≈ 1, (2)

then both fulfilment modes SF and SC will be used to the same extend
as long as the limited capacity of the own fleet is exhausted. As soon
as the capacity of the own fleet is exhausted then some requests are
shifted into the SC-mode. However, if α & 1 then the aspiration for
cost minimal modes prevent the usage of the SC mode. If C2 is not
stringent and severe enough, then the number of late severed requests
increases, so that pt falls down.

In the remainder of this article we investigate the dependencies bet-
ween the severeness of the penalisation of late requests and the selection
of the fulfilment mode. Thereby, we assume that α & 1, so that the
aspiration for least cost transportation plans does not support the se-
lection of the mode that leads to the highest percentage of punctually
served requests.

We use artificial test cases [2] constructed from the 100-customer
Solomon [3] instances {R103, R104, R107, R108} for an experimental
analysis of the aforementioned situation. In these scenarios, a demand
peak leads to a temporal exhaustion of the cheaper SF mode. We pro-
pose and test ideas to overrule the cost-based mode decision in order
to consider punctuality issues to a larger extend.

3 Algorithm Details

We use the Memetic Algorithm described e.g. in [2] to derive a new
transportation plan after additional requests have arrived. In such a
case, the execution of TPi−1 is interrupted and TPi−1 is replaced by
TPi.

A piece-wise linear penalty function h is deployed, which is 0 for
delays up to Tmax time units and which increases proportionally up to
a maximal penalty value Pmax (money units) for delays longer than
the threshold delay of 100 time units. Using this penalty calculation
the sum of penalty payments is C2(RP(Rint

i )) :=
∑

r∈Rint h(delay(r)),
where delay(r) gives the distance to the latest allowed visiting time at
the customer site corresponding to request r.

The previously introduced penalty function h is deployed with dif-
ferent parameter settings. We perform simulations with the maxi-
mal penalty values Pmax ∈ {50, 75, 100, 125} and the tolerance ranges
Tmax ∈ {0, 25, 50, 75}. A parameterisation of the penalty function is
denoted by P (Pmax, Tmax).
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Alternatively, we deploy an adaptation mechanism that re-weights
the costs of the two fulfilment modes in the objective function in de-
pendence from the currently observed punctuality pt. The idea of this
approach is to artificially lower the costs of the SC mode (compared to
the SF mode) if pt is low in order to make the usage of the SC mode
more attractive.

f(ti) ·
[
C1(RP(Rint

i )) + C2(RP(Rint
i ))
]
+ C3(SC(Rext

i )) → min (3)

The coefficient f(ti) is adjusted before the update of TPi−1 to TPi

starts. It is f(t0) = 1 and f(ti) = 1+α ·Ω(ti, pti) for i ≥ 1. We use the
piece-wise linear function Ω which is 0 if the current punctuality pti

is larger than ptarget + 0.05 and which equals 1 if pti ≤ ptarget − 0.05.
In the latter case, it is f(ti) = 1 + α and subcontracting a request is
identified by the solver via the objective function to be cheaper than
the self-fulfilment with respect to the currently used objective function
(3). For pt-values between ptarget − 0.05 and ptarget + 0.05 the function
Ω decreases proportionally from 1 down to 0. Since the re-definition
of the coefficient affects the search trajectory heading of the solving
algorithm, we call this approach Search Direction Adaptation (SDAD).

4 Numerical Experiments

Experimental Setup. We analyse two scenarios. In scenario I, SF
and SC have the same prices (α = 1) but in scenario II SC is quite
more expensive than SF (α = 3).

A single simulation run (P, ω, ε, α) is determined by the request set
P ∈ {R103, R104, R107, R108}, the algorithm seeding ω ∈ {1, 2, 3}, the
applied strategy ε ∈ {SDAD}∪{PEN(a, b) | a ∈ {50, 75, 100, 125}, b ∈
{0, 25, 50, 75}} and α ∈ {1, 3}. Thus, 4 · 3 · 17 · 2 = 406 simulation runs
have been executed.

Throughout the simulations we observed the maximal punctuality
decrease (in percent) δ(ε, α) after the demand peak and the cumulated
overall costs C(ε, α).

The results observed for the PEN(·, ·)-experiments in scenario I are
presented in Fig. 1. The left isoline-plot shows the observed maximal
punctuality decreases δ(α, ε). In Aδ

1(−0.6) maximal punctuality vari-
ations between −0.6% and 0 (light grey shaded area) are observed.
Punctuality variations between -1% and -0.6% appear in Aδ

1(−1). De-
creases of pt between 1% and 1.4% take place in Aδ

1(−1.4)



Objective Function Adaptation 495

The right isoline plot compiles the average of the cumulated costs
C(·, ·) occurred during the simulation runs within the PEN(·, ·)-experi-
ments. Additional costs of less than 5% (AC

1 (0)) are observed for small
penalties and high tolerance values (light grey shaded) areas. A cost
increase of more than 15% is realized if Tmax ≤ 25 and Pmax ≥ 75.

The application of SDAD leads to a maximal punctuality decrease
of 1% at nearly the same costs (dark grey shaded areas in the two
plots). We conclude, that if α = 1 (same costs for SF and SC) then the
static parameter setting (50, 75) of h performs sufficient with respect to
a sufficiently high service quality as well as service cost minimisation.

25

50

50

75

75 100 125

Aδ
1(-0.6)

Aδ
1(-1)

Aδ
1(-1.4)

Pmax

Tmax     0.15

25

50

50

75

75 100 125

AC
1 (0)

AC
1 (15)

Pmax

Tmax

Fig. 1. Scenario I (α = 1): punctuality decrease (left) and costs (right)

Quite different results are observed in scenario II (Fig. 2). The ser-
vice quality optimal parameter setting is Pmax = 125 and Tmax = 25
with a maximal punctuality reduction of 2.9% at costs of 72284,10
(light grey shaded area in the left plot in Fig. 2). This setting causes
additional costs of more than 15% (cf. right plot in Fig. 2). On the other
hand, the cost optimal parameter setting (Pmax = 50, Tmax = 75, (light
grey shaded area in the right plot in Fig. 2) results in a punctuality
collapse of around 20%. It is therefore not possible to find a parameter
setting for h that satisfies both goals costs minimisation and punctu-
ality preservation to the maximal extend at the same time.

For both reasonable tradeoff parameter settings (100,50) and (75,50)
we observe a significantly higher punctuality decrease (compared to the
punctuality preserving setting) or quite enlarged costs (compared to the
cost optimal setting).
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Fig. 2. Scenario II (α = 3): Punctuality decrease (left) and costs (right)

In contrast, SDAD performs very well. It comes along with an ac-
ceptable punctuality decrease of only 5.7% which is better than the
performance of the two trade-off proposals (dark gray shaded areas in
Fig. 2). The costs resulting from the application of SDAD are only
63888,7 which is a significant reduction of the costs compared to the
two proposed trade-off parameter settings.

5 Conclusions and Outlook

We have shown that the adaptive definition of an objective function
supports the achievement of a good trade-off between service quality
and service costs in a volatile environment. Further research activities
are dedicated the identification of the right key indicators to be used
to derive the right adaptation decisions.
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Summary. Firms produce some of their products utilizing Make-To-Order
(MTO), some utilizing Make-To-Stock (MTS) another some Hybrid sys-
tem.The present study examines a novel hybrid method for improving the
usability of SWOT (Strengths, Weaknesses, Opportunities and Threats) and
ANP (Analytic Network Process). SWOT analysis is always carried out
regarding environmental and internal criteria. Although outer dependence
of corresponding factors is inevitably taken into account, inter-dependence
among the factors is seldom addressed. This criterion makes ANP more pow-
erful than AHP . However, due to the complexity and uncertainty involved in
real world decision problems, it is sometimes unrealistic or even impossible to
require exact judgments. Therefore Fuzzy Analytic Network Process (FANP)
are integrated with SWOT analysis.

Key words: Make-To-Order; Make-To-Stock; SWOT analysis; Analytic Net-
work Process; Fuzzy sets theory.

1 Introduction

A manufacturing system can be defined as an arrangement of tasks or
processes to transform a selected group of raw materials or semi-finished
products into a set of finished products. From the viewpoint of the
relationship between production release and order arrival, production
systems can be classified into Make-To-Stock (MTS) and Make-To-
Order (MTO) or Hybrid one. For a make-to-stock system, finished or
semi-finished products are produced to stock according to forecasts of
the demands. In a make-to-order system, work releases are authorized
only in accordance with the external demand arrival.
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The literature on the issue of MTS versus MTO goes back to the
1960s when Popp [1] proposed a simple single-item stochastic inventory
model with zero lead-time for production or replenishment of an item.
Simple cost comparisons of making the item to stock versus making it
to order were presented. Sox et al. [2] also addressed a similar problem
where some items are MTS and some MTO, with demand for MTO
items to be satisfied within a certain time interval. They considered
more complex scheduling policies.

In recent years, Rajagopalan [3] has suggested a non-linear inte-
ger program with service level constraints and heuristic procedures to
solve MTS/MTO partitioning problem. Soman et al. [4] have discussed
about a comprehensive hierarchical planning framework that covers
the important production management decisions to serve as a starting
point for evaluation and further research on the planning system for
MTO/MTS situations.

In this study, a new methodology, “Fuzzy ANP-SWOT” is proposed
to decide whether an item should be produced in MTO, MTS or Hy-
brid MTS-MTO environment. The combination of Analytic Network
Process with SWOT analysis is a novel approach in strategic decision-
making process.

2 Identifying Product, Firm and Process Considering
External and Internal Environments

At first characteristics of product, firm and process considering inter-
nal and external factors which directly affect on the strategy chosen for
producing the product should be identified. These factors are as follows:
Product-related criteria (Cost of each item, Risk of obsolescence and
perishability, etc.) and firm and process related criteria (Human re-
source flexibility, Equipment flexibility, Delivery lead-time, Return of
investment, Customer commitment, Supplier commitment, etc.).

3 Application of Fuzzy ANP-SWOT Methodology

The first step involves identifying key factors that influence the decision
(SWOT analysis is carried out). So Prior to the application of ANP
which is a Multi Criteria Decision Making (MCDM) technique, Factors
in each group of SWOT should be identified. The steps of proposed
methodology are as follows:
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Step 1. SWOT analysis is carried out : The relevant factors of the
external and internal environment are identified and included in SWOT
analysis with considering mentioned criteria.

Step 2. Identification of network structure and its relationship: In
this step, we should construct a network with Strength, Weakness, Op-
portunity, and Threat at the top level. They are classified in a category,
which is named determinants. In the ANP model, the higher the level,
the more encompassing or strategic the criteria. Hence, SWOT form
the upper level of the ANP model. Each determinant includes some
factors or criteria derived from SWOT analysis. In the network, all
outerdependence and interdependence should be illustrated

Step 3. Pair-wise comparison of determinants: In this step, a se-
ries of fuzzy pair-wise comparisons are made to establish the relative
importance of determinants in achieving the objective.

Step 3.1. Establish fuzzy judgment matrix : This matrix represents
the relative performance (importance) of determinants. It is not possi-
ble to make mathematical operations directly on linguistic values. This
is why; the linguistic scale must be converted into a fuzzy scale. Fuzzy
judgment matrix can be expressed as: Ã = (Ãij)n×n.

Step3.2. Establish the total fuzzy judgment matrix with α− cut and
the β degree of satisfaction of experts on judgment : This matrix repre-
sents the degree of satisfaction of the experts on the judgment. In order
to represent the degree of the optimism of a decision maker, α should be
fixed and then the index of optimism β can be set. A larger β indicates
a higher degree of optimism, and vice versa. The index of optimism is a
linear convex combination and is defined as: Aβ

ijα = (1−β)Al
ijα+βAu

ijα.
Thus the total fuzzy judgment matrix with α− cut and index of opti-
mism β leads to the crisp pair-wise comparison matrix which we use in
the next steps. It can be expressed as: A = (Aβ

ijα)n×n.
Step 4. Alternative methods for weights calculation
Step 4.1. Eigenvalue method : Matrices are not always perfectly con-

sistent and contain inconsistency. When contains inconsistencies, the
estimated priorities can be obtained by using the eigenvalue technique:

(Aβ
α − λmaxI)W = 0 (1)

Where λmax is the largest eigenvalue of matrix Aβ
α, I is the identity

matrix, and W constitutes the estimation relative priorities.
Saaty [5] has shown that λmax of a reciprocal matrix A is always

greater or equal to n (number of rows or number of columns). The
more consistent the comparisons are, the closer the value of computed
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λmax is to n. Based on this property, a consistency index, CI, has been
constructed which is reflected in the following equation: CI = λmax−n

n−1 .
CI estimates the level of consistency with respect to a comparison

matrix. Then, because CI is dependent on n, a consistency ratio CR
is calculated which is independent of n (CI = CI

RCI ). It measures the
coherence of the pair-wise comparisons. To estimate CR, the average
consistency index of randomly generated comparisons, RCI, has to be
calculated. RCI varies functionally, according to the size of the matrix.
As a rule of thumb, a CR value of 10% or less is considered acceptable.

Step 4.2. An approximate method : Since using eigenvalue method
is rather difficult, In order to find the priorities from the pair-wise
comparison matrix, we use an alternative method:

ψj =
n∑

i=1

Aβ
ijα ∀j (2)

Aβ
αnorm = (

Aβ
ijα

ψj
)n×n (3)

∑n
j=a Aβ

ijα/ψj

n
= wi ∀i (4)

Step 5. Fuzzy Pair-wise comparisons of SWOT factors: These fac-
tors in each SWOT group are compared and their relative priorities are
calculated as in Steps 3, 4. In this step, the fuzzy pair-wise compari-
son of factors at each level is conducted with respect to their relative
influence towards their control criterion.

Step 6. Fuzzy Pair-wise comparison matrices for interdependencies:
In this step, pairwise comparisons are made to capture interdependen-
cies among the factors. For example suppose in Opportunity group, O1

is controlling factor over other factors. In the formation of this table,
the question asked to the decision-maker is: “when considering O1 with
regard to Opportunity determinant, what is the relative importance of
factor O2 when compared to factor O3?”

Step7. Fuzzy Pair-wise comparison of Alternatives: The final set of
pair-wise comparisons is made for the relative impact of each of the
alternatives (MTS, MTO, and Hybrid) on the factors in influencing
the determinants.

Step8. Super-matrix formation: The super-matrix allows for a res-
olution of interdependencies that exist among the factors. The super-
matrix M, presents the results of the relative importance measures for
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each of the factors. The elements of the super-matrix have been im-
ported from the pair-wise comparison matrices of interdependencies.
In the next stage, the super-matrix is made to converge to obtain a
long-term stable set of weights. For convergence to occur, the super-
matrix needs to be column stochastic. Convergence happens when there
is no significance difference between matrix elements of two consecutive
steps.

Step 9. Calculation of Overall Weighted Index (OWI) and selection
of the best alternative: Selection of the best alternative depends on the
values of Overall Weighted Index for each alternative. These values are
computed by [6]: OWIi =

∑A
a=1

∑ka
k=1 CaA

D
kaA

I
KaSika.

In this equation Ca is the relative importance weight of determinant
a which is computed in step 3. AD

ka is the relative importance of factor k
in influencing determinant a for the dependency (D) relationships and
is derived from step 5. AI

ka is stabilized (after convergence) importance
weight of the factor k in the determinant a cluster for interdependency
(I ) relationships. This parameter is calculated through steps 6 and 8.
Sika is the relative impact of alternative i on factor k for determinant a.
The number of determinants is denoted by A and the number of relative
factors of each determinant is symbolized by Ka. The summation of
parameters’ product for each alternative provides the value of Overall
Weighted Index of corresponding alternative (OWIi). OWIi shows the
total weight of each alternative (MTS, Hybrid MTS/MTO and MTO)
and as result the alternative with greater OWI is chosen as a production
strategy for the new product.

4 Illustrative Case Study

This case concerns a food processing company that wants to make a new
product. The question is which production strategy should be adopted
to produce the new product? Make-to-Order, Hybrid MTS/MTO or
Make-to-Stock? The project team members analyzed all data; they fi-
nally came into three SWOT factors in each group which affect the
decision on MTS or MTO or Hybrid MTS/MTO application.

By applying Steps 1-9 in Section 2, the performance of different
producing systems under different level of α and optimism index β are
calculated and shown in Figure 1. The results are variant depending
on the values of α and β. In the following figure the number 0 on the
vertical axis indicates that we should employ MTS system, the number
1 indicates that we should employ Hybrid MTS-MTO and the number
2 indicates that we should employ MTO system.
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Fig. 1. The performance of different producing systems under different level
of α and optimism index β

5 Conclusion

In this study, a novel hybrid methodology is utilized in MTO/MTS
manufacturing systems for partitioning the MTO/MTS products. Mak-
ing decision on producing an item under MTS, Hybrid MTS/MTO or
MTS strategy in such companies is an important and strategic process.
Fuzzy ANP-SWOT approach is proposed as a strategic decision-making
methodology for partitioning the products.
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