
Chapter 4
Content Delivery and Management

Claudia Canali, Valeria Cardellini, Michele Colajanni and Riccardo Lancellotti

4.1 Introduction

The Web has evolved in the last decade from a mean to distribute content with
marginal interest to a major communication media, where critical content and ser-
vices are delivered to the users. This success was mainly driven by the concerns of
content providers about the user-perceived performance of content delivery. When
high availability, scalability, and performance are required, a common solution for
content providers is to exploit third-party services to improve the performance
of content and service delivery. The technical goal of Content Delivery Network
(CDN) providers is to guarantee adequate delivery performance even when the in-
coming request load is overwhelming for the content provider alone.

CDNs have been originally proposed to primarily distribute static Web content
and some limited streaming audio/video content over the Internet. First-generation
CDNs were designed primarily to ease network congestion caused by the delivery
of static Web pages through congested public peering points. However, the current
context for content delivery is very different from that of the inception of these in-
frastructures, which date back to almost 10 years ago. Indeed, the Web scenario is
currently characterized by an increased sophistication and complexity in delivered
content. Modern Web contents are often dynamically generated and personalized
according to the user preferences and needs. Traditional content delivery technolo-
gies designed for static content are not able to meet the new needs, as there are
inherent challenges and limitations in the delivery of dynamic content that need to

Claudia Canali
University of Modena and Reggio Emilia, 41100 Modena, Italy, e-mail: claudia.canali@unimore.it

Valeria Cardellini
University of Roma “Tor Vergata”, 00133 Roma, Italy, e-mail: cardellini@ing.uniroma2.it

Michele Colajanni
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: michele.colajanni@unimore.it

Riccardo Lancellotti
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: riccardo.lancellotti@unimore.it

R. Buyya et al. (eds.), Content Delivery Networks, 105
c© Springer-Verlag Berlin Heidelberg 2008



106 C. Canali et al.

be overcome. In the last years, CDN started to evolve towards the support for the
delivery of dynamically generated content, allowing the content providers to exploit
the benefits of CDNs for modern Web applications and services.

This chapter explores the issues of content delivery through CDNs, with a spe-
cial focus on the delivery of dynamically generated and personalized content. We
describe the main functions of a modern Web system and we discuss how the de-
livery performance and scalability can be improved by replicating the functions of
a typical multi-tier Web system over the nodes of a CDN. For each solution, we
present the state of the art in the research literature, as well as the available industry-
standard products adopting the solution. Furthermore, we discuss the pros and cons
of each CDN-based replication solution, pointing out the scenarios that provide the
best benefits and the cases where it is detrimental to performance.

The rest of this chapter is organized as follows. Section 4.2 provides some back-
ground material, presenting the logical layers of a Web system for delivering dy-
namic and personalized content and classifying the main caching and replication
solutions for the logical layers. Sections 4.3, 4.4, and 4.5 discuss in details how the
logical layers can be mapped over the nodes of a CDN in order to accelerate the de-
livery of static and dynamic resources. Section 4.6 discusses the issues related to the
management and replication of user profile information over a distributed delivery
infrastructure. Finally, Sect. 4.7 concludes the chapter with some final remarks and
outlines the open research directions.

4.2 Systems for Web Content Delivery

In this section, we provide some background material on the architecture of the
systems employed to generate and deliver Web content. We first review in Sect. 4.2.1
the logical layers of a multi-tier Web system; we then describe in Sect. 4.2.2 the
architecture and the main functionalities of a CDN. Finally, in Sect. 4.2.3 we classify
the caching and replication approaches for the logical layers of a Web system that
can be employed by CDNs to accelerate the generation and delivery of dynamic and
personalized content.

4.2.1 Logical Layers of a Web System

The large majority of modern Web systems is based on a multi-tier logical archi-
tecture, that separates the HTTP interface, the application (or business) logic, the
data repository and, when existing, the user-related information for authentication
and content personalization. These logical architecture layers are often referred to
as front-end, application, back-end, and user profile layers [8]. Figure 4.1 shows the
structure of a typical system providing Web-based services. We recognize the logi-
cal components of the system and the fundamental interactions between the layers.



4 Content Delivery and Management 107

Fig. 4.1 Logical layers of a
Web system

The front-end layer is the interface of the Web-based service. It accepts HTTP
connection requests from the clients, serves static content from the file system, and
represents an interface towards the application logic of the middle layer. The deliv-
ery of static content is a straightforward operation. A static Web content is typically
stored in a file system and client requests for this type of content are managed by
the HTTP server, which retrieves the resources from the file system and sends them
back to the client in HTTP responses.

Examples of static content that are handled by the front-end layer are:

• Web objects embedded in a Web page. Typical embedded objects are images,
style sheets, and active components such as flash animations, Java applets, and
ActiveX controls.

• Multimedia content. Audio and video streams are static content handled by the
front-end layer. To allow a smooth consumption of multimedia content by
the client, the common approach is to rely on HTTP streaming, that is to divide
the resources into chunks of data that are delivered in sequence to the client. The
client can start the playback as soon as the first data chunk has arrived, without
waiting for the delivery of the whole resource [26].

• Page fragments. They are portions of a Web page with a distinct theme or func-
tionality [14]. Each fragment is considered as an independent information entity.
For example, the page of a Web portal is typically described as composed by
fragments such as latest news, feature articles, link bars, and advertisements.
The use of fragments in the management of static content aims to improve the
re-usability of Web content, because some fragments are common to multiple
pages. However, when fragment-based management of static content is used, the
front-end layer is also responsible for the assembly of fragments to build the Web
page prior to its delivery to the user.



108 C. Canali et al.

The application layer is at the heart of a Web-based service: it handles all the busi-
ness logic and computes the information which is used to build responses with dy-
namically generated content. Content generation often requires interactions with the
back-end and user profile layers: hence the application layer must be capable of in-
terfacing the application logic with the data storage of the back-end and must be
able to access the user profile when personalized content needs to be generated. Dy-
namic content is generated on-the-fly as a response to client requests. Examples of
dynamic content generated by the application layer are:

• Answers retrieved from an organized source of information, such as the shopping
cart page or searches in an e-commerce site.

• Web content generated dynamically to separate the content from its represen-
tation. For example, content management systems1 or XML-based technolo-
gies [47] provide mechanisms for separating structure and representation details
of a Web document. In these systems, the content (even when its lifecycle is
relatively long) is generated dynamically from a template on-the-fly. The bur-
den of dynamic data generation, that requires a computational effort due to data
retrieval from databases, (optional) information processing and construction of
the HTTP output, is outweighted by the convenience of handling data through
software specifically designed to this aim, such as a DBMS.

• Web content generated by user social behavior. For example, the pages of forums
or blogs provide an exchange place for messages written by the Web users.

The back-end layer manages the main information repository of a Web-based ser-
vice. It typically consists of a database server and storage of critical information that
is a source for generating dynamic content. If we refer to the examples of dynamic
content generation from the application layer, we can identify the following data
repositories:

• In the case of an e-commerce site, we use a database for storing the product lists,
accessed for searching in the product catalog. Furthermore, also the user interac-
tions are managed using a database for shopping cart status or list of purchases.

• In the case of a content management system, the dynamic generation of content
accesses the database to retrieve both the Web page templates and the actual
contents during the generation of Web resources.

• For Web sites such as blogs or forums, articles, comments, and posts are typically
stored in a database.

The user profile layer stores information on the user preferences and context [16].
This information is accessed in the generation of dynamic content to provide per-
sonalized content. The information stored in the user profile may be originated from
multiple sources such as:

• Information supplied by the user, that is usually provided through a fill-in form to
add/edit user preferences. This profile communication may occur when the user
registers itself for the access to a Web-based service or may be filled/modified
later.

1 For a list of the most popular CMS software, the reader may refer to http://www.cmsmatrix.org.



4 Content Delivery and Management 109

• Information inferred from the analysis of user behavior that is typically obtained
from data mining of Web logs [20, 21, 27]. Typical examples of Web-based ser-
vices that rely on information gathered through data mining are the recommen-
dation systems for e-commerce [27] or the advertisements tailored on the user
preferences.

4.2.2 A Simplified CDN Architecture

A CDN’s architecture aims to achieve high performance and scalability by lever-
aging the principle of replicating the system resources (that is, the Web servers) to
guarantee a high level of performance in the service of a huge amount of content.
Replication occurs both at local and geographic level. In the case of local replication
of system resources, the servers used for the service of user requests are tightly con-
nected. They are placed on the same LAN and usually share a single upstream link
connecting the system to the rest of the Internet. The common term to describe such
a system is cluster. Servers within a cluster provide increased computing power
thanks to the replication of system resources. They can interact in a fast and ef-
fective way [11]. Moreover, the replication may improve fault tolerance because a
faulty node can be easily bypassed.

LAN-based systems have many pros, but they have scalability problems related
to efficient generation and delivery of resources when the Web site is highly popular.
The first problem that affects replication on a local scale is the so called first mile,
i.e. the network link connecting the cluster to the Internet. This link can represent
the system bottleneck for the end-to-end performance; moreover, it is a potential
single point of failure. Traffic on the Web-based cluster zone, failures on an external
router, and Denial-of-Service (DoS) attacks may cause the service to be unreachable
independently of the computational power of the cluster platform. When better scal-
ability and performance are needed, it is useful to replicate some elements of the
infrastructure over a geographic scale.

A simplified view of a CDN’s geographically distributed architecture is shown
in Fig. 4.2. We distinguish two types of servers in a typical CDN, namely, edge
servers and the core server [18, 36]. Edge servers are replicated on the so-called
network edge, which means that these servers are as close as possible to the clients,
typically in the Points of Presence (POP) of multiple Interner Service Providers
(ISPs), and are mainly responsible for the interaction with clients. Client requests
are typically diverted from the origin server to the edge server by means of DNS-
based redirection [12, 36]. This approach is based on modified DNS servers that
resolve queries for the site hostname with the IP address of a suitable edge server
(the algorithm used to detect the most suitable edge server is usually complex and
takes into account geographic and network distance, network link and edge server
status).

The core server is a logical entity that handles the functions that are related to
the management of the infrastructure, coordination of request distribution policies,



110 C. Canali et al.

Fig. 4.2 A simplified CDN architecture

and billing. It can be implemented as a single powerful server or, more often, as a
multi-cluster, that is a set of clusters that cooperate and behave like a single virtual
computer with high availability and computational power.

4.2.3 Accelerating Content Generation and Delivery

The trend of Web evolution towards an ever increasing demand of scalable and high
performance content delivery requires the content provider to rely on CDNs. On the
other hand, CDNs should develop techniques to accelerate the delivery of content
on behalf of the content provider.

To analyze how a CDN can accelerate the delivery of Web content and applica-
tions, we focus our attention on the origin server and on the edge servers, that are
the elements of the Web infrastructure most involved in the content delivery process.
The directions to address scalability and performance issues are the classical two:
caching and replication. Indeed, CDNs replicate some logical layers of the origin
server on their edge servers. Since we have four logical levels in the Web system,
we envision four mapping approaches, as illustrated in Fig. 4.3.

• Replication of front-end layer. The edge server is responsible only for the
management of static content. This approach is typical of the first generation
of CDNs, where the edge servers, called surrogate servers, behave like reverse
proxies to accelerate the delivery of content that can be stored at the file sys-
tem level [36, 49]. The replicated Web content may be whole Web objects, for
example when a CDN is used for delivering embedded objects or multimedia
resources, or the replication may consider a more fine-grained approach, repli-
cating Web fragments [14].

• Replication of application layer. A CDN is used to improve the delivery perfor-
mance of dynamically generated content. This approach, called edge computing



4 Content Delivery and Management 111

Fig. 4.3 Possible mapping of Web system logical layers on a CDN infrastructure

[44], moves Web application programs or components directly on the edge
server [18, 37] with the aim of generating dynamic Web content close to the
clients.

• Replication of back-end layer. The edge server provides both the functions for
generating dynamic content and hosts data involved in the content generation.
The origin server (or the core server of the CDN) is only responsible for the
management of the infrastructure and acts as a master copy of the data.

• Replication of user profile layer. The edge server hosts also the data repository
used for the generation of personalized content [42].

4.3 Front-End Layer Replication

The replication of the front-end layer aims to improve performance and scalability
in the delivery of static content, as shown in Fig. 4.4. Such content is cached on the
CDN edge servers. Moving the delivery of static content on the network edge ad-
dresses scalability issues, because it avoids the risk of network congestion in peer-
ing points and WAN links, that provides a major contribution to network-related
delays [36].

Accelerating the delivery of static content using a third-party infrastructure is
a common approach for improving the performance of content delivery, and dates
back to the first generation of CDNs, such as the Adero CDN or the Akamai media
delivery service [2]. However, delivery of this content is still a critical task, due
to the growing amount of rich-media content [50] that is becoming a significant
fraction of Web traffic. Moving the delivery of such media content close to the
clients may have an important benefit for two reasons. First, due to the large size



112 C. Canali et al.

Fig. 4.4 Replication of the
front-end layer on the edge
server

of these content, network-related delays at peering points may have a significant
impact on the user-perceived performance. Second, due to the techniques of HTTP
streaming, which is commonly used, reducing the variance in delivery time results
in smoother playback [26].

Due to the large size of multimedia content, it is common to cache on the edge
server only the most popular fraction of each multimedia content instead of storing
the whole resource (this is usually referred as segment caching) [15, 25], as shown
in Fig. 4.4. The popularity of each fragment within a multimedia resource depends
on the user access patterns. In the case of sequential access, the common approach
is to rely on sequential caching, that is storing the first part of the resource to reduce
buffering time. On the other hand, when the access patterns involve a significant
amount of seek operation within the media, different caching techniques, such as
interleaved caching, may be more effective [25].

The approach of dividing streaming content into segments has been proposed
also for Web resources, in the case of the delivery of Web content assembled from
fragments (represented among the cached resources in Fig. 4.4). This solution re-
quires more effort from the edge server, because the front-end layer must include
the functions for the separate caching and the assembly of fragments. Being an
independent information entity, each fragment can have its own cacheability profile,
which describes the ability to cache it and its Time-To-Live (TTL), thus allowing to
manage the content freshness and lifetime at a fragment granularity rather than at
the Web page level.

Upon a user requests the Web page (template), the edge server examines its cache
for the included page fragments and assembles the page on-the-fly. Only those
fragments either stale or deemed impossible to cache are fetched from the origin
server. Therefore, using fragment-based caching and dynamic assembly on the edge
servers, the origin server obtains two advantages: first, it does not have to assemble
the page; second, it is typically required to deliver only a small fraction of the page,
corresponding to stale or non-cacheable fragments. As regards the user-perceived
performance, fragment-based caching has been proved to be effective in improving
response time by serving most of the resources that comprise a dynamically gen-
erated page at the edge of the Internet, close to the end user [38, 51]. Furthermore,
fragment-based caching has also beneficial effects on the edge servers. Indeed, it im-
proves the disk space utilization because fragments that are shared across different



4 Content Delivery and Management 113

Web pages need to be stored only once; furthermore, it reduces the amount of inval-
idation at the edge server, because only those parts of the Web page that expire need
to be invalidated.

The common standard for fragment-based caching is represented by Edge Side
Includes (ESI) [19], which is an XML-based markup language that enables to distin-
guish via XML cacheable and non-cacheable content. The content provider designs
and develops the business logic to form and assemble the pages by using the ESI
specification within its development environment. Besides the primary functional-
ity for including fragments within a page (even in a conditional way), the other key
functionalities provided by ESI include the support for handling exceptions due to
fragments unavailability and the support for explicit invalidation of cached frag-
ments in such a way that it guarantees a stronger consistency than that provided by
a TTL-based mechanism [19, 29].2

Fragment-based publishing and caching of Web pages have been adopted by
companies and commercial products, including the EdgeSuite network of Aka-
mai [2] based on the ESI specification and IBM’s WebSphere Edge Server [28].
A large-scale deployment of a Web publishing system based on the fragment-based
approach and compatible with ESI has been presented by Challenger et al. in [14].
This system is able to construct complex objects from fragments and has been de-
veloped to handle major sporting events at Web sites hosted by IBM. The authors
also addressed the problem of detecting and updating all Web pages affected by one
or more fragment changes. The proposal is to adopt different algorithms based on
graph traversal that can be used according to the consistency requirements. A com-
parative study of four different offloading and caching strategies at the edge servers
has been conducted by Yuan et al. in [51] using a representative e-commerce bench-
mark. Their results show that a simple strategy of offloading the functionality of
composing Web pages from fragments can be very effective in terms of latency and
server load reduction.

Most edge servers that support fragment-based caching do not provide any sup-
port for cooperation among the individual edge caches, i.e. these are treated as com-
pletely independent entities. This limitation does not allow to take full advantage of
the potential caching capabilities of the edge servers that can be exploited through
cooperation. Some effort toward this direction has been taken in the Akamai Edge-
Suite network, which however includes only a limited cooperation among its edge
servers. A recent work by Ramaswamy et al. [39] has addressed some significant
challenges in designing a large-scale cooperative network of edge servers. Their
proposal presents low-cost cooperative techniques based on dynamic hashing-based
document lookup and update protocols and considers also how to provide failure
resilience of individual edge servers.

The major drawbacks of the fragment-based solution are related to its applica-
bility with respect to the type of dynamic content being delivered and to the task
of fragmenting a Web page. Indeed, fragment-based caching can be effectively ap-
plied if the stream of requests is characterized by a high locality and if updates in

2 For an analysis of cache consistency mechanisms in CDNs, the reader may refer to Chap. 5 of
this book.



114 C. Canali et al.

the content of the origin server are not frequent. This condition ensures that the
fragment cacheability profiles are sufficient for managing the content freshness,
thus relieving the origin server from the task to explicitly invalidate cached frag-
ments. Furthermore, this technique suffers from lack of transparency, since caching,
fragmentation, and assembling should be implemented on a per-application basis.
For example, ESI requires a complete revision of the Web page code, because ESI
code must be added over the original code, and its performance is dependent on
the page structure. This manual identification and markup of page fragments is also
hardly manageable for edge servers which deliver content from multiple providers.
To overcome the manual fragmentation of Web pages, in [38] Ramaswamy et al.
have proposed a scheme to automatically detect fragments in a Web page. Their ap-
proach depends upon a careful analysis of the dynamic Web pages with respect to
their information sharing behavior and change patterns.

4.4 Application Layer Replication

A performance bottleneck in CDNs that replicate only the front-end layer is rep-
resented by the application layer in the origin server, which is responsible for the
generation of dynamic content according to the Web application logic. Replication
of application layer, commonly known as edge computing [18, 45], aims to improve
the delivery of dynamically generated content by offloading this task from the ori-
gin server. The application code is replicated at multiple edge servers, while the data
layer is still kept centralized. The computation is pushed to the edge of the network,
as illustrated in Fig. 4.5.

In edge computing, each edge server has a full copy of the application code
while the back-end layer is still centralized in the origin server, i.e. the edge servers

Fig. 4.5 Replication of the
application layer on the edge
server



4 Content Delivery and Management 115

continue to share a centralized database. By pushing the computation task to the
edge of the network, the load on the origin server can be reduced and the CDN
can achieve better efficiency and performance and higher availability with respect
to the front-end only replication approach, where the application and data layers are
centrally managed.

We can identify two architectural solutions depending on the ability of the edge
server to distinguish between transactional and non-transactional requests. A trans-
actional request is an atomic set of database operations that usually involve lock
on part of the database and perform some update to the database records, while
non-transactional requests have a read-only behavior on the data. If the edge server
cannot distinguish the type of request, the Web server at the edge server forwards
all requests to its local application layer, where they are executed. The local ap-
plication logic then makes calls for database access to the centralized data layer
located in the CDN core. Otherwise, if the edge server is able to distinguish be-
tween transactional and non-transactional requests, the edge server redirects only
non-transactional requests to the local application layer, while transactional requests
are directly forwarded to the application layer at the origin server, that then executes
the transaction and accesses the centralized database.

In the application replication approach, the CDN core typically plays a coordi-
nator role, being in charge for migrating and/or replicating the applications on the
edge servers and keeping track of the replicas. It can be also responsible for main-
taining the application replicas consistent with the primary copy. The CDN core
may accomplish this functionality using a simple server-based invalidation that is,
updating the application on the edge servers when the developer changes the primary
copy.

Edge computing has been proposed and applied in a variety of commercial
products and academic projects. For example, it is the heart of the EdgeComput-
ing product from Akamai [3], which hosts customer-supplied J2EE components on
edge-side application servers. Akamai EdgeComputing employs a two-level model
for replicating the application layer: JSPs and servlets that contain the presentation
logic are deployed on the edge servers of the Akamai network, while the business
tier components that are tightly coupled with back-end applications or a database
typically remain in the CDN core at the origin server.

Process migration issues have been addressed by many years of research; an
example of complex system that could be employed in the CDN context is vMa-
trix [9], which migrates the entire dynamic state of the application from one server
to another. However, Web applications do not require a real application migration at
an arbitrary time but only at request boundaries [37]. Therefore, a significant sim-
plification applicable in the CDN context is the automatic deployment of the appli-
cation at the edge servers. ACDN (where the acronym stands for Application CDN)
by Rabinovich et al. [37] is an application distribution framework that exploits this
concept of automatic deployment; the application is dynamically replicated by the
central coordinator on the basis of the observed demand. The framework implemen-
tation is based on a meta-file, which contains the list of the files comprising the
application and an initialization script.



116 C. Canali et al.

The DotSlash framework by Zhao and Schulzrinne [52, 53] is another academic
project that adopts a dynamic script replication technique to manage dynamic con-
tent. DotSlash was not designed for large-scale CDNs, but it rather provides a sys-
tem to handle sudden load spikes that affect the performance of Web sites through
the dynamic provisioning of rescue servers which act as caching proxies.

The application layer replication is characterized for enabling the customization
of concrete and specific applications. The application replication approach is neither
generic nor transparent. Indeed, it requires customization on a per-application basis,
because a manual configuration is needed to choose the components to be offloaded
and where to deploy applications. For example, in ACDN [37], applications can be
deployed and re-deployed dynamically, but manual administration is still involved,
such as creating the meta-file for each application that has to be replicated. This
application customization increases substantially the total cost of ownership, and
it is prone to codification errors. Some effort for automatically deciding how to
replicate Web applications has been proposed in [33]. However, these studies are
mainly focused on a small scale scenario and may be not suitable for a large scale
CDN, with tens of thousands of edge servers.

Further disadvantages of the application layer replication approach steam from
keeping the data centralized at the origin server. This architectural choice determines
two drawbacks. First, if the edge servers are located worldwide, as in large-scale
CDNs, then each data access incurs a WAN delay; second, the centralized database
may quickly become a performance bottleneck, as it needs to serve all database
requests from the whole system. Therefore, the application replication solution is
suitable only for those Web sites that require few accesses to the centralized database
in order to generate the requested content.

The remaining approaches discussed in the next section aim to mitigate the cen-
tralized data layer bottleneck, which limits the overall CDN scalability. Therefore,
the further steps in offloading the functionalities of the origin server to the edge
servers exploit caching and replication techniques for the data layer.

4.5 Back-End Layer Replication

The edge computing approach may not solve every scalability problem, since in
some Web applications the bottleneck lies in the back-end layer [13] instead of the
application layer. In this case, scalability issues can be addressed by assigning to
a third party (i.e. a CDN) the management of application data. A CDN provides
answers to the queries of the application layer hosted by the edge servers on behalf
of the back-end tier of the origin server.

The available solutions for replicating a data storage have been widely studied in
the context of databases [23]. In this chapter, we will limit the scope of our analysis
to the replication of data in the back-end layer of a Web system. In this scenario,
the available approaches are summarized in [43]: the replication of the data stored
in the back-end layer may be complete or partial, as illustrated in Fig. 4.6. The



4 Content Delivery and Management 117

Fig. 4.6 Replication of the back-end layer on the edge server

partial replication of data can be obtained by exploiting a caching mechanism of
the most popular queries to the data storage (Content-Blind Caching) or by actively
replicating portions of the back-end data, selected on the basis of usage patterns,
network, and infrastructure status [44] (Content-Aware Caching).

We anticipate that there is no clear winner among these alternatives, due to the
different access patterns of the Web application to the database. Indeed, a work by
Gao et al. [22] propose different replication strategies depending on the nature of
the Web applications considered.

4.5.1 Content Blind Caching

When content-blind caching is adopted, edge servers cache the results of previous
queries to the database. In such a way, the server may process locally future identical
or similar queries, thus improving performance and relieving the load on the origin
server back-end layer.

The approach of caching query results to replicate the back-end layer is highly
popular. For example, the GlobeCGC [40] system explicitly aims to cache queries
on the edge servers of a geographically distributed systems such as a CDN. Recently,
the idea of dynamically replicating the back-end tier using a query cache to improve
scalability has been proposed. For example, the QCache module of the DotSlash
framework [53] proposes an agreement of cooperating Web sites that can temporar-
ily enable a distributed query cache facility to alleviate the overload conditions in
case of unexpected traffic surges.

The effectiveness of the query results caching depends on the achievable cache
hit rate. To improve the amount of queries that can be serviced accessing the query
cache, the characteristic of content blindness of the caching mechanism may be
relaxed. To this aim, sophisticated query matching engines can be used so that a new



118 C. Canali et al.

query can be answered using a union of already cached queries instead of contacting
the origin server. Support for this enhanced query matching engine is a distinctive
feature of DBproxy [4]. An efficient way to merge cached queries has been proposed
in [30], where each query contributes to populate an (initially empty) copy of the
original back-end database. DBCache [10] supports database caching at the level of
tables, allowing to cache at the edge node either the entire content or a subset of the
tables of the centralized database server.

Caching mechanisms should guarantee consistency of the cached data. Since
a traditional TTL-based approach is not suitable for every Web application, some
specific consistency enforcing mechanism has been proposed. For example, Olston
et al. rely on a multicast messaging system to ensure that invalidation messages are
sent to every query cache [32], while Tolia et al. [48] use hash functions to guarantee
that no stale data are served from the cache.

The query-caching support on the edge server is an important feature that is avail-
able in multiple commercial products, including BEA WebLogic and IBM Web-
Sphere. In particular, IBM WebSphere supports query caching through the so-called
Materialized Query Tables. A materialized query table (MQT) is a table that mate-
rializes the pre-computed result of a query involving one or more tables. After the
MQT is created and populated, an arbitrary subsequent query may be satisfied by
the MQT, if the MQT matches all or a part of the query. A similar feature is provided
by BEA WebLogic by means of EJBs.

Even if some consistency enforcing mechanism is adopted, the network layers
on the geographic infrastructure can lead to hosting data at the edge servers that are
stale with respect to the current state at the centralized data layer. This might not
be a problem for read-mostly scenarios, where the Web applications do not need
transactional semantics. However, for an important class of applications (e.g. when
payment operations are involved) transactional semantics is a must and database
updates are frequent. In these cases, query caching may not be a viable option. Fur-
thermore, database caching techniques are suited only for those applications which
repeatedly issue the same queries to the data layer. For applications which do not
exhibit this temporal locality, it can be more efficient to replicate partially or entirely
the data layer at the edge servers.

4.5.2 Content Aware Caching

In the case of content-aware caching, each edge server runs its own database server,
which contains a partial view of the centralized database. The typical approach for
partial data replication is to push section of the database close to the edge, according
to access patterns. Since the aim is to improve the response time perceived by the
end user, the algorithms for replica placement (such as HotZone) usually include
network latency in the performance model [46].

A significant example of replication mechanism is provided by GlobeDB [43],
that uses partially replicated databases based on data partition to reduce update
traffic. However, this solution relies on one special server, which holds the full



4 Content Delivery and Management 119

database, to execute complex queries. Thereby, it may suffer from scalability be-
cause of the new throughput bottleneck represented by the special server. Glo-
beTB [24] improves the approach of GlobeDB with the goal of not only reducing the
latency but also to increase the throughput of the replicated database. To this aim,
GlobeTP relaxes the need for a single centralized master database, thus avoiding the
risk of bottleneck in the origin server back-end.

As in the case of query caching, also partial database replication may suffer from
consistency problems. Ganymed [35] explicitly addresses the issue of how to guar-
antee data consistency when the replicated back-end tiers are subject to changes
(i.e. when update, delete or insert queries are issued). To this aim, Ganymed sepa-
rates updates from read-only transactions, and routes updates to a main centralized
database server and queries to read-only database copies.

The support for partial replication of databases is also available in multiple com-
mercial products. For example, the mySQL DBMS supports a scheme for partitioning
data among multiple replicas. Similar features have been also introduced into IBM
DB2 and Oracle. However, in most cases partial replication schemes in databases are
designed to manage a local replication of the resources (i.e. database clustering), and
require a centralized manager that handles and distributes queries and transactions
over the database partitions. This approach cannot be directly applied to the context of
large-scale geographical replications, because the presence of a centralized manager
would hinder the scalability of the system. For this reason, most commercial products
rely more on query caching rather than on database replication schemes.

4.5.3 Full Database Replication

Full database replication maintains identical copies of the database at multiple loca-
tions. By moving a copy of the database to the edge servers and keeping the database
copies coordinated among them, it becomes possible to completely deliver dynamic
content at the edge of the network, without the need to modify each deployed appli-
cation. However, the management of database replication introduces severe consis-
tency management problems, that are particularly critical to solve when the client
requests trigger frequent updates on persistent data. This is a well know issue that
the database community has being addressed for a long time.

Traditionally, data replication is achieved through either lazy or eager write
update propagation [23]. In the eager (or synchronous) approach, the coordina-
tion among the replicas occurs before the transaction commits, while in the lazy
approach updates are only propagated after the transaction commits. The eager ap-
proach favors fault-tolerance and offers the same correctness guarantees as a sin-
gle database. However, it suffers from severe limitations regarding performance
and scalability that may render it impractical [23]. On the other hand, the lazy ap-
proach favors performance and scales very well; therefore, commercial replication
products typically use it. However, the lazy approach introduces new problems, be-
cause transactions can read stale data and conflicts between updating transactions
can be detected late, introducing the need for conflict resolution.



120 C. Canali et al.

The simplest solution to manage database replication in Web environments is
based on a centralized primary copy at the origin server and replicated secondary
copies at the edge servers. Read-only transactions can be executed completely at
the edge by accessing the local secondary database copy. However, for transactions
that require updating operations (as in write-mostly scenarios), all database accesses
are redirected to the database primary copy located at the centralized origin server.
The primary database propagates any update to the secondary databases on a regular
basis. A first drawback of this approach is that the edge servers must be aware of the
application semantics, because it has to know whether a request triggers an update or
a read-only transaction. Moreover, in this solution the consistency of the replicated
data is maintained through a lazy update propagation scheme, which presents two
negative effects. First, the data at the edge servers might be stale. Second, a crash
might cause a data loss.

The exploitation of full database replication in the Web environment poses a num-
ber of challenging problems. Indeed, most database replication techniques proposed
up to now assume that the database replicas are interconnected through a LAN. In
recent years, the database community has proposed many replication protocols that
provide both data consistency and good performance in LANs. As we focus on Web
environments, we only mention some works that have addressed database replication
in the context of locally distributed Web systems. The interested reader may also refer
to [31] for a more comprehensive analysis on database replication systems based on
group communications. A lazy replication solution that provides serializability and
throughput scaling through the reduction of the number of conflicts has been proposed
by Amza et al. in [5]; this earlier work has been improved through the introduction
of distributed versioning, which provides strong consistency and avoids deadlock
problems [6]. A recent work by the same authors investigates how to combine query
result caching and cluster replication solutions [7]. A middleware tool that supports
consistent and scalable data replication has been presented in [34].

In a CDN the database replicas are geographically spread in a WAN. If the Web
application generates a significant number of database updates, a large amount of
traffic may overload the wide-area network and impact negatively on performance,
because each update needs to be propagated to all the other replicas to maintain
the consistency of the replicated data. A performance analysis of data replication
techniques that provide strong consistency in wide-area networks through group
communications has been presented in [31]. However, the scalability analysis per-
formed in this work is limited to eight replicas. Therefore, we can conclude that
scalability and performance for database replication in WANs are largely an open
issue that call for further research efforts.

4.6 User Profile Layer Replication

The user profile layer relies on a database for data storage, like the back-end layer.
Hence, the possible solutions for replicating the user profile correspond to that



4 Content Delivery and Management 121

already described in Sect. 4.5. However, the access patterns for this layer are quite
different if compared to the back-end layer.

In particular, the user typically interacts with only one edge server, hence the
profile of a given user is accessed by one edge server for the whole duration of a user
session. This access pattern has a significant impact on consistency and replication
policies. Indeed, the whole dataset of user profiles can be partitioned and distributed
over the edge nodes depending on the user access patterns. Since no replication is
needed, consistency issues are limited to guarantee that the user profiles on the edge
servers are consistent with the data on the origin server. The main approaches to
manage the user profiles are therefore restricted to content blind or content-aware
data caching, because full database replication is clearly unnecessary.

However, it is worth to note that, even if the user accesses only one edge server
for the whole duration of its session, user migration among multiple edge servers
may occur between consecutive session. Therefore, it is necessary to guarantee that
the user profile data migrates following the user, as shown in Fig. 4.7. The sup-
port for this behavior is not explicitly optimized in most replication strategies for
back-end data. Some proposals to handle this profile migration have emerged in
the last years. CONCA [41] is a generic data caching framework that aims to sup-
port user mobility by allowing data to follow the user. This framework has been
extended by the same authors to explicitly support the presence of personal data in
Tuxedo [42].

Besides the replication of user-related information, a further critical operation
that must be carried out by the user profile layer is the actual creation and update of
such information. Currently, the user profile is either manually updated by the user
through Web-based forms or is automatically updated by the Web system on the
basis of the user behavior. The information stored in the user profile and the way to
collect them depends on the Web-based services that are to be deployed. We present
and discuss some significant examples of personalized content generation.

Fig. 4.7 Replication of the user profile layer on the edge server



122 C. Canali et al.

• Generation of personalized content through aggregation of external data sources.
This service is common to multiple personalized portals (e.g. myYahoo, iGoogle)
and provides the user with a personalized news feed, typically retrieved from
heterogeneous sources by means of XML-RSS feeds. The user profile contains
information on which feeds are of interest for the users and about how the person-
alized content is to be presented. The users provide information about the sub-
scription to news feeds and on the preferred presentation layout through filled-in
forms during the registration to the personalized portal.

• Collaborative filtering. This type of service supports the interaction of users pro-
viding feedback on other users or topics. This type of personalized content gener-
ation is often used in recommendation systems that provide suggestions on goods
to purchase, based on analysis of similar user behaviors, or to rank the reputation
of a user in a social network. Information about the user is collected both through
explicit user inputs (e.g. in the case where the user reputation is based on feed-
back from other users) or through implicit information collection, for example by
mining the user purchases to cluster the user population according to pre-defined
profiles [27].

• Location and surrounding-based services. These services generate personalized
content on the basis of the user geographic location. The user position is deter-
mined through the analysis of data-related information or is explicitly supplied
by the user when accessing the service. The user location is compared with geo-
graphic data and the generation and delivery of static and dynamic content (e.g.
queries) is carried out according to the user location and surrounding, possibly
combined with user preferences.

These examples show that, even if some information may be provided explicitly
from the users, a significant fraction of the data stored in the user profiles are inferred
through data mining of log files, cookies, and user click history. With the available
information collection technologies, it is possible to extract interesting information
related to the users including sensitive data, such as political, physical, and sexual
features. Furthermore, most techniques are almost transparent to the users which are
often completely unaware. Unauthorized users information collection occurred in
the last years, for example, by the doubleclick.com commercial advertisement ser-
vice. Several commercial services, including search engines, were associated with
doubleclick.com. The commercial sites used cookies to monitor their visitors activi-
ties, and any information collected were stored in doubleclick.com databases. These
user profiles were then used by doubleclick.com to select the advertisement banners
more suitable for the users.

The examples of misusing personal information raised the interest towards the
issues of whether and how to inform users about personal data collection. Concerns
about privacy due to log data mining and cookie analysis [1] motivate the efforts
of defining novel mechanisms to negotiate what information can be derived from
user behavior and how they are to be used. The Platform for Privacy Preferences
(P3P) [17] is an example of a proposal aiming to address this issue: each site compli-
ant with the P3P standard must provide an XML-encoded description of which data
are collected, how they are managed, and where they are stored. Full compliance



4 Content Delivery and Management 123

with the P3P standard imposes some restriction to the automatic replication of user
profiles, because we must ensure that the adequate level of privacy is guaranteed for
every replica of the user profile.

4.7 Conclusions and Open Issues

The delivery of static and dynamically generated content can be accelerated through
a third party, i.e. a CDN infrastructure, that replicates some of the layers of a Web
system. Throughout this chapter we have analyzed the replication of every logical
layer composing a Web system. For each layer, we have discussed the research pro-
posals in the field of content delivery and we have illustrated how the CDN industry
is leveraging the replication to improve the effectiveness of content delivery. In par-
ticular, our analysis shows that replication of the front-end layer is suitable when
the content provider aims to accelerate the delivery of static, possibly multimedia,
content. When the CDN is used to accelerate the delivery of dynamic content, repli-
cation of the application layer is required. The achievable performance gain from
this approach depends on the access patterns to the data, that may still determine a
bottleneck in the back-end layer for some Web applications, thus forcing the repli-
cation of this latter layer also.

The research field in content delivery presents several open issues that are yet to be
addressed. Indeed, even if some proposals to accelerate the delivery of dynamically
generated content have been made and adopted by the industry, the effectiveness of the
proposed solutions is still highly dependent on the access patterns of the applications.
In particular, the risk of creating a bottleneck in the back-end layer is still one of the
main issues that hinder the scalability of dynamic Web content delivery. This problem
is likely to remain a major issue even in the next years, due to the evolution of Web
content and applications. The Web 2.0 is shifting the Web towards two main trends: an
ever-increasing amount of personalization, and the new Web usage patterns with large
uploadstreams.Personalized(anduncacheable)contentandhighfrequencyofcontent
refresh reduce the effectiveness of caching mechanisms and determine a growth in the
overheaddue todataconsistencyprotocols.Furthermore, thepresenceofpersonaluser
information introduces bounds in the possibility of user profile replication, because
the content provider must preserve the privacy of user sensitive information. The
complexity of the scenario is further increased by the convergence of Web 2.0 with
user mobility, that disrupts access locality due to the migration of users among the
edge nodes. We believe that coping with this evolution will be the next challenge for
CDN operators and researchers studying solutions for content delivery.

References

1. Agostini, A., Bettini, C., Riboni, D.: Loosely coupling ontological reasoning with an efficient
middleware for context-awareness. In: Proc. of Mobiquitous 2005. San Diego, CA (2005)

2. Akamai: (2007). http://www.akamai.com/



124 C. Canali et al.

3. Akamai EdgeComputing: (2007). http://www.akamai.com/html/technology/
edgecomputing.html

4. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data cache for Web
applications. In: Proc. of 19th IEEE Int’l Conf. on Data Engineering, pp. 821–831. Bangalore,
India (2003)

5. Amza, C., Cox, A., Zwaenepoel, W.: Conflict-aware scheduling for dynamic content applica-
tions. In: Proc. of 4th USENIX Symp. on Internet Technologies and Systems (2003)

6. Amza, C., Cox, A., Zwaenepoel, W.: Distributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In: Proc. of ACM/IFIP/Usenix Middleware
Conf. (2003)

7. Amza, C., Cox, A., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: Proc. of IEEE Int’l Conf. on Data Engineering (2005)

8. Andreolini, M., Colajanni, M., Mazzoni, F., Lancellotti, R.: Fine grain performance evaluation
of e-commerce sites. ACM Performance Evaluation Review 32(3) (2004)

9. Awadallah, A., Rosenblum, M.: The vMatrix: A network of virtual machine monitors for
dynamic content distribution. In: Proc. of 7th Int’l Workshop on Web Content Caching and
Distribution (2002)

10. Bornhovd, C., Altinel, M., Mohan, C., Pirahesh, H., Reinwald, B.: Adaptive database caching
with DBCache. IEEE Data Engineering Bulletin 27(2), 11–18 (2004)

11. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed
web-server systems. ACM Computing Surveys 34(2) (2002)

12. Cardellini, V., Colajanni, M., Yu, P.: Request redirection algorithms for distributed web sys-
tems. IEEE Tran. on Parallel and Distributed Systems 14(5) (2003)

13. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance com-
parison of middleware architectures for generating dynamic Web content. In: Proc. of 4th
ACM/IFIP/USENIX Middleware (2003)

14. Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach for efficiently
creating dynamic Web content. ACM Transactions on Internet Technology 5(2), 359–389
(2005)

15. Chen, S., Shen, B., Wee, S., Zhang, X.: Adaptive and lazy segmentation based proxy caching
for streaming media. In: Proc. of ACM NOSSDAV (2003)

16. Colajanni, M., Lancellotti, R., Yu, P.S.: Scalable architectures and services for ubiquitous web
access. In: Tutorial notes in 2006 World Wide Web Conf. (2006)

17. Cranor, L.: Web Privacy with P3P. O’Reilly (2002)
18. Davis, A., Parikh, J., Weihl, B.: EdgeComputing: Extending enterprise applications to the edge

of the Internet. In: Proc. of 2004 World Wide Web Conf. (2004)
19. Edge Side Includes: (2007). http://www.esi.org/
20. Eiriniaki, M., Vazirgiannis, M.: Web mining for Web personalization. ACM Transactions on

Internet Technology 3(1) (2003)
21. Flesca, S., Greco, S., Tagarelli, A., Zumpano, E.: Mining user preferences, page content and

usage to personalize Website navigation. World Wide Web 8(3), 317–345 (2005)
22. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Improving availability and perfor-

mance with application-specific data replication. IEEE Transactions on Knowledge and Data
Engineering 6(1), 106–120 (2005)

23. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
Proc. of ACM SIGMOD Int’l Conf. on Management of Data, pp. 173–182 (1996)

24. Groothuyse, T., Sivasubramanian, S., Pierre, G.: GlobeTP: Template-based database replica-
tion for scalable Web applications. In: Proc. of 2007 World Wide Web Conf. (2007)

25. Guo, H., Chen, S., Xiao, Z., Zhang, X.: DISC: Dynamic interleaved segment caching for
interactive streaming. In: Proc. of the 25th International Conference on Distributed Computing
Systems (2005)

26. Guo, L., Chen, S., Xiao, Z., Zhang, X.: Analysis of multimedia workloads with implications
for Internet streaming. In: Proc. of 14th Int’l World Wide Web Conf. (2005)

27. Ho Ha, S.: Helping online customers decide through Web personalization. IEEE Intelligent
systems 17(6) (2002)



4 Content Delivery and Management 125

28. IBM WebSphere Edge Server: (2007). http://www-3.ibm.com/software/
Webservers/edgeserver/

29. Iyengar, A., Ramasvamy, L., Schroeder, B.: Techniques for efficiently serving and caching
dynamic Web content. In: S. Chanson, X. Tang, J. Xu (eds.) Web Content Delivery. Springer
(2005)

30. Larson, P., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-tier database caching for SQL
server. IEEE Data Engineering Bulletin 27(2), 35–40 (2004)

31. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Consistent data replication: Is it
feasible in WANs? In: Proc. of Europar Conf. (2005)

32. Olston, C., Manjhi, A., Garrod, C., Ailamaki, A., Maggs, B., Mowry, T.: A scalability service
for dynamic Web applications. In: Proc. of Innovative Data Systems Research, pp. 56–69.
Asilomar, CA (2005)

33. Pacifici, G., Spreitzer, M., Tantawi, A., Youssef, A.: Performance management of cluster
based Web services. IEEE Journal on Selected Areas in Communications 23, 2333–2343
(2005)

34. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Consistent database repli-
cation at the middleware level. ACM Transactions on Computer Systems 23(4), 1–49
(2005)

35. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional Web applications.
In: Proc. of ACM/IFIP/USENIX Int’l Middleware Conf. Toronto, Canada (2004)

36. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley (2002)
37. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge: A platform for replicating

Internet applications. In: Proc. of 8th Int’l Workshop on Web Content Caching and Distribu-
tion. Hawthorne, NY (2003)

38. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic fragment detection in dynamic
Web pages and its impact on caching. IEEE Transactions on Knowledge and Data Engineering
17(6), 859–874 (2005)

39. Ramaswamy, L., Liu, L., Iyengar, A.: Scalable delivery of dynamic content using a cooperative
edge cache grid. IEEE Transactions on Knowledge and Data Engineering 19(5), 614–630
(2007)

40. Rilling, L., Sivasubramanian, S., Pierre, G.: High availability and scalability support for Web
applications. In: Proc. of 2007 IEEE/JSP Int’l Symp. on Applications and the Internet. Wash-
ington, DC (2007)

41. Shi, W., Karamcheti, V.: Conca: An architecture for consistent nomadic content access. In:
Proc. of Workshop on Caching, Coherence, and Consistency. Sorrento, Italy (2001)

42. Shi, W., Shah, K., Mao, Y., Chaudhary, V.: Tuxedo: A peer-to-peer caching system. In: Proc.
of 2003 Int’l Conf. on Parallel and Distributed Processing Techniques and Applications (2003)

43. Sivasubramanian, S., Alonso, G., Pierre, G., van Steen, M.: GlobeDB: Autonomic data repli-
cation for Web applications. In: Proc. of 14th Int’l World Wide Web Conf. Chiba, Japan
(2005)

44. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of caching and replication
strategies for Web applications. IEEE Internet Computing 11(1), 60–66 (2007)

45. Sivasubramanian, S., Szymaniak, M., Pierre, G., van Steen, M.: Replication for Web hosting
systems. ACM Computing Surveys 36(3) (2004)

46. Szymaniak, M., Pierre, G., van Steen, M.: Latency-driven replica placement. IPSJ 47(8)
(2006)

47. The Apache Cocoon project (2007). http://cocoon.apache.org/
48. Tolia, N., Satyanarayanan, M.: Consistency-preserving caching of dynamic database content.

In: Proc. of 16th Int’l World Wide Web Conf., pp. 311–320 (2007)
49. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Computing

7(6) (2003)
50. Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web workload characterization: Ten years

later. In: S. Chanson, X. Tang, J. Xu (eds.) Web Content Delivery. Springer (2005)
51. Yuan, C., Chen, Y., Zhang, Z.: Evaluation of edge caching/offoading for dynamic content

delivery. IEEE Transactions on Knowledge and Data Engineering 16(11) (2004)



126 C. Canali et al.

52. Zhao, W., Schulzrinne, H.: DotSlash: Handling Web hotspots at dynamic content Web sites.
In: Proc. of IEEE Global Internet Symposium. Miami, FL (2005)

53. Zhao, W., Schulzrinne, H.: Enabling on-demand query result caching in DotSlash for handling
Web hotspots effectively. In: Proc. of Int’l Workshop on Hot Topics in Web Systems and
Technologies. Boston, MA (2006)




