

Lecture Notes Electrical Engineering

Volume 9

Rajkumar Buyya · Mukaddim Pathan · Athena
Vakali (Eds.)

Content Delivery Networks

123

Editors

Rajkumar Buyya
University of Melbourne
Dept. Computer Science&
Software Engineering
111 Barry Street
Carlton VIC 3053
Australia
raj@csse.unimelb.edu.au

Athena Vakali
Aristotle University of
Thessaloniki
Dept. Informatics
541 24 Thessaloniki
Greece
avakali@csd.auth.gr

Mukaddim Pathan
University of Melbourne
Dept. Computer Science &
Software Engineering
111 Barry Street
Carlton VIC 3053
Australia
apathan@csse.unimelb.edu.au

ISBN: 978-3-540-77886-8 e-ISBN: 978-3-540-77887-5

Library of Congress Control Number: 2008930075

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To my personal and professional family – Raj
To my parents – Mukaddim
To my daughters – Athena

Preface

The emergence of Web as a ubiquitous media for sharing content and services has
led to the rapid growth of the Internet. At the same time, the number of users ac-
cessing Web-based content and services are growing exponentially. This has placed
a heavy demand on Internet bandwidth and Web systems hosting content and appli-
cation services. As a result, many Web sites are unable to manage this demand and
offer their services in a timely manner.

Content Delivery Networks (CDNs) have emerged to overcome these limitations
by offering infrastructure and mechanisms to deliver content and services in a scal-
able manner, and enhancing users’ Web experience. Applications of CDNs can also
be found in many communities, such as academic institutions, advertising media and
Internet advertisement companies, data centers, Internet Service Providers (ISPs),
online music retailers, mobile operators, consumer electronics manufacturers, and
other carrier companies. Along with the proliferation, formation, and consolidation
of the CDN landscape, new forms of Internet content and services are coming into
picture while distribution and management of content is introducing new challenges
in this domain. This raises new issues in the architecture, design and implementa-
tion of CDNs. The technological trends in this domain need to be explored in order
to provide an exclusive research roadmap to the CDN community.

The book, entitled “Content Delivery Networks” offers the state-of-the-art CDN
concepts, principles, characteristics, applications, platforms, design tips and hints,
modeling, simulation, engineering approaches, and recent technological develop-
ments. The book builds on academic and industrial research and developments,
and case studies that are being carried out at many different institutions around the
world. In addition, the book identifies potential research directions and technologies
that drive future innovations. We expect the book to serve as a valuable reference
for larger audience such as systems architects, practitioners, product developers, re-
searchers, and graduate level students.

Overview and scope of the book: This book will enable the readers to understand
the basics, to identify the underlying technology, to summarize their knowledge on
concepts, ideas, principles and various paradigms which span on broad CDNs areas.
Therefore, aspects of CDNs in terms of basics, design process, practice, techniques,

vii

viii Preface

performances, platforms, applications, and experimental results have been presented
in a proper order. Fundamental methods, initiatives, significant research results, as
well as references for further study have also been provided. Comparison of differ-
ent design and development approaches are described at the appropriate places so
that new researchers as well as advanced practitioners can use the CDNs evaluation
as a research roadmap. All the contributions have been reviewed, edited, processed,
and placed in the appropriate order to maintain consistency so that any reader ir-
respective of their level of knowledge and technological skills in CDNs would get
the most out of it. The book is organized into three parts, namely, Part I: CDN Fun-
damentals; Part II: CDN Modeling and Performance; and Part III: Advanced CDN
Platforms and Applications. The organization ensures the smooth flow of material
as successive chapters build on prior ones. In particular, the topics of the book are
the following:

• CDN basics and state of the art
• A taxonomy for categorizing CDN technologies
• Dynamic, scalable and efficient content replication techniques
• Content distribution and management
• Integrated use of replication with caching and its performance
• Request redirection for dynamic content
• Economics-informed modeling of CDNs
• Pricing schemes and CDN business models
• Mathematical modeling for resource allocation and management
• CDN performance
• CDN internetworking scenarios, architecture, and methodology
• Media streaming
• Dynamic CDNs and QoS-based adaptive content delivery
• Mobile dynamic CDNs
• Applications: live and on-demand video services, content delivery for commu-

nity networks

Part I of the book focuses on the basic ideas, techniques, and current practices
in CDNs. In Chap. 1, Pathan et al. provide an introduction to CDNs and their
origins, evolution, and the start-of-the-art. This chapter defines CDNs and related
terminologies, identifies its uniqueness when compared to related distributed com-
puting paradigms, provides insights for CDNs, and presents authors’ visions for
future technological evolutions in the CDN domain. As there exist a wide range
of studies covering different aspects of CDNs such as content distribution, repli-
cation, caching, and Web server placement, in Chap. 2, Pathan and Buyya present
a comprehensive taxonomy of CDNs with a broad coverage of applications, fea-
tures, and implementation techniques. In Chap. 3, Chen highlights on the need
of a dynamic, scalable, and efficient replication technique for CDNs. In this con-
text, the author presents algorithms for dynamic and self-organized replica place-
ments respecting client QoS and server capacity constraints. In Chap. 4, Cardellini
et al. explore the issues of content delivery through CDNs, with a special focus on
the delivery of dynamically generated and personalized content. To analyze and

Preface ix

model simulations of various caching scheme, along with the integrated use of
caching and replication, in Chap. 5, Stamos et al. present related design method-
ology and share implementation experiences, while cover various topics related
to Web caching in a CDN simulation framework. In Chap. 6, Ranjan describes
request redirection techniques in CDNs and presents a proof-of-the-concept im-
plementation of a technique called WARD to assist the redirection of dynamic
content.

Part II of this book focuses on the economic and mathematical modeling of CDNs
and their performance. Building on game theory, in Chap. 7, Christin et al. present a
cost-based model for agents participating in a CDN overlay and analyze incentives
in link establishments in CDNs. In Chap. 8, Hosanagar discusses the economics of
content delivery market and provides a model to capture content providers’ value
from CDN services and uses that to discuss pricing policies. In Chap. 9, Bektaş:
and Ouveysi demonstrate how a variety of resource management and allocation
problems in CDN domain can be formulated in terms of mathematical models.
Sitaraman et al. present global overlay routing supported by Akamai along with
its performance and availability benefits in Chap. 10.

Part III, the final part of the book, focuses on advanced CDN platforms and
applications with wide appeal. In Chap. 11, Yoshida describes FCAN, a dynamic
CDN network to alleviate flash crowds. Fortino et al. presents a CDN-based ar-
chitecture supporting the collaborative playback service in Chap. 12, by describ-
ing the Hierarchical COoperative COntrol Protocol (HCOCOP) which enables the
shared media streaming control in collaborative playback sessions. In Chap. 13,
Czyrnek et al. address the key aspects of the multimedia CDN design based on
the presentation of iTVP, a platform which is built for IP-based delivery of mul-
timedia content on a country-wide scale to a large number of concurrent users.
The information dissemination techniques in mobile CDNs, along with related
challenges and current status are presented in Chap. 14 by Loulloudes et al. In
Chap. 15, Plagemann et al. discuss the infrastructures for community networks
based on CDNs. Finally, in the last chapter of the book, Pathan et al. present dif-
ferent models for internetworking between CDNs and identify the challenges in
realizing them.

Acknowledgements: The book came into light due to the direct and indirect in-
volvement of many researchers, academicians, developers, designers, and industry
practitioners. Therefore, we acknowledge and thank the contributing authors, re-
search institutions, and companies whose papers, reports, articles, notes, Web sites,
study materials have been referred to in this book. Furthermore, many of the authors
have acknowledged their respective funding agencies and co-researchers, who made
significant influence in carrying out research. Finally, we offer our special appreci-
ation to Springer and its publishing editor, Christoph Baumann, for helping us to
bring this book out in record time.

Prior technical sources are acknowledged citing them at appropriate places in the
book. In case of any error we would like to receive feedback so that it could be taken
into consideration in the next edition.

x Preface

We hope that this book will serve as a valuable text for students especially at
graduate level and reference for researchers and practitioners working in the CDNs
and its emerging consumer applications.

The University of Melbourne, Australia Rajkumar Buyya
The University of Melbourne, Australia Mukaddim Pathan
Aristotle University of Thessaloniki, Greece Athena Vakali

Contents

Part I CDN Fundamentals

1 Content Delivery Networks: State of the Art, Insights,
and Imperatives . 3
Mukaddim Pathan, Rajkumar Buyya and Athena Vakali

2 A Taxonomy of CDNs . 33
Mukaddim Pathan and Rajkumar Buyya

3 Dynamic, Scalable, and Efficient Content Replication Techniques . . . 79
Yan Chen

4 Content Delivery and Management . 105
Claudia Canali, Valeria Cardellini, Michele Colajanni
and Riccardo Lancellotti

5 Caching Techniques on CDN Simulated Frameworks 127
Konstantinos Stamos, George Pallis and Athena Vakali

6 Request Redirection for Dynamic Content . 155
Supranamaya Ranjan

Part II CDN Modeling and Performance

7 Economics-Informed Design of CDNs . 183
Nicolas Christin, John Chuang and Jens Grossklags

8 CDN Pricing . 211
Kartik Hosanagar

9 Mathematical Models for Resource Management
and Allocation in CDNs . 225
Tolga Bektaş and Iradj Ouveysi

xi

xii Contents

10 Performance and Availability Benefits of Global Overlay Routing . . . 251
Hariharan S. Rahul, Mangesh Kasbekar, Ramesh K. Sitaraman,
and Arthur W. Berger

Part III Advanced CDN Platforms and Applications

11 Dynamic CDN Against Flash Crowds . 275
Norihiko Yoshida

12 Collaborative Media Streaming Services Based on CDNs 297
Giancarlo Fortino, Carlo Mastroianni, and Wilma Russo

13 CDN for Live and On-Demand Video Services over IP 317
Mirosław Czyrnek, Ewa Kuśmierek, Cezary Mazurek, Maciej Stroiński,
and Jan We.glarz

14 Information Dissemination in Mobile CDNs . 343
Nicholas Loulloudes, George Pallis, and Marios D. Dikaiakos

15 Infrastructures for Community Networks . 367
Thomas Plagemann, Roberto Canonico, Jordi Domingo-Pascual,
Carmen Guerrero, and Andreas Mauthe

16 Internetworking of CDNs . 389
Mukaddim Pathan, Rajkumar Buyya, and James Broberg

Index . 415

Contributors

Tolga Bektaş
School of Management, University of Southampton, Highfield, Southampton SO17
1BJ, UK, e-mail: T.Bektas@soton.ac.uk

Arthur W. Berger
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
02139, USA and Akamai Technologies, Cambridge, MA 02142, USA,
e-mail: awberger@csail.mit.edu

James Broberg
GRIDS Laboratory, Department of Computer Science and Software Engineering,
The University of Melbourne, Australia,
e-mail: brobergj@csse.unimelb.edu.au

Rajkumar Buyya
GRIDS Laboratory, Department of Computer Science and Software Engineering,
The University of Melbourne, Australia,
e-mail: raj@csse.unimelb.edu.au

Claudia Canali
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: claudia.canali@unimore.it

Roberto Canonico
Consorzio Interuniversitario Nazionale per l’Informatica CINI, – Laboratorio
Nazionale per l’Informatica e la Telematica Multimediali ITEM at University of
Napoli, Italy, e-mail: roberto.canonico@unina.it

Valeria Cardellini
Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor
Vergata”, Via del Politecnico 1, 00133 Roma, Italy,
e-mail: cardellini@ing.uniroma2.it

xiii

xiv Contributors

Yan Chen
Department of Electrical Engineering and Computer Science, Northwestern
University, 2145 Sheridan Road, Evanston, IL, USA, e-mail: ychen@northwestern.edu

Nicolas Christin
Carnegie Mellon University, INI and CyLab Japan, 1-3-3-17 Higashikawasaki-cho,
Chuo-ku, Kobe, 650-0044, Japan, e-mail: nicolasc@cmu.edu

John Chuang
School of Information, The University of California at Berkeley 102 South Hall,
Berkeley, CA 94720, USA, e-mail: chuang@ischool.berkeley.edu

Michele Colajanni
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: michele.colajanni@unimore.it

Mirosław Czyrnek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14,
61–704 Poznan, Poland, e-mail: majrek@man.poznan.pl

Marios D. Dikaiakos
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str. 1678,
Nicosia, Cyprus, e-mail: mdd@cs.ucy.ac.cy

Jordi Domingo-Pascual
Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya,
Jordi Girona, 1–3. Campus Nord. Barcelona 08034, Spain,
e-mail: jordi.domingo@ac.upc.es

Giancarlo Fortino
Dipartimento di Informatica, Elettronica e Sistemistica (DEIS), Università della
Calabria, Rende (CS), Italy, e-mail: g.fortino@unical.it

Jens Grossklags
School of Information, The University of California at Berkeley, 102 South Hall,
Berkeley, CA 94720, USA, e-mail: jensg@ischool.berkeley.edu

Carmen Guerrero
Departamento de Ingenierı́a Telemática, Universidad Carlos III de Madrid, Spain,
e-mail: carmen.guerrero@uc3m.es

Kartik Hosanagar
Operations and Information Management, The Wharton School, University of
Pennsylvania, Philadelphia, PA 19104, USA, e-mail: kartikh@wharton.upenn.edu

Contributors xv

Mangesh Kasbekar
Akamai Technologies, Staines, TW18 4EP, UK, e-mail: mkasbeka@akamai.com

Ewa Kuśmierek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14,
61–704 Poznan, Poland, e-mail: kusmiere@man.poznan.pl

Riccardo Lancellotti
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: riccardo.lancellotti@unimore.it

Nicholas Loulloudes
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str. 1678,
Nicosia, Cyprus, e-mail: loulloudes.n,@cs.ucy.ac.cy

Carlo Mastroianni
ICAR-CNR (Italian National Research Council), Rende (CS), Italy,
e-mail: mastroianni@icar.cnr.it

Andreas Mauthe
InfoLab 21, Computing Department, Lancaster University, Lancaster LA1 4WA,
UK, e-mail: andreas@comp.lancs.ac.uk

Cezary Mazurek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14,
61–704 Poznan, Poland, e-mail: mazurek@man.poznan.pl

Iradj Ouveysi
Honorary research fellow, Electrical and Electronic Engineering Department, The
University of Melbourne, Australia,
e-mail: iradjouveysi@yahoo.co.uk

George Pallis
Department of Computer Science, University of Cyprus, 75 Kallipoleos Str. 1678,
Nicosia, Cyprus, e-mail: gpallis@cs.ucy.ac.cy

Mukaddim Pathan
GRIDS Laboratory, Department of Computer Science and Software Engineering,
The University of Melbourne, Australia,
e-mail: apathan@csse.unimelb.edu.au

Thomas Plagemann
Department of Informatics, University of Oslo, Blindern N-0316 Oslo, Norway,
e-mail: plageman@ifi.uio.no

xvi Contributors

Hariharan S. Rahul
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
02139, USA, e-mail: rahul@csail.mit.edu

Supranamaya Ranjan
Narus Inc., 500 Logue Ave, Mountain View, CA 94043, USA,
e-mail: soups.ranjan@gmail.com

Wilma Russo
Dipartimento di Informatica, Elettronica e Sistemistica (DEIS), Università della
Calabria, Rende (CS), Italy, e-mail: russow@si.deis.unical.it

Ramesh K. Sitaraman
Department of Computer Science, The University of Massachusetts, Amherst, MA
01003–4610, USA, e-mail: ramesh@cs.umass.edu

Konstantinos Stamos
Department of Informatics, Aristotle University of Thessaloniki, 54124
Thessaloniki, Greece, e-mail: kstamos@csd.auth.gr

Maciej Stroiński
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14,
61–704 Poznan, Poland, e-mail: stroins@man.poznan.pl

Athena Vakali
Department of Informatics, Aristotle University of Thessaloniki, 54124
Thessaloniki, Greece, e-mail: avakali@csd.auth.gr

Jan We.glarz
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14,
61–704 Poznan, Poland, e-mail: weglarz@man.poznan.pl

Norihiko Yoshida
Division of Mathematics, Electronics and Informatics, Saitama University, Saitama
338-8570, Japan, e-mail: yoshida@mail.saitama-u.ac.jp

Part I
CDN Fundamentals

Chapter 1
Content Delivery Networks: State of the Art,
Insights, and Imperatives

Mukaddim Pathan, Rajkumar Buyya and Athena Vakali

1.1 Introduction

Over the last decades, users have witnessed the growth and maturity of the Internet
which has caused enormous growth in network traffic, driven by the rapid accep-
tance of broadband access, the increases in systems complexity, and the content rich-
ness. The over-evolving nature of the Internet brings new challenges in managing
and delivering content to users, since for example, popular Web services often suffer
congestion and bottlenecks due to the large demands posed on their services. Such
a sudden spike in Web content requests (e.g. the one occurred during the 9/11 inci-
dent in USA) is often termed as flash crowds [14] or SlashDot [11] effects. It may
cause heavy workload on particular Web server(s), and as a result a “hotspot” [14]
can be generated. Coping with such unexpected demand causes significant strain on
a Web server and eventually the Web servers are totally overwhelmed with the sud-
den increase in traffic, and the Web site holding the content becomes temporarily
unavailable.

A Content Delivery Network (CDN) [47, 51, 54, 61, 63] is a collaborative col-
lection of network elements spanning the Internet, where content is replicated over
several mirrored Web servers in order to perform transparent and effective deliv-
ery of content to the end users. Collaboration among distributed CDN components
can occur over nodes in both homogeneous and heterogeneous environments. CDNs
have evolved to overcome the inherent limitations of the Internet in terms of user
perceived Quality of Service (QoS) when accessing Web content. They provide
services that improve network performance by maximizing bandwidth, improving

Mukaddim Pathan
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: apathan@csse.unimelb.edu.au

Rajkumar Buyya
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: raj@csse.unimelb.edu.au

Athena Vakali
Department of Informatics, Aristotle University of Thessaloniki, Greece,
e-mail: avakali@csd.auth.gr

R. Buyya et al. (eds.), Content Delivery Networks, 3
c© Springer-Verlag Berlin Heidelberg 2008

4 M. Pathan et al.

accessibility, and maintaining correctness through content replication. The typical
functionalities of a CDN include:

• Request redirection and content delivery services, to direct a request to the closest
suitable CDN cache server using mechanisms to bypass congestion, thus over-
coming flash crowds [14] or SlashDot [11] effects.

• Content outsourcing and distribution services, to replicate and/or cache content
from the origin server to distributed Web servers.

• Content negotiation services, to meet specific needs of each individual user
(or group of users).

• Management services, to manage the network components, to handle accounting,
and to monitor and report on content usage.

The major application domains of CDNs are public content networking services,
enterprise content networks, and edge services. As CDNs being a thriving research
field, advances, solutions, and new capabilities are being introduced constantly.
Therefore, in this chapter, we capture a “snapshot” of the state of the art at the
time of writing this book. However, it can be expected that the core information and
principles presented in this chapter will remain relevant and useful for the readers.

The remainder of this chapter is structured as follows: we start with providing an
overview of CDNs. Next we describe the background highlighting the evolution of
CDNs and identify uniqueness of CDNs from other related distributed computing
paradigms. In Sect. 1.4 we provide insights for CDNs. The state of the art in CDN
landscape is presented in Sect. 1.5. Our visions about future technological evolu-
tions in CDNs domain follows next, along with a research roadmap in Sect. 1.7 by
exploring future research directions. Finally, Sect. 1.8 concludes the chapter.

1.2 Overview

Figure 1.1 shows the model of a CDN where the replicated Web server clusters
spanning the globe are located at the edge of the network to which end users are
connected. A CDN distributes content to a set of Web servers, scattered over the
globe, for delivering content to end users in a reliable and timely manner. The con-
tent is replicated either on-demand when users request for it, or it can be replicated
beforehand, by pushing the content to the distributed Web servers. A user is served
with the content from the nearby replicated Web server. Thus, the user ends up un-
knowingly communicating with a replicated CDN server close to it and retrieves
files from that server.

1.2.1 Terminologies

In the context of CDNs, content delivery describes an action of servicing con-
tent based on end user requests. Content refers to any digital data resources and

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 5

Fig. 1.1 Model of a CDN

it consists of two main parts: the encoded media and metadata [53]. The encoded
media includes static, dynamic, and continuous media data (e.g. audio, video, doc-
uments, images and Web pages). Metadata is the content description that allows
identification, discovery, and management of multimedia data, and facilitates its
interpretation. Content can be pre-recorded or retrieved from live sources; it can be
persistent or transient data within the system [53]. CDNs can be seen as a new virtual
overlay to the Open Systems Interconnection (OSI) network reference model [32].
This layer provides overlay network services relying on application layer protocols
such as Hyper Text Transfer Protocol (HTTP) or Real Time Streaming Protocol
(RTSP) for transport [26].

The three main entities in a CDN system are the following: content provider,
CDN provider, and end users. A content provider or customer is one who dele-
gates the Uniform Resource Locator (URL) name space of the Web objects to be
distributed. The origin server of the content provider holds those objects. A CDN
provider is a proprietary organization or company that provides infrastructure facil-
ities to content providers in order to deliver content in a timely and reliable manner.
End users or clients are the entities who access content from the content provider’s
Web site.

CDN providers use caching and/or replica servers located in different geograph-
ical locations to replicate content. CDN cache servers are also called edge servers
or surrogates. The edge servers of a CDN are called Web cluster as a whole. CDNs
distribute content to the edge servers in such a way that all of them share the same

6 M. Pathan et al.

content and URL. Client requests are redirected to the nearby optimal edge server
and it delivers requested content to the end users. Thus, transparency for users
is achieved. Additionally, edge servers send accounting information for the deliv-
ered content to the accounting system of the CDN for traffic reporting and billing
purposes.

1.2.2 CDN Components

Figure 1.2 shows the general architecture of a CDN system which involves four
main components:

• The content-delivery component which consists of the origin server and a set of
replica servers that deliver copies of content to the end users;

• The request-routing component which is responsible for directing client requests
to appropriate edge servers and for interacting with the distribution component
to keep an up-to-date view of the content stored in the CDN caches;

• The distribution component which moves content from the origin server to the
CDN edge servers and ensures consistency of content in the caches; and

• The accounting component which maintains logs of client accesses and records
the usage of the CDN servers. This information is used for traffic reporting

Fig. 1.2 Architectural components of a CDN

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 7

and usage-based billing by the content provider itself or by a third-party billing
organization.

A CDN focuses on building its network infrastructure to provide the following ser-
vices and functionalities: storage and management of content; distribution of content
among edge servers; cache management; delivery of static, dynamic, and streaming
content; backup and disaster recovery solutions; and monitoring, performance mea-
surement, and reporting.

A content provider (i.e. customer) can sign up with a CDN provider for service
and have its content placed on the cache servers. In practice, CDNs typically host
third-party content including static content (e.g. static HTML pages, images, doc-
uments, software patches), streaming media (e.g. audio, real time video), User
Generated Videos (UGV), and varying content services (e.g. directory service,
e-commerce service, file transfer service). The sources of content include large en-
terprises, Web service providers, media companies, and news broadcasters. Typ-
ical customers of a CDN are media and Internet advertisement companies, data
centers, Internet Service Providers (ISPs), online music retailers, mobile operators,
consumer electronics manufacturers, and other carrier companies. Each of these cus-
tomers wants to publish and deliver their content to the end users on the Internet in
a reliable and timely manner. End users can interact with the CDN by specifying the
content/service request through cell phone, smart phone/PDA, laptop and desktop.
Figure 1.3 depicts the different content/services served by a CDN provider to end
users.

CDN providers charge their customers according to the content delivered (i.e.
traffic) to the end users by their edge servers. CDNs support an accounting mech-
anism that collects and tracks client usage information related to request-routing,
distribution, and delivery [26]. This mechanism gathers information in real time

CDN

Contents
and

services

Cell
Phone

Smart phone /
PDA

Laptop

Desktop

Music (MP3) /
Audio

E-docs

Web
Pages

Streaming
media

Clients

Fig. 1.3 Content/services provided by a CDN

8 M. Pathan et al.

and collects it for each CDN component. This information can be used in CDNs
for accounting, billing, and maintenance purposes. The average cost of charging of
CDN services is quite high [35], often out of reach for many small to medium en-
terprises (SME) or not-for-profit organizations. The most influencing factors [47]
affecting the price of CDN services include:

• Bandwidth usage which is measured by the content provider to charge (per Mbps)
customers typically on a monthly basis;

• Variation of traffic distribution which characterizes pricing under different situa-
tions of congestion and bursty traffic;

• Size of the content replicated over edge servers which is a critical criterion for
posing charges (e.g. price per GB) on customer audiences;

• Number of edge servers which capture the ability of a CDN provider to offer
content at charges that will not overcome the typical caching scenarios; and

• Reliability and stability of the whole system and security issues of outsourcing
content delivery also inhibit a cost of sharing confidential data which varies over
different content providers on the basis of the type of the protected content.

1.3 Background and Related Systems

Content providers view the Web as a vehicle to bring rich content to their users
since decreases in services quality, along with high access delays (mainly caused
by long download times) leaves users in frustration. Companies earn significant
financial incentives from Web-based e-business and they are concerned to improve
the service quality experienced by the users while accessing their Web sites. As
such, the past few years have seen an evolution of technologies that aim to improve
content delivery and service provisioning over the Web. When used together, the
infrastructures supporting these technologies form a new type of network, which is
often referred to as “content network” [26].

1.3.1 The Evolution of CDNs

Several content networks attempt to address the performance problem by using dif-
ferent mechanisms to improve QoS:

• An initial approach is to modify the traditional Web architecture by improving
the Web server hardware adding a high-speed processor, more memory and disk
space, or maybe even a multi-processor system. This approach is not flexible,
since small enhancements are not possible and at some point, the complete server
system might have to be replaced [31].

• Caching proxy deployment by an ISP can be beneficial for the narrow bandwidth
users accessing the Internet, since to improve performance and reduce bandwidth

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 9

utilization, caching proxies are deployed close to the users. Caching proxies may
also be equipped with technologies to detect a server failure and maximize ef-
ficient use of caching proxy resources. Users often configure their browsers to
send their Web request through these caches rather than sending directly to ori-
gin servers. When this configuration is properly done, the user’s entire browsing
session goes through a specific caching proxy. Thus, the caches contain most
popular content viewed by all the users of the caching proxies.

• A provider may also deploy different levels of local, regional, international
caches at geographically distributed locations. Such arrangement is referred to
as hierarchical caching. This may provide additional performance improvements
and bandwidth savings [17]. The establishment of server farms is a more scal-
able solution which has been in widespread use for several years. A server farm
is comprised multiple Web servers, each of them sharing the burden of answer-
ing requests for the same Web site [31]. It also makes use of a Layer 4-7 switch
(intelligent switching based on information such as URL requested, content type,
and username, which can be found in layers 4-7 of the OSI stack of the request
packet), Web switch or content switch that examines content requests and dis-
patches them among the group of servers. A server farm can also be constructed
with surrogates instead of a switch [24]. This approach is more flexible and shows
better scalability. Moreover, it provides the inherent benefit of fault tolerance.
Deployment and growth of server farms progresses with the upgrade of network
links that connects the Web sites to the Internet.

• Although server farms and hierarchical caching through caching proxies are use-
ful techniques to address the Web performance problem, they have limitations.
In the first case, since servers are deployed near the origin server, they do little to
improve the network performance due to network congestion. Caching proxies
may be beneficial in this case. But they cache objects based on client demands.
This may force the content providers with a popular content source to invest in
large server farms, load balancing, and high bandwidth connections to keep up
with the demand. To address these limitations, another type of content network
has been deployed in late 1990s. This is termed as Content Distribution Network
or Content Delivery Network, which is a system of computers networked together
across the Internet to cooperate transparently for delivering content to end users.

With the introduction of CDN, content providers started putting their Web sites
on a CDN. Soon they realized its usefulness through receiving increased reliability
and scalability without the need to maintain expensive infrastructure. Hence, several
initiatives kicked off for developing infrastructure for CDNs. As a consequence,
Akamai Technologies [1, 27] evolved out of an MIT research effort aimed at solving
the flash crowd problem and scientists developed a set of breakthrough algorithms
for intelligently routing and replicating content over a large network of distributed
servers spanning the globe. Within a couple of years, several companies became
specialists in providing fast and reliable delivery of content, and CDNs became a
huge market for generating large revenues. The flash crowd events [14, 34] like the
9/11 incident in USA [10], resulted in serious caching problems for some sites. This
influenced the providers to invest more in CDN infrastructure development, since

10 M. Pathan et al.

CDNs provide desired level of protection to Web sites against flash crowds. First
generation CDNs mostly focused on static or Dynamic Web documents [36, 61].
On the other hand, for second generation of CDNs the focus has shifted to Video-
on-Demand (VoD), news on-demand, audio and video streaming with high user
interactivity. The CDNs of this generation may also be dedicated to deliver content
to mobile devices. However, most of the research efforts on this type of CDNs are
still in research phase and have not yet exclusively reached the market. We anticipate
that the third generation CDNs would be community-based CDNs, i.e. it would be
mainly driven by the common “people” or the average end users. More information
on such community-based CDNs can be found in Chap. 15 of this book. Figure 1.4
shows the evolutions of CDNs over time with a prediction of their evolution in the
upcoming years.

With the booming of the CDN business, several standardization activities also
emerged since vendors started organizing themselves. The Internet Engineering
Task Force (IETF) as an official body has taken several initiatives through releasing
Request For Comments (RFCs) [15, 16, 24, 26] in relation to many research initia-
tives in this domain. Other than IETF, several other organizations such as Broadband
Services Forum (BSF) [3], ICAP forum [6], Internet Streaming Media Alliance [7]
have taken initiatives to develop standards for delivering broadband content, stream-
ing rich media content – video, audio, and associated data – over the Internet. In the
same breath, by 2002, large-scale ISPs started building their own CDN functionality,
providing customized services.

Improved Web server

Pre CDN
Evolutions

First
Generation

CDNs

Static and
Dynamic
Content

Caching proxy
deployment

Hierarchical caching

Server farms

Second
Generation

CDNs

Video on
Demand, media

streaming,
mobile CDNs

Third
Generation

CDNs

C
ha

ng
ed

 fo
cu

s,
 in

cr
ea

se
d

fu
nc

ti
on

al
 a

bi
li

ty
,

im
pr

ov
ed

 p
er

fo
rm

an
ce

, u
se

r-
ce

nt
ri

c

Community-
based CDNs

Pre-evolutionary period Late 90's 2002 2005 2007 2010 2010 onwards

Fig. 1.4 CDN evolutions

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 11

1.3.2 Related Systems

Data grids, distributed databases, and peer-to-peer (P2P) networks are three dis-
tributed systems that have some characteristics in common with CDNs. These three
systems have been described here in terms of requirements, functionalities, and
characteristics. Table 1.1 presents the comparison between CDNs and these three
related systems based on their unique characteristics/features.

1.3.2.1 Data Grids

A data grid [43, 62] is a data intensive computing environment that provides ser-
vices to the users in different locations to discover, transfer, and manipulate large
datasets stored in distributed repositories. At the minimum, a data grid provides two
basic functionalities: a high-performance, reliable data transfer mechanism, and a
scalable replica discovery and management mechanism [22]. A data grid consists of
computational and storage resources in different locations connected by high-speed
networks. They are especially targeted to large scientific applications such as high
energy physics experiments at the Large Hadron Collidor [37], astronomy projects –
Virtual Observatories [59], and protein simulation – BioGrid [2] that require ana-
lyzing a huge amount of data. The data generated from an instrument, experiment,
or a network of sensors is stored at a principle storage site and is transferred to other
storage sites around the world on request through the data replication mechanism.
Users query the local replica catalog to locate the datasets that they require. With
proper rights and permissions, the required dataset is fetched from the local reposi-
tory if it is present there; otherwise it is fetched from a remote repository. The data
may be transmitted to a computational unit for processing. After processing, the
results may be sent to a visualization facility, a shared repository, or to individual
users’ desktops. Data grids promote an environment for the users to analyze data,
share the results with the collaborators, and maintain state information about the
data seamlessly across organizational and regional boundaries. Resources in a data
grid are heterogeneous and are spread over multiple administrative domains. Pres-
ence of large datasets, sharing of distributed data collections, having the same log-
ical namespace, and restricted distribution of data can be considered as the unique
set of characteristics for data grids. Data grids also contain some application specific
characteristics. The overall goal of data grids is to bring together existing distributed
resources to obtain performance gain through data distribution. Data grids are cre-
ated by institutions who come together to share resources on some shared goal(s)
by forming a Virtual Organization (VO). On the other hand, the main goal of CDNs
is to perform caching of data to enable faster access by end users. Moreover, all
the commercial CDNs are proprietary in nature – individual companies own and
operate them.

12 M. Pathan et al.

Ta
bl

e
1.

1
C

om
pa

ri
so

n
be

tw
ee

n
C

D
N

s
an

d
re

la
te

d
sy

st
em

s

Fe
at

ur
es

C
D

N
s

D
at

a
G

ri
ds

D
is

tr
ib

ut
ed

D
at

ab
as

es
P2

P
N

et
w

or
ks

C
at

eg
or

y
A

co
lle

ct
io

n
of

ne
tw

or
ke

d
co

m
pu

te
rs

sp
an

ni
ng

th
e

In
te

rn
et

D
at

a
in

te
ns

iv
e

co
m

pu
tin

g
en

vi
ro

nm
en

t
L

oc
al

ly
or

ga
ni

ze
d

co
lle

ct
io

n
of

da
ta

di
st

ri
bu

te
d

ac
ro

ss
m

ul
tip

le
ph

ys
ic

al
lo

ca
tio

ns

In
fo

rm
at

io
n

re
tr

ie
va

l
ne

tw
or

k
fo

rm
ed

by
ad

-h
oc

ag
gr

eg
at

io
n

of
re

so
ur

ce
s

C
on

st
itu

tio
n

D
is

tr
ib

ut
io

n
of

ca
ch

e
se

rv
er

s
to

th
e

ed
ge

of
th

e
In

te
rn

et

Fo
rm

at
io

n
of

a
V

O
of

pa
rt

ic
ip

at
in

g
in

st
itu

tio
ns

.
Fe

de
ra

tio
n

or
sp

lit
tin

g
of

ex
is

tin
g

da
ta

ba
se

(s
)

C
ol

la
bo

ra
tio

n
am

on
g

pe
er

s

M
ai

n
go

al
R

ed
uc

in
g

W
eb

la
te

nc
y

du
ri

ng
co

nt
en

td
el

iv
er

y
Pe

rf
or

m
an

ce
ga

in
th

ro
ug

h
da

ta
di

st
ri

bu
tio

n
by

pr
e-

st
ag

in
g,

op
tim

al
so

ur
ce

se
le

ct
io

n,
an

d
hi

gh
sp

ee
d

da
ta

m
ov

em
en

t

In
te

gr
at

io
n

of
ex

is
tin

g
da

ta
ba

se
s

an
d

re
pl

ic
at

io
n

of
da

ta
ba

se
fr

ag
m

en
ts

in
a

tr
an

sp
ar

en
tm

an
ne

r

Fi
le

sh
ar

in
g

am
on

g
pe

er
s

In
te

gr
ity

In
te

gr
ity

be
tw

ee
n

ca
ch

es
In

te
gr

ity
be

tw
ee

n
da

ta
gr

id
re

pl
ic

as
In

te
gr

ity
be

tw
ee

n
m

ul
tip

le
D

B
s

N
/A

C
on

si
st

en
cy

St
ro

ng
ca

ch
e

co
ns

is
te

nc
y

be
tw

ee
n

re
pl

ic
at

ed
co

nt
en

t

W
ea

k
co

ns
is

te
nc

y
be

tw
ee

n
da

ta
gr

id
re

pl
ic

as
St

ro
ng

da
ta

ba
se

co
ns

is
te

nc
y

be
tw

ee
n

di
st

ri
bu

te
d

D
B

s
W

ea
k

co
ns

is
te

nc
y

be
tw

ee
n

ca
ch

ed
co

nt
en

t

A
ut

on
om

y
N

on
e

A
ut

on
om

ou
s

pa
rt

ic
ip

an
ts

A
ut

on
om

ou
s

D
D

B
si

te
s

A
ut

on
om

ou
s

pe
er

s
O

pe
ra

tio
na

l
ac

tiv
iti

es
C

on
te

nt
ca

ch
in

g
Se

am
le

ss
an

al
ys

is
,

co
lla

bo
ra

tio
n,

an
d

m
ai

nt
en

an
ce

of
da

ta
ac

ro
ss

or
ga

ni
za

tio
na

la
nd

re
gi

on
al

bo
un

da
ri

es

Q
ue

ry
pr

oc
es

si
ng

,
op

tim
iz

at
io

n,
an

d
m

an
ag

em
en

t

L
oc

at
in

g
or

ca
ch

in
g

co
nt

en
t,

en
cr

yp
tin

g,
re

tr
ie

vi
ng

,d
ec

ry
pt

in
g,

an
d

ve
ri

fy
in

g
co

nt
en

t

A
dm

in
is

tr
at

io
n

In
di

vi
du

al
co

m
pa

ni
es

.
Pr

op
ri

et
ar

y
in

na
tu

re
In

st
itu

tio
ns

w
ho

co
op

er
at

e
on

so
m

e
sh

ar
ed

go
al

s
Si

ng
le

au
th

or
ita

tiv
e

en
tit

y
Se

lf
-i

nt
er

es
te

d
en

d
us

er
s/

pe
er

s

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 13

1.3.2.2 Distributed Databases

A Distributed Database (DDB) [21, 45] is a logically organized collection of data
distributed across multiple physical locations. It may be stored in multiple com-
puters located in the same physical location, or may be dispersed over a network
of interconnected computers. Each computer in a distributed database system is a
node. A node in a distributed database system acts as a client, server, or both de-
pending on the situation. Each site has a degree of autonomy, is capable of execut-
ing a local query, and participates in the execution of a global query. A distributed
database can be formed by splitting a single database or by federating multiple ex-
isting databases. The distribution of such a system is transparent to the users as
they interact with the system as a single logical system. The transactions in a dis-
tributed database are transparent and each transaction must maintain integrity across
multiple databases. Distributed databases have evolved to serve the need of large
organizations that need to replace existing centralized database systems, intercon-
nect existing databases, and to add new databases as new organizational units are
added. Applications provided by DDB include distributed transaction processing,
distributed query optimization, and efficient management of resources. DDBs are
dedicated to integrate existing diverse databases to provide a uniform, consisting
interface for query processing with increased reliability and throughput. Integration
of databases in DDBs is performed by a single organization. Like DDBs, the entire
network in CDNs is managed by a single authoritative entity. However, CDNs differ
from DDBs in the fact that CDN cache servers do not have the autonomic property
as in DDB sites. Moreover, the purpose of CDNs is content caching, while DDBs
are used for query processing, optimization, and management.

1.3.2.3 P2P Networks

P2P networks [13, 44] are designed for the direct sharing of computer resources
rather than requiring any intermediate and/or central authority. They are charac-
terized as information retrieval networks that are formed by ad-hoc aggregation of
resources to form a fully or partially decentralized system. Within a P2P system,
each peer is autonomous and relies on other peers for resources, information, and
forwarding requests. Ideally there is no central point of control in a P2P network.
Therefore, the participating entities collaborate to perform tasks such as search-
ing for other nodes, locating or caching content, routing requests, encrypting, re-
trieving, decrypting, and verifying content. P2P systems are more fault-tolerant and
scalable than the conventional centralized system, as they have no single point of
failure. An entity in a P2P network can join or leave anytime. P2P networks are
more suited to the individual content providers who are not able to access or afford
the common CDN. An example of such system is BitTorrent [33], which is a pop-
ular P2P file sharing application. Content and file sharing P2P networks are mainly
focused on creating efficient strategies to locate particular files within a group of
peers, to provide reliable transfers of such files in case of high volatility, and to

14 M. Pathan et al.

manage heavy traffic (i.e. flash crowds) caused by the demand for highly popular
files. This is in contrast to CDNs where the main goal lies in respecting client’s
performance requirements rather than efficiently sharing file/content among peers.
Moreover, CDNs differ from the P2P networks because the number of nodes join-
ing and leaving the network per unit time is negligible in CDNs, whereas the rate is
important in P2P networks.

1.4 Insights for CDNs

From the above discussion it is clear that a CDN is essentially aimed at content
providers or customers who want to ensure QoS to the end users when accessing
their Web content. The analysis of present day CDNs reveals that, at the minimum,
a CDN focuses on the following business goals: scalability, security, reliability, re-
sponsiveness and performance.

1.4.1 Scalability

Scalability refers to the ability of the system to expand in order to handle new and
large amounts of data, users, and transactions without any significant decline in
performance. To expand to a global scale, CDN providers need to invest time and
costs in provisioning additional network connections and infrastructures. It includes
provisioning resources dynamically to address flash crowds and varying traffic. A
CDN should act as a shock absorber for traffic by automatically providing capacity-
on-demand to meet the requirements of flash crowds. This capability allows a CDN
to avoid costly over-provisioning of resources and to provide high performance to
every user.

Within the structure of present day CDN business model, content providers pay
the CDN providers to maximize the impact of their content. However, current trends
reveal that the type of applications that will be supported by CDNs in future, will
transform the current business model [53]. In future, the content providers as well as
the end users will also pay to receive high quality content. In this context, scalability
will be an issue to deliver high quality content, maintaining low operational costs.

1.4.2 Security

One of the major concerns of a CDN is to provide potential security solutions for
confidential and high-value content [19]. Security is the protection of content against
unauthorized access and modification. Without proper security control, a CDN
platform is subject to cyber fraud, Distributed Denial-of-Service (DDoS) attacks,

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 15

viruses, and other unwanted intrusions that can cripple business. A CDN aims at
meeting the stringent requirements of physical, network, software, data, and pro-
cedural security. Once the security requirements are met, a CDN can eliminate the
need for costly hardware and dedicated component to protect content and transac-
tions. In accordance to the security issues, a CDN provider combat against any other
potential risk concerns including DDoS attacks or other malicious activity that may
interrupt business.

1.4.3 Reliability, Responsiveness, and Performance

Reliability refers to when a service is available and what are the bounds on service
outages that may be expected. A CDN provider can improve client access to special-
ized content through delivering it from multiple locations. For this a fault-tolerant
network with appropriate load balancing mechanisms is to be implemented [42].
Responsiveness implies, while in the face of possible outages, how soon a service
would start performing the normal course of operation. Performance of a CDN is
typically characterized by the response time (i.e. latency) perceived by end users.
Slow response time is the single greatest contributor to customers’ abandoning Web
sites and processes. The reliability and performance of a CDN is affected by the dis-
tributed content location and routing mechanism, as well as by data replication and
caching strategies. Hence, a CDN employs caching and streaming to enhance per-
formance especially for delivery of media content [57]. A CDN hosting a Web site
also focuses on providing fast and reliable service since it reinforces the message
that the company is reliable and customer-focused.

1.5 Existing CDNs: State of the Art

In this section, we provide the state of art in current CDN landscape. We also de-
scribe the different services and technologies of existing CDNs. First, we provide a
brief description on commercial CDNs (e.g. Akamai, EdgeStream, Limelight Net-
works, and Mirror Image) which exist in the content distribution space. Then we
present a snapshot on academic CDNs (e.g. CoDeeN, Coral, and Globule) which
gives a picture of what the CDN technologies are at this moment.

1.5.1 Commercial CDNs

Most or all of the operational CDNs are developed by commercial companies which
are subject to consolidation over time due to acquisition and/or mergers. Hence,
in the section, we focus on studying only those commercial CDNs that have been

16 M. Pathan et al.

Table 1.2 Summary of the existing commercial CDNs

CDN Name Service Type Coverage Products/Solutions
(If any)

Akamai
www.akamai.com

Provides CDN service,
including streaming

Covers 85% of the
market. 25,000
servers in 900
networks in 69
countries. It
handles 20% of
total Internet
traffic today

Edge Platform for
handling static as
well as dynamic
content, Edge
Control for
managing
applications, and
Network Operations
Control Center
(NOCC)

EdgeStream
www.edgestream.

com

Provides disrupted
video streaming
applications over
the public Internet

Provides video
streaming over
consumer cable
or ADSL
modem
connections
around the
globe, even over
paths that have
20 router hops
between server
and end user

EdgeStream video
on-demand and
IPTV Streaming
software for video
streaming

Limelight Networks
www.limelightnet

works.com

Provides distributed
on-demand and live
delivery of video,
music, games and
download

Edge servers
located in 72
locations around
the world

Limelight
ContentEdge for
distributed content
delivery via HTTP,
Limelight
MediaEdge
Streaming for
distributed video
and music delivery
via streaming, and
Limelight Custom
CDN for custom
distributed delivery
solutions

Mirror Image
www.mirror-

image.com

Provides content
delivery, streaming
media, Web
computing and
reporting services

Edge servers
located in 22
countries

Global Content
Caching, Extensible
Rules Engine
(XRE), Video
On-Demand, and
Live Webcasting

in stable operation for a significant period of time. Table 1.2 shows a list of four
commercial CDNs and presents a brief summary of each of them. An updated listing
of most of the existing commercial CDNs can be found in the research directories
of Davison [25] and Pathan [49].

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 17

The proprietary nature of commercial CDNs makes it difficult to reveal detailed
information about the technical and business strategies used by them. However, in
the presented state-of-the-art survey of commercial CDNs, we provide information
to significant details. In this context, it is worth mentioning that many CDN-specific
information such as fees charged by CDNs, existing customers of CDNs are ignored
since they are highly likely to change quickly over time. Therefore, the information
provided in this section is expected to be stable and up-to-date. However, for read-
ers’ understanding on how a CDN charges its customers (i.e. CDN pricing strate-
gies); we refer to Chap. 8 of the book, which outlines the pricing policies used for
CDN services.

1.5.1.1 Akamai

Akamai technologies [1, 27] was founded in 1998 at Massachusetts, USA. It evolved
out of an MIT research effort aimed at solving the flash crowd problem. Akamai is
the market leader in providing content delivery services. It owns more than 25,000
servers over 900 networks in 69 countries [1]. Akamai’s approach is based on the
observation that serving Web content from a single location can present serious
problems for site scalability, reliability and performance. Hence, a system is de-
vised to serve requests from a variable number of cache servers at the network edge.
Akamai servers deliver static (e.g. HTML pages, embedded images, executables,
and PDF documents), dynamic content (e.g. animations, scripts, and DHTML), and
streaming audio and video.

Akamai’s infrastructure handles flash crowds by allocating more servers to sites
experiencing high load, while serving all clients from nearby servers. The system
directs client requests to the nearest available server likely to have the requested
content. Akamai provides automatic network control through the mapping tech-
nique (i.e. the direction of request to content servers), which uses a dynamic, fault-
tolerant DNS system. The mapping system resolves a hostname based on the service
requested, user location, and network status. It also uses DNS for network load-
balancing. Akamai name servers resolve hostnames to IP addresses by mapping re-
quests to a server. Akamai agents communicate with certain border routers as peers;
the mapping system uses BGP (Border Gateway Protocol) [56] information to de-
termine network topology. The mapping system in Akamai combines the network
topology information with live network statistics – such as traceroute data [39] –
to provide a detailed, dynamic view of network structure, and quality measures for
different mappings.

Akamai’s DNS-based load balancing system continuously monitors the state of
services and their servers and networks. To monitor the entire system’s health end-
to-end, Akamai uses agents that simulate the end user behavior by downloading
Web objects and measuring their failure rates and download times. Akamai uses
this information to monitor overall system performance and to automatically detect
and suspend problematic data centers or servers. Each of the content servers fre-
quently reports its load to a monitoring application, which aggregates and publishes

18 M. Pathan et al.

load reports to the local DNS server. That DNS server then determines which IP
addresses (two or more) to return when resolving DNS names. If a certain server’s
load exceeds a certain threshold, the DNS server simultaneously assigns some of
the server’s allocated content to additional servers. If the server’s load exceeds an-
other threshold, the server’s IP address is no longer available to clients. The server
can thus shed a fraction of its load when it experiences moderate to high load. The
monitoring system in Akamai also transmits data center load to the top-level DNS
resolver to direct traffic away from overloaded data centers. In addition to load bal-
ancing, Akamai’s monitoring system provides centralized reporting on content ser-
vice for each customer and content server. This information is useful for network
operational and diagnostic purposes.

Akamai delivers static and dynamic content over HTTP and HTTPS. Akamai
content servers apply lifetime and other features (e.g. ability to serve secure con-
tent over HTTPS protocol, support alternate content, transfer encodings, and handle
cookies) to the static content based on its type. Based on these attributes the edge
server ensures the consistency of the content. On the other hand, Akamai handle
dynamic content on the edge servers with the use of Edge Side Includes (ESI) [4]
technology. The use of ESI enables the content providers to break their dynamic
content into fragments with independent cacheability properties. These fragments
can be maintained as separate objects in Akamai’s edge servers and are dynamically
assembled to a dynamic Web page in response to the end user requests.

Akamai supports Microsoft Windows Media, Real, and Apple’s QuickTime for-
mat for delivering streaming services (live and on-demand media). A live stream is
captured and encoded by the content provider and sent to the entry point server of a
set of Akamai edge servers, which in turn serve content to the end users. In order to
avoid all single points of failure, backups are maintained for the entry point server.
Moreover, the entry point server sends data on multiple redundant paths to the edge
servers through using information dispersal techniques.

More information on Akamai and its overlay routing, including its performance,
availability benefits, different uses in live streaming, application, and IP acceleration
can be found in Chap. 10 of this book.

1.5.1.2 EdgeStream

EdgeStream [23] was founded in 2000 at California, USA. It is a provider of video
streaming applications over the public Internet. It provides video on-demand and
IPTV streaming software to enable transportation of high bit rate video over In-
ternet. It uses HTTP streaming for content delivery. EdgeStream supports different
compression formats for delivering content. It has developed Continuous Route Op-
timization Software (CROS), Internet Congestion Tunnel Through (ICTT) and Real
Time Performance Monitoring Service (RPMS) technologies, which together assist
to address the latency, packet loss, and congestion bottlenecks. Embedded applica-
tions in Consumer Electronics Devices, wireless handheld devices, IP set top boxes,
and advanced digital TV’s can use the EdgeStream software for video streaming.

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 19

EdgeStream platform is made of client and server software modules. The server
software consists of Content Management and Online Reporting (CMOR) Server
Software Module, EdgeStream Control Server Software Module, EdgeStream
Database System Module, and EdgeStream Streaming Server Module. All server
modules may be combined to run on a single server, or run separately. CMOR mod-
ule manages accounts, content, and all other servers in the system. It also gener-
ates Web-based real time reports for viewing statistics and transactions from a SQL
database. The control module provides necessary authority to obtain the content
location information along with streaming delivery management and logging func-
tions. The database module maintains logs for accounting and billing purpose. It
uses the Microsoft SQL 2000 Standard or Enterprise server software. The stream-
ing server module is designed for load balancing and for running on standard low
cost server platforms. When running on a dual processor server, streaming capacity
can excess 500 Mbps with terabyte storage capacity.

EdgeStream client software provides a plug-in interface to the Windows Media
and Real players. It can also be used to measure the Internet connection quality on
a second by second basis. The PC client software is available for standard Windows
platform and it is a 600 KB download. The Firmware client is a 300 KB (or smaller)
download and can be either embedded in Windows XP or used with Windows CE.

1.5.1.3 Limelight Networks

Limelight Networks [30] was founded in 2001 at Tempe, Arizona, USA. Its con-
tent delivery services include HTTP/Web distribution of digital media files such
as video, music, games, software and social media. It delivers content to media
companies, including businesses operating in television, music, radio, newspaper,
magazine, movie, video game, and software industries.

Content providers upload content either directly to the Limelight CDN’s servers
or to their own servers, which are connected directly to Limelight’s network. Upon
request from an end user, Limelight distributes that content to one or more Web
server clusters which feed the specially configured servers at each content deliv-
ery location around the world. The content is then delivered directly to the end
users either through ISPs or over the public Internet if appropriate. Like other com-
mercial CDNs, it uses DNS redirection to reroute client requests to local clusters
of machines, having built detailed maps of the Internet through a combination of
BGP feeds and their own measurements, such as traceroutes from numerous van-
tage points.

Limelight Networks support Adobe Flash, MP3 audio, Microsoft Windows Me-
dia, Real, and Apple’s QuickTime format for delivering on-demand streaming ser-
vices. Limelight Networks proprietary software include Limelight ContentEdge for
distributed content delivery via HTTP, Limelight MediaEdge Streaming for dis-
tributed video and music delivery via streaming, Limelight StorageEdge for stor-
ing customer’s content library within Limelight’s CDN architecture, and Limelight
Custom CDN for custom distributed delivery solutions. Content providers using

20 M. Pathan et al.

Limelight’s streaming services use Limelight User Exchange (LUX), which is a
Web-based management and reporting console for tracking the end users’ activity
with real time reporting. All these software together assist in managing the content
delivery system.

1.5.1.4 Mirror Image

Mirror Image [40] was founded in 1999 at Massachusetts, USA. It is a provider of
online content, application, streaming media, Web computing, reporting, and trans-
action delivery services to the end users. It follows a Concentrated “Superstore” ar-
chitecture, where content is placed in large Web server clusters in central locations
close to densely populated user regions. Mirror Image exploits a global Content Ac-
cess Point (CAP) infrastructure on top of the Internet to provide content providers,
service providers, and enterprises with a platform for content delivery.

When a user request for content comes from a Mirror Image provisioned Web
site, it is automatically routed to a global load balancer on the CAP network. The
load balance uses DNS routing to determine the CAP location with fastest response
time. Upon reception of the request at the selected CAP location, the caches and
then the core databases are checked for the requested content. If the content is found,
it is delivered to the user. On cache miss, the CAP network automatically returns a
redirection status code “302” to the origin server’s URL. Then the requested content
is delivered to the user from the origin server and the CAP network retrieves (or pull)
the content from the origin server and stores it for future subsequent requests.

Mirror Image provides content delivery, streaming media, and Web computing
solutions, including Global Content Caching solution to offload traffic spikes while
serving static content; Digital Asset Download solution to manage the storage and
download of digital content; Video On-Demand solution for streaming delivery of
digital content; Extensible Rules Engine (XRE) to give customers control over the
delivery process; and Webcasting solution to allow users to send “one-to-many”
messages for training, marketing, and distance learning outlets.

1.5.2 Academic CDNs

Unlike commercial CDNs, the use of P2P technologies is mostly common in aca-
demic CDNs. Thus, the content delivery follows a decentralized approach and re-
quest load is spread across all the participating hosts, and thus the system can handle
node failures and sudden load surges. Academic CDNs built using P2P techniques
are effective for static content only and therefore, are unable to handle dynamically
generated content due to the uncachable nature of dynamic content. In this section,
we present three representative academic CDNs, namely CoDeeN, Coral, and Glob-
ule. Table 1.3 provides a brief summary of these academic CDNs. Two other aca-
demic CDNs – FCAN (adaptive CDN for alleviating flash crowds) and COMODIN

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 21

Ta
bl

e
1.

3
Su

m
m

ar
y

of
th

e
ex

is
tin

g
ac

ad
em

ic
C

D
N

s

C
D

N
N

am
e

D
es

cr
ip

tio
n

Se
rv

ic
e

Ty
pe

Im
pl

em
en

ta
tio

n
an

d
Te

st
in

g
A

va
ila

bi
lit

y
C

oD
ee

N
w

w
w

.c
od

ee
n.

cs
.

pr
in

ce
to

n.
ed

u

C
oD

ee
N

is
an

ac
ad

em
ic

te
st

be
d

C
D

N
bu

ilt
on

to
p

of
Pl

an
et

L
ab

Pr
ov

id
es

ca
ch

in
g

of
co

nt
en

t
an

d
re

di
re

ct
io

n
of

H
T

T
P

re
qu

es
ts

Im
pl

em
en

te
d

in
C

/C
+

+
an

d
te

st
ed

on
L

in
ux

(2
.4

/2
.6

)
an

d
M

ac
O

S(
10

.2
/1

0.
3)

N
/A

C
or

al
w

w
w

.c
or

al
cd

n.
or

g
C

or
al

is
a

fr
ee

P2
P

C
D

N
.I

t
is

ho
st

ed
on

Pl
an

et
L

ab
Pr

ov
id

es
co

nt
en

tr
ep

lic
at

io
n

in
pr

op
or

tio
n

to
th

e
co

nt
en

t’s
po

pu
la

ri
ty

Im
pl

em
en

te
d

in
C

+
+

an
d

te
st

ed
on

L
in

ux
,

O
pe

nB
SD

,F
re

eB
SD

,a
nd

M
ac

O
S

X

N
o

of
fic

ia
lr

el
ea

se
ye

t.
C

or
al

is
a

Fr
ee

so
ft

w
ar

e,
lic

en
se

d
un

de
r

G
PL

v2
(G

N
U

G
en

er
al

Pu
bl

ic
L

ic
en

se
)

G
lo

bu
le

w
w

w
.g

lo
bu

le
.o

rg
G

lo
bu

le
is

an
op

en
so

ur
ce

co
lla

bo
ra

tiv
e

C
D

N
Pr

ov
id

es
re

pl
ic

at
io

n
of

co
nt

en
t,

m
on

ito
ri

ng
of

se
rv

er
s

an
d

re
di

re
ct

in
g

cl
ie

nt
re

qu
es

ts
to

av
ai

la
bl

e
re

pl
ic

as

Im
pl

em
en

te
d

us
in

g
PH

P
sc

ri
pt

in
g,

C
/C

+
+

an
d

te
st

ed
on

U
ni

x/
L

in
ux

an
d

W
in

do
w

s

G
lo

bu
le

is
op

en
so

ur
ce

,s
ub

je
ct

to
a

B
SD

-s
ty

le
lic

en
se

an
d

th
e

A
pa

ch
e

so
ft

w
ar

e
lic

en
se

fo
r

th
e

pa
ck

ag
ed

A
pa

ch
e

H
T

T
P

se
rv

er

22 M. Pathan et al.

(streaming CDN for collaborative media streaming services), are presented respec-
tively in Chap. 11 and Chap. 12 of this book.

1.5.2.1 CoDeeN

CoDeeN [46, 64] is a P2P-based proxy server system developed at Princeton Uni-
versity, USA. It is an HTTP-based CDN, which gives participating users better
performance to most Web sites. CoDeeN provides caching of Web content and redi-
rection of HTTP requests. It is built on top of PlanetLab [9], consisting of a network
of high performance proxy servers. CoDeeN nodes are deployed as “open” proxies
in order to allow access from outside the hosting organization. Each CoDeeN node
is capable of acting as a forward proxy, a reverse proxy, and a redirector. CoDeeN
operates in the following way: (1) users set their internet caches to a nearby high
bandwidth proxy that participates in the CoDeeN system; (2) the CoDeeN node acts
as a forward proxy and tries to satisfy the request locally. On cache miss, the redi-
rector logic built in the CoDeeN node determines where the request should be sent.
For most requests the redirector take into account request locality, system load, reli-
ability, and proximity information to forward the requests to other CoDeeN nodes,
which act as a reverse proxy for the forwarded requests. Requests which are still not
satisfied at this stage are sent to the origin server.

CoDeeN has the local monitoring ability that examines the service’s primary re-
sources, such as free file descriptors/sockets, CPU cycles, and DNS resolver service.
It gathers information about the CoDeeN instance’s state and its host environment.
This information assists in assessing resource connection as well as external ser-
vice availability. To monitor the health and status of the peers, each CoDeeN node
employs two mechanisms – a lightweight UDP-based heartbeat and a “heavier”
HTTP/TCP-level “fetch” helper [64]. In the first case, each proxy sends a heart-
beat message once per second to one of its peers, which then responds (heartbeat
acknowledgement or ACK) with piggybacked load information including peer’s av-
erage load, system time, file descriptor availability, proxy and node uptimes, average
hourly traffic, and DNS timing/failure statistics. By coupling the history of ACKs
with their piggybacked local status information, each CoDeeN instance indepen-
dently assesses the health of other nodes. In the later case, each CoDeeN node is
employed with a toll to specify what fails when it can not retrieve a page within
the allotted time. A history of failed fetches for each peer is maintained, which in
combination with UDP-level heartbeats assists in determining if a node is viable for
request redirection.

A number of projects are related to CoDeeN – CoBlitz (a scalable Web-based
distribution system for large files), CoDeploy (an efficient synchronization tool for
PlanetLab slices), CoDNS (a fast and reliable name lookup service), CoTop (a com-
mand line activity monitoring tool for PlanetLab), CoMon (a Web-based slice mon-
itor that monitors most PlanetLab nodes), and CoTest (a login debugging tool).

A significant application service running on top of CoDeeN is CoBlitz [48]. It is a
file transfer service which distributes large files without requiring any modifications

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 23

to standard Web servers and clients, since all the necessary support is located on
CoDeeN itself. One of the motivations for building CoBlitz on top of CoDeeN is to
ensure long duration caching so that client requested content can be served quickly
even after demand for it drops. CoBlitz is publicly accessible which allows the
clients to prepend the original URL with “http://coblitz.codeen.org:
3125” and fetch it like any other URL. A customized DNS server maps the name
coblitz.codeen.org to a nearby PlanetLab node. To deploy CoBlitz, the HTTP CDN,
CoDeeN is made amenable to handling large files. This approach includes modi-
fying large file handling to efficiently support them on CoDeeN and modifying its
request-routing to enable more swarm-like behavior under heavy load. In CoBlitz, a
large file is considered as a set of small files (chunks) that can be spread across the
CDN. CoBlitz works if the chunks are fully cached, partially cached, or not at all
cached, fetching any missing chunks from the origin as needed. Thus, while trans-
ferring large files over CoBlitz, no assumptions are made about the existence of the
file on the peers.

1.5.2.2 Coral

Coral [28] is a free P2P content distribution network. It was developed by the New
York University’s Secure Computer Systems group during their visit to Stanford
University, USA. It is designed to mirror Web content and its goal is to give most
users better performance to participating Web sites. It uses the bandwidth of vol-
unteers to avoid flash crowd and to reduce the load on Web sites and other Web
content providers in general. CoralCDN is deployed on PlanetLab, instead of third
party volunteer systems. To use CoralCDN, a content publisher, end-host client, or
someone posting a link to a high-traffic portal has to append “.nyud.net:8090”
to the hostname in a URL. Clients are redirected to the nearby Coral Web caches
transparently through DNS redirection. Coral Web caches cooperate to transfer data
from nearby peers whenever possible, minimizing both the load on the origin Web
server and the latency perceived by the user. CoralCDN is built on top of the Coral
key-value indexing layer. It allows nodes to access nearby cached objects without
redundantly querying more distant nodes. It also prevents the creation of hotspots in
the indexing infrastructure, even under degenerate loads.

CoralCDN is comprised of three main parts: a network of cooperative HTTP
proxies for handling client requests; a network of DNS nameservers for “.nyud.net”
that map clients to nearby CoralCDN HTTP proxy; and an underlying indexing
infrastructure and clustering machinery on which the first two applications rely.

Coral uses an indexing abstraction called Distributed Sloppy Hash Table (DSHT),
which is a variant of Distributed Hash Tables (DHTs) for building key value indexes.
DSHTs are designed for applications storing soft-state key-value pairs, where mul-
tiple values may be stored under the same key. A DSHT caches key-value pairs at
nodes whose identifiers are increasingly close to the key being referenced, as an in-
verse function of load. It has a “sloppy” storage technique that leverages cross-layer
interaction between the routing and storage layers.

24 M. Pathan et al.

The CoralHTTP proxy satisfies HTTP requests for Coralized URLs. To mini-
mize the load on the origin servers, a CoralHTTP proxy fetch Web pages from other
proxies whenever possible. Each proxy keeps a local cache to fulfill requests im-
mediately. If a CoralHTTP proxy discovers the requested content in one or more
other proxies, it establishes parallel TCP connections to them (multiple other prox-
ies) and issues an HTTP request to the first proxy to which it successfully connects.
Once the neighboring proxy begins to send valid content, all other established TCP
connections are closed. When a client requests content from a non-resident URL,
CoralHTTP proxy first attempts to locate a cached copy. If the Coral indexing layer
does not provide any referral or any of its referrals return the requested content,
CoralHTTP proxy fetches the content directly from the origin server. In the face
of a flash crowd, all CoralHTTP proxies naturally form a kind of “multicast tree”
for retrieving the Web page, instead of making simultaneous requests to the origin
server and data flows from the proxy that initially fetch the content from the origin
server to those arriving later. Such behavior in CoralCDN is provided by combining
optimistic references and cut-through routing.

The CoralDNS server maps the IP addresses to the hostnames of Coralized URLs
and returns it to CoralHTTP proxies. Coral’s architecture is based on clusters of
well-connected machines. Clusters are exposed in the interface to higher-level soft-
ware, and in fact form a crucial part of the DNS redirection mechanism. In order to
improve locality, when a DNS resolver contacts a nearby CoralDNS server instance,
the CoralDNS server returns the proxies within an appropriate cluster and ensures
that future DNS requests form this client does not leave the cluster. A CoralDNS
server only returns the CoralHTTP proxy addresses which is has recently verified
first hand in order to check a proxy’s liveness status synchronously prior to replying
to a DNS query.

1.5.2.3 Globule

Globule [52] is an open-source collaborative CDN developed at the Vrije Univer-
siteit in Amsterdam, the Netherlands. It aims to allow Web content providers to
organize together and operate their own world-wide hosting platform. In particular,
it is an overlay network composed of end user nodes that operate in a P2P fashion
across a wide-area network, where participating members offer resources such as
storage capacity, bandwidth, and processing power. It provides replication of con-
tent, monitoring of servers and redirection of client requests to available replicas.

In Globule, a site is defined as a collection of documents that belong to one spe-
cific user (the site’s owner) and a server is a process running on a machine connected
to a network, which executes an instance of the Globule software. Each site is com-
posed of the origin, backup, replica, and redirector servers. The origin server(s) has
the authority to contain all documents of the site and has the responsibility to dis-
tribute content among other involved servers. The backup servers maintain a full
up-to-date copy of the hosted site. Other than backup servers, a number of replica
servers can be used to host a site. While backup servers just maintain a copy, replica

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 25

servers aim to maximize performance based on the request load and QoS require-
ments. A replica server for a site is typically operated by a different user than the
origin and a replica server typically contain a partial copy of the hosted site. One
can view the replica server as a caching proxy which fetches the content from the
origin server on a local cache miss. A redirector server is responsible for redirecting
client requests to the optimal replica server for serving a given request. Redirectors
in Globule can use either HTTP or DNS-based redirection. A redirector also im-
plements a policy for client redirection. The default policy redirects clients to the
closest replica in terms of estimated latency. Redirectors also monitor the availabil-
ity of other servers to ensure effective redirection of requests. Depending on the role
a server can perform as origin, replica, backup and/or redirector servers.

Globule takes inter-node latency as the proximity measure. This metric is used
to optimally place replicas to the clients, and to redirect the clients to an appropri-
ate replica server. Globule is implemented as a third-party module for the Apache
HTTP Server that allows any given server to replicate its documents to other Glob-
ule servers. To replicate content, content providers only need to compile an extra
module into their Apache server and edit a simple configuration file.

1.6 Visionary Thoughts for Practitioners

We envision the following technological evolutions to be realized in the coming
years in CDN industry related research.

1.6.1 A Unified Content Network

To make content transformations and processing and infrastructure service accessi-
ble by the user, vendors have implemented Content Service Networks (CSN) [38],
which act as another network infrastructure layer built upon CDNs and provide next
generation of CDN services. CSN appears to be a variation of the conventional
CDN. Network resources provided by a CSN is used as a “service” distribution
channel for value added service providers in order to make their applications as an
infrastructure service. This logical separation between content and services under
the “Content Delivery/Distribution” and “Content Services” domain, is undesirable
considering the on-going trend in content networking. Hence, a unified content net-
work, which supports the coordinated composition and delivery of content and ser-
vices, is highly desirable.

1.6.2 Dynamic Content

Dynamic content refers to the content which is generated on-demand using Web ap-
plications based on user requests. Such content generation is customized depending

26 M. Pathan et al.

on a given user profile and characteristics. A large amount of Web content is gener-
ated dynamically. Dynamic content includes scripts, animations, DHTML or XML
pages that are generated on the fly based on user specification. The dynamic genera-
tion of Web pages can be performed with the use of scalable Web application hosting
techniques such as edge computing [55], context-aware data caching [20, 58], data
replication [58], and content blind data caching [58]. Instead of replicating the dy-
namic pages generated by a Web server, these techniques aim to replicate the means
of generating pages over multiple edge servers [58]. Commercial CDN providers
have their own proprietary solutions and application server platform to handle dy-
namic content. EdgeSuite content distribution from Akamai and IBM WebSphere
edge services [5] are examples of systems to provide usage-based application and
(dynamic) content delivery. In order to manage dynamic content, a CDN provider
may use such scalable techniques to accelerate the dynamic generation of Web
pages. The choice of the appropriate strategy may vary depending on the charac-
teristics of Web applications.

1.6.3 Web Services

Nowadays, a few commercial CDNs host Web services. For instance, Akamai has
deployed .NET services on its network. Mirror Image has also developed an Ap-
plication Delivery Network (ADN) that hosts both .NET and J2EE applications
at its edge servers. Several studies [29, 60] have shown that the performance of
Web services is relatively poor because of the requirements for processing and spe-
cial hosting capability. Some solutions can be found in literature, which can be
used to address the problem of effective replication of Web services to the CDN
edge servers. Geng et al. [29] propose a sharable and tradable cache infrastructure
between several ISPs and networks. This solution is characterized by a capacity
provisioning network (CPN) for trading cache capacities. A CPN is operated by a
trading hub rather than being operated by a particular CDN. Such a solution can
be followed by a CDN to acquire (through trading) necessary capacity to meet the
demand for Web service caching. Takase et al. [60] present caching using XML
messages, improvements by caching event sequences of the XML parser. They also
propose caching of application objects using Java serialization, reflection copy, and
clone copy.

1.6.4 Service-Oriented Architecture

Future trends in content networking domain are expected to allow services to be
composed of other services by building on standard protocols and invocation mech-
anisms. Thus, content networks should be capable of exploiting an SOA. High-level
transparency within SOA is required, which could have impact on all the constituent
technologies. Content management in such an SOA-based CDN is expected to be

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 27

highly motivated by user preferences. Hence, a comprehensive model for managing
the distributed contents and services in future CDN would be crucial to avail end
user’s preferences. To address this issue, contents can be personalized to meet spe-
cific user’s (or a group of users) preferences. Like Web personalization [41], user
preferences can be automatically learned from content request and usage data by
using data mining techniques. Data mining over content network can exploit signifi-
cant performance improvement through dealing with proper management of traffic,
pricing and accounting/billing in SOA-based CDNs.

1.7 Future Research Directions

In this section, we provide a roadmap to the academic CDN researchers by exploring
possibilities and research challenges that are expected to drive innovations within
this domain.

1.7.1 Load Balancing and Content replication
in Cooperative Domain

The issue of effective replication and caching of content is critical to the success
of traditional as well as cooperative arrangement of CDNs. The concept of caching
“hot” content is not new, but in the context of a cooperative content delivery, there
will be significant competing considerations. Future research should lead to the out-
come of dynamic, scalable, and efficient replication mechanisms that cache content
on demand with respect to the locality of requests, focusing on regions where spe-
cific content is needed most. Moreover, innovative solutions integrating replication
and caching are expected in the management of dynamic and personalized content
in the cooperative domain. Chapter 3 provides more information on such innova-
tive content replication techniques. Detailed information on the integrated use of
caching and replication as well as cache consistency mechanisms can be found in
Chap. 4 and Chap. 5 of this book.

1.7.2 Deployment of Market Mechanisms

An economic model can exploit the dynamism of the CDN market and makes the
system more manageable through analyzing the emergent marketplace behavior.
This also provides benefits to the CDNs to offer their resources and to open up many
interesting new services. Deployment of the market mechanisms can be done based
on an SOA. In addition, replication, resource sharing, and load balancing polices
need to be guided by profit-driven utility functions that satisfy QoS requirements of
end users. More information on economics-informed design of CDNs and pricing
of CDNs can be found in Chap. 7 and Chap. 8 respectively.

28 M. Pathan et al.

1.7.3 An Adaptive CDN for Media Streaming

Hosting of on-demand media streaming service is challenging because of the enor-
mous network and bandwidth required to simultaneously deliver large amount of
content to end users. To avoid network congestion and to improve performance,
P2P techniques can be used to build an adaptive CDN. In such a system, content
storage and workload from streaming server, network, and storage resources are of-
floaded to the end users’ workstations. The fundamental idea is to allow multiple
subscriber peers to serve streams of the same video content simultaneously to a
consuming peer rather than the traditional single-server-to-client streaming model,
while allowing each peer to store only a small portion of the content. Such a so-
lution for cost-effective media streaming using a P2P approach has been reported
in the design of the Decentralized Media Streaming Infrastructure (DeMSI) [65].
Another work on open and adaptive streaming CDN through collaborative control
on media streaming services is described in Chap. 12 of this book.

1.7.4 A Mobile Dynamic CDN

Mobile networks are becoming increasing popular for distributing information to
a large number of highly dynamic users. In comparison to wired networks, mobile
networks are distinguished by potentially much higher variability in demand due to
user mobility. Content delivery techniques for mobile networks must take into ac-
count potentially very high spatial and temporal demand variations to dynamically
reconfigure the system, and to minimize the total traffic over the network backbone.
A model for mobile dynamic CDN should be designed to allow the access of accu-
rate and up-to-date information and enterprise applications. Such a mobile dynamic
CDN model for enterprise networks and related content management policies are
presented by Aioffi et al. [12]. Example of a commercial mobile CDN provider is
Ortiva Wireless [8], which delivers audio, video, and multimedia content to mo-
bile users. More information on information dissemination in mobile CDNs can be
found in Chap. 14 of this book.

1.7.5 Content Distribution Through
Internetworking/Peering/Brokering

Present trends in content networks and content networking capabilities give rise
to the interest in interconnecting content networks. High quality service could
be achieved by permitting CDNs to cooperate and thereby providing a means
for CDNs to redistribute content delivery between themselves. Such cooperation
could reach to a large client population that one CDN cannot achieve otherwise.
Therefore, future research will heavily focus on the innovation of technologies for

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 29

internetworking, brokering or peering arrangements between CDNs [18, 26, 50].
More information on CDN internetworking can be found in Chap. 16 of this book.

1.8 Conclusion

In this chapter, we present a state-of-the-art survey of the existing CDNs and give
an insight into the underlying technologies that are currently in use in the content-
distribution space. After analyzing the ongoing content networking trend, we can
anticipate the integrated uses of existing emerging as well as stable technologies
(e.g. agent, P2P, grid, data mining) to augment the effectiveness and boost the ef-
ficiency of future CDN infrastructures. We also perceive that there is a possible
shift change in the CDN industry as CDN internetworking, adaptive CDNs, mobile
CDNs, and to the full, community-based CDNs are evolving. Therefore, this chapter
can be used as a basis to provide an in-depth analysis and complete understanding
of the current and future trends in the content distribution landscape.

References

1. Akamai Technologies, 2007. www.akamai.com
2. BioGrid Project, Japan, 2005. http://www.biogrid.jp
3. Broadband Service Forum, 2007. http://broadbandservicesforum.org
4. ESI Developer Resources, 2007. http://www.akamai.com/html/support/esi.html
5. IBM WebSphere Application Server, 2007. http://www-306.ibm.com/software/webservers/

appserv/was/
6. ICAP Forum, 2007. http://www.i-cap.org/
7. Internet Streaming Media Alliance, 2007. http://www.isma.tv/
8. Ortiva Wireless, 2007. http://www.ortivawireless.com/
9. PlanetLab Consortium, 2007. http://www.planet-lab.org/

10. Wikipedia. September 11, 2001 attacks. http://en.wikipedia.org/wiki/September 11, 2001
attack

11. Adler, S. The slashdot effect: an analysis of three Internet publications. Linux Gazette Issue,
38, 1999.

12. Aioffi, W. M., Mateus, G. R., de Almeida, J. M., and Loureiro, A. A. F. Dynamic content dis-
tribution for mobile enterprise networks. IEEE Journal on Selected Areas in Communications,
23(10), pp. 2022–2031, 2005.

13. Androutsellis-Theotokis, S. and Spinellis, D. A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys, 36(4), ACM Press, NY, USA, pp. 335–371, 2004.

14. Arlitt, M. and Jin, T. A workload characterization study of 1998 world cup Web site. IEEE
Network, pp. 30–37, 2000.

15. Barbir, A., Batuner, O., Beck, A., Chan, T., and Orman, H. Policy, authorization, and enforce-
ment requirements of the open pluggable edge services (OPES). Internet Engineering Task
Force RFC 3838, 2004. www.ietf.org/rfc/rfc3838.txt

16. Barbir, A., Penno, R., Chen, R., Hofmann, H., and Orman, H. An architecture for
open pluggable edge services (OPES). Internet Engineering Task Force RFC 3835, 2004.
www.ietf.org/rfc/rfc3835.txt

30 M. Pathan et al.

17. Bartolini, N., Casalicchio, E., and Tucci, S. A walk through content delivery networks. In Proc.
of the 11th Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), LNCS Vol. 2965/2004,
pp. 1–25, April 2004.

18. Biliris, A., Cranor, C., Douglis, F., Rabinovich, M., Sibal, S., Spatscheck, O., and Sturm, W.
CDN brokering. Computer Communications, 25(4), pp. 393–402, 2002.

19. Brussee, R., Eertink, H., Huijsen, W., Hulsebosch, B., Rougoor, M., Teeuw, W., Wibbels, M.,
and Zandbelt, H. Content distribution network state of the art,” Telematica Instituut, 2001.

20. Buchholz, T., Hochstatter, I., and Linnhoff-Popien, C. A profit maximizing distribution strat-
egy for context-aware services. In Proc. of 2nd International Workshop on Mobile Commerce
and Services (WMCS’05), pp. 144–153, 2005.

21. Ceri, S. and Pelagatti, G. Distributed Databases: Principles and Systems, McGraw-Hill, NY,
1984.

22. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and Tuecke, S. The data grid: towards
an architecture for the distributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications, 23, pp. 187–200, 2001.

23. Chung, R. Network latency and its effect on video streaming. EdgeStream, 2004.
www.edgestream.com

24. Cooper, I., Melve, I., and Tomlinson, G. Internet Web replication and caching taxonomy. In-
ternet Engineering Task Force RFC 3040, 2001.

25. Davison, B. D. Web caching and content delivery resources. http://www.web-caching.com,
2007.

26. Day, M., Cain, B., Tomlinson, G., and Rzewski, P. A model for content internetworking (CDI).
Internet Engineering Task Force RFC 3466, 2003.

27. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally distributed
content delivery. IEEE Internet Computing, pp. 50–58, 2002.

28. Freedman, M. J., Freudenthal, E., and Mazières, D. Democratizing content publication with
Coral. In Proc. of 1st USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation, San Francisco, CA, USA, 2004.

29. Geng, X., Gopal, R. D., Ramesh, R., and Whinston, A. B. Scaling web services with capacity
provision networks. IEEE Computer, 36(11), pp. 64–72, 2003.

30. Gordon, M. The Internet streaming media boom: a powerful trend that represents fundamental
change. Limelight Networks, 2007. www.limelightnetworks.com

31. Hofmann, M. and Beaumont, L. R. Content Networking: Architecture, Protocols, and Prac-
tice. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 129–134, 2005.

32. International Standards Organization (ISO), Open systems interconnection–basic reference
model. ISO 7498, 1989.

33. Izal, M., Urvoy-Keller, G., Biersack, E. W., Felber, P., Hamra, A. A., and Garces-Erice, L.
Dissecting bittorrent: five months in a torrent’s lifetime. In Proc. of 5th Annual Passive and
Active Measurement Workshop (PAM’2004), Antibes Juan-Les-Pins, France, 2004.

34. Jung, J., Krishnamurthy, B., and Rabinovich, M. Flash crowds and denial of service attacks:
characterization and implications for CDNs and Web sites. In Proc. of the International World
Wide Web Conference, pp. 252–262, 2002.

35. Kangasharju, J., Roberts, J., and Ross, K. W. Object replication strategies in content distribu-
tion networks. Computer Communications, 25(4), pp. 367–383, 2002.

36. Lazar, I. and Terrill, W. Exploring content delivery networking. IT Professional, 3(4),
pp. 47–49, 2001.

37. Lebrun, P. The large hadron collider, a megascience project. In Proc. of the 38th INFN
Eloisatron Project Workshop on Superconducting Materials for High Energy Colliders, Erice,
Italy, 1999.

38. Ma, W. Y., Shen, B., and Brassil, J. T. Content services network: architecture and protocols.
In Proc. of 6th International Workshop on Web Caching and Content Distribution (IWCW6),
2001.

39. Malkin, G. Traceroute using an IP option. Internet Engineering Task Force RFC 1393, 1993.

1 Content Delivery Networks: State of the Art, Insights, and Imperatives 31

40. Mirror Image Internet. Content Delivery and the Mirror Image Adaptive CAP Network, 2007.
www.mirror-image.com

41. Mobasher, B., Cooley, R., and Srivastava, J. Automatic personalization based on Web usage
mining. Communications of the ACM, 43(8), pp. 142–151, 2000.

42. Molina, B., Palau, C. E., and Esteve, M. Modeling content delivery networks and their perfor-
mance. Computer Communications, 27(15), pp. 1401–1411, 2004.

43. Moore, R., Prince, T. A., and Ellisman, M. Data intensive computing and digital libraries.
Communications of the ACM, 41(11), ACM Press, NY, USA, pp. 56–62, 1998.

44. Oram, A. Peer-to-Peer: Harnessing the Power of Disruptive Technologies, O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, 2001.

45. Ozsu, M. T. and Valduriez, P. Principles of Distributed Database Systems, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1999.

46. Pai, V. S., Wang, L., Park, K. S., Pang, R., and Peterson, L. The dark side of the web: an open
proxy’s view. In Proc. of the Second Workshop on Hot Topics in Networking (HotNets-II),
Cambridge, MA, USA, 2003.

47. Pallis, G. and Vakali, A. Insight and perspectives for content delivery networks. Communica-
tions of the ACM, 49(1), ACM Press, NY, USA, pp. 101–106, 2006.

48. Park, K. S. and Pai, V. S. Scale and performance in the CoBlitz large-file distribution service.
In Proc. of the 3rd Symposium on Networked Systems Design and Implementation (NSDI
2006), San Jose, CA, USA, 2006.

49. Pathan, M. Content delivery networks (CDNs) research directory, 2007. http://www.gridbus.
org/cdn/CDNs.html

50. Pathan, M., Broberg, J., Bubendorfer, K., Kim, K. H., and Buyya, R. An Architecture for Vir-
tual Organization (VO)-Based Effective Peering of Content Delivery Networks, UPGRADE-
CN’07. In Proc. of the 16th IEEE International Symposium on High Performance Distributed
Computing (HPDC), CA, USA, 2007.

51. Peng, G. CDN: Content distribution network. Technical Report TR-125, Experimental Com-
puter Systems Lab, Department of Computer Science, State University of New York, Stony
Brook, NY, 2003. http://citeseer.ist.psu.edu/peng03cdn.html

52. Pierre, G. and van Steen, M. Globule: a collaborative content delivery network. IEEE Com-
munications, 44(8), 2006.

53. Plagemann, T., Goebel, V., Mauthe, A., Mathy, L., Turletti, T., and Urvoy-Keller, G. From
content distribution to content networks – issues and challenges. Computer Communications,
29(5), pp. 551–562, 2006.

54. Rabinovich, M. and Spatscheck, O. Web Caching and Replication, Addison Wesley, USA,
2002.

55. Rabinovich, M., Xiao, Z., Douglis, F., and Kalmanek, C. Moving edge side includes to the
real edge – the clients. In Proc. of USENIX Symposium on Internet Technologies and Systems,
Sealttle, Washington, USA, 2003.

56. Rekhter, Y. and Li, T. A border gateway protocol 4. Internet Engineering Task Force RFC
1771, 1995.

57. Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy, H. M. An analysis of
Internet content delivery systems. ACM SIGOPS Operating Systems Review, 36, pp. 315–328,
2002.

58. Sivasubramanian, S., Pierre, G., Van Steen, M., and Alonso, G. Analysis of caching and repli-
cation strategies for Web applications. IEEE Internet Computing, 11(1), pp. 60–66, 2007.

59. Szalay, A. and Gray, J. The world-wide telescope. Science 293(5537), pp. 2037–2040, 2001.
60. Takase, T. and Tatsubori, M. Efficient Web services response caching by selecting optimal data

representation. In Proc. of 24th International Conference on Distributed Computing Systems
(ICDCS 2004), pp. 188–197, 2004.

61. Vakali, A. and Pallis, G. Content delivery networks: status and trends. IEEE Internet Comput-
ing, 7(6), IEEE Computer Society, pp. 68–74, 2003.

62. Venugopal, S., Buyya, R., and Ramamohanarao, K. A taxonomy of data grids for distributed
data sharing, management, and processing. ACM Computing Surveys, 38(1), ACM Press, NY,
USA, 2006.

32 M. Pathan et al.

63. Verma, D. C. Content Distribution Networks: An Engineering Approach, John Wiley & Sons,
Inc., New York, USA, 2002.

64. Wang, L., Park, K. S., Pang, R., Pai, V. S., and Peterson, L. Reliability and security in CoDeeN
content distribution network. In Proc. of the USENIX 2004 Annual Technical Conference,
Boston, MA, USA, 2004.

65. Yim, A. and Buyya, R. Decentralized media streaming infrastructure (DeMSI): an adaptive
and high-performance peer-to-peer content delivery network. Journal of Systems Architecture,
52(12), Elsevier, The Netherlands, pp. 737–772, 2006.

Chapter 2
A Taxonomy of CDNs

Mukaddim Pathan and Rajkumar Buyya

2.1 Introduction

Content Delivery Networks (CDNs) [79, 97] have received considerable research
attention in the recent past. A few studies have investigated CDNs to categorize and
analyze them, and to explore the uniqueness, weaknesses, opportunities, and future
directions in this field. Peng presents an overview of CDNs [75]. His work de-
scribes the critical issues involved in designing and implementing an effective CDN,
and surveys the approaches proposed in literature to address these problems. Vakali
et al. [95] present a survey of CDN architecture and popular CDN service providers.
The survey is focused on understanding the CDN framework and its usefulness.
They identify the characteristics and current practices in the content networking do-
main, and present an evolutionary pathway for CDNs, in order to exploit the current
content networking trends. Dilley et al. [29] provide an insight into the overall sys-
tem architecture of the leading CDN, Akamai [1]. They provide an overview of the
existing content delivery approaches and describe Akamai’s network infrastructure
and its operations in detail. They also point out the technical challenges that are to
be faced while constructing a global CDN like Akamai. Saroiu et al. [84] exam-
ine content delivery from the point of view of four content delivery systems: Hy-
pertext Transfer Protocol (HTTP) Web traffic, the Akamai CDN, Gnutella [8, 25],
and KaZaa [62, 66] peer-to-peer file sharing systems. They also present signifi-
cant implications for large organizations, service providers, network infrastructure
providers, and general content delivery providers. Kung et al. [60] describe a tax-
onomy for content networks and introduce a new class of content networks that
perform “semantic aggregation and content-sensitive placement” of content. They
classify content networks based on their attributes in two dimensions: content ag-
gregation and content placement. Sivasubramanian et al. [89] identify the issues

Mukaddim Pathan
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: apathan@csse.unimelb.edu.au

Rajkumar Buyya
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: raj@csse.unimelb.edu.au

R. Buyya et al. (eds.), Content Delivery Networks, 33
c© Springer-Verlag Berlin Heidelberg 2008

34 M. Pathan and R. Buyya

for building a Web replica hosting system. Since caching infrastructure is a major
building block of a CDN (e.g. Akamai) and content delivery is initiated from the
origin server, they consider CDNs as replica hosting systems. In this context, they
propose an architectural framework, review related research work, and categorize
them. A survey of peer-to-peer (P2P) content distribution technologies [11] studies
current P2P systems and categorize them by identifying their non-functional proper-
ties such as security, anonymity, fairness, increased scalability, and performance, as
well as resource management, and organization capabilities. Through this study the
authors make useful insights for the influence of the system design on these prop-
erties. Cardellini et al. [20] study the state of the art of Web system architectures
that consists of multiple server nodes distributed on a local area. They provide a
taxonomy of these architectures, and analyze routing mechanisms and dispatching
algorithms for them. They also present future research directions in this context.

2.1.1 Motivations and Scope

As mentioned above, there exist a wide range of work covering different aspects of
CDNs such as content distribution, replication, caching, and Web server placement.
However, none of them attempts to perform a complete categorization of CDNs
by considering the functional and non-functional aspects. The first aspects include
technology usage and operations of a CDN, whereas the latter focus on CDN charac-
teristics such as organization, management, and performance issues. Our approach
of considering both functional and non-functional aspects of CDNs assists in exam-
ining the way in which the characteristics of a CDN are reflected in and affected
by the architectural design decision followed by the given CDN. Therefore, our aim
is to develop a comprehensive taxonomy of CDNs that identifies and categorizes
numerous solutions and techniques related to various design dynamics.

The taxonomy presented in this chapter is built around the core issues for build-
ing a CDN system. In particular, we identify the following key issues/aspects that
pose challenges in the development of a CDN:

• What is required for a harmonious CDN composition? It includes decisions
based on different CDN organization, node interactions, relationships, and con-
tent/service types.

• How to perform effective content distribution and management? It includes the
right choice of content selection, surrogate placement, content outsourcing, and
cache organization methodologies.

• How to route client requests to appropriate CDN node? It refers to the usage of
dynamic, scalable, and efficient routing techniques.

• How to measure a CDN’s performance? It refers to the ability to predict, monitor,
and ensure the end-to-end performance of a CDN.

A full-fledged CDN system design seeks to address additional issues to make the
system robust, fault tolerant (with the ability to detect wide-area failures), secure,

2 A Taxonomy of CDNs 35

and capable of wide-area application hosting. In this context, the issues to be ad-
dressed are:

• How to handle wide-area failures in a CDN? It involves the use of proper tools
and systems for failure detection.

• How to ensure security in a wide-area CDN system? It refers to the solutions to
counter distributed security threats.

• How to achieve wide-area application hosting? It seeks to develop proper tech-
niques to enable CDNs to perform application hosting.

Each of the above issues aspects is an independent research area itself and many
solutions and techniques can be found in literature and in practice. While realizing
proper solution for the additional issues is obvious for a CDN development, the
taxonomy presented in this chapter concentrates only on the first four core issues.
However, we present the ideas in the context of the additional issues and also provide
pointers to some recent related research work. Thus, the readers can get sufficient
materials to comprehend respective issues to dive directly into their interested topic.

2.1.2 Contributions and Organization

The key contributions of this chapter are twofold:

• A taxonomy of CDNs with a complete coverage of this field to provide a com-
prehensive account of applications, features, and implementation techniques.
The main aim of the taxonomy, therefore, is to explore the functional and non-
functional features of CDNs and to provide a basis for categorizing the related
solutions and techniques in this area.

• Map the taxonomy to a few representative CDNs to demonstrate its applicability
to categorize and analyze the present-day CDNs. Such a mapping helps to per-
form “gap” analysis in this domain. It also assists to interpret the related essential
concepts of this area and validates the accuracy of the taxonomy.

The remainder of this chapter is structured as follows: we start by presenting the
taxonomy of CDNs in Sect. 2.2. In the next section, we map the taxonomy to the
representative CDN systems, along with the insights perceived from this mapping.
Thus, we prove the validity and applicability of the taxonomy. We discuss the ad-
ditional issues in CDN development in Sect. 2.4 by highlighting research work in
failure handling, security, and application hosting. Finally, we summarize and con-
clude the chapter in Sect. 2.5.

2.2 Taxonomy

In this section, we present a taxonomy of CDNs based on four key issues as shown
in Fig. 2.1. They are – CDN composition, content distribution and management,
request-routing, and performance measurement.

36 M. Pathan and R. Buyya

Fig. 2.1 Issues for CDN
taxonomy Issues for CDN

Taxonomy

CDN composition

Request-routing
Content distribution and management

Performance measurement

The first issue covers several aspects of CDNs related to organization and for-
mation. This classifies the CDNs with respect to their structural attributes. The next
issue pertains to the content distribution mechanisms in the CDNs. It describes the
content distribution and management approaches of CDNs in terms of surrogate
placement, content selection and delivery, content outsourcing, and organization
of caches/replicas. Request-routing techniques in the existing CDNs are described
as the next issue. Finally, the last issue deals with the performance measurement
methodologies of CDNs.

2.2.1 CDN Composition

The analysis of the structural attributes of a CDN reveals that CDN infrastructural
components are closely related to each other. Moreover, the structure of a CDN
varies depending on the content/services it provides to its users. Within the struc-
ture of a CDN, a set of surrogates is used to build the content-delivery component,
some combinations of relationships and mechanisms are used for redirecting client
requests to a surrogate and interaction protocols are used for communications be-
tween CDN elements.

Figure 2.2 shows a taxonomy based on the various structural characteristics of
CDNs. These characteristics are central to the composition of a CDN and they ad-
dress the organization, types of servers used, relationships, and interactions among
CDN components, as well as the different content and services provided.

CDN composition

Servers Relationships Interaction
protocols

Content/
service types

CDN
Organization

Overlay
approach

Network
approach

Origin
server

Replica
server

Network element-
to-caching proxy

Client-to-
surrogate-to-origin

server

Inter-proxy

Caching proxy
arrays

Caching proxy
meshes

Network
elemetns

interaction

Inter-cache
interaction

Static
content

Streaming
media

ServicesDynamic
content

Fig. 2.2 CDN composition taxonomy

2 A Taxonomy of CDNs 37

2.2.1.1 CDN Organization

There are two general approaches for building CDNs: overlay and network ap-
proach [61]. In the overlay approach, application-specific servers and caches at sev-
eral places in the network handle the distribution of specific content types (e.g. Web
content, streaming media, and real time video). Other than providing the basic net-
work connectivity and guaranteed QoS for specific request/traffic, the core network
components such as routers and switches play no active role in content delivery.
Most of the commercial CDN providers such as Akamai and Limelight Networks
follow the overlay approach for CDN organization. These CDN providers replicate
content to cache servers worldwide. When content requests are received from the
end users, they are redirected to the nearest CDN server, thus improving Web site
response time. As the CDN providers need not to control the underlying network
elements, the management is simplified in an overlay approach and it opens oppor-
tunities for new services.

In the network approach, the network components including routers and switches
are equipped with code for identifying specific application types and for forwarding
the requests based on predefined policies. Examples of this approach include de-
vices that redirect content requests to local caches or switch traffic (coming to data
centers) to specific servers, optimized to serve specific content types. Some CDNs
(e.g. Akamai, Mirror Image) use both network and overlay approaches for CDN
organization. In such case, a network element (e.g. switch) can act at the front end
of a server farm and redirects the content request to a nearby application-specific
surrogate server.

2.2.1.2 Servers

The servers used by a CDN are of two types – origin and replica servers. The server
where the definitive version of the content resides is called origin server. It is updated
by the content provider. On the other hand, a replica server stores a copy of the
content but may act as an authoritative reference for client responses. The origin
server communicates with the distributed replica servers to update the content stored
in it. A replica server in a CDN may serve as a media server, Web server or as a cache
server. A media server serves any digital and encoded content. It consists of media
server software. Based on client requests, a media server responds to the query with
the specific video or audio clip. A Web server contains the links to the streaming
media as well as other Web-based content that a CDN wants to handle. A cache
server makes copies (i.e. caches) of content at the edge of the network in order to
bypass the need of accessing origin server to satisfy every content request.

2.2.1.3 Relationships

The complex distributed architecture of a CDN exhibits different relationships
between its constituent components. The graphical representations of these

38 M. Pathan and R. Buyya

Origin
server

Surrogates

Clients

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

Network elements

Origin
server

Origin
server

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

Clients

(a) (b)

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

(c)

Local
caching proxy

Caching
proxy

Caching
proxy

Caching
proxy

Caching
proxy

Clients

Cache Server

(d)

Fig. 2.3 Relationships: (a) Client-to-surrogate-to-origin server; (b) Network element-to-caching
proxy; (c) Caching proxy arrays; (d) Caching proxy meshes

relationships are shown in Fig. 2.3. These relationships involve components such as
clients, surrogates, origin server, proxy caches, and other network elements. These
components communicate to replicate and cache content within a CDN. Replication
involves creating and maintaining duplicate copy of a given content on different
computer systems. It typically involves “pushing” content from the origin server to
the replica servers [17]. On the other hand, caching involves storing cacheable re-
sponses in order to reduce the response time and network bandwidth consumption
on future, equivalent requests [26, 27, 99].

In a CDN environment, the basic relationship for content delivery is among the
client, surrogates and origin servers. A client may communicate with surrogate
server(s) for requests intended for one or more origin servers. Where a surrogate
is not used, the client communicates directly with the origin server. The communi-
cation between a user and surrogate takes place in a transparent manner, as if the
communication is with the intended origin server. The surrogate serves client re-
quests from its local cache or acts as a gateway to the origin server. The relationship
among client, surrogates, and the origin server is shown in Fig. 2.3(a).

As discussed earlier, CDNs can be formed using a network approach, where
logic is deployed in the network elements (e.g. router, switch) to forward traffic
to caching servers/proxies that are capable of serving client requests. The relation-
ship in this case is among the client, network element, and caching servers/proxies
(or proxy arrays), which is shown in Fig. 2.3(b). Other than these relationships,
caching proxies within a CDN may communicate with each other. A proxy cache is
an application-layer network service for caching Web objects. Proxy caches can be

2 A Taxonomy of CDNs 39

simultaneously accessed and shared by many users. A key distinction between the
CDN proxy caches and ISP-operated caches is that the former serve content only
for certain content provider, namely CDN customers, while the latter cache content
from all Web sites [41].

Based on inter-proxy communication [26], caching proxies can be arranged in
such a way that proxy arrays (Fig. 2.3(c)) and proxy meshes (Fig. 2.3(d)) are formed.
A caching proxy array is a tightly-coupled arrangement of caching proxies. In a
caching proxy array, an authoritative proxy acts as a master to communicate with
other caching proxies. A user agent can have relationship with such an array of
proxies. A caching proxy mesh is a loosely-coupled arrangement of caching prox-
ies. Unlike the caching proxy arrays, proxy meshes are created when the caching
proxies have one-to-one relationship with other proxies. Within a caching proxy
mesh, communication can happen at the same level between peers, and with one
or more parents [26]. A cache server acts as a gateway to such a proxy mesh and
forwards client requests coming from client’s local proxy.

2.2.1.4 Interaction Protocols

Based on the communication relationships described earlier, we can identify the
interaction protocols that are used for interaction among CDN components. Such
interactions can be broadly classified into two types: interaction between network
elements and interaction between caches. Figure 2.4 shows different protocols that
are used in a CDN for interaction among CDN elements. Examples of protocols
for network element interaction are Network Element Control Protocol (NECP) and
Web Cache Control Protocol. On the other hand, Cache Array Routing Protocol
(CARP), Internet Cache Protocol (ICP), Hypertext Caching protocol (HTCP), and
Cache Digest are the examples of inter-cache interaction protocols.

The Network Element Control Protocol (NECP) [24] is a lightweight protocol for
signaling between servers and the network elements that forward traffic to them. The
network elements consist of a range of devices, including content-aware switches
and load-balancing routers. NECP allows network elements to perform load balanc-
ing across a farm of servers and redirection to interception proxies. However, it does
not dictate any specific load balancing policy. Rather, this protocol provides meth-
ods for network elements to learn about server capabilities, availability and hints as

Cache Array Routing Protocol (CARP)
Interaction
protocols

Inter-cache
interaction

Internet Cache Protocol (ICP)

Hypertext Caching Protocol (HTCP)

Cache Digest

Network
elements

interaction Web Cache Control Protocol

Network Element Control Protocol (NECP)

Fig. 2.4 Interaction protocols

40 M. Pathan and R. Buyya

to which flows can and cannot be served. Hence, network elements gather necessary
information to make load balancing decisions. Thus, it avoids the use of proprietary
and mutually incompatible protocols for this purpose. NECP is intended for use in
a wide variety of server applications, including for origin servers, proxies, and in-
terception proxies. It uses the Transport Control Protocol (TCP). When a server is
initialized, it establishes a TCP connection to the network elements using a well-
known port number. Messages can then be sent bi-directionally between the server
and network elements. Most messages consist of a request followed by a reply or
acknowledgement. Receiving a positive acknowledgement implies the recording of
some state in a peer. This state can be assumed to remain in that peer until it ex-
pires or the peer crashes. In other words, this protocol uses a “hard state” model.
Application level KEEPALIVE messages are used to detect a crashed peer in such
communications. When a node detects that its peer has been crashed, it assumes that
all the states in that peer need to be reinstalled after the peer is revived.

The Web Cache Control Protocol (WCCP) [24] specifies interaction between one
or more routers and one or more Web-caches. It runs between a router functioning
as a redirecting network element and interception proxies. The purpose of such in-
teraction is to establish and maintain the transparent redirection of selected types of
traffic flow through a group of routers. The selected traffic is redirected to a group
of Web-caches in order to increase resource utilization and to minimize response
time. WCCP allows one or more proxies to register with a single router to receive
redirected traffic. This traffic includes user requests to view pages and graphics on
World Wide Web (WWW) servers, whether internal or external to the network, and
the replies to those requests. This protocol allows one of the proxies, the designated
proxy, to dictate to the router how redirected traffic is distributed across the caching
proxy array. WCCP provides the means to negotiate the specific method used to dis-
tribute load among Web caches. It also provides methods to transport traffic between
router and cache.

The Cache Array Routing Protocol (CARP) [96] is a distributed caching protocol
based on a known list of loosely coupled proxy servers and a hash function for
dividing URL space among those proxies. An HTTP client implementing CARP
can route requests to any member of the Proxy Array. The proxy array membership
table is defined as a plain ASCII text file retrieved from an Array Configuration
URL. The hash function and the routing algorithm of CARP take a member proxy
defined in the proxy array membership table, and make an on-the-fly determination
about the proxy array member which should be the proper container for a cached
version of a resource pointed to by a URL. Since requests are sorted through the
proxies, duplication of cache content is eliminated and global cache hit rates are
improved. Downstream agents can then access a cached resource by forwarding the
proxied HTTP request for the resource to the appropriate proxy array member.

The Internet Cache Protocol (ICP) [101] is a lightweight message format used
for inter-cache communication. Caches exchange ICP queries and replies to gather
information to use in selecting the most appropriate location in order to retrieve
an object. Other than functioning as an object location protocol, ICP messages can
also be used for cache selection. ICP is a widely deployed protocol. Although, Web

2 A Taxonomy of CDNs 41

caches use HTTP for the transfer of object data, most of the caching proxy imple-
mentations support it in some form. It is used in a caching proxy mesh to locate
specific Web objects in neighboring caches. One cache sends an ICP query to its
neighbors and the neighbors respond with an ICP reply indicating a “HIT” or a
“MISS”. Failure to receive a reply from the neighbors within a short period of time
implies that the network path is either congested or broken. Usually, ICP is im-
plemented on top of User Datagram Protocol (UDP) in order to provide important
features to Web caching applications. Since UDP is an unreliable and connection-
less network transport protocol, an estimate of network congestion and availability
may be calculated by ICP loss. This sort of loss measurement together with the
round-trip-time provides a way to load balancing among caches.

The Hyper Text Caching Protocol (HTCP) [98] is a protocol for discovering
HTTP caches, cached data, managing sets of HTTP caches and monitoring cache
activity. HTCP is compatible with HTTP 1.0. This is in contrast with ICP, which
was designed for HTTP 0.9. HTCP also expands the domain of cache manage-
ment to include monitoring a remote cache’s additions and deletions, requesting
immediate deletions, and sending hints about Web objects such as the third party
locations of cacheable objects or the measured uncacheability or unavailability of
Web objects. HTCP messages may be sent over UDP or TCP. HTCP agents must
not be isolated from network failure and delays. An HTCP agent should be pre-
pared to act in useful ways in the absence of response or in case of lost or damaged
responses.

Cache Digest [42] is an exchange protocol and data format. It provides a solution
to the problems of response time and congestion associated with other inter-cache
communication protocols such as ICP and HTCP. They support peering between
cache servers without a request-response exchange taking place. Instead, other
servers who peer with it fetch a summary of the content of the server (i.e. the
Digest). When using Cache Digest it is possible to accurately determine whether
a particular server caches a given URL. It is currently performed via HTTP. A
peer answering a request for its digest will specify an expiry time for that di-
gest by using the HTTP Expires header. The requesting cache thus knows when
it should request a fresh copy of that peer’s digest. In addition to HTTP, Cache
Digest could be exchanged via FTP. Although the main use of Cache Digest is
to share summaries of which URLs are cached by a given server, it can be ex-
tended to cover other data sources. Cache Digest can be a very powerful mechanism
to eliminate redundancy and making better use of Internet server and bandwidth
resources.

2.2.1.5 Content/Service Types

CDN providers host third-party content for fast delivery of any digital content,
including – static content, dynamic content, streaming media (e.g. audio, real
time video), and different content services (e.g. directory service, e-commerce ser-
vice, and file transfer service). The sources of content are large enterprises, Web

42 M. Pathan and R. Buyya

service providers, media companies, and news broadcasters. Variation in content
and services delivered requires a CDN to adopt application-specific characteristics,
architectures, and technologies. Due to this reason, some of the CDNs are dedicated
for delivering particular content and/or services. Here, we analyze the characteristics
of the content/service types to reveal their heterogeneous nature.

Static content refers to content for which the frequency of change is low. It does
not change depending on user requests. It includes static HTML pages, embedded
images, executables, PDF documents, software patches, audio and/or video files.
All CDN providers support this type of content delivery. This type of content can
be cached easily and their freshness can be maintained using traditional caching
technologies.

Dynamic content refers to the content that is personalized for the user or cre-
ated on-demand by the execution of some application process. It changes frequently
depending on user requests. It includes animations, scripts, and DHTML. Due to
the frequently changing nature of the dynamic content, usually it is considered as
uncachable.

Streaming media can be live or on-demand. Live media delivery is used for live
events such as sports, concerts, channel, and/or news broadcast. In this case, content
is delivered “instantly” from the encoder to the media server, and then onto the
media client. In case of on-demand delivery, the content is encoded and then is
stored as streaming media files in the media servers. The content is available upon
requests from the media clients. On-demand media content can include audio and/or
video on-demand, movie files and music clips. Streaming servers are adopted with
specialized protocols for delivery of content across the IP network.

A CDN can offer its network resources to be used as a service distribution chan-
nel and thus allows the value-added services providers to make their application as
an Internet infrastructure service. When the edge servers host the software of value-
added services for content delivery, they may behave like transcoding proxy servers,
remote callout servers, or surrogate servers [64]. These servers also demonstrate ca-
pability for processing and special hosting of the value-added Internet infrastructure
services. Services provided by CDNs can be directory, Web storage, file transfer, and
e-commerce services. Directory services are provided by the CDN for accessing the
database servers. Users query for certain data is directed to the database servers and
the results of frequent queries are cached at the edge servers of the CDN. Web stor-
age service provided by the CDN is meant for storing content at the edge servers
and is essentially based on the same techniques used for static content delivery. File
transfer services facilitate the worldwide distribution of software, virus definitions,
movies on-demand, and highly detailed medical images. All these contents are static
by nature. Web services technologies are adopted by a CDN for their maintenance
and delivery. E-commerce is highly popular for business transactions through the
Web. Shopping carts for e-commerce services can be stored and maintained at the
edge servers of the CDN and online transactions (e.g. third-party verification, credit
card transactions) can be performed at the edge of CDNs. To facilitate this service,
CDN edge servers should be enabled with dynamic content caching for e-commerce
sites.

2 A Taxonomy of CDNs 43

2.2.2 Content Distribution and Management

Content distribution and management is strategically vital in a CDN for efficient
content delivery and for overall performance. Content distribution includes – content
selection and delivery based on the type and frequency of specific user requests;
placement of surrogates to some strategic positions so that the edge servers are close
to the clients; and content outsourcing to decide which outsourcing methodology
to follow. Content management is largely dependent on the techniques for cache
organization (i.e. caching techniques, cache maintenance, and cache update). The
content distribution and management taxonomy is shown in Fig. 2.5.

Surrogate
placement

Content distribution and
management

Content selection
and delivery

Content
outsourcing

Cache
organization

Single-ISP Multi-ISP

Cooperative
push-based

Non-cooperative
pull-based

Cooperative
pull-based

Caching
techniques

Cache
update

Fig. 2.5 Content distribution and management taxonomy

2.2.2.1 Content Selection and Delivery

The efficiency of content delivery lies in the right selection of content to be deliv-
ered to the end users. An appropriate content selection approach can assist in the
reduction of client download time and server load. Figure 2.6 shows the taxonomy
of content selection and delivery techniques. Content can be delivered to the cus-
tomers in full or partial.

Full-site content selection and delivery is a simplistic approach where the sur-
rogate servers perform “entire replication” in order to deliver the total content site
to the end users. With this approach, a content provider configures its DNS in such
a way that all client requests for its Web site are resolved by a CDN server, which
then delivers all of the content. The main advantage of this approach is its simplic-
ity. However, such a solution is not feasible considering the on-going increase in
the size of Web objects. Although the price of storage hardware is decreasing, suf-
ficient storage space on the edge servers is never guaranteed to store all the content

44 M. Pathan and R. Buyya

Content selection
and delivery

Full-site Partial-site

Entire replication (Delivery
of total content-site)

Partial replication (Delivery
of embedded objects)

Empirical-
based

Popularity-
based

Object-
based

Cluster-
based

URL-
based

Users’ sessions-
based

Fig. 2.6 Taxonomy of content selection and delivery

from content providers. Moreover, since the Web content is not static, the problem
of updating such a huge collection of Web objects is unmanageable.

On the other hand, in partial-site content selection and delivery, surrogate servers
perform “partial replication” to deliver only embedded objects – such as Web page
images – from the corresponding CDN. With partial-site content delivery, a content
provider modifies its content so that links to specific objects have host names in a
domain for which the CDN provider is authoritative. Thus, the base HTML page is
retrieved from the origin server, while embedded objects are retrieved from CDN
cache servers. A partial-site approach is better than the full-site approach in the
sense that the former reduces load on the origin server and on the site’s content gen-
eration infrastructure. Moreover, due to the infrequent change of embedded content,
a partial-site approach exhibits better performance.

Content selection is dependent on the suitable management strategy used for
replicating Web content. Based on the approach to select embedded objects to per-
form replication, partial-site approach can be further divided into – empirical, pop-
ularity, object, and cluster-based replication. In a empirical-based [23] approach,
the Web site administrator empirically selects the content to be replicated to the
edge servers. Heuristics are used in making such an empirical decision. The main
drawback of this approach lies in the uncertainty in choosing the right heuristics.
In a popularity-based approach, the most popular objects are replicated to the sur-
rogates. This approach is time consuming and reliable objects request statistics is
not guaranteed due to the popularity of each object varies considerably. Moreover,
such statistics are often not available for newly introduced content. In an object-
based approach, content is replicated to the surrogate servers in units of objects.
This approach is greedy because each object is replicated to the surrogate server
(under storage constraints) that gives the maximum performance gain [23, 102].
Although such a greedy approach achieve the best performance, it suffers from high

2 A Taxonomy of CDNs 45

complexity to implement on real applications. In a cluster-based approach, Web
content is grouped based on either correlation or access frequency and is replicated
in units of content clusters. The clustering procedure is performed either by fixing
the number of clusters or by fixing the maximum cluster diameter, since neither the
number nor the diameter of the clusters can ever be known. The content clustering
can be either users’ sessions-based or URL-based. In a user’s session-based [36]
approach, Web log files are used to cluster a set of users’ navigation sessions, which
show similar characteristics. This approach is beneficial because it helps to deter-
mine both the groups of users with similar browsing patterns and the groups of
pages having related content. In a URL-based approach, clustering of Web content
is done based on Web site topology [23, 36]. The most popular objects are identified
from a Web site and are replicated in units of clusters where the correlation distance
between every pair of URLs is based on a certain correlation metric. Experimental
results show that content replication based on such clustering approaches reduce
client download time and the load on servers. However, these schemes suffer from
the complexity involved to deploy them.

2.2.2.2 Surrogate Placement

Since location of surrogate servers is closely related to the content delivery process,
extra emphasis is put on the issue of choosing the best location for each surrogate.
The goal of optimal surrogate placement is to reduce user perceived latency for ac-
cessing content and to minimize the overall network bandwidth consumption for
transferring replicated content from servers to clients. The optimization of both of
these metrics results in reduced infrastructure and communication cost for the CDN
provider. Therefore, optimal placement of surrogate servers enables a CDN to pro-
vide high quality services and low CDN prices [88].

Figure 2.7 shows different surrogate server placement strategies. Theoretical ap-
proaches such as minimum k-center problem and k-Hierarchically well-Separated
Trees (k-HST) model the server placement problem as the center placement prob-
lem which is defined as follows: for the placement of a given number of cen-
ters, minimize the maximum distance between a node and the nearest center. The
k-HST [16, 47] algorithm solves the server placement problem according to graph
theory. In this approach, the network is represented as a graph G(V,E), where V is
the set of nodes and E ⊆ V ×V is the set of links. The algorithm consists of two

Surrogate placement strategies

Center
placement
problem

Greedy
method

Topology-informed
placement strategy

Hot spot Tree-based replica
placement

Scalable
replica

placement

Fig. 2.7 Surrogate placement strategies

46 M. Pathan and R. Buyya

phases. In the first phase, a node is arbitrarily selected from the complete graph
(parent partition) and all the nodes which are within a random radius from this node
form a new partition (child partition). The radius of the child partition is a factor of
k smaller than the diameter of the parent partition. This process continues until each
of the nodes is in a partition of its own. Thus the graph is recursively partitioned and
a tree of partitions is obtained with the root node being the entire network and the
leaf nodes being individual nodes in the network. In the second phase, a virtual node
is assigned to each of the partitions at each level. Each virtual node in a parent par-
tition becomes the parent of the virtual nodes in the child partitions and together the
virtual nodes form a tree. Afterwards, a greedy strategy is applied to find the num-
ber of centers needed for the resulted k-HST tree when the maximum center-node
distance is bounded by D. The minimum k-center problem [47] can be described
as follows: (1) Given a graph G(V,E) with all its edges arranged in non-decreasing
order of edge cost c : c(e1)≤ c(e2)≤ ≤ c(em), construct a set of square graphs
G2

1, G2
2, , G2

m. Each square graph of G, denoted by G2 is the graph containing
nodes V and edges (u,v) wherever there is a path between u and v in G. (2) Compute
the maximal independent set Mi for each G2

i. An independent set of G2 is a set of
nodes in G that are at least three hops apart in G and a maximal independent set M
is defined as an independent set V ′ such that all nodes in V −V ′ are at most one hop
away from nodes in V ′. (3) Find smallest i such that Mi ≤ K, which is defined as j.
(4) Finally, Mj is the set of K center.

Due to the computational complexity of these algorithms, some heuristics such
as Greedy replica placement and Topology-informed placement strategy have been
developed. These suboptimal algorithms take into account the existing information
from CDN, such as workload patterns and the network topology. They provide suf-
ficient solutions with lower computation cost. The greedy algorithm [59] chooses
M servers among N potential sites. In the first iteration, the cost associated with
each site is computed. It is assumed that access from all clients converges to the
site under consideration. Hence, the lowest-cost site is chosen. In the second it-
eration, the greedy algorithm searches for a second site (yielding the next lowest
cost) in conjunction with the site already chosen. The iteration continues until M
servers have been chosen. The greedy algorithm works well even with imperfect
input data. But it requires the knowledge of the clients locations in the network and
all pair wise inter-node distances. In topology-informed placement strategy [48],
servers are placed on candidate hosts in descending order of outdegrees (i.e. the
number of other nodes connected to a node). Here the assumption is that nodes with
more outdegrees can reach more nodes with smaller latency. This approach uses
Autonomous Systems (AS) topologies where each node represents a single AS and
node link corresponds to Border Gateway Protocol (BGP) peering. In an improved
topology-informed placement strategy [81], router-level Internet topology is used
instead of AS-level topology. In this approach, each LAN associated with a router
is a potential site to place a server, rather than each AS being a site.

Other server placement algorithms like Hot Spot [78] and Tree-based [63] replica
placement are also used in this context. The hotspot algorithm places replicas near
the clients generating greatest load. It sorts the N potential sites according to the

2 A Taxonomy of CDNs 47

amount of traffic generated surrounding them and places replicas at the top M sites
that generate maximum traffic. The tree-based replica placement algorithm is based
on the assumption that the underlying topologies are trees. This algorithm mod-
els the replica placement problem as a dynamic programming problem. In this ap-
proach, a tree T is divided into several small trees Ti and placement of t proxies is
achieved by placing t ′i proxies in the best way in each small tree Ti, where t = ∑i t

′
i .

Another example is Scan [21], which is a scalable replica management framework
that generates replicas on demand and organizes them into an application-level mul-
ticast tree. This approach minimizes the number of replicas while meeting clients’
latency constraints and servers’ capacity constraints. More information on Scan can
be found in Chap. 3 of this book.

For surrogate server placement, the CDN administrators also determine the op-
timal number of surrogate servers using single-ISP and multi-ISP approach [95].
In the Single-ISP approach, a CDN provider typically deploys at least 40 surro-
gate servers around the network edge to support content delivery [30]. The policy
in a single-ISP approach is to put one or two surrogates in each major city within
the ISP coverage. The ISP equips the surrogates with large caches. An ISP with
global network can thus have extensive geographical coverage without relying on
other ISPs. The drawback of this approach is that the surrogates may be placed at
a distant place from the clients of the CDN provider. In Multi-ISP approach, the
CDN provider places numerous surrogate servers at as many global ISP Points of
Presence (POPs) as possible. It overcomes the problems with single-ISP approach
and surrogates are placed close to the users and thus content is delivered reliably
and timely from the requesting client’s ISP. Large CDN providers such as Akamai
have more than 25000 servers [1, 29]. Other than the cost and complexity of setup,
the main disadvantage of the multi-ISP approach is that each surrogate server re-
ceives fewer (or no) content requests which may result in idle resources and poor
CDN performance [71]. Estimation of performance of these two approaches shows
that single-ISP approach works better for sites with low-to-medium traffic volumes,
while the multi-ISP approach is better for high-traffic sites [30].

2.2.2.3 Content Outsourcing

Given a set of properly placed surrogate servers in a CDN infrastructure and a cho-
sen content for delivery, choosing an efficient content outsourcing practice is crucial.
Content outsourcing is performed using cooperative push-based, non-cooperative
pull-based, or cooperative pull-based approaches.

Cooperative push-based approach depends on the pre-fetching of content to the
surrogates. Content is pushed to the surrogate servers from the origin, and surrogate
servers cooperate to reduce replication and update cost. In this scheme, the CDN
maintains a mapping between content and surrogate servers, and each request is
directed to the closest surrogate server or otherwise the request is directed to the
origin server. Under this approach, greedy-global heuristic algorithm is suitable for
making replication decision among cooperating surrogate servers [54]. Still it is

48 M. Pathan and R. Buyya

considered as a theoretical approach since it has not been used by any commercial
CDN provider [23, 36].

In non-cooperative pull-based approach, client requests are directed to their clos-
est surrogate servers. If there is a cache miss, surrogate servers pull content from the
origin server. Most popular CDN providers (e.g. Akamai, Mirror Image) use this ap-
proach. The drawback of this approach is that an optimal server is not always chosen
to serve content request [49]. Many CDNs use this approach since the cooperative
push-based approach is still at the experimental stage [71].

The cooperative pull-based approach differs from the non-cooperative approach
in the sense that surrogate servers cooperate with each other to get the requested con-
tent in case of a cache miss. In the cooperative pull-based approach client requests
are directed to the closest surrogate through DNS redirection. Using a distributed
index, the surrogate servers find nearby copies of requested content and store it in
the cache. The cooperative pull-based approach is reactive wherein a data object
is cached only when the client requests it. An academic CDN Coral [34], using a
distributed index, follows the cooperative pull-based approach where the proxies
cooperate each other in case of case miss.

In the context of content outsourcing, it is crucial to determine in which surrogate
servers the outsourced content should be replicated. Several works can be found in
literature demonstrating the effectiveness of different replication strategies for out-
sourced content. Kangasharju et al. [54] have used four heuristics, namely random,
popularity, greedy-single, and greedy-global, for replication of outsourced content.
Tse [94] has presented a set of greedy approaches where the placement is occurred
by balancing the loads and sizes of the surrogate servers. Pallis et al. [72] have pre-
sented a self-tuning, parameterless algorithm called lat-cdn for optimally placing
outsourced content in CDN’s surrogate servers. This algorithm uses object’s latency
to make replication decision. An object’s latency is defined as the delay between a
request for a Web object and receiving the object in its entirety. An improvement of
the lat-cdn algorithm is il2p [70], which places the outsourced objects to surrogate
servers with respect to the latency and load of the objects.

2.2.2.4 Cache Organization and Management

Content management is essential for CDN performance, which is mainly dependent
on the cache organization approach followed by the CDN. Cache organization is in
turn composed of the caching techniques used and the frequency of cache update to
ensure the freshness, availability, and reliability of content. Other than these two, the
cache organization may also involve the integrated use of caching and replication on
a CDN’s infrastructure. Such integration may be useful for a CDN for effective con-
tent management. Potential performance improvement is also possible in terms of
perceived latency, hit ratio, and byte hit ratio if replication and caching are used to-
gether in a CDN [91]. Moreover, the combination of caching with replication assists
to fortify against flash crowd events. In this context, Stamos et al. [90] have pre-
sented a generic non-parametric heuristic method that integrates Web caching with

2 A Taxonomy of CDNs 49

content replication. They have developed a placement similarity approach, called
SRC, for evaluating the level of integration. Another integrated approach called Hy-
brid, which combines static replication and Web caching using an analytic model of
LRU is presented by Bakiras et al. [13]. Hybrid gradually fills the surrogate servers
caches with static content in each iteration, as long as it contributes to the opti-
mization of response times. More information on the integrated use of caching and
replication can be found in Chap. 4 and Chap. 5 of this book.

Content caching in CDNs can be intra-cluster or inter-cluster basis. A taxonomy
of caching techniques is shown in Fig. 2.8. Query-based, digest-based, directory-
based, or hashing-based scheme can be used for intra-cluster caching of content. In
a query-based [101] scheme, on a cache miss a CDN server broadcasts a query to
other cooperating CDN servers. The problems with this scheme are the significant
query traffic and the delay because a CDN server has to wait for the last “miss”
reply from all the cooperating surrogates before concluding that none of its peers
has the requested content. Because of these drawbacks, the query-based scheme
suffers from implementation overhead. The digest-based [83] approach overcomes
the problem of flooding queries in query-based scheme. In the digest-based scheme,
each of the CDN servers maintains a digest of content held by the other cooperat-
ing surrogates. The cooperating surrogates are informed about any sort of update
of the content by the updating CDN server. On checking the content digest, a CDN
server can take the decision to route a content request to a particular surrogate. The
main drawback is that it suffers from update traffic overhead, because of the fre-
quent exchange of the update traffic to make sure that the cooperating surrogates
have correct information about each other. The directory-based [38] scheme is a
centralized version of the digest-based scheme. In directory-based scheme, a cen-
tralized server keeps content information of all the cooperating surrogates inside
a cluster. Each CDN server only notifies the directory server when local updates
occur and queries the directory server whenever there is a local cache miss. This
scheme experiences potential bottleneck and single point of failure since the di-
rectory server receives update and query traffic from all cooperating surrogates. In
a hashing-based [55, 96] scheme, the cooperating CDN servers maintain the same
hashing function. A designated CDN server holds a content based on content’s URL,
IP addresses of the CDN servers, and the hashing function. All requests for that par-
ticular content are directed to that designated server. Hashing-based scheme is more

Caching techniques

Intra-cluster
caching

Inter-cluster
caching

Query-based scheme

Digest-based scheme

Directory-based scheme

Hashing-based scheme

Semi-hashing-based scheme

Query-based scheme

Fig. 2.8 Caching techniques taxonomy

50 M. Pathan and R. Buyya

efficient than other schemes since it has the smallest implementation overhead and
highest content sharing efficiency. However, it does not scale well with local re-
quests and multimedia content delivery since the local client requests are directed
to and served by other designated CDN servers. To overcome this problem, a semi-
hashing-based scheme [24, 67] can be followed. Under the semi-hashing-based
scheme, a local CDN server allocates a certain portion of its disk space to cache
the most popular content for its local users and the remaining portion to cooperate
with other CDN servers via a hashing function. Like pure hashing, semi-hashing has
small implementation overhead and high content sharing efficiency. In addition, it
has been found to significantly increase the local hit rate of the CDN.

A hashing-based scheme is not appropriate for inter-cluster cooperative caching,
because representative CDN servers of different clusters are normally distributed
geographically. The digest-based or directory-based scheme is also not suitable
for inter-cluster caching since the representative CDN servers have to maintain
a huge content digest and/or directory including the content information of CDN
servers in other clusters. Hence, a query-based scheme can be used for inter-cluster
caching [68]. In this approach, when a cluster fails to serve a content request, it
queries other neighboring cluster(s). If the content can be obtained from this neigh-
bor, it replies with a “hit” message or if not, it forwards the request to other neigh-
boring clusters. All the CDN servers inside a cluster use hashing based scheme for
serving content request and the representative CDN server of a cluster only queries
the designated server of that cluster to serve a content request. Hence, this scheme
uses the hashing-based scheme for intra-cluster content routing and the query-based
scheme for inter-cluster content routing. This approach improves performance since
it limits flooding of query traffic and overcomes the problem of delays when re-
trieving content from remote servers through the use of a Timeout and Time-to-Live
(TTL) value with each query message.

Cached objects in the surrogate servers of a CDN have associated expiration
times after which they are considered stale. Ensuring the freshness of content is
necessary to serve the clients with up to date information. If there are delays in-
volved in propagating the content, a CDN provider should be aware that the content
may be inconsistent and/or expired. To manage the consistency and freshness of
content at replicas, CDNs deploy different cache update techniques. The taxonomy
of cache update mechanisms is shown in Fig. 2.9.

The most common cache update method is the periodic update. To ensure content
consistency and freshness, the content provider configures its origin Web servers to
provide instructions to caches about what content is cacheable, how long differ-
ent content is to be considered fresh, when to check back with the origin server

Fig. 2.9 Cache update
taxonomy

Periodic
update

Update
propagation

On-demand
update

Invalidation

Cache update

2 A Taxonomy of CDNs 51

for updated content, and so forth [41]. With this approach, caches are updated in
a regular fashion. But this approach suffers from significant levels of unnecessary
traffic generated from update traffic at each interval. The update propagation is
triggered with a change in content. It performs active content pushing to the CDN
cache servers. In this mechanism, an updated version of a document is delivered to
all caches whenever a change is made to the document at the origin server. For fre-
quently changing content, this approach generates excess update traffic. On-demand
update is a cache update mechanism where the latest copy of a document is prop-
agated to the surrogate cache server based on prior request for that content. This
approach follows an assume nothing structure and content is not updated unless it is
requested. The disadvantage of this approach is the back-and-forth traffic between
the cache and origin server in order to ensure that the delivered content is the latest.
Another cache update approach is invalidation, in which an invalidation message is
sent to all surrogate caches when a document is changed at the origin server. The sur-
rogate caches are blocked from accessing the documents when it is being changed.
Each cache needs to fetch an updated version of the document individually later.
The drawback of this approach is that it does not make full use of the distribution
network for content delivery and belated fetching of content by the caches may lead
to inefficiency of managing consistency among cached contents.

Generally, CDNs give the content provider control over freshness of content and
ensure that all CDN sites are consistent. However, content providers themselves
can build their own policies or use some heuristics to deploy organization specific
caching policies. In the first case, content providers specify their caching policies in
a format unique to the CDN provider, which propagates the rule sets to its caches.
These rules specify instructions to the caches on how to maintain the freshness of
content through ensuring consistency. In the latter case, a content provider can ap-
ply some heuristics rather than developing complex caching policies. With this ap-
proach, some of the caching servers adaptively learn over time about the frequency
of change of content at the origin server and tune their behavior accordingly.

2.2.3 Request-Routing

A request-routing system is responsible for routing client requests to an appropriate
surrogate server for the delivery of content. It consists of a collection of network
elements to support request-routing for a single CDN. It directs client requests to
the replica server “closest” to the client. However, the closest server may not be the
best surrogate server for servicing the client request [22]. Hence, a request-routing
system uses a set of metrics such as network proximity, client perceived latency,
distance, and replica server load in an attempt to direct users to the closest surro-
gate that can best serve the request. The content selection and delivery techniques
(i.e. full-site and partial-site) used by a CDN have a direct impact on the design of
its request-routing system. If the full-site approach is used by a CDN, the request-
routing system assists to direct the client requests to the surrogate servers as they
hold all the outsourced content. On the other hand, if the partial-site approach is

52 M. Pathan and R. Buyya

(3) Redirect request to CDN

provider

Replica server

Replica server

Origin Server

(5) Closest replica

server serves selected

embedded objects

(1) All client requests

arrive to the origin server

of content provider

(2) Discovery’s origin

server returns the basic

index page

Index.html

Selection
Algorithm

(4) Forward
request

Selected embedded
objects to be served
by CDN provider

User

CDN Provider

Replica server

Fig. 2.10 Request-routing in a CDN environment

used, the request-routing system is designed in such a way that on receiving the
client request, the origin server delivers the basic content while surrogate servers
deliver the embedded objects. The request-routing system in a CDN has two parts:
deployment of a request-routing algorithm and use of a request-routing mechanism
[89]. A request-routing algorithm is invoked on receiving a client request. It speci-
fies how to select an edge server in response to the given client request. On the other
hand, a request-routing mechanism is a way to inform the client about the selection.
Such a mechanism at first invokes a request-routing algorithm and then informs the
client about the selection result it obtains.

Figure 2.10 provides a high-level view of the request-routing in a typical CDN
environment. The interaction flows are: (1) the client requests content from the con-
tent provider by specifying its URL in the Web browser. Client’s request is directed
to its origin server; (2) when origin server receives a request, it makes a decision to
provide only the basic content (e.g. index page of the Web site) that can be served
from its origin server; (3) to serve the high bandwidth demanding and frequently
asked content (e.g. embedded objects – fresh content, navigation bar, and banner ad-
vertisements), content provider’s origin server redirects client’s request to the CDN
provider; (4) using the proprietary selection algorithm, the CDN provider selects the
replica server which is “closest” to the client, in order to serve the requested embed-
ded objects; (5) selected replica server gets the embedded objects from the origin
server, serves the client requests and caches it for subsequent request servicing.

2.2.3.1 Request-Routing Algorithms

The algorithms invoked by the request-routing mechanisms can be adaptive or non-
adaptive (Fig. 2.11). Adaptive algorithms consider the current system condition to

2 A Taxonomy of CDNs 53

Fig. 2.11 Taxonomy of
request-routing algorithms

Request-routing
algorithms

Non-adaptive Adaptive

select a cache server for content delivery. The current condition of the system is ob-
tained by estimating some metrics like load on the replica servers or the congestion
of selected network links. Non-adaptive request-routing algorithms use some heuris-
tics for selecting a cache server rather than considering the current system condition.
A non-adaptive algorithm is easy to implement, while the former is more complex.
Complexity of adaptive algorithms arises from their ability to change behavior to cope
with an enduring situation. A non-adaptive algorithm works efficiently when the as-
sumptions made by the heuristics are met. On the other hand, an adaptive algorithm
demonstrates high system robustness [100] in the face of events like flash crowds.

An example of the most common and simple non-adaptive request-routing algo-
rithm is round-robin, which distributes all requests to the CDN cache servers and
attempts to balance load among them [93]. It is assumed that all the cache servers
have similar processing capability and that any of them can serve any client request.
Such simple algorithms are efficient for clusters, where all the replica servers are lo-
cated at the same place [69]. But the round-robin request-routing algorithm does not
perform well for wide area distributed systems where the cache servers are located
at distant places. In this case it does not consider the distance of the replica servers.
Hence, client requests may be directed to more distant replica servers, which cause
poor performance perceived by the users. Moreover, the aim of load balancing is not
fully achieved since processing different requests can involve significantly different
computational costs.

In another non-adaptive request-routing algorithm, all replica servers are ranked
according to the predicted load on them. Such prediction is done based on the num-
ber of requests each of the servers has served so far. This algorithm takes client-
server distance into account and client requests are directed to the replica servers
in such a way that load is balanced among them. The assumption here is that the
replica server load and the client-server distance are the most influencing factors for
the efficiency of request processing [89]. Though it has been observed by Aggar-
wal et al. [9] that deploying this algorithm can perform well for request-routing, the
client perceived performance may still be poor.

Severalother interestingnon-adaptive request-routingalgorithmsare implemented
in the Cisco DistributedDirector [28]. One of these algorithms considers the percent-
age of client requests that each replica server receives. A server receiving more re-
quests is assumed to be more powerful. Hence, client requests are directed to the
more powerful servers to achieve better resource utilization. Another algorithm de-
fines preference of one server over another in order to delegate the former to serve
client requests. The DistributedDirector also supports random request distribution to
replica servers. Furthermore, some other non-adaptive algorithms can be found which
considers the client’s geographic location to redirect requests to the nearby replica.

54 M. Pathan and R. Buyya

However, this algorithm suffers from the fact that client requests may be assigned to
overloaded replica servers, which may degrade client perceived performance.

Karger et al. [55] have proposed a request-routing algorithm to adapt to hotspots.
It calculates a hashing function h from a large space of identifiers, based on the
URL of the content. This hashing function is used to route client requests efficiently
to a logical ring consisting of cache servers with IDs from the same space. It is
assumed that the cache server having the smallest ID larger than h is responsible for
holding the referenced data. Hence, client requests are directed to it. Variations of
this algorithm have been used in the context of intra-cluster caching [67, 68] and
P2P file sharing systems [14].

Globule [76] uses an adaptive request-routing algorithm that selects the replica
server closest to the clients in terms of network proximity [93]. The metric estima-
tion in Globule is based on path length which is updated periodically. The metric
estimation service used in globule is passive, which does not introduce any addi-
tional traffic to the network. However, Huffaker et al. [45] show that the distance
metric estimation procedure is not very accurate.

Andrews et al. [10] and Ardiaz et al. [12] have proposed adaptive request-routing
algorithms based on client-server latency. In this approach, either client access logs
or passive server-side latency measurements are taken into account, and the algo-
rithms decide to which replica server the client requests are to be sent. Hence, they
redirect a client request to a replica which has recently reported the minimal latency
to the client. These algorithms are efficient since they consider latency measure-
ments. However, they require the maintenance of central database of measurements,
which limits the scalability of systems on which these algorithms are deployed [89].

Cisco DistributedDirector [28] has implemented an adaptive request-routing al-
gorithm. The request-routing algorithm deployed in this system takes into account
a weighted combination of three metrics, namely – inter-AS distance, intra-AS dis-
tance, and end-to-end latency. Although this algorithm is flexible since it makes
use of three metrics, the deployment of an agent in each replica server for metric
measurement makes it complex and costly. Moreover, the active latency measure-
ment techniques used by this algorithm introduce additional traffic to the Internet.
Furthermore, the isolation of DistributedDirector component from the replica server
makes it unable to probe the servers to obtain their load information.

Akamai [1, 29] uses a complex request-routing algorithm which is adaptive to
flash crowds. It takes into consideration a number of metrics such as replica server
load, the reliability of loads between the client and each of the replica servers, and
the bandwidth that is currently available to a replica server. This algorithm is pro-
prietary to Akamai and the technology details have not been revealed.

2.2.3.2 Request-Routing Mechanisms

Request-routing mechanisms inform the client about the selection of replica server
generated by the request-routing algorithms. Request-routing mechanisms can be
classified according to several criteria. In this section we classify them according

2 A Taxonomy of CDNs 55

CDN Peering

IP anycast

Request-routing
mechanims

Global Server Load
Balancing (GSLB)

URL rewriting

Anycasting

Global awareness

Smart authoritative DNS

DNS-based request routing

HTTP redirection

Automation through scripts

URL modification

Centralized directory model

Flooded request model

Document routing model

Application level anycast

Distributed Hash Table

Fig. 2.12 Taxonomy of request-routing mechanisms

to request processing. As shown in Fig. 2.12, they can be classified as: Global
Server Load Balancing (GSLB), DNS-based request-routing, HTTP redirection,
URL rewriting, anycasting, and CDN peering.

In GSLB [44] approach, service nodes, which serve content to the end users,
consisting of a GSLB-enabled Web switch and a number of real Web servers are
distributed in several locations around the world. Two new capabilities of the ser-
vice nodes allow them to support global server load balancing. The first is global
awareness and the second is smart authoritative DNS [44]. In local server load bal-
ancing, each service node is aware of the health and performance information of
the Web servers directly attached to it. In GSLB, one service node is aware of the
information in other service nodes and includes their virtual IP address in its list of
servers. Hence, the Web switches making up each service node are globally aware
and each knows the addresses of all the other service nodes. They also exchange
performance information among the Web switches in GSLB configuration. To make
use of such global awareness, the GSLB switches act as a smart authoritative DNS
for certain domains. The advantage of GSLB is that since the service nodes are
aware of each other, each GSLB switch can select the best surrogate server for any
request. Thus, this approach facilitates choosing servers not only from the pool of
locally connected real servers, but also the remote service nodes. Another significant
advantage of GSLB is that the network administrator can add GSLB capability to
the network without adding any additional networking devices. A disadvantage of
GSLB is the manual configuration of the service nodes to enable them with GSLB
capability.

In DNS-based request-routing approach, the content distribution services rely on
the modified DNS servers to perform the mapping between a surrogate server’s sym-
bolic name and its numerical IP address. It is used for full-site content selection and

56 M. Pathan and R. Buyya

delivery. In DNS-based request-routing, a domain name has multiple IP addresses
associated to it. When an end user’s content request comes, the DNS server of the
service provider returns the IP addresses of servers holding the replica of the re-
quested object. The client’s DNS resolver chooses a server among these. To decide,
the resolver may issue probes to the servers and choose based on response times
to these probes. It may also collect historical information from the clients based on
previous access to these servers. Both full and partial-site CDN providers use DNS
redirection. The performance and effectiveness of DNS-based request-routing has
been examined in a number of recent studies [15, 41, 65, 86]. The advantage of
this approach is the transparency as the services are referred to by means of their
DNS names, and not their IP addresses. DNS-based approach is extremely popu-
lar because of its simplicity and independence from any actual replicated service.
Since it is incorporated to the name resolution service it can be used by any Internet
application [89]. In addition, the ubiquity of DNS as a directory service provides ad-
vantages during request-routing. The disadvantage of DNS-based request-routing is
that, it increases network latency because of the increase in DNS lookup times. CDN
administrators typically resolve this problem by splitting CDN DNS into two levels
(low-level DNS and high-level DNS) for load distribution [58]. Another limitation
is that DNS provides the IP address of the client’s Local DNS (LDNS), rather than
the client’s IP address. Clients are assumed to be near to the LDNS. When DNS-
based server selection is used to choose a nearby server, the decision is based on the
name server’s identity, not the client’s. Thus, when clients and name servers are not
proximal, the DNS-based approach may lead to poor decisions. Most significantly,
DNS cannot be relied upon to control all incoming requests due to caching of DNS
data at both the ISP and client level. Indeed, it can have control over as little as 5%
of requests in many instances [20]. Furthermore, since clients do not access the ac-
tual domain names that serve their requests, it leads to the absence of any alternate
server to fulfill client requests in case of failure of the target surrogate server. Thus,
in order to remain responsive to changing network or server conditions, DNS-based
schemes must avoid client-side caching or decisions.

HTTP redirection propagates information about replica server sets in HTTP
headers. HTTP protocols allow a Web server to respond to a client request with
a special message that tells the client to re-submit its request to another server.
HTTP redirection can be used for both full-site and partial-site content selection
and delivery. This mechanism can be used to build a special Web server, which ac-
cepts client requests, chooses replica servers for them and redirects clients to those
servers. It requires changes to both Web servers and clients to process extra headers.
The main advantage of this approach is flexibility and simplicity. Another advantage
is that replication can be managed at fine granularity, since individual Web pages are
considered as a granule [75]. The most significant disadvantage of HTTP redirection
is the lack of transparency. Moreover, the overhead perceived through this approach
is significant since it introduces extra message round-trip into request processing as
well as over HTTP.

Though most CDN systems use a DNS based routing scheme, some systems
use the URL rewriting or Navigation hyperlink. It is mainly used for partial-site

2 A Taxonomy of CDNs 57

content selection and delivery where embedded objects are sent as a response to
client requests. In this approach, the origin server redirects the clients to different
surrogate servers by rewriting the dynamically generated pages’ URL links. For
example, with a Web page containing an HTML file and some embedded objects,
the Web server would modify references to embedded objects so that the client could
fetch them from the best surrogate server. To automate this process, CDNs provide
special scripts that transparently parse Web page content and replace embedded
URLs [58]. URL rewriting can be pro-active or reactive. In the pro-active URL
rewriting, the URLs for embedded objects of the main HTML page are formulated
before the content is loaded in the origin server. The reactive approach involves
rewriting the embedded URLs of an HTML page when the client request reaches
the origin server. The main advantage of URL rewriting is that the clients are not
bound to a single surrogate server, because the rewritten URLs contain DNS names
that point to a group of surrogate servers. Moreover, finer level of granularity can
be achieved through this approach since embedded objects can be considered as
granule. The disadvantages through this approach are the delay for URL-parsing
and the possible bottleneck introduced by an in-path element. Another disadvantage
is that content with modified reference to the nearby surrogate server rather than to
the origin server is non-cacheable.

The anycasting approach can be divided into IP anycasting and Application-level
anycasting. IP anycasting, proposed by Partridge et al. [73], assumes that the same
IP address is assigned to a set of hosts and each IP router holds a path in its routing
table to the host that is closest to this router. Thus, different IP routers have paths to
different hosts with the same IP address. IP anycasting can be suitable for request-
routing and service location. It targets network-wide replication of the servers over
potentially heterogeneous platforms. A disadvantage of IP anycasting is that some
parts of the IP address space is allocated for anycast address. Fei et al. [32] pro-
posed an application level anycasting mechanism where the service consists of a
set of anycast resolvers, which perform the anycast domain names to IP address
mapping. Clients interact with the anycast resolvers by generating an anycast query.
The resolver processes the query and replies with an anycast response. A metric
database, associated with each anycast resolver contains performance data about
replica servers. The performance is estimated based on the load and the request
processing capability of the servers. The overhead of the performance measure-
ment is kept at a manageable level. The performance data can be used in the se-
lection of a server from a group, based on user-specified performance criteria. An
advantage of application level anycasting is that better flexibility can be achieved
through this approach. One disadvantage of this approach is that deploying the any-
casting mechanism for request-routing requires changes to the servers as well as to
the clients. Hence, it may lead to increased cost considering possibly large number
of servers and clients.

Peer-to-peer content networks are formed by symmetrical connections between
host computers. Peered CDNs deliver content on each other’s behalf. Thus, a CDN
could expand its reach to a larger client population by using partnered CDN servers
and their nearby forward proxies. A content provider usually has contracts with

58 M. Pathan and R. Buyya

only one CDN and each CDN contacts other peer CDNs on the content provider’s
behalf [74]. Peering CDNs are more fault-tolerant as the necessary information re-
trieval network can be developed on the peering members themselves instead of re-
lying on a dedicated infrastructure like traditional CDNs. To locate content in CDN
peering, a centralized directory model, Distributed Hash Table (DHT), flooded re-
quest model, or document routing model can be used [44, 66].

In a centralized directory model, peers contact a centralized directory where all
the peers publish content that they want to share with others. When the directory re-
ceives a request it responses with the information of the peer that holds the requested
content. When more than one peer matches the request, the best peer is selected
based on metrics such as network proximity, highest bandwidth, least congestion
and highest capacity. On receiving the response from the directory, the requesting
peer contacts the peer that it has been referred to for content retrieval. The draw-
back of this approach is that, the centralized directory is subject to a single point
of failure. Moreover, the scalability of a system based on a centralized directory is
limited to the capacity of the directory. Archi [31], WAIS [52] are the examples of
centralized directory systems for retrieving FTP files located on various systems. In
systems using DHTs, peers are indexed through hashing keys within a distributed
system. Then a peer holding the desired content can be found through applying
queries and lookup functions [43]. Example of a protocol using DHT is Chord [92].
The advantage of this approach is the ability to perform load balancing by offloading
excess loads to the less-loaded peers [18]. In the flooded request model, a request
from a peer is broadcast to the peers directly connected to it. These peers in turn for-
ward the messages to other peers directly connected to them. This process continues
until the request is answered or some broadcast limit is reached. The drawback of
this approach is that it generates unnecessary network traffic and hence, it requires
enormous bandwidth. Thus, it suffers from scalability problem and it limits the size
of the network [44]. Gnutella [8, 25] is the example of a system using the flooded
request model. In document routing model an authoritative peer is asked for referral
to get the requested content. Each peer in the model is helpful, though they partially
complete the referral information [44]. In this approach, each peer is responsible for
a range of file IDs. When a peer wants to get some file, it sends a request a request
containing the file ID. The request is forwarded to the peer whose ID is most sim-
ilar to the file ID. Once the file is located, it is transferred to the requesting peer.
The main advantage of this approach is that it can complete a comprehensive search
within a bounded O(log n) number of steps. Moreover, it shows good performance
and is scalable enough to grow significantly large.

2.2.4 Performance Measurement

Performance measurement of a CDN is done to measure its ability to serve the
customers with the desired content and/or service. Typically five key metrics are
used by the content providers to evaluate the performance of a CDN [30, 37, 58].
Those are:

2 A Taxonomy of CDNs 59

• Cache hit ratio: It is defined as the ratio of the number of cached documents
versus total documents requested. A high hit rate reflects that a CDN is using an
effective cache technique to manage its caches.

• Reserved bandwidth: It is the measure of the bandwidth used by the origin server.
It is measured in bytes and is retrieved from the origin server.

• Latency: It refers to the user perceived response time. Reduced latency indicates
that less bandwidth is reserved by the origin server.

• Surrogate server utilization: It refers to the fraction of time during which the sur-
rogate servers remain busy. This metric is used by the administrators to calculate
CPU load, number of requests served and storage I/O usage.

• Reliability: Packet-loss measurements are used to determine the reliability of a
CDN. High reliability indicates that a CDN incurs less packet loss and is always
available to the clients.

Performance measurement can be accomplished based on internal performance
measures as well as from the customer perspective. A CDN provider’s own per-
formance testing can be misleading, since it may perform well for a particular Web
site and/or content, but poorly for others. To ensure reliable performance measure-
ment, a CDN’s performance can be measured by independent third-party such as
Keynote Systems [3] or Giga Information Group [6]. The performance measure-
ment taxonomy is shown in Fig. 2.13.

Fig. 2.13 Performance mea-
surement taxonomy

Performance
measurement

Internal measurement

External measurement

2.2.4.1 Internal Measurement

CDN servers could be equipped with the ability to collect statistics in order to get
an end-to-end measurement of its performance. In addition, deployment of probes
(hardware and/or software) throughout the network and correlation of the informa-
tion collected by probes with the cache and server logs can be used to measure the
end-to-end performance.

2.2.4.2 External Measurement

In addition to internal performance measurement, external measurement of perfor-
mance by an independent third-party informs the CDN customers about the ver-
ified and guaranteed performance. This process is efficient since the independent
performance-measuring companies support benchmarking networks of strategically
located measurement computers connected through major Internet backbones in
several cities. These computers measure how a particular Web site performs from
the end user’s perspective, considering service performance metrics in critical
areas [95].

60 M. Pathan and R. Buyya

2.2.4.3 Network Statistics Acquisition for Performance Measurement

For internal and external performance measurement, different network statistics ac-
quisition techniques are deployed based on several parameters. Such techniques may
involve network probing, traffic monitoring, and feedback from surrogates. Typical
parameters in the network statistics acquisition process include geographical prox-
imity, network proximity, latency, server load, and server performance as a whole.
Figure 2.14 presents the mechanisms used by the CDNs to perform network statis-
tics acquisition.

Network probing is a measurement technique where the possible requesting en-
tities are probed in order to determine one or more metrics from each surrogate
or a set of surrogates. Network probing can be used for P2P-based cooperative
CDNs where the surrogate servers are not controlled by a single CDN provider.
Example of such probing technique is an ICMP ECHO message that is sent pe-
riodically from a surrogate or a set of surrogates to a potential requesting entity.
Active probing techniques are sometimes not suitable and limited for some reasons.
It introduces additional network latency which may be significant for small Web
requests. Moreover, performing several probes to an entity often triggers intrusion-
detection alerts, resulting in abuse complaints [35]. Probing sometimes may lead
to an inaccurate metric as ICMP traffic can be ignored or reprioritized due to con-
cerns of Distributed Denial of Service (DDoS) attacks. A distributed anycasting
system by Freedman et al. [35] has shown that ICMP probes and TCP probes to
high random ports are often dropped by firewalls and flagged as unwanted port
scans.

Traffic monitoring is a measurement technique where the traffic between the
client and the surrogate is monitored to know the actual performance metrics. Once
the client connects, the actual performance of the transfer is measured. This data
is then fed back into the request-routing system. An example of such traffic moni-
toring is to watch the packet loss from a client to a surrogate or the user perceived
response time (latency) by observing the TCP behavior. Latency is the simplest and
mostly used distance metric, which can be estimated by monitoring the number of
packets (i.e. traffic) traveled along the route between client and the surrogate. A
metric estimation system such as IDMaps [35] measures and disseminates distance
information on the global Internet in terms of latency and bandwidth. This system
considers two types of distance information based on timeliness – load sensitive and
“raw” (where distance information is obtained considering no load on the network).
The estimation of these information is performed through traffic monitoring with an
update frequency on the order of days, or if necessary, hours.

Network statistics
acquisition

Network probing

Traffic monitoring

Feedback from surrogates
Static

Dynamic

Fig. 2.14 Network statistics acquisition techniques

2 A Taxonomy of CDNs 61

Feedback from surrogates can be obtained by periodically probing a surrogate
by issuing application specific requests (e.g. HTTP) and taking related measures.
Feedback information can also be obtained from agents that are deployed in the
surrogates. These agents can communicate a variety of metrics about their nodes.
Methods for obtaining feedback information can be static or dynamic. Static meth-
ods select a route to minimize the number of hops or to optimize other static pa-
rameters. Dynamic probing allows computing round-trip time or QoS parameters in
“real time” [33].

Figure 2.15 shows the different metrics used by CDNs to measure the network
and system performance. Geographical proximity is a measure of identifying a
user’s location within a certain region. It is often used to redirect all users within
a certain region to the same Point of Presence (POP). The measurement of such net-
work proximity is typically derived through probing of BGP routing tables. The end
user perceived latency is a useful metric to select the suitable surrogate for that user.
Packet loss information through a network path is a measurement metric that is used
to select the path with lowest error rate. Average bandwidth, startup time and frame
rate are the metrics used to select the best path for streaming media delivery. Server
load state can be computed based on metrics such as CPU load, network interface
load, active connection, and storage I/O load. This metric is used to select the server
with the aggregated least load.

Latency
Measurement

metrics Average bandwidth

Packet loss

Startup time

Frame rate

Geographical proximity

Server load

Fig. 2.15 Metrics used for measuring network and system performance

2.2.4.4 Performance Measurement through Simulation

Other than using internal and external performance measurement, researchers use
simulation tools to measure a CDN’s performance. Some researchers also
experiment their CDN policies on real platforms such as PlanetLab [5]. The CDN
simulators implemented in software are valuable tools for researchers to develop,
test and diagnose a CDN’s performance, since accessing real CDN traces and logs
is not easy due to the proprietary nature of commercial CDNs. Such a simulation
process is economical because of no involvement of dedicated hardware to carry
out the experiments. Moreover, it is flexible because it is possible to simulate a
link with any bandwidth and propagation delay and a router with any queue size
and queue management technique. A simulated network environment is free of any
uncontrollable factors such as unwanted external traffic, which the researchers may
experience while running experiments in a real network. Hence, simulation results

62 M. Pathan and R. Buyya

are reproducible and easy to analyze. A wide range of network simulators [4, 7]
are available which can be used to simulate a CDN to measure its performance.
Moreover, there are also some specific CDN simulation systems [2, 7, 23, 54, 100]
that allow a (closely) realistic approach for the research community and CDN devel-
opers to measure performance and experiment their policies. However, the results
obtained from a simulation may be misleading if a CDN simulation system does
not take into account several critical factors such as the bottlenecks that are likely
to occur in a network, the number of traversed nodes etc., considering the TCP/IP
network infrastructure.

2.3 Mapping of the Taxonomy to Representative CDNs

In this section, we provide the categorization and mapping of our taxonomy to a
few representative CDNs that have been surveyed in Chap. 1 of this book. We also
present the perceived insights and a critical evaluation of the existing systems while
classifying them. Our analysis of the CDNs based on the taxonomy also examines
the validity and applicability of the taxonomy.

2.3.1 CDN Composition Taxonomy Mapping

Table 2.1 shows the annotation of the representative CDNs based on the CDN com-
position taxonomy. As shown in the table, the majority of the existing CDNs use
overlay approach for CDN organization, while some use network approach or both.
The use of both overlay and network approaches is common among commercial
CDNs such as Akamai and Mirror Image. When a CDN provider uses a combina-
tion of these two approaches for CDN formation, a network element can be used to
redirect HTTP requests to a nearby application-specific surrogate server.

Academic CDNs are built using P2P techniques, following an overlay approach.
However, each of them differs in the way the overlay is built and deployed. For ex-
ample, CoDeeN overlay consists of deployed “open” proxies, whereas Coral over-
lay (consisting of cooperative HTTP proxies and a network of DNS servers) is built
relying on an underlying indexing infrastructure, and Globule overlay is composed
of the end user nodes.

In an overlay approach, the following relationships are common – client-to-
surrogate-to-origin server and network element-to-caching proxy. Inter-proxy rela-
tionship is also common among the CDNs, which supports inter-cache interaction.
When using network approach, CDNs rely on the interaction of network elements
for providing services through deploying request-routing logic to the network el-
ements based on predefined policies. The overlay approach is preferred over the
network approach because of the scope for new services integration and simplified

2 A Taxonomy of CDNs 63

Ta
bl

e
2.

1
C

D
N

co
m

po
si

tio
n

ta
xo

no
m

y
m

ap
pi

ng

C
D

N
N

am
e

an
d

Ty
pe

C
D

N
O

rg
an

iz
at

io
n

Se
rv

er
s

R
el

at
io

ns
hi

ps
In

te
ra

ct
io

n
Pr

ot
oc

ol
s

C
on

te
nt

/S
er

vi
ce

Ty
pe

s
C

om
m

er
ci

al
C

D
N

s
A

ka
m

ai
N

et
w

or
k

an
d

ov
er

la
y

ap
pr

oa
ch

O
ri

gi
n

an
d

re
pl

ic
a

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

In
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

St
at

ic
co

nt
en

t,
dy

na
m

ic
co

nt
en

t,
st

re
am

in
g

m
ed

ia
,a

nd
se

rv
ic

es
(n

et
w

or
k

m
on

ito
ri

ng
,

ge
og

ra
ph

ic
ta

rg
et

in
g)

E
dg

e
St

re
am

N
et

w
or

k
ap

pr
oa

ch
N

/A
N

/A
N

et
w

or
k

el
em

en
ts

in
te

ra
ct

io
n

V
id

eo
st

re
am

in
g,

vi
de

o
ho

st
in

g
se

rv
ic

es
L

im
el

ig
ht

N
et

w
or

ks
O

ve
rl

ay
ap

pr
oa

ch
O

ri
gi

n
an

d
re

pl
ic

a
se

rv
er

s
C

lie
nt

-t
o-

su
rr

og
at

e-
to

-o
ri

gi
n

se
rv

er
,

N
et

w
or

k
el

em
en

t-
to

-c
ac

hi
ng

pr
ox

y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n
St

at
ic

co
nt

en
t,

st
re

am
in

g
m

ed
ia

M
ir

ro
r

Im
ag

e
N

et
w

or
k

an
d

O
ve

rl
ay

ap
pr

oa
ch

O
ri

gi
n

an
d

re
pl

ic
a

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n
St

at
ic

co
nt

en
t,

st
re

am
in

g
m

ed
ia

,
W

eb
co

m
pu

tin
g

an
d

re
po

rt
in

g
se

rv
ic

es

A
ca

de
m

ic
C

D
N

s
C

oD
ee

N
O

ve
rl

ay
ap

pr
oa

ch
w

ith
“o

pe
n”

pr
ox

ie
s

O
ri

gi
n

an
d

re
pl

ic
a/

pr
ox

y
(f

or
w

ar
d,

re
ve

rs
e,

re
di

re
ct

or
)

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

Pa
rt

ic
ip

at
in

g
us

er
s

re
ce

iv
e

be
tte

r
pe

rf
or

m
an

ce
to

m
os

t
si

te
s;

on
ly

pr
ov

id
es

st
at

ic
co

nt
en

t

64 M. Pathan and R. Buyya

Ta
bl

e
2.

1
(c

on
tin

ue
d)

C
D

N
N

am
e

an
d

Ty
pe

C
D

N
O

rg
an

iz
at

io
n

Se
rv

er
s

R
el

at
io

ns
hi

ps
In

te
ra

ct
io

n
Pr

ot
oc

ol
s

C
on

te
nt

/S
er

vi
ce

Ty
pe

s
C

or
al

O
ve

rl
ay

ap
pr

oa
ch

w
ith

an
un

de
rl

yi
ng

in
de

xi
ng

in
fr

as
tr

uc
tu

re

O
ri

gi
n

an
d

re
pl

ic
a/

(c
oo

pe
ra

tiv
e)

pr
ox

y
ca

ch
e

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

M
os

tu
se

rs
re

ce
iv

e
be

tte
r

pe
rf

or
m

an
ce

to
pa

rt
ic

ip
at

in
g

si
te

s;
on

ly
pr

ov
id

es
st

at
ic

co
nt

en
t

G
lo

bu
le

O
ve

rl
ay

ap
pr

oa
ch

w
ith

en
d

us
er

no
de

s

O
ri

gi
n,

re
pl

ic
a,

ba
ck

up
an

d/
or

re
di

re
ct

or
se

rv
er

s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
no

de

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

A
W

eb
si

te
’s

pe
rf

or
m

an
ce

an
d

av
ai

la
bi

lit
y

is
im

pr
ov

ed
;p

ro
vi

de
s

st
at

ic
co

nt
en

ta
nd

m
on

ito
ri

ng
se

rv
ic

es

2 A Taxonomy of CDNs 65

management of underlying network infrastructure. Offering a new service in overlay
approach is as simple as distributing new code to CDN servers [61].

CDNs use origin and replica servers to perform content delivery. Most of the
replica servers are used as Web servers for serving Web content. Some CDNs such
as Akamai, EdgeStream, Limelight Networks, and Mirror Image use their replica
servers as media servers for delivering streaming media and video hosting ser-
vices. Replica servers can also be used for providing services like caching, large file
transfer, reporting, and DNS services. In the academic CDN domain, proxy/replica
servers can be configured for different purposes. For example, each CoDeeN node
is capable of acting as a forward, a reverse, and a redirection proxy; Coral proxies
are cooperative; and Globule node can play the role of an origin, replica, backup,
and/or replica server.

From Table 2.1, it can also be seen that most of the CDNs are dedicated to pro-
vide particular content, since variation of services and content requires the CDNs
to adopt application-specific characteristics, architectures and technologies. Most
of them provide static content, while only some of them provide streaming me-
dia, broadcasting, and other services. While the main business goal of commercial
CDNs is to gain profit through content and/or service delivery, the goal of academic
CDNs differs from each other. As for instance, CoDeeN provides static content
with the goal of providing participating users better performance to most Web sites;
Coral aims to provide most users better performance to participating Web sites; and
Globule targets to improve a Web site’s performance, availability and resistance (to
a certain extent) to flash crowds and the Slashdot effects.

2.3.2 Content Distribution and Management Taxonomy Mapping

The mapping of the content distribution and management taxonomy to the represen-
tative CDNs is shown in Table 2.2.

Most of the CDNs support partial-site content delivery, while both full and
partial-site content delivery is also possible. CDN providers prefer to support partial-
site content delivery because it reduces load on the origin server and on the site’s
content generation infrastructure. Moreover, due to the infrequent change of embed-
ded content, partial-site approach performs better than the full-site content delivery
approach. Only few CDNs – Akamai, Mirror Image and Coral to be specific, are
found to support clustering of contents. The content distribution infrastructure of
other CDNs does not reveal any information whether other CDNs use any scheme
for content clustering. Akamai and Coral cluster content based on users’ sessions.
This approach is beneficial because it helps to determine both the groups of users
with similar browsing patterns and the groups of pages having related content. The
only CDN to use the URL-based content clustering is Mirror Image. But URL-
based approach is not popular because it suffers from the complexity involved to
deploy them.

66 M. Pathan and R. Buyya

From the table it is clear that most of the representative CDNs with extensive
geographical coverage follow the multi-ISP approach to place numerous number of
surrogate servers at many global ISP POPs. Commercial CDNs such as Akamai,
Limelight Networks, Mirror Image, and academic CDNs such as Coral [34] and
CoDeeN use multi-ISP approach. The single-ISP approach suffers from the distant
placement of the surrogates with respect to the locality of the end users. However,
the setup cost, administrative overhead, and complexity associated with deploying
and managing of the system in multi-ISP approach is higher. An exception to this
can be found for sites with high traffic volumes. Multi-ISP approach performs bet-
ter in this context since single-ISP approach is suitable only for sites with low-to-
medium traffic volumes [95].

Content outsourcing of the commercial CDNs mostly use non-cooperative pull-
based approach because of its simplicity enabled by the use of DNS redirection or
URL rewriting. Cooperative push-based approach is still theoretical and none of
the existing CDNs supports it. Cooperative pull-based approach involves complex
technologies (e.g. DHT) as compared to the non-cooperative approach and it is used
by the academic CDNs following P2P architecture [71]. Moreover, it imposes a
large communication overhead (in terms of number of messages exchanged) when
the number of clients is large. It also does not offer high fidelity when the content
changes rapidly or when the coherency requirements are stringent.

From Table 2.2 it is also evident that representative commercial and academic
CDNs with large geographic coverage, use inter-cluster (and a combination of inter
and intra-cluster) caching. CDNs mainly use on-demand update as their cache up-
date policy. Only Coral uses invalidation for updating caches since it delivers static
content which changes very infrequently. Globule follows an adaptive cache up-
date policy to dynamically choose between different cache consistency enforcement
techniques. Of all the cache update policies, periodic update has the greatest reach
since the caches are updated in a regular fashion. Thus, it has the potential to be most
effective in ensuring cache content consistency. Update propagation and invalidation
are not generally applicable as steady-state control mechanisms, and they can cause
control traffic to consume bandwidth and processor resources that could otherwise
be used for serving content [41]. Content providers themselves may administer to
deploy specific caching mechanisms or heuristics for cache update. Distributing par-
ticular caching mechanism is simpler to administer but it has limited effects. On the
other hand, cache heuristics are a good CDN feature for content providers who do
not want to develop own caching mechanisms. However, heuristics will not deliver
the same results as well-planned policy controls [41].

2.3.3 Request-Routing Taxonomy Mapping

Table 2.3 maps the request-routing taxonomy to the representative CDNs. It can be
observed from the table that DNS-based mechanisms are very popular for request-
routing. The main reason of this popularity is its simplicity and the ubiquity of

2 A Taxonomy of CDNs 67

Ta
bl

e
2.

2
C

on
te

nt
di

st
ri

bu
tio

n
an

d
m

an
ag

em
en

tt
ax

on
om

y
m

ap
pi

ng

C
D

N
N

am
e

C
on

te
nt

Se
le

ct
io

n
an

d
D

el
iv

er
y

Su
rr

og
at

e
Pl

ac
em

en
t

C
on

te
nt

O
ut

so
ur

ci
ng

C
ac

he
O

rg
an

iz
at

io
n

A
ka

m
ai

C
on

te
nt

se
le

ct
io

n
•

Fu
ll

an
d

pa
rt

ia
l-

si
te

de
liv

er
y

C
on

te
nt

C
lu

st
er

in
g

•
U

se
rs

’
se

ss
io

ns
ba

se
d

M
ul

ti-
IS

P
ap

pr
oa

ch
;H

ot
sp

ot
pl

ac
em

en
tb

y
al

lo
ca

tin
g

m
or

e
se

rv
er

s
to

si
te

s
ex

pe
ri

en
ci

ng
hi

gh
lo

ad

N
on

-c
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

U
pd

at
e

pr
op

ag
at

io
n

•
O

n-
de

m
an

d
E

dg
e

St
re

am
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

Si
ng

le
-I

SP
ap

pr
oa

ch
N

on
-c

oo
pe

ra
tiv

e
pu

ll-
ba

se
d

C
ac

hi
ng

te
ch

ni
qu

e
•

In
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
N

/A
L

im
el

ig
ht

N
et

w
or

ks
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

M
ul

ti-
IS

P
ap

pr
oa

ch
N

on
-c

oo
pe

ra
tiv

e
pu

ll-
ba

se
d

C
ac

hi
ng

te
ch

ni
qu

e
•

In
tr

a-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

O
n-

de
m

an
d

M
ir

ro
r

Im
ag

e
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
•

U
R

L
ba

se
d

M
ul

ti-
IS

P
ap

pr
oa

ch
;C

en
te

r
pl

ac
em

en
tf

ol
lo

w
in

g
a

co
nc

en
tr

at
ed

“S
up

er
st

or
e”

ar
ch

ite
ct

ur
e

N
on

-c
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a-

cl
us

te
r

ca
ch

in
g

C
ac

he
up

da
te

•
O

n-
de

m
an

d

68 M. Pathan and R. Buyya

Ta
bl

e
2.

2
(c

on
tin

ue
d)

C
D

N
N

am
e

C
on

te
nt

Se
le

ct
io

n
an

d
D

el
iv

er
y

Su
rr

og
at

e
Pl

ac
em

en
t

C
on

te
nt

O
ut

so
ur

ci
ng

C
ac

he
O

rg
an

iz
at

io
n

C
oD

ee
N

C
on

te
nt

se
le

ct
io

n
•

Pa
rt

ia
l-

si
te

de
liv

er
y

C
on

te
nt

C
lu

st
er

in
g

N
/A

M
ul

ti-
IS

P
ap

pr
oa

ch
;

To
po

lo
gy

-i
nf

or
m

ed
re

pl
ic

a
pl

ac
em

en
t

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

O
n-

de
m

an
d

C
or

al
C

on
te

nt
se

le
ct

io
n

•
Fu

ll
an

d
pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
•

U
se

rs
’

se
ss

io
ns

ba
se

d

M
ul

ti-
IS

P
ap

pr
oa

ch
;T

re
e-

ba
se

d
re

pl
ic

a
pl

ac
em

en
t

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

C
ac

he
in

va
lid

at
io

n
G

lo
bu

le
C

on
te

nt
se

le
ct

io
n

•
Fu

ll
an

d
pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

Si
ng

le
-I

SP
ap

pr
oa

ch
;B

es
tr

ep
lic

a
pl

ac
em

en
ts

tr
at

eg
y

is
dy

na
m

ic
al

ly
se

le
ct

ed
th

ro
ug

h
re

gu
la

r
ev

al
ua

tio
n

of
di

ff
er

en
t

st
ra

te
gi

es

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

A
da

pt
iv

e
ca

ch
e

up
da

te

2 A Taxonomy of CDNs 69

DNS as a directory service. DNS-based mechanisms mainly consist of using a
specialized DNS server in the name resolution process. Among other request-
routing mechanisms, HTTP redirection is also highly used in the CDNs because
of the finer level of granularity on the cost of introducing an explicit binding be-
tween a client and a replica server. Flexibility and simplicity are other reasons of
using HTTP redirection for request-routing in CDNs. Some CDNs such as Mir-
ror Image uses GSLB for request-routing. It is advantageous since less effort is
required to add GSLB capability to the network without adding any additional net-
work devices. Among the academic CDNs, Coral exploits overlay routing tech-
niques, where indexing abstraction for request-routing is done using DSHT. Thus,
it makes use of P2P mechanism for request redirection. As we mentioned ear-
lier, the request-routing system of a CDN is composed of a request-routing al-
gorithm and a request-routing mechanism. The request-routing algorithms used
by the CDNs are proprietary in nature. The technology details of most of them
have not been revealed. Our analysis of the existing CDNs indicates that Aka-
mai and Globule use adaptive request-routing algorithm for their request-routing
system. Akamai’s adaptive (to flash crowds) request-routing takes into account
server load and various network metrics; whereas Globule measures only the num-
ber of AS that a request needs to pass through. In case of CoDeeN, the request-
routing algorithm takes into account request locality, system load, reliability, and
proximity information. On the other hand, Coral’s request-routing algorithm im-
proves locality by exploiting on-the-fly network measurement and storing topology
hints in order to increase the possibility for the clients to discover nearby DNS
servers.

Table 2.3 Request-routing taxonomy mapping

CDN Name Request-routing Technique
Akamai • Adaptive request-routing algorithms which takes into account server load

and various network metrics
• Combination of DNS-based request-routing and URL rewriting

EdgeStream HTTP redirection
Limelight Networks DNS-based request-routing
Mirror Image Global Server Load Balancing (GSLB)

• Global awareness
• Smart authoritative DNS

CoDeeN • Request-routing algorithm takes into account request locality, system
load, reliability, and proximity information.
• HTTP redirection.

Coral • Request-routing algorithms with improved locality by exploiting on-the-
fly network measurement and storing topology hints

• DNS-based request-routing
Globule • Adaptive request-routing algorithms considering AS-based proximity

• Single-tier DNS-based request-routing

70 M. Pathan and R. Buyya

2.3.4 Performance Measurement Taxonomy Mapping

Table 2.4 shows the mapping of different performance measurement techniques to
representative CDNs.

Performance measurement of a CDN through some metric estimation measures
its ability to serve the customers with the desired content and/or services. A CDN’s
performance should be evaluated in terms of cache hit ratio, bandwidth consump-
tion, latency, surrogate server utilization, and reliability. In addition, other factors
such as storage, communication overhead, and scalability can also be taken into
account. The estimation of performance metrics gives an indication of system con-
ditions and helps for efficient request-routing and load balancing in large systems. It
is important to a content provider to conduct performance study of a CDN for select-
ing the most appropriate CDN provider. However, the proprietary nature of the CDN
providers does not allow a content provider to conduct performance measurement
on them.

From Table 2.4, we can see that performance measurement of a CDN is done
through internal measurement technologies as well as from the customer perspec-
tive. It is evident that, most of the CDNs use internal measurement based on network
probing, traffic monitoring or the like. Akamai uses proactive traffic monitoring and
network probing for measuring performance. In the academic domain, CoDeeN has
the local monitoring ability that examines a service’s primary resources, such as free
file descriptors/sockets, CPU cycles, and DNS resolver service; Coral has the ability

Table 2.4 Performance measurement taxonomy mapping

CDN Name Performance Measurement

Akamai Internal measurement
• Network probing
• Traffic monitoring (proactive)
External measurement
• Performed by a third party (Giga Information group)

EdgeStream Internal measurement
• Traffic monitoring through Real Time Performance Monitoring Service

(RPMS)
Limelight Networks N/A
Mirror Image Internal measurement

• Network probing
• Traffic monitoring and reporting

CoDeeN Internal measurement
• Local traffic and system monitoring

Coral Internal measurement
• Traffic monitoring
• Liveness checking of a proxy via UDP RPC

Globule Internal measurement
• Traffic monitoring
• Monitoring of server availability by the redirectors

2 A Taxonomy of CDNs 71

to perform a proxy’s liveness check (via UDP remote procedure call (RPC)) prior to
replying to a DNS query; whereas, Globule has monitoring ability implemented in
its redirector servers which checks for the availability of other servers.

External performance measurement of CDN providers is not common because
most of the operating CDNs are commercial enterprises, which are not run trans-
parently, and there are commercial advantages to keep the performance metrics and
methodologies undisclosed. Despite this, some CDNs such as Akamai allow a third-
party to perform external measurements.

2.4 Discussion

As stated at the beginning of this chapter, a full-fledged CDN development requires
addressing additional issues (other than the four core issues considered for the tax-
onomy) such as fault tolerance, security, and ability for Web application hosting. In
this section, we present a brief discussion on them and assist the readers to compre-
hend respective fields by providing referral to relevant research materials.

CDNs being a complex fabric of distributed network elements, failures can occur
at many places. Following a concentrated architecture such as local clustering may
improve fault-tolerance. However, it creates a single-point of failure, when the ISP
connectivity to the cluster is lost. This problem can be solved through deploying
Web clusters in distributed locations (mirroring) or using multiple ISPs to provide
connectivity (multihoming). While clustering, mirroring, or multihoming addresses
the CDN robustness issue to some extent, they introduce additional problems. Clus-
tering suffers from scalability, while mirroring requires each mirror to carry entire
load, and multihoming requires each connection to carry the entire traffic. Commer-
cial CDNs follow their own proprietary approaches to provide fault-tolerance and
scalability. As for instance, Akamai developed a distributed monitoring service that
ensures that server or network failures are handled immediately without affecting
the end users. Other than this, there are numerous solutions available in literature,
some of which are widely used in real systems. Interested readers are referred to
[46, 77, 85] to find descriptions on the explicit fault-tolerance solutions in wide-
area systems such as CDNs.

Ensuring security in CDNs pose extra challenges in system development. There
are security concerns at different levels of a CDN such as network, routers, DNS
or Web clusters. One common security threat is the DDoS attack. The DDoS attack
can be aimed at (a) consumption of scarce resources such as network bandwidth or
CPU; (b) destruction or modification of configuration information; and (c) physical
destruction or modifications of network components [82]. Security threats also in-
clude attacks which exploit software vulnerabilities (intrusion attacks) and protocol
inconsistencies (protocol attacks). There exist many prior works addressing various
wide-area security problems. Extensive coverage and documentation of security re-
lated solutions are available in the literature [40, 50, 51, 53, 56, 57, 82].

Nowadays, commercial CDNs such as Akamai provide usage-based content and
application delivery solutions to the end users. Akamai Edge Computing

72 M. Pathan and R. Buyya

Infrastructure (ECI) [1], Active Cache [19], and ACDN [80] replicate the applica-
tion code to the edge servers without replicating the application data itself. Rather,
the data is kept in a centralized server. It enables the Web tier applications to extend
to the CDN platform so that end user requests for application object would execute
at the replica server rather than at the origin. However, this approach suffers from
increased wide-area latency due to excessive data access and bottleneck due to the
concentration on a centralized server. To overcome these limitations, Sivasubrama-
nian et al. [87] propose an approach for replicating Web applications on-demand.
This approach employs partial replication to replicate data units only to the servers
who access them often. In another work, application specific edge service architec-
ture [39] is presented where the application itself is responsible for its replication
with the compromise of a weaker consistency model. For more information on host-
ing wide-area applications readers are referred to [88].

2.5 Summary and Conclusions

In this chapter, we have analyzed and categorized CDNs according to the func-
tional and non-functional attributes. We have developed a comprehensive taxon-
omy for CDNs based on four issues: CDN composition, content distribution and
management, request-routing, and performance measurement. We further built up
taxonomies for each of these paradigms to classify the common trends, solu-
tions, and techniques in content networking. Additionally, we identify three issues,
namely, fault tolerance, security, and ability for Web application hosting as to in-
troduce challenges in CDN development. Hereby, we provided pointers to related
research work in this context. Our taxonomy provides a basis for comparison of
existing CDNs. In doing so, we assist the readers to gain insights into the technol-
ogy, services, strategies, and practices that are currently followed in this field. We
have also performed a mapping of the taxonomy to representative commercial and
academic CDN systems. Such a mapping provides a basis to realize an in-depth un-
derstanding of the state-of-the-art technologies in content distribution space, and to
validate the applicability and accuracy of the taxonomy.

Recently, the CDN industry is getting consolidated as a result of acquisitions
and/or mergers. During the preparation of this chapter, we have experienced signifi-
cant changes in the content distribution landscape due to this consolidation. Conse-
quently, content distribution, caching, and replication techniques are gaining more
attention in order to meet up the new technical and infrastructure requirements for
the next generation CDNs. This may lead to new issues in the design, architecture,
and development of CDNs. Present trends in content networking domain indicate
that better understanding and interpretation of the essential concepts in this area is
necessary. Therefore, we hope that the comprehensive comparison framework based
on our taxonomy, presented in this chapter, will not only serve as a tool to under-
stand this complex area, but also will help to map the future research efforts in
content networking.

2 A Taxonomy of CDNs 73

Acknowledgements We would like to acknowledge the efforts of all the developers of the com-
mercial and academic CDNs surveyed in this paper. We thank the anonymous reviewers for their
insightful comments and suggestions that have improved the presentation and correctness of this
chapter. We also thank our colleagues at the University of Melbourne – James Broberg, Marcos
Assunção, and Charity Lourdes for sharing thoughts and for making incisive comments and sug-
gestions on this chapter. We would like to express our gratitude to Athena Vakali (Aristotle Univer-
sity of Thessaloniki, Greece), George Pallis (The University of Cyprus, Cyprus), Carlo Mastroianni
(ICAR-CNR, Italy), Giancarlo Fortino (Università della Calabria, Italy), Christian Vecchiola (Uni-
versity of Genova, Italy), and Vivek Pai (Princeton University, USA) for their visionary comments
on various parts of the taxonomy. We are also thankful to Fahim Husain (Akamai Technologies,
Inc., USA), William Good (Mirror Image Internet, Inc., USA), and Lisa Amini (IBM T. J. Watson
Research Center, USA) for providing valuable research papers, technical reports, white papers, and
data sheet while preparing the manuscript.

References

1. Akamai Technologies, 2007. www.akamai.com
2. CDNSim, A Content Distribution Network Simulator, 2007. http://oswinds.csd.

auth.gr/∼cdnsim/
3. Keynote Systems—Web and Mobile Service Performance Testing Corporation, 2007.

http://www.keynote.com/
4. Network simulators, 2007. http://www-nrg.ee.lbl.gov/kfall/netsims.html
5. PlanetLab Consortium, 2007. http://www.planet-lab.org/
6. The GigaWeb Corporation, 2007. http://www.gigaWeb.com/
7. The network simulator – ns-2, 2007. http://www.isi.edu/nsnam/ns/
8. Aberer, K. and Hauswirth, M. An overview on peer-to-peer information systems. In Proc. of

the Workshop on Distributed Data and Structures (WDAS), France, 2002.
9. Aggarwal, A. and Rabinovich, M. Performance of dynamic replication schemes for an Inter-

net hosting service. Technical Report, HA6177000-981030-01-TM, AT&T Research Labs,
Florham Park, NJ, USA, 1998.

10. Andrews, M., Shepherd, B., Srinivasan, A., Winkler, P., and Zane, F. Clustering and server
selection using passive monitoring. In Proc. of IEEE INFOCOM, NY, USA, 2002.

11. Androutsellis-Theotokis, S. and Spinellis, D. A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys, 36(4), ACM Press, NY, USA, pp. 335–371, 2004.

12. Ardaiz, O., Freitag, F., and Navarro, L. Improving the service time of Web clients using
server redirection. ACM SIGMETRICS Performance Evaluation Review, 29(2), ACM Press,
NY, USA, pp. 39–44, 2001.

13. Bakiras, S. and Loukopoulos, T. Combining replica placement and caching techniques in
content distribution networks. Computer Communications, 28(9), pp. 1062–1073, 2005.

14. Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Looking up data in
P2P systems. Communications of the ACM, 46(2), ACM Press, NY, USA, pp. 43–48, 2003.

15. Barbir, A., Cain, B., Nair, R., and Spatscheck, O. Known content network request-routing
mechanisms. Internet Engineering Task Force RFC 3568, 2003. www.ietf.org/rfc/rfc3568.txt

16. Bartal, Y. Probabilistic approximation of metric space and its algorithmic applications. In
Proc. of 37th Annual IEEE Symposium on Foundations of Computer Science, 1996.

17. Brussee, R., Eertink, H., Huijsen, W., Hulsebosch, B., Rougoor, M., Teeuw, W., Wibbels, M.,
and Zandbelt, H. Content distribution network state of the art,” Telematica Instituut, 2001.

18. Byers, J., Considine, J., and Mitzenmacher, J. Simple load balancing for distributed
hash tables. In Proc. of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
pp. 31–35, 2003.

19. Cao, P., Zhang, J., and Beach, K. Active cache: Caching dynamic contents on the Web. In
Proc. of the Middleware Conference, pp. 373–388, 1998.

74 M. Pathan and R. Buyya

20. Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. The state of the art in locally
distributed Web-server systems. ACM Computing Surveys, 34(2), ACM Press, NY, USA, pp.
263–311, 2002.

21. Chen, Y., Katz, R. H., and Kubiatowicz, J. D. Dynamic replica placement for scalable content
delivery. In Proc. of International Workshop on Peer-to-Peer Systems (IPTPS 02), LNCS
2429, Springer-Verlag, pp. 306–318, 2002.

22. Chen, C. M., Ling, Y., Pang, M., Chen, W., Cai, S., Suwa, Y., Altintas, O. Scalable
request-routing with next-neighbor load sharing in multi-server environments. In Proc. of
the 19th International Conference on Advanced Information Networking and Applications,
IEEE Computer Society, Washington, DC, USA, pp. 441–446, 2005.

23. Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. H. Efficient and adaptive Web repli-
cation using content clustering. IEEE Journal on Selected Areas in Communications, 21(6),
pp. 979–994, 2003.

24. Cieslak, M., Foster, D., Tiwana, G., and Wilson, R. Web cache coordination protocol version
2. http://www.Web-cache.com/Writings/Internet-Drafts/draft-wilson-wrec-wccp-v2-00.txt

25. Clip2 Distributed Search Solutions, The Gnutella Protocol Specification v0.4. www.content-
networking.com/papers/gnutella-protocol-04.pdf

26. Cooper, I., Melve, I., and Tomlinson, G. Internet Web replication and caching taxonomy.
Internet Engineering Task Force RFC 3040, 2001. www.ietf.org/rfc/rfc3040.txt

27. Davison, B. D. Web caching and content delivery resources. http://www.Web-caching.com,
2007.

28. Delgadillo, K. Cisco DistributedDirector, Cisco Systems, Inc., 1997.
29. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally distributed

content delivery. IEEE Internet Computing, pp. 50–58, 2002.
30. Douglis, F. and Kaashoek, M. F. Scalable Internet services. IEEE Internet Computing, 5(4),

pp. 36–37, 2001.
31. Emtage, A. and Deutsch, P. Archie: an electronic directory service for the Internet. In Proc.

of the Winter Usenix Conference, San Francisco, CA, USA, pp. 93–110, January 1992.
32. Fei, Z., Bhattacharjee, S., Zugura, E. W., and Ammar, M. H. A novel server selection tech-

nique for improving the response time of a replicated service. In Proc. of IEEE INFOCOM,
San Francisco, California, USA, pp. 783–791, 1998.

33. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. IDMaps: a global
Internet host distance estimation service. IEEE/ACM Transactions on Networking (TON),
9(5), ACM Press, NY, USA, pp. 525–540, 2001.

34. Freedman, M. J., Freudenthal, E., and Mazières, D. Democratizing content publication with
Coral. In Proc. of 1st USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation, San Francisco, CA, USA, 2004.

35. Freedman, M. J., Lakshminarayanan, K., and Mazières, K. OASIS: anycast for any service.
In Proc. of 3rd Symposium of Networked Systems Design and Implementation (NSDI’06),
Boston, MA, USA, 2006.

36. Fujita, N., Ishikawa, Y., Iwata, A., and Izmailov, R. Coarse-grain replica management strate-
gies for dynamic replication of Web contents. Computer Networks: The International Journal
of Computer and Telecommunications Networking, 45(1), pp. 19–34, 2004.

37. Gadde, S., Chase, J., and Rabinovich, M. Web caching and content distribution: a view from
the interior. Computer Communications, 24(2), pp. 222–231, 2001.

38. Gadde, S., Rabinovich, M., and Chase, J. Reduce, reuse, recycle: an approach to build-
ing large Internet caches. In Proc. of 6th Workshop on Hot Topics in Operating Systems,
pp. 93–98, 1997.

39. Gao, L., Dahlin, M., Nayate, A., Zheng, J., and Iyengar, A. Application specific data repli-
cation for edge services. In Proc. of the Twelfth International World-Wide Web Conference,
Hungary, pp. 449–460, 2003.

40. Garg, A. and Reddy, A. L. N. Mitigating denial of service attacks using qos regulation. In
Proc. of International Workshop on Quality of Service (IWQoS), 2002.

41. Gayek, P., Nesbitt, R., Pearthree, H., Shaikh, A., and Snitzer, B. A Web content serving
utility. IBM Systems Journal, 43(1), pp. 43–63, 2004.

2 A Taxonomy of CDNs 75

42. Hamilton, M., Rousskov, A., and Wessels, D. Cache digest specification – version 5. 1998.
http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt

43. Harren, M., Hellerstein, J. M., Huebsch, R., Loo, B. T., Shenker, S., and Stoica, I. Complex
queries in DHT-based peer-to-peer networks. In Proc. of 1st International Workshop on Peer-
to-Peer Systems (IPTPS’02), 2002.

44. Hofmann, M. and Beaumont, L. R. Content Networking: Architecture, Protocols, and Prac-
tice. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 129–134, 2005.

45. Huffaker, B., Fomenkov, M., Plummer, D. J., Moore, D., and Claffy, K. Distance metrics in
the Internet. In Proc. of IEEE International Telecommunications Symposium, IEEE CS Press,
Los Alamitos, CA, USA, 2002.

46. Jalote, P. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs, NJ, USA,
1994.

47. Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. On the placement of Internet
instrumentation. In Proc. of IEEE INFOCOM, Tel-Aviv, Israel, pp. 295–304, 2000.

48. Jamin, S., Jin, C., Kure, A. R., Raz, D., and Shavitt, Y. Constrained mirror placement on the
Internet. In Proc. of IEEE INFOCOM, Anchorage, Alaska, USA, 2001.

49. Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, M. F. The measured performance of
content distribution networks. Computer Communications, 24(2), pp. 202–206, 2001.

50. Jung, J., Krishnamurthy, B. and Rabinovich, M. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and Web sites. In Proc. of the International
World Wide Web Conference, Hawaii, USA, pp. 252–262, 2002.

51. Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. Fast portscan detection using se-
quential hypothesis testing. In Proc. of IEEE Symposium on Security and Privacy, Oakland,
2004.

52. Kahle, B. and Medlar, A. An information system for corporate users: wide area information
servers. ConneXions—The Interoperability Report, 5(11), November 1991.

53. Kandula, S., Katabi, D., Jacob, M., and Berger, A. W. Botz-4-sale: Surviving organized ddos
attacks that mimic flash crowds. In Proc. of Symposium on Networked Systems Design and
Implementation (NSDI), Boston, 2005.

54. Kangasharju, J., Roberts, J., and Ross, K. W. Object replication strategies in content distri-
bution networks. Computer Communications, 25(4), pp. 367–383, 2002.

55. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim, B.,
Matkins, L., and Yerushalmi, Y. Web caching with consistent hashing. Computer Networks,
31(11–16), pp. 1203–1213, 1999.

56. Kargl, F., Maier, J., and Weber, M. Protecting Web servers from distributed denial of service
attacks, In Proc. of the International World Wide Web Conference, pages 514–524, Hong
Kong, 2001.

57. Kim, Y., Lau, W. C., Chuah, M. C., and Chao, H. J. Packetscore: Statistics based overload
control against distributed denial-of-service attacks. In Proc. of INFOCOM, Hong Kong,
2004.

58. Krishnamurthy, B., Willis, C., and Zhang, Y. On the use and performance of content distri-
bution network. In Proc. of 1st International Internet Measurement Workshop, ACM Press,
pp. 169–182, 2001.

59. Krishnan, P., Raz, D., and Shavitt, Y. The cache location problem. IEEE/ACM Transaction
on Networking, 8(5), 2000.

60. Kung, H. T. and Wu, C. H. Content networks: taxonomy and new approaches. The Internet as
a Large-Scale Complex System, (Kihong Park and Walter Willinger eds.), Oxford University
Press, 2002.

61. Lazar, I. and Terrill, W. Exploring content delivery networking. IT Professional, 3(4), pp.
47–49, 2001.

62. Lee, J. An End-User Perspective on File-Sharing Systems. Communications of the ACM,
46(2), ACM Press, NY, USA, pp. 49–53, 2003.

63. Li, B., Golin, M. J., Italiano, G. F., Xin, D., and Sohraby, K. On the optimal placement of
Web proxies in the Internet. In Proc. of IEEE INFOCOM, NY, USA, pp. 1282–1290, 1999.

76 M. Pathan and R. Buyya

64. Ma, W. Y., Shen, B., and Brassil, J. T. Content services network: architecture and protocols.
In Proc. of 6th International Workshop on Web Caching and Content Distribution (IWCW6),
2001.

65. Mao, Z. M., Cranor, C. D., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J. A pre-
cise and efficient evaluation of the proximity between Web clients and their Local DNS
servers. In Proc. of the USENIX 2002 Annual Technical Conference, Monterey, CA, USA,
pp. 229–242, 2002.

66. Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S.,
and Xu, Z. Peer-to-peer computing. Technical Report, HP Laboratories, Palo Alto, CA, HPL-
2002-57, 2002. www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf

67. Ni, J. and Tsang, D. H. K. Large scale cooperative caching and application-level multicast in
multimedia content delivery networks. IEEE Communications, 43(5), pp. 98–105, 2005.

68. Ni, J., Tsang, D. H. K., Yeung, I. S. H., and Hei, X. Hierarchical content routing in large-
scale multimedia content delivery network. In Proc. of IEEE International Conference on
Communications (ICC), pp. 854–859, 2003.

69. Pai, V. S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.
Locality-aware request distribution in cluster-based network servers. ACM SIGPLAN No-
tices, 33(11), ACM Press, NY, USA, pp. 205–216, 1998.

70. Pallis, G., Stamos, K., Vakali, A., Sidiropoulos, A., Katsaros, D., and Manolopoulos, Y.
Replication-based on objects load under a content distribution network. In Proc. of the 2nd
International Workshop on Challenges in Web Information Retrieval and Integration (WIRI),
Altanta, Georgia, USA, 2006.

71. Pallis, G. and Vakali, A. Insight and perspectives for content delivery networks. Communi-
cations of the ACM, 49(1), ACM Press, NY, USA, pp. 101–106, 2006.

72. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., and Manolopoulos, Y. A
latency-based object placement approach in content distribution networks. In Proc. of the
3rd Latin American Web Congress (La-Web 2005), IEEE Press, Buenos Aires, Argentina,
pp. 140–147, 2005.

73. Partridge, C., Mendez, T., and Milliken, W. Host anycasting service. Internet Engineering
Task Force RFC 1546, 1993. www.ietf.org/rfc/rfc1546.txt

74. Pathan, M., Broberg, J., Bubendorfer, K., Kim, K. H., and Buyya, R. An Architecture for Vir-
tual Organization (VO)-Based Effective Peering of Content Delivery Networks, UPGRADE-
CN’07. In Proc. of the 16th IEEE International Symposium on High Performance Distributed
Computing (HPDC), Monterey, California, USA, 2007.

75. Peng, G. CDN: Content distribution network. Technical Report TR-125, Experimental Com-
puter Systems Lab, Department of Computer Science, State University of New York, Stony
Brook, NY, 2003. http://citeseer.ist.psu.edu/peng03cdn.html

76. Pierre, G. and van Steen, M. Globule: a collaborative content delivery network. IEEE Com-
munications, 44(8), 2006.

77. Pradhan, D. Fault-Tolerant Computer System Design. Prentice Hall, Englewood Cliffs, NJ,
USA, 1996.

78. Qiu, L., Padmanabhan, V. N., and Voelker, G. M. On the placement of Web server replicas.
In Proc. of IEEE INFOCOM, Anchorage, Alaska, USA, pp. 1587–1596, 2001.

79. Rabinovich, M. and Spatscheck, O. Web Caching and Replication, Addison Wesley, USA,
2002.

80. Rabinovich, M., Xiao, Z., and Agarwal, A. Computing on the edge: A platform for replicating
internet applications. In Proc. of the Eighth International Workshop on Web Content Caching
and Distribution, Hawthorne, NY, USA, 2003.

81. Radoslavov, P., Govindan, R., and Estrin, D. Topology-informed Internet replica placement.
In Proc. of Sixth International Workshop on Web Caching and Content Distribution, Boston,
Massachusetts, 2001.

82. Ranjan, S., Swaminathan, R., Uysal, M., and Knightly, E. DDoS-Resilient scheduling
to counter application layer attacks under Imperfect Detection. In Proc. of INFOCOM,
pp. 1–13, 2006

2 A Taxonomy of CDNs 77

83. Rousskov, A. and Wessels, D. Cache digests. Computer Networks and ISDN Systems, 30(22),
pp. 2155–2168, November 1998.

84. Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy, H. M. An analy-
sis of Internet content delivery systems. ACM SIGOPS Operating Systems Review, 36,
pp. 315–328, 2002.

85. Schneider, F. Implementing Fault-Tolerant Services Using the State Machine Approach: A
Tutorial, 1 ACM Computing Surveys, 22(4), pp.299–320, 1990.

86. Shaikh, A., Tewari, R., and Agrawal, M. On the effectiveness of DNS-based server selection.”
In Proceedings of IEEE INFOCOM, Anchorage, AK, USA, pp. 1801–1810, April 2001.

87. Sivasubramanian, S., Pierre, G., and van Steen, M. Replicating Web applications on-demand.
In Proc. of IEEE International Conference on Services Computing (SCC), pp. 227–236,
China, 2004.

88. Sivasubramanian, S., Pierre, G., van Steen, M., and Alonso, G. Analysis of caching and repli-
cation strategies for Web applications. IEEE Internet Computing, 11(1), pp. 60–66, 2007.

89. Sivasubramanian, S., Szymaniak, M., Pierre, G., and Van Steen, M. Replication of Web host-
ing systems. ACM Computing Surveys, 36(3), ACM Press, NY, USA, 2004.

90. Stamos, K., Pallis, G., Thomos, C., and Vakali, A. A similarity-based approach for integrated
Web caching and content replication in CDNs. In Proc. of 10th International Databased
Engineering and Applications Symposium (IDEAS 2006), IEEE Press, New Delhi, India,
2006.

91. Stamos, K., Pallis, G., and Vakali, A. Integrating caching techniques on a content distribu-
tion network. In Proc. of 10th East-European Conference on Advances in Databases and
Information Systems (ADBIS 2006), Springer-Verlag, Thessaloniki, Greece, 2006.

92. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., and
Balakrishnan, H. Chord: a scalable peer-to-peer lookup protocol for Internet applications,”
IEEE/ACM Transactions on Networking (TON), 11(1), ACM Press, NY, USA, pp. 17–32,
2003.

93. Szymaniak, M., Pierre, G., and van Steen, M. Netairt: a DNS-based redirection system for
apache. In Proc. of International Conference WWW/Internet, Algrave, Portugal, 2003.

94. Tse, S. S. H. Approximate algorithms for document placement in distributed Web servers.
IEEE Transactions on Parallel and Distributed Systems, 16(6), pp. 489–496, 2005.

95. Vakali, A. and Pallis, G. Content delivery networks: status and trends. IEEE Internet Com-
puting, 7(6), IEEE Computer Society, pp. 68–74, 2003.

96. Valloppillil, V. and Ross, K. W. Cache array routing protocol v1.0. Internet Draft, 1998.
97. Verma, D. C. Content Distribution Networks: An Engineering Approach, John Wiley & Sons,

Inc., New York, 2002.
98. Vixie, P. and Wessels, D. Hyper text caching protocol (HTCP/0.0). Internet Engineering Task

Force RFC 2756, 2000. www.ietf.org/rfc/rfc2756.txt
99. Wang, J. A survey of Web caching schemes for the Internet. SIGCOMM Computer Commu-

nication Review, 29(5), ACM Press, NY, USA, pp. 36–46, 1999.
100. Wang, L., Pai, V. S., and Peterson, L. The effectiveness of request redirection on CDN robust-

ness. In Proc. of 5th Symposium on Operating Systems Design and Implementation, Boston,
MA, USA, pp. 345–360, 2002.

101. Wessels, D. and Claffy, K. Internet cache protocol (ICP) version 2. Internet Engineering Task
Force RFC 2186, 1997. www.ietf.org/rfc/rfc2186.txt

102. Wu, B. and Kshemkalyani, A. D. Objective-optimal algorithms for long-term Web Prefetch-
ing. IEEE Transactions on Computers, 55(1), pp. 2–17, 2006.

Chapter 3
Dynamic, Scalable, and Efficient Content
Replication Techniques

Yan Chen

3.1 Introduction

Exponential growth in processor performance, storage capacity, and network band-
width is changing our view of computing. Our focus has shifted away from cen-
tralized, hand-choreographed systems to global-scale, distributed, self-organizing
complexes – composed of thousands or millions of elements. Unfortunately, large
pervasive systems are likely to have frequent component failures and be easily par-
titioned by slow or failed network links. Thus, use of local resources is extremely
important – both for performance and availability. Further, pervasive streaming ap-
plications must tune their communication structure to avoid excess resource usage.
To achieve both local access and efficient communication, we require flexibility in
the placement of data replicas and multicast nodes.

One approach for achieving this flexibility while retaining strong properties of
the data is to partition the system into two tiers of replicas [18] – a small, durable
primary tier and a large, soft-state, second-tier. The primary tier could represent a
Web server (for Web content delivery), the Byzantine inner ring of a storage sys-
tem [6, 29], or a streaming media provider. The important aspect of the primary tier
is that it must hold the most up-to-date copy of data and be responsible for serial-
izing and committing updates. We will treat the primary tier as a black box, called
simply “the data source”. The second-tier becomes soft-state and will be the focus of
this chapter. Examples of second-tiers include Content Delivery Networks (CDNs),
file system caches, or Web proxy caches.

Because second-tier replicas (or just “replicas”) are soft-state, we can dynam-
ically grow and shrink their numbers to meet constraints of the system. We may,
for instance, wish to achieve a Quality of Service (QoS) guarantee that bounds the
maximum network latency between each client and replicas of the data that it is
accessing. Since replicas consume resources, we will seek to generate as few repli-
cas as possible to meet this constraint. As a consequence, popular data items may

Yan Chen
Department of EECS, Northwestern University, Evanston IL, USA,
e-mail: ychen@northwestern.edu

R. Buyya et al. (eds.), Content Delivery Networks, 79
c© Springer-Verlag Berlin Heidelberg 2008

80 Y. Chen

warrant hundreds or thousands of replicas, while unpopular items may require no
replicas.

One difficult aspect of unconstrained replication is ensuring that content does not
become stale. Slightly relaxed consistency, such as in the Web [20], OceanStore [29],
or Coda [26], allows delay between the commitment of updates at the data source
and the propagation of updates to replicas. None-the-less, update propagation must
still occur in a timely manner. The potentially large number of replicas rules out
direct, point-to-point delivery of updates to replicas. In fact, the extremely fluid na-
ture of the second tier suggests a need to self-organize replicas into a multicast tree;
we call such a tree a dissemination tree (d-tree). Since interior nodes must forward
updates to child nodes, we will seek to control the load placed on such nodes by
restricting the fanout of the tree.

The challenge of second-tier replication is to provide good QoS to clients while
retaining efficient and balanced resource consumption of the underlying infrastruc-
ture. To tackle this challenge, we propose a self-organizing soft-state replication
system called SCAN: the Scalable Content Access Network. Figure 3.1 illustrates a
SCAN system. There are two classes of physical nodes shown in the network-plane
of this diagram: SCAN servers (squares) and clients (circles). We assume that SCAN
servers are placed in Internet Data Centers (IDC) of major ISPs with good connec-
tivity to the backbone. Each SCAN server may contain replicas for a variety of data
items. One novel aspect of the SCAN system is that it assumes SCAN servers par-
ticipate in a distributed routing and location (DOLR) system, called Tapestry [22].
Tapestry permits clients to locate nearby replicas without global communication.

There are three types of data illustrated in Fig. 3.1: Data sources and replicas are
the primary topic of this chapter and reside on SCAN servers. Caches are the images

Fig. 3.1 Architecture of a SCAN system

3 Dynamic, Scalable, and Efficient Content Replication Techniques 81

of data that reside on clients and are beyond our scope1 Our goal is to translate
client requests for data into replica management activities. We make the following
contributions:

• We provide algorithms that dynamically place a minimal number of replicas
while meeting client QoS and server capacity constraints.

• We self-organize these replicas into d-tree with small delay and bandwidth con-
sumption for update dissemination.

The important intuition here is that the presence of the DOLR system enables si-
multaneous placement of replicas and construction of a dissemination tree without
contacting the data source. As a result, each node in a d-tree must maintain state
only for its parent and direct children.

The rest of this chapter is organized as follows. We first examine the related
work in Sect. 3.2, then formulate the replica placement problem in Sect. 3.3. Next,
we present our algorithms in Sect. 3.4, evaluation methodology in Sect. 3.5 and
evaluation results in Sect. 3.6.

3.2 Previous Work

In this section, we first survey existing content distribution systems, namely Web
caching (Sect. 3.2.1), uncooperative pull-based CDNs (Sect. 3.2.2), and cooperative
push-based CDNs (Sect. 3.2.3). We compare these systems with SCAN, and sum-
marize this in Table 3.1. Then we discuss the previous work on three building blocks
of CDN: object location services (Sect. 3.2.4), and multicast techniques for update
dissemination (Sect. 3.2.5). Finally, we summarize the limitations of previous work
in Sect. 3.2.6.

3.2.1 Web Caching

Caching can be client-initiated or server-initiated. Most caching schemes in wide-
area, distributed systems are client-initiated, such as used by current Web browsers
and Web proxies [32]. The problems with both of these solutions are myopic. A
client cache does nothing to reduce traffic to a neighboring computer, and a Web
proxy does not help neighboring proxies. Thus, the effectiveness of caching is ulti-
mately limited to the low level of sharing of remote documents among clients of the
same site [4]. A possible solution, server-initiated caching, allows servers to deter-
mine when and where to distribute objects [3, 4, 21]. Essentially, CDNs (including
our approach) are server-initiated caching with dedicated edge servers. Previous
server-initiated caching systems rely on unrealistic assumptions. Bestavros et al.

1 Caches may be kept coherent in a variety of ways (for instance [44]).

82 Y. Chen

Ta
bl

e
3.

1
C

om
pa

ri
so

n
of

va
ri

ou
s

In
te

rn
et

co
nt

en
td

el
iv

er
y

sy
st

em
s

Pr
op

er
tie

s
W

eb
C

ac
hi

ng
(C

lie
nt

In
iti

at
ed

)
W

eb
C

ac
hi

ng
(S

er
ve

r
In

iti
at

ed
)

U
nc

oo
pe

ra
tiv

e
Pu

ll-
B

as
ed

C
D

N
s

C
oo

pe
ra

tiv
e

Pu
sh

-B
as

ed
C

D
N

s
SC

A
N

C
ac

he
/r

ep
lic

a
sh

ar
in

g
fo

r
ef

fic
ie

nt
re

pl
ic

at
io

n
N

o,
un

co
op

er
at

iv
e

Y
es

,c
oo

pe
ra

tiv
e

N
o,

un
co

op
er

at
iv

e
Y

es
,c

oo
pe

ra
tiv

e
Y

es
,c

oo
pe

ra
ti

ve

Sc
al

ab
ili

ty
fo

r
re

qu
es

t
re

di
re

ct
io

n
N

o
re

di
re

ct
io

n
O

K
,u

se
B

lo
om

fil
te

r
[1

5]
to

ex
ch

an
ge

re
pl

ic
a

lo
ca

tio
ns

B
ad

,c
en

tr
al

iz
ed

C
D

N
na

m
e

se
rv

er
B

ad
,c

en
tr

al
iz

ed
C

D
N

na
m

e
se

rv
er

G
oo

d,
de

ce
nt

ra
liz

ed
D

H
T

lo
ca

ti
on

se
rv

ic
es

G
ra

nu
la

ri
ty

of
re

pl
ic

at
io

n
Pe

r
U

R
L

Pe
r

U
R

L
Pe

r
U

R
L

Pe
r

W
eb

si
te

P
er

cl
us

te
r

D
is

tr
ib

ut
ed

lo
ad

ba
la

nc
in

g
N

o
N

o
Y

es
N

o
Y

es
R

ep
lic

a
co

he
re

nc
e

N
o

N
o

N
o

N
o

Y
es

N
et

w
or

k
m

on
ito

ri
ng

fo
r

fa
ul

t-
to

le
ra

nc
e

N
o

N
o

Y
es

,b
ut

un
sc

al
ab

le
m

on
ito

ri
ng

N
o

Y
es

,s
ca

la
bl

e
m

on
it

or
in

g

3 Dynamic, Scalable, and Efficient Content Replication Techniques 83

model the Internet as a hierarchy and any internal node is available as a service
proxy [3, 4]. This assumption is not valid because internal nodes are routers, un-
likely to be available as service proxies. Geographical push-caching autonomously
replicate HTML pages based on the global knowledge of the network topology and
clients’ access patterns [21]. More recently, adaptive web caching [34] and summary
cache [15] are proposed to enable the sharing of caches among Web proxies. Caches
exchange content state periodically with other caches, eliminating the delay and un-
necessary use of resources of explicit cache probing. However, each proxy server
needs to send index update of cached contents to all other proxy servers, and needs
to store the content indices of all other proxy servers. Thus, even with compact con-
tent index summary like the Bloom filter [15], the state maintenance and exchange
overhead is still overwhelming and unscalable with the number of documents and
number of cache servers. For instance, the target number of proxy servers is only
in the order of 100 [15]. Furthermore, without dedicated infrastructure like CDN,
caching proxies can not adapt to network congestion/failures or provide distributed
load balancing.

3.2.2 Un-Cooperative Pull-Based CDNs

Recently, CDNs have been commercialized to provide Web hosting, Internet content
and streaming media delivery. Basically, the contents are pulled to the edge servers
upon clients’ requests. Various mechanisms, such as DNS-based redirection, URL
rewriting, HTTP redirection, etc. [1], have been proposed to direct client requests
for objects to one of the CDN servers (a. k. a. CDN nodes or edge servers). Most
of the commercial CDN providers, such as Akamai [14], LimeLight Networks [31],
and Mirror Image [35], use DNS-based redirection due to its transparency [28].
Figure 3.2 shows the CDN architecture using DNS-based redirection. Given the
rapid growth of CDN service providers, such as Akamai (which already has more
than 25,000 servers in about 900 networks spanning across 69 countries [14]), we
assume that for each popular clients cluster, there is a CDN server as well as a local
DNS server. The client cluster is the group of clients that are topologically close.
The clients can be grouped by their BGP prefix [27] or by their local DNS servers.
The latter is simple and adopted in practice, but it is not very accurate [33].

Figure 3.2 gives the sequence of operations for a client to retrieve a URL. The
hostname resolution request is sent to the CDN name server via local DNS server.
Due to the nature of centralized location service, the CDN name server cannot afford
to keep records for the locations of each URL replica. Thus it can only redirect the
request based on network proximity, bandwidth availability and server load. The
CDN server that gets the redirected request may not have the replica. In that case, it
will pull a replica from the Web content server, then reply to the client.

Due to the uncooperative nature, current CDNs often places more replicas than
necessary and consumes lots of resources for storage and update. Simulations reveal
that with reasonable latency guarantees, cooperative push-based CDN (defined in

84 Y. Chen

Fig. 3.2 Un-cooperative pull-based CDN architecture

Sect. 3.2.3) only uses a small fractional number of replicas (6–8%) and less than 10%
of the update dissemination bandwidth than the uncooperative schemes [10, 11].

As a research effort, Rabinovich and Aggarwal propose RaDaR, a global Web
hosting service with dynamic content replication and migration [41]. However, it
requires the DNS to give the complete path from the client to the server, which in
practice is often unavailable.

3.2.3 Cooperative Push-Based CDNs

Several recent works proposed to pro-actively push content from the origin Web
server to the CDN edge servers or proxies according to users’ access patterns and
global network topology, and have the replicas cooperatively satisfy clients’ re-
quests [25, 30, 40, 48].

The key advantage of this cooperative push-based replication scheme over the
conventional one does not come from the fact that we use push instead of pull (which
only saves compulsory miss), but comes from the cooperative sharing of the repli-
cas deployed. This cooperative sharing significantly reduces the number of replicas
deployed, and consequently reduces the replication and update cost [10, 11].

We can adopt a similar CDN architecture as shown in Fig. 3.3 to support such
a cooperative push-based content distribution. First, the Web content server incre-
mentally pushes contents based on their hyperlink structures and/or some access
history collected by CDN name server [10, 11]. The content server runs a “push”

3 Dynamic, Scalable, and Efficient Content Replication Techniques 85

Fig. 3.3 Cooperative push-based CDN architecture

daemon, and advertises the replication to the CDN name server, which maintains
the mapping between content, identified by the host name in its (rewritten) URL,
and their replica locations. The mapping can be coarse (e.g. at the level of Web sites
if replication is done in units of Web sites), or fine-grained (e.g. at the level of URLs
if replication is done in units of URLs).

With such replica location tracking, the CDN name server can redirect a client’s
request to its closest replica. Note that the DNS-based redirection allows address
resolution on a per-host level. We combine it with content modification (e.g. URL
rewriting) to achieve per-object redirection [1]. References to different objects are
rewritten into different host names. To reduce the size of the domain name spaces,
objects can be clustered as studied by Chen et al. [10, 11], and each cluster shares the
samehostname.Since thecontentprovidercanrewriteembeddedURLsaprioribefore
pushing out the objects, it does not affect the users’ perceived latency and the one-time
overhead is acceptable. In both models, the CDN edge servers are allowed to execute
their cache replacement algorithms. That is, the mapping in cooperative push-based
replication is soft-state. If the client cannot find the content in the redirected CDN
edge server, either the client will ask the CDN name server for another replica, or the
edge server pulls the content from the Web server and replies to the client.

Li et al. approach the proxy placement problem with the assumption that the
underlying network topologies are trees, and model it as a dynamic programming
problem [30]. While an interesting first step, this approach has an important limita-
tion in that the Internet topology is not a tree. More recent studies [25, 40], based
on evaluating real traces and topologies, have independently reported that a greedy
placement algorithm can provide CDNs with performance that is close to optimal.

86 Y. Chen

To simplify the assumption about detailed knowledge of global network topology
and clients’ distribution, topology-informed Internet replica placement was pro-
posed to place replicas on the routers with big fanout [42]. They show that the
router-level topology based replica placement can achieve average client latencies
within a factor of 1.1–1.2 of the greedy algorithm, but only if the placement method
is carefully designed.

3.2.4 Object Location Systems

Networked applications are extending their reach to a variety of devices and services
over the Internet. Applications expanding to leverage these network resources find
that locating objects on the wide-area is an important problem. Further, the read-
mostly model of shared access, widely popularized by the World-Wide-Web, has led
to extensive object replication, compounding the problem of object location. Work
on location services has been done in a variety of contexts [13, 19, 23, 50]. These
approaches can be roughly categorized into the following three groups: Centralized
Directory Services (CDS), Replicated Directory Services (RDS), and Distributed
Directory Services (DDS).

Extensive work on these directory services have been proposed as we will discuss
in more detail in this subsection. However, to the best of our knowledge, there is no
attempt to benchmark and contrast their performance.

3.2.4.1 Centralized and Replicated Directory Services

A centralized directory service (CDS) resides on a single server and provides location
information for every object on the network (See Fig. 3.4). Because it resides on
a single server, it is extremely vulnerable to DoS attacks. A variant of this is the
replicated directory service (RDS) which provides multiple directory servers. An
RDS provides higher availability, but suffers consistency overhead. Here we do not
consider thepartitioneddirectoryservicebecause it often requiresextrametadirectory
server for maintaining the partitioning information, such as the root server of DNS.

Fig. 3.4 A Centralized
Directory Service (CDS):
Clients contact a single
directory to discover the
location of a close replica.
Clients subsequently contact
the replica directly. A
Replicated Directory Service
(RDS) provides multiple
directories Client

Replica−1

1

4

3

1

4 3

2

Replica−2

Client

2

Directory

3 Dynamic, Scalable, and Efficient Content Replication Techniques 87

3.2.4.2 Distributed Directory Services: The Tapestry Infrastructure

Networking researchers have begun to explore decentralized peer-to-peer location
services with distributed hash table (DHT), such as CAN [43], Chord [47], Pas-
try [45] and Tapestry [50]. Such services offer a distributed infrastructure for lo-
cating objects quickly with guaranteed success. Rather than depending on a single
server to locate an object, a query in this model is passed around the network until it
reaches a node that knows the location of the requested object. The lack of a single
target in decentralized location services means they provide very high availability
even under attack; the effects of successfully attacking and disabling a set of nodes
is limited to a small set of objects.

In addition, Tapestry exploits locality in routing messages to mobile endpoints
such as object replicas; this behavior is in contrast to other structured peer-to-peer
overlay networks [43, 45, 47]. Thus we leverage on Tapestry to build SCAN.

Tapestry is an IP overlay network that uses a distributed, fault-tolerant architec-
ture to track the location of objects in the network. It has two components: a routing
mesh and a distributed location services.

Tapestry Routing Mesh Figure 3.5 shows a portion of Tapestry. Each node
joins Tapestry in a distributed fashion through nearby surrogate servers and set up
neighboring links for connection to other Tapestry nodes. The neighboring links are
shown as solid arrows. Such neighboring links provide a route from every node to
every other node; the routing process resolves the destination address one digit at a
time. (e.g., ***8 =⇒ **98 =⇒ *598 =⇒ 4598, where *’s represent wildcards). This
routing scheme is based on the hashed-suffix routing structure originally presented
by Plaxton et al. [39].

2218

0325

B4F8

9098

3A40

9598

4432

3598

4432
4598

4432

1212

L2
L2

L1

L1

L2

L3

L4

Client

Replica−1

L1

Replica−2

Root

L2

L1
L1L1

L2L1

L1

L4

L4
CE42

7598
0128

1010

Fig. 3.5 A Distributed Directory (Tapestry): Nodes connected via links (solid arrows). Nodes route
to nodes one digit at a time: e.g. 1010 → 2218 → 9098 → 7598 → 4598. Objects are associated
with one particular “root” node (e.g. 4598). Servers publish replicas by sending messages toward
root, leaving back-pointers (dotted arrows). Clients route directly to replicas by sending messages
toward root until encountering pointer (e.g. 0325 → B4F8 → 4432)

88 Y. Chen

Tapestry Distributed Location Service Tapestry assigns a globally unique
name (GUID) to every object. It then deterministically maps each GUID to a unique
root node. Storage servers publish objects by sending messages toward the roots,
depositing location pointers at each hop. Figure 3.5 shows two replicas and the
Tapestry root for an object. These mappings are simply pointers to the server s where
object o is being stored, and not a copy of the object itself. Thus for nearby objects,
client search messages quickly intersect the path taken by publish messages, result-
ing in quick search results that exploit locality. It is shown that the average distance
travelled in locating an object is proportional to the distance from that object [39].

3.2.5 Multicast for Disseminating Updates

For update dissemination, IP multicast has fundamental problems as the archi-
tectural foundation for Internet distribution. For instance, it works only across
space, not across time, while most content distribution on the Internet work across
both [16]. Further, there is no widely available inter-domain IP multicast.

As an alternative, many application-level multicast (in short, ALM) systems
have been proposed [7, 12, 16, 17, 38, 51]. Among them, some [7, 12, 38] tar-
get small group, multi-source applications, such as video-conferencing, while oth-
ers [16, 17, 51] focus on large-scale, single-source applications, such as streaming
media multicast. Bayeux [51] is also built on top of Tapestry. It uses the Tapestry
location service to find the multicast root(s), and then uses Tapestry routing to
route both the control (e.g. “join”) and data messages. In contrast, we only use the
Tapestry location mechanism to find the nearby replica.

Most ALM systems have scalability problems, since they utilize a central node
to maintain states for all existing children [7, 12, 17, 38], or to handle all “join” re-
quests [51]. Replicating the root is the common solution [17, 51], but this suffers from
consistency problems and communication overhead. On the other hand, Scribe [46]
and the update multicast system of SCAN (namely dissemination tree) leverage peer-
to-peer routing and location services, and do not have the scalability problem. Scribe
is a large-scale event notification system, using overlay DHT for both subscription
and dissemination. The dissemination tree is more efficient because we use overlay
DHT only for subscription, and use IP for dissemination directly.

3.2.6 Summary

In summary, we find that previous work on CDNs and its related techniques have
the following limitations.

1. Client-initiated web caching is myopic, while the server-initiated web caching
has unscalable content state exchange overhead. Neither can adapt to network
congestion/failures or provide distributed load balancing.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 89

2. CDNs rely on centralized location services, thus they have to either apply ineffi-
cient and pull-based replication (uncooperative CDN), or replicate at the granu-
larity of per Website and sacrifice the performance to clients (cooperative CDN).

3. There is no performance or DoS attack resilience benchmark for existing location
services. This makes it difficult to compare the alternative proposals.

4. No coherence to replicas/caches: IP multicast doesn’t exist in the Internet, while
the existing application-level multicast has scalability problem.

In SCAN, the first two limitations are addressed with distributed location services,
Tapestry, and we propose a network DoS resilience benchmark to contrast its per-
formance with other alternatives [8]. For limitation 4, we dynamically place replicas
and self-organize them into a scalable application-level multicast tree to disseminate
updates as presented next.

3.3 Dynamic Replica Placement Problem Formulation

As shown in Fig. 3.1, replica placement is a key component of SCAN. Accord-
ing to users’ requests, it dynamically places a minimal number of replicas while
meeting client QoS and server capacity constraints. The location services discussed
in last section are notified about the new replicas via Tapestry PUBLISHOBJECT
API [50].

There is a large design space for modelling Web replica placement as an opti-
mization problem and we describe it as follows. Consider a popular Web site or a
CDN hosting server, which aims to improve its performance by pushing its content
to some hosting server nodes. The problem is to dynamically decide where content is
to be replicated so that some objective function is optimized under a dynamic traffic
pattern and set of clients’ QoS and/or resource constraints. The objective function
can either minimize clients’ QoS metrics, such as latency, loss rate, throughput, etc.,
or minimize the replication cost of CDN service providers, e.g. network bandwidth
consumption, or an overall cost function if each link is associated with a cost. For
Web content delivery, the major resource consumption in replication cost is the net-
work access bandwidth at each Internet Data Center (IDC) to the backbone network.
Thus, when given a Web object, the cost is linearly proportional to the number of
replicas.

As Qiu et al. tried to minimize the total response latency of all the clients’ re-
quests with the number of replicas as constraint [40], we tackle the replica placement
problem from another angle: minimize the number of replicas when meeting clients’
latency constraints and servers’ capacity constraints. Here we assume that clients
give reasonable latency constraints as it can be negotiated through a service-level
agreement (SLA) between clients and CDN vendors. Thus we formulate the Web
content placement problem as follows.

Given a network G with C clients and S server nodes, each client ci has its latency
constraint di, and each server s j has its load/bandwidth/storage capacity constraint
l j. The problem is to find a smallest set of servers S′ such that the distance between

90 Y. Chen

any client ci and its “parent” server sci ∈ S′ is bounded by di. More formally, find the
minimum K, such that there is a set S′ ⊂ S with |S′| = K and ∀ c ∈ C, ∃ sc ∈ S′ such
that distance(c, sc) ≤ dc. Meanwhile, these clients C and servers S′ self-organize
into an application-level multicast tree with C as leaves and ∀ si ∈ S′, its fan-out
degree (i.e. number of direct children) satisfies f (si) ≤ li.

3.4 Replica Placement Algorithms

The presence of an underlying DOLR with routing locality can be exploited to per-
form simultaneous replica placement and tree construction. Every SCAN server is a
member of the DOLR. Hence, new replicas are published into the DOLR. Further,
each client directs its requests to its proxy SCAN server; this proxy server interacts
with other SCAN servers to deliver content to the client.

Although we use the DOLR to locate replicas during tree building, we otherwise
communicate through IP. In particular, we use IP between nodes in a d-tree for
parents and children to keep track of one another. Further, when a client makes a
request that results in placement of a new replica, the client’s proxy keeps a cached
pointer to this new replica. This permits direct routing of requests from the proxy
to the replica. Cached pointers are soft state since we can always use the DOLR to
locate replicas.

3.4.1 Goals for Replica Placement

Replica placement attempts to satisfy both client latency and server load constraints.
Client latency refers to the round-trip time required for a client to read information
from the SCAN system. We keep this within a pre-specified limit. Server load refers
to the communication volume handled by a given server. We assume that the load is
directly related to the number of clients it handles and the number of d-tree children
it serves. We keep the load below a specified maximum. Our goal is to meet these
constraints while minimizing the number of deployed replicas, keeping the d-tree
balanced, and generating as little traffic during update as possible. Our success will
be explored in Sect. 3.6.

3.4.2 Dynamic Placement

Our dynamic placement algorithm proceeds in two phases: replica search and
replica placement. The replica search phase attempts to find an existing replica that
meets the client latency constraint without being overloaded. If this is successful, we
place a link in the client and cache it at the client’s proxy server. If not, we proceed
to the replica placement phase to place a new replica.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 91

Replica search uses the DOLR to contact a replica “close” to the client proxy;
call this the entry replica. The locality property of the DOLR ensures that the entry
replica is a reasonable candidate to communicate with the client. Further, since the
d-tree is connected, the entry replica can contact all other replicas. We can thus
imagine three search variants: Singular (consider only the entry replica), Localized
(consider the parent, children, and siblings of the entry replica), and Exhaustive
(consider all replicas). For a given variant, we check each of the included replicas
and select one that meets our constraints; if none meet the constraint, we proceed to
place a new replica.

procedure DynamicReplicaPlacement Naive(c, o)
c sends JOIN request to o through DOLR, reaches entry server s. Request collects IPs′ ,1
distoverlay(c,s′) and rcs′ for each server s′ on the path.
if rcs > 0 then2

if distoverlay(c, s) ≤ dc then s becomes parent of c, exit.
else

s pings c to get distIP(c, s).3
if distIP(c, s) ≤ dc then s becomes parent of c, exit.4

end
end
At s, choose s′ on path with rcs′ > 0 and smallest distoverlay(t,c) ≤ dc5
if � such s′ then

for each server s′ on the path, s collects distIP(c,s′) and chooses s′ with rcs′ > 0 and6
smallest distIP(t,c) ≤ dc.

end
s puts a replica on s′ and becomes its parent, s′ becomes parent of c.7
s′ publishes replica in DOLR, exit.8

Algorithm 1 Naive Dynamic Replica Placement. Notation: Object o. Client c with latency
constraint dc. Entry Server s. Every server s′ has remaining capacity rcs′ (additional children it
can handle). The overlay distance (distoverlay(x,y)) and IP distance (distIP(x,y)) are the round
trip time (RTT) on overlay network and IP network, separately.

We restrict replica placement to servers visited by the DOLR routing protocol
when sending a message from the client’s proxy to the entry replica. We can locate
these servers without knowledge of global IP topology. The locality properties of the
DOLR suggest that these are good places for replicas. We consider two placement
strategies: Eager places the replica as close to the client as possible and Lazy places
the replica as far from the client as possible. If all servers that meet the latency
constraint are overloaded, we replace an old replica; if the entry server is overloaded,
we disconnect the oldest link among its d-trees.

92 Y. Chen

procedure DynamicReplicaPlacement Smart(c, o)
c sends JOIN request to o through DOLR, reaches entry server s1
From s, request forwarded to children (sc), parent (p), and siblings (ss)2
Each family member t with rct > 0 sends rct to c. c measures distIP(t,c) through TCP3
three-way handshaking.
if ∃ t and distIP(t,c) ≤ dc then4

cchooses t as parent with biggest rct and distIP(t,c) ≤ dc, exit.5
else

c sends PLACEMENT request to o through DOLR, reaches entry server s6
Request collects IPs′ , distoverlay(c,s′) and rcs′ for each server s′ on the path.
At s, choose s′ on path with rcs′ > 0 and largest distoverlay(t,c) ≤ dc7
if � such s′ then

for each server s′ on the path, s collects distIP(c,s′) and chooses s′ with rcs′ > 08
and largest distIP(t,c) ≤ dc.

end
s puts a replica on s′ and becomes its parent, s′ becomes parent of c.9
s′ publishes replica in DOLR, exit.10

end

Algorithm 2 Smart Dynamic Replica Placement. Notation: Object o. Client c with latency
constraint dc. Entry Server s. Every server s′ has remaining capacity rcs′ (additional children it
can handle). The overlay distance (distoverlay(x,y)) and IP distance (distIP(x,y)) are the round
trip time (RTT) on overlay network and IP network, separately.

3.4.2.1 Dynamic Techniques

We can now combine some of the above options for search and placement to gen-
erate dynamic replica management algorithms. Two options that we would like to
highlight are as follows.

• Naive Placement: A simple combination utilizes Singular search and Eager
placement. This heuristic generates minimal search and placement traffic.

• Smart Placement: A more sophisticated algorithm is shown in Algorithm 2. This
algorithm utilizes Localizedsearch and Lazy placement.

Note that we try to use the overlay latency to estimate the IP latency in order to
save “ping” messages. Here the client can start a daemon program provided by
its CDN service provider when launching the browser so that it can actively par-
ticipate in the protocols. The locality property of Tapestry naturally leads to the
locality of d-tree, i.e. the parent and children tend to be close to each other in
terms of the number of IP hops between them. This provides good delay and multi-
cast bandwidth consumption when disseminating updates, as measured in Sect. 3.6.
The tradeoff between the naive and smart approaches is that the latter consumes
more “join” traffic to construct a tree with fewer replicas, covering more clients,
with less delay and multicast bandwidth consumption. We evaluate this tradeoff in
Sect. 3.6.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 93

3.4.2.2 Static Comparisons

The replica placement methods given above are unlikely to be optimal in terms of
the number of replicas deployed, since clients are added sequentially and with lim-
ited knowledge of the network topology. In the static approach, the root server has
complete knowledge of the network and places replicas after getting all the requests
from the clients. In this scheme, updates are disseminated through IP multicast.
Static placement is not very realistic, but may provide better performance since it
exploits knowledge of the client distribution and global network topology.

The problem formulated in Sect. 3.3 can be converted to a special case of the
capacitated facility location problem [24] defined as follows. Given a set of locations
i at which facilities may be built, building a facility at location i incurs a cost of fi.
Each client j must be assigned to one facility, incurring a cost of d jci j where d j

denotes the demand of the node j, and ci j denotes the distance between i and j. Each
facility can serve at most li clients. The objective is to find the number of facilities
and their locations yielding the minimum total cost.

To map the facility location problem to ours, we set fi always 1, and set ci j 0 if
location i can cover client j or ∞ otherwise. The best approximation algorithm known
today uses the primal-dual schema and Lagrangian relaxation to achieve a guaranteed
factor of 4 [24]. However, this algorithm is too complicated for practical use. Instead,
we designed a greedy algorithm that has a logarithmic approximation ratio.

Besides the previous notations, we define the following variables: set of covered
clients by s: Cs, Cs ⊆C and ∀ c ∈Cs, distIP(c, s) ≤ dc; set of possible server parents
for client c: Sc, Sc ⊆ S and ∀ s ∈ Sc, distIP(c, s) ≤ dc.

procedure ReplicaPlacement Greedy DistLoadBalancing(C, S)
input : Set of clients to be covered: C, total set of servers: S
output: Set of servers chosen for replica placement: S′

while C is not empty do
Choose s ∈ S which has the largest value of min(cardinality |Cs|, remaining capacity rcs)
S′ = S′

⋃ {s}
S = S - {s}
if |Cs| ≤ rcs then C = C - Cs

else
Sort each element c ∈ Cs in increasing order of |Sc|
Choose the first rcs clients in Cs as CsChosen
C = C - CsChosen

end
recompute Sc for ∀ c ∈ C

end
return S′.

Algorithm 3 Static Replica Placement with Load Balancing.

We consider two types of static replica placement:

• IP Static: The root has global IP topology knowledge.
• Overlay Static: For each client c, the root only knows the servers on the Tapestry

path from c to the root which can cover that client (in IP distance).

94 Y. Chen

The first of these is a “guaranteed-not-to-exceed” optimal placement. We expect that
it will consume the least total number of replicas and lowest multicast traffic. The
second algorithm explores the best that we could expect to achieve gathering all
topology information from the DOLR system.

3.4.3 Soft State Tree Management

Soft-state infrastructures have the potential to be extremely robust, precisely be-
cause they can be easily reconfigured to adapt to circumstances. For SCAN we
target two types of adaptation: fault recovery and performance tuning.

To achieve fault resilience, the data source sends periodic heartbeat messages
through the d-tree. Members know the frequency of these heartbeats and can react
when they have not seen one for a sufficiently long time. In such a situation, the
replica initiates a rejoin process – similar to the replica search phase above – to
find a new parent. Further, each member periodically sends a refresh message to
its parent. If the parent does not get the refresh message within a certain threshold,
it invalidates the child’s entry. With such soft-state group management, any SCAN
server may crash without significantly affecting overall CDN performance.

Performance tuning consists of pruning and re-balancing the d-tree. Replicas at
the leaves are pruned when they have seen insufficient client traffic. To balance the
d-tree, each member periodically rejoins the tree to find a new parent.

3.5 Evaluation Methodology

We implement an event-driven simulator for SCAN because ns2 [5] can only scale
up to one thousand nodes. This includes a packet-level network simulator (with a
static version of the Tapestry DOLR) and a replica management framework. The
soft-state replica layer is driven from simulated clients running workloads. Our
methodology includes evaluation metrics, network setup and workloads.

3.5.1 Metrics

Our goal is to evaluate the replica schemes of Sect. 3.4.2. These strategies are dy-
namic naive placement (od naive), dynamic smart placement (od smart), overlay
static placement (overlay s), and static placement on IP network (IP s). We com-
pare the efficacy of these four schemes via three classes of metrics:

• Quality of Replica Placement: Includes number of deployed replicas and degree
of load distribution, measured by the ratio of the standard deviation vs. the mean
of the number of client children for each replica server.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 95

• Multicast Performance: We measure the relative delay penalty (RDP) and the
bandwidth consumption which is computed by summing the number of bytes
multiplied by the transmission time over every link in the network. For example,
the bandwidth consumption for 1 K bytes transmitted in two links (one has 10
ms, the other 20 ms latency) is 1 KB × (10+20)ms = 0.03(KB.sec).

• Tree Construction Traffic: We count both the number of application-level mes-
sages sent and the bandwidth consumption for deploying replicas and construct-
ing d-tree.

In addition, we quantify the effectiveness of capacity constraints by computing the
maximal load with or without constraints. The maximal load is defined as the max-
imal number of client cache children on any SCAN server. Sensitivity analysis are
carried out for various client/server ratios and server densities.

3.5.2 Network Setup

We use the GT-ITM transit-stub model to generate five 5000-node topologies [49].
The results are averaged over the experiments on the five topologies. A packet-level,
priority-queue based event manager is implemented to simulate the network latency.
The simulator models the propagation delay of physical links, but does not model
bandwidth limitations, queuing delays, or packet losses.

We utilize two strategies for placing SCAN servers. One selects all SCAN servers
at random (labelled random SCAN). The other preferentially chooses transit and
gateway nodes (labelled backbone SCAN). This latter approach mimics the strategy
of placing SCAN servers strategically in the network.

To compare with a DNS-redirection-based CDN, we simulate typical behavior
of such a system. We assume that every client request is redirected to the closest
CDN server, which will cache a copy of the requested information for the client.
This means that popular objects may be cached in every CDN server. We assume
that content servers are allowed to send updates to replicas via IP multicast.

3.5.3 Workloads

To evaluate the replication schemes, we use both a synthetic workload and access
logs collected from real Web servers. These workloads are a first step toward ex-
ploring more general uses of SCAN.

Our synthetic workload is a simplified approximation of flash crowds. Flash
crowds are unpredictable, event-driven traffic surges that swamp servers and disrupt
site services. For our simulation, all the clients (not servers) make requests to a given
hot object in random order.

Our trace-driven simulation includes a large and popular commercial news site,
MSNBC [36], as well as traces from NASA Kennedy Space Center [37]. Table 3.2

96 Y. Chen

Table 3.2 Statistics of Web site access logs used for simulation

Web Site Period # Requests # Clients Total # Client Groups # Objects
Total – Simulated Total – Simulated Simulated

MSNBC 10–11 am, 8/2/99 1604944–1377620 139890 16369–4000 4186
NASA All day, 7/1/95 64398–64398 5177 1842–1842 3258

shows the detailed trace information. We use the access logs in the following way.
We group the Web clients based on BGP prefixes [27] using the BGP tables from
a BBNPlanet (Genuity) router [2]. For the NASA traces, since most entries in the
traces contain host names, we group the clients based on their domains, which we
define as the last two parts of the host names (e.g. a1.b1.com and a2.b1.com belong
to the same domain). Given the maximal topology we can simulate is 5000 (limited
by machine memory), we simulate all the clients groups for NASA and 4000 top
client groups (cover 86.1% of requests) for MSNBC. Since the clients are unlikely
to be on transit nodes nor on server nodes, we map them randomly to the rest of
nodes in the topology.

3.6 Evaluation Results

In this section, we evaluate the performance of the SCAN dynamic replica manage-
ment algorithms. What we will show is that:

• For realistic workloads, SCAN places close to an optimal number of replicas,
while providing good load balance, low delay, and reasonable update bandwidth
consumption relative to static replica placement on IP multicast.

• SCAN outperforms the existing DNS-redirection based CDNs on both replica-
tion and update bandwidth consumption.

• The performance of SCAN is relatively insensitive to the SCAN server deploy-
ment, client/server ratio, and server density.

• The capacity constraint is quite effective at balancing load.

We will first present results on synthetic workload, and then the results of real Web
traces.

3.6.1 Results for the Synthetic Workload

We start by examining the synthetic, flash crowd workload. 500 nodes are chosen to
be SCAN servers with either “random” or “backbone” approach. Remaining nodes
are clients and access some hot object in a random order. We randomly choose one
non-transit SCAN server to be the data source and set as 50 KB the size of the hot
object. Further, we assume the latency constraint is 50 ms and the load capacity is
200 clients/server.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 97

3.6.1.1 Comparison Between Strategies

Figure 3.6 shows the number of replicas placed and the load distribution on these
servers. Od smart approach uses only about 30–60% of the servers used by od naive,
is even better than overlay s, and is very close to the optimal case: IP s. Also note
that od smart has better load distribution than od naive and overlay s, close to IP s
for both random and backbone SCAN.

Relative Delay Penalty (RDP) is the ratio of the overlay delay between the root
and any member in d-tree vs. the unicast delay between them [12]. In Fig. 3.7,
od smart has better RDP than od naive, and 85% of od smart RDPs between any
member server and the root pairs are within 4. Figure 3.8 contrasts the band-
width consumption of various replica placement techniques with the optimal IP
static placement. The results are very encouraging: the bandwidth consumption of
od smart is quite close to IP s and is much less than that of od naive.

The performance above is achieved at the cost of d-tree construction (Fig. 3.9).
However, for both random and backbone SCAN, od smart approach produces less
than three times of the messages of od naive and less than six times of that for
optimal case: IP s. Meanwhile, od naive uses almost the same amount of bandwidth
as IP s while od smart uses about three to five times that of IP s.

In short, the smart dynamic algorithm has performance that is close to the ideal
case (static placement with IP multicast). It places close to an optimal number of
replicas, provides better load distribution, and less delay and multicast bandwidth
consumption than the naive approach – at the price of three to five times as much
tree construction traffic. Since d-tree construction is much less frequent than data
access and update this is a good tradeoff.

Due to the limited number and/or distribution of servers, there may exist some
clients who cannot be covered when facing the QoS and capacity requirements. In
this case, our algorithm can provide hints as where to place more servers. Note
that experiments show that the naive scheme has many more uncovered clients than
the smart one, due to the nature of its unbalanced load. Thus, we remove it from
consideration for the rest of synthetic workload study.

Fig. 3.6 Number of replicas deployed (left) and load distribution on selected servers (right) (500
SCAN servers)

98 Y. Chen

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 1 2 3 4 5 6 7C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f s
ou

rc
e

to
 m

em
be

r
pa

irs

RDP

overlay_naive, random SCAN
overlay_smart, random SCAN

overlay_naive, backbone SCAN
overlay_smart, backbone SCAN

Fig. 3.7 Cumulative distribution of RDP (500 SCAN servers)

Fig. 3.8 Bandwidth consumption of 1MB update multicast (500 SCAN servers)

Fig. 3.9 Number of application-level messages (left) and total bandwidth consumed (right) for
d-tree construction (500 SCAN servers)

3 Dynamic, Scalable, and Efficient Content Replication Techniques 99

3.6.1.2 Comparison with a CDN

As an additional comparison, we contrast the overlay smart approach with a DNS-
redirection-based CDN. Compared with a traditional CDN, the overlay smart ap-
proach uses a fraction of the number of replicas (6–8%) and less than 10% of
bandwidth for disseminating updates.

3.6.1.3 Effectiveness of Distributed Load Balancing

We study how the capacity constraint helps load balancing with three client pop-
ulations: 100, 1000 and 4500. The former two are randomly selected from 4500
clients. Figure 3.10 shows that lack of capacity constraints (labelled w/o LB) leads
to hot spot or congestion: some servers will take on about 2–13 times their maxi-
mum load. Performance with load balancing is labelled as w/ LB for contrast.

Fig. 3.10 Maximal load measured with and without load balancing constraints (LB) for various
numbers of clients (left: 500 random servers, right: 500 backbone servers)

3.6.1.4 Performance Sensitivity to Client/Server Ratio

We further evaluate SCAN with the three client populations. Figure 3.11 shows the
number of replicas deployed. When the number of clients is small, w/ LB and w/o LB
do not differ much because no server exceeds the constraint. The number of replicas
required for od smart is consistently less than that of overlay s and within the bound
of 1.5 for IP s. As before, we also simulate other metrics, such as load distribution,
delay and bandwidth penalty for update multicast under various client/server ratios.
The trends are similar, that is, od smart is always better than overlay s, and very
close to IP s.

3.6.1.5 Performance Sensitivity to Server Density

Next, we increase the density of SCAN servers. We randomly choose 2500 out of the
5000 nodes to be SCAN servers and measure the resulting performance. Obviously,

100 Y. Chen

Fig. 3.11 Number of replicas deployed with and without load balancing constraints (LB) for vari-
ous numbers of clients (left: 500 random servers, right: 500 backbone servers)

this configuration can support better QoS for clients and require less capacity for
servers. Hence, we set the latency constraint to be 30 ms and capacity constraint 50
clients/server. The number of clients vary from 100 to 2500.

With very dense SCAN servers, our od smart still uses less replicas than over-
lay s, although they are quite close. IP s only needs about half of the replicas, as
in Fig. 3.12. In addition, we notice that the load balancing is still effective. That
is, overloaded machines or congestion cannot be avoided simply by adding more
servers while neglecting careful design.

In summary, od smart performs well with various SCAN server deployments,
various client/server ratios, and various server densities. The capacity constraint
based distributed load balancing is effective.

Fig. 3.12 Number of replicas deployed (left) and maximal load (right) on 2500 random SCAN
servers with and without the load balancing constraint (LB)

3.6.2 Results for Web Traces Workload

Next, we explore the behavior of SCAN for Web traces with documents of widely
varying popularity. Figure 3.13(a) characterizes the request distribution for the two
traces used (note that the x-axis is logarithmic.). This figure reveals that the request
number for different URLs is quite unevenly distributed for both traces.

3 Dynamic, Scalable, and Efficient Content Replication Techniques 101

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 10 100 1000

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

co
ve

re
d

Number of top URLs picked

7/1/95 NASA traces
8/2/99 MSNBC traces

0

10

20

30

40

50

60

70

80

90

100

1 10

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f a
ll

ob
je

ct
s

Number of replicas deployed normalized by that of IP_s

od_naive, NASA traces
od_smart, NASA traces

od_naive, MSNBC traces
od_smart, MSNBC traces

Fig. 3.13 Simulation with NASA and MSNBC traces on 100 backbone SCAN servers. (a) Per-
centage of requests covered by different number of top URLs (left); (b) the CDF of replica number
deployed with od naive and od smart normalized by the number of replicas using IP s (right)

For each URL in the traces, we compute the number of replicas generated with
od naive, od smart, and IP s. Then we normalize the replica numbers of od naive
and od smart by dividing them with the replica number of IP s. We plot the CDF
of such ratios for both NASA and MSNBC in Fig. 3.13(b). The lower percentage
part of the CDF curves are overlapped and close to 1. The reasons are most of
the URLs have very few requests, and we only simulate a limited period, thus the
number of replicas deployed by the three methods are very small and similar. How-
ever, od smart and od naive differ significantly for popular objects, exhibited in the
higher percentage part. Od smart is very close to IP s, for all objects, the ratio is
less than 2.7 for NASA and 4.1 for MSNBC, while the ratio for od naive can go as
high as 5.0 and 15.0, respectively.

In addition, we contrast the bandwidth consumption for disseminating updates.
Given an update of unit size, for each URL, we compute the bandwidth consumed
by using (1) overlay multicast on an od naive tree, (2) overlay multicast on an
od smart tree, and (3) IP multicast on an IP s tree. Again, we have metric (1) and
(2) normalized by (3), and plot the CDF of the ratios. The curves are quite similar
to Fig. 3.13(b).

In conclusion, although od smart and od naive perform similarly for infrequent
or cold objects, od smart outperforms dramatically over od naive for hot objects
which dominate overall requests.

3.6.3 Discussion

How does the distortion of topology through Tapestry affect replica placement? No-
tice that the overlay distance through Tapestry, on average, is about 2–3 times more
than the IP distance. Our simulations in Sect. 3.6, shed some light on the resulting
penalty: Overlay s applies exactly the same algorithm as IP s for replica placement,
but uses the static Tapestry-level topology instead of IP-level topology. Simulation

102 Y. Chen

results show that overlay s places 1.5–2 times more replicas than IPs. For similar
reasons, od smart outperforms overlay s. The reason is that od smart uses “ping”
messages to get the real IP distance between clients and servers. This observation
also explains why od smart gets similar performance to IP s. One could imagine
scaling overlay latency by an expected “stretch” factor to estimate real IP distance –
thereby reducing ping probe traffic.

3.7 Conclusions

The importance of adaptive replica placement and update dissemination is grow-
ing as distribution systems become pervasive and global. In this chapter, we present
SCAN, a scalable, soft-state replica management framework built on top of a dis-
tributed object location and routing framework (DOLR) with locality. SCAN gener-
ates replicas on demand and self-organizes them into an application-level multicast
tree, while respecting client QoS and server capacity constraints. An event-driven
simulation of SCAN shows that SCAN places close to an optimal number of repli-
cas, while providing good load distribution, low delay, and small multicast band-
width consumption compared with static replica placement on IP multicast. Further,
SCAN outperforms existing DNS-redirection based CDNs in terms of replication
and update cost. SCAN shows great promise as an essential component of global-
scale peer-to-peer infrastructures.

Acknowledgements Some of the materials presented in this chapter appeared in a preliminary
form at Pervasive’02 (the first International Conference on Pervasive Computing) [9]. I would like
to thank other co-authors who contributed to the previous form of this work: Prof. Randy H. Katz
and Prof. John D. Kubiatowicz from UC Berkeley and Prof. Lili Qiu from UT Austin.

References

1. Barbir, A., Cain, B., Douglis, F., Green, M., Hofmann, M., Nair, R., Potter, D., and Spatscheck,
O. Known CN request-routing mechanisms. http://www.ietf.org/internet-drafts/draft-ietf-cdi-
known-request-routing-00.txt.

2. BBNPlanet. telnet://ner-routes.bbnplanet.net.
3. Bestavros, A. Demand-based document dissemination to reduce traffic and balance load in

distributed information systems. In Proceedings of the IEEE Symposium on Parallel and
Distributed Processing (1995).

4. Bestavros, A., and Cunha, C. Server-initiated document dissemination for the WWW. In
IEEE Data Engineering Bulletin (Sep. 1996).

5. Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne,
S., Varadhan, K., Xu, Y., and Yu, H. Advances in network simulation. IEEE Computer 33, 5
(May 2000), 59–67.

6. Castro, M., and Liskov, B. Proactive recovery in a byzantine-fault-tolerant system. In Pro-
ceedings of USENIX Symposium on OSDI (2000).

7. Chawathe, Y., McCanne, S., and Brewer, E. RMX: Reliable multicast for heterogeneous net-
works. In Proceedings of IEEE INFOCOM (2000).

3 Dynamic, Scalable, and Efficient Content Replication Techniques 103

8. Chen, Y., Bargteil, A., Bindel, D., Katz, R. H., and Kubiatowicz, J. Quantifying network denial
of service: A location service case study. In Proceeding of Third International Conference on
Information and Communications Security (ICICS) (2001).

9. Chen, Y., Katz, R. H., and Kubiatowicz, J. D. SCAN: a dynamic scalable and efficient con-
tent distribution network. In Proceedings of the First International Conference on Pervasive
Computing (Aug. 2002).

10. Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. H. Clustering Web content for efficient
replication. In Proceedings of the 10th IEEE International Conference on Network Protocols
(ICNP) (2002).

11. Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. H. Efficient and adaptive Web replica-
tion using content clustering. IEEE Journal on Selected Areas in Communications (J-SAC),
Special Issue on Internet and WWW Measurement, Mapping, and Modeling 21, 6 (2003),
979–994.

12. Chu, Y., Rao, S., and Zhang, H. A case for end system multicast. In Proceedings of ACM
SIGMETRICS (June 2000).

13. Czerwinski, S., Zhao, B., Hodes, T., Joseph, A., and Katz, R. An architecture for a secure
service discovery service. In Proceedings of ACM/IEEE MobiCom Conference (1999).

14. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally distributed
content delivery. IEEE Internet Computing (September/October 2002), 50–58.

15. Fan, L., Cao, P., Almeida, J., and Broder, A. Summary cache: A scalable wide-area Web cache
sharing protocol. In Proceedings of ACM SIGCOMM Conference (1998).

16. Francis, P. Yoid: Your own Internet distribution. Technical report, ACIRI, http://www.
aciri.org/yoid, April, 2000.

17. Gifford, D. K., Johnson, K. L., Kaashoek, M. F., and O’Toole, J. W. Jr. Overcast: Reliable
multicasting with an overlay network. In Proceedings of USENIX Symposium on OSDI (2000).

18. Gray, J., Helland, P., O’Neil, P., and Shasha, D. The dangers of replication and a solution. In
Proceedings of ACM SIGMOD Conference (June 1996), 25, 2, pp. 173–182.

19. Guttman, E., Perkins, C., Veizades, J., and Day, M. Service Location Protocol, Version 2.
IETF Internet Draft, November 1998. RFC 2165.

20. Gwertzman, J., and Seltzer, M. World-Wide Web Cache consistency. In Proceedings of the
1996 USENIX Technical Conference (1996).

21. Gwertzman, J., and Seltzer, M. An analysis of geographical push-caching. In Proceedings of
International Conference on Distributed Computing Systems (1997).

22. Hildrum, K., Kubiatowicz, J., Rao, S., and Zhao, B. Distributed data location in a dynamic
network. In Proceedings of ACM SPAA (2002).

23. Howes, T. A. The lightweight directory access Protocol: X.500 Lite. Tech. Rep. 95–8, Center
for Information Technology Integration, U. Mich., July 1995.

24. Jain, K., and Varirani, V. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. In Proceedings of IEEE
FOCS (1999).

25. Jamin, S., Jin, C., Kurc, A., Raz, D., and Shavitt, Y. Constrained mirror placement on the
Internet. In Proceedings of IEEE Infocom (2001).

26. Kistler, J., and Satyanarayanan, M. Disconnected operation in the Coda file system. ACM
Transactions on Computer Systems 10, 1 (Feb. 1992), 3–25.

27. Krishnamurthy, B., and Wang, J. On network-aware clustering of Web clients. In Proceedings
of SIGCOMM (2000).

28. Krishnamurthy, B., Wills, C., and Zhang, Y. On the use and performance of content distribu-
tion networks. In Proceedings of SIGCOMM Internet Measurement Workshop (2001).

29. Kubiatowicz, J., et al. Oceanstore: An architecture for global-scale persistent storage. In
Proceeedings of 9th ASPLOS (2000).

30. Li, B., Golin, M. J., Italiano, G. F., Deng, X., and Sohraby, K. On the optimal placement of
Web proxies in the Internet. In Proceedings of IEEE INFOCOM (1999).

31. Limelight Networks Inc. http://www.limelightnetworks.com/.
32. Luotonen, A., and Altis, K. World-Wide Web proxies. In Proceedings of the First Interna-

tional Conference on the WWW (1994).

104 Y. Chen

33. Mao, Z. M., Cranor, C., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J. A precise
and efficient evaluation of the proximity between Web clients and their local DNS servers. In
Proceedings of USENIX Technical Conference (2002).

34. Michel, S., Nguyen, K., Rosenstein, A., Zhang, L., Floyd, S., and Jacobson, V. Adaptive
Web caching: Towards a new caching architecture. In Proceedings of 3rd International WWW
Caching Workshop (June, 1998).

35. Mirror Image Internet Inc. http://www.mirror-image.com.
36. MSNBC. http://www.msnbc.com.
37. NASA kennedy space center server traces. http://ita.ee.lbl.gov/html/

contrib/NASA-HTTP.html.
38. Pendarakis, D., Shi, S., Verma, D., and Waldvogel, M. ALMI: An application level multicast

infrastructure. In Proceedings of 3rd USENIX Symposium on Internet Technologies (2001).
39. Plaxton, C. G., Rajaraman, R., and Richa, A. W. Accessing nearby copies of replicated objects

in a distributed environment. In Proceedings of the SCP SPAA (1997).
40. Qiu, L., Padmanabhan, V. N., and Voelker, G. M. On the placement of Web server replica. In

Proceedings of IEEE INFOCOM (2001).
41. Rabinovich, M., and Aggarwal, A. RaDaR: A scalable architecture for a global Web hosting

service. In Proceedings of WWW (1999).
42. Radoslavov, P., Govindan, R., and Estrin, D. Topology-informed Internet replica placement. In

Proceedings of the International Workshop on Web Caching and Content Distribution (2001).
43. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A scalable content-

addressable network. In Proceedings of ACM SIGCOMM (2001).
44. Rodriguez, P., and Sibal, S. SPREAD: Scalable platform for reliable and efficient automated

distribution. In Proceedings of WWW (2000).
45. Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proceedings of ACM Middleware (2001).
46. Rowstron, A., Kermarrec, A.-M., Castro, M., and Druschel, P. SCRIBE: The design of a

large-scale event notification infrastructure. In Proceedings of International Workshop on
Networked Group Communication (NGC) (2001).

47. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proceedings of ACM SIGCOMM
(2001).

48. Venkataramani, A., Yalagandula, P., Kokku, R., Sharif, S., and Dahlin, M. The potential costs
and benefits of long term prefetching for content distribution. In Proceedings of Web Content
Caching and Distribution Workshop 2001 (2001).

49. Zegura, E., Calvert, K., and Bhattacharjee, S. How to model an Internetwork. In Proceedings
of IEEE INFOCOM (1996).

50. Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., and Kubiatowicz, J. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications (2003).

51. Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D. Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination. In Proceedings of
ACM NOSSDAV (2001).

Chapter 4
Content Delivery and Management

Claudia Canali, Valeria Cardellini, Michele Colajanni and Riccardo Lancellotti

4.1 Introduction

The Web has evolved in the last decade from a mean to distribute content with
marginal interest to a major communication media, where critical content and ser-
vices are delivered to the users. This success was mainly driven by the concerns of
content providers about the user-perceived performance of content delivery. When
high availability, scalability, and performance are required, a common solution for
content providers is to exploit third-party services to improve the performance
of content and service delivery. The technical goal of Content Delivery Network
(CDN) providers is to guarantee adequate delivery performance even when the in-
coming request load is overwhelming for the content provider alone.

CDNs have been originally proposed to primarily distribute static Web content
and some limited streaming audio/video content over the Internet. First-generation
CDNs were designed primarily to ease network congestion caused by the delivery
of static Web pages through congested public peering points. However, the current
context for content delivery is very different from that of the inception of these in-
frastructures, which date back to almost 10 years ago. Indeed, the Web scenario is
currently characterized by an increased sophistication and complexity in delivered
content. Modern Web contents are often dynamically generated and personalized
according to the user preferences and needs. Traditional content delivery technolo-
gies designed for static content are not able to meet the new needs, as there are
inherent challenges and limitations in the delivery of dynamic content that need to

Claudia Canali
University of Modena and Reggio Emilia, 41100 Modena, Italy, e-mail: claudia.canali@unimore.it

Valeria Cardellini
University of Roma “Tor Vergata”, 00133 Roma, Italy, e-mail: cardellini@ing.uniroma2.it

Michele Colajanni
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: michele.colajanni@unimore.it

Riccardo Lancellotti
University of Modena and Reggio Emilia, 41100 Modena, Italy,
e-mail: riccardo.lancellotti@unimore.it

R. Buyya et al. (eds.), Content Delivery Networks, 105
c© Springer-Verlag Berlin Heidelberg 2008

106 C. Canali et al.

be overcome. In the last years, CDN started to evolve towards the support for the
delivery of dynamically generated content, allowing the content providers to exploit
the benefits of CDNs for modern Web applications and services.

This chapter explores the issues of content delivery through CDNs, with a spe-
cial focus on the delivery of dynamically generated and personalized content. We
describe the main functions of a modern Web system and we discuss how the de-
livery performance and scalability can be improved by replicating the functions of
a typical multi-tier Web system over the nodes of a CDN. For each solution, we
present the state of the art in the research literature, as well as the available industry-
standard products adopting the solution. Furthermore, we discuss the pros and cons
of each CDN-based replication solution, pointing out the scenarios that provide the
best benefits and the cases where it is detrimental to performance.

The rest of this chapter is organized as follows. Section 4.2 provides some back-
ground material, presenting the logical layers of a Web system for delivering dy-
namic and personalized content and classifying the main caching and replication
solutions for the logical layers. Sections 4.3, 4.4, and 4.5 discuss in details how the
logical layers can be mapped over the nodes of a CDN in order to accelerate the de-
livery of static and dynamic resources. Section 4.6 discusses the issues related to the
management and replication of user profile information over a distributed delivery
infrastructure. Finally, Sect. 4.7 concludes the chapter with some final remarks and
outlines the open research directions.

4.2 Systems for Web Content Delivery

In this section, we provide some background material on the architecture of the
systems employed to generate and deliver Web content. We first review in Sect. 4.2.1
the logical layers of a multi-tier Web system; we then describe in Sect. 4.2.2 the
architecture and the main functionalities of a CDN. Finally, in Sect. 4.2.3 we classify
the caching and replication approaches for the logical layers of a Web system that
can be employed by CDNs to accelerate the generation and delivery of dynamic and
personalized content.

4.2.1 Logical Layers of a Web System

The large majority of modern Web systems is based on a multi-tier logical archi-
tecture, that separates the HTTP interface, the application (or business) logic, the
data repository and, when existing, the user-related information for authentication
and content personalization. These logical architecture layers are often referred to
as front-end, application, back-end, and user profile layers [8]. Figure 4.1 shows the
structure of a typical system providing Web-based services. We recognize the logi-
cal components of the system and the fundamental interactions between the layers.

4 Content Delivery and Management 107

Fig. 4.1 Logical layers of a
Web system

The front-end layer is the interface of the Web-based service. It accepts HTTP
connection requests from the clients, serves static content from the file system, and
represents an interface towards the application logic of the middle layer. The deliv-
ery of static content is a straightforward operation. A static Web content is typically
stored in a file system and client requests for this type of content are managed by
the HTTP server, which retrieves the resources from the file system and sends them
back to the client in HTTP responses.

Examples of static content that are handled by the front-end layer are:

• Web objects embedded in a Web page. Typical embedded objects are images,
style sheets, and active components such as flash animations, Java applets, and
ActiveX controls.

• Multimedia content. Audio and video streams are static content handled by the
front-end layer. To allow a smooth consumption of multimedia content by
the client, the common approach is to rely on HTTP streaming, that is to divide
the resources into chunks of data that are delivered in sequence to the client. The
client can start the playback as soon as the first data chunk has arrived, without
waiting for the delivery of the whole resource [26].

• Page fragments. They are portions of a Web page with a distinct theme or func-
tionality [14]. Each fragment is considered as an independent information entity.
For example, the page of a Web portal is typically described as composed by
fragments such as latest news, feature articles, link bars, and advertisements.
The use of fragments in the management of static content aims to improve the
re-usability of Web content, because some fragments are common to multiple
pages. However, when fragment-based management of static content is used, the
front-end layer is also responsible for the assembly of fragments to build the Web
page prior to its delivery to the user.

108 C. Canali et al.

The application layer is at the heart of a Web-based service: it handles all the busi-
ness logic and computes the information which is used to build responses with dy-
namically generated content. Content generation often requires interactions with the
back-end and user profile layers: hence the application layer must be capable of in-
terfacing the application logic with the data storage of the back-end and must be
able to access the user profile when personalized content needs to be generated. Dy-
namic content is generated on-the-fly as a response to client requests. Examples of
dynamic content generated by the application layer are:

• Answers retrieved from an organized source of information, such as the shopping
cart page or searches in an e-commerce site.

• Web content generated dynamically to separate the content from its represen-
tation. For example, content management systems1 or XML-based technolo-
gies [47] provide mechanisms for separating structure and representation details
of a Web document. In these systems, the content (even when its lifecycle is
relatively long) is generated dynamically from a template on-the-fly. The bur-
den of dynamic data generation, that requires a computational effort due to data
retrieval from databases, (optional) information processing and construction of
the HTTP output, is outweighted by the convenience of handling data through
software specifically designed to this aim, such as a DBMS.

• Web content generated by user social behavior. For example, the pages of forums
or blogs provide an exchange place for messages written by the Web users.

The back-end layer manages the main information repository of a Web-based ser-
vice. It typically consists of a database server and storage of critical information that
is a source for generating dynamic content. If we refer to the examples of dynamic
content generation from the application layer, we can identify the following data
repositories:

• In the case of an e-commerce site, we use a database for storing the product lists,
accessed for searching in the product catalog. Furthermore, also the user interac-
tions are managed using a database for shopping cart status or list of purchases.

• In the case of a content management system, the dynamic generation of content
accesses the database to retrieve both the Web page templates and the actual
contents during the generation of Web resources.

• For Web sites such as blogs or forums, articles, comments, and posts are typically
stored in a database.

The user profile layer stores information on the user preferences and context [16].
This information is accessed in the generation of dynamic content to provide per-
sonalized content. The information stored in the user profile may be originated from
multiple sources such as:

• Information supplied by the user, that is usually provided through a fill-in form to
add/edit user preferences. This profile communication may occur when the user
registers itself for the access to a Web-based service or may be filled/modified
later.

1 For a list of the most popular CMS software, the reader may refer to http://www.cmsmatrix.org.

4 Content Delivery and Management 109

• Information inferred from the analysis of user behavior that is typically obtained
from data mining of Web logs [20, 21, 27]. Typical examples of Web-based ser-
vices that rely on information gathered through data mining are the recommen-
dation systems for e-commerce [27] or the advertisements tailored on the user
preferences.

4.2.2 A Simplified CDN Architecture

A CDN’s architecture aims to achieve high performance and scalability by lever-
aging the principle of replicating the system resources (that is, the Web servers) to
guarantee a high level of performance in the service of a huge amount of content.
Replication occurs both at local and geographic level. In the case of local replication
of system resources, the servers used for the service of user requests are tightly con-
nected. They are placed on the same LAN and usually share a single upstream link
connecting the system to the rest of the Internet. The common term to describe such
a system is cluster. Servers within a cluster provide increased computing power
thanks to the replication of system resources. They can interact in a fast and ef-
fective way [11]. Moreover, the replication may improve fault tolerance because a
faulty node can be easily bypassed.

LAN-based systems have many pros, but they have scalability problems related
to efficient generation and delivery of resources when the Web site is highly popular.
The first problem that affects replication on a local scale is the so called first mile,
i.e. the network link connecting the cluster to the Internet. This link can represent
the system bottleneck for the end-to-end performance; moreover, it is a potential
single point of failure. Traffic on the Web-based cluster zone, failures on an external
router, and Denial-of-Service (DoS) attacks may cause the service to be unreachable
independently of the computational power of the cluster platform. When better scal-
ability and performance are needed, it is useful to replicate some elements of the
infrastructure over a geographic scale.

A simplified view of a CDN’s geographically distributed architecture is shown
in Fig. 4.2. We distinguish two types of servers in a typical CDN, namely, edge
servers and the core server [18, 36]. Edge servers are replicated on the so-called
network edge, which means that these servers are as close as possible to the clients,
typically in the Points of Presence (POP) of multiple Interner Service Providers
(ISPs), and are mainly responsible for the interaction with clients. Client requests
are typically diverted from the origin server to the edge server by means of DNS-
based redirection [12, 36]. This approach is based on modified DNS servers that
resolve queries for the site hostname with the IP address of a suitable edge server
(the algorithm used to detect the most suitable edge server is usually complex and
takes into account geographic and network distance, network link and edge server
status).

The core server is a logical entity that handles the functions that are related to
the management of the infrastructure, coordination of request distribution policies,

110 C. Canali et al.

Fig. 4.2 A simplified CDN architecture

and billing. It can be implemented as a single powerful server or, more often, as a
multi-cluster, that is a set of clusters that cooperate and behave like a single virtual
computer with high availability and computational power.

4.2.3 Accelerating Content Generation and Delivery

The trend of Web evolution towards an ever increasing demand of scalable and high
performance content delivery requires the content provider to rely on CDNs. On the
other hand, CDNs should develop techniques to accelerate the delivery of content
on behalf of the content provider.

To analyze how a CDN can accelerate the delivery of Web content and applica-
tions, we focus our attention on the origin server and on the edge servers, that are
the elements of the Web infrastructure most involved in the content delivery process.
The directions to address scalability and performance issues are the classical two:
caching and replication. Indeed, CDNs replicate some logical layers of the origin
server on their edge servers. Since we have four logical levels in the Web system,
we envision four mapping approaches, as illustrated in Fig. 4.3.

• Replication of front-end layer. The edge server is responsible only for the
management of static content. This approach is typical of the first generation
of CDNs, where the edge servers, called surrogate servers, behave like reverse
proxies to accelerate the delivery of content that can be stored at the file sys-
tem level [36, 49]. The replicated Web content may be whole Web objects, for
example when a CDN is used for delivering embedded objects or multimedia
resources, or the replication may consider a more fine-grained approach, repli-
cating Web fragments [14].

• Replication of application layer. A CDN is used to improve the delivery perfor-
mance of dynamically generated content. This approach, called edge computing

4 Content Delivery and Management 111

Fig. 4.3 Possible mapping of Web system logical layers on a CDN infrastructure

[44], moves Web application programs or components directly on the edge
server [18, 37] with the aim of generating dynamic Web content close to the
clients.

• Replication of back-end layer. The edge server provides both the functions for
generating dynamic content and hosts data involved in the content generation.
The origin server (or the core server of the CDN) is only responsible for the
management of the infrastructure and acts as a master copy of the data.

• Replication of user profile layer. The edge server hosts also the data repository
used for the generation of personalized content [42].

4.3 Front-End Layer Replication

The replication of the front-end layer aims to improve performance and scalability
in the delivery of static content, as shown in Fig. 4.4. Such content is cached on the
CDN edge servers. Moving the delivery of static content on the network edge ad-
dresses scalability issues, because it avoids the risk of network congestion in peer-
ing points and WAN links, that provides a major contribution to network-related
delays [36].

Accelerating the delivery of static content using a third-party infrastructure is
a common approach for improving the performance of content delivery, and dates
back to the first generation of CDNs, such as the Adero CDN or the Akamai media
delivery service [2]. However, delivery of this content is still a critical task, due
to the growing amount of rich-media content [50] that is becoming a significant
fraction of Web traffic. Moving the delivery of such media content close to the
clients may have an important benefit for two reasons. First, due to the large size

112 C. Canali et al.

Fig. 4.4 Replication of the
front-end layer on the edge
server

of these content, network-related delays at peering points may have a significant
impact on the user-perceived performance. Second, due to the techniques of HTTP
streaming, which is commonly used, reducing the variance in delivery time results
in smoother playback [26].

Due to the large size of multimedia content, it is common to cache on the edge
server only the most popular fraction of each multimedia content instead of storing
the whole resource (this is usually referred as segment caching) [15, 25], as shown
in Fig. 4.4. The popularity of each fragment within a multimedia resource depends
on the user access patterns. In the case of sequential access, the common approach
is to rely on sequential caching, that is storing the first part of the resource to reduce
buffering time. On the other hand, when the access patterns involve a significant
amount of seek operation within the media, different caching techniques, such as
interleaved caching, may be more effective [25].

The approach of dividing streaming content into segments has been proposed
also for Web resources, in the case of the delivery of Web content assembled from
fragments (represented among the cached resources in Fig. 4.4). This solution re-
quires more effort from the edge server, because the front-end layer must include
the functions for the separate caching and the assembly of fragments. Being an
independent information entity, each fragment can have its own cacheability profile,
which describes the ability to cache it and its Time-To-Live (TTL), thus allowing to
manage the content freshness and lifetime at a fragment granularity rather than at
the Web page level.

Upon a user requests the Web page (template), the edge server examines its cache
for the included page fragments and assembles the page on-the-fly. Only those
fragments either stale or deemed impossible to cache are fetched from the origin
server. Therefore, using fragment-based caching and dynamic assembly on the edge
servers, the origin server obtains two advantages: first, it does not have to assemble
the page; second, it is typically required to deliver only a small fraction of the page,
corresponding to stale or non-cacheable fragments. As regards the user-perceived
performance, fragment-based caching has been proved to be effective in improving
response time by serving most of the resources that comprise a dynamically gen-
erated page at the edge of the Internet, close to the end user [38, 51]. Furthermore,
fragment-based caching has also beneficial effects on the edge servers. Indeed, it im-
proves the disk space utilization because fragments that are shared across different

4 Content Delivery and Management 113

Web pages need to be stored only once; furthermore, it reduces the amount of inval-
idation at the edge server, because only those parts of the Web page that expire need
to be invalidated.

The common standard for fragment-based caching is represented by Edge Side
Includes (ESI) [19], which is an XML-based markup language that enables to distin-
guish via XML cacheable and non-cacheable content. The content provider designs
and develops the business logic to form and assemble the pages by using the ESI
specification within its development environment. Besides the primary functional-
ity for including fragments within a page (even in a conditional way), the other key
functionalities provided by ESI include the support for handling exceptions due to
fragments unavailability and the support for explicit invalidation of cached frag-
ments in such a way that it guarantees a stronger consistency than that provided by
a TTL-based mechanism [19, 29].2

Fragment-based publishing and caching of Web pages have been adopted by
companies and commercial products, including the EdgeSuite network of Aka-
mai [2] based on the ESI specification and IBM’s WebSphere Edge Server [28].
A large-scale deployment of a Web publishing system based on the fragment-based
approach and compatible with ESI has been presented by Challenger et al. in [14].
This system is able to construct complex objects from fragments and has been de-
veloped to handle major sporting events at Web sites hosted by IBM. The authors
also addressed the problem of detecting and updating all Web pages affected by one
or more fragment changes. The proposal is to adopt different algorithms based on
graph traversal that can be used according to the consistency requirements. A com-
parative study of four different offloading and caching strategies at the edge servers
has been conducted by Yuan et al. in [51] using a representative e-commerce bench-
mark. Their results show that a simple strategy of offloading the functionality of
composing Web pages from fragments can be very effective in terms of latency and
server load reduction.

Most edge servers that support fragment-based caching do not provide any sup-
port for cooperation among the individual edge caches, i.e. these are treated as com-
pletely independent entities. This limitation does not allow to take full advantage of
the potential caching capabilities of the edge servers that can be exploited through
cooperation. Some effort toward this direction has been taken in the Akamai Edge-
Suite network, which however includes only a limited cooperation among its edge
servers. A recent work by Ramaswamy et al. [39] has addressed some significant
challenges in designing a large-scale cooperative network of edge servers. Their
proposal presents low-cost cooperative techniques based on dynamic hashing-based
document lookup and update protocols and considers also how to provide failure
resilience of individual edge servers.

The major drawbacks of the fragment-based solution are related to its applica-
bility with respect to the type of dynamic content being delivered and to the task
of fragmenting a Web page. Indeed, fragment-based caching can be effectively ap-
plied if the stream of requests is characterized by a high locality and if updates in

2 For an analysis of cache consistency mechanisms in CDNs, the reader may refer to Chap. 5 of
this book.

114 C. Canali et al.

the content of the origin server are not frequent. This condition ensures that the
fragment cacheability profiles are sufficient for managing the content freshness,
thus relieving the origin server from the task to explicitly invalidate cached frag-
ments. Furthermore, this technique suffers from lack of transparency, since caching,
fragmentation, and assembling should be implemented on a per-application basis.
For example, ESI requires a complete revision of the Web page code, because ESI
code must be added over the original code, and its performance is dependent on
the page structure. This manual identification and markup of page fragments is also
hardly manageable for edge servers which deliver content from multiple providers.
To overcome the manual fragmentation of Web pages, in [38] Ramaswamy et al.
have proposed a scheme to automatically detect fragments in a Web page. Their ap-
proach depends upon a careful analysis of the dynamic Web pages with respect to
their information sharing behavior and change patterns.

4.4 Application Layer Replication

A performance bottleneck in CDNs that replicate only the front-end layer is rep-
resented by the application layer in the origin server, which is responsible for the
generation of dynamic content according to the Web application logic. Replication
of application layer, commonly known as edge computing [18, 45], aims to improve
the delivery of dynamically generated content by offloading this task from the ori-
gin server. The application code is replicated at multiple edge servers, while the data
layer is still kept centralized. The computation is pushed to the edge of the network,
as illustrated in Fig. 4.5.

In edge computing, each edge server has a full copy of the application code
while the back-end layer is still centralized in the origin server, i.e. the edge servers

Fig. 4.5 Replication of the
application layer on the edge
server

4 Content Delivery and Management 115

continue to share a centralized database. By pushing the computation task to the
edge of the network, the load on the origin server can be reduced and the CDN
can achieve better efficiency and performance and higher availability with respect
to the front-end only replication approach, where the application and data layers are
centrally managed.

We can identify two architectural solutions depending on the ability of the edge
server to distinguish between transactional and non-transactional requests. A trans-
actional request is an atomic set of database operations that usually involve lock
on part of the database and perform some update to the database records, while
non-transactional requests have a read-only behavior on the data. If the edge server
cannot distinguish the type of request, the Web server at the edge server forwards
all requests to its local application layer, where they are executed. The local ap-
plication logic then makes calls for database access to the centralized data layer
located in the CDN core. Otherwise, if the edge server is able to distinguish be-
tween transactional and non-transactional requests, the edge server redirects only
non-transactional requests to the local application layer, while transactional requests
are directly forwarded to the application layer at the origin server, that then executes
the transaction and accesses the centralized database.

In the application replication approach, the CDN core typically plays a coordi-
nator role, being in charge for migrating and/or replicating the applications on the
edge servers and keeping track of the replicas. It can be also responsible for main-
taining the application replicas consistent with the primary copy. The CDN core
may accomplish this functionality using a simple server-based invalidation that is,
updating the application on the edge servers when the developer changes the primary
copy.

Edge computing has been proposed and applied in a variety of commercial
products and academic projects. For example, it is the heart of the EdgeComput-
ing product from Akamai [3], which hosts customer-supplied J2EE components on
edge-side application servers. Akamai EdgeComputing employs a two-level model
for replicating the application layer: JSPs and servlets that contain the presentation
logic are deployed on the edge servers of the Akamai network, while the business
tier components that are tightly coupled with back-end applications or a database
typically remain in the CDN core at the origin server.

Process migration issues have been addressed by many years of research; an
example of complex system that could be employed in the CDN context is vMa-
trix [9], which migrates the entire dynamic state of the application from one server
to another. However, Web applications do not require a real application migration at
an arbitrary time but only at request boundaries [37]. Therefore, a significant sim-
plification applicable in the CDN context is the automatic deployment of the appli-
cation at the edge servers. ACDN (where the acronym stands for Application CDN)
by Rabinovich et al. [37] is an application distribution framework that exploits this
concept of automatic deployment; the application is dynamically replicated by the
central coordinator on the basis of the observed demand. The framework implemen-
tation is based on a meta-file, which contains the list of the files comprising the
application and an initialization script.

116 C. Canali et al.

The DotSlash framework by Zhao and Schulzrinne [52, 53] is another academic
project that adopts a dynamic script replication technique to manage dynamic con-
tent. DotSlash was not designed for large-scale CDNs, but it rather provides a sys-
tem to handle sudden load spikes that affect the performance of Web sites through
the dynamic provisioning of rescue servers which act as caching proxies.

The application layer replication is characterized for enabling the customization
of concrete and specific applications. The application replication approach is neither
generic nor transparent. Indeed, it requires customization on a per-application basis,
because a manual configuration is needed to choose the components to be offloaded
and where to deploy applications. For example, in ACDN [37], applications can be
deployed and re-deployed dynamically, but manual administration is still involved,
such as creating the meta-file for each application that has to be replicated. This
application customization increases substantially the total cost of ownership, and
it is prone to codification errors. Some effort for automatically deciding how to
replicate Web applications has been proposed in [33]. However, these studies are
mainly focused on a small scale scenario and may be not suitable for a large scale
CDN, with tens of thousands of edge servers.

Further disadvantages of the application layer replication approach steam from
keeping the data centralized at the origin server. This architectural choice determines
two drawbacks. First, if the edge servers are located worldwide, as in large-scale
CDNs, then each data access incurs a WAN delay; second, the centralized database
may quickly become a performance bottleneck, as it needs to serve all database
requests from the whole system. Therefore, the application replication solution is
suitable only for those Web sites that require few accesses to the centralized database
in order to generate the requested content.

The remaining approaches discussed in the next section aim to mitigate the cen-
tralized data layer bottleneck, which limits the overall CDN scalability. Therefore,
the further steps in offloading the functionalities of the origin server to the edge
servers exploit caching and replication techniques for the data layer.

4.5 Back-End Layer Replication

The edge computing approach may not solve every scalability problem, since in
some Web applications the bottleneck lies in the back-end layer [13] instead of the
application layer. In this case, scalability issues can be addressed by assigning to
a third party (i.e. a CDN) the management of application data. A CDN provides
answers to the queries of the application layer hosted by the edge servers on behalf
of the back-end tier of the origin server.

The available solutions for replicating a data storage have been widely studied in
the context of databases [23]. In this chapter, we will limit the scope of our analysis
to the replication of data in the back-end layer of a Web system. In this scenario,
the available approaches are summarized in [43]: the replication of the data stored
in the back-end layer may be complete or partial, as illustrated in Fig. 4.6. The

4 Content Delivery and Management 117

Fig. 4.6 Replication of the back-end layer on the edge server

partial replication of data can be obtained by exploiting a caching mechanism of
the most popular queries to the data storage (Content-Blind Caching) or by actively
replicating portions of the back-end data, selected on the basis of usage patterns,
network, and infrastructure status [44] (Content-Aware Caching).

We anticipate that there is no clear winner among these alternatives, due to the
different access patterns of the Web application to the database. Indeed, a work by
Gao et al. [22] propose different replication strategies depending on the nature of
the Web applications considered.

4.5.1 Content Blind Caching

When content-blind caching is adopted, edge servers cache the results of previous
queries to the database. In such a way, the server may process locally future identical
or similar queries, thus improving performance and relieving the load on the origin
server back-end layer.

The approach of caching query results to replicate the back-end layer is highly
popular. For example, the GlobeCGC [40] system explicitly aims to cache queries
on the edge servers of a geographically distributed systems such as a CDN. Recently,
the idea of dynamically replicating the back-end tier using a query cache to improve
scalability has been proposed. For example, the QCache module of the DotSlash
framework [53] proposes an agreement of cooperating Web sites that can temporar-
ily enable a distributed query cache facility to alleviate the overload conditions in
case of unexpected traffic surges.

The effectiveness of the query results caching depends on the achievable cache
hit rate. To improve the amount of queries that can be serviced accessing the query
cache, the characteristic of content blindness of the caching mechanism may be
relaxed. To this aim, sophisticated query matching engines can be used so that a new

118 C. Canali et al.

query can be answered using a union of already cached queries instead of contacting
the origin server. Support for this enhanced query matching engine is a distinctive
feature of DBproxy [4]. An efficient way to merge cached queries has been proposed
in [30], where each query contributes to populate an (initially empty) copy of the
original back-end database. DBCache [10] supports database caching at the level of
tables, allowing to cache at the edge node either the entire content or a subset of the
tables of the centralized database server.

Caching mechanisms should guarantee consistency of the cached data. Since
a traditional TTL-based approach is not suitable for every Web application, some
specific consistency enforcing mechanism has been proposed. For example, Olston
et al. rely on a multicast messaging system to ensure that invalidation messages are
sent to every query cache [32], while Tolia et al. [48] use hash functions to guarantee
that no stale data are served from the cache.

The query-caching support on the edge server is an important feature that is avail-
able in multiple commercial products, including BEA WebLogic and IBM Web-
Sphere. In particular, IBM WebSphere supports query caching through the so-called
Materialized Query Tables. A materialized query table (MQT) is a table that mate-
rializes the pre-computed result of a query involving one or more tables. After the
MQT is created and populated, an arbitrary subsequent query may be satisfied by
the MQT, if the MQT matches all or a part of the query. A similar feature is provided
by BEA WebLogic by means of EJBs.

Even if some consistency enforcing mechanism is adopted, the network layers
on the geographic infrastructure can lead to hosting data at the edge servers that are
stale with respect to the current state at the centralized data layer. This might not
be a problem for read-mostly scenarios, where the Web applications do not need
transactional semantics. However, for an important class of applications (e.g. when
payment operations are involved) transactional semantics is a must and database
updates are frequent. In these cases, query caching may not be a viable option. Fur-
thermore, database caching techniques are suited only for those applications which
repeatedly issue the same queries to the data layer. For applications which do not
exhibit this temporal locality, it can be more efficient to replicate partially or entirely
the data layer at the edge servers.

4.5.2 Content Aware Caching

In the case of content-aware caching, each edge server runs its own database server,
which contains a partial view of the centralized database. The typical approach for
partial data replication is to push section of the database close to the edge, according
to access patterns. Since the aim is to improve the response time perceived by the
end user, the algorithms for replica placement (such as HotZone) usually include
network latency in the performance model [46].

A significant example of replication mechanism is provided by GlobeDB [43],
that uses partially replicated databases based on data partition to reduce update
traffic. However, this solution relies on one special server, which holds the full

4 Content Delivery and Management 119

database, to execute complex queries. Thereby, it may suffer from scalability be-
cause of the new throughput bottleneck represented by the special server. Glo-
beTB [24] improves the approach of GlobeDB with the goal of not only reducing the
latency but also to increase the throughput of the replicated database. To this aim,
GlobeTP relaxes the need for a single centralized master database, thus avoiding the
risk of bottleneck in the origin server back-end.

As in the case of query caching, also partial database replication may suffer from
consistency problems. Ganymed [35] explicitly addresses the issue of how to guar-
antee data consistency when the replicated back-end tiers are subject to changes
(i.e. when update, delete or insert queries are issued). To this aim, Ganymed sepa-
rates updates from read-only transactions, and routes updates to a main centralized
database server and queries to read-only database copies.

The support for partial replication of databases is also available in multiple com-
mercial products. For example, the mySQL DBMS supports a scheme for partitioning
data among multiple replicas. Similar features have been also introduced into IBM
DB2 and Oracle. However, in most cases partial replication schemes in databases are
designed to manage a local replication of the resources (i.e. database clustering), and
require a centralized manager that handles and distributes queries and transactions
over the database partitions. This approach cannot be directly applied to the context of
large-scale geographical replications, because the presence of a centralized manager
would hinder the scalability of the system. For this reason, most commercial products
rely more on query caching rather than on database replication schemes.

4.5.3 Full Database Replication

Full database replication maintains identical copies of the database at multiple loca-
tions. By moving a copy of the database to the edge servers and keeping the database
copies coordinated among them, it becomes possible to completely deliver dynamic
content at the edge of the network, without the need to modify each deployed appli-
cation. However, the management of database replication introduces severe consis-
tency management problems, that are particularly critical to solve when the client
requests trigger frequent updates on persistent data. This is a well know issue that
the database community has being addressed for a long time.

Traditionally, data replication is achieved through either lazy or eager write
update propagation [23]. In the eager (or synchronous) approach, the coordina-
tion among the replicas occurs before the transaction commits, while in the lazy
approach updates are only propagated after the transaction commits. The eager ap-
proach favors fault-tolerance and offers the same correctness guarantees as a sin-
gle database. However, it suffers from severe limitations regarding performance
and scalability that may render it impractical [23]. On the other hand, the lazy ap-
proach favors performance and scales very well; therefore, commercial replication
products typically use it. However, the lazy approach introduces new problems, be-
cause transactions can read stale data and conflicts between updating transactions
can be detected late, introducing the need for conflict resolution.

120 C. Canali et al.

The simplest solution to manage database replication in Web environments is
based on a centralized primary copy at the origin server and replicated secondary
copies at the edge servers. Read-only transactions can be executed completely at
the edge by accessing the local secondary database copy. However, for transactions
that require updating operations (as in write-mostly scenarios), all database accesses
are redirected to the database primary copy located at the centralized origin server.
The primary database propagates any update to the secondary databases on a regular
basis. A first drawback of this approach is that the edge servers must be aware of the
application semantics, because it has to know whether a request triggers an update or
a read-only transaction. Moreover, in this solution the consistency of the replicated
data is maintained through a lazy update propagation scheme, which presents two
negative effects. First, the data at the edge servers might be stale. Second, a crash
might cause a data loss.

The exploitation of full database replication in the Web environment poses a num-
ber of challenging problems. Indeed, most database replication techniques proposed
up to now assume that the database replicas are interconnected through a LAN. In
recent years, the database community has proposed many replication protocols that
provide both data consistency and good performance in LANs. As we focus on Web
environments, we only mention some works that have addressed database replication
in the context of locally distributed Web systems. The interested reader may also refer
to [31] for a more comprehensive analysis on database replication systems based on
group communications. A lazy replication solution that provides serializability and
throughput scaling through the reduction of the number of conflicts has been proposed
by Amza et al. in [5]; this earlier work has been improved through the introduction
of distributed versioning, which provides strong consistency and avoids deadlock
problems [6]. A recent work by the same authors investigates how to combine query
result caching and cluster replication solutions [7]. A middleware tool that supports
consistent and scalable data replication has been presented in [34].

In a CDN the database replicas are geographically spread in a WAN. If the Web
application generates a significant number of database updates, a large amount of
traffic may overload the wide-area network and impact negatively on performance,
because each update needs to be propagated to all the other replicas to maintain
the consistency of the replicated data. A performance analysis of data replication
techniques that provide strong consistency in wide-area networks through group
communications has been presented in [31]. However, the scalability analysis per-
formed in this work is limited to eight replicas. Therefore, we can conclude that
scalability and performance for database replication in WANs are largely an open
issue that call for further research efforts.

4.6 User Profile Layer Replication

The user profile layer relies on a database for data storage, like the back-end layer.
Hence, the possible solutions for replicating the user profile correspond to that

4 Content Delivery and Management 121

already described in Sect. 4.5. However, the access patterns for this layer are quite
different if compared to the back-end layer.

In particular, the user typically interacts with only one edge server, hence the
profile of a given user is accessed by one edge server for the whole duration of a user
session. This access pattern has a significant impact on consistency and replication
policies. Indeed, the whole dataset of user profiles can be partitioned and distributed
over the edge nodes depending on the user access patterns. Since no replication is
needed, consistency issues are limited to guarantee that the user profiles on the edge
servers are consistent with the data on the origin server. The main approaches to
manage the user profiles are therefore restricted to content blind or content-aware
data caching, because full database replication is clearly unnecessary.

However, it is worth to note that, even if the user accesses only one edge server
for the whole duration of its session, user migration among multiple edge servers
may occur between consecutive session. Therefore, it is necessary to guarantee that
the user profile data migrates following the user, as shown in Fig. 4.7. The sup-
port for this behavior is not explicitly optimized in most replication strategies for
back-end data. Some proposals to handle this profile migration have emerged in
the last years. CONCA [41] is a generic data caching framework that aims to sup-
port user mobility by allowing data to follow the user. This framework has been
extended by the same authors to explicitly support the presence of personal data in
Tuxedo [42].

Besides the replication of user-related information, a further critical operation
that must be carried out by the user profile layer is the actual creation and update of
such information. Currently, the user profile is either manually updated by the user
through Web-based forms or is automatically updated by the Web system on the
basis of the user behavior. The information stored in the user profile and the way to
collect them depends on the Web-based services that are to be deployed. We present
and discuss some significant examples of personalized content generation.

Fig. 4.7 Replication of the user profile layer on the edge server

122 C. Canali et al.

• Generation of personalized content through aggregation of external data sources.
This service is common to multiple personalized portals (e.g. myYahoo, iGoogle)
and provides the user with a personalized news feed, typically retrieved from
heterogeneous sources by means of XML-RSS feeds. The user profile contains
information on which feeds are of interest for the users and about how the person-
alized content is to be presented. The users provide information about the sub-
scription to news feeds and on the preferred presentation layout through filled-in
forms during the registration to the personalized portal.

• Collaborative filtering. This type of service supports the interaction of users pro-
viding feedback on other users or topics. This type of personalized content gener-
ation is often used in recommendation systems that provide suggestions on goods
to purchase, based on analysis of similar user behaviors, or to rank the reputation
of a user in a social network. Information about the user is collected both through
explicit user inputs (e.g. in the case where the user reputation is based on feed-
back from other users) or through implicit information collection, for example by
mining the user purchases to cluster the user population according to pre-defined
profiles [27].

• Location and surrounding-based services. These services generate personalized
content on the basis of the user geographic location. The user position is deter-
mined through the analysis of data-related information or is explicitly supplied
by the user when accessing the service. The user location is compared with geo-
graphic data and the generation and delivery of static and dynamic content (e.g.
queries) is carried out according to the user location and surrounding, possibly
combined with user preferences.

These examples show that, even if some information may be provided explicitly
from the users, a significant fraction of the data stored in the user profiles are inferred
through data mining of log files, cookies, and user click history. With the available
information collection technologies, it is possible to extract interesting information
related to the users including sensitive data, such as political, physical, and sexual
features. Furthermore, most techniques are almost transparent to the users which are
often completely unaware. Unauthorized users information collection occurred in
the last years, for example, by the doubleclick.com commercial advertisement ser-
vice. Several commercial services, including search engines, were associated with
doubleclick.com. The commercial sites used cookies to monitor their visitors activi-
ties, and any information collected were stored in doubleclick.com databases. These
user profiles were then used by doubleclick.com to select the advertisement banners
more suitable for the users.

The examples of misusing personal information raised the interest towards the
issues of whether and how to inform users about personal data collection. Concerns
about privacy due to log data mining and cookie analysis [1] motivate the efforts
of defining novel mechanisms to negotiate what information can be derived from
user behavior and how they are to be used. The Platform for Privacy Preferences
(P3P) [17] is an example of a proposal aiming to address this issue: each site compli-
ant with the P3P standard must provide an XML-encoded description of which data
are collected, how they are managed, and where they are stored. Full compliance

4 Content Delivery and Management 123

with the P3P standard imposes some restriction to the automatic replication of user
profiles, because we must ensure that the adequate level of privacy is guaranteed for
every replica of the user profile.

4.7 Conclusions and Open Issues

The delivery of static and dynamically generated content can be accelerated through
a third party, i.e. a CDN infrastructure, that replicates some of the layers of a Web
system. Throughout this chapter we have analyzed the replication of every logical
layer composing a Web system. For each layer, we have discussed the research pro-
posals in the field of content delivery and we have illustrated how the CDN industry
is leveraging the replication to improve the effectiveness of content delivery. In par-
ticular, our analysis shows that replication of the front-end layer is suitable when
the content provider aims to accelerate the delivery of static, possibly multimedia,
content. When the CDN is used to accelerate the delivery of dynamic content, repli-
cation of the application layer is required. The achievable performance gain from
this approach depends on the access patterns to the data, that may still determine a
bottleneck in the back-end layer for some Web applications, thus forcing the repli-
cation of this latter layer also.

The research field in content delivery presents several open issues that are yet to be
addressed. Indeed, even if some proposals to accelerate the delivery of dynamically
generated content have been made and adopted by the industry, the effectiveness of the
proposed solutions is still highly dependent on the access patterns of the applications.
In particular, the risk of creating a bottleneck in the back-end layer is still one of the
main issues that hinder the scalability of dynamic Web content delivery. This problem
is likely to remain a major issue even in the next years, due to the evolution of Web
content and applications. The Web 2.0 is shifting the Web towards two main trends: an
ever-increasing amount of personalization, and the new Web usage patterns with large
uploadstreams.Personalized(anduncacheable)contentandhighfrequencyofcontent
refresh reduce the effectiveness of caching mechanisms and determine a growth in the
overheaddue todataconsistencyprotocols.Furthermore, thepresenceofpersonaluser
information introduces bounds in the possibility of user profile replication, because
the content provider must preserve the privacy of user sensitive information. The
complexity of the scenario is further increased by the convergence of Web 2.0 with
user mobility, that disrupts access locality due to the migration of users among the
edge nodes. We believe that coping with this evolution will be the next challenge for
CDN operators and researchers studying solutions for content delivery.

References

1. Agostini, A., Bettini, C., Riboni, D.: Loosely coupling ontological reasoning with an efficient
middleware for context-awareness. In: Proc. of Mobiquitous 2005. San Diego, CA (2005)

2. Akamai: (2007). http://www.akamai.com/

124 C. Canali et al.

3. Akamai EdgeComputing: (2007). http://www.akamai.com/html/technology/
edgecomputing.html

4. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data cache for Web
applications. In: Proc. of 19th IEEE Int’l Conf. on Data Engineering, pp. 821–831. Bangalore,
India (2003)

5. Amza, C., Cox, A., Zwaenepoel, W.: Conflict-aware scheduling for dynamic content applica-
tions. In: Proc. of 4th USENIX Symp. on Internet Technologies and Systems (2003)

6. Amza, C., Cox, A., Zwaenepoel, W.: Distributed versioning: Consistent replication for scaling
back-end databases of dynamic content web sites. In: Proc. of ACM/IFIP/Usenix Middleware
Conf. (2003)

7. Amza, C., Cox, A., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: Proc. of IEEE Int’l Conf. on Data Engineering (2005)

8. Andreolini, M., Colajanni, M., Mazzoni, F., Lancellotti, R.: Fine grain performance evaluation
of e-commerce sites. ACM Performance Evaluation Review 32(3) (2004)

9. Awadallah, A., Rosenblum, M.: The vMatrix: A network of virtual machine monitors for
dynamic content distribution. In: Proc. of 7th Int’l Workshop on Web Content Caching and
Distribution (2002)

10. Bornhovd, C., Altinel, M., Mohan, C., Pirahesh, H., Reinwald, B.: Adaptive database caching
with DBCache. IEEE Data Engineering Bulletin 27(2), 11–18 (2004)

11. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally distributed
web-server systems. ACM Computing Surveys 34(2) (2002)

12. Cardellini, V., Colajanni, M., Yu, P.: Request redirection algorithms for distributed web sys-
tems. IEEE Tran. on Parallel and Distributed Systems 14(5) (2003)

13. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance com-
parison of middleware architectures for generating dynamic Web content. In: Proc. of 4th
ACM/IFIP/USENIX Middleware (2003)

14. Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach for efficiently
creating dynamic Web content. ACM Transactions on Internet Technology 5(2), 359–389
(2005)

15. Chen, S., Shen, B., Wee, S., Zhang, X.: Adaptive and lazy segmentation based proxy caching
for streaming media. In: Proc. of ACM NOSSDAV (2003)

16. Colajanni, M., Lancellotti, R., Yu, P.S.: Scalable architectures and services for ubiquitous web
access. In: Tutorial notes in 2006 World Wide Web Conf. (2006)

17. Cranor, L.: Web Privacy with P3P. O’Reilly (2002)
18. Davis, A., Parikh, J., Weihl, B.: EdgeComputing: Extending enterprise applications to the edge

of the Internet. In: Proc. of 2004 World Wide Web Conf. (2004)
19. Edge Side Includes: (2007). http://www.esi.org/
20. Eiriniaki, M., Vazirgiannis, M.: Web mining for Web personalization. ACM Transactions on

Internet Technology 3(1) (2003)
21. Flesca, S., Greco, S., Tagarelli, A., Zumpano, E.: Mining user preferences, page content and

usage to personalize Website navigation. World Wide Web 8(3), 317–345 (2005)
22. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Improving availability and perfor-

mance with application-specific data replication. IEEE Transactions on Knowledge and Data
Engineering 6(1), 106–120 (2005)

23. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:
Proc. of ACM SIGMOD Int’l Conf. on Management of Data, pp. 173–182 (1996)

24. Groothuyse, T., Sivasubramanian, S., Pierre, G.: GlobeTP: Template-based database replica-
tion for scalable Web applications. In: Proc. of 2007 World Wide Web Conf. (2007)

25. Guo, H., Chen, S., Xiao, Z., Zhang, X.: DISC: Dynamic interleaved segment caching for
interactive streaming. In: Proc. of the 25th International Conference on Distributed Computing
Systems (2005)

26. Guo, L., Chen, S., Xiao, Z., Zhang, X.: Analysis of multimedia workloads with implications
for Internet streaming. In: Proc. of 14th Int’l World Wide Web Conf. (2005)

27. Ho Ha, S.: Helping online customers decide through Web personalization. IEEE Intelligent
systems 17(6) (2002)

4 Content Delivery and Management 125

28. IBM WebSphere Edge Server: (2007). http://www-3.ibm.com/software/
Webservers/edgeserver/

29. Iyengar, A., Ramasvamy, L., Schroeder, B.: Techniques for efficiently serving and caching
dynamic Web content. In: S. Chanson, X. Tang, J. Xu (eds.) Web Content Delivery. Springer
(2005)

30. Larson, P., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-tier database caching for SQL
server. IEEE Data Engineering Bulletin 27(2), 35–40 (2004)

31. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Consistent data replication: Is it
feasible in WANs? In: Proc. of Europar Conf. (2005)

32. Olston, C., Manjhi, A., Garrod, C., Ailamaki, A., Maggs, B., Mowry, T.: A scalability service
for dynamic Web applications. In: Proc. of Innovative Data Systems Research, pp. 56–69.
Asilomar, CA (2005)

33. Pacifici, G., Spreitzer, M., Tantawi, A., Youssef, A.: Performance management of cluster
based Web services. IEEE Journal on Selected Areas in Communications 23, 2333–2343
(2005)

34. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Consistent database repli-
cation at the middleware level. ACM Transactions on Computer Systems 23(4), 1–49
(2005)

35. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional Web applications.
In: Proc. of ACM/IFIP/USENIX Int’l Middleware Conf. Toronto, Canada (2004)

36. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley (2002)
37. Rabinovich, M., Xiao, Z., Aggarwal, A.: Computing on the edge: A platform for replicating

Internet applications. In: Proc. of 8th Int’l Workshop on Web Content Caching and Distribu-
tion. Hawthorne, NY (2003)

38. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic fragment detection in dynamic
Web pages and its impact on caching. IEEE Transactions on Knowledge and Data Engineering
17(6), 859–874 (2005)

39. Ramaswamy, L., Liu, L., Iyengar, A.: Scalable delivery of dynamic content using a cooperative
edge cache grid. IEEE Transactions on Knowledge and Data Engineering 19(5), 614–630
(2007)

40. Rilling, L., Sivasubramanian, S., Pierre, G.: High availability and scalability support for Web
applications. In: Proc. of 2007 IEEE/JSP Int’l Symp. on Applications and the Internet. Wash-
ington, DC (2007)

41. Shi, W., Karamcheti, V.: Conca: An architecture for consistent nomadic content access. In:
Proc. of Workshop on Caching, Coherence, and Consistency. Sorrento, Italy (2001)

42. Shi, W., Shah, K., Mao, Y., Chaudhary, V.: Tuxedo: A peer-to-peer caching system. In: Proc.
of 2003 Int’l Conf. on Parallel and Distributed Processing Techniques and Applications (2003)

43. Sivasubramanian, S., Alonso, G., Pierre, G., van Steen, M.: GlobeDB: Autonomic data repli-
cation for Web applications. In: Proc. of 14th Int’l World Wide Web Conf. Chiba, Japan
(2005)

44. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of caching and replication
strategies for Web applications. IEEE Internet Computing 11(1), 60–66 (2007)

45. Sivasubramanian, S., Szymaniak, M., Pierre, G., van Steen, M.: Replication for Web hosting
systems. ACM Computing Surveys 36(3) (2004)

46. Szymaniak, M., Pierre, G., van Steen, M.: Latency-driven replica placement. IPSJ 47(8)
(2006)

47. The Apache Cocoon project (2007). http://cocoon.apache.org/
48. Tolia, N., Satyanarayanan, M.: Consistency-preserving caching of dynamic database content.

In: Proc. of 16th Int’l World Wide Web Conf., pp. 311–320 (2007)
49. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Computing

7(6) (2003)
50. Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web workload characterization: Ten years

later. In: S. Chanson, X. Tang, J. Xu (eds.) Web Content Delivery. Springer (2005)
51. Yuan, C., Chen, Y., Zhang, Z.: Evaluation of edge caching/offoading for dynamic content

delivery. IEEE Transactions on Knowledge and Data Engineering 16(11) (2004)

126 C. Canali et al.

52. Zhao, W., Schulzrinne, H.: DotSlash: Handling Web hotspots at dynamic content Web sites.
In: Proc. of IEEE Global Internet Symposium. Miami, FL (2005)

53. Zhao, W., Schulzrinne, H.: Enabling on-demand query result caching in DotSlash for handling
Web hotspots effectively. In: Proc. of Int’l Workshop on Hot Topics in Web Systems and
Technologies. Boston, MA (2006)

Chapter 5
Caching Techniques on CDN
Simulated Frameworks

Konstantinos Stamos, George Pallis and Athena Vakali

5.1 Introduction

It is evident that in the new Web era, content volume and services availability play
a major role, leaving behind typical static pages which have solely text and images.
The majority of the business oriented service providers are concerned for the Quality
of Services (QoS), in terms of content delivery. In this context, proxy servers and
Content Delivery Networks (CDNs) have been prosposed as different technologies,
dealing with this concern. Their common goal is to bring content close to the users,
reducing the response time.

Both technologies demonstrate different advantages and disadvantages. CDNs
are characterized by robustness in serving huge amounts of requests and content
volumes. However, their main shortcoming is that due to replication and distribu-
tion cost, replica placements should be static for a large amount of time. This leads
to unoptimized storage capacity usage since the surrogate servers would contain re-
dundant, possibly outdated, or unwanted content. On the other hand, proxy servers
adapt content caching according to varying access patterns, using cache replacement
algorithms. However, proxy servers do not scale well for serving large volumes of
data or user populations. In an effort to combine the advantages of both, earlier re-
cent work [2, 20, 29, 30] investigated different approaches that enable Web caching
in CDNs, taking proxy servers’ characteristics into account. As new caching ideas
emerge, the need for a CDN testbed, suitable for performance evaluation and stress
testing, becomes evident. Such a testbed should provide a networking environment
incorporating CDN components, clients, traffic, and sufficient support for caching
schemes deployment.

While the ideal case would be to examine caching schemes in real networks and
CDNs, this is not always feasible or appropriate. Setting up a real CDN environment

Konstantinos Stamos
Department of Informatics, Aristotle University of Thessaloniki, e-mail: kstamos@csd.auth.gr

George Pallis
Department of Computer Science, University of Cyprus, e-mail: gpallis@cs.ucy.ac.cy

Athena Vakali
Department of Informatics, Aristotle University of Thessaloniki, e-mail: avakali@csd.auth.gr

R. Buyya et al. (eds.), Content Delivery Networks, 127
c© Springer-Verlag Berlin Heidelberg 2008

128 K. Stamos et al.

from scratch is unfeasible since it introduces high infrastructure cost. Moreover, its
configuration is a cumbersome task because it involves many parameters (traffic pat-
terns, link speeds, network topologies, and protocols). Incorporating a new caching
scheme requires large scale modifications to the execution environments of the var-
ious network elements. Furthermore, commercial CDNs are of proprietary nature
and they are not usually accessible for research purposes. Finally, it is not straight-
forward to carry out experimentation in a real world framework, since it involves
uncontrollable events (such as random noise and external network traffic), render-
ing the experiments unreproducible.

To overcome the difficulties imposed by the real world models, one may build
simulated models. A simulated model, in our case a Web caching enabled CDN,
introduces a new set of challenges. Dealing with the model itself, balance between
accurate real world model representation and reasonable resources management (ex-
ecution times and memory consumption) must be achieved. Furthermore, the model
should provide base for incorporating CDN components, clients, traffic, services,
content types, and especially caching schemes. The variety of possible network con-
figurations and diversity of the caching schemes impose a large tree of implementa-
tion cases. Therefore the best choice is to adopt an open architecture, by maintaining
a reasonable level of abstraction in the simulated entities.

Currently, there is quite limited number of CDN simulation environments and
there is no standard roadmap for a practitioner to design and implement such a
complex environment. The motivation of this chapter originates to these difficul-
ties which emphasize the need for developing widely available and open CDN
simulation environments. More specifically, the core contributions of this chapter
are:

• To provide sufficient background for issues related to Web caching in the context
of CDNs;

• To identify the simulation requirements of a Web caching enabled CDN;
• To analyze and model the simulation of various caching schemes in an actual

CDN simulator; and
• To suggest a roadmap for the practitioner who would like to clarify performance

issues related to such simulated frameworks.

In summary, the main goal of this chapter is to offer a solid design methodology and
share implementation experiences, while covering most of the topics related to Web
caching in a CDN simulation framework.

The rest of this chapter is structured as follows: we start by presenting issues
related to the content delivery in Web via CDNs and proxy servers. Then, the po-
tential of integrating caching characteristics of both CDNs and proxy servers are
examined. A categorization of dynamic content along with several techniques are
provided, followed by solutions to the problem of cache consistency. We continue
with an in depth examination on how the mentioned caching schemes can be mod-
eled and implemented in a simulated environment.

5 Caching Techniques on CDN Simulated Frameworks 129

5.2 Content Delivery on the Web

Distributing information to users over the Internet in an efficient and cost-effective
manner is a challenging problem. Web data caching and replication techniques
have become key practices for addressing this problem, due to their ability to of-
fer increased scalable solutions [25]. Web caching is mainly implemented by proxy
servers, whereas content replication is the main practice on CDNs. Broadly speak-
ing, the intention of Web caching and content replication is to shift the workload
away from overloaded content providers and satisfy user requests from the inter-
mediaries (proxy servers or CDN servers). Internet Service Providers (ISPs) use
proxies to store the most frequently or most recently requested content. In addition,
Web content providers may sign a contract with a CDN provider (e.g. Akamai) in
order to offer their sites content over the CDN servers. In the following subsections,
we overview the main characteristics of these two intermediary infrastructures for
the Web.

5.2.1 Proxy Servers

Proxy servers are deployed by ISPs to deal with increased Web traffic and optimize
the content delivery on the Web [33]. In particular, proxy servers act as an interme-
diator between users and content providers, serving user requests from local storage.
Users make their connections to proxy applications running on their hosts. At each
request, the proxy server is contacted first to find whether it has a valid copy of the
requested object. If the proxy has the requested object and it is updated, this is con-
sidered as a cache hit; otherwise a cache miss occurs and the proxy must forward
the request on behalf of the user. Upon receiving a new object, the proxy services a
copy to the end user and keeps another copy to its local storage.

Thus, the intermediate caching of objects reduces bandwidth consumption, net-
work congestion, and network traffic. Also, because it delivers cached objects from
proxy servers, it reduces external latency (the time it takes to transfer objects from
the origin server to proxy servers). Finally, proxy caching improves fault-tolerance
because users can obtain a cached copy even if the remote server is unavailable or
uncacheable.

On the other hand, using a shared proxy cache has three significant drawbacks:
If proxy is not properly updated, a user might receive stale data, and, as the num-
ber of users grows, content providers typically become bottlenecks. Furthermore,
caching is problematic in terms of not improving availability during “flash crowd”
events. The third drawback is related to the limited system resources of cache servers
(i.e. memory space, disk storage, I/O bandwidth, processing power, and networking
resources).

The above problems stem from the fact that proxy servers have been designed to
work on a local basis. Thus, when a proxy server cannot satisfy a user request (cache
miss), it should connect with the underlying Web content provider in order to fetch

130 K. Stamos et al.

the requested content. However, this may lead to Denial of Service (DoS), since Web
content provider cannot serve a huge amount of requests (each Web content provider
supports a limited number of HTTP connections). Moreover, the communication
between a Web content provider and a proxy server may cause increased latency.
For instance, consider the scenario where a user from Australia requests a Web page,
and its Web content provider is located in USA. In such a case, a large number of
TCP connections should be setup in order to communicate the proxy server with the
content provider.

5.2.2 Content Delivery Networks

Figure 5.1 depicts how content is delivered on the Web using proxy and CDNs in-
frastructure. In case of cache misses, the proxy servers communicate with CDN
servers in order to fetch the requested content. Specifically, a CDN maintains multi-
ple Points of Presence (PoP) with Web server replicas (called surrogate servers) that
store copies of the same content, and uses information about the user and the con-
tent requested to “route” the user request to the most appropriate site. The customers
of a CDN are organizations that wish to offer their site content to a geographically

Fig. 5.1 Content delivery on the Web

5 Caching Techniques on CDN Simulated Frameworks 131

Table 5.1 Proxy servers vs. CDNs

Features Proxy Server CDN

Key practice Web caching content replication
Cached content dynamically changes; content

requested by users of an ISP
predefined content from the

CDN-supported content
providers

Scalability low high
Performance vulnerable to flash crowd events stable; suitable for resource-hungry

applications (e.g. streaming
media)

distributed and potentially large audience. A CDN usually co-locates its surrogate
servers within strategic data centers, using multiple network providers, on a globally
distributed basis. Table 5.1 summarizes the main difference between proxy servers
and CDNs. A comprehensive taxonomy with a broad coverage of CDNs in terms of
organizational structure, content distribution mechanisms, request redirection tech-
niques, and performance measurement methodologies can be found in Chap. 2 of
this book.

5.3 Emerging Web Data Caching Techniques in CDNs

CDNs host distributed global information resources which are related to a large
spectrum of applications. Users interact with (or within) companies, organizations,
governmental agencies, and educational or collaborative environments. The popu-
larity of the CDNs originates from its potential to efficiently deliver dynamic, dis-
tributed, heterogeneous, and unstructured data all over the world. Therefore, the
need of various Web data caching techniques and mechanisms on CDNs has be-
come obligatory towards improving information delivery over the Web.

5.3.1 Caching in CDNs

As we mentioned in the previous Section, Web caching and content replication have
been developed as two distinct approaches in order to meet the increasing demand
of user requests:

• Web caching approach: Proxy servers store the Web objects into their caches.
However, the cached objects are determined by a cache replacement policy. The
cache replacement policies refer to deciding which objects will evict from the
cache to accommodate new objects. In such a policy, each object is defined by a
“value”, the so-called cache utility value (CUV). The objects with the smallest

132 K. Stamos et al.

utility outcome will be the first candidates to evict from the cache. Podlipnig and
Bszrmenyi in [23] conducted an extended survey of the existing cache replace-
ment strategies.

• Content replication approach: Surrogate servers keep replicas of the Web objects
on behalf of content providers. Contrary to proxy servers, the replicated content
in CDNs remains static.

However, content replication practices of CDNs include inherent limitations. The
major limitation is that a CDN infrastructure does not manage the replicated content
in an efficient way. Moreover, replica placement is static for a considerable amount
of time. The static nature of the outsourced content leads to inefficient storage ca-
pacity usage since the surrogate servers cache may contain unnecessary objects after
a period of time. As a result, if user access patterns change, the replicas in surrogate
servers could not satisfy the user requests.

A solution to the above issue would be to integrate both caching and replication
policies to the storage space of surrogate servers. The experimental results reported
by Stamos et al. [30] show that an integration scheme outperforms the stand-alone
Web caching and static content replication implementations.

To formally define the integration approach, consider a Web site representative
W who has signed a contract with a CDN provider. The Web site contains N objects
initially located only at the content provider (outside of the CDN). The total size of
W is W s and is given by the following equation:

W s =
N

∑
k=1

Us
k , (5.1)

where Us
k is the size of the k-th (1 ≤ k ≤ N) object.

Let M be the number of surrogate servers consisting the CDN. Each surrogate
server Mi (1 ≤ i ≤ M) has a total cache size Ms

i dedicated for replicating the content
of W . The original copies are located in the content provider. For simplicity, we
consider that the surrogate servers are homogeneous (same storage capacity Ms

i =
Ms (1 ≤ i ≤ M)) and do not contain content from other Web sites.

As depicted in Fig. 5.2, the cache of surrogate server could be partitioned into
two partitions:

• Static cache partition: Dedicated for static content replication. To formally define
the static cache partition, we consider that its size is a percentage r (r ∈ [0..1]) of
Ms. Therefore, the replicated objects, in static cache of a surrogate server, obey
the following constraint:

N

∑
k=1

(fikU
s
k) ≤ rMs, (5.2)

where fik is a function denoting whether an object k exists in the cache of surro-
gate server i. Specifically, fik = 1, if the k-th object is placed at the i-th surrogate
server and fik = 1, otherwise. The content of the static cache is identified by
applying a content replication algorithm. A wide range of content replication

5 Caching Techniques on CDN Simulated Frameworks 133

Fig. 5.2 Integrating caching in a CDN

algorithms have been proposed in literature [12, 19, 21, 32, 37]. Kangasharju
et al. [12] use four heuristic methods: (1) random, (2) popularity, (3) greedy-
single, and finally (4) greedy-global. The experiments show that the greedy-
global outperforms all other approaches. However, the greedy approaches are not
feasible to implement on real applications due to their high complexity. Tse [32]
study the content placement problem from another point of view. Specifically, the
author presents a set of greedy approaches where the placement is occurred by
balancing the loads and sizes of the surrogate servers. A quite similar approach
is also presented in Zhuo et al. [37]. Pallis et al. [21] present a self-tuning, pa-
rameterless algorithm (called Lat-cdn) for placing outsourced objects in CDN
surrogate servers, which is based on network latency. Finally, in [19], Pallis et al.
partition the content placement placement problem into two sub-problems. The
first one defines the pairs of outsourced object - surrogate server which achieve
the lowest latency. The second one determines which objects to replicate based
on the users workload. This approach is called il2p.

• Dynamic cache partition: Reserved for Web caching using cache replacement
policies. To formally define the dynamic cache partition, we consider that the
size reserved for dynamic caching is a percentage c, (c ∈ [0..1]) of Ms. More
specifically, the stored objects respect the following storage capacity constrain:

N

∑
k=1

(fikU
s
k) ≤ cMs (5.3)

134 K. Stamos et al.

Initially, the dynamic cache is empty since it is filled with content at run-time
according to the selected cache replacement policy. Thus, the surrogate servers
would have the replicas with the best CUV in their dynamic cache partition.
Other than the traditional cache replacement policies (e.g. LRU, LFU), Aioffi
et al. [1] use an on-line heuristic algorithm in order to decide whether to add a
new content replica or remove an existing one. The proposed algorithm (called
on-line MDCDN) is based on a statistical forecasting method, called Double Ex-
ponential Smoothing (DES). Taking the user demand variations into account,
MDCDN predicts the future demand at each surrogate server. These predictions
determine the CUV of the the cached objects. Chen et al. [6] use an application-
level multicast tree as a cache replacement policy for each CDN surrogate server.
Presti et al. [24] determine the CUV of replicas by a non-linear integer program-
ming formulation. In [3], Bartolini et al. decide whether to add a new content
replica or remove an existing one using a semi-Markov decision process.

Given the above cache segmentation scheme, the percentages (r,c) must obey is
the following:

r + c = 1 (5.4)

The challenge for such an approach is to determine the surrogate server size
which would be devoted to caching and replication as well. In other words, we
should determine the percentages (r,c). Considering that this problem is NP com-
plete [2], several heuristic approaches have been considered to efficiently integrate
static and dynamic cache in CDN surrogate servers. Bakiras and Loukopoulos [2]
propose a greedy hybrid algorithm that combines an LRU cache replacement pol-
icy with static content replication on a CDN. More specifically, initially the storage
capacity of each surrogate server is reserved for Web caching and at each iteration
of the algorithm, objects are placed to surrogate servers maximizing a benefit value.
The hybrid gradually fills the surrogate servers caches with static content at each
iteration, as long as it contributes to the optimization of response times. Stamos et
al. [29] have developed a placement similarity approach (the so called SRC) eval-
uating the level of integration of Web caching with content replication. According
to this approach, a similarity measure is used to determine the surrogate server size
which would be devoted to caching and replication. Finally, Pallis et al. [20] use a lo-
gistic sigmoid function in order to classify the surrogate server cache into two parts.
The proposed approach, called R-P, classifies the replicas with respect to their qual-
ity values. In particular, the quality value of each replica is expressed by the users
interest (increasing its value) or the lack of users interest (decreasing its value) for
the underlying replica.

5.3.2 Caching Dynamic Content

Dynamic content can be classified into three categories, as depicted in Fig. 5.3,
based on how frequently Web objects change and whether these changes can be

5 Caching Techniques on CDN Simulated Frameworks 135

Fig. 5.3 Categorization of dynamic content

predicted. The periodic-update category includes objects that the content provider
updates at specified time intervals. For instance, consider a news Web page which
is updated in every 5 min. The on-demand-update category consists of objects
which are generated on demand and may have different attributes depending on
the requesting user (e.g. the query forms). The unpredictable-update category
includes objects that change unpredictably. The objects in periodic-update and
unpredictable-update categories can be cached, whereas, the objects in the on-
demand-update category are uncacheable.

Efficient distribution of dynamic content to end users is an important issue due
to the growing number of dynamic data on the Web. A wide range of caching tech-
niques have been proposed in order to accelerate the delivery of dynamic content to
users [5, 27]. Fragment caching is an effective technique to accelerate current Web
applications which usually generates heterogeneous contents with complex layout.

A fragment can be defined as a portion of a Web page which has a specific theme
or functionality and is distinguishable from the other parts of the page. A Web page
has references to these fragments, which are stored independently on the content
provider or the surrogate servers. Challenger et al. [5] represent the relationships
between Web pages and fragments by object dependence graphs.

The fragment-based approach has also been implemented in commercial CDN
providers. For instance, the EdgeSuite network of Akamai is based on a fragment-
based policy using the ESI (Edge Side Includes) specification accepted by the
World Wide Web consortium. Specifically, the ESI specification defines an XML-
based mark-up language for defining templates and identifying page fragments. A
fragment-based policy is also used by the IBM Websphere [5], where the Web pages
can be decomposed into a hierarchy of complex, atomic fragments.

Fragment-based approaches cannot be effectively applied on the objects which
belong to the on-demand-update category, since these objects cannot be cached.

136 K. Stamos et al.

Specifically, they perform well if the temporal locality of requests is high and if
the underlying database is updated rarely. Applications that do not exhibit these
behavior require more sophisticated techniques [28]. Therefore, instead of caching
fragments of Web pages, another approach is to replicate a full copy of the ap-
plication code at the surrogate servers [26]. In such an approach (known as Edge
Computing), each surrogate server may connect with a centralized database. So, all
database queries are forwarded to the content provider. Although this technique al-
lows to distribute the computations to generate pages, it is limited by the latency in-
curred for each query, and by the throughput bottleneck of the origin database [28].
To address this issue, another approach is to keep a partial replica of the database
(known as Content-Aware Caching (CAC) approach). In such an approach, the ap-
plication programmers can choose the data replication that are best suited for the
application. This approach can yield considerable gains in performance and avail-
ability, provided that the selected strategies are well suited for the application [28].
However, this is quite difficult since it requires significant insight of the applica-
tion programmers in domains such as fault-tolerance and weak cache consistency.
In this context, another technique (known as Content-Blind query Caching (CBC))
has been proposed to cache the results of database queries at the surrogate servers.
Consistency of cached results must be maintained when the underlying database is
updated. This technique allows to reduce the database query latency since a number
of queries can be answered locally. The total system throughput is also increased
because less queries are addressed to the content provider [28].

5.3.3 Cache Consistency Mechanisms

Considering the dynamic nature of Web content, an important issue that must be
addressed by CDNs is the consistency maintenance [36]. To prevent stale content
from being transmitted to end users, the surrogate server must ensure that the locally
cached data is consistent with that stored on servers. The exact cache consistency
mechanism and the degree of consistency employed by a CDN depends on the na-
ture of the cached data. Consequently, a CDN should ensure the consistency of
replicas with the content provider by employing suitable mechanisms.

The problem of consistency maintenance has been well studied in the context
of proxy servers. Particularly, in proxy servers the Time to Live (TTL) concept is
widely used [26]. According to this, the content provider, when serving a cacheable
object to the proxy, supplies an explicit TTL value. Then, the proxy considers that
object valid during its TTL period. In the context of a CDN, the TTL concept
should be employed in each individual surrogate server. In such a case, each sur-
rogate server is responsible for maintaining consistency of data stored in its cache.
Therefore, each one interacts with the content provider to do so independently of the
other surrogate servers. However, this approach is impractical/unfeasible to be im-
plemented in a large-scale network infrastructure. Considering that a typical CDN
usually consists of a large number of surrogate servers (i.e. the Akamai – the leading

5 Caching Techniques on CDN Simulated Frameworks 137

CDN provider – has more than 25,000 surrogate servers around the world), the con-
tent provider will need to individually interact with a large number of surrogate
servers. Thus, such an approach is not scalable from the perspective of the content
providers.

To formally define the degree of consistency that a CDN can support, let CPt
k and

St
k denote the version of the object k at the content provider and the surrogate server

respectively at time t. In this context, an object k is said to be:

• Strongly consistent with that at the content provider if the version at the surro-
gate server is always up-to-date with the content provider. That is, ∀t, CPt

k = St
k.

Strong consistency ignores network delays incurred in propagating updates to the
surrogate server.

• Delta consistent with that at the content provider if the version at the surrogate
server is identical for Δ time units, where Δ is a configurable parameter. That is,
∀t, ∃τ 0 ≤ τ ≤ Δ such that CPt−τ

k = St
k.

• Weak consistent with that at the content provider if the version at the surrogate
server is not always up-to-date with the content provider.

A consistency degree may also be defined for multiple objects; it is known as mutual
consistency. To formally define this degree of consistency, consider two objects a
and b that are related to each other. Cached versions of objects a and b at time t
(St

a and St
b respectively) are defined to be mutually consistent in the time domain

(Mt-consistent) if the following condition holds: If CPt
a = St1

a and CPt
b = St2

b then
|t1 − t2| ≤ δ , where δ is the tolerance on the consistency guarantees. For δ = 0, it
requires that the objects should have simultaneously existed on the content provider
at some point in the past.

There exists a wide range of mechanisms [16, 17, 31] that have been used to
provide efficient cache consistency in CDNs. These can be broadly categorized as
follows:

• Server-driven consistency (also referred to as server-based invalidation): the con-
tent provider notifies the surrogate servers when the content changes. This ap-
proach substantially reduces the number of control messages exchanged between
the content provider and the surrogate server since messages are sent only when
an object is modified. However, this results in inefficient usage of the distribution
network for content delivery and inefficiency in managing consistency at surro-
gate servers, since the content provider should maintain a list of all surrogate
servers that cache the object. Several new protocols have been proposed recently
to provide consistency using server-based invalidation. Web cache invalidation
protocol (WCIP) [14] is one such proposal for propagating server invalidation us-
ing application-level multicast. Web Content Distribution protocol (WCDP) [31]
is another proposal that enables server-driven consistency. Using the WCDP, the
content provider can dynamically control the propagation and visibility of an
object update. WCDP supports different levels of consistency (i.e. strong, delta,
weak, and mutual).

• Client-driven consistency (also referred to as client polling): the updated ver-
sion of a Web object is delivered to all the surrogate servers whenever a change

138 K. Stamos et al.

is made to the object at the content provider. The advantage is that it does not
require any list to be maintained at the content provider. However, such an ap-
proach may generate significant levels of unnecessary traffic if the objects are
updated more frequently than accessed. Mikhailov and Wills [16] proposed a
client-driven consistency approach, called MONARCH (Management of Ob-
jects in a Network using Assembly, Relationships and Change cHaracteristics).
The MONARCH guarantees the cache consistency by collecting snapshots of
content from sites of interest. This content is then used as input to a simula-
tor to evaluate several cache consistency policies over a range of access pat-
terns.

• Leases approach: Consistency is achieved by associating leases with each ob-
ject that get replicated to surrogate servers. Specifically, lease is a time pe-
riod where its duration denotes the interval of time during which the content
provider agrees to notify the surrogate server if the object is modified. After
the expiration of the lease, the surrogate server must send a message request-
ing renewal of the lease. This approach is a combination of server-driven and
client-driven consistency. If the lease duration is zero, the cache consistency
scheme degenerates into pure client-driven consistency. On the other hand, if
the lease duration is infinite, the cache consistency scheme degenerates into a
pure server-driven consistency. The concept of a lease was first proposed in
the context of cache consistency in distributed file systems [10]. The use of
leases for Web proxy caches was first presented in [15]. Duvvuri et al. in [8]
present extensions to the HTTP protocol in order to incorporate leases. Ninan
et al. [17] presented a variation of the lease approach for CDNs, called cooper-
ative leases, by using Δ -consistency semantics. Specifically, Δ -consistency re-
quires that a cached version of an object is never out-of-date by more than Δ
time units with its server version. The value of Δ determines the nature of the
provided guarantee. Therefore, the larger the value of Δ is, the weaker the con-
sistency is.

5.4 Caching Techniques on CDNsim

This section is focused on introducing cache replacement policies in CDNs by
using an actual CDN simulator. For this purpose we use CDNsim1 as the main
paradigm. First of all, the necessity of such a simulated environment is investi-
gated, along with other simulation solutions. Then the requirements of a simulated
cache, in terms of scientific issues and resource requirements, are defined. Finally,
several issues related to the actual development of such caching framework are
discussed.

1 http://oswinds.csd.auth.gr/∼cdnsim

5 Caching Techniques on CDN Simulated Frameworks 139

5.4.1 The Need for CDN Simulated Environments

There have been several attempts to create private academic CDNs such as CoDeeN
[18], Coral [9], and Globule [22] for research and every day purposes. However,
the reproducibility of a given experiment is impossible since we are dealing with
real networks. Moreover, it is hard to implement and evaluate new policies due to
the required large scale alterations of the whole system. Consequently, the necessity
of a simulation environment for performing experiments, still remains. Towards this
direction, there have been several implementations of a simulated CDN [4, 7, 12, 34]
which fit the individual needs of each research work. Most of them do not take
several critical factors into account, such as the bottlenecks that are likely to occur
in the network, the number of sessions that each network element can serve (e.g.
router, surrogate server) and ignore the TCP/IP protocol. Finally, the most important
disadvantage is the unavailability of a platform for examining caching techniques in
CDNs.

Filling this gap, CDNsim is developed as a general purpose CDN simulator. It
is extensible and open source, written in C++ using the OMNET++ and INET li-
braries.2 It is a parallel discrete event trace driven network simulation package that
provides libraries, utilities, and interfaces for content delivery on the Web. CDNsim
models a CDN including basic network components such as users, surrogate servers,
content providers, and routers. It takes the characteristics of Internet infrastructure
into account by simulating the TCP/IP. CDNsim has been designed to support re-
search in broad-coverage CDN services. It has also the ability to simulate Peer-to-
Peer (P2P) services as well as various internetwork configurations. The experience
gained from the development of such a tool is reported in the following paragraphs.

5.4.2 CDNsim’s Caching Framework Requirements

This subsection includes the specifications of the surrogate servers’ caches in
CDNsim which are taken into account at design time, and both research and per-
formance issues are addressed. A requirement is to support the integrated caching
schemes as reported in these works [2, 20, 29, 30]. Cache consistency mechanisms
must also be supported. Moreover, it is required to support complex content types
such as video, and treat dynamic content by fragmentation. Finally, support for non
cacheable content should be enabled.

The diversity of cache replacement algorithms leads to confusing branches of im-
plementation cases. For instance, LFU and SIZE use different attributes for replac-
ing objects. Therefore the detection of a common denominator is necessary. More
specifically, given a set of primitive generic operations and content types one should
be able to implement any flavor of the mentioned methodologies. Therefore, a strict
requirement is to prepare a set of interfaces that can be used as building blocks of

2 http://www.omnetpp.org/

140 K. Stamos et al.

the various caching schemes. An appropriate exposure of the cache content to the
network should be considered. This would enable both user access for downloading
content and CDN access for management.

The execution of a CDN simulation includes high activity in the surrogate
servers’ caches. A typical simulation scenario involves a set of users performing
requests for objects (Web pages, multimedia content, etc.) to the CDN. The surro-
gate servers manage the content of their caches and attempt to satisfy the requests.
By increasing the number of requests, the required CPU time (of the host running
the simulation) is increased as well. Moreover, an increment to the caches’ capac-
ity leads to more objects being stored and thus to higher RAM requirements. It is
evident that depending on the various simulation scenarios and configurations the
caches may become performance bottlenecks.

The primary performance concern is to optimize the cache function in terms
of CPU requirements. In order to define a satisfactory performance threshold, the
available operations of a cache need to be identified:

• Search: This operation involves the procedure of browsing though the cache’s
contents until a specified object is found. For instance, a user requests a Web
page and the surrogate server examines the cache to check whether it is stored or
not. The performance penalty of such operation depends on the organization of
the content. Generally, the search complexity at an average case should always
be better than O(n), where n refers to the number of objects residing in cache.
This is critical since the search operation may be executed several million times
during a simulation, involving caches with several thousands of objects.

• Insertion: This operation refers to the procedure of inserting a new object in
cache. It is responsible to maintain the proper organization of the cache and
update other attributes such as the remaining storage space. Likewise, it must
perform better that O(n). Every cache replacement policy includes insertion op-
erations as part of their algorithm. It is expected to be executed many times during
a simulation and therefore it is an essential optimization parameter.

• Deletion: It is the procedure to remove a specific object from the cache. Every
cache replacement algorithm replaces objects by performing deletion operations
to free up storage space. Therefore, O(n) performance should be upper bound.

• Update: The case of an object’s update can be expressed as a combination of
deletion of the previous version object and insertion of the updated object. The
update. operation takes place when cache consistency is applied.

Summarizing, the cache speed is closely related to the content organization in the
RAM of the host. Most of the cache replacement algorithms include the Search-
Insertion-Deletion-Update (SIDU) operations. Therefore, the optimization require-
ment is the design of efficient content manipulation operations.

The secondary performance concern is the optimization of the memory footprint.
It is important that the simulation’s execution environment fits in RAM. Absolutely
no memory must be swapped to the hard drive of the host, or else the execution
performance will be reduced. Therefore, it is required to adopt a conservative design
that saves memory. Simulating large networks with many surrogate servers, caches,

5 Caching Techniques on CDN Simulated Frameworks 141

and objects require several gigabytes of RAM. However, the memory optimization is
usually a secondary requirement because the aforementioned problem can be easily
solved with sufficient RAM.

5.4.3 CDNsim’s Cache Architecture

In order to meet the previously discussed requirements, we define an architectural
design. This design is used for the actual implementation of CDNsim. It is an effort
to shape an abstraction to the real entities in a CDN. More specifically we model
the cache organization of a CDN as a 3-level architectural component, depicted in
Fig. 5.4.

The first level deals with the notion of content by ignoring all the special
characteristics that identifies it. Cacheable content, in general, is considered as raw
fragments, namely objects. The objects are stored into the cache, which is merely a
storage medium that keeps up-to-date information such as available storage capacity
and provides the SIDU interface, as discussed previously. The objects can be clas-
sified into two categories: (a) volatile objects and (b) non-volatile objects. The first
term refers to the objects that are stored inside the cache suggesting static caching,
while the later defines the objects devoted for cache replacement algorithms. By
flagging the objects, the integrated static and dynamic caching algorithms described
in [2, 20, 29, 30] can be implemented.

One level up, we deal with the organization of the objects. The specific character-
istics of each object are ignored. In this context, a set of cache replacement policies

Fig. 5.4 3-level cache organization

142 K. Stamos et al.

is defined, managing the content of the cache. Each policy maintains an ordering
of the objects according to a set of attributes. The attributes may refer to objects’
characteristics such as size, TTL, and last access time. For instance, the LRU cache
policy should maintain a buffer that keeps the objects sorted according to last access
time, enabling the replacement of the objects. The upper level uses the SIDU in-
terface which is provided by the cache replacement policies. At this point, we may
introduce the concept of cache partitioning and especially Static cache partition and
Dynamic cache partition.

The third level, defines a higher level logic of content management. In contrast
to the lower levels, we are interested in the actual content type and special charac-
teristics of the objects. Each content type effectively can be expressed as a group
of objects (fragments) forming a hierarchy. For instance, a dynamic page can be
expressed as a set of objects, representing identified cacheable page fragments.
Therefore, the object abstraction of the lower levels provides a unified approach
for dealing with the content diversity. Another high level construct is the service,
which represents any operation at CDN level. The services can be of internal use
only (e.g. surrogate server cooperation) and are available only to the CDN. Other-
wise, the services are public, such as dynamic Web pages manifestation and serving
to the users. Therefore, cache consistency can be addressed by implementing appro-
priate services that manage the cache content. Additionally, uncacheable content
(on-demand-update) can be handled by implementing services capable of compos-
ing content on-the-fly.

Table 5.2 summarizes the mapping between various caching issues and the archi-
tectural components in CDNsim. Specifically, CDNsim supports directly the static,
dynamic, and integrated caching scheme. Each can be modeled as partition of the
cache. CDNsim offers generic input for any kind of static replica placement algo-
rithm, while by default it supports the LRU dynamic caching. Cache consistency
is managed by a set of services that signal the various content updates and com-
mit the changes. Cache consistency lays at level-3. By default CDNsim implements
strong cache consistency. Complex content types such as audio, video, Web pages,
and streaming content are supported in the form of objects’ hierarchies. Each type
can be represented by a set of objects that can be cached. Combined with cache

Table 5.2 Mapping of caching issues to CDNsim’s architectural components

Caching Issue Architectural Component CDNsim Default
Static/Dynamic Cache partition, Generic support/LRU

cache partitioning volatile/non-volatile
Strong/Delta/ Service Strong

Weak/Mutual consistency
Complex content Object hierarchy Video, Web pages, etc
Unpredictable/periodic – Object Generic support

cacheable dynamic content
On-demand-update – Service Unspecified

uncacheable dynamic content

5 Caching Techniques on CDN Simulated Frameworks 143

consistency services we can enable the caching of dynamic content updates. Un-
cacheable content is dealt separately by implementing a set of specialized services
at level-3.

5.4.4 Implementation Considerations

This subsection covers the actual implementation of a caching scheme in CDNsim,
which can be of use to an actual software practitioner. Specifically, we use a repre-
sentative example where the surrogate servers contain caches with partitioned stor-
age capacity for static and dynamic caching, as reported by Stamos et al. [30]. The
static part of the cache is filled using a replica placement algorithm while the dy-
namic part of the cache obeys to the LRU. We select LRU as it is a well known and
easy to follow algorithm. Our goal is to implement such a cache by following the
described architecture, while keeping up with the performance requirements.

Level 1. The primary concern in this level is to implement the classes object and
cache. Since we plan to create a caching scheme that incorporates dynamic and static
caching, a class of volatile objects, and a class for non-volatile objects is defined.
We consider an object belonging to the non-volatile class, to be stored in the static
part of the cache. Specifying an object as volatile leads to be stored at runtime in the
dynamic part and potentially be removed by a cache replacement policy.

Low memory consumption is defined as a secondary requirement. An implemen-
tation approach needs to be followed that balances information compression and the
ability to perform cache replacement:

• Full compression – no information: Bloom filters [13] are proposed as a method
for simulating a cache. A bloom filter is a bitarray that packs information. In the
context of a cache, this information refers to the ids of the objects. The opera-
tions permitted in the bitarray are: reading, enabling, and disabling bits. A set of
different hash functions map each inserted id to a set of bits in the array. This
approach has several advantages. The operation is fast, because it includes AND
and OR operations, native to the CPU of the host and the memory consumption
is low. However, the use of hash functions causes collisions. For different ob-
ject ids the same bits may be suggested leading to inaccurate content description.
Furthermore, the information related to each object is stripped. We cannot store
attributes such as last access time and thus we are unable to implement cache
replacement algorithms like LRU.

• Partial compression – partial information: As the name suggests, this approach
makes partially use of the bloom filters technique and the full representation of
the objects [13]. In full representation, each object is an actual C++ object that
stores all the necessary attributes, like the size and the last access time. However,
the bloom filters result in information loss and thus LRU cannot be implemented.

• No compression – full information: The full representation is suitable for imple-
menting LRU since all the objects’ attributes are available. Consider the follow-
ing example, we need 16 bytes (4 for the id, 8 for the last access time and 4 for

144 K. Stamos et al.

the size, in a 32 bits environment) we still can store roughly about 130 million
objects in 2 GB RAM. Therefore, despite the increased memory usage several
millions of objects can be managed using a standard host. The use of lossless
compression schemes is prohibited, because they involve time consuming de-
compression and re-compression leading to performance penalty. Therefore, the
suggestion is to use a 1−1 mapping of ids-objects. All the SIDU operations are
O(1).

Level 2. It manages the organization of the content in the form of cache poli-
cies. Two distinct cache policies are identified, the static caching and the LRU. The
content of the static part of the cache remains unchanged by default, therefore, we
are not required to maintain some kind of ordering in the stored objects. A 1− 1
mapping of the object ids to the objects will suffice and the SIDU performance is
O(1).

On the other hand, LRU requires special treatment. LRU removes the least re-
cently used objects in favor of others most recently used. Therefore, It is necessary
to enable an ordering of the objects according to the last access time. CDNsim uses
a buffer containing objects sorted by the last access time, depicted in Fig. 5.5. This
buffer does not store the actual objects, which is the responsibility of the cache
itself. Instead, the buffer is used only as an ordering structure of object ids. The
search operation requires O(n) in the worst case, since we have to browse through
the buffer to detect the required object. The insertion operation requires O(1); the
new object is inserted at the beginning of the buffer (head) and if necessary, several
objects at the end of the buffer (tail) are being removed to free up storage capac-
ity. The deletion operation requires O(1) time. As long as the object for deletion is
searched, we just crop the object from the buffer without the need for adjusting any
ordering. Finally the update operation is also O(1). Provided that we have searched
the object, we update without changing the ordering. It is evident that the search
operation is involved in most of the SIDU operations. The time complexity of the
search in the worst case is O(n) and may reduce the speed of the cache. However,
this can be safely ignored for two reasons: (a) data structure can be cached out easily
in the CPU cache, leading to small performance overhead and (b) we tend to search
for recently used objects, so only a few objects are being checked at the beginning
of the buffer. Although in practice it gives satisfactory performance, we can further
improve the search operation. This can be achieved by maintaining an extra index
that points directly to the objects inside the buffer achieving O(1) performance.

Fig. 5.5 The LRU buffer

5 Caching Techniques on CDN Simulated Frameworks 145

Another issue is the possible resource deadlocks and content inconsistency by
accessing simultaneously the content. This is handled by creating private copies
of the requested content. Therefore, the services of the upper level deal only with
private copies of the content.

Level 3. At this level we are free from the caching issues, as they are handled
by the lower level. The software practitioner is free to implement services that serve
and distribute content.

5.4.5 Indicative Experimentation Results

The effectiveness of the storage partitioning scheme for Web caching and content
replication is supported by a set of experiments conducted in this work [30]. In this
subsection we demonstrate briefly a few results that capture the behavior of this
scheme. The examined criteria are:

• Mean response time: This is the expected time for a request to be satisfied. It is
the summation of all request times divided by their quantity. Low values denote
that content is close to the end user.

• Response time CDF: The Cumulative Distribution Function (CDF) in our exper-
iments denotes the probability of having a response times lower or equal to a
given response time. The goal of a CDN is to increase the probability of having
response times around the lower bound of response times.

• Hit ratio: It is defined as the fraction of cache hits to the total number of requests.
A high hit ratio indicates an effective cache replacement policy and defines an
increased user servicing, reducing the average latency.

• Byte hit ratio: It is the hit ratio expressed in bytes. It is defined as the fraction of
the total number of bytes that were requested and existed in cache to the number
of bytes that were requested. A high byte hit ratio improves the network perfor-
mance (i.e. bandwidth savings, low congestion, etc.).

The tested caching schemes include the LRU, LFU, and SIZE algorithms at vari-
ous levels of integration (r,c) with static replication. The (r,c), as already defined,
represent the percentage of the storage capacity used for static replication and Web
caching respectively. The used static replication algorithm is il2p [19] which takes
the server load into account. Specifically, il2p using two phases selects which object
should be placed and where. During the first phase for each object the appropri-
ate surrogate is selected minimizing network latency. Given the candidate pairs of
(object, surrogate server), at the second phase, the one that yields the maximum
utility value (depended on server load) is selected. This selection process is iter-
ated until all caches are full. For completion, the cases of full mirroring (entire Web
site is copied to the caches) and empty disks (simulating the absence of CDN) are
included. Meeting the experimentation needs, the Stanford’s Web site3 is used. In

3 http://www.stanford.edu/∼sdkamvar/research.html

146 K. Stamos et al.

Replication vs Caching precentage

M
ea

n
re

sp
on

se
 ti

m
e

FULLmirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% c 100% c
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5.6 Mean response time

this context a CDN was built using CDNsim, simulating several thousand users and
network elements.

To begin with, Fig. 5.6 illustrates how the mean response time of the requests is
affected by modifying the level of integration between static replication and caching.
Using static replication only (r = 100%) we receive the highest mean response time.
This can be explained by the fact that a fixed replica placement cannot cope with
the changing users’ demands for content. Two distinct performance peaks can be
identified; the first for r = 80%,c = 20% and the second for c = 100%. Increasing
the dynamic partition of the cache only by 20% (first peak) leads to significant per-
formance improvement. This behavior is logical since we keep a part of the cache
open for new content to be stored, based on the users’ requests, while maintaining a
sufficient amount of static replicas suggested by il2p. As the percentage of the dy-
namic partition increases the good attributes of replication are gradually lost. This is
caused by the fact that the cache replacement policies may remove usefull content
which otherwise would be strategically placed by il2p. The caching scheme (second
peak) appears to perform slightly better than the integrated scheme (first peak). A
possible explanation is that by letting the entire storage capacity to be used by cache
replacement, we allow the Web caching scheme to adapt effectively to the user traf-
fic patterns. Moreover, the fact that the Stanford’s Web site contains mostly small
objects, leads to low performance penalty during a cache miss. However, caching
is not the choice, since the CDN is converted into a proxy server including all the
scalability problems a proxy server imposes. Another important observation is that
all the cache replacement algorithms follow the same behavior, with SIZE to be
slightly better. SIZE’s superiority can be explained by the fact that more room for
new objects is available leading to better cache size utilization.

In terms of hit ratio, depicted in Fig. 5.7, the same two peaks can be detected.
Pure Web caching and the integrated schemes offer comparable results, while the

5 Caching Techniques on CDN Simulated Frameworks 147

Replication vs Caching precentage

H
it

ra
tio

FULLmirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 5.7 Hit ratio

static only replication does not keep up with. Fixed replica placement using the en-
tire storage capacity suffers from low hit ratio since redundant content is outsourced
and the placement is not optimal. The optimal placement cannot be achieved due to
the changing users’ requests pattern and the fact that it is a NP-complete problem.
This reason also indicates why pure Web caching demonstrates slight performance
superiority over the integrated scheme. The same behavior also exists in Fig. 5.8,
illustrating the byte hit ratio.

A more accurate representation of the requests’ satisfaction time distribution is
presented in Fig. 5.9 for the first performance peak (r = 80%,c = 20%). Ignoring
the ideal case of full mirroring, we observe that the integrated scheme (SIZE/il2p)
outperforms (is the ceiling of all distributions) by achieving lower response times

Replication vs Caching precentage

B
yt

e
hi

t r
at

io

FULLmirroring
LRU
LFU
SIZE
EMPTY disks

100% r 0% c 80% r 20% c 50% r 50% c 20% r 80% c 0% r 100% c

0

0.2

0.4

0.6

0.8

1

Fig. 5.8 Byte hit ratio

148 K. Stamos et al.

Response time

R
es

po
ns

e
tim

e
C

D
F

FULLmirroring
LRU
LFU
SIZE
EMPTY disks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Fig. 5.9 Response time CDF

than the other schemes. Here below we outline our observations by summarizing
the results:

• There exists at least one performance peak belonging to the integrated caching
and replication scheme.

• The integrated scheme may demonstrate reduced performance because of an in-
efficient replica placement.

• In special caches the caching only scheme perform as good as the integrated
scheme, but it is not recommended since it inherits all the disadvantages of the
proxy servers.

The conclusion is that there is a realistic room for performance improvement by
implementing Web caching characteristics in a CDN.

5.5 Visionary Thoughts for Practitioners

CDNsim is a free and open tool available both for research purposes and commercial
use. Two main target groups can be identified where CDNsim could be of great
use; the CDN developers and the software practitioners interested in CDNs. In this
section, we discuss several visionary thoughts on how CDNsim can be used by these
groups.

Dealing with the first target group, CDN providers are interested in maximizing
the benefit of their network infrastructure. To achieve this, the CDN developers de-
sign proprietary algorithms that manage the content effectively. The natural deriva-
tive of such activity is the creation of a new product. In the context of CDNs, the
product is a new content delivery service, like streaming video, large files delivery,

5 Caching Techniques on CDN Simulated Frameworks 149

etc. Although each service4 may differ from the others in terms of functionality, a
common set of periods in the life time of every service can be identified:

• Before service release: This period includes the development process of the ser-
vice before its release to the users. CDNsim could be of use at the early develop-
ment stages. It can be used to design and implement prototypes giving shape to
the initial product ideas. Once the prototyping is done, it can be used to perform
an in vitro evaluation of the performance and behavior under various network
configurations and traffic patterns. CDNsim could significantly reduce the infras-
tructure investments during the stages of testing and prototyping until a certain
level of maturity is reached. Then, evaluation is performed at the real CDN in-
frastructure. A real world example of the concept of prototyping and testing that
could potentially be performed by CDNsim is the recent High Definition Video
streaming by Akamai.5

• After service release: The service, by the time of its release to the wider public,
should have passed a set of testing suites. Additionally, there is a set of docu-
mented conclusions about its behavior and performance. However, as the prod-
uct is being used under untested circumstances, the behavior may divert from
the initial conclusions. CDNsim may be used to reproduce a problematic or un-
expected situation aiding the analysts to explain why an observed behavior is
reached. Therefore, CDNsim could be used for continuous evaluation without
disrupting the deployment of the service. Since the environment where a service
runs is not static, CDNsim might act as a preventing mechanism of unwanted
situations before they happen. For instance, the necessity of behavior prediction
and disaster prevention is apparent before a worldwide broadcast of soccer world
championship by Limelight Networks.6

• Service evolution in time: Eventually a service will reach a certain level of matu-
rity, stability, and correctness. However, the service’s “habitat” (network config-
urations, typical user populations, current technologies) is constantly evolving. A
representative example is the increment of fast internet connections and the fact
that IPv6 [11] will become a necessity since the available IP addresses are reduc-
ing. CDNsim could be used to perform a what-if analysis. How the service scales
with larger user populations? Can the service and the existing infrastructure keep
up with much faster connections currently not available? These questions could
be addressed by CDNsim by setting up the respective network configurations.
Failing to predict the long term evolution could result in loss of clients by not
investing on upgraded infrastructure in time.

Dealing with the second target group, software practitioners are encouraged to ex-
tend the existing architecture to support the latest trend of algorithms. A vision-
ary evolution of CDNsim could be a testbed that incorporates a complete suite
of caching algorithms used for performance comparison and testing. Moreover,

4 Using the term service we refer to a content delivery service in general.
5 http://www.akamai.com/
6 http://www.limelightnet.com/

150 K. Stamos et al.

CDNsim is able to run in parallel environments. The high performance computing
researchers could find a testbed for implementing parallel algorithms in the context
of CDNs. Therefore, some ideas concern the design and implementation of caching
algorithms that take advantage of the new multi-core processors and the appliance
of new more efficient data structures. Further research directions are outlined in the
following section.

5.6 Future Research Directions

CDNsim might offer new perspectives for future research directions in the area of
content delivery. Some indicative applications where CDNsim would be used as a
simulation testbed could be the following:

• Content Delivery Practices: Several issues are involved in CDNs since there
are different decisions related to where to locate surrogate servers, which con-
tent to outsource, and which practice to use for (selected content) outsourcing. It
is obvious that each decision for these issues results in different costs and con-
strains for CDN providers. In this framework, CDNsim can be used to evaluate
a wide range of policies as well as to explore the benefits of caching in a CDN
infrastructure.

• Pricing of CDNs Services: Pricing of CDNs’ services is a challenging prob-
lem faced by managers in CDN providers. Deployment of new services, such
as Edgesuite, are accompanied with open questions regarding pricing and ser-
vice adoption. Chapter 8 addresses some pricing issues and presents some pric-
ing models the context of CDNs. CDNsim can be used in order to validate
them.

• Mobile CDNs: Content delivery on the mobile wireless Web is a topic of emerg-
ing interest and importance in the academic and industrial communities. Consid-
ering the recent advances in mobile content networking (e.g. WAP, IPv6 etc.),
the infrastructure of mobile CDNs may play a leading role in terms of exploiting
the emerging technological advances in the wireless Web. Chapter 14 presents
mobile CDNs in details. CDNsim may be used as a testbed in order to address
new research pathways in the area of mobile CDNs.

• Peering of CDNs: Peering of CDNs is gaining popularity among researchers
of the scientific community. Several approaches are being conducted for find-
ing ways for peering CDNs. However, several critical issues (i.e. When to peer?
How to peer? etc.) should be addressed. Chapter 16 discusses some of these is-
sues in detail. CDNsim may be used to simulate the peering CDNs framework
under realistic traffic, workload, and replication conditions. It can also be uti-
lized to evaluate the best practices and new techniques for load measurement,
request redirection and content replication in the proposed framework for peer-
ing CDNs.

• Security in CDNs: The rapid growth of business transactions conducted on the
Internet has drawn much attention to the problem of data security in CDNs [35].

5 Caching Techniques on CDN Simulated Frameworks 151

In this context, secure content delivery protocols should be proposed in order to
maintain content integrity (the delivered content which is modified by unautho-
rized entities should not be accepted) and confidentiality (the delivered contents
cannot be viewed by unauthorized entities, including unauthorized proxies, and
other users besides the requester) in CDNs. The high extensibility of CDNsim
allows researchers to adapt the proposed protocols (e.g. iDeliver [35]) under its
infrastructure.

• P2P and Grid Technologies in CDNs: Since CDNs are complex large-scale
distributed systems, their development may be supported by the new emerg-
ing technologies of P2P and Grid. The successful exploitation and integration
of these paradigms and technologies under a CDN infrastructure would provide
an efficient way to cope with the aforementioned issues and would contribute sig-
nificantly to the development of more efficient CDNs. The CDNsim architecture
can easily enhance the aforementioned emerging technologies.

5.7 Conclusions

The Web has evolved rapidly from a simple information-sharing mechanism offering
only static text and images to a rich assortment of dynamic and interactive services,
such as video/audio conferencing, e-commerce, and distance learning. However, the
explosive growth of the Web has imposed a heavy demand on networking resources
and Web content providers. Users often experience long and unpredictable delays
when retrieving Web pages from remote sites. CDN infrastructure seems to address
the issues of capacity and performance on the Web in an efficient way. More and
more Web content providers rely their content to be distributed by CDNs. The key
to satisfy these growing demands lies in managing the content which is replicated
in CDNs. Specifically, the need of various Web data caching techniques and mech-
anisms on CDNs has become obligatory towards improving information delivery
over the Web.

In this chapter, we have summarized the emerging caching techniques which can
be applied on CDN simulated frameworks. We study how to integrate caching poli-
cies on CDN’s infrastructure. We also provide a comprehensive survey of the cache
consistency mechanisms that can be applied on CDNs. Furthermore, we present the
caching techniques which have been applied under CDNs for delivering dynamic
content. Finally, we study these techniques under an analytic simulation tool for
CDNs, the CDNsim.

To sum up, CDNs are still in an early stage of development and their future
evolution remains an open issue. It is essential to understand the existing practices
involved in a CDN framework in order to propose or predict the evolutionary steps.
In this regard, caching-related practices seem to offer an effective roadmap for the
further evolution of CDNs.

152 K. Stamos et al.

References

1. Aioffi, W. M., Mateus, G. R., Almeida, J. M., Loureiro, A. A. F.: Dynamic content distribution
for mobile enterprise networks. IEEE Journal on Selected Areas on Communication 23(10)
(2005)

2. Bakiras, S., Loukopoulos, T.: Increasing the performance of cdns using replication and
caching: A hybrid approach. In: IPDPS ’05: Proceedings of the 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS’05), p. 92.2. IEEE Computer Society,
Washington, DC, USA (2005)

3. Bartolini, N., Presti, F. L., Petrioli, C.: Optimal dynamic replica placement in content delivery
networks. In: 11th IEEE International Conference on Networks (ICON 2003), pp. 125–130.
Sydney, Australia (2003)

4. Bent, L., Rabinovich, M., Voelker, G. M., Xiao, Z.: Characterization of a large web site popu-
lation with implications for content delivery. World Wide Web 9(4), 505–536 (2006)

5. Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach for efficiently
creating dynamic web content. ACM Transactions on Internet Technology. 5(2), 359–389
(2005)

6. Chen, Y., Katz, R. H., Kubiatowicz, J.: Dynamic replica placement for scalable content deliv-
ery. In: IPTPS, pp. 306–318. Cambridge, USA (2002)

7. Chen, Y., Qiu, L., Chen, W., Nguyen, L., Katz, R. H.: Efficient and adaptive web replication
using content clustering. IEEE Journal on Selected Areas in Communications 21(6) (2003)

8. Duvvuri, V., Shenoy, P., Tewari, R.: Adaptive leases: A strong consistency mechanism for the
world wide web. IEEE Transactions on Knowledge and Data Engineering 15(5), 1266–1276
(2003)

9. Freedman, M. J., Freudenthal, E., Mazieres, D.: Democratizing content publication with coral.
In: 1st USENIX/ACM Symposium, vol. 2004

10. Gray, C., Cheriton, D.: Leases: an efficient fault-tolerant mechanism for distributed
file cache consistency. In: SOSP ’89: Proceedings of the twelfth ACM symposium
on Operating systems principles, pp. 202–210. ACM, New York, NY, USA (1989).
http://doi.acm.org/10.1145/74850.74870

11. Huston, G.: Ipv4: How long do we have? The Internet Protocol Journal 6(4) (2003)
12. Kangasharju, J., Roberts, J. W., Ross, K. W.: Object replication strategies in content distribu-

tion networks. Computer Communications 25(4), 376–383 (2002)
13. Kulkarni, P., Shenoy, P. J., Gong, W.: Scalable techniques for memory-efficient cdn simula-

tions. In: WWW, pp. 609–618 (2003)
14. Li, D., Cao, P., Dahlin, M.: Wcip:web cache invalidation protocol. IETF Internet Draft (2000)
15. Liu, C., Cao, P.: Maintaining strong cache consistency in the world-wide web. In: ICDCS ’97:

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS
’97), p. 12. IEEE Computer Society, Washington, DC, USA (1997)

16. Mikhailov, M., Wills, C. E.: Evaluating a new approach to strong web cache consistency with
snapshots of collected content. In: WWW ’03: Proceedings of the 12th international confer-
ence on World Wide Web, pp. 599–608. ACM, New York, NY, USA (2003)

17. Ninan, A., Kulkarni, P., Shenoy, P., Ramamritham, K., Tewari, R.: Cooperative leases: scalable
consistency maintenance in content distribution networks. In: WWW ’02: Proceedings of the
11th international conference on World Wide Web, pp. 1–12. ACM Press, New York, NY,
USA (2002)

18. Pai, V. S., Wang, L., Park, K., Pang, R., Peterson, L.: Codeen. In: Second Workshop on Hot
Topics in Net-working (HotNets-II) (2003)

19. Pallis, G., Stamos, K., Vakali, A., Katsaros, D., Sidiropoulos, A.: Replication based on objects
load under a content distribution network. In: ICDEW ’06: Proceedings of the 22nd Inter-
national Conference on Data Engineering Workshops (ICDEW’06). IEEE Computer Society,
Atlanta, USA (2006)

20. Pallis, G., Thomos, C., Stamos, K., Vakali, A., Andreadis, G.: Content classification for
caching under cdns. In: Innovation on Information Technology. IEEE Computer Society,
Dubai, United Arab Emirates (2007)

5 Caching Techniques on CDN Simulated Frameworks 153

21. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., Manolopoulos, Y.: A latency-
based object placement approach in content distribution networks. In: Third Latin American
Web Congress (LA-Web 2005), pp. 140–147. Buenos Aires, Argentina (2005)

22. Pierre, G., van Steen, M.: Globule: a collaborative content delivery network. IEEE Commu-
nications Magazine 44(8), 127–133 (2006)

23. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Com-
puting Surveys 35(4), 374–398 (2003)

24. Presti, F. L., Petrioli, C., Vicari, C.: Dynamic replica placement in content delivery networks.
In: 13th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2005), pp. 357–360. Atlanta, GA, USA (2005)

25. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley (2002)
26. Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C. R.: Moving edge-side includes to the real

edge – the clients. In: USENIX Symposium on Internet Technologies and Systems. Seattle,
Washington, USA (2003)

27. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic fragment detection in dynamic
web pages and its impact on caching. IEEE Transactions on Knowledge and Data Engineering
17(6), 859–874 (2005)

28. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of caching and replication
strategies for web applications. IEEE Internet Computing 11(1), 60–66 (2007)

29. Stamos, K., Pallis, G., Thomos, C., Vakali, A.: A similarity based approach for integrated web
caching and content replication in cdns. In: Tenth International Database Engineering and
Applications Symposium (IDEAS 2006), pp. 239–242. Delhi, India (2006)

30. Stamos, K., Pallis, G., Vakali, A.: Integrating caching techniques on a content distribution net-
work. In: Advances in Databases and Information Systems, 10th East European Conference,
ADBIS 2006, pp. 200–215. Thessaloniki, Greece (2006)

31. Tewari, R., Niranjan, T., Ramamurthy, S.: Wcdp: Web content distribution protocol. IETF
Internet Draft (2002)

32. Tse, S. S. H.: Approximate algorithms for document placement in distributed web servers.
IEEE Transactions on Parallel and Distributed Systems 16(6), 489–496 (2005)

33. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Computing
7(6), 68–74 (2003)

34. Wang, L., Pai, V. S., Peterson, L. L.: The effectiveness of request redirection on cdn robustness.
In: 5th Symposium on Operating System Design and Implementation (OSDI 2002)

35. Yao, D., Koglin, Y., Bertino, E., Tamassia, R.: Decentralized authorization and data security
in web content delivery. In: SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, pp. 1654–1661. ACM, New York, NY, USA (2007)

36. Yin, J., Alvisi, L., Dahlin, M., Iyengar, A.: Engineering web cache consistency. ACM Trans-
actions on Internet Technology 2(3), 224–259 (2002)

37. Zhuo, L., Wang, C. L., Lau, F. C. M.: Load balancing in distributed web server systems with
partial document replication. In: 31st International Conference on Parallel Processing (ICPP),
p. 305. Vancouver, Canada (2002)

Chapter 6
Request Redirection for Dynamic Content

Supranamaya Ranjan

6.1 Introduction

The increasing reliance on the WWW as a ubiquitous medium becomes ever more
apparent whenever there is a disruption in the availability of a certain Web service.
Furthermore, due to the much higher access network bandwidth today than a decade
ago, clients of Web services have much higher expectations with the service quality
and hence are less tolerant to degradation in throughput or access times. The dis-
ruptions and degradations in a Web service can be accounted for by two overload
conditions. The first condition, Time-of-Day effect is the diurnal variation in traffic
observed at most Web sites since most Web users access Web sites during day time
than during night. This diurnal variation in traffic can sometimes cause 2–20 times
more load at a Web site during peak usage times, than non-peak usage times [12, 13].
As a result, while planning the amount of resources to be provisioned for serving
a Web site, operators face the challenge of either provisioning on the basis of peak
usage or the mean usage patterns, both of which have their own sets of disadvan-
tages. While provisioning for peak usage could imply a better response time, most
of the resources would remain under-utilized during non-peak hours. Moreover, it is
sometimes very difficult to predict the peak usage and hence equally difficult to pro-
vision for the same. Meanwhile, provisioning for mean usage implies better overall
resource utilization, however during peak hours, the Web users may not experience
the best response times. The second common reason for disruptions is Flash Crowd
effect, where there is a sudden surge in users at a Web site at an unexpected time
or of unexpectedly high magnitude. One of the most well known examples is the
1999 Victoria Secret’s Webcast which became an instant hit and attracted 1.5 mil-
lion users, much more than what the Web site was provisioned for, which brought
the Web site down and a result, none of the users were able to view the Webcast
at all.

In order to guarantee a pleasant browsing experience to users even during such
overload conditions, Web content providers are increasingly off-loading the task
of content placement and distribution to Content Delivery Networks (CDNs) such

Supranamaya Ranjan
Narus Inc., 500 Logue Ave, Mountain View, CA, USA 94043, e-mail: soups.ranjan@gmail.com

R. Buyya et al. (eds.), Content Delivery Networks, 155
c© Springer-Verlag Berlin Heidelberg 2008

156 S. Ranjan

as Akamai [2], Limelight Networks [3] or Mirror Image [4]. The primary objec-
tive of CDNs is to reduce the end-to-end response time between the clients and the
data they are accessing. In this regards, CDNs take two approaches, that of content
placement which involves placing the content closer to the users and redirection
which involves forwarding user requests to the best server. Content placement in-
volves identifying the geographical “hot spots” i.e. areas that originate the most re-
quests [18, 32] so that content can be replicated in these areas. Redirection involves
selection of the the “best” server that can serve the request [20, 22, 26, 28, 35, 37].
This chapter deals with request redirection techniques to select the best server,
where best could be defined by the closest server or the least-loaded and hence most
available server or a combination of both. Typically, CDNs replicate a Web site’s
content on their own mirror servers. Alternatively, large Web content providers host
their content on multiple clusters world-wide, where each cluster comprises of a set
of servers that can process a user’s request in-site. In such cases, CDNs only pro-
vide redirection techniques by which users of the service can be forwarded to the
best server in the best cluster.

The definition of best server to serve a request varies depending on the type of
content. Typically, static content which do not change over time such as images or
pdf files are network-intensive and hence the best server is the one closest to the
user. There are several definitions that could be ascribed to the closest server. The
closest server could be one which is the least number of hops away. Network hops
could be defined in terms of the number of routers present in the route between
the client and server as found via traceroute. Alternatively, network hops could be
defined by the number of Autonomous Systems (ASs) present in the shorted route
between the client and server. The closest server could also be defined as one to
reach which the network bandwidth of the bottleneck link (i.e. the network link
in the route with the least bandwidth) is maximized. Finally, closest could also be
defined as the server to reach which the expected network latency is minimized,
where the network latency would then be a function of the number of hops as well
as the network bandwidth of the bottleneck link.

However, with the latest trend towards personalizing users’ browsing experience,
content providers are using an increasing amount of dynamic content in their Web
sites. Such content is generated dynamically depending on the user’s location, past
history or the nature of the request itself e.g. latest stock quote or latest auction
bid. In such cases, a typical Web page would comprise both static and dynamic
fragments. However, dynamic content places different demands on the resources in-
volved as compared to static content. Since processing dynamic content involves
either forking a new process (e.g. CGI scripts) or accessing database tables (PHP
scripts), it is more compute intensive than static content. Moreover, because of over-
provisioning in the Internet core [21], delays across network backbones are increas-
ingly dominated by speed-of-light delays, with minimal router queuing delays. This
implies that the server selection mechanisms as designed for static content may not
be optimal for dynamic content. While for static content, forwarding a request to the
closest server makes sense, for dynamic content, the optimal server selection mech-
anism must take both the network latencies and server loads into account. While

6 Request Redirection for Dynamic Content 157

under certain conditions it may make sense to forward a dynamic content request
to the closest server, under different conditions it may be better to forward it to the
server furthest away, if it has the lowest sum total of network latency and expected
server processing time.

Request redirection policies can be classified as either client-side or server-side
redirection on the basis of the point in a request’s execution where the redirection
decision is made. A client-side redirection policy is one in which a client is redi-
rected to a server by a client-side proxy. As used in Akamai, these client proxies
which are also known as edge servers [19] form an overlay network and use tracer-
oute and pings to estimate link latencies among themselves as well as the content
provider sites. When a client requests a name-server mapping for a particular site,
then it is returned three routes: direct, best two-hop and second best two-hop to
servers hosting the content. The client then starts download on all three routes si-
multaneously and continues the download on the fastest one among them. In sum-
mary, Akamai first selects three servers on the basis of network-proximity and then
accounts for the server-load as well by racing all the three routes. Besides this DNS
based redirection technique, CDNs also use URL rewriting where URLs for content
that can be generated away from the origin sites is rewritten so that it can be re-
solved via DNS to a CDN client-proxy that can serve the content. The actual syntax
for this URL rewriting varies across CDNs. For instance, Akamai modifies the URL
www.foo.com/bar.gif to a1.akamai.net/www.foo.com/bar.gif.

In contrast, a server-side redirection [34] is one in which a request could be first
sent to an initial cluster via existing client-side mechanisms, after which the cluster
redirector redirects the request away to the the “best server”, which could be in ei-
ther the local or the remote cluster. In this chapter, we mainly focus on server-side
redirection algorithms for dynamic content such that requests may be redirected
away from an overloaded Web cluster to a remote replica. However, the reader will
find that much of the underlying principles as discussed for dynamic content could
be suitably extended to other content types such as static content or streaming media
as well. In this regard, the chapter introduces a per-request Wide-Area ReDirection
policy, henceforth referred to as WARD. The key objective of WARD is to min-
imize end-to-end client delays by determining at a Web cluster whether the total
networking plus server processing delay is minimized by servicing the request re-
motely (via redirection) or locally. In particular, client requests could be first routed
to an initial Web cluster via a client-side redirection mechanism such as simple DNS
round-robin to more sophisticated server selection schemes [37]). Upon arrival at the
initial cluster, a request dispatcher uses a measurement-based delay-minimization
algorithm to determine whether to forward the request to a remote or local server.
Thus, in contrast to other approaches (see Sect. 6.2), the redirector integrates net-
working and server processing delays and thereby minimizes the total delay.

In this chapter, we also develop a simple analytical model to characterize the
effects of wide area request redirection on end-to-end delay. The analytical model
allows us to perform a systematic performance evaluation of the benefits afforded
by the per-request wide-area redirection policy. An example finding by this model
is that for dynamic content applications, a server selection mechanism must obtain

158 S. Ranjan

fine-grained server load information owing to a much lower tolerance to errors in
server loads compared to network latencies. This shows that for dynamic content
applications, a server-side redirection policy can achieve a better performance than
client-side redirection policies which can not obtain server load information at the
same granularity and similar overheads as the server-side policies.

Finally, in this chapter we describe the design of a proof-of-concept testbed on
which we compare WARD against other strawman policies such as those that redi-
rect requests by only taking network latencies or server loads into account or those
that redirect requests via round-robin policies. The testbed emulates a CDN that
comprises of two geographically distant Web clusters connected by a wide-area
link whose characteristics of round trip times and congestion are emulated by us-
ing Nistnet [6]. Each Web cluster is multi-tiered with a Web server tier, a request
dispatcher tier, and a database tier. The application hosted on the Web clusters is
an online bookstore that is modeled after the TPC-W benchmark [9]. As one of the
main results, we use the testbed to show that for an e-commerce site with 300 con-
current clients, wide area redirection reduces the mean response time by 54%, from
5 s to 2.3 s.

The remainder of this chapter is organized as follows. In Sect. 6.2, we pro-
vide a background on current redirection techniques and in Sect. 6.3 we introduce
the multi-tiered architecture as prevalent at current-day Web clusters. Further, in
Sect. 6.4, we describe the system architecture of clusters for wide area request redi-
rection. In Sect. 6.5, we develop a queuing model to study the architecture and in
Sect. 6.6 we present numerical studies of the fraction of requests dispatched re-
motely and the expected response times under varying system scenarios. Next, we
describe our testbed implementation and measurements in Sect. 6.7. In Sect. 6.8,
we provide visionary thoughts for practitioners. Finally, we discuss future research
directions in Sect. 6.9 and conclude in Sect. 6.10.

6.2 Related Work

Approaches to minimize Web access times can be separated into different groups:
resource vs. request management and, for the latter, client-side vs server-side redi-
rection.

One approach to minimizing Web access times is to ensure that enough resources
are available at clusters. Server migration assigns servers that are unused or lightly
loaded within an cluster to hosted applications that are suffering from high us-
age [33]. Server migration involves transfer of the application state from an existing
server to a new server and hence migration times are on the order of 10 min. There-
fore, server migration is a means to avoid bottlenecks over a long period of time
(minutes or hours), e.g. following time-of-day patterns. Redirection is not only able
to address long-term bottlenecks (at the additional redirection costs), but it is able
to address short-term bottlenecks, e.g. due to flash-crowds, as well. Server shar-
ing, as applied to content distribution by e.g. Villela et al. [36], is similar to server

6 Request Redirection for Dynamic Content 159

migration, except that a fraction of the resources are assigned. Both server migra-
tion and sharing are orthogonal approaches to request redirection, and we advocate
a combination of the mechanisms.

A significant body of research has focused on client-side mechanisms such
as request redirection in CDNs [25, 37], server selection techniques [17, 20],
caching [27], mirroring, and mirror placement [18, 23]. Such techniques are based
on the premise that the network is the primary bottleneck. However, serving dy-
namic content shifts the bottleneck onto the cluster resources and typically the
server’s CPU. Thus, while such schemes can be applied to finding the best initial
cluster, WARD’s cluster-driven redirection is essential to jointly incorporate server
and network latencies.

A combination of client-side and server-side redirection is also possible and ben-
eficial if the bottleneck is not clearly identified or varying over time. Such a com-
bined architecture is presented by Cardellini et al. [16]. Their server-side redirection
mechanism may redirect entire Web requests using HTTP-redirection if the CPU
utilization exceeds a certain threshold. They conclude that server-side redirection
should be used selectively. In contrast, we see server-side redirection as a funda-
mental mechanism for current and future clusters. Our redirection mechanism is
not threshold-based, but is able to optimize cluster response times for all CPU uti-
lization values. Moreover, they design policies which consider network proximity
and server load in isolation while our redirection policy integrates the two. Finally,
rather than equating redirection to HTTP-redirect, we consider the dispatcher as a
basic building block within the cluster architecture, which can redirect requests at
any tier.

In contrast to approaches in references [17, 18, 20, 23, 25, 27, 37], that are
designed for static content, other approaches such as those in references [15] or
Akamai’s EdgeSuite [1] address server selection for dynamic content via caching
of dynamic fragments. Caching can occur at either the client-side with expiration
times set using cookies or at the server-side (on a reverse proxy server) with cached
pages being expired on receiving database update queries. However, these solutions
either result in stale data being served to the clients or add to the complexity of site
development and management. Nevertheless, caching is complementary to the solu-
tion adopted by WARD. In cases where a request is not resolved from the cache, the
request can be forwarded to a server (local or remote) that can process it the earliest.

The approach as taken by contemporary CDNs such as Akamai for handling dy-
namic content is that they assume most of it is cacheable and hence the algorithm
for server selection for dynamic content is a direct extension of that for static. In
particular, Akamai uses an EdgeSuite mechanism for serving dynamic content, by
interpreting each Webpage to be composed of various fragments, which could be
of either static, dynamic-cacheable, or dynamic-uncacheable types. Thus, an Edge-
Suite enabled redirector could select the closest server for serving the static and
dynamic-cacheable fragments while sending the dynamic-uncacheable fragments
to the origin-server. The redirector then assembles the responses for all the frag-
ments and returns it to the user. However, it is estimated that only about 60% of dy-
namic fragments are cacheable [30]. Hence, in Websites with a significant portion of

160 S. Ranjan

uncacheable dynamic content such as e-commerce or auction sites, the user per-
ceived download times could still be severely impaced by the time taken to service
the uncacheable fragments at the origin site. Thus, content delivery policies for such
sites would benefit from the server-side redirection approach as discussed in this
chapter.

6.3 Background

In this section, we first introduce the multi-tiered architecture of Web clusters and
then provide a brief background on queueing theory.

6.3.1 Cluster Architecture

To illustrate the multi-tiered architecture at a Web-cluster as depicted in Fig. 6.1,
let us consider the requests of an e-commerce session. First, a client request ar-
rives at the initial cluster, where the selection of the initial cluster is via client-side
redirection policies such as DNS round robin or more sophisticated policies such
as [17, 20]. On arriving at the initial cluster, a dispatcher dispatches the request to
a server on the Web-tier using either round robin or sophisticated policies [14]. If
the request is for a static page, it is served by the Web server which also forms
the response and returns it to the user. If the request is for dynamically generated
content such as those involving purchase processing or shopping cart, then it is for-
warded to a server in the application-tier. The application server then resolves all
the dynamic fragments embedded within the client request by generating relevant
database queries. The decision of which database server must handle a database
query is made by another dispatcher. Finally, the application server collects all the
responses to the database queries and returns the page to the Web server, which then
forwards it back to the client.

6.3.2 Queueing Theory

The analytical model that we will later develop in Sect. 6.5 represents a server as a
M/G/1 queue [29]. A M/G/1 queue has exponentially distributed interarrival time for
incoming requests and an arbitrary distribution for service times (‘M’, ‘G’ represent
the Markovian and General distributions respectively while ‘1’ represents the pres-
ence of 1 queue). A M/G/1 queue is more general than a M/M/1 queue, which has
exponentially distributed request interarrival times as well as service times. How-
ever, the increase in generality of a M/G/1 queue comes with a price. A M/G/1
queue does not have a general, closed form distribution for the number of jobs in

6 Request Redirection for Dynamic Content 161

access
tier

web
tier

application
tier

database
tier

edge routers

routing
switches

authentication, DNS,
intrusion detect, VPN

web cache 1st level firewall

2nd level firewall

load balancing
switches

web
servers

web page storage
(NAS)

database
SQL servers

storage area
network
(SAN)

application
servers

files
(NAS)

switches

switches

Internet

Fig. 6.1 Cluster multi-tier architecture

the queue in steady state. It does, however, allow a general solution for the average
number of jobs in the queue and the average time spent in the queue.

While we use a M/G/1 queue to represent a server, we would like to point that a
more general and perhaps more accurate representation of a server would be a G/G/1
queue. Assuming an exponential request interarrival time implies that a request ar-
riving at the Web site is independent of the past arrivals. However, requests arriving
at a Web site do have some correlation amongst them, e.g. requests belonging to the
same session are definitely correlated with each other. Moreover, requests at a back-
end tier such as the database tier can be expected to be even more correlated since
one Web request can spawn multiple correlated database queries. However, for the

162 S. Ranjan

purpose of simplification we assume a M/G/1 queue which provides a closed form
expression for the average waiting time in a queue and hence allows us to derive the
fraction of requests that can be redirected.

6.4 Redirection Architecture and Algorithm

In this section, we describe WARD, a Wide Area Redirection architecture for
Dynamic content, and finally present a measurement-based redirection algorithm.

6.4.1 WARD

In a CDN, services and applications are replicated across all clusters, connected us-
ing custom high-bandwidth links. In practice, a cluster operator has multiple clusters
at a number of geographically dispersed sites. A client request arrives at the initial
cluster, where selection of the initial cluster can be static or dynamic via DNS round
robin or via more sophisticated policies that take into account the content availabil-
ity and network latencies as measured periodically by proxies [17, 20]. A dispatcher
as illustrated in Fig. 6.2 can potentially redirect the request to a remote cluster ac-
cording to the algorithm presented below. The objective of the redirection algorithm
is to redirect requests only if the savings in the request’s processing time at the re-
mote cluster overwhelm the network latency incurred to traverse the backbone in
both the forward and reverse path. In this way, end-to-end client delays can be re-
duced while requiring changes only to the dispatcher, and leaving other elements
unchanged.

WARD therefore provides a foundation for spatial multiplexing of cluster re-
sources. Namely, as a particular cluster becomes a hot-spot due to flash crowds [24,
31] or time-of-day effects [33], load can be transparently redirected to other clusters
while ensuring a latency benefit to clients. For example, client access patterns have
been observed to follow time-of-day patterns where server utilization varies with a
diurnal frequency. We can exploit this effect such that no cluster has to provision
for the peak demand. Thus, when the workload to one cluster is peaking, the work-
load at an cluster several time zones away will be much lower, enabling a significant
performance improvement by allowing redirection among clusters.

6.4.2 Redirection Algorithm

The objective of the redirection algorithm is to minimize the total time to service a
request. Namely, if a request arrives at cluster k, then the objective is to dispatch the
request to cluster j satisfying

6 Request Redirection for Dynamic Content 163

web tier

Internet

application
tier

database tier

Dispatcher

local dispatching

remote dispatching

remote IDCIDC

application tier

web tier

database tier

request
reply

Fig. 6.2 Wide-area redirection via redirector in front of the database tier

argmin j (2Δk j +Tj) (6.1)

where Δk j denotes the network delay between cluster k and j and Tj is the request’s
service time at cluster j.

In practice, the actual service time at each remote cluster Tj cannot be known in
advance. Yet, it can be estimated from the average load at cluster j as well as the
request type. Thus, we employ a measurement-based algorithm in which the aver-
age Tj is estimated from ρ j, the mean load at cluster j, as well as the request type.
In WARD, this is achieved by measuring a mean delay vs. load profile for each re-
quest type. Clusters periodically exchange load information to refine their estimates
of each others’ processing delays. In contrast, Δk j remains relatively static among
clusters due to their high-speed interconnection links. Thus, on request arrival, the
dispatcher uses the measured load at cluster j on the delay vs. load profile corre-
sponding to this request’s type to estimate the total service time on cluster j.

We consider a second policy which does not make a decision on a per request ba-
sis but rather computes a fraction of requests to be remotely dispatched. In particu-
lar, we show in the next section, that under certain simplifications there is an optimal
ratio of requests that should be remotely dispatched in order to minimize the delay
of all requests. Once this ratio is known, the dispatcher can simply redirect a request
remotely with the computed probability. We refer to these two redirection policies
as per-request redirection (or, equivalently per-query redirection) and probabilistic
redirection.

164 S. Ranjan

6.5 Performance Model

In this section, we develop a performance model for wide area redirection. For a
given workload, mean and variance of service time, and network latency, we derive
an expression for the delay-minimizing fraction of requests that a dispatcher should
redirect to remote clusters. Moreover, we compute the average total response time
including service and waiting-times and end-to-end network latency. We then per-
form a systematic performance analysis to estimate the optimal dispatching ratios
α∗ and to predict the expected average request response time under varying parame-
ters, such as the server load, the end-to-end network latency and the average request
service time.

Figure 6.3 illustrates the system model for WARD. We model request arrivals
at cluster i as a Poisson process with rate λi and consider a single bottleneck tier
modeled by a general service time distribution having mean xi and variance σ2

i .
We consider a redirection algorithm in which a request is redirected from cluster

j to cluster i with probability α ji, i.e. we consider probabilistic redirection. We also
denote E[Ti] as the expected total delay for servicing a request at cluster i, and denote
Δ ji as the one-way end-to-end network latency for a request sent from cluster j to
cluster i.

For the general case of a system of n cluster replicas, let us denote A =
{α11, . . . ,α ji, . . . ,αnn} as a matrix of request dispatching fractions, E[T] = {T1, . . . ,
Tn} as the vector of all total delays at an cluster bottleneck tier and D = {2Δ11, . . . ,Δ ji

+Δi j, . . . ,2Δnn} as a matrix of round-trip times from cluster i to cluster j and back.
Furthermore, we denote L = {λ1, . . . ,λn} as a vector of request arrival rates at the
cluster dispatchers, X = {x1, . . . ,xn} as the average service time, C = {c1, . . . ,cn} as
the vector of squared coefficient of variation for the service times, with ci = σ2

i /x2
i .

Lemma 1. The mean service time for the redirection policy using a dispatching
fraction A is given by:

E[T] = A ·X+
(A ·L)X2(1+C2)

2(1− (A ·L)X)
+A ·D (6.2)

dispatcher

M/G/1

M/G/1

requests
λ1

α11

μ1

μn

αn1

αnn

α1n

λn

IDC 1

dispatcher
requests

IDC n

Fig. 6.3 Redirection system model

6 Request Redirection for Dynamic Content 165

We provide a proof for the Lemma 1 at the end of the chapter in the Appendix. The
proof is based on the well known closed form expression for the average waiting
time at a M/G/1 queue. Next, from (6.2), we can compute the optimal dispatching
ratios that minimize the service times over all requests. In particular, let us A =
{α∗

11, . . . ,α∗
nn} denote the matrix of optimal request dispatching ratios.

Proposition 1. The optimal dispatching ratios A∗ are given by:

∂
∂α

(A ·X+
(A ·L)X2(1+C2)

2(1− (A ·L)X)
+A ·D) = 0 (6.3)

with E[T] defined in (6.2).
To solve (6.3) for all α ji, we use the following constraints to reduce the number

of unknowns. First, we clearly have ∑ j α∗
ji = 1. Second, λi ≥ λ j =⇒ α∗

ji = 0
i.e. when considering 2 clusters with different λ, under steady-state conditions, no
requests will be dispatched from the cluster with a smaller arrival rate to the cluster
with a higher arrival rate.

The optimal dispatching ratios A∗ can be used to predict the average request
service time for a system of cluster replicas.

Proposition 2. The expected request service time under optimal dispatching ratios
is given by:

E[T∗] = A∗ ·X+
(A∗ ·L)X2(1+C2)

2(1− (A∗ ·L)X)
+A∗ ·D (6.4)

Proof: (6.4) follows from Lemma 1 and by using the optimal dispatching ratios
from (6.3).

6.6 Numerical Results

Next, we show that wide area redirection is able to optimize inter-cluster per-
formance characterized by total access delays perceived by clients. Then, we ex-
perimentally establish the higher tolerance of WARD to measurement errors in
network latencies than to errors in server load measurements. This further verifies
our hypothesis that redirection mechanisms must obtain finer-granularity server load
measurements, which WARD is better-suited at given that it is implemented on dis-
patchers that are co-located with local servers and are connected via high-bandwidth
links to the remote servers.

Using the system model developed in Sect. 6.5, we consider a system of 2 clus-
ters with replicas having the same average request service time x. Furthermore,
we assume a symmetric network with wide area latency between the two clusters:
Δ = Δ12 = Δ21. Finally, we set λ2 = 0, which satisfies λ1 > λ2 =⇒ α21 = 0, and
denote λ := λ1 and α∗ := α∗

11 for simplicity.

166 S. Ranjan

0 50 100 150 200 250
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

End−to−end latency Δ [ms]

T
ot

al
 d

el
ay

 [s
]

WARD (ρ = 0.5)
No Redirection (ρ = 0.5)
WARD (ρ = 0.75)
No Redirection (ρ = 0.75)
WARD (ρ = 0.9)
No Redirection (ρ = 0.9)

Fig. 6.4 Comparison of total delay with and without wide area redirection

The dispatching ratio is computed based on (6.2):

E[T] = αx+
αλx2(1+ c2)
2(1−αλx)

+(1−α)x+
(1−α)λx2(1+ c2)
2(1− (1−α)λx)

+2(1−α)Δ (6.5)

Equation (6.5) is solved according to Proposition 1 to obtain the optimal dis-
patching ratio α∗. Henceforth, we refer to the term 1−α∗ as the remote redirection
ratio, i.e. the fraction of requests dispatched remotely. Then, according to Proposi-
tion 2, the expected total delay of the cluster system is given by substituting α by
the optimal ratio α∗ in (6.5).

If not otherwise stated, we use the following default values: x = 42.9 ms, σ =
40.1 ms, where these values were obtained from our testbed and Δ = 36 ms, which
corresponds to a speed-of-light latency for two clusters separated by 6 time-zones at
45◦ latitude.1 We will use ρ = λx to denote the total load on all clusters. For clusters
without redirection, ρ corresponds to the server load on the bottleneck tier, whereas
WARD can split this load among the local and remote clusters. To obtain a given
value of ρ , the arrival rate λ will be scaled, with x remaining fixed.

6.6.1 The Case for Wide-Area Redirection

First, we provide evidence that wide area redirection is able to decrease the user-
perceived total delay. We calculate the total delay of WARD using (6.3) and (6.4)
and compare it to the total delay of a cluster that does not implement redirection.

1 Given the circumference of earth at 45◦ latitude as 28335 km and the speed-of-light through
optical-fiber as 205 km/s, the one-way latency across 1 time-zone can be calculated as:
28335/(205∗24) ≈ 6 ms.

6 Request Redirection for Dynamic Content 167

Figure 6.4 shows the total delay as a function of the end-to-end latency and different
system loads ρ .

For low loads (ρ = 0.5), improvements are achieved only when the end-to-end
latency Δ ≤ 25 ms. For higher latencies, the redirection cost exceeds the processing
time so that all requests are serviced locally. However, a significant improvement is
achievable for higher loads. For a moderate load of ρ = 0.75 and Δ < 50 ms, the
total delay is reduced from 0.16 s to 0.13 s using WARD, an improvement of 18%.
For a heavily loaded system with ρ = 0.9 and when Δ < 50 ms, the total delay is
reduced from 0.38 s without redirection to 0.15 s using WARD, an improvement of
60%. Moreover, for loads ρ > 0.9, still higher improvements are predicted by the
model.

6.6.2 Susceptibility to Measurement Errors

Next, we establish the fact that the performance benefits out of a wide-area redirec-
tion policy can be exploited only when the server utilization values are available at
a very fine granularity. In contrast, network latencies can be quite coarse grained
without any performance penalties out of making the wrong decision. For estab-
lishing this claim, we study the performance impact due to measurement errors in
network latency Δ and server load ρ . We quantify the performance impact in terms
of error tolerance defined as the percentage error ±ε that increases the total delay
by at most 2%.

First, we study the impact of network latency errors as follows. Let Δ denote
the true inter-cluster network latency and Δ̂ = Δ + δ the measured value, and D̂
the corresponding round-trip time matrix. The dispatcher calculates the dispatching
ratios replacing D by D̂ in (6.2).

For the calculation of average total delay, (6.4) is used with the true latency values
D. The effects of measurement error in network latency on the remote redirection
ratio (1−α) and the resulting average request response time are shown in Fig. 6.5.

−80 −60 −40 −20 0 20 40 60 80
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Measurement error δ [%]

(a) Remote redirection ratio (b) Total delay

R
em

ot
e

re
di

re
ct

io
n

ra
tio

 (
1−

α)

Δ = 50 msec
Δ = 100 msec
Δ = 250 msec
Δ = 500 msec

−80 −60 −40 −20 0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Measurement error δ [%]

T
ot

al
 d

el
ay

 [s
]

Δ = 50 msec
Δ = 100 msec
Δ = 250 msec
Δ = 500 msec

Fig. 6.5 WARD performance under network measurement errors. A value of 0 on the x-axis cor-
responds to perfect end-to-end latency information. The server load is set to ρ = 0.95

168 S. Ranjan

Each curve denotes a different (true) latency Δ , and the x-axis denotes the error δ ,
in percent of Δ .

Figure 6.5(a) shows that the redirection ratio changes more for negative δ than
for the corresponding positive δ . The reason is that the redirection ratio does not
grow linearly with the end-to-end latency. As a consequence of the asymmetry, the
total delay increases more for negative δ , as shown in Fig. 6.5(b). Note, however,
that the response times are not highly sensitive to latency measurement errors and
the error tolerance is quite high at ±20%.

Likewise, we consider a scenario when the dispatcher has inaccurate server load
measurements, e.g. due to delays in receiving the measurements. In this scenario,
the measured load at the dispatcher is given by ρ̂ = λ̂x, with λ̂ = λ + ε (where ε is
in percent of the correct load ρ) and the corresponding measured arrival rate by L̂.
The network latency is set to Δ = 500 ms.

First, consider the case of measurement error ε > 0, when the dispatcher assumes
the server load to be higher than what it is and hence it redirects more requests than
the optimal. Figure 6.6(a) shows that the remote redirection ratio increases with
increasing measurement errors. These extra redirections incur additional network
latencies and hence the total delay also increases linearly in Fig. 6.6(b). In particu-
lar, for ρ ≥ 0.9, the error tolerance is +1.5%. Next, consider negative ε , when the
dispatcher assumes the local server load to be less than the actual value and hence
redirects pessimistically. As a result, the load on the local server incurs greater pro-
cessing times at the local cluster. As expected, Fig. 6.6(b) shows that at high server
loads ρ ≥ 0.9, the total delay is much more sensitive for negative ε with an error
tolerance of only −0.5%.

Thus, comparing the impact of latency and server measurement errors, the error
tolerance for latency is high at ±20% while that for server load is an order of mag-
nitude lower at +1.5,−0.5%. We thus conclude that greater accuracy is needed in
server load measurements than network latency.

Since server-side redirection mechanisms can obtain more fine-grained server
load information at lower overheads, this verifies their superiority in efficiently load-

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Measurement error ε [%]

R
em

ot
e

re
di

re
ct

io
n

ra
tio

 (
1−

α)

ρ = 0.5
ρ = 0.75
ρ = 0.9
ρ = 0.95

ρ = 0.5
ρ = 0.75
ρ = 0.9
ρ = 0.95

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Measurement error ε [%]

T
ot

al
 d

el
ay

 [s
]

(a) Remote redirection ratio (b) Total delay

Fig. 6.6 WARD performance under server load measurement errors

6 Request Redirection for Dynamic Content 169

balancing requests for dynamic content applications than client-side mechanisms:
First, client-side redirection policies when implemented at clients or DNS servers
may not have access to high-bandwidth links to the servers and; Second, client-side
redirection as implemented at proxies near clients (e.g. Akamai) may have high-
bandwidth access links, however, their overhead for obtaining the server load infor-
mation is much higher, given the much larger number of client-side dispatchers than
server-side ones. Consider the following: let the number of clusters is n and thus in
WARD, there are n server-side dispatchers. If the total number of servers across all
clusters in the tier implementing WARD is M, where M > n, then the complexity
of information exchanged in WARD is O(nM). In contrast, consider a client-side
redirection mechanism with one dispatcher per client-side proxy for a total of N
client-side proxies or dispatchers which yields a complexity of O(NM). Given that
the number of client-side proxies is typically much larger than the number of cluster
replicas, the complexity is much less for server-side redirection mechanisms. We
highlight this via an example: assuming that a client-side redirection scheme were
to install one proxy per Autonomous System in the world, then N can be expected to
be around 39,000. In contrast, typical cluster grids such as Google consist of about
60 clusters where 60 � 39,000.

6.7 Testbed Implementation and Experiments

In this section, we describe a CDN prototype implementation that we use to ex-
perimentally compare wide area redirection via WARD against other redirection
policies. Our results provide a proof-of-concept demonstration of wide area cluster-
driven redirection, experiments into the testbed’s key performance factors, and val-
idate the performance model.

The testbed, depicted in Fig. 6.1, consists of a cluster of Intel Pentium IV 2.0 GHz
processor machines running Linux 2.4.18-14, with 512 MB SDRAM, and a 30 GB
ATA-66 disk drive. One machine is configured as a router and runs Nistnet [6], an IP-
layer network emulation package. The router separates the remaining machines into
3 domains for the client and 2 clusters. This setup allows variation of the network
conditions (delay and bandwidth) between the client and the clusters as well as
between clusters. We developed a 3-tier system architecture as depicted in Fig. 6.2.
At the Web tier, we use an Apache Web server [8] and dynamic content is coded
using PHP scripts [7] at the application tier. Access to the 4 GB database is provided
by a MySQL server [5].

6.7.1 Database Dispatcher

A key aspect of the cluster architecture is the dispatcher which makes the decision
whether to service a request at the local or a remote cluster. On our testbed, the

170 S. Ranjan

database tier becomes the bottleneck first, due to the substantial processing demands
of complex database queries. We therefore implemented the dispatcher with remote
redirection capabilities in front of the database. In our implementation, we provide
the Web and application tiers with sufficient resources such that the database tier is
indeed the bottleneck.

While the objective of the database dispatcher is to minimize the response time of
the queries, its dispatching capabilities are restricted by consistency constraints. The
dispatcher addresses the consistency issues by two means: maintaining an identical
total ordering of writes at all database servers, and a read-one write-all dispatching
strategy. To maintain an identical total ordering of writes at all database servers,
each write query is assigned a unique sequence number, and the database servers
process the writes in the order of the sequence numbers. In the read-one write-all
dispatching strategy, write queries are sent to all database servers, and the response
is returned as soon as one of the database servers has processed the write. Hence,
database consistency is maintained asynchronously. A read query is sent to one of
the database servers where the corresponding conflicting writes have been processed
using a scheduling strategy described as conflict-aware [11]. This asynchronously-
maintained consistency along with conflict-aware scheduling has been shown to
scale to higher throughputs compared to the synchronous consistency algorithms.

However, though conflict-aware scheduling limits the server set available for
wide area dispatching for read queries, two factors outweigh this limitation. Firstly,
read queries have a larger service time than write queries and secondly, e-commerce
workloads have a significantly higher percentage of read queries [10].

WARD allows a general framework to implement remote redirection at any tier.
Though we implemented it in front of the database tier, we could equivalently do
it in front of the Web/application tier, in which case we would redirect an entire
request instead of database queries. Request redirection would incur less of network
overhead, but it would constrain the queries to the local database servers, whereby
the advantages due to remote redirection of queries would not be realized. We do
not explore request redirection versus query redirection in this chapter and instead
focus on the performance gains of remote redirection in general.

6.7.2 Redirection Algorithms

Under the consistency constraints, the database dispatcher directs read queries to the
database server with the least expected response time as follows. First, from the list
of clusters, all those which have unprocessed conflicting writes are excluded using
conflict-aware scheduling. From the remaining clusters, the dispatcher selects an
cluster by using either the per-query or, the probabilistic redirection policy. In the
per-query redirection policy, the dispatcher calculates the expected response time
by using measured loads of database tiers to determine if the latency overhead in-
curred by remote dispatching is outweighed by the savings in server processing
time. In the probabilistic policy, the dispatcher uses the optimal redirection ratio

6 Request Redirection for Dynamic Content 171

computed by the model and dispatches queries with that probability. We implement
the probabilistic policy such that given a number of clients, it is configured for the
redirection ratio predicted by the model and hence it doesn’t use the online server
load measurements.

6.7.3 TPC-W Workload

For our experimental workload, we utilize the TPC-W benchmark [9] to represent
an e-commerce workload characterizing an online bookstore site. We use the im-
plementation developed by Amza et al. for conflict-aware scheduling for dynamic
content applications [11].

The workload for TPC-W is generated by a client emulator which generates
the requests specified in the browsing mix of TPC-W, which consists of 95% read
queries and 5% writes. The client emulator opens a set of n user sessions which last
for 15 min. Each session opens a persistent HTTP connection to the Web server and
sends a sequence of requests to the cluster. Between two requests, the user waits for
a configurable parameter termed think time before the next request is generated. The
mean think time, which we set to 7 s, together with the number of users, defines the
request arrival rate at the cluster. Note here that a PHP script can contain multiple
database queries. The extraction and serialization of the queries is done by the ap-
plication tier. Due to the fact that each request consists of several embedded queries,
their arrival distribution and rate at the database are different from those generated
by the client emulator.

6.7.4 Experiments

The input parameters in our experimental study are the inter-cluster link latency
which we vary through the Nistnet module and the number of clients which arrive at
each cluster. The parameters we measure are request response time as perceived by
the clients, query response time as perceived by the database dispatcher and remote
redirection ratio as achieved by the database dispatcher. Request response time is
defined as the time elapsed between the generation of a request and the return of the
last byte of the response to the client. Query response time is defined as the time
period between the sending of a query by the dispatcher to the database and the re-
ception of the response by the dispatcher. We measure the mean and 90th percentile
request (query) response time for all requests (queries) generated during the entire
duration of an experiment. Remote redirection ratio is defined as the fraction of the
number of queries sent by the dispatcher to a remote database server.

We first present the offline technique to configure our per-query redirection pol-
icy with the query response time characteristics. Second, we quantify the perfor-
mance benefits of the WARD architecture by exploring the trade-off between the

172 S. Ranjan

load on the local database server and wide area link latency. Third, we compare per-
formance gains predicted by the analytical model of Sect. 6.5 with those obtained
via testbed measurements.

6.7.4.1 Offline Measurement of Query Response Time Characteristics

In these experiments, we measure the response time as a function of CPU load, a
key input to the per-query redirection policy. We use one cluster with access to one
local database server. The execution time for a query depends on the number and
type of other queries executing at the same time on the database server, which can
be abstracted as the workload entering the system. Hence, we vary the CPU load on
the database server by increasing the number of clients. In each case, we measure
the mean execution time for each of the 30 read-only MySQL queries. The resulting
delay-load curve as illustrated in Fig. 6.7 is then used in the per-query redirection
policy.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
(s

)

Mean CPU load on database server (%−age)

Fig. 6.7 Mean database query response times vs mean database CPU load for the 30 read-only
MySQL queries in the browsing mix of the TPC-W benchmark

6.7.4.2 WARD Performance Gains

Using our experimental test bed, we first validate the efficacy of WARD in improv-
ing the cluster performance owing to its ability to perform a per-query redirection
while taking both server loads and network latencies into account. In this experi-
ment, we use a set up in which the local cluster’s Web tier is over-provisioned with
servers such that it never becomes the bottleneck. Both the local and remote clusters
have 1 server each at their database tier. Requests only arrive at the local cluster and

6 Request Redirection for Dynamic Content 173

after being processed at the Web tier, their queries may either be processed at the
local database tier or redirected to the remote database tier.

We compare the performance of WARD against the following 4 different straw-
man algorithms: (1) No Redirection where all queries are processed locally; (2) La-
tency Only where queries are forwarded to the server with the least round-trip time
as measured in the last measurement interval; (3) Server Only where queries are
forwarded to the server with the least CPU load and hence which can be expected
to process the query the fastest; (4) Round Robin where queries are forwarded in a
round-robin fashion between the local and remote database servers. We refer to the
last three algorithms that involve redirection of queries collectively as the redirec-
tion strawman algorithms.

Figure 6.8 shows the performance achieved using a trace generated using the
browsing mix of TPC-W consisting of 100 client sessions with mean inter-request
arrival time per session being 4 s. First, Fig. 6.8(a) shows that the performance of
all algorithms that redirect queries away from the local server is better than the
No Redirection algorithm. This highlights the fact that for this workload the local
database server is heavily loaded and hence it is of benefit to redirect a part of its load
to the remote server. However, the performance of WARD is much better compared
to all the strawman algorithms, thereby proving its superiority. Infact, as seen from
Fig. 6.8(b), WARD achieves a better performance while redirecting the least fraction
of queries to the remote server. This is on account of the better redirection decision
made by WARD on a per-query basis by accounting for both the server loads and
latencies.

Second, the Latency Only algorithm achieves the worst performance amongst the
redirection strawman algorithms. This behavior further validates our hypothesis that
for a dynamic content Web site such as ours, the server loads are more important for
forwarding decisions than the latencies. However, even the Server Only algorithm’s
performance becomes worse compared to WARD with increasing inter-cluster la-
tencies. This is again an expected behavior since the Server Only algorithm doesn’t

10

8

6

4

2

0
0 50 100 150 200

End-to end latency (ms)
250 300 350 400

1

0.8

0.6

0.4

0.2

0

0 50 100 150 200
End-to end latency (ms)

Fr
ac

tio
n

of
 r

eq
ue

st
s

re
di

re
ct

ed

250 300 350 400

No reduction
Latency Only
Round-Robin
Server Only
WARD

No reduction
Latency Only
Round-Robin
Server Only
WARD

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

)

(a) Response time (a) Redirection ratio

Fig. 6.8 Performance of WARD against strawman algorithms of No Redirection, Latency Only,
Server Only and Round Robin

174 S. Ranjan

take the latencies into account in its redirection decision and hence is unable to
make the correct redirection decision per-query. In contrast, WARD is designed to
take both the server loads and latencies into account in its redirection decision.

Third, the performance of all the redirection algorithms (WARD as well as the
strawman redirection algorithms) degrades with increasing inter-cluster latencies
since the latency overhead of redirection is higher per-query. Eventually, the cost of
redirecting even a single query can be expected to outweigh the benefit of having a
remote server with lower CPU load. Hence, the performance of the Latency Only
(Round Robin) algorithm becomes worse than not redirecting at all once the end-
to-end latencies are as high as 270 (375) ms. In contrast, WARD can support having
the remote cluster the furthest away than all the strawman algorithms.

6.7.4.3 Model Validation and Redirection Policies

We validate the analytical model developed in Sect. 6.5 by comparing against the
WARD redirection policies on our testbed. Since the bottleneck tier is the database
tier, we compare the redirection ratios and response time for processing queries at
this tier under the model as well as on our testbed. For the model, we use (6.5) from
Sect. 6.6 with x = 42.9 ms and σ = 40.1 ms, as measured on an unloaded database
server in our testbed.

First, Fig. 6.9 compares the mean query response time of the model and the im-
plementation on a single cluster as a function of the server load ρ . Observe that the
model matches the measured query response time for ρ < 0.7 within ±10%. Beyond
this load, the model deviates from the implementation because: (1) our M/G/1 model
makes the simplifying assumption that the arrival process of queries at the database
tier is independent which may not hold true given the correlation across queries

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
(s

)

Total (local + remote) database server load ρ

M/G/1
per−query and probabilistic policy

Fig. 6.9 WARD analytical model for 1-cluster.

6 Request Redirection for Dynamic Content 175

generated for the same Web request; (2) our M/G/1 model doesn’t take read-write
conflicts into account due to which queries may take longer to process than what
the model predicts and; (3) at high loads there are more queries and thereby greater
number of conflicts.

Next, we compare the model with the two implemented redirection policies:
(1) probabilistic, and (2) per-query. The per-query policy receives the CPU load
measurements every 5 s and we set the inter-cluster latency to be 25 ms in all the
experiments.

Figure 6.10(a) and (b) compare the remote redirection ratio and query response
time as a function of the system load. The redirection ratios of the model and the
probabilistic policy are close because this policy bases itself upon the optimal values
predicted by the model. On the other hand, the per-query policy begins redirecting
earlier and redirects more queries until ρ < 0.5 compared to both the model and
probabilistic policy. The reason for this behavior is that heavy queries are more sen-
sitive to load as shown in Fig. 6.8(a), and hence it is of increasing value to redirect
them at comparatively lower system loads. Hence, the per-query policy performs
better and exhibits a lower mean response time for ρ < 0.5 in Fig. 6.10(b). When
ρ > 0.5, the probabilistic policy redirects more queries than the per-query policy
and hence yields lower response times. We attribute this difference to the fact that
the the measurement interval of 5 s is too coarse grained to capture the small oscilla-
tions in CPU load. A better response time can be expected for smaller measurement
intervals, but would require that an optimal tradeoff be established between mea-
surement accuracy and measurement overhead.

Thus, we derive two important conclusions from this experiment. First, that de-
spite its simplifying assumptions, the M/G/1 model does match the implementation
closely and hence the conclusions derived by using the model in Sect. 6.6 should be
expected to hold true in real world implementations as well. Second, the WARD per-
query redirection algorithm performs better than the probabilistic algorithm under
low load scenarios and its performance under high load scenarios can be improved
by reducing the measurement interval.

0 0.2 0.4

(a) 2-cluster, redirection ratio (b) 2-cluster, mean redirection time

0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Total (local+remote) database server load (ρ) Total (local+remote) database server load (ρ)

R
em

ot
e

re
di

re
ct

io
n

ra
tio

 (
1−

α)

model
probabilistic policy
per−query policy

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
ea

n
qu

er
y

re
sp

on
se

 ti
m

e
(s

) probabilistic policy (No Redirection)
probabilistic policy (WARD)
per−query policy (WARD)

Fig. 6.10 WARD analytical model validation

176 S. Ranjan

6.8 Visionary Thoughts for Practitioners

Our goal through this chapter is to provide the following visionary thoughts to prac-
titioners. First, we highlight the importance of request redirection in multiplexing
the CDN resources besides providing a reasonable response time to Web users. In
this regards, consider a Web application that is accessed by users around the world.
Web applications have been documented to experience a time-of-day traffic pattern
where the traffic is higher during office hours than night time. Given the goal of
client-side redirection mechanisms which typically redirect a user to the “closest”
cluster server, we can thus expect the traffic at a particular cluster to be higher dur-
ing its daylight hours. Now if a CDN was used to host an application across two
clusters in Europe and North America, then owing to their time-difference signifi-
cant resource multiplexing savings can be achieved. A wide-area redirection mech-
anism can then redirect requests away from the overloaded American cluster to the
temporarily underloaded European cluster if during the American day time, the traf-
fic exceeds normal levels. This can be exploited to achieve resource savings since
neither the American nor the European cluster needs to overprovision their clus-
ter resources and can instead achieve a similar performance by multiplexing their
resources via a wide-area redirection mechanism. The second message for practi-
tioners is the importance of providing a per-request redirection or server selection
mechanism which incorporates both server loads and network latencies. In this re-
gards, in Sect. 6.6.2 we highlight the ability of server-side redirection mechanisms to
collect fine-grained server load measurements at lower overheads. This highlights
an important finding that a server-side redirection mechanism can achieve better
performance than client-side redirection mechanisms (such as DNS redirection in
Akamai) at lower measurement overheads.

6.9 Future Research Directions

In this chapter, we discussed the performance savings that can be achieved by a
request redirection mechanism and designed a request redirection algorithm for dy-
namic content. The example implementation for the redirection algorithm is on the
database tier which is identified as the bottleneck tier in our implementation. One
of the interesting future research directions would be to explore experimentally the
savings that can be achieved by implementing redirection at other cluster tiers such
as Web tier or application tier. We provide an example to motivate the same. Re-
call that to serve a client request, the application tier initiates several queries to the
database tier. Redirection as implemented at the database tier may end up dispatch-
ing all the database queries (belonging to a request) to database servers at a remote
cluster. In such a scenario, each query would incur network round-trip latencies
which could have been avoided if the entire request had been dispatched to a Web
server in the remote cluster.

6 Request Redirection for Dynamic Content 177

6.10 Conclusions

In this chapter, we presented request redirection techniques that can be used by
CDNs to both reduce the response times perceived by clients and to statistically
multiplex resources across all the clusters. In particular, we developed a proof-
of-concept request redirection mechanism for dynamic content, namely WARD in
order to highlight the design principles involved. The objective of WARD is to min-
imize the end-to-end latency of dynamic content requests by jointly considering
network and server delays. We developed an analytical model and proof-of-concept
implementation that demonstrated significant reductions in average request response
times. For example, for our implementation of a CDN hosting an e-commerce site
and serving 300 concurrent users, WARD can reduce the average response time by
54% from 5 s to 2.3 s. Moreover, the model predicts that the performance improve-
ments will further increase when the complexity of dynamic content processing in
Web requests increases. WARD is especially suited to prevent increased response
times due to short-term bottlenecks, e.g. caused by flash crowds. If the latency
costs of redirection are not excessively high, WARD can also be used to exploit
long-time-scale trends such as time-of-day driven workloads, and thereby avoid ex-
pensive over-provisioning of Web clusters. Finally, WARD is a server-side redirec-
tion and hence an orthogonal solution to content replication, client-side redirection
and server migration policies and can therefore be seamlessly integrated with such
approaches.

Appendix

We provide a proof for the Lemma 1 here.
Proof: The total service time is composed of 3 durations: (i) the network latency of
transferring the request to and from the remote cluster (ii) the queuing time at the
cluster and (iii) the service time at the cluster.

For symmetry reasons, in the following equations, we attribute the “costs” to the
receiving cluster i. First, we assume that the network latency between the dispatcher
and a local cluster Δii = 0 and hence, network latency is incurred only by requests
dispatched to a remote cluster:

α ji(Δ ji +Δi j) (6.6)

Second, consider the mean waiting time for a request in an cluster queue before
being serviced. In general, the waiting time for for an M/G/1 queue is:

ρx(1+ c2)
2(1−ρ)

(6.7)

with ρ = λx.

178 S. Ranjan

For any cluster i, the arrival rate λ is the sum of the requests that are dispatched
from all clusters j to cluster i, i.e. λi = ∑ j α jiλ j. With this λ, (6.7) can be rewritten
for a single cluster i as:

(∑ j α jiλ j)x2
i (1+ c2

i)
2(1− (∑ j α jiλ j)xi)

(6.8)

Finally, the service time for a request at cluster i is given by

α jixi (6.9)

The addition of these 3 terms for a set of clusters yields (6.2).

Acknowledgements Some of the materials presented in this chapter appeared in a preliminary
format at IEEE INFOCOM’04 [34]. The author is grateful to Prof. Edward Knightly and Dr. Roger
Karrer for their insightful comments and advise that contributed to the majority of the concepts
explained in this chapter.

References

1. Akamai Whitepaper: Turbo-charging Dynamic Web Sites with Akamai EdgeSuite. http:
//www.akamai.com/dl/whitepapers, 2000

2. Akamai. http://www.akamai.com, 2007
3. Limelight Networks. http://www.limelightnetworks.com, 2007
4. Mirror Image Internet. http://www.mirror-image.com, 2007
5. MySQL Database Server. http://www.mysql.com, 2007
6. NISTNET: Network Emulation Package. http://snad.ncsl.nist.gov/itg/

nistnet/, 2007
7. PHP Scripting Language. http://www.php.net, 2007
8. The Apache Software Foundation. http://www.apache.org, 2007
9. TPC-W: Transaction Processing Council. http://www.tpc.org, 2007

10. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J., Rajamani,
K., Zwaenepoel, W. Specification and implementation of dynamic content benchmarks. In:
IEEE Workshop on Workload Characterization (WWC-5), Austin, TX (2002)

11. Amza, C., Cox, A., Zwaenepoel, W. Conflict-aware scheduling for dynamic content applica-
tions. In: USENIX Symposium on Internet Technologies and Systems, Seattle,WA (2003)

12. Arlitt, M., Williamson, C. Internet web servers: Workload characterization and performance
implications. IEEE/ACM Trans on Networking 5(5) (1997)

13. Arlitt, M., Krishnamurthy, D., Rolia, J. Characterizing the scalability of a large web-based
shopping system. ACM Trans on Internet Technology 1(1) (2001)

14. Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W. Scalable content-aware request distribu-
tion in cluster-based network servers. In: USENIX ATC (2000)

15. Bouchenak, S., Mittal, S., Zwaenepoel, W. Using code transformation for consistent and trans-
parent caching of dynamic web content. Tech. Rep. 200383, EPFL, Lausanne (2003)

16. Cardellini, V., Colajanni, M., Yu, PS. Geographic load balancing for scalable distributed web
systems. In: MASCOTS, San Francisco, CA (2000)

17. Carter, R., Crovella, M. Server selection using dynamic path characterization in wide-area
networks. In: IEEE INFOCOM, Kobe, Japan (1997)

18. Chen, Y., Katz, R., Kubiatowicz, J. Dynamic replica placement for scalable content delivery.
In: International Workshop on Peer to Peer Systems, Cambridge, MA (2002)

6 Request Redirection for Dynamic Content 179

19. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Welhl, B. Globally distributed
content delivery. IEEE Internet Computing (2002)

20. Fei, Z., Bhattacharjee, S., Zegura, E., Ammar, M. A novel server selection technique for im-
proving the response time of a replicated service. In: IEEE INFOCOM, San Francisco, CA
(1998)

21. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T., Diot,
C. Packet-level Traffic Measurement from the Sprint IP Backbone. IEEE Network Magazine
(2003)

22. Guyton, J., Schwartz, M. Locating nearby copies of replicated internet servers. In: ACM SIG-
COMM, Cambridge, MA (1995)

23. Jamin, S., Jin, C., Kurc, A., Raz, D., Shavitt, Y. Constrained mirror placement on the internet.
In: IEEE, INFOCOM., Anchorage, AK (2001)

24. Jung, J., Krishnamurthy, B., Rabinovich, M. Flash crowds and denial of service attacks: Char-
acterization and implications for CDNs and web sites. In: International World Wide Web
Conference (2002)

25. Kangasharju, J., Ross, K., Roberts, J. Performance evaluation of redirection schemes in con-
tent distribution networks. Computer Communications 24(2) (2001)

26. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R. Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide web.
In: ACM Symposium on Theory of Computing (1997)

27. Karger, D., Sherman, A., Berkhemier, A., Bogstad, B., Dhanidina, R., Iwamoto K., Kim, B.,
Matkins, L., Yerushalmi, Y. Web caching with consistent hashing. In: World Wide Web Con-
ference (1999)

28. Karlsson, M., Mahalingam, M. Do we need replica placement algorithms in content delivery
networks. In: 7th International Workshop on Web Content Caching and Distribution (WCW)
(2002)

29. Kleinrock, L. “Queueing Systems, Volume II: Computer Applications”. Wiley (1976)
30. Myers, A., Chuang, J., Hengartner, U., Xie, Y., Zhuang, W., Zhang, H. A secure, publisher-

centric web caching infrastructure. In: Proc. of IEEE INFOCOM (2001)
31. Padmanabhan, VN., Sripanidkulchai, K. The case for cooperative networking. In: Intl. Work-

shop on Peer-to-Peer Systems, Cambridge, MA (2002)
32. Qiu, L., Padmanabhan, V., Voelker, G. On the placement of web server replicas. In: IEEE

INFOCOM, Anchorage, AK (2001)
33. Ranjan, S., Rolia, J., Fu, H., Knightly, E. Qos-driven server migration for internet data centers.

In: Intl. Workshop on Quality-of-Service, Miami, FL (2002)
34. Ranjan, S., Karrer, R., Knightly, E. Wide area redirection of dynamic content in internet data

centers. In: IEEE INFOCOM, HongKong (2004)
35. Shaikh, A., Tewari, R., Agrawal, M. On the effectiveness of dns-based server selection. In:

IEEE INFOCOM, Anchorage, AK (2001)
36. Villela, D., Rubenstein, D. Performance analysis of server sharing collectives for content dis-

tribution. In: Intl. Workshop on Quality-of-Service (2003)
37. Wang, L., Pai, V., Peterson, L. The effectiveness of request redirection on cdn robustness. In:

OSDI, Boston, MA (2002)

Part II
CDN Modeling and Performance

Chapter 7
Economics-Informed Design of CDNs

Nicolas Christin, John Chuang and Jens Grossklags

7.1 Introduction

Over the past decade, both the contents available on the Internet, and its means of
distribution have undergone a drastic change. In the mid-nineties, the development
of electronic commerce and web services had fueled the dominance of HTTP traffic,
which resulted in easily distinguishable “clients” and “servers.” However, since then
two important events radically transformed the Internet landscape.

First, the Napster service [1], launched in 1999, ushered the era of “Peer-to-Peer
(P2P)” computing. P2P computing markedly differs from the client-server paradigm
that preceded it (and now co-exists with it), in that any host at the edge of the net-
work can act as an information provider. Second, digital production tools became
accessible to the masses, through the availability of high-resolution cameras, video-
recorders, or high-quality sound cards with sampling capabilities. This in turn led
to a proliferation of user-generated contents, which intensified even further as infor-
mation dissemination platforms, e.g. weblogs, became easier to use.

Shortly stated, end-users have gained the tools and resources to now act as active
content contributors. However, at the same time (and, paradoxically, maybe because
of this empowerment), novel phenomena, such as occurrences of the “tragedy of the
commons” [23] have started to be observed on the network.

The tragedy of the commons is best explained by its canonical example. Consider
a village pasture that can accommodate a fixed number of sheep, and is a “common”
good shared among all herdsmen. Each herdsman can see a significant advantage in
slightly increasing their own herd – more sheep mean more wool, and in turn more

Nicolas Christin
Carnegie Mellon University, INI and CyLab Japan, 1-3-3-17 Higashikawasaki-cho, Chuo-ku,
Kobe, 650-0044, Japan, e-mail: nicolasc@cmu.edu

John Chuang
School of Information, The University of California at Berkeley, 102 South Hall, Berkeley, CA
94720, USA, e-mail: chuang@ischool.berkeley.edu

Jens Grossklags
School of Information, The University of California at Berkeley, 102 South Hall, Berkeley, CA
94720, USA, e-mail: jensg@ischool.berkeley.edu

R. Buyya et al. (eds.), Content Delivery Networks, 183
c© Springer-Verlag Berlin Heidelberg 2008

184 N. Christin et al.

income; and, if the pasture is sufficiently big, surely no one would mind an additional
one or two sheep grazing on the pasture. The problem is that all herdsmen may come
to the exact same conclusion, and there is now a very large increase in the number of
sheep grazing on the pasture. In the worst-case (the “tragedy”), all grass is quickly
depleted, sheep die of starvation, and all herdsmen lose all of their resources. The
tragedy of the commons is an illustration of a misalignment between each individual’s
own incentives and a situation desirable from a societal point of view.

Occurrences of the tragedy of the commons have been observed in modern in-
formation networks such as P2P systems, which present strong cases of incentive
misalignment. In a now widely cited study [2], Adar and Huberman identified that
as many as 70% users on the Gnutella file-sharing network were not sharing any
data, and were instead “free-riding”, i.e. benefiting from the service without con-
tributing anything in return. At the time of the study, the Gnutella network was
essentially subsisting thanks to the 1% of users who were serving as much as 50%
of all requests. In other words, free-riding had led the Gnutella network to become,
in practice, very much akin to a centralized network. Such empirical evidence ar-
guably ran counter to the founding principles behind P2P networks—supposed to
be enablers facilitating collaboration and cooperation among all participants.

Related studies provide additional evidence of the high levels of free-riding in
P2P networks [45], or unfairness in ad-hoc networks [25]. Such empirical research
substantiates that users are, by and large, “rational”, and in fact, an overwhelming
majority are acting primarily with their own interests in mind. That is, they are
interested in maximizing the benefits they exert from the network, while minimizing
the costs associated with participation (“selfish” behavior).

How does this perceived user rationality, or selfishness, impact the practitioner
interested in developing content delivery networks (CDN)? After all, are not most
content delivery networks owned by a single entity, who can keep a tight control
over all of its participants, and should therefore be able to solve any incentive mis-
alignment problem?

In fact, studying of participants’ incentives is relevant to several levels of interest
to a CDN designer. First, a content provider may want to use end-users as helpers
for the content distribution mechanism, in order to both increase the quality of ser-
vice available to users, while reducing the infrastructure costs [26]. This could be
a strategy particularly interesting to providers of large-scale, bandwidth intensive
contents, such as video on demand. As YouTube’s rising popularity [9] exempli-
fies, demand for such kind of services is poised to become considerable in the near
future, and may require to rethink the design of the delivery infrastructure.

Second, different CDNs operated by different service providers may need to
be interconnected. Given that different service providers are usually rival entities,
studying their respective incentives can help devise meaningful, enforceable, ser-
vice level agreements.

Third, even assuming obedient participants, e.g. as is the case when the whole
CDN infrastructure is controlled and owned by a single entity, it is important to
be able to characterize the amount of resources each participant is required to
contribute for the system to operate properly. The analysis allows the network

7 Economics-Informed Design of CDNs 185

architect to pinpoint potential “hot spots”, that is, parts of the network that have
to invest a disproportionate amount compared to their available resources. As hot
spots are likely to be the primary points of failure when the network operates under
heavy load, their identification is of utmost importance.

Fourth, understanding the cost and benefits associated with participation to a net-
work helps gain valuable insights into viable customer pricing schemes, as discussed
in some of the other chapters.

All of these arguments point to the direction that one needs to achieve a fun-
damental understanding of both the incentives at play in the design of a structured
CDN, as well as the resources to be contributed by participating entities.

This type of research, while relatively new to the networking literature, has
been explored for many years in applied mathematics and economics. In particu-
lar, game theory, the study of strategic interactions among non-cooperative entities,
has been traditionally used for understanding and modeling competitive markets;
for instance, traders competing on the stock market. Recent work has shown that,
game theory applies equally well, if not better, to provide a formal background for
network design and evaluation in presence of (potentially) selfish participants [46].

This chapter builds on game theory research to offer the following contributions.
First, we propose a novel cost model for agents participating in a content-delivery
overlay network. Using the proposed cost model, we then provide an analysis of
the root causes of incentive misalignment in CDNs. We further investigate some
of the network structures proposed in the literature for P2P CDNs, to determine if
they are incentive compatible. We also revisit some of the traditional game-theoretic
assumptions to study their applicability to CDN design.

The remainder of this chapter is structured as follows. In Sect. 7.2, we provide a
short tutorial on the game-theoretic concepts we use in our analysis, and review some
of the research related to our discussion. We then turn to a presentation of our cost
model in Sect. 7.3. With the model defined, we proceed to analyze incentives in link
establishment in CDNs in Sect. 7.4. We then relate our incentive analysis to recently
proposed infrastructures in Sect. 7.5, and complement our formal analysis with nu-
merical simulations in Sect. 7.6. We discuss how relaxing some of the assumptions
made in theanalysismayfurther impact results inSect. 7.7.We identify future research
directions in Sect. 7.8, and provide a summary and brief conclusions in Sect. 7.9.

7.2 Background and Related Work

Based on the empirical observations of user rationality, as discussed above, system
architects have become increasingly interested in considering network participants
as selfish [37] or competing [46] entities. Such concepts have made their way into
deployed P2P systems: for instance, in an effort to discourage free-riding, some
popular P2P systems such as KaZaA or BitTorrent [16] rely on simple incentive
mechanisms. More generally, as summarized in [18, 37], a number of recent re-
search efforts have been applying concepts from game theory and mechanism design

186 N. Christin et al.

to networked systems in an effort to align the incentives of each (self-interested) user
with the goal of maximizing the overall system performance. In this section, we first
review some basic game theoretic concepts, before turning to a more comprehensive
discussion of the related work.

7.2.1 Game-Theoretic Background

A cornerstone of game theory is the notion of competitive equilibrium, which is
used to predict user behavior and infer the outcome of a competitive game. As dis-
cussed in [37], the concept of Nash equilibrium is predominantly used in system
research to characterize user behavior. An interesting feature of Nash equilibrium
modeling is that it is useful to identify tensions between individual incentives and
other motivations [24].

Assuming that each user obtains a utility dependent on the strategy she adopts
(and given a set of strategies played by other users), a Nash equilibrium is defined
as a set of strategies from which no user willing to maximize her own utility has any
incentive to deviate [35].

Formally, we consider strategic interactions (called games) of the following sim-
ple form: the individual decision-makers (also called players) of a game simulta-
neously choose actions that are derived from their available strategies. The players
will receive payoffs that depend on the combination of the actions chosen by each
player. In short, a player decides upon an action. Based on her actions and that
of other players, she gets a reward, or a penalty. In economics, such rewards and
penalties are denoted by the general term “utility,” and are sometimes expressed in
a monetary form. In system design, such as CDN design, the utility can also denote
monetary amounts, but is not restricted to them. The utility may instead character-
ize a user satisfaction index, function of (for instance) a reduced latency, increased
throughput, or an overall better service.

More precisely, consider a set V = {1, ...,N} of players. Denote as Zu the
set of pure (i.e. deterministic) strategies available to player u, Z−u the set of
strategies available to all players other than u, and denote as ζu an arbitrary
member of u’s strategy set. Cu represents player u’s payoff (or utility) function:
Cu(ζu,ζ−u) is the payoff to player u given her strategy (ζu) and the other play-
ers’ strategies (summarized as ζ−u). A N-player game can then be described as
G = {V ;Zu,Z−u;Cu,C−u}.

Players are in a Nash equilibrium if a change in strategies by any one of them
would lead that player to obtain a lower utility than if she remained with her current
strategy [35]. Formally, we can define a Nash equilibrium as follows:

Definition 1. A vector of pure strategies ζ ∗ = (ζ ∗
1 , ...,ζ ∗

N) ∈ Z comprises a (pure)
Nash equilibrium of a game G if, for all u ∈ V and for all ζu ∈ Zu, Cu(ζu,ζ ∗

−u)−
Cu(ζ ∗

u ,ζ ∗
−u) ≤ 0.

We can extend the notion of Nash equilibrium to probabilistic strategies. There
are indeed games where players can figure that the best strategies to be played are

7 Economics-Informed Design of CDNs 187

non-deterministic. Consider the case of a goal-keeper facing a penalty kick in a
soccer game. Clearly, a strategy of always diving to the right is unappealing as op-
ponents will, over time, be able to predict it. Instead, most goal-keepers slightly
randomize their strategies, for instance, diving to the right with only a 70% proba-
bility if the kicker shoots with his left foot.

Note that such a probabilistic strategy is different from playing completely at
random. In computer systems, probabilistic strategies may be useful to account for
exogenous conditions that can probabilistically impact user behavior, such as the
congestion on the network, the amount of noise on a wireless channel, and so forth.

A probability distribution over pure strategies is called a mixed strategy σu. Ac-
cordingly, the set of mixed strategies for each player, Σu, contains the set of pure
strategies, Zu, as degenerate cases. Each player’s randomization is statistically inde-
pendent of those of the other players. An N-player mixed strategy game can then be
described as G = {V ;Σu,Σ−u;Cu,C−u}.

The notion of Nash equilibrium can be extended to mixed strategies as follows.

Definition 2. A vector of mixed strategies σ∗ = (σ∗
1 , ...,σ∗

N) ∈ Σ comprises a
mixed-strategy Nash equilibrium of a game G if, for all u ∈ V and for all σu ∈ Σu,
Cu(σu,σ∗

−u)−Cu(σ∗
u ,σ∗

−u) ≤ 0.

The third definition that we need to present to facilitate the exposition in the rest
of this chapter is that of “social optimum.” While Nash strategies essentially char-
acterize best-responses from each player to all other players’ strategies, the social
optimum describes the situation that is the best for all players, taken as an aggre-
gate, that is, to society. Essentially, the social optimum is what a benevolent dictator
would impose to ensure that the average utility over all players is the highest.

Going back to the example of sheep grazing on a shared pasture, the Nash strat-
egy for each player (i.e. herdsman) is to let all of his/her sheep use the pasture.
However, as we have discussed, all players converging to the same strategy leads to
disaster. On the other hand, a socially optimal strategy would be to forcibly limit the
number of sheep each herdsman can let graze on the pasture, so that all sheep can
be well-fed.

Formally, the social optimum can be defined as follows:

Definition 3. A vector of pure strategies ζ ∗ = (ζ ∗
1 , ...,ζ ∗

N) ∈ S defines a social opti-
mum of a game G if and only if for all ζ ∈ Z, ∑u Cu(ζ ∗)−∑u Cu(ζ) ≤ 0.

That is, the social optimum is the strategy (or strategies) that maximize the sum
of all players’ utilities.

7.2.2 Related Applications of Game-Theory
to Networking Problems

Research on applications of game-theory to algorithmic and networking problems
has recently enjoyed considerable interest and exposure. The reader can refer to [36]
for a comprehensive treatment of recent game-theoretic contributions to algorithmic

188 N. Christin et al.

problems. Rather than providing a comprehensive literature survey on the topic, we
discuss here a relatively modest list of publications, representative of some of the
major trends in the field, and which can be of direct relevance to CDN designers.
Namely, we focus on research related to (1) network routing, (2) caching and (3)
network formation.

Traffic routing. Using a specific case study, Braess’ paradox [6] states that increas-
ing a network capacity by adding a new route can sometimes adversely affect per-
formance of the whole network. A number of papers have subsequently attempted to
characterize incentives in routing data. For instance, [43] generalizes Braess’ para-
dox by providing bounds to explore how bad the situation could get in networks
where users can freely choose how to route their traffic.

Other research on game-theory applied to routing, e.g. [8, 19], has looked at how
undesirable “hidden actions” can be avoided in multi-hop networks. The problem
is that, in most multi-hop networks, end nodes can usually not easily monitor the
individual behavior of intermediate nodes in charge of routing messages, and can
instead only determine if end-to-end transmission was successful. Therefore, in the
absence of incentives for intermediary nodes to properly behave, the risk is great
that nodes in charge of routing traffic arbitrarily discard messages and/or downgrade
their priority. Feldman et al. [19] show the importance of good contract design to
overcome hidden action.

Caching and replication. A number of papers (e.g. [14, 20, 38]) have explored
incentives in caching and replication of data over distributed networks. At a broad
level, incentives issues in caching fall into two major categories. Given an existing
CDN or overlay network, one may want to find out where data should be stored to
satisfy performance objectives without creating incentives for some caches to de-
fect from the network. Additionally, different CDN, operated by rival entities, may
need to be interconnected – an issue directly leading to the question of incentive-
compatible contract design.

Network formation. Finally, a large body of literature, e.g. [10, 12, 15, 17, 27],
analyzes incentives in network formation. That is, given an existing network of ra-
tional and potentially competing entities, these papers describe how an additional
rational participant may elect to join the network. This problem is easy to view as a
graph problem, expressing the existing network as a set of nodes, linked by a set of
edges. The questions posed by network formation can then be phrased as follows.
What are the new links (edges) an incoming node will build to nodes in the existing
network? Will some edges be deleted when the new node joins the network? Link
creation can be modeled as an incentive problem: a node will only create or remove
a link to another node if it increases its own utility by doing so.

Cost models for network formation were initially proposed to study the forma-
tion of social and economic networks [27], for instance, to determine how likely
were academics to co-author papers with other academics. These socio-economic
models served as the foundation for more recent studies [14, 17], which char-
acterize peer-to-peer network formation as a non-cooperative game, where nodes
have an incentive to participate in the network, but want to minimize the price

7 Economics-Informed Design of CDNs 189

they pay for doing so. These initial works focused on distance to other nodes
and degree of connectivity as the key parameters in the computation of each
node’s utility function. Subsequent works extended the research by considering
the load imposed on each node in addition to the distance to other nodes and de-
gree of connectivity [10, 11]. In the rest of this chapter, we elaborate on such cost
models.

7.3 Modeling Costs and Benefits in CDNs

The centerpiece of this chapter is a cost model, which aims at assessing the amount
of resources a given node must contribute to participate in a CDN or overlay net-
work, and the benefits it exerts from participation. We express the benefits of par-
ticipating in the CDN in terms of a cost reduction. We point out that the model
we describe here is actually not specific to CDNs. It can indeed apply to any net-
work where nodes request and serve items, or serve requests between other nodes.
In addition to CDNs, this includes peer-to-peer file-sharing systems [2, 16], ad-hoc
networks [39], distributed lookup services [42, 48], or application-layer multicast
overlays [5, 13, 30], to name a few examples. Table 7.1 provides a summary of
notations used in the model.

Formally, we define a (CDN, overlay, ...) network by a quadruplet (V,E,K,F),
where V is the set of nodes in the network, E is the set of directed edges, K is the set
of items in the network, and F : K →V is the function that assigns items to nodes.

Each node u ∈ V is assigned a unique identifier (integer or string of symbols),
which, for the sake of simplicity, we will also denote by u. We define by Ku = {k ∈
K : F(k) = u} the set of items stored at node u ∈ V . We have K =

⋃
u Ku, and we

assume, without loss of generality, that the sets Ku are disjoint. Indeed, if an item is
stored on several nodes (replication), the replicas can be viewed as different items
with the exact same probability of being requested.

Table 7.1 Summary of notations

Contents Properties
Ku Set of items held by node u
F Mapping function of contents to nodes
X Node source of a request
Y Item requested

Network Properties
V Set of nodes in the network
E Set of edges in the network
K Set of content items in the network
N Number of nodes
D Dimension
Δ Base

Network Metrics
tu,v Hop count between nodes u and v
χv,w(u) Test if u is on the path from v to w

Cost Metrics and Functions
Lu Latency cost node u
Ru Routing cost experienced by node u
Su Service cost experienced by node u
Mu Maintenance cost experienced by node u
lu,k Nominal cost for node u to request item k
ru,k Nominal cost for node u to forward item k
su,k Nominal cost for node u to serve item k
mu,v Nominal cost for node u to maintain

information about node v
Cu Total cost experienced by node u
C Total cost experienced by the network

190 N. Christin et al.

We characterize each request with two independent random variables, X ∈V and
Y ∈K, which denote the node X making the request, and the item Y being requested,
respectively.

Consider a given node u ∈V . Every time an item k ∈ K is requested in the entire
network, node u is in one of four situations:

1. Idle. Node u does not hold or request k, and is not on the routing path of the
request. Node u is not subject to any cost.

2. Issuing the request. Node u requests item k. In our model, we express the
benefits of participating in a peer-to-peer network in terms of latency reduction,
similar to related proposals, e.g. [17]. In particular, we assume that the farther the
node v holding k is from u (in a topological sense), the costlier the request is. If there
is no path between nodes u and v, the request cannot be carried out, which yields an
infinite cost. More precisely, we model the cost incurred by node u for requesting
k as lu,ktu,v, where tu,v is the number of hops between nodes u and v, and lu,k is a
(positive) proportional factor. We define the latency cost experienced by node u,
Lu, as the sum of the individual costs lu,ktu,v multiplied by the probability k ∈ Kv is
requested, that is

Lu = ∑
v∈V

∑
k∈Kv

lu,ktu,v Pr[Y = k] , (7.1)

with tu,v = ∞ if there is no path from node u to node v, and tu,u = 0 for any u. With
this definition, to avoid infinite costs, each node has an incentive to create links such
that all other nodes holding items of interest can be reached. An alternative is to
store or cache locally all items of interest so that the cost of all requests reduces to
lu,ktu,u = 0.

As a concrete example of the latency cost, consider the Domain Name Service
(DNS) [33]. DNS can be viewed as an overlay network using a tree topology, where
the leaf nodes are the DNS clients, and all other nodes are DNS servers. Consider
that a client u wants to access a DNS record k so unusual that the query has to be
redirected all the way to a DNS root server v. Here, we might have a relatively high
value for the number of hops between u and v, say tu,v = 5. After the query is resolved,
u’s primary DNS server, u′, will have a copy of k, thereby reducing the latency for a
request from u for k from tu,v = 5 to tu,u′ = 1. The notion of latency is captured in (7.1)
as observed by u in terms of a weighted average over all possible queries u can make.
The weights lu,k are introduced to express the relative value of one record compared
to another. In our DNS example, if, from node u’s perspective, the ability to resolve
k = www.google.com is considered 100 times more valuable than the ability to resolve
k′ = dogmatix.sims.berkeley.edu, we should have lu,k = 100 · lu,k′ .

3. Serving the request. Node u holds item k, and pays a price su,k for serving
the request. For instance, in a filesharing system, the node uses some of its upload
capacity to serve the file. We define the service cost Su incurred by u, as the expected
value of su,k over all possible requests. That is,

Su = ∑
k∈Ku

su,k Pr[Y = k] .

7 Economics-Informed Design of CDNs 191

Going back to our earlier DNS example, copying the record k to the server u′

implies that u′ has to use some resources to store the copy of the record k, which our
cost model characterizes by an increase in the service cost Su′ . In the DNS example,
for a given DNS server, the cost of serving a DNS record k is the same for all k,
so that we have for all k, su′,k = su′ , which corresponds to the cost of storing one
record.

4. Forwarding the request. Node u does not hold or request k, but has to forward
the request for k, thereby paying a price ru,k. The overall routing cost Ru suffered
by node u is the average over all possible items k, of the values of ru,k such that
u is on the path of the request. That is, for (u,v,w) ∈ V 3, we consider the binary
function

χv,w(u) =
{

1 if u is on the path from v to w, excluding v and w,
0 otherwise,

and express Ru as

Ru = ∑
v∈V

∑
w∈V

∑
k∈Kw

ru,k Pr[X = v]Pr[Y = k]χv,w(u) . (7.2)

In our DNS example, the routing cost denotes the resources used by a server
which receives a query for k, cannot resolve it, and has to redirect the query to a
DNS server higher up in the tree, averaged over all possible queries.

In addition, each node keeps some state information so that the protocol govern-
ing the network operates correctly. In most overlay network protocols, each node u
has to maintain a neighborhood table and to exchange messages with all of its neigh-
bors, that is, the nodes v for which an edge (u,v) exists. Denoting by N (u) the set
of neighbors of u, we characterize a maintenance cost Mu, as

Mu = ∑
v∈N (u)

mu,v ,

where mu,v ≥ 0 denotes the cost incurred by node u for maintaining a link with its
neighbor v ∈ N (u).

Returning to the DNS example, the maintenance cost characterizes the resources
used by the DNS server u to maintain information about all the other servers u might
contact (or refer to) when a query cannot be answered locally.

Last, we define the total cost Cu imposed on node u as

Cu = Lu +Su +Ru +Mu .

We can use Cu to compute the total cost of the network, C = ∑u∈V Cu. Note that the
expression of Cu only makes sense if Su, Ru, Mu, and Lu are all expressed using the
same unit. Thus, the coefficients su,k, ru,k, lu,k and mu,v have to be selected appropri-
ately. For instance, if lu,k is given in monetary units per hop per item, then mu,v has
to be expressed in monetary units.

192 N. Christin et al.

7.4 Social Optima and Nash Equilibria

In this section, we investigate the network structures that constitute a social op-
timum or a Nash equilibrium in the cost model defined above. Formally, we de-
fine a network structure as a “geometry” [22], that is, as a collection of nodes
and edges, or topology, associated with a route selection mechanism. Unless oth-
erwise noted, we assume shortest path routing, and distinguish between differ-
ent topologies. We discuss a few simplifications useful to facilitate our analysis,
before characterizing some possible social optima. In this discussion, we mostly
focus on results, and insights. In particular, we do not detail most of the tech-
nical proofs, and instead refer the interested reader to [11] for a more complete
treatment.

Assumptions. For the remainder of this section, we consider a network of N > 0
nodes, where, for all u ∈V and k ∈ K, lu,k = l, su,k = s, ru,k = r, and for all u ∈V and
v ∈V , mu,v = m. In other words, we assume that the costs associated with incurring
a one-hop latency, serving one request, routing one request, or maintaining one link,
are the same on all nodes, irrespective of the item requested or served. While very
crude in general, this simplification is relatively accurate in the case of a network of
homogeneous nodes, containing fixed-sized items, and homogeneous links. This is
particularly true of indexing mechanisms based on distributed hash tables (see for
instance, [40, 42, 44, 48, 49]).

We suppose that the network is in a steady-state regime, i.e. nodes do not join
or leave the network, so that the values l, s, r and m are constants. We also suppose
that requests are uniformly distributed over the set of nodes, that is, for any node u,
Pr[X = u] = 1/N.

For our analysis, we make a further simplification by choosing the mapping func-
tion F such that all nodes have an equal probability of serving a request. In other
words, ∑k∈Ku Pr[Y = k] = 1/N, which implies

Su =
s
N

,

regardless of the geometry used. This assumption will be removed when we pro-
ceed to numerical simulations in Sect. 7.6. Moreover, if we use E[x] to denote the
expected value of a variable x, Eqs. (7.1) and (7.2) reduce to

Lu = lE[tu,v] ,

and
Ru = rE[χv,w(u)] ,

respectively. Also, because each node u has deg(u) neighbors, we immediately
obtain

Mu = mdeg(u) .

Last, we assume that no node is acting maliciously.

7 Economics-Informed Design of CDNs 193

7.4.1 Full Mesh

In our investigation of possible social optima, let us first consider a full mesh, that
is, a network where any pair of nodes is connected by a bidirectional edge, i.e.
tu,v = 1 for any v �= u. Nodes in a full mesh never any route any traffic, as there
is always a direct connection between two nodes, and deg(u) = N − 1. Thus, for
all u, Ru = 0, Lu = l(N − 1)/N, and Mu = m(N − 1). With Su = s/N, we get Cu =
s/N + l(N −1)/N +m(N −1), and, summing over u,

C(full mesh) = s+ l(N −1)+mN(N −1) . (7.3)

Let us remove a link from the full mesh, for instance the link 0 → 1. The maintenance
cost at node 0, M0, decreases by m. However, to access the items held at node 1,
node 0 now has to send a request through another node. The actual mechanism that
informs node 0 of which node to contact to send a request to node 1 is irrelevant to
this discussion: One can for instance assume without loss of generality that nodes
periodically advertise their list of neighbors. Assume that node 0 contacts node 2. As
a result, L0 increases by l/N, and the routing cost at node 2, R2, increases by r/N2.

Hence, removing the link 0 → 1 causes a change in the total cost ΔC = −m +
l/N + r/N2. If ΔC ≥ 0, removing a link causes an increase of the total cost, and the
full mesh is the social optimum. In particular, we have shown:

Proposition 1. The full mesh is the social optimum if the maintenance cost is “small
enough,” that is, if

m ≤ l
N

+
r

N2 . (7.4)

Note that, as N → ∞, the condition in Eq. (7.4) tends to m = 0. In fact, we can
also express ΔC ≥ 0 as a condition on N that reduces to N ≤ �l/m+ r/l� when
m � l2/r, using a first-order Taylor series expansion.

We can here again draw a parallel with DNS to illustrate condition (7.4). As long
as the number of Internet hosts remained reasonably small, each host used a large
HOSTS.TXT file to directly resolve hostnames into IP addresses, effectively creat-
ing a full mesh for the naming overlay: Each node knew about all the other nodes.1

The DNS protocol was only introduced when the number of hosts on the Internet
grew large enough to render maintaining all information in a single, distributed file
impractical.

7.4.2 Star Network

Suppose now that Eq. (7.4) does not hold, and consider a star network. Let u = 0
denote the center of the star, which routes all traffic between peripheral nodes. That

1 Note that we are here only concerned with name resolution. Updating and disseminating the
HOSTS.TXT file is a separate issue, and was actually done in a centralized manner [33].

194 N. Christin et al.

is, χv,w(0) = 1 for any v �= w (v,w > 0). One can easily show that R0 = r(N−1)(N−
2)/N2, L0 = l(N − 1)/N and M0 = m(N − 1), so that the cost C0 incurred by the
center of the star is

C0 = m(N −1)+
s
N

+ l
N −1

N
+ r

(N −1)(N −2)
N2 . (7.5)

Peripheral nodes do not route any traffic, i.e. Ru = 0 for all u > 0, and are located at a
distance of one from the center of the star, and at a distance of two from the (N−2)
other nodes, giving Lu = l(2N −3)/N. Further, deg(u) = 1 for all peripheral nodes.
Hence, Mu = m, and the individual cost imposed on nodes u > 0 is

Cu = m+
s
N

+ l
2N −3

N
. (7.6)

Proposition 2. C0 = Cu can only hold when N is a constant, or when l = r = m = 0.
Proof: Assume that C0 −Cu = 0. Because N �= 0, C0 −Cu = 0 is equivalent

to N2(C0 −Cu) = 0. Using the expressions for C0 and Cu given in Eqs. (7.5) and
(7.6), rewriting the condition N2(C0 −Ci) = 0 as a polynomial in N, and factoring
by (N −2), we obtain

(N −2)(mN2 − (l − r)N − r) = 0 .

A polynomial in N is constantly equal to zero if and only if all of the polynomial
coefficients are equal to zero, which, here, imposes l = r = m = 0.
Since the difference C0 −Cu quantifies the (dis)incentive to be a priori in the center
of the star, Proposition 2 tells us that there is a (dis)incentive to be in the center of the
star in a vast majority of cases. In practice, star-like networks denote highly central-
ized architectures, where resources are concentrated in one “hub.” The hub, usually
held by the content provider, gets appropriately compensated (e.g., financially) for
its central position as unique server.

Next, we compute the total cost of the star, and determine under which condition
it is a social optimum. Summing Eqs. (7.5) and (7.6), we obtain

C(star) = 2m(N −1)+ s+2l
(N −1)2

N
+ r

(N −1)(N −2)
N2 . (7.7)

Proposition 3. For any number of nodes N ≥ 3, the star is a social optimum, if (i)
Eq. (7.4) does not hold and (ii) all links are bidirectional, i.e. for any u ∈ V and
v ∈V , if (u → v) ∈ E then (v → u) ∈ E.

The proof, available in [11] essentially consists in repeatedly removing links from
a full mesh, until the network is about to be disconnected, thereby showing
that the star configuration actually maximizes the aggregate utility of all
players.

Let us make two remarks regarding Proposition 3. First, Proposition 3 does not
guarantee that the star is a unique social optimum. In fact, in the limit case where

7 Economics-Informed Design of CDNs 195

m = l/N + r/N2, adding any number of “shortcuts” between peripheral nodes of
a star still results in a social optimum. Second, the assumption that the links are
bidirectional is crucial for Proposition 3 to hold for any N. For instance, if we allow
for unidirectional links, it can be shown that, if m is large enough and N remains
small, the unidirectional ring 0 → 1 → . . . → N → 1 has a lower cost than the star
network.

However, while finding the social optimum when unidirectional links are allowed
is an open problem, we conjecture that the star network still plays a predominant
role, and that geometries such as the unidirectional ring may only appear under
very stringent conditions. More concisely, the above analysis tells us that, when the
number of links to maintain becomes too high to make a full mesh an attractive so-
lution, a centralized network is generally optimal from the point of view of resource
consumption.

7.4.3 Nash Equilibria

Assume now that each node can choose which links it maintains, but does not have
any control over the items it holds, and honors all routing requests. In other words,
each node is selfish when it comes to link establishment, but is obedient once links
are established. When each node u is (perfectly) rational, i.e. tries to minimize its
individual cost Cu given the behavior of all other nodes, the resulting topology con-
stitutes a Nash equilibrium, per our definition in Sect. 7.2.

Even though the existence or uniqueness of a Nash equilibrium is in general not
guaranteed, the following results yield some insight on the possible equilibria that
may occur in our proposed cost model.

Proposition 4. If m < l/N, the full mesh is a unique (pure) Nash equilibrium.

Proposition 5. If m ≥ l/N, the star network is a pure Nash equilibrium.

These results can be proven by showing that, under the condition of Proposition 4,
removing links from a full mesh decreases the utility of at least one participant.
Conversely, under the condition of Proposition 5, adding a link to the star network
results in lowering the utility of at least one node [11].

Propositions 4 and 5, tell us that, if maintaining links is cheap, or if the network
is small, the only Nash equilibrium is the full mesh. If maintaining links is more
expensive, or if the network is large, a star network is a possible Nash equilibrium;
we cannot guarantee unicity of the equilibrium, however. For instance, in the limit
case m = l/N, any network created by adding an arbitrary number of links between
peripheral nodes of a star constitutes a Nash equilibrium.

We note that these results are a generalization of the results obtained by the au-
thors of [27], who used a different cost model, which does not take the routing cost
into account.

196 N. Christin et al.

7.4.4 Interpretation

We summarize our findings in Fig. 7.1, where we discriminate between social op-
tima and Nash equilibria according to the value of the unit maintenance cost m.

Nash equilibrium

Social optimum
l/N l/N+r/N2

Star networkFull mesh

m

Star network

0

Full mesh

Fig. 7.1 Social optimum and Nash equilibrium. Incentives of individual nodes are not aligned with
the social optimum in the interval [l/N, l/N + r/N2]

For m < l/N, the full mesh is both a Nash equilibrium and a social optimum; for
m > l/N + r/N2, the star network is both a Nash equilibrium and a social optimum.
In both cases, the incentives of each node are aligned with the most efficient overall
usage of the resources in the network. This is represented by the white areas in the
figure.

The most interesting region in Fig. 7.1 is perhaps the gray area, in which individ-
ual incentives and overall resource usage are conflicting. This area corresponds to
the parameter range l/N < m < l/N + r/N2, whose size solely depends on r. Stated
differently, under the assumption that all nodes have an identical probability of serv-
ing a request, the social optimum may significantly deviate from a Nash equilibrium
as soon as nodes value the resources they use to forward traffic on behalf of other
nodes.

As a corollary, a network where “forwarding comes for free” (i.e. r = 0), e.g.
where bandwidth and computational power are extremely cheap, is ideal from the
system designer’s perspective, because individual incentives should produce a so-
cially optimal solution. Unfortunately, in most networks, the price paid for forward-
ing data cannot be neglected, which suggests that our cost model is better suited at
capturing possible disincentives than previous models solely based on node degree
(i.e. maintenance costs) and hop count (i.e. latency costs).

For a CDN designer, this result leads to an important insight. Either the CDN
must be designed to avoid as much as possible having nodes forwarding signifi-
cant amount of data. Or, if that is not possible, forwarding nodes likely have to be
compensated as a function of the routing load they must support.

7.5 Analyzing Existing Structures

In the discussion in the previous section, we have ignored robustness against attacks,
fault-tolerance, or potential performance bottlenecks. All these factors pose practi-
cal challenges in a centralized approach, as does providing an incentive to occupy

7 Economics-Informed Design of CDNs 197

(or relinquish) the central position of a star. Using a full mesh avoids most of these
concerns, but, as we have seen, is only a solution for a modest number of nodes.

Many research efforts have been directed at designing network geometries that
provide reasonable performance, while addressing the aforementioned robustness
concerns. In this section, we use the cost model proposed above to evaluate a few
of the routing geometries that have been recently proposed for overlay networks in
the networking literature. We focus on de Bruijn graphs, D-dimensional tori, PRR
trees, and Chord rings. We present the various costs experienced by a node in each
geometry; here again, we focus on the results and intuitions behind them, deferring
the more technical steps to reports published elsewhere [11]. We later compare our
results with those obtained in our study of the social optima and Nash equilibria.

7.5.1 De Bruijn Graphs

Due to very desirable properties, such as short average routing distance and high
resiliency to node failures, De Bruijn graphs are used in a number of overlay net-
work maintenance algorithms [28, 31, 34]. In a de Bruijn graph, any node u is rep-
resented by an identifier string (u1, . . . ,uD) of D symbols taken from an alphabet
of size Δ . The node represented by (u1, . . . ,uD) links to each node represented by
(u2, . . . ,uD,x) for all possible values of x in the alphabet. The resulting directed
graph has a fixed out-degree Δ , and a diameter D.

Denote by V ′ the set of nodes such that the identifier of each node in V ′ is of the
form (h,h, . . . ,h). Nodes in V ′ link to themselves, so that Mu = m(Δ −1) for u ∈V ′.
For nodes u /∈V ′, the maintenance cost Mu is Mu = mΔ . The next two lemmas allow
us to show that the routing cost at each node also depends on the position of the
node in the graph.

Lemma 1. With shortest-path routing, nodes u ∈ V ′ do not route any traffic, and
Ru = 0.

This lemma can be proven by contradiction [11].

Lemma 2. The number of routes ρu passing through a given node u, or node load-
ing, is bounded by ρu ≤ ρmax with

ρmax =
(D−1)(Δ D+2 − (Δ −1)2)−DΔ D+1 +Δ 2

(Δ −1)2 .

The bound is tight, since it can be reached when Δ ≥ D for the node (0,1,2, . . . ,
D−1).

The proof is similar in spirit to the proof used in [47] to bound the maximum num-
ber of routes passing through a given edge, and a complete derivation can be found
in [11]. Let us sketch the strategy here. First, notice that, determining an upper
bound on the number of paths of length k that pass through a given node u is equiv-
alent to computing the maximum number of strings of length D + k that include

198 N. Christin et al.

node u’s identifier as a substring. We then sum over k for k ∈ [1,D], and obtain
an intermediary bound, which we improve by removing all strings of length 2D
that denote a cycle, as a cycle cannot characterize a shortest path in a de Bruijn
graph.

From Lemmas 1 and 2, we infer that, in a de Bruijn graph, for any u, v and w,
0 ≤ Pr[χv,w(u) = 1] ≤ ρmax/N2. Because χv,w(u) is a binary function, Pr[χv,w(u) =
1] = E[χv,w], and we finally obtain 0 ≤ Ri ≤ Rmax with

Rmax =
rρmax

N2 .

We next present upper and lower bounds on the latency cost, Lmax and Lmin. It
can be shown [11] that nodes u ∈V ′ are subject to Lu = Lmax, where

Lmax = l
DΔ D+1 − (D+1)Δ D +1

N(Δ −1)
.

We can lower bound Lu by

Lmin =
l
N

(

DΔ D +
D

Δ −1
− Δ(Δ D −1)

(Δ −1)2

)

,

and we observe that Lu = Lmin for the node (0,1, . . . ,D−1) when Δ ≥ D.
Note that, the expressions for both Lmin and Lmax can be further simplified for

N = Δ D, that is, when the identifier space is fully populated.

7.5.2 D-dimensional Tori

We next consider D-dimensional tori, where each node is represented by D Cartesian
coordinates, and has 2D neighbors, for a maintenance cost of Mu = 2mD for any u.
This type of routing geometry is for instance used in CAN [42].

Routing at each node is implemented by greedy forwarding to the neighbor with
the shortest Euclidean distance to the destination. We assume here that each node
is in charge of an equal portion of the D-dimensional space. This constraint could
also be expressed using the slightly stronger assumption that N1/D is an integer, and
that all possible sets of Cartesian coordinates (u1, . . . ,uD) (where each ui maps to
an integer in [0,N1/D −1]) map to a node. In other words, we assume the identifier
space (u1, . . . ,uD) is fully populated.

From [31], we know that the average length of a routing path is (D/4)N1/D hops
for N even, and (D/4)N1/D + D/4− o(1) for N odd. Because we assume that the
D-dimensional torus is equally partitioned, by symmetry, we conclude that for all u,

Lu = l
DN1/D

4
,

7 Economics-Informed Design of CDNs 199

using the same approximation as in [42] that the average length of a routing path is
almost equal (D/4)N1/D hops even for N odd.

To determine the routing cost Ru, we compute the node loading as a function ρu,D

of the dimension D. With our assumption that the D-torus is equally partitioned, ρu,D

is the same for all u by symmetry.

Lemma 3. In a D-torus completely populated with N nodes, the node loading at
any node u is given by

ρu,D = 1+N
D−1

D

(

−N
1
D +D

(

N
1
D −1+

(⌊
N

1
D

2

⌋

−1

)(⌈
N

1
D

2

⌉

−1

)))

.

(7.8)

This lemma can be proven by induction on the dimension D [11]. First, notice that
for D = 1, the node loading ρu,1 at each node u, is equal to the sum of the number
of routes passing through each node when the source is held fixed. For instance, for
N = 7, we have for any u, ρu,1 = 0+1+2+2+1+0 = 6. We get two different ex-
pressions for N even and N odd, which can be summarized as the general condition
ρu,1 =

(⌊
N
2

⌋
−1

)(⌈
N
2

⌉
−1

)
.

The key observation to compute the number of routes ρu,D passing through
each node u for D > 1, is that there are several equivalent shortest paths along
the Cartesian coordinates, because the coordinates of two consecutive nodes in a
path cannot differ in more than one dimension. Consider for instance, for D = 2,
going from node (0,0) to node (1,1): both P1 = (0,0) → (1,0) → (1,1) and
P2 = (0,0) → (0,1) → (1,1) are equivalent shortest paths. Therefore, we can al-
ways pick the path that corrects coordinates successively, starting with the first co-
ordinate, i.e. P1 in the above example.

Denote the source of the route as node v, the destination of the route as node w,
and the coordinates of u, v, and w by (u1, . . . ,uD), (v1, . . . ,wD), and (w1, . . . ,wD).
Only three possibilities for u are allowed by the routing scheme that corrects coor-
dinates one at a time: 1) node u has the same D-th coordinate as both the source v
and the destination w (i.e. uD = vD = wD), 2) nodes u, v and w all differ in their
D-th coordinate, i.e. uD �= vD �= wD, and 3) node u has the same D-th coordinate
as node v, and a D-th coordinate different from that of the destination v (uD = vD,
uD �= wD). By computing the node loadings for each case and summing, we obtain
the value for ρu,D given in (7.8).

For all u, Ru immediately follows from ρu,D with

Ru = r
ρu,D

N2 .

7.5.3 PRR Trees

We next consider the variant of PRR trees [40] used in Pastry [44] or Tapestry [49].
Nodes are represented by a string (u1, . . . ,uD) of D digits in base Δ . Each node is

200 N. Christin et al.

connected to D(Δ − 1) distinct neighbors of the form (u1, . . . ,ui−1,x,yi+1, . . . ,yD),
for i = 1 . . .D, and x �= ui ∈ {0, . . . ,Δ −1}. The resulting maintenance cost is Mu =
mD(Δ −1).

Among the different possibilities for the remaining coordinates yi+1, . . . ,yD, the
protocols generally select a node that is nearby according to a proximity metric.
We here assume that the spatial distribution of the nodes is uniform, and that the
identifier space is fully populated, which enables us to pick yi+1 = ui+1, . . . ,yD = uD.
Thus, two nodes u and v at a distance of n hops differ in n digits.

There are
(D

n

)
ways of choosing which digits are different, and each such digit

can take any of (Δ −1) values. So, for a given node u, there are
(D

n

)
(Δ −1)n nodes

that are at distance n from u. Multiplying by the total number of nodes N = Δ D, and
dividing by the total number of paths N2, we infer that, for all u, v, and w, we have

Pr[tu,v = n] =

(D
n

)
(Δ −1)n

N
. (7.9)

Now, for any u and v such that tu,v = n, because routes are unique, there are exactly
(n−1) different nodes on the path between u and v. So, the probability that a node w
picked at random is on the path from u to v is

Pr[χu,v(w) = 1|tu,v = n] =
n−1

N
. (7.10)

We apply the total probability theorem to (7.9) and (7.10), express the right-hand
side as a function of the derivative of a series, and use the binomial theorem to
obtain that the expression for Pr[χu,v(w) = 1], which we multiply by r to obtain the
routing cost,

Ru = r
Δ D−1(D(Δ −1)−Δ)+1

N2 . (7.11)

To compute the access cost Lu, we use the relationship

Lu = lE[tu,v] = l
D

∑
n=1

k Pr[tu,v = n] = l
DΔ D−1(Δ −1)

N
, (7.12)

using the expression for Pr[tu,v = n] given in (7.9), and relying, here again, on the
binomial theorem [11]. Note that, for N = Δ D, (7.12) reduces to Lu = lD(Δ −1)/Δ .

7.5.4 Chord Rings

In a Chord ring [48], nodes are represented using a binary string (i.e. Δ = 2). When
the ring is fully populated, each node u is connected to a set of D neighbors, with
identifiers ((u+2p) mod 2D) for p = 0 . . .D−1. An analysis similar to that carried
out for PRR trees yields Ru and Lu as in Eqs. (7.11) and (7.12) for Δ = 2. Simulations
confirm this result [48].

7 Economics-Informed Design of CDNs 201

7.5.5 Discussion

The analytical results we have discussed in this section can serve a number of pur-
poses. First, they confirm that all of the routing geometries considered here have
the same asymptotic behavior: the routing costs decrease in logN, while the latency
costs grow with logN. Second, while these asymptotic results are well known (see
for instance [22, 31, 42, 48]), the main advantage of the game-theoretic analysis
discussed above is to provide closed-form equations that can be used for tuning
configuration parameters such as Δ or D in function of the relative importance of
each cost, e.g. routing cost vs. latency cost.

Third, our analysis provides us with a baseline we can use in a comparison with
(1) the social optima and/or Nash equilibria and (2) more realistic scenarios where
the identifier space is sparsely populated or where some items are more popular than
others. These comparisons are the object of the next section.

7.6 Numerical Evaluation

We present here selected Monte Carlo simulations to compare between the different
analytic results we obtained for different network geometries. We also complement
the analysis by investigating numerically the effect of relaxing the assumptions that
all items have identical popularity, and that the identifier space is fully populated.

Comparison with Social Optima. Let us first illustrate numerically the analysis
of Sect. 7.5. In Table 7.2, we consider five de Bruijn graphs with different values for
Δ and D, and X and Y i.i.d. uniform random variables. Table 7.2 shows that while
the latency costs of all nodes are comparable, the ratio between Rmax and the second
best case routing cost,2 R′

min, is in general significant. Thus, if r � l, there can be
an incentive for the nodes with Ru = Rmax to defect. For instance, these nodes may
leave the network and immediately come back, hoping to be assigned a different
identifier u′ �= u with a lower cost. Additional mechanisms, such as enforcing a cost
of entry to the network, may be required to prevent such defections.

Table 7.2 Asymmetry in costs in a de Bruijn graph (l = 1,r = 1,000)

(Δ ,D) Lmin Lmax
Lmax

Lmin
R′

min Rmax
Rmax

R′
min

(2, 9) 7.18 8.00 1.11 3.89 17.53 4.51
(3, 6) 5.26 5.50 1.04 2.05 9.05 4.41
(4, 4) 3.56 3.67 1.03 5.11 13.87 2.71
(5, 4) 3.69 3.75 1.02 1.98 5.50 2.78
(6, 3) 2.76 2.80 1.01 5.38 9.99 1.86

2 That is, the minimum value for Ru over all nodes but the Δ nodes in V ′ for which Ru = 0.

202 N. Christin et al.

We next simulate the costs incurred in the different geometries we discussed. We
choose Δ = 2, for which the results for PRR trees and Chord rings are identical.
We choose D = {2,6} for the D-dimensional tori, and D = logΔ N for the other
geometries.

We vary the number of nodes between N = 10 and N = 1,000, and, for each
value of N run ten differently seeded Monte Carlo simulations, consisting of 100,000
requests each, with X and Y i.i.d. uniform random variables. We plot the latency and
routing costs averaged over all nodes and all requests in Fig. 7.2.

(b) Routing cost (r = 1,000)

De Bruijn (upper bound)

PRR (model)

(model)
2−torus

(sim)
2−torus

PRR (sim)
De Bruijn

(lower bound)

Star (average)
6−torus (model)

(sim, average)

De Bruijn

 0
900 1000

L
at

en
cy

 c
os

t

Number of nodes

700600500400300200100

20

15

10

 5

800

PRR (model)

2−torus
(model)

Star (average)

De Bruijn
(sim, avg) 2−torus

(sim)

De Bruijn
(upper bound)

(sim)
PRR

6−torus (model)

 1
200 300 400 500 600 700 800 900 1000

R
ou

tin
g

co
st

Number of nodes

(a) Latency cost (l = 1)

1000

100

10

100

Fig. 7.2 Latency and routing costs. Curves marked “sim” present simulation results. The full
mesh, for which the latency cost is constantly equal to 1, and the routing cost is constantly equal
to 0, is omitted for readability purposes

The graphs confirm that the star provides a lower average cost than all the other
geometries, which is consistent with our earlier finding that the star is, in many cases,
a social optimum. Note however, that our cost model does not take into account factors
such as scalability and resiliency, both of which are cause for serious concerns in a
completely centralized architecture. Additionally, while we have shown that the star
network was potentially a Nash equilibrium, we nevertheless need incentive mech-
anisms (e.g. monetary rewards) to compensate for the asymmetry of a star network,
and to convince a node to occupy the central position in the first place.

Asymmetry in Item Popularity. We investigate next how relaxing the assumption
that all items have identical popularity impacts the results we have obtained so far.
To that effect, we run a set of simulations, where items have a popularity that follows
a Zipf-like distribution inspired by measurement studies such as [7].

In this set of Monte Carlo runs, we simulate a network of size N = 512 nodes.
We select D = 3 for the D-torus, and Δ = 2 and D = 9 for the other geometries. We
run 1,024 trials, each consisting of 100,000 requests. The source of the request X is
a uniform random variable, and the requested item Y is determined according to a
Zipf-like distribution. That is, we have

Su = sΩ/(Rank(u))α ,

with α = 0.75, Ω =
(
∑N

i=1 iα
)−1

, and Rank : V → {1, . . . ,N}, a bijective function
that orders the nodes u∈V by decreasing probability that a given item k is held by u.

7 Economics-Informed Design of CDNs 203

Because Y is not a uniform random variable anymore, different nodes experience
different latency and routing costs. In each experiment, we collect the ratios between
the highest (Lmax and Rmax) and lowest (Lmin and R′

min) latency and routing costs
observed over all nodes. In de Bruijn graphs, because some nodes do not route any
traffic, we use again R′

min = minu∈V{Ru > 0}.
In Table 7.3, we present the average ratios Lmax/Lmin and Rmax/R′

min, averaged
over all 1,024 experiments. Numbers in parentheses denote the corresponding stan-
dard deviation. The results indicate that, for all geometries, the latency costs of all
nodes are relatively similar, but, the routing costs present significant differences.
We explain the higher degree of asymmetry of the de Bruijn graph by the disparities
in the node loadings (see Sect. 7.5), that magnify inequalities in routing costs. As a
comparison to the social optima, we point out that in a star or a full mesh, the routing
and latency costs are similar regardless of the popularity of the different items.

Table 7.3 Asymmetry in costs in a network where item popularity follows a Zipf-like distribution

Lmax

Lmin

Rmax

R′
min

3-torus 1.2675 (±0.0442) 5.2845 (±0.3516)
De Bruijn 1.2453 (± 0.0265) 30.7275 (±9.5970)
PRR tree 1.2591 (±0.0420) 9.2154 (±0.6590)

We next determine whether asymmetries in routing costs compensate asymme-
tries in latency costs, or, more significantly, in service costs. To that effect, we com-
pute the correlation coefficient (denoted as Corr(x,y) for two variables x and y)
between R and L, R and S, and L and S, computed over the 512 nodes × 1,024
experiments= 524,288 data points available for the triplet (R,L,S), and present our
findings in Table 7.4. For all three geometries, Table 7.4 indicates that there is almost
no correlation3 between S and R or L. In other words, the service cost S incurred by
a node has almost no incidence on R or L. The correlation between R and L is also
very weak, which indicates that different nodes may have, in the end, completely
different costs.

In other words, with all three routing geometries considered, an asymmetry in
the popularity of the items can cause a significant disparity in the costs incurred
by different nodes. The disparity in costs itself results in some nodes being over-
loaded, or at least having strong incentives to leave and re-join the network to get
a “better spot.” This result emphasizes the importance of efficient load-balancing
primitives for CDNs based on protocols relying on any of these routing
geometries.

3 The correlation coefficient actually only tests for a linear correlation. Additional tests, such as the
η-test (or correlation ratio) are generally required to confirm the lack of correlation between two
variables. We omit these tests here, but point out that additional data (e.g. scatter plots) confirm the
lack of correlation between the variables.

204 N. Christin et al.

Table 7.4 Correlation between routing, latency, and service costs in a network where item popu-
larity follows a Zipf-like distribution

Corr(R,L) Corr(R,S) Corr(L,S)

3-torus −0.3133 −0.0166 −0.0960
De Bruijn −0.3299 −0.0112 −0.0981
PRR tree −0.2278 −0.0128 −0.1027

Sparse Population of the Identifier Space. So far, we have assumed that the
identifier space is fully populated. For instance, a PRR tree with Δ = 2 and D = 9
would necessarily contain N = 512 nodes. In practice however, the identifier space
is likely to be relatively sparsely populated.

We run the following simulations. For each geometry, we consider a fixed number
of nodes N = 512. We start with a fully populated identifier space, with Δ = 2 and
D = 9 for both de Bruijn graphs and PRR trees, and gradually increase D up to
D = 15. For the D-torus, we use D = 3, so that each node u is represented by a set of
coordinates (ux,uy,uz). We allow each coordinate to take integer values between 0
and n. Initially, we select n = 8, so that each possible set of coordinates corresponds

De Bruijn (avg.)

PRR (w.c.)
3-torus (avg.)

3-torus (w.c.)

PRR (avg.)

De Bruijn (w.c.)

0

1600
1800
2000

512 1024 2048 4096 8192 16384 32768

Number of identifiers

1200
1000
800
600
400
200

1400

(a) Rmax/R′min (b) Lmax/Lmin

L
m

ax
/L

m
in

R
m

ax
/R

′ m
in

3-torus (w.case)

PRR (avg.)

3-torus (avg.)

De Bruijn (avg.)

De Bruijn (w.c.)
PRR (w.c.)

1
1024 2048 4096 8192 16384 32768

Number of identifiers

4

3.5

3

2.5

2

1.5

512

(c) Mmax/Mmin

M
m

ax
/M

m
in

3-torus (avg.)
5

10

15

20

25

30

512 1024 2048 4096 8192 16384 32768

Number of identifiers

PRR (avg.)

De Bruijn (w.c.)

PRR (w.c.)

De Bruijn (avg.)

3-torus (w.c.)

0

Fig. 7.3 Ratios between maximum and minimum routing, latency, and maintenance costs experi-
enced at a given node in function of the number of identifiers used. Curves marked “avg.” indicate
average results over all experiments in a given set, while curves marked “w.c.” denote the maximum
ratio, or worst case, observed over all experiments in a given set

7 Economics-Informed Design of CDNs 205

to a given node (because nD = N), and we then gradually increase n up to n = 32.
In other words, for all three topologies, we increase the identifier space from 512 to
32,768 identifiers. Identifiers that initially do not map to any node are selected using
a uniform random variable. For each value of D (resp. n) we run 100 experiments
with different random seeds, corresponding to 100 different ways of populating the
identifier space. Each experiment consists of 100,000 requests, where X and Y are
i.i.d. uniform random variables.

We plot in Fig. 7.3, for each geometry, the average value of the ratios Rmax/R′
min,

Lmax/Lmin, and Mmax/M′
min averaged over the 100 experiments corresponding to a

given number of identifiers, as well as their worst-case (i.e., maximum) value over
the same 100 experiments.

We observe that the imbalance in latency costs remains relatively modest, with
factors of about 3–4, in a sparsely populated identifier space. The imbalance in main-
tenance costs is more significant (ratios of 20–25 between the highest and lowest
maintenance cost). Our main observation is that the imbalance in routing costs can
become very large, with ratios between the worst-case and best-case routing costs
in the order of hundreds to thousands. This observation emphasizes the urgent need
for efficient load balancing routing algorithms, in absence of which a large number
of nodes may have a strong incentive to leave the network and re-join immediately
in hopes of obtaining a more favorable spot, thereby causing instability.

Furthermore, it can be shown that a sparsely populated identifier space has the
effect of making the different costs correlated [11]. This confirms the intuition that the
routing and latency costs of a given node are largely dependent on how well the node
is connected to the rest of the network, which is expressed by the maintenance cost.

7.7 Visionary Thoughts for Practitioners

We have so far considered Nash equilibria to be a perfectly adequate tool for model-
ing rational behavior from participants in a CDN. The main advantage of the concept
of Nash equilibrium resides in its simplicity. However, because Nash equilibria rely
on very stringent assumptions on the capabilities and objectives of each player, they
can predict counter-intuitive or unrealistic outcomes. In particular, rational players
are expected to demonstrate error-free decision-making, to have perfect foresight of
the game and to be unbounded in their computational abilities. Intuitively, players
such as network users, which are not necessarily perfectly rational, or automated
agents, which can be faulty, due to software bugs or misconfiguration, or have lim-
ited computational resources, will likely deviate from these rigid assumptions.

There is, therefore, ample motivation to formulate more generalized models of
strategic behavior that include the notion of the Nash equilibrium as a special case.
In particular, to relax the assumption of perfect rationality required by the concept of
Nash equilibrium, some have introduced the concept of bounded rationality. Play-
ers that are bounded rational are not necessarily picking the best strategy available
across the entire decision space, but instead are allowed to make small errors on a

206 N. Christin et al.

number of levels, such as the evaluation of the payoffs associated with a strategy,
the assessment of the best available strategy, or the execution of a specific strategy.

There are many different techniques to model bounded rationality. One way is
to introduce (possibly small) amounts of noise into the decision-making process
(see, for instance, [21]). Another model of equilibrium with bounded rationality,
called Quantal Response Equilibrium [32], has been used to characterize equilibria
in games where users make errors on the computation of the payoffs associated with
a given strategy.

Perhaps the simplest relaxation to consider is that of near rationality [4, 41],
exemplified for instance by the ε-equilibrium concept [41]. The ε-equilibrium is
relaxing the conception of a fully rational player to a model where each player is
satisfied to get close to (but does not necessarily achieve) her best response to the
other player’s strategies. No player can increase her utility by more than ε > 0 by
choosing another strategy. Therefore, we locate an ε-equilibrium by identifying a
strategy for each player so that her payoff is within ε of the maximum possible
payoff given the other players’ strategies.

Definition 4. A vector of mixed strategies σε = (σε
1 , ...,σε

N) ∈ Σ comprises a
mixed-strategy ε-equilibrium of a game G if, for all i ∈ N, for all σi ∈ Σi, and a
fixed ε > 0, ui(σi,σε

−i)−ui(σε
i ,σε

−i) ≤ ε .

A pure-strategy ε-equilibrium is a vector of pure strategies, ζ ε ∈ Z, that satisfies the
equivalent condition. If we allow ε = 0 this condition reduces to the special case
of a Nash equilibrium. Thus, one can consider ε-equilibria as a more generalized
solution concept for competitive equilibria.

Revisiting Overlay Network Formation. Recall that, considering only Nash
equilibria, we have shown in Propositions 4 and 5, that, depending on the rela-
tive values of the different parameters m, l, and N, the star network or the full
mesh were the most likely candidates to be Nash equilibria. However, if instead
of considering Nash equilibrium, we now consider an ε-equilibrium, then, for any
m ∈ [l/N−ε, l/N +ε], any network topology constitutes an ε-equilibrium. This can
be proven by simply including ε in the proofs of Propositions 4 and 5. Additionally,
if, to account for failures in link establishment due for instance to lossy channels,
we allow nodes to use mixed strategies instead of being restricted to pure strategies,
we conjecture that the range of possible values for m such that any network is an
ε-equilibrium is much larger than 2ε .

Practical Relevance. Given the uncertainty on the equilibrium concept itself,
what benefits could a practitioner take away from applying game-theory to CDN
design?

First, irrespective of the equilibrium concept considered, social optimum analy-
sis is crucial to understanding the upper bounds on the network’s performance. In
particular, Papadimitriou defined an interesting performance metric he termed the
“price of anarchy [37].” The price of anarchy is the ratio of the aggregate utility
∑u Cu obtained in the worst-case Nash equilibrium over that of the social optimum.

7 Economics-Informed Design of CDNs 207

The price of anarchy is a useful metric in system design, as it allows to show how
far performance can degrade if players are left to their own devices.

Along the same lines, Nash equilibria, are, despite their stringent assumptions,
a very useful tool as a first-order approximation of individual incentives. In par-
ticular, the power assumed of the players in a Nash equilibria can lead to charac-
terize a worst-case scenario, which allows the designer to obtain lower bounds on
the network performance. As an illustration of the Nash equilibrium being a pos-
sible worst-case equilibrium, let us consider TCP congestion control. It has been
shown that, if a Nash equilibrium were reached among competing players vying for
throughput in a TCP/IP network, everybody would turn off congestion control (or
use UDP) [3]. Reality is markedly different, in that most users are happy with leav-
ing their TCP parameters unchanged, which can be explained by bounded rationality
arguments [12].

Third, considering near rationality instead of perfect rationality can help evaluate
the accuracy of a game-theoretic model. If the model seems to lack robustness, its
chances of being an accurate model of reality decrease. In the above example, we
see that the parameter space that yields uncertain results grows linearly with the
uncertainty ε , which shows the model is robust enough, and presumably reliable.
On the other hand, other examples, outside of network formation, given in [12] do
not exhibit the same desirable properties.

7.8 Future Research Directions

The present chapter has described applications of game theory to model interac-
tions in overlay networks, such as CDNs. Economics-informed network design is
however not limited to game theory, but is, more generally, the study of individual
incentives in networks. As such, this research field is expected to remain vibrant for
the foreseeable future.

In the near term, we expect research contributions to help develop more sophis-
ticated models of incentives in content delivery. In fact, it is notable that more and
more recent system design papers, e.g. [14, 26] among many others, rest on eco-
nomic principles to architect their proposals.

More generally it seems almost inevitable that, in light of a booming market for
content distribution, fierce competition among infrastructure providers, and poten-
tially slim margins, CDN designers will have to better understand market forces and
individual incentives to ensure profitability.

Among other potential directions for future research, we can cite the study of
incentives to enhance CDN security. For instance, [29] shows that, by refactoring
existing technology to realign diverging incentives, one can create an overlay net-
work that offers potentially competing content providers resilience to Distributed
Denial of Service (DDoS) attacks.

Such research denotes an interesting trend that turns the original problem on its
head. Instead of trying to fix incentive alignment problems, future system research

208 N. Christin et al.

may very well exploit differences in incentives to achieve superior system design,
by having different entities serve different roles best suited to their own aspirations.

7.9 Conclusion

We proposed a model, based on experienced load and node connectivity, for the
cost incurred by each node participating in an overlay network such as a CDN. We
argue such a cost model is a useful complement to topological performance metrics
[22, 31], in that it allows to predict disincentives to collaborate (nodes refusing to
serve requests to reduce their cost), discover possible network instabilities (nodes
leaving and re-joining in hopes of lowering their cost), identify hot spots (nodes
with high routing load), and characterize the efficiency of a network as a whole.

One of the key insights is that inefficiencies may occur when nodes value the
resources they use to forward traffic on behalf of other nodes. In such cases letting
nodes choose which links they wish to maintain can yield a sub-optimal network
with respect to overall resource usage.

Further, our analysis shows that designing very efficient load-balancing primi-
tives is a must to avoid favoring some nodes at the expense of others, which can
potentially create network instability. A possible alternative to load balancing prim-
itives lies in incentive mechanisms that make it desirable for nodes to forward as
much traffic as possible. The game-theoretic formulation proposed here lends itself
to incentive-compatible design.

Finally, we believe that the framework described can be useful for a CDN de-
signer in determining which type of topology is more appropriate for a specific
context, e.g. content-delivery over ad-hoc networks, on-demand video broadcast-
ing. The exercise indeed then becomes a parametrization effort to try to assess the
different nominal costs relative to each other.

Acknowledgements Some of the materials presented in this chapter appeared in a preliminary
form at IPTPS’04, INFOCOM’05, and PINS’04 [10, 11, 12]. This research was mostly conducted
while Nicolas Christin was with the University of California at Berkeley, School of Information.
This work was supported in part by the National Science Foundation through grants ANI-0085879
and ANI-0331659. The material presented in this chapter greatly benefited from discussions with
Paul Laskowski.

References

1. Napster protocol specification (2000). http://opennap.sourceforge.net/
napster.txt

2. Adar, E., Huberman, B.: Free riding on Gnutella. First Monday 5(10) (2000)
3. Akella, A., Seshan, S., Karp, R., Shenker, S., Papadimitriou, C.: Selfish behavior and sta-

bility of the Internet: A game-theoretic analysis of TCP. In: Proc. ACM SIGCOMM’02,
pp. 117–130. Pittsburgh, PA (2002)

7 Economics-Informed Design of CDNs 209

4. Akerlof, G., Yellen, J.: Can small deviations from rationality make significant differences to
economic equilibria? American Economic Review 75(4), 708–720 (1985)

5. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In:
Proc. ACM SIGCOMM’02, pp. 205–217. Pittsburgh, PA (2002)

6. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12,
258–268 (1969)

7. Breslau, L., Cao, P., Fan, L., Philips, G., Shenker, S.: Web caching and Zipf-like distribu-
tions: Evidence and implications. In: Proc. IEEE INFOCOM’99, pp. 126–134. New York,
NY (1999)

8. Buchegger, S., Le Boudec, J.Y.: Performance analysis of the confidant protocol. In: Proc.
ACM MobiHoc’02, pp. 226–236. ACM (2002)

9. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: I Tube, You Tube, Everybody Tubes:
Analyzing the world’s largest user generated content video system. In: Proc. ACM IMC’07.
San Diego, CA (2007)

10. Christin, N., Chuang, J.: On the cost of participating in a peer-to-peer network. In: Proc.
IPTPS’04, Lecture Notes in Computer Science, Vol. 3279, pp. 22–32. San Diego, CA (2004)

11. Christin, N., Chuang, J.: A cost-based analysis of overlay routing geometries. In: Proc. IN-
FOCOM’05, Vol. 4, pp. 2566–2577. Miami, FL (2005)

12. Christin, N., Grossklags, J., Chuang, J.: Near rationality and competitive equilibria in net-
worked systems. In: Proc. ACM SIGCOMM’04 Workshop on Practice and Theory of Incen-
tives in Networked Systems (PINS), pp. 213–219. Portland, OR (2004)

13. Chu, Y.H., Rao, S., Zhang, H.: A case for endsystem multicast. In: Proc. ACM SIGMET-
RICS’00, pp. 1–12. Santa Clara, CA (2000)

14. Chun, B.G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C., Kubiatowicz, J.: Self-
ish caching in distributed systems: a game-theoretic analysis. In: Proc. ACM PODC’04,
pp. 21–30. Saint John’s, NL, CA (2004)

15. Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly constructed over-
lay networks. In: Proc. IEEE INFOCOM’04, Vol. 2, pp. 1329–1339. Hong Kong (2004)

16. Cohen, B.: Incentives build robustness in BitTorrent. In: Proc. 1st Workshop on the Economics
of Peer-to-Peer Systems. Berkeley, CA (2003)

17. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation
game. In: Proc. ACM PODC’03, pp. 347–351. Boston, MA (2003)

18. Feigenbaum, J., Shenker, S.: Distributed algorithmic mechanism design: Recent results and
future directions. In: Proc. DIAL-M’02, pp. 1–13. Atlanta, GA (2002)

19. Feldman, M., Chuang, J., Stoica, I., Shenker, S.: Hidden-action in multi-hop routing. In: Proc.
ACM EC’05, pp. 117–126. ACM (2005)

20. Goemans, M., Li, L., Mirrokni, V., Thottan, M.: Market sharing games applied to content
distribution in ad-hoc networks. In: Proc. ACM MobiHoc ’04, pp. 55–66. ACM, Roppongi
Hills, Tokyo, Japan (2004)

21. Goeree, J., Holt, C.: A model of noisy introspection. Games and Economic Behavior 46(2),
365–382 (2004)

22. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact
of DHT routing geometry on resilience and proximity. In: Proc. ACM SIGCOMM’03, pp.
381–394. Karlsruhe, Germany (2003)

23. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)
24. Holt, C., Roth, A.: The Nash equilibrium: a perspective. Proc. National Academy of Sciences

101(12), 3999–4002 (2004)
25. Hsieh, H.Y., Sivakumar, R.: Performance comparison of cellular and multi-hop wireless net-

works: A quantitative study. In: Proc. ACM SIGMETRICS’01, pp. 113–122. Cambridge, MA
(2001)

26. Huang, C., Li, J., Ross, K.: Can internet video-on-demand be profitable? In: Proc. ACM
SIGCOMM’07, pp. 133–144. Kyoto, Japan (2007)

27. Jackson, M., Wolinsky, A.: A strategic model for social and economic networks. Journal of
Economic Theory 71(1), 44–74 (1996)

210 N. Christin et al.

28. Kaashoek, M.F., Karger, D.: Koorde: A simple degree-optimal distributed hash table. In: Proc.
IPTPS’03, pp. 323–336. Berkeley, CA (2003)

29. Khor, S.H., Christin, N., Wong, T., Nakao, A.: Power to the people: Securing the Internet
one edge at a time. In: Proc. ACM SIGCOMM’07 Workshop on Large-Scale Attack Defense
(LSAD), pp. 89–96. Kyoto, Japan (2007)

30. Liebeherr, J., Nahas, M., Si, W.: Application-layer multicast with Delaunay triangulations.
IEEE Journal of Selected Areas in Communications 20(8), 1472–1488 (2002)

31. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of structured peer-
to-peer systems: routing distances and fault resilience. In: Proc. ACM SIGCOMM’03,
pp. 395–406. Karlsruhe, Germany (2003)

32. McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games and
Economic Behavior 10(1), 6–38 (1995)

33. Mockapetris, P., Dunlap, K.: Development of the domain name system. In: Proc. ACM SIG-
COMM’88, pp. 123–133. Stanford, California (1988)

34. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete ap-
proach. In: Proc. ACM SPAA’03, pp. 50–59. San Diego, CA (2003)

35. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
36. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory. Cam-

bridge University Press (2007)
37. Papadimitriou, C.: Algorithms, games and the Internet. In: Proc. ACM STOC’01,

pp. 749–753. Heraklion, Crete, Greece (2001)
38. Pathan, A.M., Buyya, R.: Economy-based content replication for peering content delivery

networks. In: Proc. CCGRID, pp. 887–892. IEEE Computer Society (2007)
39. Perkins, C. (ed.): Ad hoc networking. Addison-Wesley, Boston, MA (2000)
40. Plaxton, C.G., Rajamaran, R., Richa, A.: Accessing nearby copies of replicated objects in a

distributed environment. Theory of Computing Systems 32(3), 241–280 (1999)
41. Radner, R.: Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long

but finite lives. Journal of Economic Theory 22, 136–154 (1980)
42. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable

network. In: Proc. ACM SIGCOMM’01, pp. 161–172. San Diego, CA (2001)
43. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2), 236–259

(2002)
44. Rowston, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large

scale peer-to-peer systems. In: Proc. IFIP/ACM Middleware’01, pp. 329–350. Heidelberg,
Germany (2001)

45. Saroiu, S., Gummadi, K., Gribble, S.: A measurement study of peer-to-peer file sharing sys-
tems. In: Proc. SPIE/ACM MMCN’02, pp. 156–170. San Jose, CA (2002)

46. Shenker, S.: Making greed work in networks: A game-theoretic analysis of switch service
disciplines. IEEE/ACM Transactions on Networking 3(6), 819–831 (1995)

47. Sivarajan, K., Ramaswami, R.: Lightwave networks based on de Bruijn graphs. IEEE/ACM
Transactions on Networking 2(1), 70–79 (1994)

48. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Transactions on
Networking 11(1), 17–32 (2003)

49. Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., Kubiatowicz, J.: Tapestry: A resilient
global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communica-
tions 22(1), 41–53 (2004)

Chapter 8
CDN Pricing

Kartik Hosanagar

8.1 Introduction

Content Delivery Networks (CDNs) are a very important part of the content deliv-
ery supply chain. The supply chain consists of content providers that create content,
backbone, and access networks that help transport the content; and CDN providers
that store and deliver the content to end users from the edges of the network. By
co-locating their servers close to the edge of the network, CDNs are uniquely po-
sitioned within this value chain and are thus used by a large number of the major
content providers on the Internet. With increasing broadband adoption and a marked
shift towards multimedia content delivery, CDNs will likely play an increasingly
important role in media delivery over the Internet.

CDNs provide significant economic benefits to content providers. By delivering
content from the edges of the network, they help in speeding content delivery. Fur-
ther, they help achieve economies of scale in infrastructure costs by aggregating
traffic across multiple customer sites. As a result, a CDN’s marginal cost of de-
livering content is much lower than that incurred by a small content provider that
chooses to deliver content on its own. Aggregation of traffic also reduces the impact
of variability in demand for content. Since the traffic of different content providers
are unlikely to surge at the same time, a sudden surge in demand for one content
provider is handled by increasing the fraction of the CDN’s infrastructure being
consumed by that content provider. Finally, since there are several candidate servers
from which the CDN can serve content, no single point will be a bottleneck. This
helps improve the availability of content, especially during flash crowds or Denial
of Service (DoS) attacks.

At the same time, CDNs incur costs in maintaining the infrastructure and in de-
livering the content. Due to the costs incurred by the CDN and the significant value
realized by content providers, a market mechanism is needed to ensure that con-
tent providers can continue to derive value and CDN providers simultaneously have

Kartik Hosanagar
Operations and Information Management, The Wharton School, University of Pennsylvania,
e-mail: kartikh@wharton.upenn.edu

R. Buyya et al. (eds.), Content Delivery Networks, 211
c© Springer-Verlag Berlin Heidelberg 2008

212 K. Hosanagar

incentives to deploy and manage the infrastructure. The simplest such mechanism
is to price the service. The issue of CDN pricing is the focus of this chapter.

CDN pricing has received considerable attention in the business domain. The
pricing policies significantly impact the margins of the CDN providers and the sur-
plus of subscribing content providers. Some of the issues that have generated interest
include the impact of bursty traffic on pricing and profitability [7], the use of volume
discounts and overages in current pricing plans [18] and the impact of competition
and pricing wars on the CDN market [15].

The remainder of the chapter is organized as follows. We begin by providing
an overview of common pricing models employed in the industry. We then discuss
academic work on the economics of the content delivery market including prior
work on CDN pricing. Section 8.3 provides a model to capture content providers’
value from CDN services and uses that to discuss pricing policies. We then present
a discussion for industry practitioners. Finally, we discuss opportunities for future
research and conclude this chapter.

8.2 Common Pricing Models in the Industry

A number of different pricing models are used by CDNs. All of them have a usage
component. We briefly discuss the two most popular pricing models below.

8.2.1 Pricing Based on Aggregate Usage

The simplest pricing structure involves a content provider committing to a certain
level of usage (e.g. 50 TBs/month). Based on the commitment level, the CDN deter-
mines a price per GB delivered. These pricing plans usually offer a volume discount
(e.g. $0.5/GB for a traffic commitment of 40–50TBs and $0.15/GB for commitment
of over 100TBs). Some CDNs impose a penalty in case usage exceeds the monthly
commitment in an attempt to induce the content provider to provide more accurate
monthly commitment levels which in turn can help the CDN in better capacity plan-
ning. However, the general pricing structure involves volume discounts for content
providers with significantly high traffic volume.

8.2.2 Percentile-Based Pricing

Another popular alternative involves pricing based on the 95th percentile of traffic.
In this policy, the CDN periodically samples the bandwidth usage of a subscribing
content provider. It then computes the 95th percentile of usage at the end of the
month and charges a price per Mbps based on the 95th percentile of usage.

8 CDN Pricing 213

Most CDNs offer both pricing plans and content providers can select the pre-
ferred plan. Later in this chapter, we discuss the profit implications of these pricing
schemes.

8.3 Background and Related Work

There are two streams of work that are closely related to CDN pricing. The first
relates to work on pricing in networks with congestion. The second stream relates
to work on the economics of content delivery including a few research efforts on
CDN pricing.

8.3.1 Congestion Pricing in Networks

Work on congestion pricing in networks usually focuses on the interaction between
pricing and Quality of Service (QoS) by studying the trade-off between congestion
cost and capacity cost. When capacity cannot be easily increased and QoS require-
ments of applications are stringent, pricing plays a key role in achieving desired
QoS. Specifically, an increase in the price encourages users to shape their traffic
and control the demand for network services which in turn reduces congestion in
the network. Mendelson [16] and Mendelson and Whang [17] present models for
pricing computer services in the presence of delay costs. Other relevant work in-
cludes pricing of congestible resources on the Internet [5, 14] and QoS pricing in
prioritized transmission of data packets based on QoS schemes such as Diffserv and
Intserv [2, 6].

The literature has also studied pricing under bursty traffic. Kelly proposes that
prices under bursty traffic can be based on effective bandwidth [13]. However, the
effective bandwidth depends on the characteristics of the multiplexed traffic and
the link resources and cannot be easily predicted. As a result, Kelly proposes an
approximation that includes a charge per unit time, a charge per unit volume of
traffic carried and a charge per connection [13].

In the CDN context, pricing is not driven by the goal of reducing congestion
within the CDN’s network. Content providers do not want to drop client requests be-
cause some traffic profile limit has been reached. For instance, flash crowds cannot
be predicted in advance, and content providers subscribe to CDN services precisely
to manage the traffic spikes. The CDN’s very appeal lies in that it has sufficient
capacity to manage peak traffic and that traffic across its subscribers are not highly
correlated so that a surge in one subscriber’s traffic is easily addressed by increasing
the fraction of the CDN’s capacity allocated to that subscriber. As a result, conges-
tion reduction is not a key goal of pricing. Thus, the results from the research stream
on congestion pricing, while relevant, do not readily transfer to the CDN domain.

214 K. Hosanagar

8.3.2 Economics of Content Distribution

The history of the CDN market can be traced back to the proxy caches used by retail
ISPs to store and deliver content from the edges of the network. Hosanagar et al.
[8, 9] study the economics of web caching and find that adoption of traditional best-
effort caching will decrease as content providers move towards dynamic content and
simultaneously seek accurate business intelligence regarding website usage. The
authors report that CDN services can play an important role intermediating between
content providers that seek the benefits of edge delivery and retail ISPs that have the
ability to install servers at the edge of the network. Viewed in this manner, CDNs
allow content providers to reap the benefits of edge delivery of content without
incurring the costs of best effort caching.

Kaya et al. [12] conduct an economic and operational analysis of the content de-
livery market. In terms of CDN pricing, Ercetin et al. [4] study optimal pricing and
resource allocation for a differentiated services CDN. Hosanagar et al. [7, 10] study
the optimal pricing for a monopoly CDN. They find that traditional usage-based
pricing plans should entail volume discounts when subscribing content providers
have similar levels of traffic burstiness but that volume discounts can prove subop-
timal when traffic burstiness is highly heterogeneous. Further, the authors find that
profitability from a percentile-based pricing plan can be substantially higher than
traditional usage based billing. In the following section, we discuss the models and
results from these research efforts on CDN pricing in greater detail.

Other than the above related work, there exists other models for edge delivery of
content including Peer-to-Peer (P2P)-based content delivery. Courcobetis et al. [3]
discuss market models for P2P-based content distribution as an alternative to CDN-
based content delivery. Johar et al. [11] explore the impact of P2P networks on the
CDN market. The authors find that P2P networks can sometimes benefit CDN firms
by encouraging content providers to seek high quality CDN services as a means to
compete with illegal delivery of their media in P2P networks.

8.4 Models for CDN Pricing

In this section, we develop the models for CDN pricing to capture the content
providers’ value from CDN services. We then use the models to discuss pricing
policies. The models are based on those in [10].

Consider a market with a monopoly CDN. Content providers have the option of
delivering content on their own (from their own servers or those of a hosting ser-
vice) or outsourcing content delivery to a CDN. The differences between the content
providers are specified in terms of the differences in their mean traffic level λ and
their outsourcing cost Co. The mean arrival rate, λ, is a measure of the volume of
traffic handled by the content provider. Prior empirical studies [9] suggest that the
number of content providers with mean arrival rate λ is given by g(λ) = β/λδ ,
where δ ∈ [1, 2] and β are constants. Co, the cost of outsourcing content delivery

8 CDN Pricing 215

includes the cost of modifying content to facilitate delivery by the CDN, or the cost
of sharing confidential data with a third party (i.e. CDN provider). We assume that
the cdf and pdf of Co are given by H(Co) = Co

W ;h(Co) = WCo
W−1, where W is a

positive constant and Co ∈ [0,1]. The parameter W allows us to vary the relative den-
sity of content providers with low outsourcing cost. When W = 1, Co is Uniformly
distributed. W > 1 captures negative skews and W < 1 captures positive skews in
the distribution. The upper bound of Co can be arbitrarily high but is merely nor-
malized to 1 without loss of generality. Typically, the CDN knows λ for all content
providers as the traffic can be directly observed by the CDN, but does not know the
outsourcing cost Co. We assume that the CDN knows the distribution of outsourcing
costs across content providers (H(Co)).

To determine the CDN’s optimal pricing policy, we proceed as follows. First,
we determine a content provider’s expected surplus from self provisioning and that
from delivering content through the CDN. The content provider chooses the option
that generates the higher expected surplus. This subscription decision is a function
of the CDN’s pricing policy. Based on the content provider’s subscription decision,
we determine the CDN’s optimal pricing policy in order to maximize the CDN’s ex-
pected profit. We now discuss the content provider’s surplus under self-provisioning
and provisioning through a CDN.

8.4.1 Self-Provisioning by Content Provider

Consider a content provider (denoted as CP) with mean traffic λ delivering content
to users. Let X be a random variable denoting the realized number of requests to
the content provider in a given period. In any period, the distribution of X is known
a priori but the realized value of X is unknown. The content provider can choose
to deliver this content directly by investing in infrastructure to process a mean of I
requests per unit time. If it does so, its surplus from serving content is

Uself (X) = V (X)−C(I)− c ·L(I,X) (8.1)

where V () is the content provider’s benefit from responding to all X requests, C() is
the cost of maintaining the infrastructure (servers, bandwidth, software, etc.), which
is concave in I because of economies of scale. L() is the number of lost requests
which increases with X but decreases with I, and c is the cost of each lost request.
V () includes all sources of revenue from the content provider’s Internet operations
(e.g. selling products on the Internet). We model the CP’s infrastructure cost as:
C(I) = a1 · I −a2 · I2 for ∀I ≤ a1/2a2, which captures the concavity between I and
cost. The constraint I ≤ a1/2a2 ensures that the infrastructure cost is always non-
decreasing in infrastructure (note that C′(I) < 0 for I > a1/2a2). In this formula-
tion, a large value for a1 indicates high infrastructure costs and a large value for a2

indicates significant economies of scale. L(), the number of lost requests, increases
with X but decreases with I.

216 K. Hosanagar

The content provider’s expected surplus from delivering content is obtained from
(1) as follows:

Uself = E[Uself (X)] = V −C(I)− c ·L(I) (8.2)

where L(I) = E[L(I,X)] and V = E[V (X)]. The content provider chooses an in-
frastructure level in order to maximize the expected surplus. The content provider’s
decision problem is max

I
{Uself (I)}. We denote the optimal infrastructure level as I∗

and associated expected surplus as Uself (I∗).

8.4.2 Provisioning Through a CDN

The other alternative available to a content provider is to deliver content through a
CDN. The content provider’s surplus from delivering content through the CDN is

UCDN(X) = V (X)+ τ(N) ·X −CO −P(X) (8.3)

where V (), and X are defined as above, τ() is the benefit per request from faster con-
tent delivery through a set of N CDN servers, Co is the cost of outsourcing content
delivery, and P() is the usage-based price the CDN charges the content provider.

The outsourcing costs incurred by content providers may be in the form of con-
tent modification costs or the cost of sharing confidential data with the CDN. The
former is the cost associated with modifying content in order to facilitate delivery by
the CDN. The cost of sharing confidential data arises because the content provider
may be sharing sensitive information such as customer records, credit card infor-
mation or patient medical history with the CDN. The cost may be in the form of
perceived risk or may be due to additional steps needed to ensure security. The cost
of sharing confidential data is expected to vary across content providers because of
inherent differences in the type of content handled by content providers.

The CP does not know how many requests (X) will be made for its content in any
period, but can compute the expected surplus from using the CDN:

UCDN = E[UCDN(X)] = V + τ(N)λ−Co −E[P(X)] (8.4)

Given any price function P(X), the CP can compute the expected surplus. The CP
chooses the CDN if UCDN ≥ Uself (I∗). Substituting Eqs. (8.2) and (8.4) into this
condition, a CP with mean traffic λ and outsourcing cost Co subscribes to the CDN if

Co ≤ τ(N)λ+C(I∗)+ c ·L(I∗)−E[P(X)] (8.5)

8.4.3 CDN’s Profit Function

The content providers choose to either self-provision or deliver content through the
CDN depending upon which option provides the highest expected surplus. Recollect

8 CDN Pricing 217

that the CDN does not know the outsourcing cost for any individual CP. So for
a given choice of P(X), it cannot determine whether a specific CP will subscribe.
However, the CDN knows the distribution of Co across CPs. Thus it can compute the
probability that a CP subscribes to the service. With H(Co) = Co

W , the probability
that a CP with mean traffic λ subscribes to a CDN is

Pr(Subscribe|λ) = (τ(N)λ+C(I∗)+ c ·L(I∗)−E[P(X)])W (8.6)

If g(λ) denotes the number of CPs with mean arrival rate λ, then the expected
number of these CPs subscribing to the CDN is given by

Subs(λ) = g(λ)(τ(N)λ+C(I∗)+ c ·L(I∗)−E[P(X)])W (8.7)

Any subscribing CP pays P(X) for a realized level of requests X . Since X is
not known a priori, the CDN does not know a priori its realized profit from a price
function P(X). However, the CDN’s expected profit can be computed as follows:

π =

⎧
⎨

⎩

∫

λ

Subs(λ)

⎛

⎝
∫

X

Pr(X |λ) ·P(X)dX

⎞

⎠dλ

⎫
⎬

⎭
(8.8)

−

⎧
⎪⎨

⎪⎩
b1

⎛

⎝
∫

λ

λ ·Subs(λ)dλ

⎞

⎠−b2

⎛

⎝
∫

λ

λ ·Subs(λ)dλ

⎞

⎠

2
⎫
⎪⎬

⎪⎭

In the expression above, the first term represents the CDN’s expected revenues.
That is, Pr(X |λ) denotes the probability that a content provider with mean traffic
λ gets X requests. Thus,

∫

X
Pr(X |λ) ·P(X)dX denotes the expected revenues from

one content provider with mean traffic λ. The CDN’s total expected revenues are
obtained by summing the above expression over all content providers. The second
term represents the CDN’s cost, which is modeled to be quadratic over the mean
volume of traffic handled by the CDN (given by

∫

λ
λ ·Subs(λ)dλ). This cost includes

the cost of keeping content consistent across replicas, an accounting mechanism
that collects and tracks information related to request routing and delivery [20],
and the cost associated with content delivery. All these activities are expected to
involve economies of scale and thus the costs are expected to be concave in volume.
Concavity is captured here using a quadratic cost function. Note that the CP and
CDN cost parameters are different (i.e. a1 �= b1, a2 �= b2) because the CDN cost
includes other factors, such as accounting cost and cost of maintaining consistency,
in addition to the content delivery cost.

The CDN’s decision problem is to choose a price function P(X) in order to max-
imize its expected profit.

218 K. Hosanagar

8.4.4 Optimal Pricing for Poisson and Bursty Traffic

We now investigate the CDN’s optimal pricing policy using simulations. We con-
sider a population of 1000 content providers. The mean arrival rates for the CPs are
drawn from a Pareto distribution in [1000,8000]. Given the mean arrival rates, the
traffic is drawn from the distributions specified below:

(a) Poisson: In this case, all 1000 content providers have Poisson distributed traffic.
(b) Bursty Traffic: In this case, we assume that all CPs have bursty traffic. We model

bursty traffic through a a Markov Modulated Poisson Process (MMPP). MMPP
is commonly used to model bursty traffic to web servers [1, 19]. MMPP is a
doubly stochastic Poisson process in which the arrival rate is given by an m-state
Markov process. When the Markov chain is in state j, arrivals follow a Poisson
process with arrival rate λ j. We consider a simple 2-state MMPP with arrival
rates λ1 and λ2. The limiting state probabilities of the phase process are q =
(q1,q2) The mean and variance of the number of requests in a unit time period
are denoted λ̄ and Ψ respectively. A burst in traffic is modeled by assuming
a very large value of λ2 along with a non-zero probability of transitioning to
state 2. We set λ2 = 10λ1 and (q1 = 0.9, q2 = 0.1) as our MMPP parameters
in this section. In other words, the mean arrival rate during bursts is ten times
the regular mean arrival rate; and the system, on average, bursts 10 % of the
time. Different values of λ̄ are simulated by varying λ1. Further, when the mean
arrival rate λ̄ is increased, we adjust the state transition probabilities to maintain
constant burstiness (constant value for

√
Ψ/λ̄).

(c) Mixed Traffic: 500 CPs have Poisson traffic and 500 CPs have MMPP traffic.

The remaining simulation parameters are as follows. For the infrastructure cost
function, C(I) = a1 · I−a2 · I2, we assume that a1 = 3.56 and a2 = 0.000043. These
values are roughly comparable to current infrastructure costs. For example, under
these parameter values the cost of serving 233 requests/min is $804 per month. If we
assume that the average size of the response to a request is 100 KB, this implies that
the cost of serving data at 3.10 Mbps is $804 per month. This is reasonable given the
cost of a fractional T3 connection and of maintaining a low-end server. Likewise,
the cost of serving 6,975 requests per minute is $22,042, which is approximately the
cost of a T3 connection and the associated cost of maintaining a server. These costs
are also comparable to managed hosting costs at the time of writing. We assume
that the cost of a lost request, c, is $10. This is based on an assumption that 10% of
visitors purchase products/services, the average purchase is $100, and a customer
leaves a website if a request does not go through. Finally, CP outsourcing cost is
drawn from a U[0,30000] distribution.

Under these settings, we compute the optimal infrastructure and associated ex-
pected surplus under self-provisioning for each CP. Next, we compute the CP’s
expected surplus from CDN-provisioning for a given CDN price function. For
the CDN price function, we restrict attention to quadratic functions specified by
P(X) = p0 ·X ± p1 ·X2, and perform a grid search for optimal values of p0 and p1.
Note that the above price function allows us to model both concave and convex price

8 CDN Pricing 219

functions. For each CP, we draw 1000 values of X from the corresponding arrival
distribution (Poisson or MMPP). Given p0 and p1, we can compute the price P(X)
corresponding to each value of X and also the expected price for the CP by averag-
ing over the 1000 values of X . Given these parameters, the expected surplus from
using the CDN is computed. The CP subscribes to the CDN if the expected surplus
is higher than under self-provisioning. The CDN’s expected profit is obtained by
summing expected revenues from each subscribing CP and subtracting the CDN’s
cost as in (8) with b1 = 3 and b2 = 0.000047. We compute the optimal price in 50
replications of the simulation. We present the main results below.

8.4.4.1 Optimal Pricing Under Poisson Traffic Entails Volume Discounts

When content providers have Poisson traffic, the CDN’s optimal price function
P∗(X) is 3.9X − 6.6e− 05X2. Thus, the optimal pricing policy under Poisson traf-
fic entails volume discounts. The concavity in the optimal price holds even as we
change the parameters of the simulation. Further, the magnitude of the volume dis-
count increases with an increase in the economies of scale in the content provider’s
infrastructure costs (increase in a2).

8.4.4.2 Optimal Prices are Higher Under Bursty Traffic

The optimal prices for the three traffic types are plotted in Fig. 8.1. It can be seen that
the CDN is able to charge higher prices as traffic burstiness increases. Specifically,
Price(MMPP) > Price(Mixed) > Price(Poisson). This is because the CDN’s value
proposition to CPs in terms of avoiding lost requests is enhanced in the presence
of bursty traffic. As a result, there is a marked increase in the price charged by the
CDN. Interestingly, the optimal price under mixed traffic is convex and involves a
volume tax rather than a volume discount. The rationale behind this is described
below.

Fig. 8.1 Optimal price functions for the three cases

220 K. Hosanagar

8.4.4.3 Traditional Usage-Based Pricing is Inefficient Under Bursty Traffic

Consider the pricing scheme with volume discounts shown in Fig. 8.2. CP1 has
a mean arrival rate given by λ̄. Without loss of generality, assume that CP1 has
a deterministic arrival process. Every period, CP1 receives λ̄ requests (point A in
Fig. 8.2) and pays an expected price P1 to the CDN. CP2 on the other hand has
the same mean λ̄ as CP1 but has higher variance. With some high probability, CP2

receives requests shown by point B; but for the remainder of the time it receives
a high number of requests shown by point C. The expected price, P2 paid by CP2

is shown in the Figure and is clearly lower than P1. This is an artifact of the con-
cave price function. However, this is not desirable as the CP with higher variance
derives greater surplus from the CDN, and hence the CDN should ideally charge
CP2 a higher expected price. For this reason, the CDN may choose a convex price
function even though the concavity in infrastructure costs under self-provisioning
exerts a force on the price function that tends to make it concave. Note also that
such convexity arises only when the traffic burstiness profile is mixed and not when
all CPs with the same mean arrival rate also have the same variance (Poisson traffic
or MMPP with same burstiness across CPs).

If the CDN chooses a convex price function, CPs with high mean arrival rates
are penalized. Consider a CP with a fixed deterministic arrival rate of 2λ. Compared
to a CP with fixed arrivals of λ, the CP pays a high premium for using the CDN.
In contrast, this CP gets volume discounts when self-provisioning and may thus be
tempted to deliver content on its own. Thus, a convex price function dissuades CPs
with high volume and low variability traffic from subscribing to the CDN. There-
fore, the shape of the optimal price function in the mixed traffic case depends on the
distribution of traffic burstiness across CPs and the amount of volume discounts in
CP’s own infrastructure costs.

The analysis above indirectly suggests the inefficiency of the traditional usage-
based pricing policy when the traffic profile is mixed. The policy will either penalize
CPs with low burstiness or CPs with high volume, depending on whether a concave
or convex price function is used. We thus consider an alternative policy, which en-
tails pricing based on a certain high percentile of usage.

Fig. 8.2 Expected price for a concave price function

8 CDN Pricing 221

8.4.4.4 Percentile-Based Pricing is More Profitable for the CDN

We now consider pricing based on a certain high percentile of usage. Specifically,
the CDN monitors the request rate, X , over a period of time (e.g. a month) and
computes the 95th percentile of the request rate for each CP. The price to the CP
is then based on the 95th percentile of his/her usage rate. Let Z be the 95th per-
centile of request rate, X . As before, we restrict attention to quadratic price func-
tions (P(Z) = p0 ·Z ± p1 ·Z2) to simplify computation. We numerically computed
the optimal percentile-based price. In Fig. 8.3, we plot the CDN’s expected profit un-
der optimal percentile-based pricing and traditional usage-based pricing. When the
traffic profile is mixed, the CDN’s profit with a percentile-based pricing strategy is
higher than with a traditional usage-based pricing policy. At the same time, there is
no noticeable difference in profit from traditional usage-based and percentile-based
pricing policies for pure Poisson and MMPP traffic. This is not surprising because
once the mean request rate is fixed, the variance is also determined in both these
cases,1 and hence a mean-based pricing policy can be converted to a percentile-
based policy or vice versa. With mixed traffic, percentile-based pricing permits a
CDN to provide volume discounts to CPs and simultaneously charge a higher price
to CPs with greater traffic burstiness.

There are some drawbacks of percentile-based billing, including complicated
billing relative to traditional usage-based billing and the lack of standardization
(e.g. choice of sampling times can affect the bill). This has resulted in some de-
bate in the content delivery industry regarding the most appropriate billing policy.
As a result, several CDNs such as SyncCast have adopted traditional usage-based
billing because of its simplicity. However, our results suggest that when different
CPs have different levels of burstiness, as expected in reality, percentile-based pric-
ing is more profitable than traditional volume-based pricing. When traffic burstiness

Fig. 8.3 CDN profit with different pricing policies and traffic profiles

1 For Poisson, the variance is equal to the mean. For our MMPP process, the variance is equal to
the square of the product of burstiness (a constant) and the mean.

222 K. Hosanagar

across subscribers is similar, CDNs can choose traditional volume-based pricing to
simplify billing.

8.5 Visionary Thoughts for Practitioners

CDNs face a non-trivial pricing problem. On the one hand, percentile-based pric-
ing generates considerably higher profits relative to traditional usage-based pricing
schemes that do not explicitly monitor bursts or peak traffic levels. On the other hand,
percentile-based pricing is perceived as a form of peak pricing and there seems to be
some resistance to this form of billing among content providers and industry experts.

Despite the higher profitability of percentile pricing, we expect that content
providers’ preference for transparent pricing plans coupled with competitive pres-
sure will ultimately drive a decrease in the use of percentile pricing over the next
few years. If the major incumbents primarily offer percentile pricing, entrants will
try to differentiate themselves by offering more transparent pricing plans. If content
providers adopt the newer CDNs because of the more transparent pricing, this will
in turn force the incumbents to offer more transparent plans as well.

Another possibility is that more CDNs will offer both the traditional usage-based
pricing and percentile pricing and let the content providers self-select the plan they
prefer. Indeed, several CDNs have started offering both billing options and let the
content providers self-select the pricing policies preferred by them. However, it is
not clear if this is particularly desirable for the CDNs. The content providers with
highly bursty traffic will choose the traditional plans to avoid being penalized during
bursts. The content providers with relatively low levels of burstiness may prefer
percentile pricing plans because these plans are created to extract value from content
providers with highly bursty traffic and tend to reward those with lower burstiness.
Thus, the simultaneous use of both pricing plans can give rise to adverse selection
where content providers choose precisely the pricing plan that the CDN would not
want them to choose. Thus, CDN providers may be better off identifying a single
pricing policy that is acceptable to content providers while allowing the CDNs to
efficiently extract value created by them.

In summary, CDN firms need to investigate longer-term solutions. These solu-
tions may range from educating content providers of the need to introduce percentile-
based pricing to that of completely eliminating percentile-based pricing from the
industry. The industry needs to be proactive in this regard.

8.6 Future Research Directions

This chapter highlights that there are non-trivial tradeoffs between choosing a tra-
ditional usage based pricing model and a percentile-based pricing model. On the
one hand, percentile-based pricing allows the CDN to increase the price charged

8 CDN Pricing 223

to a content provider with highly bursty traffic while simultaneously providing vol-
ume discounts to a content provider with high traffic volume (and low variability in
traffic). On the other hand, percentile-based pricing can be complex and may deter
content providers from subscribing. As a result, many CDNs offer both pricing poli-
cies allowing content providers to self-select the plan. An interesting area of further
study is the interaction between the two pricing approaches and the computation of
optimal prices when both traditional and percentile based billing are offered.

In addition, much of the work on CDN pricing has focused on monopoly settings.
An interesting future direction will be to investigate the impact of competition on the
pricing policies chosen by the CDNs. Although Akamai has historically dominated
the industry, the last couple of years have witnessed significant growth of other
competitors such as Limelight Networks and Level 3. The competition among these
firms seems to have a significant impact on the pricing policies of even the dominant
player [15]. A study of the impact of competition on CDN pricing will help shed
more light on the evolution of the industry.

Another recent trend has been the advent of P2P content delivery as an alter-
native to CDN-based content delivery. A number of hybrid CDN/P2P players have
emerged as well. The impact of these P2P and hybrid players on the CDN market
is not fully understood. A recent study by Johar et al. [11] explores the impact of
P2P media delivery on the profits of a pure CDN and reveals a number of interesting
insights. For example, the authors find that a P2P competitor can sometimes have
a positive impact on the CDN. However, much still needs to be done to understand
the interaction between P2P and CDN based content delivery.

8.7 Conclusions

The pricing of Content Delivery Networks is a complex problem. Subscribing con-
tent providers can be highly heterogeneous in terms of their traffic patterns and the
type of content they handle. At the same time, the CDNs have to announce a single
pricing policy that accounts for all these different traffic types. This has also been a
source of much debate in the industry.

Some observers have questioned the simultaneous use of volume discounts and
overages in the industry. The discussion in this chapter highlights that economies of
scale in content delivery exert a force that drives volume discounts in CDN pricing.
However, bursty traffic exerts a force that favors overages. One solution to this is-
sue is the use of percentile-based billing. Percentile-based pricing allows a CDN to
provide volume discounts to high volume content providers while charging content
providers with highly bursty traffic. However, industry observers have also ques-
tioned the need for percentile-based pricing which is akin to a form of peak pricing.
One answer lies in the observation that it helps generate higher profits for the CDN.

However, much remains to be understood in terms of the right pricing models for
the CDN industry, the impact of competition on pricing and the economics of the
CDN market. This will remain an area of considerable interest to CDN researchers
and practitioners.

224 K. Hosanagar

Acknowledgements Some of the materials presented in this chapter appeared in a preliminary
form in HICSS’04 [7] and Wharton School Working Paper [10].

References

1. Anderson, M., Cao, J., Kihl, M., and Nyberg, C. Performance modeling of an Apache web
server with bursty arrival traffic. In Proc. of International Conference on Internet Computing
(IC), June 2003.

2. Cocchi, R., Shenker, S., Estrin, D., and Zhang, L. Pricing in computer networks: motivation,
formulation and example. IEEE/ACM Transactions on Networking, vol 1, December 1993.

3. Courcoubetis, C., Antoniadis, P. Market models for P2P content distribution. In Proc. of First
International Workshop on Agents and Peer-To-Peer Computing (AP2PC), 2002.

4. Ercetin, O. and Tassiulas, L. Pricing strategies for differentiated services content delivery net-
works. Computer Networks, vol 49, no 6, pp 840–855, 19 December 2005.

5. Gibbens, J. and Kelly, F.P. Resource pricing and the evolution of congestion control. Automat-
ica 35, 1999.

6. Gupta, A., Stahl, D.O., and Whinston, A. B. Priority pricing of integrated services networks.
Internet Economics, eds Lee W. McKnight and Joseph P. Bailey, MIT Press, 1997.

7. Hosanagar, K., Krishnan, R., Smith, M., Chuang, J. Pricing and service adoption of content
delivery networks (CDNs). In Proc. of the Hawaii International Conference on Systems and
Sciences (HICSS), Hawaii, January 2004.

8. Hosanagar, K., Krishnan, R., Chuang, J., and Choudhary. V. Pricing vertically differentiated
web caching services. In Proc. of the International Conference on Information Systems (ICIS),
Barcelona, December 2002.

9. Hosanagar, K., Krishnan, R., Chuang, J., and Choudhary, V. Pricing and resource allocation
in caching services with multiple levels of quality of service. Management Science, vol 51, no
12, 2005.

10. Hosanagar, K., Chuang, J., Krishnan, R., and Smith, M. Service adoption and pricing of con-
tent delivery network (CDN) services. Management Science, vol 54, no 09, 2008.

11. Johar, M., Kumar, N., and Mookerjee, V. Analyzing the Impact of Peer-to-Peer Networks
on the Market for Content Provision and Distribution. University of Texas, Dallas, Working
Paper, 2007.

12. Kaya, C., Dogan, K., and Mookerjee, V. An Economic and Operational Analysis of the Market
for Content Distribution Services. In Proc. of the International Conference on Information
Systems, Seattle, December 2003.

13. Kelly, F. Charging and accounting for bursty connections. Internet Economics, eds Lee
W. McKnight and Joseph P. Bailey, MIT Press, 1997.

14. MacKie-Mason, J.K. and Varian, H.R. Pricing congestible network resources. IEEE Journal
of Selected Areas in Communications, vol 13, no 7, pp 1141–149, September 1995.

15. Malik, O. Akamai and the CDN Price Wars. GigaOM Blog, August, 2007.
16. Mendelson, H. Pricing computer services: queuing effects. Communications of the ACM, vol

28, 1990.
17. Mendelson, H., and Whang, S. Optimal incentive-compatible priority pricing for the M/M/1

queue. Operations Research, vol 38, 870–83, 1990.
18. Rayburn, D. Content delivery pricing: understanding CDN overages.” Streamingmedia Blog,

October 2007.
19. Scott, S. L. and Smyth, P. The Markov modulated Poisson process and Markov Poisson cas-

cade with applications to web traffic modeling.” In Bayesian Statistics, Oxford University
Press, 2003.

20. Vakali, A. and Pallis, G. Content delivery networks: status and trends. IEEE Internet Comput-
ing vol 7, no 6, pp 68–74, 2003.

Chapter 9
Mathematical Models for Resource Management
and Allocation in CDNs

Tolga Bektaş and Iradj Ouveysi

9.1 Introduction

To achieve a cost-effective content delivery strategy that a CDN provider seeks, the
resources of a CDN, consisting primarily of the network infrastructure, the content
to be distributed in the network, and the caching servers (holding a set of objects)
that are to be distributed throughout the network, need to be efficiently managed
and allocated. Now that the customer preferences have begun to play a key role in
provisioning CDN services, the provider should also take into account some specific
Quality-of-Service (QoS) considerations in planning its content delivery activities.

Mathematical modeling is a powerful and an effective tool that can be used to
efficiently solve the resource allocation and management problems in a CDN. The
aim of this chapter is to demonstrate how a variety of problems of this domain can
be formulated in terms of mathematical models, and how the resulting models can
be solved efficiently using the available techniques. For this purpose, we review the
recent literature in the next section; simultaneously describe the relevant work and
present the associated mathematical models. Solution techniques that we believe to
be appropriate for the resolution of these models are described in Sect. 9.3, where
we will also illustrate how these techniques can be applied to some of the models
presented in this chapter. Section 9.4 offers some new models for a number of CDN
architectures, and Sect. 9.5 presents their performance results. We offer our thoughts
for practitioners in Sect. 9.6, provide directions for further research in Sect. 9.7 and
state our conclusions in Sect. 9.8.

Tolga Bektaş
School of Management, University of Southampton, Highfield, Southampton SO17 1BJ, UK,
e-mail: T.Bektas@soton.ac.uk

Iradj Ouveysi
Honorary research fellow, Electrical and Electronic Engineering Department, The University of
Melbourne, Vic. 3010, Australia, e-mail: iradjouveysi@yahoo.co.uk

R. Buyya et al. (eds.), Content Delivery Networks, 225
c© Springer-Verlag Berlin Heidelberg 2008

226 T. Bektaş and I. Ouveysi

9.2 Related Work

In this section, we review the relevant literature that offer mathematical models for
resource management and allocation in CDNs, and at the same time present the
related mathematical models. Before presenting the models, we define the terminol-
ogy that will be used throughout the chapter. The term content refers to any kind of
information that is available on the World Wide Web to public such as Web pages,
multimedia files and text documents. Object refers to a specific item of the content,
such as a sound file or a text document. The content provider issues content for
the access of others, and a CDN provider (most often a commercial one) dissemi-
nates the content on behalf of the content provider. There may be a few exceptions
where the content provider takes care of the content delivery itself, but in this chap-
ter we shall assume that this task is outsourced to a CDN provider by the content
provider. The term client refers to an individual (either person or corporate) who
issue requests for content. The CDN providers hold either the whole or a subset of
the content in caching servers that are deployed throughout the telecommunications
network, through or by which client requests are served. For all the models that fol-
low, we assume a given complete network G = (V,E), where V is the set of nodes
and E = ({i, j} : i, j ∈ V) is the set of links. The node set V is further partitioned
into three nonempty subsets I, J and S, where I is the set of clients, J is the set of
nodes where caching servers1 are (or can be) installed, and S is the set containing the
origin servers (S = {0} in case of a single origin server). All the models presented
in this section use a common notation framework that is given in Table 9.1.

9.2.1 The Fundamental Problems

There are three fundamental problems that arise in designing a cost-effective de-
livery network on which most of the more complex mathematical models proposed
within the CDN domain are based on. This section presents a brief overview of these
three problems.

Caching server placement problem. Given an existing infrastructure, the caching
server placement problem consists of optimally placing a given number of servers to
a given number of sites, such that a cost function (overall flow of traffic, average de-
lay the clients experience, and total delivery cost) is minimized [22]. Qiu et al. [26]
offer two well-known mathematical models to the caching server placement prob-
lem, namely the uncapacitated p-median (e.g. see [2]) and facility location problems
(e.g. see [11]). The problem of placing transparent caches is described by Krishnan
et al. [19]. The objective function considered in this study is interesting in that it

1 We have chosen to use the term caching server as opposed to proxy server to avoid confusion as
the concept of proxy was originally used to perform filtering and request relay, etc., but this is not
practical any more as web pages are changing fast and dynamically. It is therefore more appropriate
to refer to the additional servers as caching servers, or simply caches.

9 Mathematical Models for Resource Management and Allocation 227

Table 9.1 Summary of the notation used in the chapter

Sets

I Set of clients (I ⊂V)
J Set of nodes on which caching servers can be established (J ⊂V)
S Set of origin servers (S ⊂V)
K Set of objects

Parameters
bk Size of object k ∈ K
λi Aggregate request rate of client i ∈ I
hi j Fraction of the request originating from node i ∈ I that can be satisfied by j ∈ J
ci j ‘Distance’ between two nodes i ∈V and j ∈V (i.e. number of hops, cost)
fi j Amount of flow between a client i ∈ I and a caching server j ∈ J
dik Request rate of client i ∈ I for object k ∈ K per unit time
f j Cost of operating a caching server on node j ∈ J
ψ j Cost of placing an object on a caching server j ∈ J
β j Cost per unit of bandwidth required by caching server j ∈ J
δ j Cost per unit of processing power required by caching server j ∈ J
Cj Units of processing power available at a caching server j ∈ J
s j Storage capacity of a caching server j ∈ J
lk Amount of bandwidth consumed by object k ∈ K
pwk Amount of processing power consumed by object k ∈ K
ρk Revenue generated by providing object k ∈ K to the clients
Li j Latency between two nodes i ∈V and j ∈V
Δd Upper bound on latency (may be defined in terms of a link or an object, or both
p jk Probability that object k ∈ K exists at caching server j ∈ K

Variables
ϑ jk ∈ {0,1} 1, if request for object k ∈ K is directed to caching server j ∈ J; 0, otherwise
xi j ∈ {0,1} 1, if client i ∈ I is assigned to caching server j ∈ J; 0, otherwise
xi jk ∈ {0,1} 1, if object k ∈ K requested by client i ∈ I is held at caching server j ∈ J; 0,

otherwise
y j ∈ {0,1} 1, if a caching server is active at node j ∈ J; 0, otherwise
z jk ∈ {0,1} 1, if object k ∈ K is placed on a caching server j ∈ J; 0, otherwise
uk ∈ {0,1} 1, if object k ∈ K is replicated (on any caching server j ∈ J); 0, otherwise
rk

ji ≥ 0 fraction of accesses for object k ∈ K directed to server j ∈ J requested by client
i ∈ I

considers the case where the requested content is not found in a specific caching
server. Thus, the cost of serving client i from server j is given by the following:

cost(i, j) = fi j(hi jci j +(1−hi j)(ci j + c js)), (9.1)

This cost function (9.1) is a good representation of how a CDN operates and has
been used in formulating other problems (e.g. see [6, 17]).

Request routing. Routing in a computer network refers to sending data from one
or more sources to one or more destinations so as to minimize the total traffic flow-
ing on the network. For a detailed review on the problem as well as a survey of
combinatorial optimization applications, we refer the reader to [24]. Request rout-
ing, on the other hand, is basically the process of guiding a client’s request to a

228 T. Bektaş and I. Ouveysi

suitable caching server that is able to serve the corresponding request. The problem
is formally defined as, given a request for an object, selecting a server to address the
request such that a cost function is minimized. For a mathematical formulation of
the problem (albeit a simplified one) the reader may refer to [14].

Object placement. Previously mentioned studies assume that the content held in
the origin server is entirely replicated onto the caching servers (in case of which
the caching servers are usually referred to as replicas or mirrors). Unfortunately,
this may not always be possible in situations where the objects are significantly
large in size (i.e. multimedia files) and only a partial replication can be performed
due to the limited storage capacity of the caching servers. In this case, any caching
server can only hold a subset of the content. Determining which objects should be
placed at each caching server under storage capacity restrictions is known as the
object placement problem. The reader may see [18] for a mathematical model of
this problem.

9.2.2 Integrated Problems

In this section, we present and discuss some of the more complex issues in CDNs
in which several problems mentioned above jointly arise. We start by the static data
placement problem defined on a network with no origin server which consists of
placing objects so as to minimize the total access cost (the cost for a client i ∈ I
to access object k ∈ K from node j ∈ J is bkdikci j). A mathematical model for this
problem, as offered by Baev et al. [4], is given below.

(M1) Minimize ∑
i∈I

∑
j∈I

∑
k∈K

bkdikci jxi jk (9.2)

subject to

∑
j∈I

xi jk = 1 ∀i ∈ I,k ∈ K (9.3)

xi jk ≤ z jk ∀i, j ∈ I,k ∈ K (9.4)

∑
k∈K

bkz jk ≤ s j ∀i ∈ I (9.5)

z jk ∈ {0,1} ∀ j ∈ I,k ∈ K (9.6)

xi jk ∈ {0,1} ∀i, j ∈ I,k ∈ K. (9.7)

Model M1 uses, a binary variable z jk that equals 1 if object k ∈ K is held at caching
server j ∈ J, and 0 otherwise; as well as a three-index binary variable xi jk that is
equal to 1 if object k ∈ K requested by client i ∈ I is served by node j ∈ J that holds
a copy, and 0 otherwise. In this model, the objective function (9.2) expresses the
total cost of serving requests for all nodes and objects. Note that J = I, i.e. each
node acts both as a client and a potential caching server. Constraint (9.3) expresses

9 Mathematical Models for Resource Management and Allocation 229

that each node’s request should be forwarded to exactly one node. Constraint (9.4)
indicates that an assignment to a node can only be made if that specific node is
holding the requested object. Finally, constraint (9.5) relates to the limited capacity
(s j) of each node j ∈ J.

Laoutaris et al. [20] study the joint problem of object placement and node dimen-
sioning, where the latter refers to determining the fraction of a given a total storage
capacity to allocate to each node of the network. The overall aim is to minimize the
average distance from all clients to all the requested objects. The authors assume that
all the objects are unit-sized. Another study by the same authors [21] describes a
model to solve the storage capacity allocation problem in CDNs, taking into account
decisions pertaining to the location of the caching servers to be installed, the capacity
that should be allocated to each caching server, and the objects that should be placed
in each caching server. This model is defined on a tree network, and each node i has
a set of ancestors denoted by a(i), and a set of leaves denoted by l(i). The model is
rewritten based on the notation introduced earlier, as opposed to that used in [21].

(M2) Maximize ∑
i∈I

λi ∑
k∈K

dik ∑
v∈a(i)

(cis − civ)xi jk

subject to

∑
v∈a(i)

xi jk ≤ 1 ∀i ∈ I,k ∈ K (9.8)

∑
v∈l(i)

xi jk ≤ Mz jk ∀i ∈ I,k ∈ K (9.9)

∑
j∈J

∑
k∈K

z jk ≤ D (9.10)

xi jk ∈ {0,1} ∀i ∈ I, j ∈ J,k ∈ K (9.11)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.12)

As one can see, this model is quite similar to M1 presented by Baev et al. [4] but
differs with respect to the objective function, which maximizes the savings that one
can obtain by the placement of objects on the caching servers. Constraints (9.8) and
(9.9) are related to the assignment of customers to the caching servers, where M is
a sufficiently big number. Constraints (9.10) ensure that the node dimensioning is
performed without exceeding the available resource of storage capacity, denoted by
D = ∑

j∈J
s j. Since all objects are assumed to be unit-sized by Laoutaris et al. [21], the

dimension of a node is therefore equivalent to the number of objects placed on that
node.

Nguyen et al. [23] consider the problem of provisioning CDNs on shared in-
frastructures and propose a joint provisioning and object replication model so as
to minimize the total cost of storage, request serving, and start-up. We will present
their model here in terms of the already defined notations but also define the fol-
lowing additional parameters: An object can be placed on each caching server at

230 T. Bektaş and I. Ouveysi

a unit cost ψ j and a unit bandwidth cost β j, while the unit processing power cost
is denoted by δ j and a total of Cj units of processing power is available at each
caching server. Each object k consumes lk units of bandwidth and ck units of pro-
cessing power. The service provider has revenue of ρk from each object k per unit
time. Latency between two nodes i and j is denoted by Li j which should be lim-
ited by an upper bound Δd . An additional binary decision variable uk denotes if
an object is replicated (in any caching server) or not, and variable rk

ji denotes the
fraction of accesses for object k requested by customer i that should be directed to
server j.

(M3) Maximize ∑
i∈I

∑
j∈J

∑
k∈K

rk
jiρk − ∑

j∈J
∑
k∈K

ψ jbkz jk−

∑
i∈I

∑
j∈J

∑
k∈K

rk
ji(β jlk +δ jck)− ∑

j∈J
f jy j (9.13)

subject to

∑
i∈I

rk
ji pwk ≤Cjy j ∀ j ∈ J (9.14)

∑
j∈J

rk
ji pwk = ukdik ∀i ∈ I,k ∈ K (9.15)

rk
ji(Li j −Δd) ≤ 0 ∀i ∈ I, j ∈ J,k ∈ K (9.16)

rk
ji ≤ dikz jk ∀i ∈ I, j ∈ J,k ∈ K (9.17)

y j ∈ {0,1} ∀ j ∈ J (9.18)

uk ∈ {0,1} ∀k ∈ K (9.19)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.20)

Model M3 has an objective function which maximizes the profit of the service
provider, calculated by subtracting from the total revenue (first component of (9.13))
the total cost related to storage, bandwidth, CPU and site establishment. Constraints
(9.14) enforce the capacity restrictions for each server whereas constraints (9.15)
ensure that all requests are served. Constraints (9.16) guarantee that all requests are
served within the allowable latency bound. Finally, constraints (9.17) dictate that a
request can be served by a caching server only when the requested object is available
therein.

The joint problem of server location, object placement and request routing is
studied by Bektaş et al. [9], where a new model is proposed that extends the standard
facility location model to CDNs by considering multiple objects and an incorpora-
tion of a suitable, albeit nonlinear, objective function similar to (9.1). The integer
programming model, as proposed by Bektaş et al. [9], is given below:

(M4) Minimize ∑
j∈J

f jy j

+∑
i∈I

∑
j∈J

∑
k∈K

(bkdikci jz jkxi j +bkdik(1− z jk)(c jS + ci j)xi j) (9.21)

9 Mathematical Models for Resource Management and Allocation 231

subject to

∑
j∈J

xi j = 1 ∀i ∈ I (9.22)

xi j ≤ y j ∀i ∈ I, j ∈ J (9.23)

∑
k∈K

bkz jk ≤ s jy j ∀ j ∈ J (9.24)

y j ∈ {0,1} ∀ j ∈ J (9.25)

xi j ∈ {0,1} ∀i ∈ I, j ∈ J (9.26)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.27)

The objective function of model M4 is a generalization of (9.1) to multiple clients,
servers and objects. The first component denotes the total cost of caching server es-
tablishment. The second component has two parts, where the first part corresponds to
the costs of serving the clients from the caching servers and the second part reflects
the additional costs that occur in accessing the origin server when the requested object
is not found in the corresponding caching server. Constraints (9.22) ensure that each
client is assigned to a single caching server and constraints (9.23) dictate that this
assignment is only possible when the server is active. Overcapacity usage in placing
the objects onto each caching server is prohibited by constraints (9.24).

Bektaş et al. [8] have later considered the problem from an operational level by
excluding the caching server deployment decisions, but at the same time, impos-
ing a QoS constraint that imposes a limit on end-to-end object transfer delays, and
propose the following model.

(M5) Minimize ∑
i∈I

∑
j∈J

∑
k∈K

(bkdikci jz jkxi j +bkdik(1− z jk)(c jS + ci j)xi j)

subject to

∑
j∈J

xi j = 1 ∀i ∈ I (9.28)

∑
j∈J

Li jxi jz jk + ∑
j∈J

(Li j +L j0)xi j(1− z jk) ≤ Δd ∀i ∈ I, j ∈ J,k ∈ K (9.29)

∑
k∈K

bkz jk ≤ s jy j ∀ j ∈ J (9.30)

xi j ∈ {0,1} ∀i ∈ I, j ∈ J (9.31)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.32)

Model M5 has a similar structure to M4. However, it excludes the caching server
deployment decisions, but incorporates QoS restrictions represented by constraints
(9.29). It has been observed that one can write constraints (9.29) in a much sim-
pler form as xi j ≤ z jk, ∀i ∈ I, j ∈ J,k ∈ Qi j, where Ri j = {k ∈ K|t(bk,di j) > Δd}
and Qi j = {k ∈ K|Li j) ≤ Δd and (Li j + L j0) > Δd} for each pair (i, j) [8]. The for-
mer relates to objects k for which the time required to transfer such objects k from

232 T. Bektaş and I. Ouveysi

caching server j exceeds the allowable delay limit, and the latter consists of a subset
of objects k for which the time required to transfer such objects from caching server
j is within allowable delay limit, but does not allow for retrieval of this object from
the caching server due to the QoS constraint.

All of the above models are based on the assumption that the CDN operates with
a single origin server (i.e. |S|= 1). While this is most often the case in practice, there
are situations where a content provider may deploy multiple origin servers (possi-
bly on the same site) for a variety of reasons, such as increasing system reliability
or the storage capacity. To take into account multiple origin servers, a model is pro-
posed by Bektaş et al. [6] for the joint problem of caching server placement, request
routing, and object placement. We present this model in the following,

(M6) Minimize ∑
j∈J

f jy j

+∑
i∈I

∑
j∈J

∑
s∈S

∑
k∈K

(bkdikci jz jkxi j +bkdik(1− z jk)(ci j + c jst js)xi j)

(9.33)

subject to

∑
j∈J

xi j = 1 ∀i ∈ I (9.34)

xi j ≤ y j ∀i ∈ I, j ∈ J (9.35)

∑
k∈K

bkz jk ≤ s jy j ∀ j ∈ J (9.36)

∑
s∈S

t js = 1 ∀ j ∈ J (9.37)

y j ∈ {0,1} ∀ j ∈ J (9.38)

xi j ∈ {0,1} ∀i ∈ I, j ∈ J (9.39)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K (9.40)

t js ∈ {0,1} ∀ j ∈ J,s ∈ S. (9.41)

Model M6 is an extension of M4 to multiple origin servers and uses an additional
binary variable t js that is equal to 1 if caching server j ∈ J is assigned to an origin
server s ∈ S, and 0 otherwise. Note that the objective function has been augmented
so as to consider all the available origin servers, and an extra constraint (9.37) has
been added that dictates each caching server should be assigned to a single origin
server to further forward the requests for objects which they do not hold, in the event
that these objects are requested by their clients.

9.3 Solution Algorithms

There are two classes of algorithms for the solution of the above mentioned prob-
lems and the associated mathematical models. The first is the class of exact

9 Mathematical Models for Resource Management and Allocation 233

algorithms which are able to yield optimal solutions at the expense of rather signif-
icant computational times, and the second is the class of heuristic algorithms which
usually require relatively small amount of computational effort, but unfortunately
unable to guarantee the identification of the optimal solution. Amongst a number
of available exact solution methods, we will focus here on two methods that are
based on decomposition, since they allow for a break-down of the original model
into smaller sized and easier-to-solve subproblems.

9.3.1 Benders’ Decomposition

Benders Decomposition [10] is a technique that allows a model to be split into two
subproblems. More specifically, given a model of the following form,

(P) Minimize cx+ fy subject to Ax+By = d,x ∈ X,y ∈ Y, (9.42)

where x and y are the column vectors of variables, c and f are the row vectors
of cost coefficients, A and B are the constraint coefficient matrices, and d is the
column vector of right hand side values, all with appropriate dimensions. X and Y
are nonempty (we assume that the former to be continuous and the latter integer)
sets in which variables x and y are defined, respectively.

To illustrate the application of Benders’ decomposition on problem P , we first
rewrite problem P in the following form.

(P1) min
ỹ∈Y

{fỹ+min
x∈X

{cx : Ax = d−Bỹ}}, (9.43)

where y is preset as y = ỹ. Since the inner minimization problem in P1 (denoted
by S) expressed in terms of the x variables only is linear and continuous, one can
replace it by its dual using dual variables w to each of the constraints of S :

min
ỹ∈Y

{fỹ+max
w

{w(d−Bỹ) : wA ≤ c}}, (9.44)

Assuming that the feasible region of the dual of S is nonempty (as otherwise this
would imply the primal problem being either infeasible or unbounded), the original
problem P can be rewritten as,

Minimize z+ fy (9.45)

subject to

z ≥ τr(d−By) τr ∈ϒ (9.46)

ςu(d−By) ≤ 0 ςu ∈Ψ (9.47)

y ∈ Y, (9.48)

234 T. Bektaş and I. Ouveysi

called the Master Problem. Sets ϒ and Ψ denote extreme points and extreme rays
of the feasible space of the dual problem, respectively. Constraints (9.46) are those
defined for each extreme point of the feasible region of the dual of S , and con-
straints (9.47) are those written for each extreme ray of the dual of S , whenever it
is infeasible.

The authors of [8] observe that model M5 has a special structure which makes
it suitable for the application Benders’ decomposition. We illustrate this on a lin-
earization of model M5 using auxiliary linearization variables ϕi jk. These variables
correspond to the product xi jz jk in the objective function of M5 (see [8] for lin-
earization details):

Minimize ∑
i∈I

∑
j∈J

∑
k∈K

(
bkλik

(
ci j + c j0

)
xi j −bkλikc j0ϕi jk

)
(9.49)

subject to

∑
j∈J

xi j = 1, ∀i ∈ I (9.50)

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J (9.51)

ϕi jk − xi j ≤ 0 ∀i ∈ I, j ∈ J,k ∈ K (9.52)

ϕi jk − z jk ≤ 0 ∀i ∈ I, j ∈ J,k ∈ K (9.53)

xi j − z jk ≤ 0 ∀i ∈ I, j ∈ J,k ∈ Qi j (9.54)

xi j ≥ 0 ∀i ∈ I, j ∈ J (9.55)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K (9.56)

ϕi jk ∈ [0,1] ∀i ∈ I, j ∈ J,k ∈ K. (9.57)

Upon fixing the object location variables that appear in this linearization to some
feasible configuration as z jk = z̄ jk, the resulting subproblem further decomposes
into smaller problems for each client i ∈ I, shown as follows:

Minimize ∑
j∈J

∑
k∈K

(bkλik(ci j + c j0)xi j −bkλikc j0ϕi jk) (9.58)

subject to

∑
j∈J

xi j = 1 (9.59)

ϕi jk − xi j ≤ 0 ∀ j ∈ J,k ∈ K (9.60)

ϕi jk ≤ z∗jk ∀ j ∈ J,k /∈ Qi j (9.61)

xi j ≤ z∗jk ∀ j ∈ J,k ∈ Qi j (9.62)

xi j ≥ 0 ∀ j ∈ J.

Each subproblem, although still integer, is observed to bear the integrality prop-
erty. This distinctive feature allows one to relax the integrality restrictions on the xi j

9 Mathematical Models for Resource Management and Allocation 235

variables and solve its dual. Let αi, θi jk, ωi jk and ζi jk be the dual variables corre-
sponding to constraints (9.59), (9.60), (9.61) and (9.62), respectively. One can then
construct the master problem as follows,

Minimize ∑
i∈I

ξi (9.63)

subject to

ξi + ∑
j∈J

∑
k∈K

z jk(ω̃i jk + ζ̃i jk) ≥ α̃i (α,θ ,ω,ζ) ∈ PD
i (9.64)

α̃i − ∑
j∈J

∑
k∈K

z jk(ω̃i jk + ζ̃i jk) ≤ 0, (α,θ ,ω,ζ) ∈ W D
i (9.65)

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K,

where (9.64) are the optimality constraints with the coefficients corresponding to an
optimal solution to the dual problem and calculated as follows,

α̃i = min
j∈Fi

⋃
Hi

⎧
⎨

⎩∑
k∈K

bkλik(ci j + c j0)− ∑
k∈K:z∗jk=1

bkλikc j0

⎫
⎬

⎭

ω̃i jk =
{

bkλikc j0, if z∗jk = 0
0, otherwise

∑
k∈K:z∗jk=0

ζ̃i jk = α̃i + ∑
k∈K

θ̃i jk − ∑
k∈K

bkλik(ci j + c j0) ∀ j ∈ J,

where Fi = { j ∈ J|Qi j = Ri j = /0} and Hi = { j ∈ J|z∗jk = 1,∀k ∈Qi j}. Constraints
(9.65) are written for every extreme ray that correspond to an infeasible solution
to the dual problem. Due to the number of optimality and infeasibility constraints
that are present in the master problem, it is not practically possible to solve it as is.
One therefore needs to resort to a strategy where one starts with a restricted master
problem including only a limited number constraints, and additional constraints are
iteratively added to this restricted problem until the optimal solution is reached. The
reader is referred to [8] for details of this approach along with various refinements
that are used to increase the efficiency of the algorithm, such as the use of Pareto-
optimal cuts and cut elimination.

9.3.2 Lagrangean Relaxation and Decomposition

Lagrangean relaxation is an approach where some of the constraints in a model are
dualized (or relaxed) in a Lagrangean fashion so as to obtain a problem that is easier

236 T. Bektaş and I. Ouveysi

to solve. Consider problem P presented in the previous section and assume that
constraints Ax+By = d are those that “complicate” the model. Using a vector of
Lagrangean multipliers denoted by μ , these constraints can be dualized as shown in
the following,

(Pμ) minimize cx+ fy+ μ(Ax+By−d)
subject to x ∈ X,y ∈ Y,

which yields an immediate decomposition of Pμ into two subproblems, one being

min
x∈X

(c+ μA)x),

defined only in x variables, and the other being

min
y∈Y

(f+ μB)y),

that is defined only in y variables. The solution value of Pμ , for any given μ ,
is a lower bound on the optimal solution value of Pμ . To find the best possible
lower bound, one has to solve the following piecewise linear concave optimization
problem, max

μ
Pμ , usually named as the Lagrangean dual problem and solved by

means of nondifferentiable optimization techniques.
There are several applications of Lagrangean relaxation to tackle some of the

problems mentioned earlier, including the one proposed by Qiu et al. [26] for the
server placement problem, by Nguyen et al. [23] for the overlay distribution network
provisioning problem, and by Bektaş et al. [8] for the joint problem of object place-
ment and request routing in a CDN. In this section, we will illustrate the use of this
technique on an integer linear programming model proposed in [8], but with a dif-
ferent type of relaxation. The model we present below is an alternative linearization
of M5 using an auxiliary linearization variable v jk.

Minimize ∑
i∈I

∑
j∈J

∑
k∈K

bkλik(ci j + c j0)xi j − ∑
j∈J

∑
k∈K

v jk (9.66)

subject to

∑
j∈J

xi j = 1 ∀i ∈ I (9.67)

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J (9.68)

v jk −Mz jk ≤ 0 ∀ j ∈ J,k ∈ K (9.69)

v jk −∑
i∈I

bkλikc j0xi j ≤ 0 ∀ j ∈ J,k ∈ K (9.70)

xi j − z jk ≤ 0 ∀i ∈ I, j ∈ J,k ∈ Qi j (9.71)

9 Mathematical Models for Resource Management and Allocation 237

xi j ≥ 0 ∀i ∈ I, j ∈ J (9.72)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K (9.73)

v jk ≥ 0 ∀ j ∈ J,k ∈ K. (9.74)

By dualizing constraints (9.67), (9.69) and (9.70) using respectively σi, π jk and η jk

as the Lagrangean multipliers, we obtain the following relaxed problem denoted
by R:

(R) Minimize ∑
i∈I

∑
j∈J

(

∑
k∈K

(bkdik(ci j + c j0(1−η jk)))−σi

)

xi j

+ ∑
j∈J

∑
k∈K

(
π jk +η jk −1

)
v jk −M∑

j∈J
∑
k∈K

π jkz jk −∑
i∈I

σi

(9.75)

subject to

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J (9.76)

xi j − z jk ≤ 0 ∀i ∈ I, j ∈ J,k ∈ Qi j (9.77)

xi j ≥ 0 ∀i ∈ I, j ∈ J (9.78)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K (9.79)

v jk ≥ 0 ∀ j ∈ J,k ∈ K. (9.80)

Problem R decomposes into two subproblems, one in x and z variables, and the
other in v variables. The latter is solvable through inspection by setting v jk = 0 if
π jk +η jk −1 is nonnegative, and v jk = 1 otherwise. As for the former subproblem,
notice that the x variables only appear in constraints (5), and thus can be fixed to
xi j = 0 if ∑

k∈K

(bkdik(ci j + c j0(1−η jk)))−σi is nonnegative and xi j = ẑ jk otherwise,

where ẑ jk is the solution to the following problem,

Maximize ∑
j∈J

∑
k∈K

π jkz jk

subject to

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K,

which further decomposes into a series of binary knapsack problems, one for each
j ∈ J, each of which can be solved efficiently in O(|K|s j) time using dynamic
programming.

238 T. Bektaş and I. Ouveysi

9.3.3 Heuristic Algorithms

Contrary to exact algorithms, heuristic algorithms are fast and scalable solutions
methods for instances that are beyond the reach of exact algorithms for problems of
a CDN provider. Greedy heuristics are heuristic algorithms that search for a solution
to a given problem by choosing the best possible alternative at each iteration (i.e. the
option that reduces the cost by the greatest amount) but neglects the effect decision
on the overall search. These algorithms therefore yield locally optimal solutions
most of the time. The advantage of such heuristics lie in their computational speed
at tackling problems and scalability in being applicable to very large instances. This
explains the popularity of greedy heuristics in the CDN literature and we refer the
reader to, amongst many others, [18, 21, 26, 27, 31]. Approximate algorithms, on
the other hand, are heuristics that guarantee to find a solution with a value that is
within a constant factor of the optimal solution and for which applications within
the CDN domain can be found [4, 20]. Simulated annealing and Tabu search belong
to a class of more sophisticated heuristic techniques, named as metaheuristics, in
that they make use of special mechanisms to prevent the search from being trapped
in the local minima. We refer the reader to [7] for a two-level implementation of
simulated annealing for the joint problem of object placement and request routing,
and to [15] for an application of a tabu search algorithm on the same problem.

Table 9.2 A categorization of the existing models and solution approaches

SP RR OP CD Reference Solution Approaches

x [22] Dynamic programming
x [26] Lagrangean relaxation, greedy heuristics
x [27] Greedy heuristics
x [5] Greedy heuristics
x [17] Dynamic programming

x [14] Integer programming models

x [13] Greedy heuristics
x [18] Greedy heuristics

x x [20] Exact and approximate algorithms
x x [21] Greedy heuristics

x x [1] Heuristic algorithms

x x [29] Dynamic programming
x x [30] Heuristic algorithms

x x [4] Approximate algorithm
x x [3] Heuristic algorithms
x x [28] Analytic and heuristic algorithms
x x [7] Simulated annealing
x x [8] Benders’ decomposition, Lagrangean relaxation
x x [15] Tabu search

x x x [23] Lagrangean relaxation
x x x [9] Benders’ decomposition, greedy heuristic

9 Mathematical Models for Resource Management and Allocation 239

Table 9.2 presents a categorization of the existing models and solution ap-
proaches for a variety of resource allocation and management problems (i.e. Server
Placement (SP), Request Routing (RR), Object Placement (OP), and Content Deliv-
ery (CD)) in CDNs, including additional references. It is not meant to be a complete
list but rather a representation of the wide variety of tools that have been used up to
now to solve these problems.

9.4 New Models for Alternative CDN Architectures

Most of the models described in the previous sections are based on various CDN
architectures and have their limitations due to the restrictive assumptions made to
facilitate the modeling. In this section, we propose new models for more general sit-
uations that -to the best of our knowledge- have not been considered before in terms
of mathematical modeling. For the purposes of illustrations, we present the models
using a sample small-scale instance. The instance has a network structure consist-
ing of a single origin server (|S| = 1), three active caching servers (J = {1,2,3})
and ten clients (I = {1,2, . . . ,10}). The architecture of the sample network topol-
ogy is depicted in Fig. 9.1. In this sample instance, we assume that there are five
objects to be distributed (K = {1,2, . . . ,5}) with their sizes (in, for instance, GBs)
b1 = 94,b2 = 75,b3 = 96,b4 = 61 and b5 = 82. The capacities of the caching servers
are given as s1 = 156,s2 = 162 and s3 = 85 (again, in GBs), which range from 20%
to 40% of the total size of the objects. The distances ci j for all i ∈ I, j ∈ J are
randomly distributed between 1 and 5 (see Table 9.4 in the Appendix for the full
matrix), whereas the distances between each caching server and the origin server
are given as c1,0 = 20, c2,0 = 15 and c3,0 = 18. For simplicity, we assume that the
each client has a uniform request rate for each object (i.e. dik = 1 for all i∈ I,k ∈K).

Fig. 9.1 Architecture of the sample network topology

240 T. Bektaş and I. Ouveysi

Fig. 9.2 Solution for the sample problem obtained by model M4

As an initial scenario to benchmark the ones that follow, we have used model
M4 to solve the sample problem. All models in this section have been solved using
the state-of-the-art nonlinear integer programming solver BONMIN2 through the
online NEOS server.3 The optimal solution of M4 is depicted in Fig. 9.2, with
the client-server assignments represented by the bold links and the object place-
ments are shown within each caching server. The total cost of this solution is
31229.

9.4.1 Object Retrieval from Multiple Servers

The models presented in the previous sections generally assume a CDN architec-
ture where a client i ∈ I is assigned to a single caching server j ∈ J (which will be
henceforth referred to as the primal server) from which it retrieves the requested
objects, and when the requested object is not available in server j ∈ J, the request is
forwarded to the origin server by the primal server from where the object is fetched.
While such a strategy may be appropriate where the number of caching servers is
high and the administrative costs of requesting from other caching servers is signif-
icant, it may not always prove to be a viable option when there exists a high number
of objects with similar request rates and when the storage capacities of caching
servers are limited (meaning that there will be many requests forwarded to the ori-
gin server). In order to prevent this, an alternative strategy may be to direct a client’s
request for an object to the origin server only when the object is not available in any
other caching server (as suggested by Datta et al. [14]). This means that each client
would be allowed to retrieve objects from other caching servers. A second question
arises here as to what happens when the requested object is not found in any of the
caching servers. To address this, as a first step, we will restrict ourselves to the sit-
uation where a client’s request would be forwarded to the origin server only via its

2 Available at https://projects.coin-or.org/Bonmin
3 Available at neos.mcs.anl.gov/neos/solvers/minco:Bonmin/AMPL.html

9 Mathematical Models for Resource Management and Allocation 241

primal server, but we will also discuss when this assumption is relaxed. The model
for the former case is as follows:

(M7) Minimize ∑
i∈I

∑
j∈J

∑
k∈K

bkdikci jxi jk

+∑
i∈I

∑
k∈K

[

∑
j∈J

(

bkdik(ci j + c j0)xi j(1−∑
t∈J

xitk)

)]

(9.81)

subject to

∑
j∈J

xi j = 1 ∀i ∈ I (9.82)

∑
j∈J

xi jk ≤ 1 ∀i ∈ I,k ∈ K (9.83)

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J (9.84)

∑
j∈J

xi jk ≥ z jk ∀i ∈ I, j ∈ J,k ∈ K (9.85)

xi jk ≤ z jk ∀i ∈ I, j ∈ J,k ∈ K (9.86)

xi j + z jk − xi jk ≤ 1 ∀i ∈ I, j ∈ J,k ∈ K (9.87)

xi j ∈ {0,1} ∀i ∈ I, j ∈ J (9.88)

xi jk ∈ {0,1} ∀i ∈ I, j ∈ J,k ∈ K (9.89)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.90)

In model M7, the objective function is composed of two cost components. The first
represents the cost of serving each client directly from (multiple) caching servers.
The second component, on the other hand, models the situation where a request is
forwarded to the origin server by the primal server only if the object is not located at

any other caching server (i.e. when z jk = 0 for all j ∈ J implying

(

1−∑
t∈J

xitk

)

= 1).

Constraints (9.82) represent the assignment of each client to its primal server. Con-
straints (9.83) dictate the condition that each client receives each object from at most
one caching server and constraints (9.86) make sure that the request is served only
from a single caching server that holds the requested object. Storage capacity lim-
itations for each caching server are implied by constraints (9.87). For any request,
constraints (9.87) give priority that the request be served by the primal server if it
holds the object (i.e. xi jk = 1 if xi j = z jk = 1). The solution of model M7 outputs a
solution that is depicted in Fig. 9.3 with an optimal solution value of 14001, which
is a solution that is about 55% less costly than that obtained by model M4.

In Fig. 9.3, client assignments to primal servers are represented by bold links
whereas requests that are routed to other servers are represented by the lighter links
(i.e. clients 1, 3, 4 and 5 are assigned to caching server 2, but they retrieve objects
1 and 4 from caching server 1, since their primal server does not hold this object).
Any request for object 2 in this case has to be further requested by the origin server,

242 T. Bektaş and I. Ouveysi

Fig. 9.3 Solution for the sample problem obtained by model M7

as none of the caching servers hold this specific object. In this case, clients 1, 3, 4
and 5 receive object 2 through their primal server (no. 2), and clients 2 and 6 receive
it through their primal server (no. 3).

To incorporate more flexibility into the distribution strategy, we provide below
another model which allows a client’s request for an object to be forwarded (and
thus served to the client) by any caching server in the network. For this model, we
define a new binary variable vi jk that equals 1 if object k is served to client i from
the origin server via caching server j, and 0 otherwise.

(M8) Minimize ∑
i∈I

∑
j∈J

∑
k∈K

(
bkdikci jxi jk +bkdik(ci j + c j0)vi jk

)

subject to

∑
j∈J

(xi jk + vi jk) = 1 ∀i ∈ I,k ∈ K (9.91)

∑
k∈K

bkz jk ≤ s j ∀ j ∈ J (9.92)

xi jk ≤ z jk ∀i ∈ I, j ∈ J,k ∈ K (9.93)

vi jk ≤ 1− z jk ∀i ∈ I, j ∈ J,k ∈ K (9.94)

xi jk,vi jk ∈ {0,1} ∀i ∈ I, j ∈ J,k ∈ K (9.95)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.96)

The objective function of model M8 is composed of two components. The first repre-
sents the total cost of object transfer from the caching servers to the clients. The second
represents the cost of fetching a requested object from the origin server. Constraints
(9.91) ensure that a client receives any object either directly from or through one of
the caching servers. Constraints (9.92) impose capacity restrictions on the caching
servers, (9.93) state that a client can not be served by a caching server unless the re-
quested object is held therein, (9.94) enforce the condition that an object can not be
requested from the origin server if there exists at least one caching server j ∈ J that
holds it. The solution of model M8 outputs a solution that is depicted in Fig. 9.4 with

9 Mathematical Models for Resource Management and Allocation 243

Fig. 9.4 Solution for the sample problem obtained by model M8

an optimal solution value of 13940, which is even less costly than that of M7. The
solution shown in Fig. 9.4 indeed illustrates the flexibility afforded to the distribution
process where any client can receive any object from (or through) any of the servers.
As an example, we note that client 1 receives object 1 from caching server 1, objects
3 and 4 from caching server 2, object 5 from caching server 3, and object 2 through
caching server 2 (which further forwards this request to the origin server).

9.4.2 Survivability in CDN Design

Survivability of a telecommunications network is defined as its ability to operate
under a link or a server failure. As for the former case, there already exists a rather
significant literature (e.g. see [25]) which can be adapted to CDN design by es-
tablishing back-up links between the clients and the servers that can be activated
whenever the primal link fails. The latter case, however, is quite relevant as most
of the previously stated models are based on the assumption that each client is con-
nected to and served from or via a single caching server. In the event that its primal
server should fail, the client need immediately be served by another caching server
(even if the requested object is not located there since the caching server acts as a
pathway to the origin server). Therefore, for a CDN to be ‘survivable’, one needs to
design it such that each client should be assigned a back-up (or stand-by) server, to
which its requests should be redirected in the event of a primal server failure. In this
light, we offer here a model which extends M7 to the survivable case. The model
for this case is presented as follows:

(M9) Minimize ∑
j∈J

f jy j

+∑
i∈I

∑
j∈J

∑
k∈K

(bkdikci jz jkxp
i j +bkdik(1− z jk)(c jS + ci j)x

p
i j)

γ∑
i∈I

∑
j∈J

∑
k∈K

(bkdikci jz jkxp
i j +bkdik(1− z jk)(c jS + ci j)xb

i j) (9.97)

244 T. Bektaş and I. Ouveysi

subject to

∑
j∈J

xp
i j = 1 ∀i ∈ I (9.98)

∑
j∈J

xb
i j = 1 ∀i ∈ I (9.99)

xp
i j + xb

i j ≤ y j ∀i ∈ I, j ∈ J (9.100)

∑
k∈K

bkz jk ≤ s jy j ∀ j ∈ J (9.101)

y j ∈ {0,1} ∀ j ∈ J (9.102)

xi j ∈ {0,1} ∀i ∈ I, j ∈ J (9.103)

z jk ∈ {0,1} ∀ j ∈ J,k ∈ K. (9.104)

In M9, xp
i j is a binary variable that is equal to 1 if server j acts as a primal server

for client i, and 0 otherwise; and xb
i j is another binary variable that is equal to 1

if caching j acts as a back-up server for client i, and 0 otherwise. The first two
components of the objective function (9.97) are similar to that of M4. The third
component represents the cost of providing back-up service to the clients in the
event of a break-down. Since the break-downs are not very likely to occur fre-
quently, this cost will not arise very often. The parameter 0 ≤ γ ≤ 1 is therefore
provided to adjust the impact of the back-up service cost on the CDN design. Thus,
when γ = 0, the CDN provider will not take into account the cost of providing
back-up service to its clients, although the CDN itself will be designed in such a
way. When γ = 1, then the total cost will include the additional cost of providing
the back-up service, even though this service may never be used. In this model,
constraints (9.98) are associated with the primal server assignments, whereas con-
straints (9.99) ensure that each client is also assigned to a back-up server. Constraints
(9.101) impose capacity restrictions on the active caching servers. The output of
the solution of model M9 on the sample problem is depicted in Fig. 9.5. The op-
timal solution value in this case is 55561.7 for γ = 0.7 and 41657.3 for γ = 0.3.

Fig. 9.5 Solution for the
sample problem obtained by
model M9

9 Mathematical Models for Resource Management and Allocation 245

The solution given in Fig. 9.5 shows the primal server assignments by bold links
and back-up assignments by dotted links (i.e. caching server 2 acts as a primal server
for client 1, but in the event that it fails, client 1 is immediately routed to caching
server 1).

9.5 Performance Results

To give the reader a flavour of the computational performance of the new models
M7-M9, we present the results of a limited set of computational experiments carried
out on a set of instances. These instances have been generated in the same way as
described by Bektaş et al. [9]. The instances are based on a network with three
caching servers and ten clients. The number of objects to be distributed ranges from
20 to 90, in increments of 10. We note that the request rates for the objects are
not uniform in this case, but have been generated using a Zipf-like distribution (see

[12, 32]) in the form PK(i) = Ω i−α where Ω =
(

∑K
j=1 j−α

)−1
is a normalization

constant and the distribution parameter is set as α = 0.733.
The results of these experiments are given in Fig. 9.6, which shows the corre-

sponding solution values obtained with models M4, M7, M8 and M9 (run twice
with γ = 0.3 and γ = 0.7). As the figure shows, the performance of models M7 and
M8 are quite similar and both provide better results than that of M4. On the other
hand, M9 results in solutions with substantially higher costs due to the addition of
the survivability component. The time required for the solution of these models are
given in Table 9.3. These values imply that, even with very small-scale problems as

Fig. 9.6 Cost comparison of the models on the sample instances

246 T. Bektaş and I. Ouveysi

Table 9.3 Computational solution times (in seconds) of the models on the sample instances

|I| |J| |K| M4 M7 M8 M9(0.3) M9(0.7)
3 10 20 0.02 230.48 161.29 0.05 0.23
3 10 30 0.05 256.54 679.54 0.09 0.42
3 10 40 0.31 118.17 88.29 1.19 0.50
3 10 50 0.34 161.58 418.15 0.29 0.21
3 10 60 0.16 1764.42 1867.74 1.01 0.77
3 10 70 0.13 384.59 395.48 0.13 0.79
3 10 80 0.27 3600.00 3600.00 1.80 1.94
3 10 90 0.45 3600.00 3600.00 1.23 3.90

the ones considered here, solving models M7 and M8 prove to be quite difficult. In
fact, for instances with |K|= 80 and |K|= 90, the optimal solutions of these models
could not be obtained within a time limit of one hour (the values shown in Fig. 9.6
for these instances are the best possible values attained within the time limit). The
other models, however, are easily solved for these instances, although the values
shown in Table 9.3 imply that the solution times will expectedly increase as the size
of the instances grow larger.

9.6 Visionary Thoughts for Practitioners

It is clear that, for a dynamic and active environment such as a CDN, most applica-
tions call for the use of fast and scalable methods among which heuristics are the
popular choice. For instance, greedy heuristics (e.g. see [19]), topology-informed
heuristic methods [16] or hot-spot algorithms [26] are known to be widely used for
caching server location problems. However, although one may show the superiority
of one heuristic method to another, one has no indication the quality of the solutions
obtained with such methods. Our intention through this chapter is to stress the im-
portance of using mathematical models and especially exact solution approaches in
solving CDN problems and to recognize that there are benefits to reap in using these
approaches. Indeed, mathematical modeling can be used as benchmarks to assess a
variety of heuristic methods in terms of solution quality. This would certainly aid
in choosing the correct type of a heuristic method in practice. Such an approach,
for instance, has been taken by Laoutaris et al. [21], where the authors propose and
evaluate the performance of a greedy method (and its variations) by comparing it
with an exact solution approach.

Mathematical modeling techniques can also be used to gain insight to a variety of
CDN problems arising in practice and to determine what mitigating actions can be
taken. For instance, Nguyen et al. [23] use a Lagrangean-based solution algorithm
based on a mathematical model to evaluate the effect of object clustering on the total
revenue of a CDN provider using this algorithm.

Finally, we believe that the flexibility of mathematical models in easily accom-
modating additional constraints or the change in the problem parameters would

9 Mathematical Models for Resource Management and Allocation 247

facilitate the analysis of a variety of scenarios and help the decision maker choose
the right alternative. For instance, a CDN provider may wish to assess a number
of differing request routing or object placement strategies under certain parameter
settings. While one may argue that this can also be performed using heuristic meth-
ods, we believe that these may not yield as precise solutions as those which may be
obtained through the use of mathematical models, since the quality of the solutions
found by the former is not always known.

9.7 Future Research Directions

We believe that further research on CDN modeling lies in two main directions: new
model realization and algorithm development. As for the former, the new models
proposed here show that there are indeed situations that have not been modeled be-
fore and even hint for the possibility of developing of other models for even more
complex situations that are most likely to arise in practice. Some suggestions in this
respect would be to incorporate survivability issues or caching server placement de-
cisions into models M7 or M8, or the addition of QoS restrictions (such as those
proposed by Bektaş et al. [8]) models M7-M9. Such attempts will undoubtedly re-
sult in more complex models, which we expect mostly to be in the form of nonlinear
integer programming formulations.

As demonstrated in this chapter through numerical experiments, obtaining so-
lutions to models such as M7 or M8 can prove to be quite difficult even for very
small-scale instances. This further necessitates devising new exact algorithms that
are able to efficiently tackle these complex models. This chapter suggests that, in
terms of exact solution methods, decomposition based methods coupled with lin-
earization strategies for the nonlinear models are a promising direction. However,
these exact methods will most likely be unable to cope with large-scale instances,
which further indicates the need for fast and scalable heuristic methods that can ad-
dress these problems. To our belief, the development of heuristic and exact solution
techniques should go hand-to-hand, in that one approach should be used as a com-
plementary to the other. Such strategies have proven to be of good use in developing
even better methodologies for some problems (e.g. see [7, 9, 15]).

9.8 Conclusions

In this chapter, we have outlined the fundamental problems in managing and al-
locating resources (the network, caching servers, and objects) in a CDN faced by
the CDN provider. We have presented the existing mathematical models proposed
earlier for these problems in a common framework. Discussions and examples have
been provided on how several exact and heuristic methods can be tailored in solving
the problems and the associated models. This chapter also offers novel mathematical

248 T. Bektaş and I. Ouveysi

models for a variety of situations that have not yet been investigated in depth, such
as designing a survivable CDN.

This chapter shows that mathematical modeling is a powerful tool to address the
problems faced by the CDN provider and obtain a deeper understanding into the na-
ture of the problem. As mentioned in the previous section, mathematical models also
facilitate the solution of problems they represent, by providing a generic framework
on which efficient exact solution algorithms can be devised. This chapter suggests
that, in terms of exact solution algorithms, those that are based on decomposition
ideas are most likely to be successful for the solution of CDN problems. Exact al-
gorithms are also crucial in assessing the quality of heuristic approaches, especially
heuristics of a greedy nature, which are known to be widely used in solving many
problems of a CDN.

Acknowledgements Some of the materials presented in this chapter appear in a preliminary form
in Computers & Operations Research Journal [8, 9].

Appendix

The distance matrix (can be interpreted as the number of hops between each
i ∈ I, j ∈ J) for the sample problem is given below.

Table 9.4 The distance matrix for the sample instance

ci j j = 1 j = 2 j = 3

i = 1 1 1 3
i = 2 5 4 1
i = 3 1 5 5
i = 4 1 4 5
i = 5 1 3 2
i = 6 5 5 1

References

1. Almeida, J., Eager, D., Vernon, M., Wright, S.: Minimizing delivery cost in scalable streaming
content distribution systems. IEEE Transactions on Multimedia 6, 356–365 (2004)

2. Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median problems.
Mathematical Programming 109, 89–114 (2007)

3. Backx, P., Lambrecht, T., Dhoedt, B., DeTurck, F., Demeester, P.: Optimizing content distri-
bution through adaptive distributed caching. Computer Communications 28, 640–653 (2005)

4. Baev, I., Rajaraman, R.: Approximation algorithms for data placement in arbitrary net-
works. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 661–670 (2001)

5. Bassali, H., Kamath, K., Hosamani, R., Gao, L.: Hierarchy-aware algorithms for CDN proxy
placement in the Internet. Computer Communications 26, 251–263 (2003)

9 Mathematical Models for Resource Management and Allocation 249

6. Bektaş, T.: Discrete location models for content distribution. Unpublished PhD Dissertation,
Bilkent University, Ankara, Turkey (2005)

7. Bektaş, T., Cordeau, J.F., Erkut, E., Laporte, G.: A two-level simulated annealing algorithm
for efficient dissemination of electronic content. Journal of the Operational Research Society
35, 3860–3884 (2008)

8. Bektaş, T., Cordeau, J.F., Erkut, E., Laporte, G.: Exact algorithms for the joint object place-
ment and request routing problem in content distribution networks. Computers & Operations
Research (2008). In press

9. Bektaş, T., Oğuz, O., Ouveysi, I.: Designing cost-effective content distribution networks.
Computers & Operations Research 34, 2436–2449 (2007)

10. Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik 4, 238–252 (1962)

11. Berman, O., Krass, D.: An improved IP formulation for the uncapacitated facility location
problem: Capitalizing on objective function structure. Annals of Operations Research 136,
21–34 (2005)

12. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions:
evidence and implications. In: Proceedings of IEEE INFOCOM’99, Vol. 1, pp. 126–134. New
York (1999)

13. Cidon, I., Kutten, S., Soffer, R.: Optimal allocation of electronic content. Computer Networks
40, 205–218 (2002)

14. Datta, A., Dutta, K., Thomas, H., VanderMeer, D.: World Wide Wait: a study of Internet
scalability and cache-based approaches to alleviate it. Management Science 49, 1425–1444
(2003)

15. Dubuc, G., Bektaş, T., Cordeau, J.F., Laporte, G.: Une heuristique de recherche avec tabous
pour la conception de réseaux de distribution de contenu électronique INFOR 45, 175–185
(2007)

16. Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the placement of Internet instru-
mentation. In: Proceedings of IEEE INFOCOM’00, pp. 295–304 (2000)

17. Jia, X., Li, D., Hu, X., Wu, W., Du, D.: Placement of web-server proxies with consideration
of read and update operations on the Internet. The Computer Journal 46(4), 378–390 (2003)

18. Kangasharju, J., Roberts, J., Ross, K.: Object replication strategies in content distribution net-
works. Computer Communications 25, 376–383 (2002)

19. Krishnan, P., Raz, D., Shavitt, Y.: The cache location problem. IEEE/ACM Transactions on
Networking 8, 568–582 (2000)

20. Laoutaris, N., Zissimopoulos, V., Stavrakakis, I.: Joint object placement and node dimension-
ing for Internet content distribution. Information Processing Letters 89, 273–279 (2004)

21. Laoutaris, N., Zissimopoulos, V., Stavrakakis, I.: On the optimization of storage capacity al-
location for content distribution. Computer Networks 47, 409–428 (2005)

22. Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the optimal placement of web proxies
in the Internet. In: Proceedings of IEEE INFOCOM’99, Vol. 3, pp. 1282–1290. New York
(1999)

23. Nguyen, T., Safaei, F., Boustead, P., Chou, C.: Provisioning overlay distribution networks.
Computer Networks 49, 103–118 (2005)

24. Oliveira, C., Pardalos, P.: A survey of combinatorial optimization problems in multicast rout-
ing. Computers & Operations Research 32, 1953–1981 (2005)

25. Ouveysi, I., Wirth, A., Yeh, A., Oguz, O.: Large scale linear programs and heuristics for
the design of survivable telecommunication networks. Annals of Operations Research 124,
285–293 (2003)

26. Qiu, L., Padmanabhan, V., Voelker, G.: On the placement of web server replicas. In: Proceed-
ings of IEEE INFOCOM’01, Vol. 3, pp. 1587–1596 (2001)

27. Radoslavov, P., Govindan, R., Estrin, D.: Topology informed Internet replica placement. Com-
puter Communications 25, 384–392 (2002)

28. Wauters, T., Coppens, J., De Turck, F., Dhoedt, B., Demeester, P.: Replica placement in ring
based content delivery networks. Computer Communications 29, 3313–3326 (2006)

250 T. Bektaş and I. Ouveysi

29. Xu, J., Li, B., Lee, D.: Placement problems for transparent data replication proxy services.
IEEE Journal on Selected Areas in Communications 20, 1383–1398 (2002)

30. Xuanping, Z., Weidong, W., Xiaopeng, T., Yonghu, Z.: Data Replication at Web Proxies in
Content Distribution Network, Lecture Notes in Computer Science, Vol. 2642, pp. 560–569.
Springer-Verlag, Xian (2003)

31. Yang, M., Fei, Z.: A model for replica placement in content distribution networks for multi-
media applications. In: Proceedings of IEEE International Conference on Communications
(ICC ’03), Vol. 1, pp. 557 –561 (2003)

32. Zipf, G.: Human Behavior and the Principle of Least-Effort. Addison-Wesley, Cambridge,
MA (1949)

Chapter 10
Performance and Availability Benefits
of Global Overlay Routing

Hariharan S. Rahul, Mangesh Kasbekar, Ramesh K. Sitaraman,
and Arthur W. Berger

10.1 Introduction

There have been several inflection points in human history where an innovation
changed every aspect of human life in a fundamental and irreversible manner. There
is no doubt that we are now in the midst of a new inflection point: the Internet revolu-
tion. However, if the Internet is to realize its promise of being the next revolutionary
global communication medium, we need to achieve the five grand challenges that
this technology offers: perfect availability, high performance, “infinite” scalability,
complete security, and last but not the least, affordable cost.

As the Internet was never designed to be a mission-critical communication
medium, it is perhaps not surprising that it does not provide much of what we re-
quire from it today. Therefore, significant scientific and technological innovation
is required to bring the Internet’s potential to fruition. Content Delivery Networks
(CDNs) that overlay the traditional Internet show great promise and is projected as
the technology of the future for achieving these objectives.

10.1.1 Architecture of CDNs Revisited

To set the context, we briefly review the evolution and architecture of commercial
CDNs. A more detailed overview can be found in Chap. 1.

Hariharan S. Rahul
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139 USA,
e-mail: rahul@csail.mit.edu

Mangesh Kasbekar
Akamai Technologies, Staines, TW18 4EP, UK, e-mail: mkasbeka@akamai.com

Ramesh K. Sitaraman
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA,
e-mail: ramesh@cs.umass.edu

Arthur W. Berger
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA and
Akamai Technologies, Cambridge, MA 02142, USA, e-mail: awberger@csail.mit.edu

R. Buyya et al. (eds.), Content Delivery Networks, 251
c© Springer-Verlag Berlin Heidelberg 2008

252 H.S. Rahul et al.

Before the existence of CDNs, content providers typically hosted a centralized
cluster of Web and streaming servers at a data center and served content to a global
audience of end users (a.k.a clients). However, this solution falls significantly short
of meeting the critical requirements of availability, performance, and scalability. It
suffers from both the first-mile bottleneck of getting content from the origin servers
into the Internet, and the middle-mile bottleneck of transporting the content across
multiple long-haul networks and peering points to the access network of the client.
On the first-mile, the data center itself is a single point of failure. Any connectivity
problems at the data center such as an overloaded or faulty switch can result in
reduced availability or even a complete outage. On the middle mile, transporting the
content over the long-haul through potentially congested peering points significantly
degrades both availability and performance by increasing round-trip latencies and
loss. Further, there is no protection against a flash-crowd, unless the data center is
grossly over-provisioned to start with.

One can alleviate some of the shortcomings of the traditional hosting solution
by multihoming the data center where the content is hosted [3]. This is achieved by
provisioning multiple links to the data center via multiple network providers and
specifying routing policies to control traffic flows on the different network links. A
different but complementary approach to alleviate the problems of centralized host-
ing is mirroring the content in multiple data centers located in different networks
and geographies. Both of these approaches ameliorate some of the first-mile avail-
ability concerns with centralized hosting where the failure of a single data center or
network can bring the Web site down. But, middle-mile degradations and scalability
remain issues. Additionally, the operational cost and complexity are increased as
multiple links and/or data centers must be actively managed. Further, network and
server resources need to be over-provisioned, since a subset of the links and/or data
centers must be able to handle the entire load in case of failures. As the quest for
more availability and greater performance drive up the need for more multi-homed
mirrors with larger server-farms, all of which mean more infrastructure costs, a CDN
with a large shared distributed platform becomes attractive.

As we have learnt from previous chapters, a CDN is a distributed network of
servers that act as an overlay on top of the Internet with the goal of serving content
to clients with high performance, high reliability, high scalability and low cost. A
highly-simplified architectural diagram of a CDN consisting of five major compo-
nents is shown in Fig. 10.1.

Edge system. This system consist of Web, streaming, or application edge servers
located close to the clients at the “edges” of the Internet. A major CDN has tens of
thousands of servers situated in thousands of networks (ISPs) located in all key
geographies around the world. The edge system downloads content from the origin
system (Arrow 1 in Fig. 10.1), caches it when relevant, and serves it out to the
clients. A more sophisticated system may also perform application processing to
dynamically construct the content at the edge before delivering it to the client.

Monitoring system. This system monitors in real-time both the “Internet
weather” and the health of all the components of the CDN, including the edge
servers. Input (5) in Fig. 10.1 from the Internet cloud could consist of slow-changing

10 Performance and Availability Benefits of Global Overlay Routing 253

TRANSPORT

MAPPINGMONITORING

EDGE

PORTAL

END
USERS

INFRASTRUCTURE

CONTROL

DATA

1

2

3 4

5

6

7

8

ORIGIN

Fig. 10.1 High-level architecture of a CDN

information such as BGP feeds from tens of thousands of networks, and fast-
changing performance information collected through traceroutes and “pings” be-
tween hundreds of thousands of points in the Internet. Input (8) consists of detailed
information about edge servers, routers, and other system components, including
their liveness, load, and resource usage.

Mapping system. The job of the mapping system is to direct clients to their
respective “optimal” edge servers to download the requested content (Arrow 6).
The common mechanism that mapping uses to direct clients to their respective tar-
get edge servers is the Domain Name System (DNS, Arrow 7). Typically, a con-
tent provider’s domain www.cp.com is aliased (i.e. CNAME’d) to a domain hosted
by the CDN, such as www.cp.com.cdn.net. A name lookup by a client’s name-
server of the latter domain results in the target server’s ip being returned [10].
Mapping must ensure that it “maps” each client request to an “optimum” target
server that possesses the following properties: (a) the target server is live and is
likely to have the requested content and is capable of serving it; (b) the target server
is not overloaded, where load is measured in terms of CPU, memory, disk, and net-
work utilization; (c) the target server has good network connectivity to the client,
i.e. little or no packet loss and small round-trip latencies. To make its decisions,
mapping takes as input both the Internet weather and the condition of the edge
servers from the monitoring system (Input 4), and an estimate of traffic generated
by each nameserver on the Internet and performs a complex optimization to produce
an assignment.

Transport system. This system is responsible for transporting data over the long-
haul across the Internet. The types of content transported by the system is varied and
have different Quality of Service (QoS) requirements, which makes the design of
this system very challenging. For instance, transporting live streaming content from
the origin (i.e. encoders) to the edge servers has a different set of requirements,
as compared to transporting dynamic Web content from origin to the edge. The

254 H.S. Rahul et al.

challenge of course is designing a small and maintainable set of general-purpose
mechanisms and abstractions that can satisfy the diverse requirements.

Origin system. This system originates the content that is served out to a global
audience of the clients, and as such a large CDN could have tens of thousands of
origin systems (one or more per content provider) that interact with the rest of the
CDN. The origin Web infrastructure may include applications, databases, and Web
servers. The origin infrastructure for streaming media could include large fault-
tolerant replicated storage servers for storing on-demand (i.e. pre-recorded) content
or equipment for video capture and encoding for live content. The origin infrastruc-
ture is usually (but not always) operated by the content provider, typically out of a
single data center that is in a some cases multihomed and/or mirrored. The origin
system also includes the portal operated by the CDN that is the “command center”
for the content provider to provision and control their content (Arrows 2 and 3).

10.1.2 Transport Systems

In this section, we review different types of transport systems and the optimiza-
tions that they perform to enhance performance. A transport system is distinguished
by the end-to-end requirements of the transported content. We review some of the
optimizations performed by transport systems.

10.1.2.1 Live Streaming

A transport system for live streaming transmits live media content from the source
of the stream (encoder) to end users, so as to optimize a end user’s experience of the
stream (See Fig. 10.2). An encoder encodes the live event and sends out a sequence
of encoded data packets for the duration of the live event. This data stream is first
sent from the encoder to a cluster of servers called the entry point. It is important that
the entry point can be reached from the encoder with low network latency and little

Fig. 10.2 A transport system
for live streaming

Reflectors

Edge Servers

Entry PointsS

I J

D

An Encoder

An End User

10 Performance and Availability Benefits of Global Overlay Routing 255

or no loss. The connectivity between the encoder and its entry point is constantly
monitored, and if the connectivity degrades or if the entry point fails for any other
reason, the transport system automatically diverts the stream to a different entry
point that is functioning well. From the entry point, the stream is sent to one or
more server clusters called reflectors. Each reflector, in turn, sends the data stream
to one or more edge server clusters. Finally, each end user obtains the live stream
from a nearby edge server using the mapping system.

The goal of the transport system is to transmit live streams in a manner that
stream quality is enhanced and distortions are minimized. Distortions experienced
by end users include large delays before the stream starts up, information loss lead-
ing to degraded audio and video, and freezes during playback. Each stream is sent
through one or more paths adaptively by using the reflectors as intermediate nodes
between the entry point and the edge server. As an example, the stream entering
entry point S can be duplicated across one path through reflector I and an additional
path through reflector J to reach edge server D (see Fig. 10.2). If a data packet is
lost on one path, the packet may be recovered at the edge if its duplicate is received
through the other path. A more sophisticated technique would be to use a coding
scheme to encode the data packets, and send the encoded stream across multiple
paths. Even if some packets are lost in transit, they may be recovered at the edge
servers using a decoding process.

Another example of an optimization is pre-bursting, where the initial portion of
the stream is transported to the end user at a rate higher than the encoded bit rate,
so as to fill the buffer of the end user’s media player quickly. This allows the media
player to start the stream up quicker and also decreases the likelihood of a freeze in
the middle of a playback. For more discussion of the algorithmic and architectural
issues in the design of streaming transport systems, readers are referred to [6] and
[12] respectively.

10.1.2.2 Web and Online Applications

A transport system for the Web carries dynamically-generated content between the
origin and the edge. Such content includes both dynamic Web pages downloaded
by end users and user-generated content that is uploaded to a Website. A goal of
such a transport system is to optimize the response times of Web transactions per-
formed by end users. As with streaming, the transport system may use one more
intermediate node to efficiently transmit information from the origin to edge. The
transport system also performs several application-specific optimizations. For in-
stance, a transport system for accelerating dynamic Web content may pre-fetch the
embedded content on a Web page from the origin to the edge, so as to “hide” the
communication latency between the origin and the edge.

A transport system for ip-based applications is focused on accelerating specific
(non-http) application technologies such as Virtual Private Networks (VPNs) and
Voice-over-IP (VOIP). The architectural issues in such systems are qualitatively dif-
ferent from that of the Web due to the highly-interactive real-time nature of the end
user experience.

256 H.S. Rahul et al.

10.1.2.3 Overlay Routing Schemes

A transport system uses a number of application-specific enhancements to meet the
end-to-end requirements. For instance, as noted, transport systems use coding for
loss recovery, pre-bursting for fast stream startup, and pre-fetching for fast down-
loads [6, 12]. These types of application-specific enhancements play a significant
part of the overall performance benefit offered by the transport system. However, a
fundamental benefit of all transport system is finding a “better path” through the In-
ternet from the point where the content originates (origin, encoder, etc.) to the point
where the content is served to the end user (edge). This purely network-level benefit
is achieved through an overlay routing scheme that is implemented as a part of the
transport system.

A generic overlay routing scheme computes one or more overlay paths from each
source node S (typically the origin) to each destination node D (typically the edge
server) such that the overlay path(s) have high availability and low latency. The
overlay routing scheme typically computes overlay paths for millions of source-
destination pairs using Internet measurement data. Often, the BGP-determined In-
ternet path from a source S to a destination D, also called the direct path, is not the
“best path” between those two nodes. This should not be surprising as the Internet
protocols that select the route are largely policy-based rather than performance-
based. It could well be that an indirect path1 that goes from S to an intermediate
node I (typically another server cluster belonging to the CDN) and then goes from
I to D is faster and/or more available! An overlay routing scheme exploits this phe-
nomenon to choose the best overlay path (direct or indirect) to route the content,
thereby enhancing the end-to-end availability and performance experienced by end
users. The benefits of a global overlay routing schemes is our focus for the rest of
this chapter.

10.1.3 Our Contributions

We present an empirical evaluation of the performance and availability benefits of
global overlay routing. There has been much recent work [4, 11, 22] on improving
the performance and availability of the Internet using overlay routing, but they have
one of the following limitations:

• Prior work was performed on a platform hosted largely on Internet2,2 whose
capacity and usage patterns, as well as policies and goals, differ significantly
from the commercial Internet.

1 An indirect path may have more than one intermediate node if necessary.
2 Internet2 is an advanced networking consortium consisting of several major research and ed-
ucational institutions in the US. Internet2 operates an IP network that can be used for research
purposes.

10 Performance and Availability Benefits of Global Overlay Routing 257

• Overlays used in prior work have a footprint primarily in North America. How-
ever, it is well known that network interconnectivity and relationships in Europe
and Asia are different than the continental United States.

In this chapter, we present the results of the first empirical study of the performance
and availability benefits of routing overlays on the commercial Internet. We use a
global subset of the Akamai CDN for data collection. Specifically, we collect mea-
surements from 1100 locations distributed across many different kinds of ISPs in 77
countries, 630 cities, and 6 continents. We address the problem of picking optimum
overlay paths between the edge servers situated near end users and origin servers
situated in the core of the Internet. We investigate both performance characterized
by round trip latency as well as path availability. Applications such as large file
downloads whose performance is more accurately characterized by throughput are
not addressed in this study.

The key contributions of this chapter are the following:

• It is the first evaluation of an overlay that utilizes data from the commercial Inter-
net. Our study provides useful cross validation for the currently deployed testbeds
such as PlanetLab [18] and RON [22], and indicates that, while these deploy-
ments provide qualitatively similar data for the commercial Internet in North
America, they do not capture the global diversity of network topology, especially
in Asia.

• We show that randomly picking a small number of redundant paths (3 for Europe
and North America, and 5 for Asia) achieves availability gains that approach
the optimal. Additionally, we demonstrate that for reasonable probing intervals
(say, 10 minutes) and redundancy (2 paths), over 90% of the source-destination
pairs outside Asia have latency improvements within 10% of the ideal, whereas
paths that originate or end in Asia require 3 paths to reach the same levels of
performance.

• We provide strong evidence that overlay choices have a surprisingly high level
of persistence over long periods of time (several hours), indicating that relatively
infrequent network probing and measurements can provide optimal performance
for almost all source-destination pairs.

10.1.4 Roadmap

The rest of the chapter is organized as follows. Section 10.2 presents an overview of
related work, and outlines the context of our present study. Section 10.3 describes
our testbed and how the measurement data is collected. Sections 10.4 and 10.5 pro-
vide detailed metrics on the ideal performance and availability gains that can be
achieved by overlays in a global context. Section 10.6 addresses issues in real over-
lay design, and explores structural and temporal properties of practical overlays for
performance and availability. In Sects. 10.7 and 10.8, we provide directions for
further research and a vision for the future.

258 H.S. Rahul et al.

10.2 Related Work

There have been many measurement studies of Internet performance and availabil-
ity, for example, the work at the Cooperative Association for Internet Data Analysis
(CAIDA) [7], and the National Internet Measurement Infrastructure (NIMI) [16,
17]. Examples of routing overlay networks built in academia include the Resilient
Overlay Networks project at MIT [22] and the Detour project at U. Washington [11].
Commercial delivery services offered by Akamai Technologies [1] incorporate over-
lay routing for live streaming, dynamic Web content, and application acceleration.

Andersen et al. [5] present the implementation and performance analysis of a
routing overlay called Resilient Overlay Networks (RON). They found that their
overlay improved latency 51% of the time, which is comparable to the 63% we
obtain for paths inside North America. Akella et al. [2] investigate how well a
simpler route-control multi-homing solution compares with an overlay routing so-
lution. Although the focus of that study is different from our current work, it in-
cludes results for a default case of a single-homed site, and the authors find that
overlay routing improves performance as measured by round-trip latency by 25%
on average. The experiment was run using 68 nodes located in 17 cities in the
U.S., and can be compared with the 110 node, intra-North-America case in our
study, where we find that the overall latency improvement is approximately 21%.
However, we show that the improvement varies significantly for other continents.
Savage et al. [23] used data sets of 20 to 40 nodes and found that for roughly 10%
of the source-destination pairs, the best overlay path has 50% lower latency than
the direct path. We obtain the comparable value of 9% of source-destination pairs
for the case of intra-North America nodes, though again significantly disparate re-
sults for other continent pairs. In parallel with our evaluation, Gummadi et al. [13]
implemented random one-hop source routing on PlanetLab and showed that us-
ing up to 4 randomly chosen intermediaries improves the reliability of Internet
paths.

10.3 Experimental Setup

In this section, we describe the experimental setup for collecting data that can be
used to optimize Internet paths between edge networks (where end users are located)
and enterprise origin servers. End users are normally located in small lower-tier
networks, while enterprise origin servers are usually hosted in tier-one networks. We
consider routing overlays comprised of nodes deployed in large tier-one networks
that function as intermediate nodes in an indirect path from the source (enterprise
origin server) to the destination (edge server).

10 Performance and Availability Benefits of Global Overlay Routing 259

10.3.1 Measurement Platform

The servers of the Akamai CDN are deployed in clusters in several thousand ge-
ographic and network locations. A large set of these clusters is located near the
edge of the Internet, i.e. close to the end users in non-tier-one providers. A smaller
set exists near the core ISPs directly located in tier-one providers, i.e. in locations
that are suitable for enterprise origin servers. We chose a subset of 1100 clusters
from the whole CDN for this experiment, based on geographic and network loca-
tion diversity, security, and other considerations. These clusters span 6 continents,
77 countries, and 630 cities. Machines in one cluster get their connectivity from a
single provider. Approximately 15% of these clusters are located at the core, and
the rest are at the edge. The intermediate nodes of the overlay (used for the indirect
paths) are limited to the core set. Table 10.1 shows the geographic distribution of the
selected nodes. All the data collection for this work was done in complete isolation
from the CDN’s usual data collection activity.

Table 10.1 Geographic distribution of the platform

Continent (Mnemonic) Edge Set Core Set

Africa (AF) 6 0
Asia (AS) 124 11
Central America (CA) 13 0
Europe (EU) 154 30
North America (NA) 624 110
Oceania (OC) 33 0
South America (SA) 38 0

10.3.2 Data Collection for Performance and Availability

Each of the 1100 clusters ran a task that sent ICMP echo requests (pings) of
size 64 bytes every 2 minutes to each node in the core set (this keeps the rate
of requests at a core node to less than 10 per second). Each task lasted for
1.5 hours. If a packet was lost, specifically if no response is received within 10
seconds, then a special value was reported as the round-trip latency. Three tasks
were run every day across all clusters, coinciding with peak traffic hours in East
Asia, Europe, and the east coast of North America. These tasks ran for a total
of 4 weeks starting 18 October, 2004. Thus, in this experiment, each path was
probed 3,780 times, and the total number of probes was about 652 million. A
small number of nodes in the core set became unavailable for extended periods
of time due to maintenance or infrastructure changes. A filtering step was ap-
plied to the data to purge all the data for these nodes. A modified version of
the standard all-pairs shortest path algorithm [9] was executed on the data set to
determine the shortest paths with one, two, and three intermediate nodes from

260 H.S. Rahul et al.

the core set. We obtained an archive of 7-tuples <timestamp, source-id,
destination-id, direct RTT,one-hop shortest RTT,two-hop
shortest RTT, three-hop shortest RTT>. The archive was split into
broad categories based on source and destination continents.

We consider a path to be unavailable if three or more consecutive pings are lost.
Akella et al. [2] use the same definition, where the pings were sent at one minute
intervals. The alternative scenario that three consecutive pings are each lost due to
random congestion occurs with a probability of order 10−6, assuming independent
losses in two minute epochs with a probability of order 1%. We consider the un-
availability period to start when the first lost ping was sent, and to end when the last
of the consecutively lost pings was sent. This is likely a conservative estimate of the
length of the period, and implies that we only draw conclusions about Internet path
failures of duration longer than 6 minutes.

We filtered out all measurements originating from edge nodes in China for our
availability analysis. Their failure characteristics are remarkably different from all
other Internet paths as a consequence of firewall policies applied by the Chinese
government.

10.3.3 Evaluation

We aggregate our results based on the continents of the source and destination nodes,
motivated by the fact that enterprise Websites tend to specify their audience of in-
terest in terms of their continent. The categories are denoted by obvious mnemonics
such as AS-NA (indicated in Table 10.1), denoting that the edge servers are in Asia
and origin servers are in North America.

10.4 Performance Benefits of Overlay Routing

In this section, we evaluate the performance benefits of overlay routing in the ideal
situation where all possible indirect paths are considered for each source-destination
pair, and the optimal indirect path is chosen in real time. Recall that our metric
of performance is latency which is the round-trip time (abbreviated to RTT) from
source to destination.

We compare the direct and the fastest indirect path for each source-destination
pair and present the results in Table 10.2. We divide the data set into buckets based
on its category and the percentage improvement in the latency of the fastest indirect
path as compared to the direct path. Table 10.2 shows the percentage of source-
destination pairs that fell in each of the buckets. The rows of the table sum to 100%.
As an explanatory example for Table 10.2, consider the AS-AS row. The “<−10%”
bucket shows the cases where the best indirect paths are at least 10% slower than
the direct path. 15.5% of the AS-AS paths fell in this bucket. The “±10%” bucket

10 Performance and Availability Benefits of Global Overlay Routing 261

Table 10.2 Histogram of latency reduction percentages

Category < −10% ±10% 10–30% 30–50% > 50%
(Slower) (Comparable) (Marginal) (Significant) (Large)

AF-AS 4.0 44.5 44.2 5.7 1.6
AF-EU 0.6 69.3 18.1 9.7 2.3
AF-NA 0.0 74.2 21.6 3.5 0.6
AS-AS 15.5 24.7 23.4 13.2 23.2
AS-EU 0.9 33.9 45.5 12.5 7.2
AS-NA 0.1 43.2 42.4 7.6 6.7
CA-AS 0.0 40.5 53.5 4.6 1.4
CA-EU 1.4 53.2 42.3 2.5 0.7
CA-NA 1.7 44.1 41.3 11.2 1.8
EU-AS 0.6 24.5 63.8 7.8 3.2
EU-EU 10.5 36.4 30.5 12.6 10.0
EU-NA 0.0 50.6 45.1 3.3 0.9
NA-AS 0.0 34.0 57.9 5.4 2.6
NA-EU 0.1 43.1 51.1 4.4 1.4
NA-NA 2.4 34.7 39.0 15.0 9.0
OC-AS 6.1 38.9 18.9 22.9 13.2
OC-EU 0.0 60.4 35.1 3.9 0.7
OC-NA 0.0 66.7 25.6 6.3 1.4
SA-AS 0.1 43.1 47.9 5.5 3.4
SA-EU 0.4 66.1 28.9 2.3 2.2
SA-NA 0.9 55.1 35.1 5.7 3.3

represents the cases where the best indirect path and the direct path are comparable,
in the sense that their latencies are within 10% of each other. 24.7% of the paths in
the AS-AS category fell in this bucket. Out of the remaining direct paths, 23.4% saw
a marginal (10–30%) improvement, 13.2% of the paths saw significant (30–50%)
improvements, and 23.2% of the paths saw large latency reductions of a factor of
two or better from the indirect paths found by the overlay.

Overall, about 4%–35% of all source-destination pairs see improvements of over
30% latency, depending on the category. Additionally, high numbers of source-
destination pairs see over 50% improvement for the AS-AS and EU-EU categories,
which indicates the presence of many cases of pathological routing between ISPs in
these continents. A nontrivial number of AS-AS paths are routed through peering
locations in California, for example, the path between Gigamedia, Taipei and China
Telecom, Shanghai. All the traceroutes in our snapshot that originated at Gigame-
dia, Taipei and ended at other locations in Asia went via California, except the path
to China Telecom, Shanghai, which went directly from Taipei to Shanghai. The
Taipei-Shanghai path thus sees little or no improvement with an overlay, since all
the alternatives are very convoluted. At the same time, all the paths that originate in
Gigamedia, Taipei and end in other locations in Asia see large improvements, since
their direct routes are very convoluted, but there exists a path via China Telecom,
Shanghai, which is more than 50% faster.

262 H.S. Rahul et al.

10.4.1 Source-Destination Pairs with Poor Connectivity

Enterprises are particularly interested in enhancing the worst-case performance of
their Website, by speeding up the clients who see the worst performance. Therefore,
the benefits provided by overlay routing in minimizing the worst path latencies in
each category are especially interesting. We compare the latency reduction enjoyed
by a “typical” source-destination pair in a given category with that of a “poorly con-
nected” source-destination pair in the same category. We bucketed the data set for
each category into 10 millisecond buckets based on the latency of the direct path.
We then looked at the 50th percentile bucket (“typical” source-destination pairs) and
the 90th percentile bucket (“poorly-connected” source-destination pairs). For each
of these buckets, we determined the average improvements provided by the fastest
indirect path over the direct path. Table 10.3 shows the comparison of the benefits
seen by the typical and the poorly-connected source-destination pairs in each cat-
egory. For the typical source-destination pairs, the latency reduction exceeds 20%
only for AS-AS, OC-AS and CA-NA out of the 21 categories. Comparatively, the
poorly-connected source-destination pairs see a benefit over 20% for half of the
categories. The important categories of AS-AS, AS-NA, and EU-EU show signifi-
cant improvements for the poor source-destination pairs, while, in contrast for paths
originating from Africa the latency for 90th percentile bucket is both high and not

Table 10.3 Latency reduction for typical and poorly-connected source-destination pairs

Category 50th Percentile 90th Percentile

Direct Fastest Reduction Direct Fastest Reduction
(ms) (ms) (%) (ms) (ms) (%)

AF-AS 350 290 17 740 700 5
AF-EU 150 120 20 620 620 0
AF-NA 200 180 10 560 550 2
AS-AS 230 110 52 590 350 41
AS-EU 320 260 19 500 360 28
AS-NA 230 200 13 470 280 40
CA-AS 230 200 13 300 250 17
CA-EU 160 140 12 200 170 15
CA-NA 90 70 22 130 100 23
EU-AS 300 260 13 390 300 23
EU-EU 30 30 0 80 60 25
EU-NA 130 120 8 190 160 16
NA-AS 190 160 16 260 210 19
NA-EU 130 110 15 180 150 17
NA-NA 50 40 20 90 70 22
OC-AS 200 140 30 340 220 35
OC-EU 330 300 9 400 330 17
OC-NA 220 200 9 280 230 18
SA-AS 320 280 12 470 340 28
SA-EU 230 210 9 290 250 14
SA-NA 160 150 6 240 190 21

10 Performance and Availability Benefits of Global Overlay Routing 263

helped with the overlay. For the AS-AS category, both the typical and poor source-
destination pairs see significant improvement via the overlay, but the improvement
are even greater for the typical paths. However, in general we can conclude that
poorly-connected source-destination pairs benefit more from overlay routing, com-
pared to a typical source-destination pair.

Next, we provide a more in-depth evaluation of what fraction of the poorly-
connected source-destination pairs derive marginal, significant, or a large benefit
from overlay routing. We bucket all the source-destination pairs in a given cate-
gory whose direct path latency ever exceeded the 90th percentile latency of that
category as shown in Table 10.3 to derive the histogram of the latency reduction
for poorly-connected source-destination pairs. This histogram of the latency reduc-
tion for poorly-connected source-destination pairs is shown along side the same
values for all source-destination pairs in that category in Fig. 10.3. (Note that the
data charted in Fig. 10.3 for all source-destination pairs was presented in the last
three columns of Table 10.2). Poorly-connected source-destination pairs see at least
marginal benefits in over 80% of the samples, while 67% of the samples see sig-
nificant or large benefits. Some categories do deviate from this observation in the
figure. For example, even poorly-connected source-destination pairs with destina-
tions in Africa do not derive much help from an overlay.

Fig. 10.3 Latency reduction for all and poorly-connected source-destination pairs

10.5 Availability Gains of Overlays

In this section, we evaluate the availability benefits of overlay routing in the ideal sit-
uation, where all possible indirect paths are considered for each source-destination

264 H.S. Rahul et al.

pair, and when possible an indirect path that is available is chosen in real time to
mitigate failures.

We study how often the direct path from each source-destination pair fails, and
during these failures what percentage of times at least one indirect path was func-
tional. This provides a best-case estimate of the availability gains that overlay rout-
ing can provide. Figure 10.4 shows the percentage samples where the direct path
between the source and destination failed for each category. The failure percentage
of the direct paths ranges from 0.03% to 0.83%. Asia has the poorest availability:
nine of the ten categories with the largest failure percent have an endpoint in Asia.
In the presence of overlay routing, the failure percent goes down by 0.3–0.5% for
most categories, indicating that the indirect paths help mask failures of the direct
path. In fact, the high-failure categories involving Asia show dramatic availability
improvements.

Fig. 10.4 Reduction in failure percentages with overlay routing

10.5.1 Source-Destination Pairs with Poor Connectivity

As with Sect. 10.4.1, we study how overlay routing benefits source-destination pairs
with direct paths that exhibit the most failures. Again, this is of great interest to
enterprises that are typically interested in using CDNs to enhance the availability of
their least available end users and clients. It is commonly understood that a small
number of paths contribute to a large number of path failures on the Internet. As
evaluated in [15], 3% of Internet paths give rise to 30% of failures. We identified
a similar pattern in our data as shown in Table 10.4. We see that about 3% of the
direct paths caused 30% of the failures, and that 10% of the direct paths gave rise to
50% of the failures.

We identified the least-available source-destination pairs in each category that
cumulatively gave rise to 30% of the failures, and re-ran the availability analysis for
only these source-destination pairs. The results are shown in Table 10.4. A failure
rate higher than 20% for direct paths for a source-destination pair is indicative of
some specific chronic trouble, rather than random, transient failures or short-lived

10 Performance and Availability Benefits of Global Overlay Routing 265

Table 10.4 Availability statistics for poor paths

Category % paths with Failure % Failure %
30% Failures no Overlay Overlay

AF-AS 4.5 25.8 0
AF-EU 1.7 8.8 0
AF-NA 0.6 36.2 0
AS-AS 2.7 31.4 0
AS-EU 1.5 9.8 0
AS-NA 0.4 30 0
CA-AS 3.5 28.2 0
CA-EU 1.6 10.9 0
CA-NA 0.5 30.3 0
EU-AS 3 30.1 0
EU-EU 0.9 10.8 0
EU-NA 0.4 30.1 0
NA-AS 2.7 32.3 0
NA-EU 0.4 13.2 0
NA-NA 0.2 40.2 0
OC-AS 3.1 30.8 0
OC-EU 1.4 10.7 0
OC-NA 0.4 29.3 0
SA-AS 3.3 28.8 0
SA-EU 2.2 9.5 0
SA-NA 0.8 23 0

congestion. Almost all these source-destination pairs with a chronic availability
problem saw perfect availability with overlay routing! Enhancing the availability
of the least available origin-destination pairs is a key benefit of overlay routing.

10.6 Achieving the Benefits in a Practical Design

The analysis presented in Sects. 10.4 and 10.5 characterizes an ideal case where
network measurements are used in the computation of indirect paths in real-time. In
addition, we assumed that an unlimited number of indirect paths can be probed and
utilized as indirect routes. Therefore, this analysis is a best-case estimate on the per-
formance and availability gains that can be expected from overlay routing. However,
in a practical system, measurements made at a given time t is used for constructing
overlay paths that are utilized by the transport system till some time t +τ into future.
And, only a small number of indirect paths can be constructed and used at any given
time for a given source-destination pair (call the number of paths κ). This section
incorporates these practical considerations into the analysis and evaluates its impact
on the results. As κ increases and τ decreases, the cost of constructing the over-
lay paths goes up but one would expect the quality of constructed overlay paths to
increase and approach the best-case routes constructed in Sects. 10.4 and 10.5.

266 H.S. Rahul et al.

First, we evaluate a simple multi-path memoryless overlay routing scheme that
randomly selects a subset of κ paths, purely based on static information and uses
it to route content. It is natural to expect that this overlay will likely be inferior to
the ideal, but our goal is to develop a straw man to validate the importance of in-
telligence and adaptiveness in overlay path selection. Surprisingly, we found that
random selection is successful in providing near optimal availability for κ = 3, sub-
stantiating the fact that the Internet offers very good path diversity, and generally
has low rates of failure. The policy, however, fails in improving performance, sug-
gesting that careful path selection is very important in building overlays for perfor-
mance gains. Such performance-optimizing overlay routing schemes are the focus
of the rest of this section.

10.6.1 Stability of Optimal Paths

To the extent that a performance-optimizing overlay routing scheme selects a subset
of paths to use, it will deviate from optimality as a result of variations in path la-
tencies over time that cause a reordering of the best paths. Source-destination pairs
tend to fall into two categories:

1. The best paths from the source to the destination are quite persistent, and do not
change, regardless of variations in the latencies of all paths between them.

2. Latency variations of the paths over time cause a significant reordering of the
best paths between source and destination, which in turn causes changes in the
optimal paths.

Source-destination pairs in the first category do not require a very dynamic over-
lay design for selecting indirect paths for performance improvement. For example,
consider the path from Pacific Internet, Singapore to AboveNet, London. The di-
rect path, which hops from Singapore through Tokyo, San Francisco, Dallas, and
Washington D.C. to London takes approximately 340 millisecond. However, there
exists an indirect path through an intermediate node in the ISP Energis Commu-
nications in London. The path between Pacific Internet, Singapore and Energis,
London is one hop long (possibly a satellite link), and has a latency of 196 millisec-
ond. The subsequent traversal from Energis, London to AboveNet, London takes
just 2 millisecond. The indirect path is therefore faster than the direct path by over
140 millisecond, or 41.2%. While the latencies vary, the ordering of the paths sel-
dom change.

For source-destination pairs in the second category, latency variations are more
important. We systematically examine the extent of the latency variation across
paths by computing a statistic called churn that measures the extent to which sets of
best κ paths at two different time instants vary. Formally, for a given pair of nodes,

Churnt(κ,τ) Δ= |S(κ, t)−S(κ, t + τ)|/κ,

10 Performance and Availability Benefits of Global Overlay Routing 267

where S(κ, t) is the set of the κ best performing paths between those nodes at time t.
Churn(κ,τ) for a node pair is then computed as an average of Churnt(κ,τ) over all
valid values of t. Churn(κ,τ) is a number between 0 and 1, that is 0 for paths with a
persistent set of best paths, and tend to be closer to 1 for paths with a fast changing
set of best paths. We found that the majority of source-destination pairs have values
of Churn(κ,τ) larger than 10%, even when selecting up to κ = 5 best performing
paths and using this prediction for only τ = 2 minutes into the future.

To examine path churn more closely, one can define a relaxed measure called
RelaxChurn(κ,τ) that counts only paths π ∈ S(κ, t)− S(κ, t + τ) whose latency
at t + τ is higher than 110% of the latency of the path with the worst latency in
S(κ, t +τ), i.e. keeping path π would worsen the performance at time t +τ by more
than 10%. Interestingly, RelaxChurn(κ,τ) is less than 10% on average for over 80%
of source-destination pairs in most categories. This indicates that a path selection
algorithm that makes predictions into the future based on current measurements,
can achieve performance close to the ideal.

Figure 10.5 shows the percentage of source-destination pairs that have Churn
(κ,τ) and RelaxChurn(κ,τ) of less than 10% for κ = 1 and τ = 2 minutes. Note that
paths with both the end points in Asia do have a higher value of RelaxChurn than
Churn, but still only 63% AS-AS source-destination pairs have low-churn paths.
Thus, potentially higher performance benefits for AS-AS paths are likely only ob-
tainable at a higher cost in terms of network measurement.

Fig. 10.5 Percentage of
source-destination pairs with
low Churn and RelaxChurn
for τ = 2 minutes and κ = 1

10.6.2 Performance Gains of a Predictive Overlay

The analysis in Sect. 10.6.1 examined stability using purely structural properties. In
this section, we compare the performance of overlay routing with parameters κ and
τ with the performance of the ideal case where the optimal path is always chosen.
Note that this measure holds overlays to a higher standard, as the optimal path at a
given time is at least as fast as the direct path.

268 H.S. Rahul et al.

Table 10.5 Percentage of paths within 10% of the optimal latency

Category Percentage of Paths

κ = 1 κ = 1 κ = 2 κ = 3
τ = 2 τ = 10 τ = 2 τ = 2

AS-AS 62.4 59.5 84.6 89.4
AS-EU 76.2 74.1 92.2 94.5
AS-NA 74.8 71.6 94.0 96.0
EU-AS 74.4 72.3 88.4 92.8
EU-EU 80.1 78.1 91.6 93.1
EU-NA 83.0 82.2 94.7 96.2
NA-AS 68.1 66.2 88.8 93.7
NA-EU 82.3 81.3 95.4 97.2
NA-NA 71.6 69.6 92.0 95.0

A natural case to examine in some detail would be κ = 1. This corresponds to
just using the best path choice in future iterations. Table 10.5 in the second and third
columns shows our results for τ = 2 and 10 minutes. As an explanatory example,
consider the NA-NA category. The table shows that when using τ = 2 minutes,
71.6% of the paths came within 10% of the optimal latency for that observation.
Even when using stale data, with τ = 10 minutes, 69.6% of the paths managed
to achieve the same result. Paths originating in Asia again show a greater deviation
from optimality than paths originating in Europe, whereas paths originating in North
America span the full range of deviations.

Given that the performance gains with κ = 1 do not seem adequate everywhere,
we then explored higher values of κ . As an explanatory example, consider the cat-
egory NA-EU. The table shows that 82.3% of the paths came within 10% of the
optimal when choosing κ = 1. Increasing κ to 2 enables approximately 13.1% more
paths to achieve the same result. Increasing κ to 3 provides only a marginal benefit
for the remaining paths, and only 1.8% more paths achieved the result with this value
of κ . From Table 10.5, we immediately see that choosing κ = 2 provides dispropor-
tionately high gains over choosing κ = 1, and the marginal benefit of choosing κ = 3
is much lower. In fact, apart from paths with their destination in Asia, over 90% of
all source-destination pairs are within 10% of the ideal performance when selecting
κ = 2, and this fact remains true even with increasing τ . The results also suggest
that an overlay routing scheme where either κ = 1 or 2 paths are used would work
well. For example, 95.4% of all NA-EU source-destination pairs are within 10% of
optimal for overlays with κ = 2. Combining this with the fact that 82.3% of these
pairs require only one choice to come within the same limits, it is conceivable that
an overlay routing scheme could potentially use two paths only for the excess 13.1%
of pairs, for an average overhead of just 1.09 paths per pair.

Source-destination pairs where both are in Asia show a different behavior. For
example, the proportion of AS-AS source-destination pairs within 10% of optimal
jumps from 62.44% to 84.57% when going from κ = 1 to κ = 2 (for a weighted
average set size of 1.31). However, achieving within 10% of optimal for close to
90% of the source-destination pairs requires κ = 3.

10 Performance and Availability Benefits of Global Overlay Routing 269

Note that although Table 10.5 shows results for τ = 2 minutes for κ = 2, these
values remain relatively stable for higher values of τ between 2 and 10 minutes
(similar to the case of κ = 1). This implies that increasing the rate of probing does
not lead to gains in latency for a significantly higher number of paths. We expand
on the sensitivity of the results to τ in Sect. 10.6.3.

Interestingly, overlays designed for high performance show reduced availability
as compared to the ideal situation. This is because, as illustrated in earlier examples
in this chapter, better performing paths are typically constrained to share a small set
of common links, leading to less path diversity and a greater vulnerability that all
these shared links will simultaneously fail.

10.6.3 Persistence

The analysis in Sect. 10.6.2 indicates that the benefits of overlays are only mildly
sensitive to the value of τ , at least in the range of 2–10 minutes. In this section, we
explore the time sensitivity of predictive overlays by using some extreme cases. Our
daily 1.5 hour samples are separated by a gap of 4 to 11 hours. We used overlays
based on measurements in one 1.5 hour sample, and evaluated their performance
on the next sample. While it is entirely possible that the overlay might have been
suboptimal in the intervening time period, we see that around 87% of NA-NA, and
74% of AS-AS paths are within 10% of ideal even with these long term predictions.
These statistics point to a high degree of consistency in the relative performance
of alternative paths between a source-destination pair, for most pairs. In contrast,
there is a small number of paths [20] with high short term variations, and it is
difficult for a predictive overlay to optimize these paths even with κ going up to
5 or 6.

10.7 Future Research Directions

In this chapter, we quantified the performance and availability benefits achievable
by overlay routing, and how it differs from continent to continent. The inefficien-
cies of the Internet have deep roots in economic considerations of the individual
ISPs and are here to stay for a long time. Further, the significant geographical vari-
ations in behavior may well be artifacts of a deeper structural nature, and are not
expected to even out over time as connectivity and economies improve. These facts
point to a continued rapid growth in high-value traffic routed by overlay networks
of CDNs. As overlay routing optimizations become more and more prevalent, the
impact of these optimizations on individual ISPs operating the “underlay” and the
optimizations they perform within their own networks become an interesting topic
of future study [8, 14, 19].

270 H.S. Rahul et al.

10.8 Visionary Thoughts for Practitioners

After a decade of evolution, there is no doubt that CDNs now play a central role in
enabling business on the Internet. Businesses in every vertical, including technology,
media, entertainment, commerce, software, and government, have adopted CDN
technology. The traffic hosted on CDNs continue grow by leaps and bounds, year
after year. The dual challenges of enhancing the performance and availability of
web sites, streaming media and applications has been a fundamental driving force
of CDN evolution over the past decade. We end the chapter by refocusing our vision
on those challenges and the road ahead.

• Consider that there are now retailers selling billions of dollars of goods on the
Internet for whom even a 10-minute downtime of their Website during a peak
period translates to millions of dollars of lost revenue and can also result in poor
user perception [24]. Further, e-commerce revenue is growing at a significant
rate and is expected to double every two to three years! In addition, there is
growing evidence that fast downloads of Web pages are linked to larger conver-
sion rates at e-commerce sites, leading to greater revenue. We need to deliver
content on the Internet to provide ever higher levels performance with little or
no downtime.

• Consider that there are large media and entertainment companies who rely on
the Internet to disseminate content to vast numbers of end users. While they
like the on-demand and ubiquitous nature of Internet streaming, they want a
true television-like experience, where the video starts up immediately and never
freezes! We need to deliver content on the Internet with higher performance than
traditional methods.

• As the Internet becomes more and more entrenched as a primary source of en-
tertainment and news, a number of content providers face the so-called flash
crowd problem. We need to deliver content on the Internet in a scalable fash-
ion to end users even during a flash crowd, without loss of availability or
performance.

• New business trends such as outsourcing and workforce consolidation, as well as
government communications necessitate exacting performance and availability
standards, not just within a single country or small group of countries, but glob-
ally. It is becoming more common to have large virtual teams with individuals
across the world collaborating in real-time on a single project via the Internet.
Further, many novel Internet applications have more stringent performance re-
quirements than ever. Interactive applications, such as remote shells over virtual
private networks (VPNs) and multi-user games, and emerging technologies such
as voice over IP (VoIP) are highly latency sensitive. We need to meet novel and
more stringent availability and performance requirements to support the next-
generation of Internet applications.

These challenges will continue to drive the field forward and shape the future CDN
in the coming years.

10 Performance and Availability Benefits of Global Overlay Routing 271

Acknowledgements The experimental results presented in this chapter appeared as a technical
report in [20] and as a conference paper in [21]. Ramesh Sitaraman was supported in part by NSF
Award CNS-0519894.

References

1. Akamai Technologies, Inc. http://www.akamai.com.
2. Akella, A., Pang, J., Maggs, B., Seshan, S., and Shaikh, A. A comparison of overlay routing

and multihoming route control. In Proceedings of the ACM SIGCOMM, pp. 93–106, Portland,
OR, August 2004.

3. Akella, A., Maggs, B., Seshan, S., Shaikh, A., and Sitaraman, R. A Measurement-Based
Analysis of Multihoming. Proceedings of the 2003 ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM),
August 2003.

4. Andersen, D. G. Improving End-to-End Availability Using Overlay Networks. PhD thesis,
MIT, 2005.

5. Andersen, D. G., Balakrishnan, H., Kaashoek, F., and Morris, R. Resilient Overlay Networks.
In 18th ACM SOSP, Banff, Canada, October 2001.

6. Andreev, K., Maggs, B., Meyerson, A., and Sitaraman, R. Designing Overlay Multicast Net-
works for Streaming. Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), June 2003.

7. Home page of the Cooperative Association for Internet Data Analysis (CAIDA).
http://www.caida.org.

8. Clark, D., Lehr, B., Bauer, S., Faratin, P., Sami, R., and Wroclawski, J. The Growth of Internet
Overlay Networks: Implications for Architecture, Industry Structure and Policy. In 33rd Re-
search Conference on Communication, Information and Internet Policy, Arlington, Virginia,
September 2005.

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms. MIT
Press and McGraw-Hill, 2001.

10. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally distributed
content delivery. IEEE Internet Computing, September 2002, pp. 50–58.

11. Home page of the Detour Project http://www.cs.washington.edu/research/networking/detour/.
12. Kontothanassis, L., Sitaraman, R., Wein, J., Hong, D., Kleinberg, R., Mancuso, B., Shaw, D.,

and, Stodolsky, D. “A Transport Layer for Live Streaming in a Content Delivery Network”.
Proceedings of the IEEE, Special issue on evolution of internet technologies, pp. 1408–1419,
Vol. 92, Issue 9, August 2004.

13. Gummadi, K. P., Madhyastha, H., Gribble, S., Levy, H., and Wetherall, D. Improving the Re-
liability of Internet Paths with One-hop Source Routing. In Symposium on Operating System
Design and Implementation (OSDI), San Diego, CA, 2003.

14. Keralapura, R., Taft, N., Chuah, C., and Iannaccone, G. Can ISPs take the heat from overlay
networks? In ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2004.

15. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.-N., and Diot, C. Characteri-
zation of failures in an ip backbone. In IEEE Infocom, Hong Kong, 2004.

16. Home page of the National Internet Measurement Infrastructure (NIMI).
http://ncne.nlanr.net/nimi/.

17. Paxson, V., Mahdavi, J., Adams, A., and Mathis, M. An Architecture for Large-Scale Internet
Measurement. IEEE Communications, August 1998.

18. Home page of PlanetLab. An open platform for developing, deploying, and accessing
planetary-scale services, http://www.planet-lab.org/.

19. Qiu, L., Yang, Y. R., Zhang, Y., and Shenker, S. On Selfish Routing in Internet-Like Environ-
ments. In ACM SIGCOMM, 2003.

272 H.S. Rahul et al.

20. Rahul, H., Kasbekar, M., Sitaraman, R., and Berger, A. Towards Realizing the Performance
and Availability Benefits of a Global Overlay Network. MIT CSAIL TR 2005-070, December
2005.

21. Rahul, H., Kasbekar, M., Sitaraman, R., and Berger, A. Towards Realizing the Performance
and Availability Benefits of a Global Overlay Network. Passive and Active Measurement
Conference, Adelaide, Australia, March, 2006.

22. Home page of the Resilient Overlay Networks (RON) project. http://nms.csail.mit.edu/ron/.
23. Savage, S., Collins, A., Hoffman, E., Snell, J., and Anderson, T. The End-to-End Effects of

Internet Path Selection. In Proc. ACM SIGCOMM, pp. 289–299, Cambridge, MA, 1999.
24. Zona Research. The need for speed II. Zona Market Bulletin 5 (April 2001).

Part III
Advanced CDN Platforms

and Applications

Chapter 11
Dynamic CDN Against Flash Crowds

Norihiko Yoshida

11.1 Introduction

With the rapid spread of information and ubiquitous accesses of browsers, new
congestion phenomena on the Internet, flash crowds, makes traditional techniques
fail to solve. Flash crowds are sudden, unanticipated surges in traffic volume of
request rates towards particular Web sites. Differing from the consistent Internet
congestions, flash crowds produce short-term congestions. It makes Web sites over-
provisioned and the hosting Content Delivery Network (CDN) inefficient and un-
economical. Thus, they pose new challenges to the today’s Internet.

The term “flash crowd” was coined in 1973 by a science fiction writer Larry
Niven in his short novel “Flash Crowd” [31]. In the novel, cheap and easy teleporta-
tion enabled tens of thousands of people worldwide to flock to the scene of anything
interesting almost instantly, incurring disorder and confusion.

The term was then applied to similar phenomena on the Internet in the late
1990’s. When a Web site catches the attention of a large number of people, it gets an
unexpected and overwhelming surge in traffic, usually causing network saturation
and server malfunction, and consequently making the site temporarily unreachable.
This is the “flash crowd” phenomenon on the Internet, which is also sometimes re-
ferred to as the “SlashDot effect” [2] or a “Web hotspot” [50]. An example of a flash
crowd is shown in Fig. 11.1 [34], which occurred on the “LIVE! ECLIPSE” Web
site [26] on November 3rd, 2005.

Flash Crowds are not frequent phenomena. They differ from those workloads that
vary over time, such as time-of-day effects [13], e.g. more people enjoy the Web
during lunch hours, where long-term periodic trends can be predicted. However,
they are triggered relatively easily, in that even the mere mention of a popular Web
site will produce one. Due to an increase in the frequency of flash crowds and their
overall unpredictability, flash crowds have now become a bane of most Web sites.

A conventional CDN works well if the request load is relatively constant. How-
ever, it is static in the sense that it uses a fixed number of surrogates all the time,

Norihiko Yoshida
Division of Mathematics, Electronics and Informatics, Saitama University, Saitama 338-8570,
Japan, e-mail: yoshida@mail.saitama-u.ac.jp

R. Buyya et al. (eds.), Content Delivery Networks, 275
c© Springer-Verlag Berlin Heidelberg 2008

276 N. Yoshida

0 10000 20000 30000 40000 50000 60000 70000

0

200

400

600

800

1000 From 00:00:00 (0) to 19:43:50 (71030)
Interval = 5 seconds

Lo
ad

 (
re

qu
es

ts
)

Time (seconds)

Fig. 11.1 Flash crowd to the “LIVE! ECLIPSE” site on Nov. 3, 2005

and it is permanently prepared for the congested state. Considering the situation of
flash crowds, resorting to a high level of over-provision suffers from low efficiency.
Due to the infrequency of the high load, static CDNs lead to under-utilization of
resources, and the surrogate servers will remain idle most of the time.

Moreover, Web requests can be bursty. It is not easy to predict the peak load of
a flash crowd. Even a very well-configured CDN site may be crippled due to the
demand unpredictability associated with a traffic surge.

Some solutions have already been proposed to address the problem of flash
crowds. Promising solutions should incorporate a certain principle: changing the
static CDN into an adaptive dynamic CDN. The network adaptively changes its ar-
chitecture to reach the best optimum according to the observed traffic load. When
the load is under control, the normal client/server (C/S) configuration manages the
requests well. When the load exceeds a threshold or fulfills a certain condition, then
the set of surrogate servers kicks in to absorb the huge number of requests. In this
way, the network is supposed to be more efficient as regards resource utilization,
practical in its ability to address flash crowds and affordable by more Web sites.

There are three main challenges in addressing this issue:

1. How to organize a temporary overlay of surrogate servers quickly. The surrogate
servers should be utilized efficiently and need to cooperate with each other al-
most immediately when faced with a flash crowd. When the flash crowd departs,
everything should go back to normal operation without involving much overhead.
The impact of being a potential surrogate during the normal period of operation
should be controlled, so that it is minimized as much as possible.

11 Dynamic CDN Against Flash Crowds 277

2. How to detect the arrival and departure of a load spike properly. Flash crowds
are different from the normal workloads, whose magnitude and duration depend
on the people’s interest toward some triggering events, and it is difficult to make
long-term predictions in advance. Thus, the network must be reactive to the ar-
rival of a flash crowd by relying on short-term quick predictions. The detection
must be careful because any improper detection may result in a waste of re-
sources or oscillations of the network architecture.

3. How to redirect client requests transparently to the temporary overlay. Once the
dynamic CDN is ready for the flash crowds, the flooded client requests must be
redirected to any of the surrogates, and they should preferably be redirected in
a load-balancing manner. Different from single site schemes where a local load
balancer works, this redirection must be performed within a wide-area temporary
environment.

We advocate FCAN (Flash Crowds Alleviation Network), a dynamic CDN net-
work that adaptively optimizes the network architecture between C/S and CDN con-
figurations. We utilize an Internet infrastructure of cache proxies to organize a tem-
porary overlay of surrogate servers. This mode is invoked on the fly when a flash
crowd comes, but pulled out of action when the normal C/S configuration works
adequately [7, 33].

This chapter is organized as follows: Sect. 11.2 provides a brief overview of
flash crowds and analyzes their triggering, types, and characteristics. It also dis-
cusses how to distinguish flash crowds from other similar Internet phenomena, De-
nial of Service (DoS) and Distributed DoS (DDoS) attacks. It then examines state-
of-the-art research works. By analyzing and comparing several related solutions, it
clarifies their advantages and disadvantages. Sect. 11.3 presents FCAN. It explains
how the network reacts to the beginning and ending of a flash crowd, how the tem-
porary surrogates are organized and cooperate with each other, and how redirection
based on DNS (Domain Name System) offloads the burden on the origin Web site. It
then exhibits simulation-based evaluations using real trace workloads. Section 11.4
summarizes some visionary thoughts for practitioners. Section 11.5 presents the fu-
ture research directions with discussions on open issues. Section 11.6 comprises the
conclusion.

11.2 Background and Related Work

We first study the characteristics of flash crowds. We show that network bandwidth
is the most serious bottleneck, and a small number of objects is responsible for a
greater percentage of requests (i.e. heavy-tailed behavior). These observations im-
ply that flooded requests must be redirected away from the server and caching these
flash-crowd objects could be a possible solution. Study of related work in this con-
text show that there is still room for improvement to the solutions for handling the
problem of flash crowds.

278 N. Yoshida

11.2.1 Flash Crowds

Usually, sudden events of great interest trigger flash crowds, whether planned or
unplanned. Some well-analyzed ones include: World Cup 1998 [6], RedHat Linux
image distribution [8], Play-along TV show 2000 and Chilean presidential election
broadcast 1999 [21], and CNN broadcast on the terrorist attacks of September 11,
2001 [13]. In addition, a Web site which is referred to on a popular site, news or
blog often experiences an unusual amount of accesses unexpectedly.

Due to resource limits and/or the network bandwidth, the servers are unable to
handle the high volume of requests. As a result, most users perceive unacceptably
poor performance. Moreover, flash crowds unintentionally deny service for other
users who either share common paths with the flash crowd traffic or who try to
retrieve unrelated information from the same servers [30, 51].

Through analyses of such real traces as mentioned above and other research ef-
forts [19, 27], some significant characteristics can be concluded, as stated below.
These observations allow us to tell when a flash crowd arrives; how long (or short)
a time we have to take defensive action; how different it is from a malicious attack;
how we can utilize the locality of reference; and more.

1. The increase in the request rate is dramatic, but relatively short in duration. A
flash crowd lasts as long as the attention span of the concerned audience, from
hours to days, which is relatively short compared to the life span of a Web ap-
plication. Therefore, if we make an over-provision or switch to the conventional
CDN, the results can lead to under-utilization of resources during the normal
operational period, especially for small or personal Web sites, which might ex-
perience flash crowds only once or twice in their lifetime.

2. The increase in the requests is rapid but not instantaneous. In the case of the
Play-along TV show, the rate increase continued for 15 min. before it reached
its peak. Another case, the September 11, 2001 event, resulted in a massive load
on the CNN Web site which doubled every 7 min., finally reaching a peak of 20
times higher than the normal load [24]. This property suggests that we still have
adequate time to detect a flash crowd and react.

3. Network bandwidth is the primary constraint bottleneck. CPU may be a bottle-
neck if the server is serving dynamically generated contents. For instance, on the
morning of September 11, dynamic pages on the MSNBC news Web site con-
sumed 49.4% of “500” (server busy) error codes [32]. However, MSNBC quickly
switched to serving static HTML pages, and the percentage of the error status
codes dropped to 6.7%. Observations also revealed that network bandwidth be-
came the primary constraint bottleneck, and the closer paths are to the server, the
worse they are affected [32]. It is reported that modern PCs could sustain more
network throughput than 1 Gbps when serving static files [20], while the network
bandwidth of a Web site is typically much lower [40]. Accordingly, we should
focus on alleviating the bandwidth bottleneck around the servers.

4. A small number of contents, less than 10%, is responsible for a large percentage,
more than 90%, of requests. For instance, the MSNBC traces from September 11

11 Dynamic CDN Against Flash Crowds 279

showed that 141 files (0.37%) accounted for 90% of the access, and 1086 files
(2.87%) for 99% of the access [32]. Moreover, the set of hot contents during a
flash crowd tends to be small to fit in a cache. This is a promising result implying
that the caching of these 10% contents can be a solution to flash crowds. We also
observe that this “10/90” rule of reference follows the Zipf-like distribution, in
which the relative probability of a request for the i’th most popular content is
proportional to 1/ia [10]. This property distinguishes flash crowds from attack
traffic which is generated automatically by “bots”.

5. More than 60% of contents are accessed only during a flash crowd. In addition,
among the 10% hot contents, more than 60% are new to being cached. For in-
stance, 61% of contents were uncached in the Play-along case, and 82% in the
Chile case [21]. This implies usual Web caches may not provide the desired level
of protection. Most cache proxies on the Internet will not have the requested con-
tents at the beginning of a flash crowd. Therefore, most requests would miss in
the caches, and be forwarded to the origin server. Although subsequent requests
would be served from the caches, a large number of initial cache misses will be
generated to the origin server within a short period of time.

6. The number of clients in a flash crowd is commensurate with the request rate.
This feature can be used to rule out malicious requests. During a flash crowd,
spikes in requested volumes correspond closely with spikes in the number of
clients accessing the site. The increase in traffic volume occurs largely because
of the increase in the number of clients, and most requests come from a large
number of client clusters. However, because a server usually slows down during
a flash crowd, per-client request rates are lower than usual. This indicates that
legitimate clients are responsible for the performance of a server.

While studying the behavior of flash crowds, we need to identify and distinguish
related but distinct phenomena, DoS attacks. A DoS attack is “an explicit attempt
by attackers to prevent legitimate users of a service from using that server” [12].
It overwhelms a target server with a huge amount of packets in primarily a brute
force manner, so as to saturate the target’s connection bandwidth or deplete the
system resources to subvert the normal operation. Some well-known DoS attacks
include: SYN attack [11], Code Red attack [29], and Password Cracking [18]. Re-
cently, DDoS attacks, which employ a large number of “bots” emitting requests to
the target, have also been frequently reported [22].

DoS attacks share several characteristics with flash crowds. They both overload
a server’s Internet connection and result in partial or complete failure. However,
the server should ignore DoS attacks during flash crowd protection, and handle le-
gitimate requests only. There are some ways to distinguish DoS attacks from flash
crowds [21] : (1) Client distribution across ISPs and networks does not follow popu-
lation distribution; (2) Cluster overlap which a site sees before and during the attack
is very small; (3) Per-client request rate is stable during the attack and deviates sig-
nificantly from normal; and (4) The distribution of files (which may not even exist
on the server) targeted by attackers is unlikely to be Zipf-like.

By exploiting these differences, a server may take a strategy for distinguishing
DoS attacks from flash crowds, and discard these malicious requests as early as

280 N. Yoshida

possible. It may monitor clients that access the site and their request rates, and per-
form some checks on the content of packets, HTTP headers, and arrival rates.

More details and implementations on how to distinguish malicious requests from
legitimate ones are beyond the scope here, as exclusive coverage of works in this
respect can be found in literature [21, 22, 35]. This chapter assumes that servers have
already ruled out malicious requests of DoS attacks by using some mechanisms.

11.2.2 Possible Solutions

Solutions proposed so far for addressing flash crowds are classified into three cate-
gories according to the typical architecture of networks: server-layer, intermediate-
layer and client-layer solutions. Figure 11.2 shows their schematic overviews.

(a) Server Layer (b) Intermediate-Layer (c) Client-Layer

Fig. 11.2 Three solutions

11.2.2.1 Server-Layer Solutions

As mentioned above, traditional over-provisioning and use of static CDN [3, 25, 43]
on the server-side are straightforward but costly approaches. They are inefficient
and difficult to deal with short-term Internet congestion. Due to the unpredictability
of flash crowds, any imperfectly provisioned system is likely to fail under sustained
overload conditions.

CDN with Dynamic Delegation J. Jung, et al. [21] proposed an adaptive CDN us-
ing dynamic delegation to improve the protection of origin servers under heavy load
conditions. They organize surrogate servers into groups, with one surrogate within
a group selected to be the primary surrogate. Usually, a DNS server for the CDN

11 Dynamic CDN Against Flash Crowds 281

assigns client requests only to primary surrogates. When the load on the primary
surrogate reaches a alarming level, the primary surrogates asks DNS to reassign re-
quests to other members in the group called delegates. When a delegate receives
a missing request, it forwards the request not to the origin server but to the del-
egate’s primary. This mechanism is called “dynamic delegation”. When delegates
are engaged, the system behaves like cooperative caching.

Dynamic delegation takes 60% uncached objects into consideration at the begin-
ning of flash crowds, as mentioned above, and improves the efficiency of the system.
It pulls the popular objects from the origin server, and absorbs the cache-miss re-
quests by hierarchical caching. However, the surrogate groups with primaries should
be configured manually and permanently even during peaceful periods.

DotSlash DotSlash [50] allows different Web sites to form a mutual-aid community
and to use spare capacity within the community so as to relieve flash crowds experi-
enced by any individual site. As a rescue system, DotSlash continuously monitors the
workload at each Web server; when a server becomes heavily loaded, rescue services
are activated, and once the server’s load returns to normal, the rescue services cease.
As a result, a Web site has a dynamic server set which includes a single or a cluster of
fixed origin servers, and a changing set of rescue servers.

Different from most other systems mentioned here and in 11.2.2.2, which use
permanent and fixed resources, DotSlash triggers its rescue system on a temporary
mutual-aid community. However, DotSlash needs clients to connect with the origin
server first, and then issues a redirected URI containing the virtual host name for
DNS redirection. Consequently, there is a risk that the bandwidth and processing
needed to send the redirection messages may itself overwhelm the origin server.

11.2.2.2 Intermediate-Layer Solutions

There have been some intermediate-layer solution proposals for dealing with flash
crowds, which utilize network resources to perform offload. Caching techniques
help to alleviate server load during flash crowds by filtering out repeated requests
from groups of clients which share a proxy cache.

In general, proxies on the Internet are divided into two types: forward proxies and
reverse proxies. Forward proxies are placed near clients and thus far from the server
end. Their typical functionality includes a firewall, and caching of static contents.
They are usually shared by many clients and are reasonably powerful and stable.
However, content providers do not have much control over them. Reverse proxies
are placed near the back-end server farm, and act as agents of application providers.
They serve requests on behalf of the back-end servers. Content providers can fully
control their behavior. However, the scale of reverse proxies only goes as far as a
content provider’s network bandwidth allows [47].

Multi-Level Caching The solution using multi-level caching [4] argues that with
proper replacement algorithms, a caching infrastructure designed to handle normal
Web loads can be enough to handle flash crowds. It studies the effects of using

282 N. Yoshida

different cache replacement algorithms, changing the placement of caches, using
heterogeneous multi-level caching, and partitioning the ID space based on document
size. The work concludes that using GDSF algorithm [5], the replacement policy in
caches results in significant improvements to the client response times, and server
and network loads.

Multi-Level Caching offers promising results for using caching to address flash
crowds for small and static objects. The system needs a dedicated deployment of
hierarchical caching placement, and complete control over the infrastructure of for-
ward cache proxies. The system does not address the problem of 60% uncached
objects, and thus it may not provide the desired level of protection to the origin
server at the initial stage. In addition, it currently lacks an adaptive mechanism for
handling flash crowds flexibly.

BackSlash Backslash [44] uses content-addressable P2P overlays based on dis-
tributed hash tables (DHTs) to build distributed Web server systems. It places copies
of contents on mirror servers which are specified by content providers. DHTs pro-
vide bases for the self-organization of participants, for routing requests, and for load
balancing.

BackSlash uses Web servers and proxies to offload the network traffic. However,
in BackSlash, the contents on mirror servers must be pre-placed and well-organized
in advance, which incurs operation complexity and restricted extensibility of the
system.

CoralCDN CoralCDN [17] leverages the aggregate bandwidth of volunteers to
absorb and dissipate most of the traffic for Web sites using the system. As we have
seen in Chap. 1, CoralCDN exploits overlay routing techniques on top of a key/value
indexing infrastructure: a P2P distributed sloppy hash table, or DSHT, which allows
nodes to locate nearby cached copies of Web objects without querying more distant
nodes and which prevents hot spots in the infrastructure, even under degenerate loads.
We also know that to use CoralCDN, a content publisher or someone posting a link to
a high-traffic portal simply appends “.nyud.net:8090” to the hostname in a URL.

Coral uses volunteers’ additional capacities to absorb the overwhelming traffic. It
combines a set of P2P-based reverse proxies to create cache objects on demand, and
adopts DNS to redirect client requests transparently. CoralCDN is always waiting
for the incoming requests, whose URL needs to be manually configured by append-
ing “.nyud.net:8090” in advance. With a modified URL, CoralCDN is capable of
object-oriented redirection, however, it sacrifices user unawareness of the system.

11.2.2.3 Client-Layer Solutions

Client-side solutions make clients help each other in sharing objects so as to dis-
tribute the load burden from a centralized server. An origin Web server can me-
diate client cooperation by redirecting a client to another client that has recently
downloaded the objects, as in Squirrel [28], Pseudoserving [23] and CoopNet [32].
Clients can also form P2P overlay networks and use search mechanisms to locate re-

11 Dynamic CDN Against Flash Crowds 283

sources. For example, PROOFS [45] employs randomization to build client side P2P
overlay networks, and BitTorrent [9] breaks large files into small parts for efficient
retrieval. In general, these solutions rely on the client-side cooperation. They must
be deployed on users’ desktop PCs, which are thus likely to prevent their widespread
deployment.

CoopNet Cooperative networking [32] is a P2P caching solution that complements
traditional client-server and client-Web proxy communication rather than replacing
it. It has previously-registered clients who have already downloaded content, and
they in turn serve the content to other clients. CoopNet uses HTTP-based redirection
to route requests, and to select peers according to their nearby location.

In CoopNet, P2P communication kicks in during flash crowds to share the load,
and gets out of the way when the C/S communication works fine. CoopNet uses a
server-based redirection, which has the risk of a “single point of failure”.

PROOFS PROOFS [39, 45] is comprised of two protocols. The first forms and
maintains a network overlay. The second performs a series of randomized, scoped
searches for objects atop the overlay formed by the first protocol. Nodes continually
perform what is called a “shuffle operation”. The shuffle is an exchange of a subset
of neighbors between a pair of clients, and can be initiated by any client. Shuffling
is used to produce an overlay that is “well-mixed”, in that a client’s neighbors are
essentially drawn at random from the set of all clients that participate in the over-
lay. Once a random state is reached, scoped searches for objects can be performed
atop the overlay. Objects are located by randomly visiting sets of neighbors until a
node is reached that contains the object. Through combination of theoretical results
and simulation, PROOFS claims to be robust for the overlay partitioning, for peer
dynamic joining/leaving, and for limiting participation in the system.

PROOFS uses an unstructured first generation P2P system, and thus requires a
lower preparation cost, and it offers good performance under the condition of flash
crowds. A significant amount of attention has been paid to second generation P2P
architectures such as CAN [36], CHORD [46], and Pastry [38], in which participants
have a sense of direction as to where to forward requests. They provide benefit over
their first generation counterparts in terms of the amounts of network bandwidth
utilized and the time taken to locate those documents. However, to be able to han-
dle documents whose popularity suddenly spikes without inundating those nodes
responsible for serving these documents, the first generation architectures (which
are simpler and more lightweight) are preferable.

11.2.2.4 Other Works

Grid technologies allow “coordinated resource sharing and problem solving in dy-
namic, multi-institutional organizations” [16], with a focus on large-scale com-
putational problems and complex applications that involve many participants and
different types of activities and interactions. Internet data centers host multiple Web
applications on shared hardware resources. A. Chandra, et al. suggest reacting to

284 N. Yoshida

changing application loads by reallocating resources to overloaded applications,
borrowing these resources from other under-utilized applications if necessary [13].

As a last resort, a Web site can use admission control [14, 15, 49] to prevent
itself from being overloaded, by rejecting a fraction of the client requests and only
admitting preferred clients.

11.3 FCAN: Flash Crowds Alleviation Network

FCAN [7, 33] is an intermediate-layer solution, using a CDN-like wide-area overlay
network of caching proxies which stores objects, and delivers them to clients, like
the surrogate servers in a CDN. Considering the short duration and unpredictability
of flash crowds, FCAN invokes the overlay only when a server is overwhelmed
by a large amount of requests, and reorganizes the overlay when necessary. This
dynamicity is the most prominent characteristic of FCAN compared to most of the
above-mentioned related works. The only exception is DotSlash, however, it lacks
an adaptive reorganization feature.

FCAN aims at complementing an existing Web server infrastructure to handle
short-term load spikes effectively, but it is not intended to support a request load
that is constantly higher than the planned capacity of a Web site. It targets small
Web sites, although large Web sites can also gain some benefit from it.

11.3.1 Requirements

Below are the functional and nonfunctional requirements which we analyzed in or-
der to make FCAN flexible, reliable, and cost-effective.

Object Delivery First and foremost is the timely delivery of content objects. FCAN
should maintain high availability of the delivery service at all times. Moreover, ac-
cessibility to non-flash-crowd objects on the same target server should also be en-
sured.

Workload Control FCAN should monitor changes in the increasing load and
control it so that the server does not become overwhelmed. At the same time, when
flooded requests are offloaded to the temporary surrogates, FCAN should also have
a workload monitor on each surrogate to detect the leaving of flash crowds, and to
control the redirected requests so as not to overload the surrogate.

Adaptive Transition FCAN should be sensitive to the load increase and transit
its architecture in a flexible fashion in order to obtain optimum performance output.
The duration time should be short to take the transition into effect. Both the detection
and transition should be conducted automatically.

Request Redirection There should be a mechanism to direct the flooded requests
by finding temporary surrogates. Moreover, the most appropriate surrogate should

11 Dynamic CDN Against Flash Crowds 285

be selected. It would be ideal if the redirection being carried out is uniformly bal-
anced.

Client Transparency FCAN will be more acceptable if clients could remain un-
changed. It is better for the clients to remain completely unaware of the existence of
FCAN.

Scalability Because Internet-based infrastructures have the potential to reach the
entire world-wide Internet community, FCAN requires the capability to expand its
infrastructure easily, with minimal effort and disruption.

11.3.2 Design Overview

In peaceful times, the conventional C/S architecture satisfies most of the client re-
quests. A member server and member cache proxies, both of which comprise FCAN,
do little more than what normal ones do. When a flash crowd comes, the member
server detects the increase in traffic load. It triggers a subset of the member proxies
to form an overlay, through which all requests are conducted. All subsequent client
requests are routed to this overlay by DNS-based redirection. If the subset of prox-
ies is not large enough to handle the amount of requests, new proxies are invited,
and the overlay is enlarged. When the flash crowd declines, some proxies leave, so
that the overlay shrinks and is eventually released. Figure 11.3 gives an overview of
FCAN at three different states, namely, usual, initial, and enlarged state.

FCAN is not dedicated to a single member server. It is designed to be shared
by several servers in need, even at the same time. Each member server uses its
own overlay, small or large, and servers try mutually to prevent their overlays from
overlapping as much as possible.

(a) Usual State (b) Initial Sate (c) Enlarged state

Fig. 11.3 FCAN overview

286 N. Yoshida

Each member proxy is primarily a regular forward cache proxy during its normal
mode, however it acts as a surrogate, somewhat similar to a reverse cache proxy,
serving requests from any user during the anti-flash-crowd mode. In reality, a mem-
ber proxy serves for several servers, and it is possible that any one server suffers
from flash crowds while the others do not. Therefore, each member proxy has the
functionality of mixed-mode operations for the forward proxy mode and the surro-
gate (similar to reverse proxy) mode.

11.3.3 Flash Crowd Detection

As different resources such as network bandwidth, CPU and memory at a server
may potentially become the bottleneck during a flash crowd, separate workload met-
rics should ideally be used for different resources. Each member server should do
monitoring and overload/underload detection, and perform dynamic transition ac-
cordingly. The current design uses only the access arrival rate as the load metric,
and uses a threshold-based scheme to trigger dynamic transition.

To detect the coming of a flash crowd, a server observes the volume of its load
periodically. Once the server load exceeds the predefined threshold, Thigh, the server
treats it as the coming of a flash crowd.

During the flash crowd, each proxy involved in the overlay has a load monitor,
which observes the number of client accesses, and the member server collects the
load information from all the involved proxies periodically. When the load on the
overlay of proxies decreases under a predefined threshold, Tlow (< Thigh), the mem-
ber server treats it as the ending of the flash crowd.

11.3.4 Network Transition

When the member server detects the beginning of a flash crowd, it carries out the
following procedure, in order to make some member cache proxies transit into the
anti-flash-crowd mode in order to form a temporary overlay.

1. Selects a subset of proxies to form a CDN-like overlay of surrogates;
2. Triggers an update of DNS records to change the look-up entries of the Web site

from the server’s address to those of the proxies, so that subsequent requests are
gradually redirected to the proxies along with DNS propagation;

3. Disseminates (“pushes”) the flash-crowd object to the selected proxies, because
more than 60% of the flash-crowd objects are uncached prior to the arrival of the
flash crowd, as mentioned above;

4. Prepares to collect and evaluate statistics for the object from the involved proxies,
so as to determine dynamic reorganization and release of the overlay;

Every member cache proxy carries out the following procedure upon request
from the member server:

11 Dynamic CDN Against Flash Crowds 287

1. Changes its mode from a proxy to a surrogate (or, in the strict sense, a mixed
mode of a forward proxy and a surrogate, as mentioned above);

2. Stores flash-crowd objects permanently, which should not expire until the flash
crowd is over;

3. Begins monitoring the statistics of request rate and load, and reporting them to
the server periodically,

The server selects the subset of proxies by probing them one by one first, because
any proxy may already be involved in another flash crowd alleviation, or it may be
overloaded due to some other reason. This prevents overlapping of more than one
subsets for independent flash crowds. The subset can be small, even consisting of
only one proxy, because FCAN has the feature of dynamic reorganization, as men-
tioned below. The current design expects network administrators to assign priorities
to proxies for probing orders.

When the member server detects the leaving of the flash crowd, the involved
proxies are dismissed one by one, in the reverse order of probing, with the following
procedure:

1. The server updates the DNS records;
2. The server notifies the proxy to be dismissed;
3. The proxy changes its mode from a surrogate to a proxy.

The CDN-like overlay transits back to the normal C/S mode when all the prox-
ies are dismissed. They are not all dismissed at once, since low load may be just
temporary, and the system should therefore remain in the anti-flash-crowd mode.

11.3.5 Dynamic Reorganization

Every proxy has its local monitor, which observes the request rate and the overall
load on itself. Proxies involved in the overlay, whether initial or additional, send
feedback information to the server periodically, including the request rate for the
flash-crowd object and the overall load on the proxy.

When the request rate on the proxy is close to Thigh, the proxy informs the server
that the request rate is close to critical and increasing. When most of the proxies send
the same information, the server starts inviting more proxies from the pool of other
“free” member proxies which are not yet being involved in any overlay. The server
probes the free proxies one by one to select a new proxy which can become utilized.
Then the server and the new proxy carry out the same procedure as in 11.3.4.

When the load on any proxy is below Tlow and no other proxies are suffering from
a high load, the system dismisses them. The selection is done in the reverse order
of invitation. Since DNS propagation may take a longer time, the change in proxy
mode should be done later. If clients still reach the proxy after the DNS update,
the proxy will act as a normal forward proxy, and retrieve the content from its local
cache, or redirect the request to the member server or any temporary surrogate which
is still involved in the overlay.

288 N. Yoshida

Fig. 11.4 Process flow overview in FCAN

Figure 11.4 overviews the process flows of the server, and the initial and ad-
ditional proxies, including network transition (presented in 11.3.4) and dynamic
reorganization.

11.3.6 DNS-Based Redirection

To protect the server and network from overload, flooded requests must be redi-
rected. In contrast to single site schemes where local load balancers work, this redi-
rection is done within a wide-area environment, inside which the proxies may be
geographically distributed. As mentioned above, we use DNS-based request redi-
rection. DNS is an infrastructure for all the Internet applications including the Web,
it is ubiquitous across the Internet, and it is transparent to clients.

Authoritative DNS of the member server gives out the addresses of the involved
member cache proxies instead of the address of the origin server when a client tries

11 Dynamic CDN Against Flash Crowds 289

to resolve the server name through its local DNS server. The address given to the
client may be any of the proxies under a certain selection policy, possibly in a simple
round-robin manner or preferably in a load-balancing and proximity-based manner.
Redirected requests for flash-crowd objects are conducted by the target proxy [48].

We use a specialized DNS server (or, in the strict sense, a DNS wrapper), called
TENBIN [41, 42], on the server site which allows DNS look-up entries to be mod-
ified dynamically. TENBIN is one of our research products, and has already been
used in practice, for example, in the “Ring Server” [37] and “LIVE! ECLIPSE” [26]
projects. TENBIN also supports policy configuration for selecting an “appropriate”
address. The policy could be based on a load-weighted algorithm, a proximity-based
algorithm, a cache locality-based algorithm, or it could be conducted as simply as
in a round-robin fashion.

Once being modified, the new addresses are propagated through the Internet to
the client side DNS servers. One problem is that DNS caches may delay the prop-
agation, with the result that the requests still continue to go to the origin server.
This can be controlled by setting DNS records with a short expiration time, i.e. zero
Time to Live(TTL). We have amassed much experience on DNS propagation both
from experiments and from the practical use of TENBIN. It requires 10 ∼ 15 min. to
complete worldwide propagation, but this is negligible compared to a typical flash
crowd which may last for several hours or several days [12].

11.3.7 Simulation-Based Evaluations

For preliminary verification and evaluation of FCAN, we built a thread-based simu-
lator of a virtual network with TCP/UDP and application layers. We have run exper-
iments considering several scenarios of flash crowds, and below we present one with
real access logs which were provided from the “LIVE! ECLIPSE” project [26]. On
March 29th, 2006, from 9:00 to 11:30 GMT, the project delivered Web streaming,
from two different server sites, for the solar eclipse that took place in Turkey, Libya,
and Egypt. The two sites were:

• http://www.live-eclipse.org
• http://www.nishoku.jp

While the former was accessed by clients from all over the world, the latter was
accessed mostly by clients in Japan. There was a difference in access patterns for
these two sites, since the expected access rate for the Live-Eclipse site was much
higher than for the Nishoku site. Figure 11.5 shows the log data of the accesses for
these sites for the period during which the eclipse was in process.

When fed to the simulator, these logs for the two sites were scaled down. The log
of Live-Eclipse has been scaled down by 30, and the log for Nishoku by 10. Every
simulation second corresponds to one minute of real time. Our experiment used two
different member servers: one (SVR01) for Live-Eclipse, and the other (SVR02) for
Nishoku. The experiment used ten member cache proxies for alleviation. The pri-
orities (probing order) of the proxies for these member servers were set differently,

290 N. Yoshida

(a) Access to www.live-eclipse.org (b) Access to www.nishoku.jp

Fig. 11.5 Accesses to two eclipse streaming sites

and the initial subsets of proxies were also different between the member servers
according to their priorities and the magnitude of the flash crowd.

Figures 11.6 and 11.7 show the results of the simulation, where Fig. 11.6 shows
the “Live Eclipse” overlay around SVR01, and Fig. 11.7 shows the “Nishoku” over-
lay around SVR02. The left graphs in Figs. 11.6 and 11.7 include average loads of
the proxies, while the right graphs include individual loads.

In the “Live Eclipse” overlay, seven proxies, two initials and five additionals,
were involved, as shown below:

SVR01 Joins at: Leaves at:
CP8 (initial) 63 211
CP3 (initial) 63 211
CP2 65 191
CP5 145 190
CP7 149 189
CP1 155 188
CP9 174 184

For the first 60 sec., the server SVR01 handles the client requests by itself. The
flash crowd to SVR01 starts at around the 60th second, and the server first invites
two proxies to join in the alleviation process. These two and an additional one handle
the load until the next rapid increase starting at around the 150th second. Then four
more proxies are invited one by one. Using all of them, the average load on the
system is kept below the threshold. After the 180th second, the amount of client
requests starts decreasing, and the system dismisses the proxies one by one until
the system is switched back to the C/S mode. The mode change occurs around the
200th second.

In the “Nishoku” overlay, only two proxies, one initial and one additional, are
involved because of the relatively lower load, as presented below:

SVR02 Joins at: Leaves at:
CP0 (initial) 48 189
CP6 49 51

11 Dynamic CDN Against Flash Crowds 291

(a) Server and Average of Proxies (b) Server and Individual Proxies

Fig. 11.6 Load alleviation in “Live Eclipse” overlay

(a) Server and Average of Proxies (b) Server and Individual Proxies

Fig. 11.7 Load alleviation in “Nishoku” overlay

The flash crowd to SVR02 starts at around the 50th second. At this moment, the
highest peak of client requests is reached. CP0 is initially involved in the overlay,
then immediately CP6 is invited, but only for 2 sec.

11.3.8 Concluding Remarks

The most prominent characteristics of FCAN are its dynamic and adaptive organiza-
tion and reorganization features of the CDN-like overlay, which, as far as we know,
cannot be found in any other related works. Here, we presented here that these unique
features of FCAN are effective. The intermediate-layer solution using cache proxies
in FCAN is, compared to the client-layer solutions, easier to manage and control.
Moreover, compared to the server-layer solutions, it is more flexible and closer to
clients.

The current design is the first version, and it still has some features which need to
be improved. Threshold-based flash crowd detection should be more sophisticated,

292 N. Yoshida

and this will be discussed later. Priority-based proxy grouping is now being replaced
by an autonomous decentralized clustering scheme.

Another issue is the coarse granularity of redirection. A flash crowd is object-
oriented, while DNS-based redirection is machine-oriented, since DNS deals only
with machine names. It would be preferable to direct only the requests for flash-crowd
objects to the proxy overlay and to pass other requests for the non-flash-crowd objects
through, as usual. HTTP-based redirection and URL rewriting techniques offer fine-
grained object-oriented redirection, however, they are not transparent to clients.

Quantitative and rigorous evaluations of FCAN are not included in the prelimi-
nary simulations so far. Real implementation on the Internet will be consisting of:

• A specialized Web server with a wrapper module for FCAN functions. Its core
could be Apache for example, and the wrapper would intercept requests to the
core server.

• A specialized cache proxy with a wrapper module for FCAN functions. Its core
could be Squid for example, and the wrapper would intercept requests to the core
proxy.

• An enhanced DNS server. TENBIN is a good candidate, which is actually already
used in practice.

FCAN was originally designed for flash crowd protection, but in fact, it is not
only limited to this. It adjusts server load under a predefined threshold facing against
any unexpected traffic surges, and we can thus assume that some kinds of DDoS
attacks could also be handled.

11.4 Visionary Thoughts for Practitioners

Table 11.1 summarizes some significant related research efforts (most of them are
mentioned so far in this chapter) and compares them with FCAN. Our observations
are presented in the following:

1. Over-provisioning based on peak demand or using CDNs to increase server lo-
cations in advance is costly and inefficient.

2. A client-side P2P overlay addresses flash crowds reasonably well, but not per-
fectly, since it loses client transparency and controllability.

3. In addition, some P2P systems have overheads, such as the flooding problem,
which cannot be neglected while facing the ending of flash crowds.

4. Intermediate-layer solutions have advantages over other layer solutions. This is
because the caching technique is promising in its ability to address flash crowds
whose target objects are supposed to be small-sized and static.

5. However, most intermediate-layer solutions neglect the problem that more than
60% of objects are uncached at the beginning of a flash crowd, which results in
the origin server being at risk for a surge of cache misses.

11 Dynamic CDN Against Flash Crowds 293

Table 11.1 Summary of design issues adopted by related systems

Design Issue DD DS ML BS CO CP PF FC

System Archtecture Server-layer
√ √

Proxy-layer
√ √ √ √

Client-layer
√ √

Surrogate Servers Dedicated Servers
√

Existing Servers
√ √

Existing Proxies
√ √ √ √

Existing Clients
√ √ √

Client Transparency Client Unaware
√ √ √

Browser Unchanged
√ √ √ √ √ √

Client Redirection DNS-based
√ √ √ √ √

URL Rewrite
√ √ √ √

HTTP-based
√

Replica Placement Mirror Replica
√ √

Caching on Demand
√ √ √ √ √ √

Object Locating DHT-based P2P
√ √

Unstructured P2P
√ √ √

Cooperative Caching
√

Cache Miss Avoidance Dynamic Delegation
√

Push Service
√

Adaptive Transition Temporary Servers
√

Temporary Proxies
√

Temporary Clients
√

Note. DD: CDN with Dynamic Delegation, ML: Multi-Level Caching, BS: BackSlash, DS: Dot-
Slash, CO: CoralCDN, CP: CoopNet, PF: PROOFS, FC: FCAN.

6. Forward proxies rather than servers are better employed as surrogate servers.
Proxies are nearer to clients, and are thus more beneficial to client response time
and network congestion.

7. To handle flash crowds flexibly and efficiently, an adaptive transition technique
is necessary, which organizes the potential resources along the way, rather than
occupying them all the time.

To sum up, each of the current research works have both merits and demerits.
Through the comparison, we have come to conclude that there is still a lack of
an efficient approach that can handle flash crowds in a flexible, reliable, and cost-
effective manner, while remaining transparent to the end users.

11.5 Future Research Directions

While there are many research problems required to be addressed in the context of
flash crowds alleviation, as future research directions, we focus on two main issues.

294 N. Yoshida

Early Detection of Flash Crowds We have already noticed the phenomenon that
shortly before a flash crowd comes to a server, a number of requests sometimes
floods to DNS servers to resolve the server’s name. This must imply that if we had
a technique for collecting the amount of requests from distributed DNS servers and
for analyzing them, we could possibly predict the coming of a flash crowd, and thus
give an advance warning to the target server.

Handling of Dynamic Objects It must be common to all the CDN systems to
address dynamic object dissemination. Dynamic objects can be divided into two
categories:

• Dynamically generated contents (mostly using script codes and a back-end
database)

• Frequently updated contents (as often found in News sites)

The simplest way would be to replace a dynamic object with its trimmed static
version under a heavily-loaded situation at the cost of its service quality [1].

It must be relatively easy to handle a dynamic object in the former category, if
the back-end database is read-only. If not, or if a dynamic object falls in the latter
category, we must provide a fast and reliable scheme for updating all the replicas
in a consistent manner. This topic, update synchronization and coherence, has been
investigated extensively in the area of distributed databases, distributed caches, and
distributed shared memories. Achievements out of these studies could be applied in
this context.

Finally, some integration among server-layer, intermediate-layer and client-layer
solutions could be interesting and promising.

11.6 Conclusion

Short-term Internet congestion, known as flash crowds, poses new challenges for
designing scalable and efficient distributed server systems. This chapter analyzed
the major characteristics of flash crowds, studied the related research works exten-
sively, and pointed out the need for a dynamic network to handle short-term Internet
congestion. Then we presented our original and unique idea of a dynamic CDN
network which adaptively optimizes its own network architecture between C/S and
CDN configurations to alleviate flash crowds. Our observations suggest that FCAN
could be a good basis for performing early detection of flash crowds, and handling
of dynamic objects. Therefore, we conclude that it could be a pathway to realize
future innovations for handling flash crowds efficiently.

Acknowledgements This chapter is based on joint work with Prof. Toshihiko Shimokawa (Kyushu
Sangyo University, Japan), Dr. Chenyu Pan (China), and Dr. Merdan Atajanov (Turkmenistan). We
also thank Ms. Kate Miller for English proof reading.

11 Dynamic CDN Against Flash Crowds 295

References

1. Abdelzaher TF, Bhatti N (1999) Web Server QoS Management by Adaptive Content Delivery.
In: Computer Networks, 31(11–16):1563–1577

2. Adler S (1999) The Slashdot Effect, an Analysis of Three Internet Publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html

3. Akamai Technologies Inc. http://www.akamai.com
4. Ari I, Hong B, Miller EL, Brandt SA, Long DE (2003) Managing Flash Crowds on the Internet.

In: Proc. 11th IEEE/ACM Int. Symp. on Modeling, Analysis, and Simulation of Comp. and
Telecomm. Sys., 246–249

5. Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T (1999) Evaluating Content Management
Techniques for Web Proxy Caches. In: ACM SIGMETRICS Performance Evaluation Review,
27(4):3–11

6. Arlitt M, Jin T (2000) A Workload Characterization of the 1998 World Cup Web Site. In:
IEEE Network, 14(3):30–37

7. Atajanov M, Shimokawa T, Yoshida N (2007) Autonomic Multi-Server Distribution in Flash
Crowds Alleviation Network. In: Proc. IFIP 3rd Int. Symp. on Network Centric Ubiquitous
Systems (LNCS 4809, Springer), 309–320

8. Barford P, Plonka D (2001) Characteristics of Network Traffic Flow Anomalies. In: Proc.
ACM SIGCOMM Internet Measurement Workshop, 69–73

9. BitTorrent Website. http://www.bittorrent.com/
10. Breslau L, Cue P, Fan L, Phillips G, Shenker S (1999) Web Caching and Zipf-like Distribu-

tions: Evidence and Implications. In: Proc INFOCOM 1999, 126–134
11. CERT (1996) TCP SYN Flooding and IP Spoofing Attacks. Advisory CA-1996-21,

http://www.cert.org/advisories/CA-1996-21.html
12. CERT (1999) Denial of Service Attacks. http://www.cert.org/tech tips/denial of service.html
13. Chandra A, Shenoy P (2003) Effectiveness of Dynamic Resource Allocation for Handling

Internet Flash Crowds. Tech. Report, TR03-37, Dept. of Computer Science, Univ. of Mas-
sachusetts Amherst

14. Chen X, Heidemann J (2002) Flash Crowd Mitigation via an Adaptive Admission Control
Based on Application-Level Measurement. Tech. Report, ISI-TR-557, USC/ISI

15. Cherkasova L, Phaal P (2002) Session-Based Admission Control: A Mechanism for Peak
Load Management of Commercial Web Sites. In: IEEE Trans. on Computers, 51(6):669–685

16. Foster I, Kesselman C, Tuecke S (2001) The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. In: Int. J. of High Performance Computing Applications, 15(3):200–222

17. Freedman MJ, Freudenthal E, Mazieres D (2004) Democratizing Content Publication with
Coral. In: Proc. 1st USENIX/ACM Symp. on Networked Systems Design and Implementation

18. Houle KJ, Weaver GM, Long N, Thomas R (2001) Trends in Denial of Service Attack
Technology. CERT Coordination Center White Paper, http://www.cert.org/archive/pdf/DoS
trends.pdf

19. Iyengar AK, Squillante MS, Zhang L (1999) Analysis and Characterization of Large-Scale
Web Server Access Patterns and Performance. In: World Wide Web, 2(1–2):85–100

20. Joubert P, King R, Neves R, Russinovich M, Tracey J (2001) High-Performance Memory-
Based Web Servers: Kernel and User-Space Performance. In: Proc. USENIX 2001, 175–188

21. Jung J, Krishnamurthy B, Rabinovich M (2002) Flash Crowds and Denial of Service Attacks:
Characterization and Implications for CDNs and Web Sites. In: Proc. 11th Int. World Wide
Web Conf., 252–262

22. Kandula S, Katabi D, Jacob M, Berger A (2005) Botz-4-Sale: Surviving Organized DDoS
Attacks That Mimic Flash Crowds. In: Proc. USENIX 2nd Symp. on Networked Systems
Design and Implementation, 287–300

23. Kong K, Ghosal D (1999) Mitigating Server-Side Congestion in the Internet through Pseu-
doserving. In: IEEE/ACM Trans. on Networking, 7(4):530–544

24. LeFebvre W (2002) CNN.com: Facing a World Crisis. In: USENIX Annual Tech. Conf.,
http://tcsa.org/lisa2001/cnn.txt

296 N. Yoshida

25. LimeLight Networks. http://www.limelightnetworks.com/
26. LIVE! ECLIPSE. http://www.live-eclipse.org/index e.html
27. Lorenz S (2000) Is Your Web Site Ready for the Flash Crowd? In: Sun Server Magazine

2000/11, http://www.westwindcos.com/pdf/sunserver 11900.pdf
28. Lyer S, Rowstron A, Druschel P (200) Squirrel: A Decentralized Peer-to-Peer Web Cache. In:

Proc. 21th ACM Symp. on Principles of Distributed Comp., 213–222
29. Moore D (2001) The Spread of the Code-Red Worm (CRv2). http://www.caida.org/analysis/

security/code-red/coderedv2 analysis.xml
30. Nah F (2004) A Study on Tolerable Waiting Time: How Long Are Web Users Willing to Wait?

In: Behaviour and Information Technology, 23(3):153–163
31. Niven L (1973) Flash Crowd. In: The Flight of the Horse, Ballantine Books, 99–164
32. Padmanabhan VN, Sripanidkulchai K. (2002) The Case for Cooperative Networking. In: Proc.

1st Int. Workshop on Peer-to-Peer Systems, 178–190
33. Pan C, Atajanov M, Hossain MB, Shimokawa T, Yoshida N (2006) FCAN: Flash Crowds

Alleviation Network Using Adaptive P2P Overlay of Cache Proxies. In: IEICE Trans. on
Communications, E89-B(4):1119–1126

34. Pan C (2006) Studies on Adaptive Network for Flash Crowds Alleviation. Ph. D. Thesis,
Saitama University

35. Park K, Lee H (2001) On the Effectiveness of Route-Based Packet Filtering for Dis-
tributed DoS Attack Prevention in Power-Law Internets. In: Proc. ACM SIGCOMM 2001,
15–26

36. Ratnasamy S, Francis P, Handley M, Karp R, Shenker S (2001) A Scalable Content-
Addressable Network. In: Proc. ACM SIGCOMM 2001, 161–172

37. The Ring Server Project. http://ring.aist.go.jp/index.html.en
38. Rowstron A, Druschel P (2001) Storage Management and Caching in PAST, A Large-scale,

Persistent Peer-to-peer Storage Utility. In: Proc. ACM 18th Symp. on Operating Systems Prin-
ciples, 188–201

39. Rubenstein D, Sahu S (2001) An Analysis of a Simple P2P Protocol for Flash Crowd Docu-
ment Retrieval. Tech.Report, EE011109-1, Columbia Univ.

40. Saroiu S (2001) Bottleneck Bandwidths. http://www.cs.washington.edu/homes/tzoompy/
sprobe/webb.htm

41. Shimokawa T, Yoshida N, Ushijima K (2000) Flexible Server Selection Using DNS. In: Proc.
Int.Workshop on Internet 2000, in conjunction with IEEE-CS 20th Int. Conf. on Distributed
Computing Systems, A76–A81

42. Shimokawa T, Yoshida N, Ushijima K (2006) Server Selection Mechanism with Pluggable
Selection Policies. In: Electronics and Communications in Japan, III, 89(8):53–61

43. Sivasubramanian S, Szymaniak M, Pierre G, Steen M (2004) Replication for Web Hosting
Systems. In: ACM Comp. Surveys, 36(3):291–334

44. Stading T, Maniatis P, Baker M (2002) Peer-to-peer Caching Schemes to Address Flash
Crowds. In: Proc. 1st Int. Workshop on Peer-to-Peer Systems, 203–213

45. Stavrou A, Rubenstein D, Sahu S (2004) A Lightweight, Robust P2P System to Handle Flash
Crowds, In: IEEE J. on Selected Areas in Comm., 22(1):6–17

46. Stoica I, Morris R, Karger D, Kaashoek F, Balakrishnan H (2001) Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: Proc. ACM SIGCOMM 2001,
149–160

47. Wang J (1999) A Survey of Web Caching Schemes for the Internet. In: ACM Comp. Comm.
Review, 29(5):36–46

48. Wang L, Pai V, Peterson L (2002) The Effectiveness of Request Redirection on CDN Robust-
ness. In: ACM Operating Systems Review, 36(SI):345–360

49. Welsh M, Culler D (2003) Adaptive Overload Control for Busy Internet Servers. In: Proc.
USENIX Conf. on Internet Technologies and Systems

50. Zao W, Schulzrinne H (2004) DotSlash: A Self-Configuring and Scalable Rescue System for
Handling Web Hotspots Effectively. In: Proc. Int. Workshop on Web Caching and Content
Distribution, 1–18

51. Zona Research, Inc.(1999) The Economic Impacts of Unacceptable Web-Site Download
Speeds. White Paper, http://www.webperf.net/info/wp downloadspeed.pdf

Chapter 12
Collaborative Media Streaming Services
Based on CDNs

Giancarlo Fortino, Carlo Mastroianni, and Wilma Russo

12.1 Introduction

In recent years, Content Delivery Networks (CDNs) have been demonstrated to be
a highly efficient solution to provide media streaming services over the Internet
ranging from TV broadcasts to video on-demand [1]. However, modern multimedia
applications do not just perform retrieval or access operation on content but also
create content, modify and manage content, and actively place content at appropriate
locations to provide new, added-value services [2].

CDNs can be effectively used to support collaborative media streaming services
and in particular, the collaborative playback service [4] which allows an explicitly-
formed group of clients to request, watch, and control a streamed multimedia session
in a shared way.

This chapter introduces a CDN-based architecture supporting the collaborative
playback service which provides significant performance improvements from the
point of view of media streaming delivery and control, with respect to the available
centralized architectures supporting the collaborative playback service [4]. In par-
ticular, this chapter presents the Hierarchical COoperative COntrol Protocol (HCO-
COP) which enables the shared media streaming control in collaborative playback
sessions supported by CDNs. HCOCOP is mapped on the hierarchical control struc-
ture which is formed and supported by the CDN-based architecture when a collabo-
rative playback session is set up. This hierarchical control structure is composed of a
coordination server at the root level, one or more control servers at the intermediate
level, and clients at the leaf level.

HCOCOP is implemented and evaluated through discrete-event simulation and
in particular, the performance evaluation phase, which has involved symmetric and

Giancarlo Fortino
DEIS – Università della Calabria, Rende (CS), Italy, e-mail: g.fortino@unical.it

Carlo Mastroianni
ICAR-CNR (Italian National Research Council), Rende (CS), Italy, e-mail: mastroianni@icar.cnr.it

Wilma Russo
DEIS – Università della Calabria, Rende (CS), Italy, e-mail: russow@si.deis.unical.it

R. Buyya et al. (eds.), Content Delivery Networks, 297
c© Springer-Verlag Berlin Heidelberg 2008

298 G. Fortino et al.

asymmetric topologies of the control structure and three different versions of HCO-
COP (NoCoop, LocalCoop, and GlobalCoop), allows to analyze two significant per-
formance indices (blocking probability and denial probability) which characterize
the protocol performance.

The remainder of this chapter is organized as follows. We start with describing
the architectures for providing collaborative playback services. Then we present an
overview of the academic streaming CDN called COMODIN. We describe HCO-
COP in Sect. 12.4, which is followed by its performance evaluation in Sect. 12.5. In
Sect. 12.6, we describe two application domains enabled by a CDN-based coopera-
tive playback system. Section 12.7 delineates future research directions. Finally, we
conclude the chapter summarizing the main contributions.

12.2 Background and Related Work

The collaborative playback service enables an explicitly-formed synchronous group
of users to select, watch and cooperatively control a remote media playback. Ses-
sions supported by this service are named collaborative playback sessions
(CPSs) [4].

In particular, a CPS includes three tightly correlated sessions:

• Multimedia session: A media playback in the form of a recorded audio/video
presentation (e.g. a seminar), a movie, or a more complex synthetic multimedia
object is synchronously transmitted to all members of the group to allow each
member to watch it.

• Control session: The media playback is controlled by typical commands of a
VCR (e.g. play, pause, seek, etc) that any member of the group can issue to
change the state of the multimedia session.

• Interaction session: Group members can exchange messages among them for
constructing and sharing knowledge on the basis of the content of the media
playback.

An architecture supporting the collaborative playback service requires the fol-
lowing core services for organizing and running CPSs:

• Group formation and management (GFM): The GFM service supports the for-
mation and the management of collaborative groups. In particular, a group is
formed around a media object selection made by the CPS group organizer and
the explicit subscription of invited users.

• Media streaming (MS): The MS service supports the streaming-based delivery of
a selected media object to all the group members.

• Streaming control (SC): The SC service allows the group members to control the
multimedia session supported by the MS service.

• Group interaction (GI): The GI service supports knowledge exchange among the
group members through text-based messaging.

12 Collaborative Media Streaming Services Based on CDNs 299

In particular, the SC service is based on a playback control protocol which al-
lows for sending VCR-like control commands and handling the change of the CPS
state when a control command affects the CPS. To regulate the activity of the group
members in sending control commands the streaming control protocol has to em-
ploy coordination mechanisms. These mechanisms allow deciding which member
of the group has the rights to send a control command (in case of floor-based coor-
dination [3]) or which transmitted control command is accepted (in case of random-
based coordination mechanisms [3]). Floor-based coordination relies on the concept
of floor (or token) which must be explicitly acquired by a group member to send a
control command. Conversely, according to random-based coordination, each group
member can send a control command without requesting the floor so that con-
tentions among control commands, simultaneously transmitted by different group
members, can arise and a decision on which command should be accepted can be
taken.

Moreover, the handling of the CPS state change is a crucial operation as it in-
volves modifying the status of the playback and consistently propagating this mod-
ification to all group members.

In order to describe CPS control and state change handling, the reference Star-
based abstract architecture shown in Fig. 12.1 is used. The components are: (i) the
media streaming and control server (MCS), which incorporates the MS and SC ser-
vices; (ii) the multicast communication channel (MCC) which supports the trans-
mission of media streams and control commands; (iii) the collaborative client (CC)
which interfaces a group member. The playback status of the CPS is managed by
the MCS and changes when a control command is received. The automaton of the
playback status, shown in Fig. 12.2, consists of two states (Playing and Paused) and
related transitions labeled by the control commands (Play, Seek, Pause, Stop). Each

Fig. 12.1 Reference Star-
based abstract architecture

MCS

MCC

CC1 CC2 CCN

Media

Control

300 G. Fortino et al.

Fig. 12.2 Automaton of the
CPS playback status

Playing
play

Paused
pause

play

seek

seek stop

CC also contains an image of such automaton which must be kept updated con-
sistently with the automaton of the MCS. Thus, when the MCS changes the play-
back status automaton, it sends an update message to all the clients so that they can
change their automaton accordingly. During this update the MCS will not consider
any other incoming control command.

To exemplify the interaction among MCS and CCs we use the time sequence di-
agrams shown in Fig. 12.3, in which we assume that the coordination mechanism is
random-based. In particular, three scenarios are considered: (a) without contention,
in which only CC1 issues a control command; (b) without contention and with com-
mand discard, in which CC1 issues command1 and CC2 issues command2 which
arrives after command1; and (c) with contention, in which CC1 and CC2 issue a
control command quasi-simultaneously. In case (a), CC1 issues a control command
and the MCS, after receiving the command, processes it, changes the playback sta-
tus, and transmits the update message to all CCs. In case (b), the MCS during the
control command processing and the CPS state update, rejects any other control
command. In case (c), CC1 and CC2 issue two control commands which arrive at
the MCS at the same time. The MCS must take a decision about which control com-
mand to accept so that it can discard the rest. Afterwards, the MCS behaves in the
same manner as in case (a).

To date few systems have been designed and implemented to provide CPSs. Their
architecture can be classified as Star-based architecture (see above) or CDN-based
architecture.

The MBone VCR on Demand [9], the MASH Rover [13] and the ViCROC [4]
systems rely on a Star-based architecture in which a single centralized server pro-
vides group organization, IP-multicast-based media streaming delivery, and stream-
ing control. In particular, the media streaming delivery is based on IP-multicast for
all systems. The media streaming control is based on IP-unicast for the MBone VCR
on-Demand system, whereas IP-multicast is used for the other two systems. The
streaming control protocols integrated in these systems use a random-based coordi-
nation mechanism, which resolves contentions by accepting the first incoming con-
trol command and discarding the others. The aforementioned systems experience
two main issues: performance bottleneck represented by the centralized server and
unfeasible deployment on the Internet due to the scarce availability of IP-multicast.

Furthermore a more recent streaming control protocol designed for a Star-based
architecture is the COoperative COntrol Protocol (COCOP) [6]. COCOP relies on a

12 Collaborative Media Streaming Services Based on CDNs 301

CC1 MCS CC2 CC1 MCS CC2

command

updateupdate

(a)

command1

updateupdate

(b)

command2

Discard of command2

ΔTproc

ΔTupd

ΔTproc

ΔTupd

ΔTproc

ΔTupd

ΔTproc = Processing time for changing the
playback status

ΔTupd = Update time for changing the CPS state

CC1 MCS CC2

command1

updateupdate

(c)

command2

Contention between
command1 and command2

Fig. 12.3 Time sequence diagrams of the interactions between the MCS and two CCs: (a) no
contention; (b) no contention and command discard; (c) contention

random-based mechanism similar to that of the aforementioned systems but it also
introduces a cooperation mechanism according to which a group member avoids to
send any control command when it senses that another group member has already
issued a control command. It is demonstrated by Fortino et al. [6] that Cooperation
greatly improves performance.

The COMODIN system [7] provides the same functionalities of the Star-based
systems but relies on a CDN-based architecture. This approach not only allows over-
coming the issues of the aforementioned systems but also increases efficiency of the
media streaming control with respect to such systems.

12.3 An Overview of the COMODIN System

In this section we provide a brief overview of the COMODIN system. The archi-
tecture of the COMODIN system is organized into two planes (Fig. 12.4): the Base
plane, which consists of a streaming CDN (SCDN) providing on-demand media
streaming services, and the Collaborative plane, which provides the collaborative
playback service.

302 G. Fortino et al.

Fig. 12.4 The COMODIN
architecture

CCi CPSM

CPCSj CCC

MSSj

Surrogatej

Redirector

Collaborative Plane

CMP

DNS

HCOCOP

CMP
CMP

Origint

Content
Manager

HCOCOP

Base Plane

media content

The Base plane is composed of the following basic network components:

• The Origin, which archives the media objects to be distributed by the CDN.
• The Surrogate, which is a partial replica of the Origin with the additional ability

to temporarily store content and deliver it to clients through the access network
by using the Media Streaming Server (MSS) component.

• The Client, which is a multimedia application requesting specific media content
made available through the CDN.

• The Redirector, which selects the most adequate Surrogate for each different
client request on the basis of a redirection algorithm [10].

• The Content Manager, which coordinates the storage of media content between
Surrogates and Origin servers.

The Collaborative plane consists of the following additional components to pro-
vide the collaborative playback service:

• The Collaborative Playback Session Manager (CPSM), which provides the group
formation and management core service which is based on collaborative play-
back session management protocol (CMP). In particular, the CPSM allows for
the formation, (un)subscription, initiation, joining/leaving, and termination of
collaborative playback sessions (CPSs).

• The Collaborative Playback Control Server (CPCS), which is integrated with the
MSS of the Base plane and supports the remote control of the media streaming
shared among the members of a CPS.

• The CPCS Coordination Channel (CCC), which coordinates distributed CPCSs
serving the same CPS through the coordination channel protocol (CCP).

• The Collaborative Client (CC), which is an enhancement of the Client compo-
nent of the Base plane which interfaces the user with the collaborative playback
service.

A CPS supported by the COMODIN architecture can be set up and run according
to the following phases:

12 Collaborative Media Streaming Services Based on CDNs 303

(1) Organization. An organizer CC connects to CPSM and requests the organiza-
tion of a CPS.

(2) Invitation. The organizer CC invites other CCs to subscribe to the organized
CPS by means of direct messaging.

(3) Subscription. Invited CCs connect to CPSM and subscribe to the CPS.
(4) Initiation. The organizer CC connects to CPSM, requests the initiation of the

CPS, and the message is then redirected to a CPCS.
(5) Join. The CCs become CPS members through subscription and the message are

then redirected to their respective CPCSs.
(6) Execution. The CPS is started by any member who issues the Play control

request. A CPS’s state changes by a sequence of successive control requests
(Pause, Play, Seek). This phase, from the control point of view, is enabled by
HCOCOP which is defined in the next section.

(7) Termination. The CPS can be terminated by its organizer CC by means of a
voting mechanism.

An example CPS scenario featured by the COMODIN system and consisting of a
group of four clients organized into two subgroups (A and B) of two clients attached
to two different CPCSs (CPCS A and CPCS B), is shown in Fig. 12.5.

The numbers (1)–(7) identify the interaction scenarios (or message sequences
exchanged between the active components) carried out in the aforementioned cor-
responding phases:

(1) The client belonging to the subgroup A (CC1
A) organizes a CPS (hereafter

called CPSK).
(2) CC1

A invites three other clients (CC2
A, CC1

B, and CC2
B) to subscribe to CPSK.

(3) CC2
A, CC1

B, and CC2
B subscribe to CPSK.

(4) CC1
A initiates CPSK.

CC1
A

:CPSM

ANNOUNCE

CPSK

CC2
A CC1

B
CC1

A CC2
ACC2

B

INVITE(CP SK)

INVITE(CP SK)

INVITE(CP SK)

(1)

(2)

SUBSCRIBE(CPSK)

SUBSCRIBE(CPSK)

SUBSCRIBE(CPSK)
(3)

INITIATE(CPSK)
INITIATE(CPSK)

INITIATE(CPSK)

INITIATE(CPSK)

(4)

JOIN(CP SK)
JOIN(CP SK)

JOIN(CP SK)
(5)

:CPCS A

CC1
B CC2

B

(6)

:CPCS B:CCC

P LAY
PLAY

PLAY-GRANTED
PLAYED PLAYED

SEEK PAUSESEEK PAUSE
SEEK PAUSE

PAUSE-GRANTED
PAUSED PLAYED

(7)

STOP STOP
STOP

STOP-PROPOSAL
STOP-PROPOSAL STOP-PROPOSAL
STOP-AGREE

STOP-AGREE
STOP-AGREE

ST OP-GRANTED
STOPPED STOPP ED

(a) (b)

Fig. 12.5 A CPS scenario: (a) CPS set-up; (b) a running CPS

304 G. Fortino et al.

(5) CC2
A, CC1

B, and CC2
B join CPSK.

(6) CC1
A starts the media playback. At a given time, CC1

B requests a PAUSE and,
quasi-simultaneously, CC2

A requests a Seek; CC1
B wins the competition be-

cause its command arrives before the other command.
(7) CC1

A triggers a voting procedure to tear down CPSK and CC2
A, CC1

B, and
CC2

B agree.

12.4 HCOCOP

The HCOCOP is an extension of the COCOP protocol [6] for CDN-based architec-
tures. HCOCOP relies on the following characteristics:

• Random-based mechanism for transmitting control commands. A control com-
mand can be sent by any group member when he/she wishes to. The avoidance
of explicit synchronization mechanisms (e.g. floor-based coordination) among
group members increases interactivity even though contentions among issued
control commands can arise.

• FCFS policy for contention resolution. If two or more control commands are
quasi-simultaneously issued by different group members, the control command
which will drive the CPS state change is chosen on the basis of an FCFS policy
and the others are all discarded.

• Cooperation-based mechanism to reduce the transmission rate of likely unsuc-
cessful control commands. A group member avoids to send a control command if
it detects a control command issued by another group member. This mechanism
lowers the number of contentions that can arise.

• Soft state-based management of the CPS state. Once a control command changes
the playback status, the CPS state is updated by messages and timers without
managing hard states.

HCOCOP is mapped onto the hierarchical control architecture of a CPS (here-
after called CPSK) as shown in Fig. 12.6. It also shows where the automata (which
define the protocol behavior) are located. The control structure components are de-
rived from the architectural control components of the COMODIN collaborative
plane when a CPS is executed: CCCK, is the front-end of the CCC component for
the CPSK; CPCSK

i is the front-end of the i-th CPCS for the CPSK; CK,i
x is the x-th

collaborative client of the CPSK served by the i-th CPCS front-end.
HCOCOP basically works as follows: if a client CK,i

x sends a control command
(ClReq), its reference CPCSK

i, before accepting it, forwards such ClReq to CCCK

to resolve possible conflicts which can be generated if clients attached to other
CPCSK

w (with w �=i) send a ClReq quasi-simultaneously. CCCK accepts the first
incoming ClReq, replies to all CPCSs, and discard other client requests for a given
amount of time to regulate client interactivity and avoid session deadlocks. Possible
conflicts generated by clients attached to the same CPCSK

i are instead resolved by
CPCSK

i which adopts the same policy as the policy adopted by the CCCK.

12 Collaborative Media Streaming Services Based on CDNs 305

Fig. 12.6 The CDN-based
control architecture of CPSK

CPCSK
2 CPCSK

m

CK,1
1

CK,1
n1 CK,2

n2 CK,m
1 CK,m

nm
CK,2

1

CPCSK
1

CCCK
CCC Server
Automaton

CPCS Server
Automaton

Client
Automaton

HCOCOP can operate under three cooperation modes:

• Global cooperation (GlobalCoop): the ClReq is forwarded downwards by the
CPCSK

i to all its attached clients and by the CCCK to all CPCSK
w (w�=i) and then

to all the attached clients. Such mechanism allows a client to detect a ClReq sent
by other clients so as to refrain itself to send a ClReq which would be probably
discarded.

• Local cooperation (LocalCoop): the ClReq is only forwarded downwards by the
CPCSK

i to all its attached clients.
• No cooperation (NoCoop): the ClReq is not forwarded to any other client.

The automata defining the HCOCOP behavior are shown in Fig. 12.7. The Client
Automaton (see Fig. 12.7a) of the client CK,i

x generates a client request (ClReq)
when the user issues a control command (UsrReq) and enters into a Ready state.
Then the request is sent to the CPCSK

i, and it enters into the RequestDone state.
This state is also entered when the client CK,i

x in the Ready state senses ClReqs
sent by other clients attached to the same CPCSK

i (if LocalCoop is enabled) and
also by other clients attached to CPCSK

w with w�=i, if GlobalCoop is enabled. In
the RequestDone state (in which the automaton remains until a Reply is received)
additional ClReqs sent by other clients are ignored and the client CK,i

x is disabled
from generating new control requests to limit the session load. It is processed after
a Reply arrives. To control the interactivity degree of the session, new user control
commands are blocked until a given time TCC elapses.

The CPCS Automaton (see Fig. 12.7b) of the CPCSK
i can receive a ClReq while

it is in the Ready state. Reception of a ClReq makes it enter into the Synchro state.
If the ClReq comes from its attached clients, such ClReq (or upward ClReq) is for-
warded to the CCC Server Automaton and, if local or global cooperation is enabled,
it is also forwarded to its other attached clients. If the ClReq comes from the CCC
(i.e. a ClReq originated by clients attached to other CPCS servers), such ClReq
(or downward ClReq) is forwarded to all the attached clients. In Synchro or Ready
states, upon receiving a Reply from the CCC Server Automaton, the CPCS Au-
tomaton processes the Reply and forwards it to all its attached clients. Afterwards

306 G. Fortino et al.

Ready RequestDone

ProcessDone

UsrReq / ac1

ClReq [Lo calCoop OR GlobalCoop]

Reply / ac2

Reply / ac3

Reply / ac2

FTimer

ac1: sendToCPCSServer(ClReq);
ac2: process(Reply); setTimer(FTimer, TCC);
ac3: process(Reply); resetTimer(FTimer, TCC);

Ready Synchro

ProcessDone

ClReq/ ac1

Reply / ac2Reply / ac2

FT imer

ac1:if (ClReq.type IS upward){
 if (LocalCoop OR GlobalCoop)
 forwardToCPCSClients(ClReq);
 forwardToCCCServer(ClReq);
 }
 else forwardToCPCSClients(ClReq);

ac2:process(Reply);
 sendToCPCSClients(Reply);
 setTimer(FTimer, TCPCS);

Ready

SynchroDone

ClReq/ ac1

FTim er

ac1:if (GlobalCoop) forwardToCPCSServers(ClReq);
 process(ClReq);
 sendToCPCSServers(Reply);
 setTimer(FTimer, TCCC);

(a) (b)

(c)

Fig. 12.7 Automata of the HCOCOP protocol: (a) client automaton; (b) CPCS automaton; (c)
CCC server automaton

it enters the ProcessDone state wherein it rests until a given time TCPCS elapses.
Such delay is introduced both to make the clients aware of all changes in the ses-
sion state, thus exploiting a soft-state like paradigm [12], and to regulate the group
interactivity.

The CCC Server Automaton (see Fig. 12.7c), when receives a ClReq sent by
the CPCS Automaton of CPCSK

i in the Ready state, accepts such ClReq and for-
wards it to all the other CPCS automata, if global cooperation is enabled. A Reply
is then sent to all the CPCS automata and the CCC Server Automaton passes into
the SynchroDone state wherein it rests until a given time TCCC elapses. Such delay
is introduced to assure the consistency of HCOCOP.

12.5 Simulation-Based Analysis of HCOCOP

This section is focused on the analysis of the HCOCOP performance in order to
demonstrate the major benefits provided by the cooperation approach in a CDN-
based architecture. In this regard, an object-oriented discrete event simulation
framework [6] is exploited to implement HCOCOP and evaluate its performance in
CDN-based architectures having different numbers of clients and different topolo-
gies. The HCOCOP performance is also compared to the performance of non-
cooperative and cooperative protocols in a Star-based architecture to show that the

12 Collaborative Media Streaming Services Based on CDNs 307

use of a CDN can actually improve streaming control efficiency with respect to
Star-based architectures.

12.5.1 Performance Indices

A cooperative playback control protocol must assure the consistency of the coop-
erative playback session (CPS) and, at the same time, must give users the ability
to change the playback status. The definition of the performance indices, that refer
to the relevant features which characterize a cooperative playback control protocol,
takes into account (1) the handling of a user request for issuing a control command
and (2) the handling of an issued control command; in particular, as discussed in
Sect. 12.4:

(1) The Client Automaton enables or disables user requests that can therefore be
forwarded as ClReq or blocked. In the ProcessDone state user requests are
blocked to assure consistency of the CPS whereas in the RequestDone state
user requests are blocked according to the cooperation mechanism to give pri-
ority to other already issued user requests.

(2) A non blocked user request is first forwarded as ClReq by the Client Automa-
ton, to its reference CPCS server and, if accepted, it is then forwarded by this
CPCS server to the CCC server which could accept it or not.

On this basis two performance indices are defined: the blocking probability
(PBLK) and the denial probability (PDEN). The former is defined according to point
(1) as the probability that a user request is blocked by the client process. The lat-
ter is defined according to point (2) since there is probability that a ClReq can be
discarded (or denied) by the CDN. In particular, different denial probabilities are de-
fined: (i) PDEN(CPCS), which is defined as the probability that a ClReq is discarded
by the reference CPCS server; (ii) PDEN(CCC), which is defined as the probabil-
ity that a ClReq is discarded by the CCC server; (iii) PDEN(CDN), which is also
referred as the overall denial probability, is defined as the probability that a client
request is discarded at either the CPCS Server or the CCC Server of the CDN, and
is calculated as PDEN(CPCS)+(1−PDEN(CPCS))PDEN(CCC).

The denial probability should be as low as possible since the server rejection
of a client request is always considered a very unpleasant event for the user who
generated the control command. In fact, although a user is completely aware that
he/she is not always able to control the server, when a request is forwarded to
the network, it is very likely that the user will expect to get his/her request ac-
cepted. The blocking probability should also be acceptably low since it character-
izes the user inability to issue a control request. However, the denial probability is
more critical than the blocking probability since users are generally more tolerant
of the inability to send a control request than the rejection of a forwarded control
request.

308 G. Fortino et al.

12.5.2 The Simulation Parameters

In this section we describe the parameters of the simulation framework and their
setting in order to define a realistic simulation scenario which enables the evaluation
of HCOCOP on CDN-based control architectures (Sect. 12.4).

Firstly, we consider more general aspects such as the duration of each simulation
session and the degree of user activity; then, we focus on those parameters that allow
us to characterize CDN-based control architectures (link delays, processing delays,
and timers) and Star-based architectures used for comparison purposes.

12.5.2.1 General Aspect Parameters

For each simulation run the duration of the simulation session TSESSION is set to
an amount of time that allows for deriving performance values of a pre-determined
statistical relevance (i.e. with at least a 0.95 probability that the statistical error is
below 5%).

The average inter-arrival time between two successive requests issued by the
same user (User Activity) is characterized by the Mean Request Interarrival Time
(MRIT) which is modeled according to a statistical model based on the Gamma
probability distribution function [11]. In particular, User Activity is classified as very
low (MRIT>=15m), low (10m<=MRIT<15m), medium (5m<=MRIT<10m),
high (120s<=MRIT<5m) and very high (MRIT<120s). To enable the complete
evaluation of HCOCOP in sessions with high to very high user activity, the value of
MRIT was varied within the range {10 s, 180 s}.

12.5.2.2 CDN Parameters

The delay between two adjacent nodes (δ) is defined according to the following link
delay model:

δi = Kfδm +N(Kvδm,
√

Kvδm)
Kf +Kv = 1 Kf,Kv ≥ 0

where δm is the mean delay and δi is the instantaneous delay for a given message.
δi is the sum of a fixed part and a variable part, and the values of Kf and Kv are
the relative weighs of the two parts, with Kf set to 0.7. The variable part of δi is
generated by a normal random variable whose mean and variance are set to Kvδm.
The distribution of the normal variable is truncated at −Kfδm in order to assure
that δi cannot assume negative values. The normal distribution is chosen according
to the considerations presented by Gibbon et al. [8]. The parameters of the delay
model are set according to the values measured in a CDN testbed established across
Italy and Spain [7]. In particular, δm is set to 3 ms for the links between a client and
its reference CPCS server, and to 61 ms for the links between a CPCS server and the

12 Collaborative Media Streaming Services Based on CDNs 309

CCC server. For a fair comparison, δm between clients and the server is set to 64 ms
in the considered Star-based architecture.

The server processing delay (TPROC) is the amount of time taken by a CDN server
(CPCS or CCC) or the Star server to serve an accepted request and accordingly
change the state of the CPS. TPROC is set to 200 ms.

The server timers (TCCC, TCPCS, TCC) are used to control the reactivity of servers
(TCCC and TCPCS) and the overall degree of system interactivity. They are both set
to 3.0s, as is the client timer TCC; this setting avoids deadlock situations, as shown
by Fortino et al. [6].

12.5.3 Operational Modes of HCOCOP

In this section the NoCoop, LocalCoop and GlobalCoop operational modes defined
in Sect. 12.4 are analyzed and compared. Moreover, the performances are compared
with those obtainable with a Star-based architecture which exploits the COCOP pro-
tocol [6]. The Star-based architecture employed, hereby referred to as “Star”, is rep-
resentative of existing collaborative playback architectures which have a centralized
nature, as control messages are processed by a single server entity (see Sect. 12.2).
The COCOP protocol also operates in two different modes, cooperative (Coop) and
non-cooperative (NoCoop), and is defined by two automata: the automaton of the
COCOP client process, which is similar to the Client Automaton of HCOCOP (see
Sect. 12.4), and the automaton of the COCOP server process which resembles the
CPCS Automaton of HCOCOP but does not have the Synchro state since there is no
need to synchronize with other servers. Moreover, the control protocols employed
by the Star-based systems (MASH Rover and ViCROC, see Sect. 12.3) are simi-
lar to COCOP operating in the NoCoop mode that can be considered an archety-
pal implementation of those protocols and can be effectively used for comparison
purposes.

12.5.4 Performance Evaluation

The simulation phase aims at evaluating the performance of the HCOCOP protocol
in a simple CDN-based architecture with two subgroups and 12 clients, which is
a quite large number for a cooperative playback session, since such sessions are
mainly intended for small/medium sized groups of users [13].

We first present results achieved in a CDN-based architecture with a symmetric
topology; then, we examine the behavior of HCOCOP in an asymmetric topology
and in an adaptive scenario in which a client is dynamically redirected from one
CPCS server to the other.

310 G. Fortino et al.

12.5.4.1 CDN with Symmetric Topology

A first set of simulations have been carried out in a symmetric CDN with 12 clients
and 2 CPCS servers. Due the symmetry of this topology, 6 clients are assigned to
each CPCS, as shown in Fig. 12.8.

Figure 12.9 shows the denial probability at the CPCS server, PDEN(CPCS).
From the figure the benefits of the cooperation modes are evident. As described in
Sect. 12.4, the LocalCoop mode disables users to issue control commands when the
client process senses a request issued by another client attached to the same CPCS
server. The use of this mode significantly decreases the denial probability with re-
spect to the NoCoop mode. Benefits of cooperation are further enhanced under the
GlobalCoop mode, since clients attached to a given CPCS server are also able to
detect a request issued by clients attached to other CPCS servers.

Figure 12.10 shows that the denial probability at the CCC server, PDEN(CCC),
is not appreciably modified by the cooperation approach. However, due to the
improvement at the local group level, the values of overall denial probability,
PDEN(CDN), are much lower when the global cooperation mode is exploited
(Fig. 12.11). The denial probabilities experienced in the CDN and centralized (or
Star) architectures are also compared in Fig. 12.11. Denial probabilities obtained
in the CDN with LocalCoop and NoCoop modes are comparable with the denial
probabilities achieved in the Star with the corresponding Coop and NoCoop modes.
However, the denial probabilities obtained in the CDN with GlobalCoop are far
lower than all other cases. Therefore, the use of CDN architectures, combined with
cooperation mechanisms, can actually lead to a remarkable improvement in the abil-
ity of a client to control the server.

Even if the denial probability is the main performance index, it is important to
verify if this improvement is obtained at the expense of the blocking probability.
Figure 12.12 shows that the blocking probability is not significantly affected either
by the cooperation mode (no cooperation, local or global cooperation) or by the type
of architecture (Star or CDN).

Fig. 12.8 Symmetric CDN
architecture with 2 subgroups
and 6 clients per subgroup

12 Collaborative Media Streaming Services Based on CDNs 311

Fig. 12.9 Denial probability
at the CPCS servers:
comparison between NoCoop,
LocalCoop and GlobalCoop
operational modes

Fig. 12.10 Denial probability
at the CCC server:
comparison among NoCoop,
LocalCoop and GlobalCoop
operational modes

Fig. 12.11 Overall denial
probability: comparison
between CDN and Star-based
architectures under
cooperative and non
cooperative operational
modes

312 G. Fortino et al.

Fig. 12.12 Blocking proba-
bility: comparison between
CDN and Star-based architec-
tures under cooperative and
non cooperative operational
modes

12.5.4.2 Asymmetric CDN Topologies and Dynamic Client Redirection

A further set of simulation runs have been carried out to investigate the HCOCOP
performance in a CDN architecture in which 12 clients are asymmetrically dis-
tributed among 2 CPCS servers (see Fig. 12.13). In particular, 7 clients are allocated
to one server and 5 to the other. This topology may be obtained starting from the
previously examined symmetric topology, in case that one of the clients is moved
(or “redirected”) from one server to the other.

To better understand this phenomenon, it must be recalled that in a CDN a
request-routing algorithm is employed to route a client request to an appropriate
surrogate, which in our case corresponds to assigning the client to a specific CPCS
server. In case of adaptive request routing [15], the surrogate can be dynamically
changed according to CDN conditions, which in our case is under examination. The
implications of this event are discussed in the following.

Figure 12.14 reports the overall denial probability experienced by the clients
belonging to the two subgroups under cooperative and non cooperative modes.

Fig. 12.13 Asymmetric CDN
architecture with 2 subgroups,
one with 7 clients and the
other with 5 clients

12 Collaborative Media Streaming Services Based on CDNs 313

Fig. 12.14 Overall denial
probability in an asymmetric
CDN architecture:
comparison among NoCoop,
LocalCoop and GlobalCoop
operational modes

Comparison shows that, with NoCoop, no difference in denial probability is found
between the two subgroups. On the other hand, under cooperative modes, LocalCoop
and GlobalCoop, the clients that belong to the most numerous subgroups have more
chances to control the session state. This phenomenon can be considered a benefi-
cial outcome of the cooperation mechanism; indeed the aggregation of clients in the
same subgroup can improve the performance of all the participants of the subgroup.
In particular, this phenomenon can be explained as follows. At the local level, the
cooperative mechanism allows clients to perceive the requests that are generated by
other clients. Therefore, as the number of clients in the same subgroup increases, it
becomes easier to avoid issuing the requests that will be probably discarded at the
local CPCS server. This benefit balances the drawback that comes from the fact that
the level of local concurrency increases with the number of clients. On the other hand,
once a client belonging to the larger subgroup gains the control of the local CPCS
server, it has a higher chance of controlling the CCC server than a client belonging to
the other subgroup. In fact the larger subgroup forwards a higher number of requests
to the CCC server; therefore, these requests undergo a lower level of concurrency at
the upper CDN level than the requests forwarded by the smaller subgroup. According
to this outcome, clients can be profitably redirected to existing subgroups whereas
isolated clients or clients belonging to very small subgroups can be penalized.

Moreover, no remarkable differences have been noticed between the blocking
probabilities experienced by clients of the 2 subgroups.

Figure 12.15 focuses on the effect of the dynamic redirection of one client from
a subgroup to the other, thus passing from a symmetric topology, with 6 clients per
subgroup, to an asymmetric one, with 7 and 5 clients per subgroup. As a confirma-
tion of the results shown in Fig. 12.14, the overall denial probability decreases in
the subgroup to which the client is redirected and increases in the other subgroup,
whereas the denial probability related to the symmetric topology is in the middle.
This can also be seen the other way round: if the initial configuration is the asym-
metric one, the redirection of a client can be performed to achieve a symmetric
topology and this way obtain a better fairness among clients.

314 G. Fortino et al.

Fig. 12.15 Effect of client
redirection on the overall
denial probability:
comparison between a
symmetric CDN architecture
and an asymmetric one
resulting after a client
redirection from one CPCS
server to the other

As opposed to the denial probability, the blocking probability is hardly affected
by client redirection.

In conclusion, the purpose of improving the fairness properties of the CDN ar-
chitecture, with respect to denial probability, can be one of the rationales that drive
the request routing algorithm, along with other usual parameters such as network
proximity, client-server latency, and load of surrogates. The combination of such
parameters is currently investigated with the purpose of defining a routing algo-
rithm that improves not only data delivery, but also the effectiveness of the session
control protocols.

12.6 Visionary Thoughts for Practitioners

The actual development and deployment of CPSs supported by CDN-based archi-
tectures provides the possibility to offer collaborative playback services on the cur-
rent Internet infrastructure. It can also be enabled for several important application
domains ranging from e-Learning to e-Entertainment.

A CDN-based CPS can efficiently support the Collaborative Learning on-
Demand (CLoD) e-Learning paradigm [4], a virtual collaborative learning method
which enables a self-tutored and interactive learning process where a small group of
remotely dislocated students requests, watches, and controls a playback of a lecture
and exchanges questions. CLoD borrows some of the ideas of the Tutored Video In-
struction (TVI) and Distributed Tutored Video Instruction (DTVI) learning method-
ologies and tools [14] in which a small group of students driven by a tutor goes
over a videotape of a lecture. DTVI is a fully virtual version of TVI, in which each
student has a networked computer equipped with audio (microphone and headset)
and video (camera) facilities to communicate within a group. TVI and DTVI have
proven real effectiveness in that the students involved in their experimentation have
been shown to outperform students who physically attended the lectures. The main

12 Collaborative Media Streaming Services Based on CDNs 315

difference between CLoD and DTVI is that CLoD does not assume the presence
of a tutor which guides students to construct knowledge. In fact, while in DTVI
only the tutor has control of the videoconference recorder (VCR), in CLoD each
participant of the playback session uses a shared VCR remote controller in a sort of
group-supervised collective tutoring.

CDN-based CPSs can also feature e-Entertainment applications such as the Vir-
tual Theaters which are distributed virtual environments where people avatars (vir-
tual alter egos of people) meet and plan to cooperatively watch and control a movie
by exchanging comments or chatting with each others.

12.7 Future Research Directions

The CDN-based architecture proposed in this chapter is currently being enhanced
to increase service effectiveness and efficiency. In particular, the defined HCOCOP
currently does not differentiate among control commands; however associating dif-
ferent handling policies to different control commands can result in a more effective
control of a cooperative playback session. A multi-policy playback control proto-
col for Star-based architectures has been proposed by Fortino et al. [5] where the
authors have defined three policies (random-based, token-based and voting-based)
and respectively associated them to the control commands Pause, Play/Seek and
Stop according to their semantics. The handling of the Pause control command re-
quires being highly interactive so that it can be effectively supported by the provided
random-based policy of HCOCOP. The handling of the Play/Seek control com-
mands can be supported by a token-based mechanism which allows the token holder
to issue the control command. Finally, the handling of the Stop control command,
as its acceptance would cause the CPS to be terminated, should be done according
a majority criterion so that a voting-based policy can be effectively exploited.

The COMODIN system provides a best-effort media streaming synchronization
among the group members of a CPS. Currently synchronization mechanisms at the
CDN or at the client site are not offered, which would guarantee a synchronized view
of the multimedia session to all clients of the group. Research efforts are under way
to define a synchronization mechanism driven by the CDN which will provide more
than best effort synchronization of the multimedia playback view without burdening
the clients.

12.8 Conclusions

This chapter has presented a novel CDN-based architecture that supports collabora-
tive media streaming services and allows an explicitly-formed synchronous group of
users to select, watch, and cooperatively control a multimedia session. The control
of the playback session is enabled by HCOCOP whose performance was evaluated

316 G. Fortino et al.

through discrete event simulation. Results have shown that the hierarchical CDN-
based approach is highly efficient, when compared with the usually adopted Start-
based architecture, as denial probability is reduced while blocking probability is not
significantly affected. Another interesting outcome is that in asymmetric topologies
the clients that are assigned to more numerous groups are better served than isolated
clients or clients belonging to very small subgroups. This phenomenon, if combined
with other parameters such as network proximity, client-server latency, and load of
surrogates can be exploited to tune the request routing algorithm, which is one of
the major components of a CDN.

References

1. Cranor, C. D., Green, M., Kalmanek, C., Shur, D., Sibal, S., Sreenan, C. J., Van der Merwe,
J. E. (2001) Enhanced Streaming Services in a Content Distribution Network. IEEE Internet
Computing, 5(4):66–75.

2. Crowcroft, J., Handley, M., Wakeman, I. (1999) Internetworking Multimedia. Morgan Kauf-
mann Pub, San Francisco, USA.

3. Dommel, H. P., Garcia-Luna-Aceves, J. J. (1999) Group Coordination Support for syn-
chronous Internet Collaboration. IEEE Internet Computing, 3(2):74–80.

4. Fortino, G., Nigro, L. (2003) Collaborative Learning on-Demand on the Internet MBone. In:
Ghaoui C (ed) Usability Evaluation of Online Learning Programs. Idea Group Publishing,
Hershey (PA), USA, pp 40–68.

5. Fortino, G., Mastroianni, C., Russo, W. (2004) A Multi-Policy, Cooperative Playback Control
Protocol. In Proc. of the 3rd IEEE Int’l Symposium on Network Computing and Applications
(NCA), Cambridge, MA, USA, pp 297–302.

6. Fortino, G., Mastroianni, C., Russo, W. (2005) Cooperative Control of Multicast-based
Streaming On-Demand Systems. Future Generation Computer Systems, The International
Journal of Grid Computing: Theory, Methods and Applications 21(5):823–839.

7. Fortino, G., Russo, W., Mastroianni, C., Palau, C., Esteve, M. (2007) CDN-supported Collab-
orative Media Streaming Control. IEEE Multimedia, 14(2):60–71.

8. Gibbon, J. F., Little, T. D. C. (1996) Use of Network Delay Estimation for Multimedia Data
Retrieval. IEEE Journal on Selected Areas in Communications, 14(7):1376–1387.

9. Holfelder, W. (1998) Interactive remote recording and playback of multicast videoconfer-
ences. Computer Communications 21(15):1285–1294.

10. Molina, B., Palau C. E., Esteve, M., Alonso, I., Ruiz, V. (2006) On Content Delivery Network
Implementation. Computer Communications, 29(12):2396–2412.

11. Padhye, J., Kurose, J. (1999) Continuous Media Courseware Server: a Study of Client Inter-
actions. IEEE Internet Computing, 3(2):65–72.

12. Raman, S., McCanne, S. (1999) A model, analysis, and protocol framework for soft state-
based communication. ACM SIGCOMM Computer Communication Review, 29(4):15–25.

13. Schuett, A., Raman, S., Chawathe, Y., McCanne, S., Katz, R. (1998) A Soft State Protocol
for Accessing Multimedia Archives. In Proc. of the 8th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV), Cambridge, UK,
pp. 29–39.

14. Sipusic, M. J., Pannoni, R. L., Smith, R.B., Dutra, J., Gibbons, J. F., Sutherland, W.R. (1999)
Virtual collaborative learning: a comparison between face-to-face Tutored Video Instruction
(TVI) and Distributed Tutored Video Instruction (DTVI). (Technical Report N. SMLI TR-99-
72 by Sun Microsystems Laboratories, Palo Alto, CA, USA).

15. Wang, L., Pai, V., Petersen, L., (2002) The effectiveness of request redirection on CDN ro-
bustness. ACM SIGOPS Operating Systems Review, 36:345–360.

Chapter 13
CDN for Live and On-Demand Video
Services over IP

Mirosław Czyrnek, Ewa Kuśmierek, Cezary Mazurek, Maciej Stroiński,
and Jan We.glarz

13.1 Introduction

Nowadays services such as Video-on-Demand and live TV programming available
over broadband IP networks become reality. Users want to have access to high
quality video at any time, wherever they are, on a device that is available at the
moment and in an interactive way. Traditional TV distribution platforms cannot sat-
isfy these requirements. Delivery over broadband IP networks on the other hand,
allows providers to offer value added services with an opportunity for truly inter-
active content access. The main challenge in the design of a large-scale multimedia
delivery system over IP is the aggregate volume of data to be delivered and the high
magnitude of the aggregate transmission rate. Progress in signal processing allows
for high quality signal to be delivered to the end users without imposing exces-
sive bandwidth requirements. 1 Mbps is considered sufficient to obtain a reasonable
quality. However, providing service to thousands of users at the same time poses a
challenge.

Content Delivery Network (CDN) is a solution that has been successfully used
in systems such as World Wide Web. Advantages of CDNs for rich multime-

Mirosław Czyrnek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14, 61-704 Poznan,
Poland, e-mail: majrek@man.poznan.pl

Ewa Kuśmierek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14, 61-704 Poznan,
Poland, e-mail: kusmiere@man.poznan.pl

Cezary Mazurek
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14, 61-704 Poznan,
Poland, e-mail: mazurek@man.poznan.pl

Maciej Stroiński
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14, 61-704 Poznan,
Poland, e-mail: stroins@man.poznan.pl

Jan We.glarz
Poznan Supercomputing and Networking Center, ul. Z. Noskowskiego 12/14, 61-704 Poznan,
Poland, e-mail: weglarz@man.poznan.pl

R. Buyya et al. (eds.), Content Delivery Networks, 317
c© Springer-Verlag Berlin Heidelberg 2008

318 M. Czyrnek et al.

dia accessible over broadband IP networks seem obvious. However, there are
differences between a CDN used for traditional Web content and a CDN designed
specifically for multimedia content. CDNs for Web content typically support only
straightforward delivery of low-quality streams. The multimedia CDNs on the other
hand, aim at delivery of content with quality that can compete with traditional broad-
cast media, and support for sophisticated services [6, 7]. The special consideration
required for delivery of digital video and audio content is due to the specific charac-
teristics of this type of content.

In this chapter, we address the key aspects of the multimedia CDN design based
on the presentation of iTVP, a platform which is built for IP-based delivery of mul-
timedia content on a country-wide scale to a large number of concurrent users. The
platform services include access to live TV programming, video-on-demand and
audio-on-demand, time shifting, Electronic Program Guide (EPG), and Personal
Video Recorder (PVR). Given the intended range of operation and the nature of the
content offered, efficient content delivery is necessary for the successful operation
of the platform. Therefore, CDN is one of its key components.

The key characteristic of our CDN is the hierarchical nature of the system where
replica servers are placed at the higher level and the lower level nodes are located
in the last mile operators’ networks. The entire CDN is divided into autonomous
but cooperating regions. We make use of content replication integrated with content
caching, and take advantage of cooperative replication at the higher CDN level.
Content delivery is performed in a file download mode to lower level nodes and in
streaming mode from lower level nodes to the end users. Such an approach allows
us to adopt a relatively simple traffic model, as compared to models constructed
for a VBR-encoded video, and hence simplifies bandwidth management. We use
central content directory within each region as a solution for content location. CDN
monitoring subsystem provides necessary information to select nodes best suited to
provide services to a given user.

We present iTVP content delivery architecture, its functional structure, and prin-
ciples of operation. We explain the rules of replica server placement, content allo-
cation and distribution, and user request routing. The CDN is characterized in terms
of mechanisms ensuring efficient resource usage, scalability, and reliability. We ad-
dress requirements for resources such as bandwidth and storage, especially impor-
tant for high quality multimedia streaming and examine the resulting user perceived
Quality of Service (QoS).

The chapter is organized as follows. In Sect. 13.2 we present the background in-
formation and the related work on multimedia CDNs. The introduction to iTVP
with the general description of the entire platform is presented in Sect. 13.3.
The following three Sects.: 13.4, 13.5, and 13.6, concentrate on the key aspects
of CDN functionality, i.e. replica server placement, content allocation and distri-
bution, and user request routing. The CDN description is followed by presenta-
tion of operational data collected in the system and illustrating its performance in
Sect. 13.7. We describe the directions of future research in Sect. 13.8 and share our
thoughts on the future of multimedia CDN in Sect. 13.9. We conclude the chapter
in Sect. 13.10.

13 CDN for Live and On-Demand Video Services over IP 319

13.2 Background and Related Work

CDNs for multimedia content differ from traditional CDNs which are mainly used
for delivery of Web objects. Multimedia content has characteristics that are signif-
icantly different from other types of content and the nature of multimedia content
affects a number of design decisions such as CDN topology, number and locations
of replica servers, content allocation and distribution. In this section we present a
brief description of research concentrating on various aspects of multimedia CDN
design and operation. The multimedia features that are relevant in the context of a
CDN can be roughly divided into two groups: characteristics of multimedia con-
tent objects such as typical data volume and encoding techniques, and delivery and
content access modes.

13.2.1 Multimedia Characteristic Influence

We start with the multimedia characteristic’s influence on the CDN total cost com-
putation, more specifically with the influence on the bandwidth related distribution
cost and storage cost. Multimedia objects are usually much larger than Web objects.
The video size depends on a number of parameters such as resolution and type of
encoding, but typically an hour long video size is on the order of several hundred
MBs to several GBs. Furthermore, there is no one target encoding rate which would
be suitable for all users. The higher the rate the better the video quality. Thus, the
rate should be maximized subject to the available bandwidth. Video is typically
encoded in such a way that there are multiple quality versions to choose from, de-
pending on the available bandwidth. Such an approach further increases the video
object size. Consequently, replica servers can no longer store all content accessed
by users. Users may have to obtain various objects from various replica servers, as
opposed to one closest server. Storage must be considered as a resource that is lim-
ited. It becomes an important component of the total cost when formulating replica
server number and placement problems. Furthermore, large objects incur higher de-
livery costs in terms of bandwidth usage. Thus, cost of distribution within CDN, i.e.
from the origin server to replica servers and from one CDN node to another, should
be considered in addition to cost of content delivery from CDN nodes directly to
the end users. Yang et al. [22] analyze the influence of the number of replica servers
on such two-step delivery cost in multimedia CDNs. They concluded that too many
replicas cause the distribution cost within CDN to be shared by fewer users and
hence, the excessive number of servers increases the cost beyond the optimal value.
Therefore, it is important to carefully choose the number of replica servers.

Another feature of multimedia content that is important in the context of CDN is
related to video encoding schemes. Multimedia content does not change frequently
as it is the case for Web pages. Therefore, the problem of cache consistency is
not of great importance. However, since multimedia content delivery has certain
resource requirements, mostly with respect to the available bandwidth in case of

320 M. Czyrnek et al.

content streaming, there may be multiple quality versions of the same content to
be made available through CDN. Specifically, content may be coded in a layered
fashion, giving users an option of receiving as many layers, and as high video qual-
ity, as bandwidth availability allows. The layers are ordered in such a way that each
given layer increases video quality but only when combined with all previous lay-
ers. Therefore, the layers cannot be treated as separate objects. A decision has to be
made on replication of each layer. Su et al. [20] deal with a replication method for
layered multimedia that targets reduction of content access time and storage costs.

13.2.2 Multimedia Delivery and Access Modes Influence

Multimedia content is typically delivered in streaming mode that allows users to
play content concurrently with its reception after only a short delay, as opposed to
content download. Using streaming as a delivery mode has important consequences
for CDN operation. There are a number of techniques that are used to improve scal-
ability of content streaming systems [1, 10, 13, 14, 15, 19]. They are generally based
on multicast transmission mode and take advantage of the server bandwidth usage
reduction when one stream is delivered to a number of users. The use of multicast
techniques, be it at the network or application level, changes the character of the de-
livery cost dependency on the number of replica servers. In a unicast environment,
the total server bandwidth does not dependent on the number of replica servers or
their locations and only on the number of concurrent users, since there is one stream
per user. In a multicast environment, the total server bandwidth usage increases with
the number of replicas since requests are spread over a larger number of servers and
one stream is generally directed to fewer users.

The total network bandwidth is distinguished from the total server bandwidth in
that it accounts not only for the aggregate transmission rate but also for the distance
over which content is transmitted. Then, in the unicast case, the total network band-
width decreases with an increase in the number of replica servers when shortest path
routing is used. In the multicast case network bandwidth also depends on the num-
ber of users receiving each stream. A longer path but shared by a larger number of
users can result in lower network bandwidth usage.

The problem of minimization of the total delivery cost, including the total net-
work and total server bandwidth, under the assumption that multicast streaming is
used for content delivery from replica servers to users, is considered by Alemida
et al. [2, 3] who show that conventional unicast content delivery systems yield costs
much higher than the optimal value. They address the problem of finding an op-
timal number of replicas, replica placement and request routing that result in near
optimal cost in a multicast enabled system. Consideration of the number of replica
servers and their location influence on the total network, and server bandwidth usage
in the system utilizing proxy-assisted periodic broadcast is presented by Kusmierek
et al. [18]. The authors show that server bandwidth usage is minimized with just one
replica server and generally increases as the number of replica servers increases. On

13 CDN for Live and On-Demand Video Services over IP 321

the contrary, network bandwidth requirement decreases with an increase in the num-
ber of replica servers.

Application of scalable streaming techniques has influence not only on the num-
ber of replica servers but affects also content allocation that yields minimal cost.
The problem of content allocation in hierarchical CDNs where mechanisms that ap-
ply multicast, partial delivery, and use out-of-order delivery of movie segments, is
considered by Griwodz [11]. The author determined that the cost-optimal placement
decisions, i.e. decisions that efficiently use multicast, may affect QoS provided to
users by placing popular movies further away from the end users than less popu-
lar ones. Such a negative influence on the QoS can be limited with a modified cost
computation and proper selection of the stream merging mechanism parameters.

The resource usage in multimedia CDNs exhibits variability on various time
scales. Specifically, TV broadcast based on CDNs show diurnal changes since typi-
cally there are fewer users in the morning than in the evening hours. Given the typi-
cal sizes of multimedia objects, the magnitude of changes resulting from variability
in the number of concurrent users is much higher than in the case of Web objects.
Cahill et al. [5, 6] concentrate on dynamically changing resource requirements in
such a system under the assumption that CDN operates over a shared rather than
dedicated private network. Hence, resources used for content delivery can be leased
from service provider and released as needed. Consequently the authors present a
CDN model that does not include start-up costs but is based on the assumption that
the number of replica servers needed for content delivery can change as needed, and
defines dynamically changing storage space and bandwidth requirements.

Finally, multimedia content is often accessed in a non-sequential way, as users
perform VCR-like operations. Such type of content access may influence content al-
location. If it is not possible to replicate the entire content repository at each replica
server site due to storage space limitations, it may be beneficial to store certain video
segments close to the end users. It has been shown that such an approach applied to
video prefixes reduces access delay and limits network status influence on content
playback. Enabling VCR-like operations may require replication of video segments
that are spread over the entire content [12] allowing user to jump to another video
part without long access delay. Such an approach affects content allocation and user
request routing rules.

13.3 iTVP Platform

We describe our approach to multimedia CDN design by presenting iTVP platform.
Before we move on to its CDN related features, we provide a functional and orga-
nizational description of the platform.

iTVP is a multimedia delivery platform that was designed for operation on a
large country-wide scale with the potential of serving selected content to any Inter-
net user. The system is built for delivery of the following services: transmissions
of live TV programming, time shifting of live transmissions, video-on-demand,

322 M. Czyrnek et al.

audio-on-demand, and accompanying services such as Electronic Program Guide
and Personal Video Recorder. The platform is designed to deliver content from mul-
tiple independent content providers and with cooperation of last mile network oper-
ators. Content can be made available in various encoding formats and delivered to a
variety of end devices including PCs, Set-Top-Boxes, and handheld devices.

Content delivery system is one the key components of the platform which in-
cludes also content provider systems, a number of interactive portals serving as
primary access points for the end users and license management system (Fig. 13.1).
Content provider system functions as a CDN origin server and is responsible not
only for storing all contents of a given provider but also for content encoding, de-
scription with metadata, verification, licensing, and publishing. License manage-
ment system is designed to support various licensing scenarios and various payment
methods in cooperation with interactive portals.

Functionally, the iTVP CDN consists of the following subsystems: distribution,
monitoring, management, and reporting subsystem. The distribution subsystem is
responsible for distribution and delivery of multimedia assets. It performs content
caching and live stream relaying as well as resource management and access control.
To work effectively, distribution subsystem uses system nodes parameters gathered
on-line and processed by monitoring subsystem. Thus, the monitoring subsystem
is mainly responsible for delivering up-to-date information about various aspects
of system operation including hardware performance counters, network interface
parameters, application level load, service performance indicators, and nodes avail-
ability. Collecting these parameters enables global system load balancing, failure
detection, and evaluation of system performance. The management subsystems task

Fig. 13.1 iTVP platform components

13 CDN for Live and On-Demand Video Services over IP 323

is to store and provide information about CDN nodes configuration, internal ser-
vices access points, network level configuration, and external services provided by
other platform components such as content provider systems. The reporting subsys-
tem collects real-time monitoring parameters gathered by monitoring subsystem and
stores the events occurring during system operation for system performance anal-
ysis. The iTVP CDN subsystems are distributed and deployed in all system nodes
and cooperate with each other to provide system services.

Organizationally, there are three types of entities involved in the content deliv-
ery. First, there can be a number of independent content providers that constitute the
primary sources of multimedia content. The second entity is the CDN operator that
oversees the system functioning. This role is performed by Poznan Supercomput-
ing and Networking Center which is also an operator of a country-wide all optical
network backbone in Poland, called PIONIER. And third, there are a number of
independent network providers (ISPs) whose participation ensures that their user
access to the platform services.

The iTVP platform prototype has been deployed at the beginning of 2006 [8, 17].
The fully operational phase, in terms of functionality, has been reached at the be-
ginning of 2007. The platform is steadily increasing its programming and service
offer which results in a steady increase in the number of users. Initially the content
repository offered several thousands of content items. This number has increased
by almost an order of magnitude toward the end of 2007. The number of unique IP
addresses to which content is delivered monthly, grew from around a hundred thou-
sand in the first half of 2006 to more than half of a million toward the end of 2007.
Currently, there are two content providers: public national TV (TVP) and public ra-
dio. The programming offer includes live transmissions, which are either conducted
concurrently with or prior to on-air transmissions, or prepared exclusively for the
Internet platform, and on-demand content including archived versions of live trans-
missions. Hence, the content repository is expanding by including newly produced
content. It also will be growing due to digitization of the archival TV programs.

13.4 iTVP CDN Architecture

Typically, the problem of selecting the number and locations of replica servers in
a CDN is solved to minimize the cost of CDN operation reflecting the resource re-
quirements. Another goal to consider is the optimization of user-experienced QoS.
Better QoS requires potentially more resources to be utilized in delivering content,
hence, these are two conflicting goals. In case of multimedia content, QoS is de-
fined differently than for other types of content, and ensuring certain QoS plays a
very important role in multimedia CDN planning. Access time is just one QoS pa-
rameter. Other important factors include the continuity of multimedia playback and
multimedia quality determined by video resolution and audio quality. User may be
willing to wait longer to receive a Web page, but most users will not tolerate video
playback that is interrupted one time after another. Therefore, many iTVP CDN de-

324 M. Czyrnek et al.

sign decisions were made to balance QoS offered to user and the delivery costs, but
under the assumption that certain minimum QoS must be ensured.

13.4.1 Two-Level Hierarchical Design

The first of the CDN design choices we present is the replica server number and
placement problem. Our solution to this problem is determined by a number of
factors. The most important of these factors are the intended range of operation, the
types of content and services to be provided, and the underlying transport network
topology. We now comment on each of these factors.

The iTVP platform was designed to provide services to users on a country-
wide scale. As mentioned in the previous section, selected content is accessible
to any Internet user; however, the content delivery system is designed primarily for
users located within the country. Under this assumption, it is clear that the replica
servers should be placed in the areas of high concentration of the end users, namely
large metropolitan areas, and that the server geographic distribution should match
demographic distribution subject to the topology of the network used for content
delivery.

The character of content offered by iTVP, namely multimedia live and on-
demand content, determines the delivery cost and the storage cost. Transmission of
large multimedia files requires a lot of bandwidth between origin server and replica
servers as well as between the replica servers and the end users. Placing replica
servers close to the users lowers the bandwidth related delivery cost considerably;
however, such an approach increases the number of replicas and consequently in-
crease distribution cost within CDN, as well as the storage cost. Therefore, the dis-
tance between origin servers and replica servers should be such that the total cost is
minimized and well balanced between distribution bandwidth, delivery bandwidth,
and storage costs.

The on-demand content is delivered to users in a streaming mode, unless file
download mode is available for a given content and is selected by a user. Content
streaming reduces access time and storage requirements at the end systems but has
stringent network requirements, such as available bandwidth and delay jitter. Hence,
edge delivery, i.e. delivery by servers placed at the edge of the backbone network,
with suitable QoS is difficult technically and expensive economically. An optimal
way to avoid problems with content streaming is to exclude WAN segments from
the delivery path, i.e. to use servers placed in access (local) networks to stream
content directly to the end users. Such an approach can be implemented with the
cooperation of last mile operators, i.e. ISPs. The incentive for an ISP to participate
in content delivery is to ensure better QoS for its users and to reduce bandwidth cost
for incoming traffic.

The above argument led to a two-level hierarchical architecture of a CDN for
iTVP platform. The components of the CDN architecture shown in Fig. 13.2 are
gradually introduced throughout this section. The upper level nodes are the replica

13 CDN for Live and On-Demand Video Services over IP 325

Fig. 13.2 iTVP CDN architecture

servers, which we refer to as caches, placed at strategic places all over the coun-
try. The lower level nodes, proxy/caches, are located in various ISPs’ networks
and provide services directly to the end users to ensure proper QoS. The intro-
duction of upper level nodes allows us to reduce bandwidth related distribution
costs and the origin server load. Given the two-level architecture, the content is
typically obtained from the content provider repository, i.e. the origin server, trans-
ferred to a cache node, from cache transferred to a proxy/cache and then delivered
to the end users. As we will shortly see, there are also other delivery paths pos-
sible. In order to distinguish various phases of the delivery process, we refer to
content transfer through the CDN all the way to proxy/caches as content distribu-
tion. The last phase of delivery from a proxy/cache to the end user is referred to
as simply content delivery. Consequently, we distinguish distribution and delivery
cost.

Content is delivered to users typically in streaming mode. However, streaming
takes place only for content delivery from proxy/caches to end user, excluding live
transmissions which are streamed along the entire distribution path. Distribution of
on-demand content within CDN to proxy/caches is carried out in a file download
mode. We justify this approach in the next section while describing content alloca-
tion and distribution rules. Consequently, the scalable content streaming techniques
are not utilized and cost dependency on the number of servers determined for uni-
cast distribution model applies. Specifically, network bandwidth related distribution
cost decreases with an increase in the number of replica servers. Server bandwidth
needed for content delivery does not depend on the number of servers. However,
storage cost increases with the number of servers.

326 M. Czyrnek et al.

13.4.2 CDN Node Placement

Metropolitan Area Networks (MANs) are good potential locations for hosting
replica servers due to their connectivity and bandwidth availability. A single replica
site can host a number of caches. They are all seen as a single higher level cache
pool by proxy/caches connected to this replica site and by nodes in other replica
server locations. Hence, from now on we use the term replica server, or Regional
Content Center (RCC) in iTVP terminology, to refer to a replica site that is a
cluster of caches. Placing multiple caches in one replica server location increases
available resources, mainly server bandwidth and storage, and improves service
reliability.

The number of proxy/caches depends on the number of ISPs that cooperate with
the CDN. Each ISP can have a number of proxy/caches depending on the size of
the network (number of potential users). For reliability purposes it is recommended
that there are at least two proxy/caches available regardless of the network size.
Proxy/caches are connected to the nearest, in terms of core network topology, replica
server to minimize distribution costs at this stage.

One replica site and all proxy/caches connected to this replica constitute a re-
gion. The operation of regions is not coordinated by any central entity. Each region
has a regional manager node and a certain degree of autonomy. However, regional
managers are aware of the existence of other regions and cooperate in performing
content distribution tasks. Content can be distributed from one region to another but
only within the higher level of the hierarchy, i.e. between caches. Cooperation be-
tween lower level nodes has justification only for nodes within one ISP’s network.
In addition, proxy/caches obtain content only from the replica server within their
own region.

As the system grows, new sites are added to serve the country regions more ef-
fectively, balance the internal CDN network traffic and increase total caching space.
The location of a new replica server is determined by the network topology, analysis
of the network traffic and CDN operation parameters. Depending on the new replica
server location, some of the proxy/caches may be reallocated to the new region
and new ones may be added. An increase in the number of replica sites decreases
network bandwidth related distribution cost as distance between proxy/caches and
caches decreases. Bandwidth requirements for the origin server does not increase
due to the cooperation among various replica sites. One replica server can obtain
content from another replica instead of the origin server. The locations of the new
replica sites are determined partly by the network topology.

13.4.3 Network Level Configuration

Content distribution is carried over PIONIER [4], which is country-wide Polish all-
optical network based on DWDM technology. PIONIER connects 21 Metropoli-
tan Area Networks (MAN), which are potential sites for hosting replica servers

13 CDN for Live and On-Demand Video Services over IP 327

Fig. 13.3 PIONIER topology

(Fig. 13.3). The set of caches contains nodes connected with Gigabit Ethernet
technology to PIONIER infrastructure with 1 Gbps channels dedicated to CDN traf-
fic. The proxy/caches located in ISPs’ networks are connected to replica servers with
100–400 Mbps dedicated channels. For the internal CDN communication and con-
tent distribution, layer two links are configured, forming a virtual network dedicated
for the CDN traffic. Virtual Local Area Networks (VLANs) enable separation of the
CDN-related traffic from other applications operating in the network, provide better
QoS and high level of security for content distribution, which is very important for
the multimedia industry.

13.5 Content Allocation and Distribution

Performance of a CDN depends not only on the number and location of replica
servers, i.e. CDN configuration, but also on the content allocation. Determination of
how content is stored in a CDN, in how many of available locations, has impact on
the total cost through the storage space component, and on the user perceived qual-
ity. We now explain our CDN design choices for content allocation and distribution,
keeping in mind iTVP CDN topology presented in the previous section.

328 M. Czyrnek et al.

13.5.1 Content Distribution Modes

In iTVP CDN content allocation rules are partly determined by the fact that users
acquire content from one of proxy/caches located within their ISP’s network. Since
only proxy/caches provide content directly to the end users, origin servers as well
as replica servers are not visible, every requested object must be stored by at least
one of these proxy/caches. The rule is that users obtain an entire content from one
node. A switch to another proxy/cache during an ongoing content playback is done
only in a rare case of a node failure. A set of objects stored by proxy/caches within
an ISP’s network is therefore determined mainly by users’ requests as in a standard
caching system. Consequently, the number of content replicas and their location at
the ISP network level within CDN, depends directly on user requests. Typically,
each content is stored at a predefined number of proxy/caches in an ISP’s network.
Currently, this number is set to two nodes.

Content distribution in the iTVP CDN can be characterized as content caching
integrated with content replication. Content is distributed to a proxy/cache in a user-
initiated pull mode in case of a cache miss, i.e. reception of a request for content that
is not available at any proxy/cache within given ISP’s network. In addition, a push
mode can be initiated by a content provider or the CDN operator and is used when
a new content is published and a high popularity is anticipated, or when content
popularity is expected to increase due to a diurnal change in the access pattern.
Distribution in a push mode, or replication, is intended to decrease cache miss ratio
and consequently, reduce content access time. Distribution in a pull mode, adjusts
content availability to match content popularity. Very popular content is stored by
a large number of nodes, while less popular content may be available only at a few
selected proxy/caches. Each proxy/cache uses one storage space for both content
that is cached and content that is replicated. Such a solution to distribution allows
the CDN to take advantage of the combined approach.

Given the character of the content offered in iTVP, proxy/caches cannot store all
contents requested or replicated over a longer period of time. The storage space has
to be managed to ensure high hit ratio and to eliminate cases of service denial due
to lack of storage space. The strategy adopted for cache replacement can be charac-
terized as a modified LRU. The modification takes into account ‘content size’, since
a popular but small object can be preferred for replacement over a less popular but
larger object. Consideration for content size reduces distribution costs in terms of
bandwidth used, which is especially important given large object sizes. The mode of
distribution used for a given content, i.e. caching or replication, is not taken into ac-
count in the content selection for replacement. Since the replacement procedure ties
a lot of system resources, it is performed periodically and it frees storage space up
to a predefined level. Selection of the replacement frequency and the level to which
storage space is freed has significant impact on the CDN performance. Freeing too
much space increases distribution costs and cache miss ratio, freeing not enough
space may result in service denial.

Proxy/caches acquire content from higher level nodes in their region. Content
distributed to a given replica site is stored in at least one cache node. In order to

13 CDN for Live and On-Demand Video Services over IP 329

minimize storage requirements, each content can be stored at only one cache within
a region. This is the strategy currently implemented in iTVP CDN. Having more
than one content replica at a higher level within a region increases service reliability
and server bandwidth available for distribution to proxy/caches, but it also increases
storage cost. Hence, the choice of the number of content replicas stored at caches
is made to balance storage and bandwidth costs. Content is distributed to caches
either from the origin server or from cache in another replica server. CDN regions
cooperate on content distribution in both push and pull mode, thus implement oco-
operative content replication and caching. Such cooperation further reduces origin
servers load and distribution costs. Cooperation between proxy/caches is limited
to a set of nodes within one ISP’s network. There is no incentive for one ISP to
provide content to another ISP’s network. Within one ISP’s network content could
be distributed from one proxy/cache to another proxy/cache but such transmission
would increase proxy/cache load and could impact QoS provided to the end users.
Storage space management at replica server sites is performed in a way similar to
proxy/cache space management except for the fact that the cache replacement pro-
cedure for caches is performed not periodically but when free space is needed.

13.5.2 Content Transmission Modes

On-demand content is distributed in a file mode typically with a speed much higher
than playback rate from the origin server all the way to proxy/caches. Streaming
takes place only for content delivery from a proxy/cache to an end user. Live con-
tent, such as live TV programs, are streamed by content provider’s servers to replica
server and relayed by replica server to other replica servers. Server replicas in each
region relay stream to proxy/caches, which in turn provide stream to the end users.
Hence, live content distribution can be viewed as application layer multicast with
CDN nodes forming an overlay network. File mode distribution for on-demand con-
tent has several advantages. With high transmission speed the entire content is avail-
able sooner for streaming, thus allowing user to perform VCR-like operations. With
streaming taking place only within ISP’s network, the QoS provided to user does
not depend on the network conditions within CDN. The traffic model for file mode
distribution is much simpler than for streaming and greatly simplifies network band-
width management. Two mechanisms are employed to further reduce the content
access time. First, distribution through the CDN hierarchy is done in a cut-through
or pipelined manner, i.e. transmission from an origin server to a replica server (or
between two replica servers) is done in parallel to the transmission between replica
server and proxy/cache. A cut-through distribution limits the influence of the dis-
tribution path length on the time needed for distribution. Second, streaming from
proxy/cache to a user can be performed in so called QuickStart mode, in which video
file is not transmitted sequentially but in a way that allows streaming to start when
the minimum amount of information is available, sometimes long before the entire
file transfer is completed. The QuickStart mode makes the time needed for content

330 M. Czyrnek et al.

distribution from the user’s standpoint, i.e. time needed to start content streaming
practically independent of the content size.

13.5.3 Flash Crowd Handling

One of the important aspects of CDN operation is its ability to handle flash
crowds [16]. Publication of a content that is of interest to a large group of users
can easily cause a sharp rise in the number of user requests received over a short pe-
riod of time and consequently a sharp rise in the number of concurrent users. Such
a situation is common for live transmission of interesting events. Typically, such
transmissions are scheduled in advance and the distribution is performed also in
advance of the event start. If such a sharp rise in the number of requests was not an-
ticipated, then the first few requests cause content distribution to a large percentage
of proxy/caches. The distribution tree rooted in the origin server is quickly estab-
lished. Due to pipelined content transfer and QuickStart mode, content streaming
from proxy/caches can start after a relatively short period of time. The subsequent
user requests are spread over the available proxy/caches, where the content is al-
ready available. Regional managers have high request processing throughput since
all information needed for routing is available locally.

13.6 User Request Routing

User request routing is a CDN function that complements CDN topology and con-
tent allocation decisions. Rules for selecting a node which should provide requested
content to a user, is partly determined by the CDN topology and content availabil-
ity. Typically, there is a set of nodes that provide service to a given user. Multimedia
content again distinguishes itself from other types of content, with respect to the re-
quest routing approach. Given the network requirements of streaming delivery, the
delivery path parameters are one of the most important factors in the node selection
process, next to the server load. These parameters include not only the distance to
be traversed but also the available bandwidth and delay jitter. In this section we list
iTVP CDN node selection criteria and describe the mechanism used for user request
routing.

13.6.1 Node Selection Criteria

Selection of a node to provide service to a given user identified by an IP address
is performed based on several criteria. These criteria include user’s location with
respect to proxy/caches, content availability, and nodes’ load. The strategy is to

13 CDN for Live and On-Demand Video Services over IP 331

create a set of nodes that can provide services to a given user based on the primary
criterion and then narrow this list down to a predefined number of nodes based on
the secondary criteria.

The initial set of nodes that can provide services to a given user is determined
based on the user’s IP address and mapping established between IP subnetworks
and proxy/caches. The mapping reflects user location in some ISP’s network. The
mapping between IP subnetworks and proxy/caches is created based on the list of
ISPs cooperating with the CDN. In addition to proxy/caches placed in various ISPs’
networks, there are also proxy/caches that can potentially provide services to an ar-
bitrary Internet user. These proxy/caches are connected to either the backbone or to
a MAN with 1 Gbps channels. They are referred to as default proxy/caches as op-
posed to dedicated nodes in ISPs’ networks. The default proxy/caches are intended
to provide access to iTVP services to users that are not clients of any ISP associated
with iTVP platform, and to provide access to the content that is not available on any
of the proxy/caches in the ISP’s network of a user. The latter role is to reduce the
access time in case of a cache miss. Recall that a cache miss triggers content dis-
tribution to proxy/caches. If the requested content is available at any of the default
proxy/caches, the user request may be routed to one of them while content distribu-
tion is started to dedicated proxy/caches. Therefore, the set of nodes selected based
on a user’s IP address, typically includes dedicated and default proxy/caches.

Given that there may be, and typically there is, more than one proxy/cache in an
ISP’s network, the next criterion for node selection is the requested content avail-
ability. Such an approach minimizes content access time and reduces distribution
costs. Content availability or content location is determined based on the informa-
tion stored in a content directory maintained in each region. Hence, any content can
be quickly located by a regional directory look-up. Each regional manager main-
tains such a directory and also acts as a directory server for other regions. The price
paid for a quick content look-up is mostly related to directory update overhead.
However, the regional manager supervises operation of all nodes, including content
distribution. Thus, most content location updates are performed as tasks accompany-
ing content distribution and as such impose no communication overhead. Updates
necessary due to content removal from a node resulting from cache replacement
procedure, do not constitute a significant overhead. A central content directory, or a
central manager, usually constitutes a single point of failure, which is considered to
be the most serious drawback of such a solution. In order to ensure reliability, there
is more than one cache in each CDN replica server site, which is capable of taking
over the manager and directory server tasks. Thus, it is ensured that data vital to
managing the region is not lost in a case of the manager failure.

Out of all nodes that can provide services to the user, the nodes where the re-
quested content is available are selected. If there are still more than one node sat-
isfying these criteria, proxy/cache with the smallest load, i.e. the smallest number
of concurrent users, is selected with priority given to dedicated proxy/caches. Given
that static path properties between the end users and each of the proxy/caches lo-
cated in a given ISP’s network can be considered similar; and dynamic properties
depend on the load, the number of concurrent users reflects well both server load

332 M. Czyrnek et al.

and available bandwidth. More precisely, for reliability purposes, the list of nodes
is narrowed down to more than one proxy/caches, typically two, and user receives
two addresses where the requested content can be accessed. If there are no nodes
that have the requested content, including default proxy/caches, a miss occurs and
content distribution is started.

13.6.2 Request Redirection Mechanism

The node selection procedure and user request routing is performed by regional
managers. However, users do not interact with the managers directly. A number
of independent portals ensure access to iTVP services for the end users. A user
request is directed by a portal to a regional manager for further processing, i.e.
for proxy/cache selection. The mapping between IP subnetworks and proxy/caches
translates into mapping between IP subnetworks and CDN regions. Hence, for a
given user’s IP address there is one region that should provide service to this user
and regional manager receiving the request can forward it to an appropriate region.
Since portal acts as a middle man between end user and CDN in obtaining access
to content, the regional manager’s response to the request is sent back through the
portal. It is either a response containing proxy/cache addresses or a ‘wait’ response
in case of cache miss.

13.7 iTVP CDN Performance Evaluation

Based on the data collected by the CDN reporting subsystem we compute a number
of metrics to evaluate the CDN performance and user perceived quality. First, we
describe the system configuration, main content provider repository and the CDN
load observed during the period of time for which data was collected. Next, we eval-
uate distribution cost by examining number of objects distributed between various
CDN levels and the corresponding data volume, the delivery cost given by band-
width usage for lower level nodes, and storage cost given by cache space utilized by
the CDN nodes. CDN performance also is evaluated through user perceived quality
which we measure with request hit ratio.

13.7.1 iTVP CDN Configuration

In the current configuration there are two replica servers operating in Poznan and
in Krakow with a number of proxy/caches located in several cities: Warszawa,
Poznan, Gdansk and Szczecin connected to Poznan region, Krakow, Lodz and
Katowiceconnected toKrakowregion.Theorigin serverwith iTVPcontent repository

13 CDN for Live and On-Demand Video Services over IP 333

Fig. 13.4 Current iTVP CDN configuration

is located in Warszawa and connected to both replica servers as shown in Fig. 13.4.
Cache nodes and default proxy/caches are equipped with cache space of size on the
order of TBs. Dedicated proxy/caches have typically 400 GBs of cache space.

13.7.2 Content Repository Characteristics

Content is encoded with MPEG4-complaint codecs (Windows Media). Most objects
are available in two different quality formats, one encoded for transmission speed
ranging from 28 to 128 kbps destined mostly for handheld devices, and the second
one encoded for speed ranging from 160 kbps to 700 kbps. Selected content is en-
coded for higher speeds with the target value of 1.5 Mbps. The content intended for
downloads is also encoded with the quality corresponding to the speed of 1.5 Mbps.
Each format contains multiple streams for various levels of available bandwidth
within the range defined for a given format (multi-rate CBR). A lower quality for-
mat contains 3 to 4 video streams with rates ranging from 16 to 91 kbps, and 1 to 3
audio streams with rates ranging from 8 to 20 kbps. A higher quality content format
usually contains 4 to 5 video streams with rates ranging from 121 to 563 kbps, and
3 to 4 audio streams with rates ranging from 20 to 128 kbps. Figure 13.5 presents

334 M. Czyrnek et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000 2500 3000

P
(X

<
 =

 x
)

content size (MB)

Fig. 13.5 Content size CDF

content size Cumulative Distribution Fucntion (CDF) for on-demand content. Most
files contain several hundred MBs of data. More precisely, 46% of objects have sizes
larger than 100 MBs.

The number of objects published daily is typically on the order of several tens of
items. There are several news programs that are broadcast several times a day and
the archived versions of these programs are published for on-demand access soon
after their live transmissions. Such content is usually accessed during the following
couple of weeks only, hence, the publication rate of such programs does not affect
the total number of content objects in the provider’s repository that are accessed by
the users.

13.7.3 CDN Load

The load of the multimedia CDN may be characterized by different quantities, e.g.
number of users, user sessions, total and average time of the content playout as well
as volume of data sent to the end users. We define number of users as the number
of unique IP addresses from which requests for content were received. This num-
ber should be interpreted as a lower bound on the actual number of users, however,
we are working on more accurate measures to achieve better resolution of this pa-
rameter. We observe rapid growth of the number of users, exceeding hundreds of
thousands per month, which is proportional to the improvement of services offered.
The number of user sessions is also rapidly growing and is on the order of millions
per month, which means that most users are the returning ones. The total time of
the content playout during one month is on the order of hundreds of playout years,
with the average playout time on the order of tens of minutes per session. Most
iTVP content have considerable playout duration, which is currently rather rare in
the Internet. The volume of data sent to the end users depends mainly on the content
encoding quality and the available bandwidth. Since these parameters are steadily
improving, we count hundreds of TBs of data sent to the end users monthly and this
number is growing.

13 CDN for Live and On-Demand Video Services over IP 335

The load of the CDN is directly influenced by changes in the number of concur-
rent users who play the content. The number of concurrent users varies significantly
over time showing diurnal and weekly patterns. There are several different patterns
depending on the type of content. A different pattern can be observed between TV
and radio content. The peak number of users for TV content is usually reached in
the evening hours, while radio content is accessed mostly in the morning and early
afternoon hours. The differences in access patterns also show that on a weekly scale,
the radio content popularity is the highest on work days. For TV content, popularity
distribution over time is different for weekends than for week days. On weekends
there are more user requests in the early afternoon hours than during week days.
Figure 13.6 presents the number of concurrent users relative to the maximum value
over a period of one week for two types of content and the aggregate number for all
contents. Access patterns also vary on longer time scale. Consequently, the resource
requirements also exhibit variations on different time scales.

Figure 13.6 also shows different characteristics of user request frequency for ra-
dio and TV programs. The radio content is accessed and played rather continuously
compared to the program-dependent access to the TV content. The difference in ac-
cess pattern for each type of content is visible when we compare the user request
distribution with the distribution of data volume transmitted to the end users over
time. Figure 13.7 shows the cumulative volume of data transmitted, relative to the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M T W Th F S Su

all
tv

radio

Fig. 13.6 Number of concurrent users variability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22

re
la

tiv
e

da
ta

 v
ol

um
e

hour

week day
weekend

Fig. 13.7 Cumulative volume of data transmitted over time

336 M. Czyrnek et al.

maximum value for a period of one day. We observe that in the morning hours the
increase in cumulative data volume is much more gradual than later during the day,
since initially most users receive radio content. In the evening hours on the other
hand, most users receive TV content which requires more data to transmit. The
change in the slope occurs earlier on weekends, since the number of users receiving
TV content starts increasing earlier.

13.7.4 Content Distribution Performance

CDN performance is evaluated based on two groups of quantities. The first group
characterizes resource usage related costs and includes distribution bandwidth, de-
livery bandwidth, and storage usage. The second group characterizes user experi-
enced QoS.

We evaluate CDN effectiveness at various levels of hierarchy by comparing data
volume transferred to nodes at a given level with data volume transmitted by these
nodes to the level below. Since data flow takes place not only between adjacent
levels in the CDN hierarchy but also horizontally within the higher level, we first
evaluate the advantage of replica server cooperation by computing the actual ori-
gin server load and the estimated origin server load without replica cooperation.
Figure 13.8 presents the ratio of data volume obtained daily from the origin server
to the total volume of data transferred to both replica servers either from the origin
server or from another replica, i.e. volume of data that would have to be obtained
from the origin server without replica cooperation. The average computed over a pe-
riod of several months is equal to 0.55, showing that data volume transferred from
the origin server and exchanged between replica servers are comparable. Occasion-
ally, the ratio reaches values close to 1 indicating that majority of content were
obtained from the origin server. Typically, these are the cases, when a small number
of less popular objects are obtained from the origin server by one replica, and due
to lack of user interest they are not transferred to another replica. Based on this fact,
we estimate that without replica server cooperation, the origin server load would

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

da
ta

 v
ol

um
e

ra
tio

day

Fig. 13.8 Server replica cooperation influence on the origin server load

13 CDN for Live and On-Demand Video Services over IP 337

be roughly doubled. This number justifies cooperation between replica servers. Fur-
thermore, we conjecture that an increase in the number of replica servers should not
affect the origin server load considerably provided that all replicas are connected in
a full mesh manner and that load within each region is kept at a reasonable level. By
reasonable level we mean that proxy/caches within each ISP’s network are able to
cache all content requested by its users over a period of several hours, i.e. the cache
content is fairly stable over such a period of time. In a system with n replica servers,
the ratio of the origin server load with replica cooperation to the load without replica
cooperation should be roughly 1 to n− 1. The scalability is ensured at the cost of
increased bandwidth usage between replica servers.

Next, we examine data volume transferred to and from replica servers (summed
over all caches in a given replica) on a daily basis. Figure 13.9 presents ratio of data
volume obtained daily by each replica server to the total volume of data transferred
by a given replica server to all proxy/caches in its region. The average computed
over a period of several months is equal to around 0.13 for Poznan replica server
and around 0.12 for Krakow replica. Both values are on the same order, the dif-
ference can be attributed to the slightly higher load observed for Poznan replica.
This in-out volume ratio allows us to estimate the origin server load reduction due
to the existence of the higher level of the CDN hierarchy. If proxy/caches were to
obtain content directly from the origin server, the load experienced by this server
would be roughly 8 times higher. Hence, we can conclude that higher CDN level
nodes are quite efficient in reducing the origin server load. The replica server load
depends linearly on the number of proxy/caches within its region. Thus, an increase
in the number of users in a given region, resulting in an increase in the number of
proxy/caches, may prompt the decision to add another replica server and to split the
existing region.

A similar comparison between the volume of data transferred to a node and the
volume of data transmitted by a node is performed for proxy/caches at the lower
level of the CDN hierarchy. However, in this case we have to take into account
the fact that users often do not watch the entire content. Only part of the content
can be transmitted to a user while the entire content is obtained and stored by the
proxy/cache. Therefore, in addition to the data volume transferred by a proxy/cache

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

da
ta

 v
ol

um
e

ra
tio

day

Poznan
Krakow

Fig. 13.9 Data volume transferred to replica server vs data volume transferred from replica server

338 M. Czyrnek et al.

to its users we also compute a theoretical upper bound by summing up the sizes of
all objects accessed by users regardless of what part is actually played by a user. The
ratio of data volume obtained by a proxy/cache to the volume of data transmitted
to users daily is around 0.04, meaning that proxy/cache transmits roughly 25 times
more data than it obtains. The ratio of data volume obtained by a proxy/caches
to the theoretical upper bound on the data volume transmitted is around ten times
lower. Proxy/cache load depends linearly on the number of users, since content is
delivered in unicast mode to users. We also examine volume of data transmitted
by a proxy/cache in the context of data volume transmitted by the origin server to
the CDN, in order to estimate the origin server load we would observe without a
CDN. It appears that directing users of one proxy/cache only to the origin server
would require the server to transmit as much as 50 times more data than it currently
transmits to replica servers.

In order to evaluate the effectiveness of content caching we also compute the av-
erage number of acquisition per content at various levels of the CDN on various time
scales. A high value of this factor could result from low resource, namely storage
space, availability, or from ineffective storage space management, e.g. content re-
placement strategy. The number of acquisition from the origin server averaged over
a period of several months is 1.02 per content, meaning that vast majority of objects
are obtained from the origin server only once. Similar per content number of acqui-
sitions is obtained for each replica server. For proxy/caches this factor has higher
values, typically around 1.2, when computed over a several months long period of
time. As we decrease the length of time period over which the number of acquisi-
tions is averaged, the value of this factor quickly approaches 1 indicating that even
if a content is acquired from replica server more than once, the transmissions are
usually days or weeks apart. We conclude that the CDN is equipped with sufficient
storage space for the load currently experienced by it, and that the available space
is managed efficiently.

The reduction of the origin server load and the network bandwidth usage we have
shown so far comes at the cost of increased storage space requirements. We evaluate
the storage related costs of the CDN operation by comparing the total volume of data
stored by a node with the total volume of data transmitted by that node over a given
period of time. The storage usage is computed as the aggregate size of all objects
stored by a node over a given period of time. For replica servers the ratio of stored
and transmitted data volume is very similar to the ratio of obtained and transmitted
data volume, since the number of acquisitions per content is only slightly larger
than 1. Thus, we estimate that each replica server transfers roughly 8 times more
data than it stores on a daily basis. The ratio of data volume stored by a proxy/cache
to the volume of data transmitted to users daily is around 0.4. If users were to play
the entire content every time they access this content, the volume of data transmitted
by a proxy/cache could be as many as 8 times higher, resulting in much lower ratio
of volume stored to volume transmitted. These numbers illustrate the gain from the
increased amount of storage space available due to the existence of a number of
CDN nodes organized in a two-level hierarchy.

13 CDN for Live and On-Demand Video Services over IP 339

13.7.5 User Perceived Quality

User perceived QoS is characterized by the hit ratio, i.e. the number of user requests
for which content is available from at least one of the CDN nodes that could pro-
vide services to the users. Hit ratio is directly related to the CDN performance in
terms of content distribution. Quality of content playback has a great impact on user
perceived quality; however, it depends mostly on the properties of the network path
between proxy/cache and user. Playback quality is much more difficult to quantify
in an objective way. Therefore, we concentrate on the content access time to evalu-
ate the effectiveness of the CDN. The access time depends on whether the request is
a hit or a miss. In the former cases the time needed to obtain the response depends
more on the properties of network path between the manager node and the user
than on the CDN efficiency in general and regional manager’s load in particular. In
the latter case that cut-through distribution and QuickStart mode make distribution
time practically independent of the distribution path length and content size, respec-
tively. Hence, we evaluate content access time based on the request classification as
a hit or a miss. This hit ratio is defined at the user level and is typically higher than
hit ratio computed for proxy/caches since user may access content from a default
proxy/cache while the content distribution to a dedicated proxy/cache is started in
response to the request. Typically, the hit ratio observed in the CDN is above 0.9.
We conclude that the vast majority of users experience a very short access delay.

13.8 Future Research Directions

Despite the fact that iTVP CDN is fully operational and utilized on a large scale,
there are several directions in which the future research is planned. Some of them
are directly related to content delivery while others concentrate on the set of services
provided to users and the consequences they will have for the iTVP CDN.

One challenge will be to monitor the system growth and expand the CDN as
needed. The observed resource usage and user perceived quality will be used to
verify decision making process to add new replica servers, choose their locations,
and to split the existing regions. In other words, the challenge will be to monitor
the system and expand it following the rules determined by the system architecture
which was designed to ensure high scalability of the CDN.

Currently content distribution in iTVP CDN is performed mostly in pull mode.
Cache content at each node depends directly on users’ requests and changes in re-
sponse to these requests. The push mode distribution mechanism is used typically
prior to live transmissions or after publication of content with anticipated high pop-
ularity. We plan to investigate the effect of using push mode to complement the pull
mode to a larger degree than it is done currently based on the content access patterns
observed on a variety of time scales. We have shown that the CDN load changes with
time of the day and day of the week. Consequently, resource usage also fluctuates
over these time scales. We plan to utilize unused resources for content distribution

340 M. Czyrnek et al.

to improve user perceived quality, namely schedule distribution of content prior to
its predicted access time during high resource availability.

iTVP CDN was designed to operate as a platform utilized by a number of in-
dependent content providers. We expect that in the future not only the number of
content providers will increase but that an end user will be able to perform both
content consumer and provider roles. Thus, there will be a need for content ex-
change between groups of users potentially on a large scale. These changes will
determine the directions of future research. We plan to investigate whether imple-
menting a hybrid solution, where CDN is combined with P2P, such as proposed by
Dong et al. [9] and Xu et al. [21], would be possible and advantageous (e.g. lo-
cally within an ISP network). However, applying P2P-like distribution mechanism
to multimedia streaming is challenging due to a number of problems; asymmetry of
bandwidth availability for the end users being one of the major ones.

One of the main goals in building iTVP platform is to provide interactive ac-
cess to its users. Interactive services are gradually introduced. Due to their nature,
services such as time shifting of live transmissions or PVR, are provided to users
on individual basis and may have significant influence on the CDN resource usage.
Therefore, we plan to investigate CDN design issues with respect to the interactive
access to the offered content. In addition to new services, we also plan to extend the
set of end devices with which users can access iTVP service. More specifically we
will include various types of handheld devices such as palmtops or cell phones. De-
vices of this type require not only adjusting the content format but also introduce a
new dimension to content distribution, namely user mobility. Consequently, we will
also consider portability that will allow users to switch from one end devices, for
example, from a cell phone display to another higher quality device when available.

13.9 Visionary Thoughts for Practitioners

We believe that the multimedia CDN development will pave the way for network-
aware services, which will be delivered seamlessly to the end users over broadband
IP networks. Many network-demanding applications, to be provided on a large-scale
to the consumers, must be distributed over the network and need careful planning
of the underlying infrastructure to achieve the desired performance and quality pro-
visioning. We foresee that the next step in the multimedia CDNs development will
focus on the change from content delivery to advanced service delivery on a network
level. Such a change will lead to the transparent provisioning of the application ser-
vices as the main goal of the next generation CDNs. The application services will
use the content assets as well as the end user input provided to the CDNs as el-
ements to be processed in dynamic, highly distributed, multi-function workflows,
and as a result will deliver the personalized and interactive multimedia experience.
Such an approach will enable multi-channel delivery and integration of different
multimedia environments and consequently enable next generation multimedia ap-
plications that will profile content accordingly to the end user terminal capabilities.

13 CDN for Live and On-Demand Video Services over IP 341

This development scenario is very challenging in many research areas, e.g. resource
management, content distribution, workflow construction and scheduling, task and
dependency management, service discovery, service monitoring, and network level
integration. We expect the need for such environments to arise in the near future,
driven by the market trends (e.g. HD-quality videos, networked interactive games
or virtual presence/work environments) as well as the end users’ expectations to
have access to services anytime and anywhere.

13.10 Conclusions

In this chapter, we present the iTVP platform built for large scale delivery of live
and on-demand video services over broadband IP networks. A key component of the
iTVP platform is a CDN. Designing a CDN for multimedia content over IP requires
consideration for the characteristics of the content itself and for its delivery mode,
namely content streaming. We have described factors that affect a number of design
decisions and presented the resulting CDN architecture along with the CDN node
placements rules, content allocation, and user request routing mechanisms. Since
iTVP CDN is a real system which has been deployed and functions in the real en-
vironment, we have a rare opportunity to verify our design decisions. We have ana-
lyzed the advantages and the costs of the two level hierarchical architecture. We find
that iTVP CDN is quite effective in reducing the origin server load, in efficient use
of network bandwidth and storage space, and in ensuring short access time to con-
tent for the end users. We have also examined the scalability issues since the iTVP
is a system that is growing very dynamically. As the size of the content provider
repository is expanded and the attractiveness of the programming offer increases,
the platform gains new users. Hence, we keep monitoring the resource usage and
the user experienced QoS. Data collected from the system enables a detailed analy-
sis of the content access patterns that can provide insight into CDN functioning and
allow for more efficient resource usage. We have presented several future research
direction aimed at this goal.

References

1. Aggarwal, C., Wolf, J.L., Yu, P.S.: On optimal batching policies for video-on-demand storage
servers. In: IEEE Conference on Multimedia Systems, pp. 253–258 (1996)

2. Almeida, J.M., Eager, D.L., Ferris, M., Vernon, M.K.: Provisioning content distribution net-
works for streaming media. In: IEEE INFOCOM, Vol. 3, pp. 1746–1755 (2002)

3. Almeida, J.M., Eager, D.L., Vernon, M.K., Wright, S.J.: Minimizing delivery cost in scal-
able streaming content distribution systems. IEEE Transactions on Multimedia 6(2), 356–365
(2004)

4. Binczewski, A., Meyer, N., Nabrzyski, J., Starzak, S., Stroinski, M., Weglarz, J.: First experi-
ences with the Polish Optical Internet. Computer Networks 37(6), 747–760 (2001)

342 M. Czyrnek et al.

5. Cahill, A.J., Sreenan, C.J.: An efficient cdn placement algorithm for the delivery of high-
quality tv content. In: 12th annual ACM international conference on Multimedia, pp. 975–976
(2004)

6. Cahill, A.J., Sreenan, C.J.: An efficient resource management system for a streaming media
distribution network. Interactive Technology and Smart Education 3(1), 31–44 (2006)

7. Cranor, C.D., Green, M., Kalmanek, C., Shur, D., Sibal, S., der Merwe, J.E.V., Sreenan, C.J.:
Enhanced streaming services in a content distribution network. IEEE Internet Computing 5(4),
66–75 (2001)

8. Czyrnek, M., Kusmierek, E., Mazurek, C., Stroinski, M.: Large-scale multimedia content de-
livery over optical networks for interactive TV services. Future Generation Computer Systems
22, 1018–1024 (2006)

9. Dong, Y., Kusmierek, E., Duan, Z., Du, D.H.: A hybrid client-assisted streaming architecture:
Modelling and analysis. In: The 8th IASTED International Conference on Internet Multimedia
Systems and Applications (2004)

10. Gao, L., Zhang, Z.L., Towsley, D.F.: Catching and selective catching: efficient latency reduc-
tion techniques for delivering continuous multimedia streams. In: ACM Multimedia, Vol. 1,
pp. 203–206 (1999)

11. Griwodz, C.: Movie placement in a hierarchical CDN with stream merging mechanisms. In:
N. Venkatasubramanian (ed.) SPIE/ACM Conference on Multimedia Computing and Net-
working (MMCN), pp. 1–15. SPIE (2004)

12. Guo, L., Chen, S., Xiao, Z., Zhang, X.: Disc: Dynamic interleaved segment caching for inter-
active streaming. In: 25th IEEE International Conference on Distributed Computing Systems
(ICDCS’05), pp. 763–772. IEEE Computer Society (2005)

13. Guo, Y., Sen, S., Towsley, D.: Prefix caching assisted periodic broadcast: Framework and
techinques to support streaming for popular videos. In: IEEE International Conference on
Communications, Vol. 4, pp. 2607–2612 (2002)

14. Hu, A.: Video-on-demand broadcasting protocols: A comprehensive study. In: IEEE INFO-
COM, Vol. 1, pp. 508–517 (2001)

15. Hua, K.A., Cai, Y., Sheu, S.: Patching : A multicast technique for true video-on-demand ser-
vices. In: ACM Multimedia, pp. 191–200 (1998)

16. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks: Char-
acterization and implications for CDNs and web sites. In: International World Wide Web
Conference, pp. 252–262 (2002)

17. Kusmierek, E., Czyrnek, M., Mazurek, C., Stroinski, M.: iTVP: Large-scale content distribu-
tion for live and on-demand video services. In: R. Zimmermann, C. Griwodz (eds.) Multi-
media Computing and Networking SPIE-IS&T Electronic Imaging, Vol. 6504. SPIE (2007).
Article CID 6504-8

18. Kusmierek, E., Du, D.H.C.: Proxy-assisted periodic broadcast for video streaming with mul-
tiple servers. Multimedia Tools and Applications, Online First (2004)

19. Ramesh, S., Rhee, I., Guo, K.: Multicast with cache (Mcache): An adaptive zero delay video-
on-demand service. In: IEEE INFOCOM, Vol. 1, pp. 85–94 (2001)

20. Su, Z., Katto, J., Yasuda, Y.: Dynamic replication of scalable streaming media over content
delivery networks. In: Communication and Computer Networks (2004)

21. Xu, D., Kulkarni, S.S., Rosenberg, C., Chai, H.K.: Analysis of a CDN-P2P hybrid architecture
for cost-effective streaming media distribution. Multimedia Systems 11(4), 383–399 (2006)

22. Yang, M., Fei, Z.: A model for replica placement in content distribution networks for multime-
dia applications. In: IEEE International Conference on Communications, Vol. 1, pp. 557–561
(2003)

Chapter 14
Information Dissemination in Mobile CDNs

Nicholas Loulloudes, George Pallis, and Marios D. Dikaiakos

14.1 Introduction

With the recent development of technologies in wireless access and mobile devices,
the mobile network has become a key component of today’s Internet vision [1, 46].
Current mobile networks, which are being deployed worldwide, enable mobility fea-
tures to new applications and also extend existing wired Web applications to mobile
terminals. The mobile wireless network offers a rich assortment of dynamic and in-
teractive services, such as GPS navigation information, mobile TV, vehicular traffic
information, and location-oriented services. The provision of such services requires
techniques to disseminate data as efficiently as possible in order to minimize the
total network traffic and to improve the mean response time to mobile users.

In the wired Web, network performance can be substantially enhanced by using
additional bandwidth, which is often available at low cost. However, this approach
is impractical for mobile wireless network infrastructures. Most of these networks
have fixed spectrum and achievable data rate is fundamentally limited by interfer-
ence [46]. This problem is likely to get more serious when more mobile users start
using bandwidth-intensive services such as streaming media. In this context, caching
and prefetching might be a solution. Specifically, these approaches have been exten-
sively used in the wired Web to optimize the amount of bandwidth consumption by
shifting the traffic away from overloaded content providers and closer to the content
customers [43]. Although these methods offer several benefits (i.e. conservation of
network resources and reduced latency), the dissemination of dynamic content and
resource-hungry applications (e.g. multimedia applications) remain a challenge.

Nicholas Loulloudes
Department of Computer Science, University of Cyprus, 75 Kallipoleos str. 1678, Nicosia, Cyprus,
e-mail: loulloudes.n@cs.ucy.ac.cy

George Pallis
Department of Computer Science, University of Cyprus, 75 Kallipoleos str. 1678, Nicosia, Cyprus,
e-mail: gpallis@cs.ucy.ac.cy

Marios D. Dikaiakos
Department of Computer Science, University of Cyprus, 75 Kallipoleos str. 1678, Nicosia, Cyprus,
e-mail: mdd@cs.ucy.ac.cy

R. Buyya et al. (eds.), Content Delivery Networks, 343
c© Springer-Verlag Berlin Heidelberg 2008

344 N. Loulloudes et al.

Content Delivery Networks (CDNs) promise to address these challenges by mov-
ing the content to the “edge” of the Internet, and thus closer to the end-user [45].
An introduction to CDNs can be found in the first chapters of this book. Although
there has been much work on wired CDNs [27, 32, 40], content dissemination on
mobile environments has received little attention so far [1, 49]. This is due to the
limited Internet access capabilities of most mobile terminals in the recent past. How-
ever, this situation seems to be changing with the advent of innovative cellular (e.g.
3G) and wireless (e.g. WiFi) services which allow mobile terminals to access In-
ternet and other data services at speeds comparable to traditional wired access [46].
Previous research [6, 48] shows that cooperative caching in mobile environment im-
proves the network performance and information dissemination. In this context, we
believe that the infrastructure of CDNs may provide a scalable and cost-effective
mechanism for accelerating the information dissemination in the mobile wireless
environment [45]. However, the mobile wireless network infrastructure represents
a fundamentally different information medium from the traditional Web in terms
of access devices used, content availability, bandwidth, and cost to the end-user.
Thus, the typical CDNs cannot be enhanced by mobile wireless networks, since
CDN architecture does not take the distinguished characteristics of these networks
into account. In this context, we define mobile CDNs as overlay networks of surro-
gate servers which deliver content in the mobile wireless network infrastructures.
Specifically, CDNs may offer an exciting playground for exploiting the emerging
technological advances of mobile computing.

The purpose of this chapter is to present the challenges and the current status of
mobile CDNs, discuss the recent evolution of the mobile wireless networking infras-
tructure, as well as to investigate how information dissemination can be improved
by the emerging mobile CDN practices.

The rest of this chapter is structured as follows. Section 14.2 presents the need
for mobile CDNs. Section 14.3 introduces the mobile CDNs. Section 14.4 presents
the wireless network infrastructure of mobile CDNs. Section 14.5 presents our vi-
sion about how the existing intermediaries in mobile environments can be adopted
in mobile CDNs. Section 14.6 provides some implementation and experimentation
perspectives for mobile CDNs. Section14.7 presents the future research directions
over these networks. Finally, Sect. 14.8 concludes the chapter.

14.2 Motivation

The mobile Internet, defined as wireless access to the digitized contents of the In-
ternet via mobile devices, has significantly advanced in terms of user population.
Recent studies have shown that in Japan the number of people using the mobile In-
ternet already exceed those using the stationary Internet [4]. In general, the mobile
Internet goes where the users go; users demand Web access when and where they
need it, using their mobile devices.

14 Information Dissemination in Mobile CDNs 345

Nowadays, an increasing number of content providers is investing in mobile In-
ternet. The automotive industry has already introduced such mobile technologies in
vehicles that provide accurate navigational and traffic aids (traffic conditions such
as accidents, congestion, road constructions, diversions) to their drivers. Also, ve-
hicles can be equipped with devices that alert their drivers for emergency situations
(e.g. fire, earthquake damages, terrorist attack damages, etc) using multimedia data.
Although in most occasions, a simple text message is sufficient, multimedia data,
such as images and videos of an accident (or a dangerous situation further ahead),
provide drivers with more precise and convincing information in order to take any
necessary actions. Furthermore, the banking industry has identified business oppor-
tunities in mobile Internet including automated banking services. Nowadays, many
mobile phone users readily access such services from their handsets. In addition,
mobile Internet has opened new opportunities to the entertainment industry by sell-
ing online music, books, films, and games. For instance, travelers/commuters, who
are waiting at terminals, can use their mobile devices (e.g. PSP) to play games or
interact with their friends who are in other geographic locations.

Implementation of the above examples requires advances both in wireless net-
work technologies and supporting devices, as well as the development of a scalable
and resilient internetwork infrastructure that would support efficient information
dissemination techniques to mobile users. From a technological viewpoint, the re-
cent advances in wireless networking (e.g. 3G, GPRS, Dedicated Short Range Com-
munications - DSRC1) guarantee that mobile devices can access Internet and other
data services at speeds comparable to traditional wired access.

The infrastructure of CDNs [45] provides a scalable and cost-effective mecha-
nism for accelerating information dissemination in the wired Web. However, the ar-
chitecture of typical CDNs is inadequate to enhance the features of mobile Internet.
since it does not take mobility into account. The variations in mobile user requests
are caused not only by changes in content popularity but also by user mobility. Each
user request is characterized by the requested content, the time of the request, and
the location of the user. In order to support mobile users, surrogate servers should
be located “close” to the base stations of the wireless network providers.

Furthermore, the CDNs architecture should be reconsidered in order to meet the
new challenges of mobile users needs. One characteristic of mobile networks is the
scarcity of resources; due to the small sizes of portable devices, there are implicit
restrictions with respect to the availability of storage, computation capacity and en-
ergy. For instance, consider a father who shoots with a Wi-Fi camera a digital video
of his three-year-old child while playing at the beach. His thought is to upload the
video to a server in order to free up his camera memory and thus increase its ca-
pacity for more pictures/videos. So far, typical CDNs do not support the uploading
of user content to the surrogate servers. In practice, the CDN distributor module is
responsible to decide which content would be replicated by surrogate servers. In
light of the above, surrogate servers in mobile CDNs should provide user-oriented

1 Dedicated Short Range Communications:
http://www.leearmstrong.com/DSRC/DSRCHomeset.htm

346 N. Loulloudes et al.

services. This can be implemented by allocating a portion of their cache to be used
by mobile users for direct content uploads.

Another parameter that mobile CDNs should take into account is the navigational
behavior of mobile users. A significant factor which affects the users navigational
behavior is the actual devices being employed. Mobile devices have limited input
capabilities; for instance, the numeric keypads of mobile phones allow only “min-
imal” text entry compared to the keyboard entry on PCs. Moreover, mobile users
must also contend with slow download times and incremental billing costs. Conse-
quently, these characteristics have led to differences between the way users access
information on the mobile Internet and the way they access information on the wired
Web.

The mobility of users urges the development of state-of-the-art geo-location ori-
ented services in mobile CDNs. Consider a mobile user who uses a CDN-supported
application. While the mobile user is moving, the application should be replicated
by another surrogate server so as to be always “close” to the mobile user. Moreover,
geo-location services may also be used to detect mobile user Internet connection
speed. This is crucial for Web site owners that would like to demonstrate multime-
dia applications (e.g. ads) to prospective customers.

In addition, typical CDNs do not provide any mechanism that monitors in real
time the status of users (who interact with the CDN) and the underlying network
infrastructure. However, such a monitoring mechanism can be considered as a key
component in the support of content dissemination in mobile CDNs considering the
inherent limitations of the underlying mobile wireless network infrastructure. These
limitations are briefly explained below:

• Frequent network disconnections: The random or even organized mobility of
users can severely influence their connectivity with the rest of the network. This
is mainly due to: (1) small connection periods with base stations or other nearby
mobile devices, (2) the presence of obstacles such as high buildings, trees or cars,
which significantly degrade the wireless signal quality and (3) the possibility that
users have temporarily gone out of radio coverage. The above factors can lead
to bandwidth degradation or even total loss of connectivity, which can ultimately
cause loss of information.

• Network fragmentation(s): As a result of the frequent disconnections mentioned
above, the mobile wireless network is vulnerable to fragmentation(s). These pre-
vent end-to-end connectivity between mobile nodes and consequently minimize
the availability of information.

• Mobile nodes constraints: The majority of mobile devices face significant con-
straints in terms of processing power, storage capacity and most importantly up-
time duration. These limitations are imposed primarily from the fact that such
devices run on battery power and secondary due to their small size which pre-
vents increased processing and storage capacity.

Due to the above limitations of mobile wireless networks, it is crucial for the
CDN to know the status of mobile users so as to minimize the overall traffic in the
network. For instance, consider a mobile user who requests to download a podcast

14 Information Dissemination in Mobile CDNs 347

to his/her MP3 player, but during the downloading process the device goes offline
due to battery drain. In such a case, the CDN should be aware of the user status and
block any further data transmission destined to him/her.

All the above issues conclude that disseminating information to mobile users in
an efficient and cost-effective manner is a challenging problem, especially, under
the increasing requirements emerging nowadays from a variety of applications (e.g.
streaming media, dynamic content) and the inherent limitations of the mobile wire-
less environment. Mobile CDN infrastructure may meet these challenges. The next
section presents our insight for mobile CDNs.

14.3 Mobile Content Delivery Networks

Contrary to wired CDNs, mobile CDNs are deployed within the range of a wireless
network (e.g. cellular network, WiFi) and offer high quality services for deliver-
ing dynamic data and rich multimedia content to mobile devices. Specifically, the
network infrastructure in mobile CDNs is de-composed in the two following compo-
nents: (a) the wired network infrastructure and (b) the wireless network infrastruc-
ture. The former is an infrastructure responsible for the wired environment of the
CDN; it provides the communication links which connect origin servers with sur-
rogate servers and surrogate servers with network elements (e.g. switches, routers,
3G/GSM enabled base stations (BS), Wi-Fi enabled access points (AP)). On the
other hand, the wireless network infrastructure is responsible for enabling commu-
nication and information dissemination among static and mobile users in the wire-
less environment of the mobile CDN. Therefore, the client-server communication is
replaced by three communication flows: (1) between the client and the edge of the
wireless network (AP or BS), (2) between the edge of the wireless network (BS or
AP) and the surrogate server, and (3) between the surrogate server and the origin
server. A typical mobile CDN is depicted in Fig. 14.1.

Considering that the surrogate servers should be placed “close” to BSs or APs
of wireless networks, the network topology of mobile CDN should be redeployed
so as to address this issue. Therefore, the placement of surrogate servers should be
reconsidered so as to provide a sufficient coverage to the mobile wireless infrastruc-
ture. Due to the large amount of base stations, mobile CDNs should incorporate in
their infrastructures more surrogate servers than a typical CDN.

Regarding the architecture of surrogate servers, their cache should be segmented
into two parts in order to support user-oriented services to mobile users. The one part
is devoted for replicating the content of origin servers (which have been contracted
by a CDN provider), and the second part is dedicated to mobile users for content
upload. Furthermore, surrogate servers of a mobile CDN should also provide geo-
location oriented services to mobile users. The deployment of such services requires
the definition of a service discovery protocol to select a surrogate server based on
the location context of the mobile user (the location context refers to the current
geographical area or position of a mobile user), in order to migrate applications to
the surrogate server closest to the mobile user.

348 N. Loulloudes et al.

Fig. 14.1 A typical Mobile Content Delivery Network

Apart from the networking issues involved in the establishment of the mobile
CDN infrastructure, it is also important to determine which content outsourcing
policy to follow (the content which would be replicated). Most CDN providers use
either uncooperative or cooperative pull-based approaches [27]. The main character-
istic of both approaches is that they are reactive; a data object is cached only when
the user requests it and, consequently, these schemes impose large communication
overhead (in terms of the number of messages exchanged) when the number of users
is large. In addition, this mechanism does not offer high fidelity when the content
changes rapidly or when the coherency requirements are stringent. Due to these lim-
itations, the pull-based schemes are prohibitive in a mobile wireless environment.
Mobile CDNs should enhance a cooperative push-based scheme. In contrast to the
pull-based approaches (uncooperative and cooperative) which wait for the users to
request information, the cooperative push-based approach lets the origin servers to
proactively push the information into caches close to the mobile user, expecting a
further reduction to the access latency. Indeed, Chen et al. [9] concluded that the
cooperative push-based policy provides the best overall results, when compared to
the other approaches. In such a scheme, the content is pushed (proactively) from
the origin server to the surrogate servers. Upon a request, if the surrogate server
has an object replica, it serves the request locally, otherwise, it forwards the re-
quest to the “closest” server that has the object replica and relays the response to
the end-user. In case the requested object has not been replicated by some surrogate
server, the request is served by the origin server. This scheme requires cooperation

14 Information Dissemination in Mobile CDNs 349

among surrogate servers which incurs extra communication and management costs
for its implementation. However, these costs are amortized by the fact that surro-
gate servers efficiently share the available bandwidth among them and also by the
reduction of replication redundancy. In turn, the latter diminishes cache consistency
maintenance costs.
Table 14.1 presents the main differences between a typical CDN and a mobile-
specific CDN.

Therefore, the architecture of a mobile CDN, should consist of the following
components:

• A set of surrogate servers (distributed around the world) which cache the origin
servers content; the surrogate servers are not mobile and are located close to
mobile base stations,

• A network infrastructure (wired and mobile wireless) which is responsible to
deliver content requests to the optimal location and optimal surrogate server,

• A mechanism which monitors the network infrastructure in real-time for avail-
able bandwidth, latency and other sources of congestion,

• A cache manager, which manages efficiently the content that has been replicated
to surrogate servers,

• A content location manager, which manages the content locations and schedules
data prefetching,

• An accounting mechanism which provides logs and information to origin servers
and CDN providers.

The above components interact with one another in order to deliver the requested
content to mobile users. The content represents a collection of objects, which may
change over time. For instance, content may represent a set of objects of a particular
Web site, a streaming service, a Web service or any distributed application. When
a mobile user requests an object, the user request is sent to the currently “closest”

Table 14.1 Typical CDN vs. mobile CDN

Features Typical CDN Mobile CDN

Content type static; dynamic; streaming static; dynamic; streaming
Users location fixed mobile
Surrogate servers

location
fixed fixed

Surrogate servers
topology

“close” to Internet Service
Providers

“close” to Base Stations

Replicas maintenance
cost

medium high

Services application services geo-location oriented application
services; user-oriented
services

Content outsourcing
policy

cooperative/uncooperative
pull-based scheme

cooperative push-based scheme

350 N. Loulloudes et al.

surrogate server. If there is a cache hit (the surrogate server has an updated replica of
the requested object), the request is served locally. Otherwise, the content location
manager forwards the request to the closest surrogate server that has the requested
object.

In response to the high variability in user demands and the dynamic nature of
the requested content, mobile CDNs should integrate content management policies
in surrogate server caches. There are different approaches related to which content
to outsource [40], and which practice to use for outsourcing [19, 28, 44, 51]. The
cache manager is responsible for the content which is replicated to surrogate servers
as well as for keeping the surrogate server replicas up-to-date. Specifically, several
issues related to cache consistency should also be considered [30]. Thus, the cache
manager performs periodically checks in order to incorporate the spatial and tem-
poral changes in user demand. On the other hand, the content location manager is
responsible to replicate the outsourced content to surrogate servers. Finally, a mech-
anism monitors in real-time the user status since a user may be unavailable to receive
the requested content due to its mobility.

Regarding the CDN market, although several CDN providers have been emerg-
ing in the market,2 there is a lack of mobile CDNs. According to the authors knowl-
edge, Ortiva Wireless3 is the only mobile CDN provider, which is dedicated to de-
livering video to mobile users under highly variable wireless network conditions.
By optimizing the delivery of mobile TV, video, audio, and Web content, Ortiva
disseminates high quality information across any wireless network, expanding rev-
enue opportunities, coverage, and network capacity without costly infrastructure
modifications.

14.4 Wireless Network Infrastructures of Mobile CDNs

As we mentioned above, the network infrastructure in mobile CDNs is de-composed
in the wired and the wireless network infrastructure. The wired infrastructure pro-
vides the resilience and fault-tolerance that CDNs require since a substantial part of
it belongs to the Internet backbone which is provisioned with a high level of redun-
dancy. In this section, we focus on the two variations of wireless infrastructure that
are currently available [37] and discuss their suitability in mobile CDNs.

14.4.1 Mobile CDNs under Centralized Wireless Infrastructures

Cellular and Wi-Fi networks are two indicative network types of centralized wireless
infrastructures. From Fig. 14.2 it can be observed that in such infrastructures all

2 A complete record of the existing CDNs’ providers can be found in [29]
3 Ortiva Wireless: http://www.ortivawireless.com/

14 Information Dissemination in Mobile CDNs 351

Fig. 14.2 A centralized wireless network infrastructure

users communicate with a central authority. In the case of cellular networks this
authority is usually a 3G and/or GSM enabled base station (BS), whereas in Wi-Fi
networks this is an IEEE 802.11 enabled access point (AP). The BS/AP operates as
a hardware bridge for all the wireless users [37] and is responsible for the allocation
and control of the wireless channel. In addition, BSs and APs keep track of the
changes in user mobility in order to prevent content dissemination to them when
they are out of the radio coverage or offline.

The centralized wireless network infrastructure provides a good framework for
mobile CDNs. For instance, consider user A in Fig. 14.2, who owns a cellular phone
(registered with a cellular network) with an embedded video camera. This user is
currently on vacation and makes a video recording of a sightseing s/he is visiting.
At the same time, s/he wants to upload this video to a personal, public online blog,
so that users B and C belonging to a Wi-Fi network have access to it. As long as
the user is within the radio coverage of the cellular network, the phone transmits the
recorded video to the responsible BS of the area. In turn, the BS forwards the video
through the cellular network to the Web server hosting the blog. The mobile CDN
provider is then responsible to push this content as close as possible to the WiFi
network in which users B and C belong to.

However, this centralization in the wireless network can pose several prob-
lems. The existence of a central authority, which orchestrates the communication
in the wireless environment, limits the scalability and resilience in mobile environ-
ments [10]. Therefore, careful and systematic provision of such infrastructures is
necessary so as to provide the required communications coverage and Quality of
Service (QoS) of mobile users.

352 N. Loulloudes et al.

14.4.2 Mobile CDNs under Ad-Hoc Wireless Infrastructures

Ad-hoc wireless infrastructures inherently provide several advantages over central-
ized ones for mobile environments. From a technical point of view, ad-hoc wireless
networks are comprised from autonomous nodes that inter-communicate through
wireless ad-hoc links. Communication takes place in a multi-hop fashion without
relying on any sort of authority that overlooks channel allocation, topology for-
mation or content dissemination. In contrast to centralized infrastructure networks,
they provide cost-effective solutions in terms of network extension when the number
of users increases [38, 50]. In summary, the main differences between centralized
wireless infrastructures and ad-hoc wireless is depicted in Table 14.2.

A Mobile Ad-Hoc Network (MANET) is a wireless network with a dynamic
arbitrary topology constructed in an ad-hoc, peer-to-peer (P2P) fashion from mo-
bile nodes for information retrieval and dissemination. The basic characteristics of
MANETs are summarized as follows:

• Ad-hoc and Peer-to-Peer (P2P) connectivity: such networks have the ability to be
self-organized and self-configurable. The ad-hoc infrastructure is decentralized
and independent of any fixed infrastructure. This inherent characteristic of de-
centralization highlights the fault tolerance of such networks, as no single point
of failure exists. Furthermore, ad-hoc connectivity provides network scalabil-
ity since there is no need of extra infrastructure setup. Their P2P connectivity
emerges from the ad-hoc connectivity of the infrastructure and dictates that each
participating node in the network is treated as an equal peer. This results from
the fact that at any given time, a peer can function both as host and router [21].

• Network topology: dynamic due to the unpredictable random mobility patterns of
participating nodes. These conditions are supplemented by the ability of mobile
nodes to join and leave the wireless network at any given point in time without

Table 14.2 Centralized wireless infrastructures vs. ad-hoc wireless infrastructures

Features Centralized Wireless
Infrastructures

Ad-Hoc Wireless
Infrastructures

Fault-Tolerance No – Access Point is a single
point of failure

Yes

Scalability when number
of node increases

No Yes

Self-Organization and
Self-Configuration of
Nodes

No Yes

Maintenance and
expansion costs

High; Extra Access Points are
needed

Low

Central Control Authority Access Point/Base Station Does not exist
Bridging Access Point or Base Station

(hardware bridge)
Each node acts as a bridge for

other nodes (software bridge)

14 Information Dissemination in Mobile CDNs 353

prior notification. Fixed nodes can peer with mobile nodes, providing gateway
functionality to other fixed infrastructures or the Internet.

• Mobile node constraints: mobile nodes rely on rechargeable batteries for their
operation meaning that uptime duration is substantially limited. In addition, their
processing and storage capacities are constraint from their relative small size.

MANETs gained significant attention from the research and industry communi-
ties as prominent wireless ad-hoc infrastructures for information dissemination in
fast-changing and uncertain mobile environments [15, 42]. For instance, consider
the following example which is depicted in Fig. 14.3. User A wants to download a
video from an online multimedia store (registered with a mobile CDN) to his/her
laptop. However, in his/her existing location there is no wireless coverage from a
WiFi or cellular provider. Thus, s/he switches to an ad-hoc mode and joins4 an ex-
isting MANET comprised by users B,C,D and F. User E who is also part of the
MANET provides Internet connectivity to the rest of the group. Hence, A’s request
will be forwarded through the MANET and E to the online multimedia store. The
responsible mobile CDN will receive this request and will redirect it to a surrogate
server which is “close” to E. Then, the aforementioned mobile CDN provides this
video in a different encoding and compression so as to compensate for the inherent
limitations of mobile nodes [2].

A subclass of MANETs are Vehicular Ad-hoc Networks (VANETs). These are
formed among vehicles driven within road constraints and fixed-road side nodes that

Fig. 14.3 A typical ad-hoc wireless network infrastructure

4 Security and how users trust each other are very crucial issues in wireless ad-hoc infrastructures,
but these are out of scope in this chapter.

354 N. Loulloudes et al.

provide location services and Internet gateway functionality. Specifically VANETs
were propelled by the need of implementing a suitable infrastructure for Intelligent
Transportation Systems [2]. In general, VANETs are different from MANETs in
terms of:

• Network Topology: even more dynamic than MANETs, due to the extremely high
mobility of vehicles. As opposed to the latter, the movement of vehicular nodes
in VANETs is quite predictable since most of the time vehicles are driven in a
well organized fashion within the constraints of roads. As in MANETs, road-side
nodes peer with vehicular nodes and act as gateway to other fixed infrastructures
and the Internet. Also these road-side nodes broadcast location-oriented informa-
tion to vehicles.

• Node Constraints: no constrains exist in terms of processing power and uptime
duration since vehicular nodes are constantly fed with power from the vehicle’s
electrical installation.

The following scenario depicts the benefits if mobile CDNs are utilized in
VANETs. Consider that vehicles V1...V5 have informally agreed to take part in
a VANET. Suppose that a traffic accident occurs between V4 and V5 at the junction.
Instantly, V4 and V5 broadcast an emergency alert and possibly some cabin pho-
tos or short videos to all their neighbor vehicles informing them about the accident.
This alert is marked with high priority and is propagated throughout the VANET. As
soon as V1 receives the alert, it utilizes its Internet connection from the nearby base
station to post this alert to an online traffic monitoring system. The mobile CDN
will place this alert and any accompanied photos or videos to the most appropriate
surrogate server in terms of the accident location. This enables emergency response
teams to receive an overall view of how the accidents looks like before going on
site with the minimum latency. Furthermore, far-away vehicles heading towards the
accident location will be informed in advance through the aforementioned traffic
monitoring system such that necessary adjustments in their course are made so as
to avoid congestion build-up. In general, mobile CDNs can be utilized in vehicular
environments for:

• the provision of mobile Internet to vehicles with extensive support in dynamic
and streaming content.

• dissemination of road traffic-related information to interested vehicles and au-
thorities such as congestion, accidents and diversions.

• location-oriented services such as location and availability of various facilities in
an area of interest (i.e. hotel, restaurants, gas stations, parking places).

• dissemination of environmental measurements gathered from vehicular sensors.
• support for distributed gaming.

Finally, Table 14.3 represents the key differences between MANETs and
VANETs.

14 Information Dissemination in Mobile CDNs 355

Table 14.3 Mobile ad-hoc networks vs. vehicular ad-hoc Networks

Features MANET VANET

Mobile Nodes Laptops, Smartphones, PDAs Vehicles
Node Movement Random – Unpredictable Organized – Predictable (within

road constraints)
Node Constraints Limited uptime due to battery

constraints
Power is not an issue

Mobility High Very High
Network Topology Dynamic Dynamic
Supported Network

Technologies
UMTS, GSM, WiFi, Bluetooth DSRC, UMTS, GSM, WiFi

14.5 Visionary Thoughts for Practitioners

Several projects from the research and industry communities exist in the litera-
ture which address the development and deployment of intermediary components
between origin servers and mobiles nodes for seamless information dissemination
[12]. Such intermediaries are deployed in wireless infrastructures optimizing inter-
mittent network connections and bandwidth utilization. This section presents the
existing work in the utilization of intermediaries in mobile environments and our
vision of how these can be adopted in mobile CDNs.

IBM’s Web Express system follows the client/intercept/server wireless computa-
tional model [18] for the optimization of Web access from mobile resource-limited
nodes. This model aims to minimize latency over wireless links by utilizing an in-
tercept technique that allows applications to optimize communications. In order to
address this issue, WebExpress uses two key components: the Client Side Inter-
cept (CSI) deployed on mobile nodes and the Server Side Intercept (SSI) deployed
on the wired network. The CSI intercepts the mobile node request and co-operate
with SSI so as to reduce data transmissions and improve content availability over
the wireless link. Several optimization methods are used by WebExpress to meet
these challenges such as caching of content both at the client (CSI) and server (SSI)
side, computation of difference between cached based objects and new responses,
multiplex of all requests over a single session, and HTTP header reduction.

In our view, WebExpress and more specifically the client/intercept model can be
adopted in mobile CDNs by moving CSI from origin servers to surrogate servers.
This relocation has the added benefits of further minimizing the communication la-
tency during mobile users Web access, and reducing the network traffic over wireless
links due to the optimization methods mentioned above.

Dikaiakos et al. [13] propose an independent information transfer protocol for
the dissemination of information among vehicles and fixed road-side nodes partici-
pating in a VANET. The Vehicular Information Transfer Protocol (VITP) is an appli-
cation layer, stateless protocol, that specifies the syntax and semantics of messages
exchanged between vehicular peers, while at the same time it pertains its indepen-
dency from the underlying VANET protocols. The authors proposed the deployment

356 N. Loulloudes et al.

of VITP on vehicles for the support of location-based, traffic-oriented, services to
drivers. Queries in VITP are location-oriented. This means that queries are transmit-
ted to a specific geographic area of interest in order to retrieve some desired content.
Inside this destination (target) location, a dynamic collection of VITP peers, called
Virtual Ad-Hoc Server (VAHS), is established on the fly in order to compute the
reply to the location query. The VITP peers that participate in the VAHS co-operate
to generate the final reply to the VITP request until a return condition is met. VITP
queries follow a request-response methodology. In addition, the protocol includes
support for data caching through cache-control headers which can be included in
VITP queries. If there is a hit in a peer’s cache for a VITP query, this peer can use
the aforementioned headers to decide whether to respond based on its local cache
or whether to retransmit the query towards to the target location.

In the context of mobile CDNs, fixed, road-side VITP peers can be used as sur-
rogate servers. In contrast to vehicles, such peers have increased processing and
storage capacity, higher wireless-radio coverage and continuous high-bandwidth In-
ternet connection. Each road-side peer can be appointed as the responsible surrogate
server for the area it covers. Therefore, these surrogate servers could cache the re-
sponses to frequently asked VITP messages and location information.

Furthermore, mobile CDNs may offer their services to several existing vehicular
applications, such as CarNet [24] and TrafficView [26]. Specifically, CarNet was
one of the first proposed applications that utilized efficient information dissemina-
tion techniques to provide vehicular services. On the other hand, TrafficView is a
proposed framework, for inter-vehicle information exchange with regard to traffic
and road conditions, route scheduling and emergency messages dissemination. Traf-
ficView is able to display a real-time, dynamic view of the road traffic further down
and overall act as a compliment of traditional GPS systems installed on many cars
today.

Finally, Daly and Haahr [11] support that information dissemination in MANETs
is improved by using intermediaries running the SimBet Routing algorithm. Specif-
ically, SimBet uses a metric based on social networks analysis to locally determine
the centrality of a mobile node within the network. For finding the central node, the
notion of betweenness centrality is used. Therefore, if the destination node is not
known to the sending node, then information is routed to the most central node. As
far as mobile CDN is concerned, this scheme may be applied on such an infrastruc-
ture so as to forward the requested content to the most central mobile node of the
wireless network; this is useful in case the user requesting the content is temporarily
out of coverage (or offline).

14.6 Implementation and Experimentation Perspectives

The first step prior the actual design and implementation of new technologies, poli-
cies and applications to real-time, production, CDN infrastructures, are considered
to be simulations. Simulations are usually employed during the initial development

14 Information Dissemination in Mobile CDNs 357

phase of any of the above since it is quite difficult to experiment in real-time envi-
ronments. From an implementation perspective, the following simulation method-
ologies may be used in order to evaluate the performance of a mobile CDN infras-
tructure:

• Simulation testbeds: Large scale simulation testbeds provide the necessary in-
frastructure for the implementation and evaluation of new CDN technologies,
policies and applications. One such testbed is PlanetLab.5 PlanetLab is a global
research overlay network in which participating nodes are strategically located
at sites around the world. PlanetLab forms a CDN testbed for creating and de-
ploying planetary-scale services and massive applications that span a significant
part of the globe. This CDN testbed consists of a network of high-performance
proxy servers. Such proxy (surrogate) servers have been deployed on many Plan-
etLab nodes. Two academic CDNs have already been built on top of PlanetLab
(CoDeeN6 and Coral7). A detailed discussion of academic CDNs is given in
Chap. 1.

• Simulation software: As a rule of thumb, in all scientific research areas, soft-
ware simulators are a must-have tool during the design and testing phase of any
product. CDN simulators pose no exception to the above rule and are highly val-
ued among the CDN-oriented research and industry communities. Specifically,
these tools provide the means for simulating CDN applications and infrastruc-
tures without the financial burden of acquiring, installing and configuring the
actual underlying hardware. Simulation results are reproducible and easier to an-
alyze since simulated environments are free from any other unpredictable and un-
controllable interfering factors (i.e. unwanted external traffic), which researchers
may encounter while experimenting on real infrastructures. CDN simulators,
simulate the behavior of a dedicate set of machines to reliable and efficiently
distribute content to users on behalf of an origin server. Chapter 5 of this book
presents an analytic simulation tool for CDNs called CDNsim.

However, the above CDN simulation software and testbeds are proposed hav-
ing in mind fixed-wired infrastructures. None of the above frameworks inherently
supports the simulation and evaluation of mobile CDNs due to the fact that user mo-
bility, the wireless medium and other distinguished characteristics of mobile CDNs
described in Sect. 14.3, are not taken under consideration. As per the view of the
authors, in terms of CDN simulation software, practitioners should extend existing
tools (such as CDNsim) through the development of new extensible add-on modules
that will allow the support of mobile CDNs. Such modules could provide:

• Realistic Mobility Traces: Mobile nodes movement behavior can be described
using a large set of mobility traces generated from well-known and accepted mo-
bility models. For instance, a module that supports generation of mobility traces

5 Planetlab: http://www.planet-lab.org
6 A CDN for PlanetLab: http://codeen.cs.princeton.edu
7 Coral CDN: http://www.coralcdn.org

358 N. Loulloudes et al.

could incorporate the functionality provided by SUMO [20]. SUMO is a well-
known microscopic, highly portable traffic simulator which produces realistic
mobility traces for simulating vehicular behavior in urban environments. More-
over, developers of such module could also consider CosMos, a communication
and mobility scenario generator proposed by Günes and Siekermann [16]. Unlike
other mobility generators that provide traces based on a single mobility model,
CosMos integrates several mobility models thus providing more realistic mobil-
ity patterns for wireless network simulations.

• Support for wireless environments: As discussed previously in this chapter, the
wireless environment exhibits different characteristics than the wired environ-
ment. For this reason, simulating the characteristics of the wireless environment
is a crucial milestone towards the correct simulation and evaluation of mobile
CDNs. New modules that provide support for wireless environments should be
able to correctly and accurately simulate characteristics such as oscillating signal
strength, bandwidth, intermittent, connections in both infrastructure and ad-hoc
environments. Even more, such models can leap a step forward by possibly sim-
ulating phenomena associated with wave propagation such as multi-path, fading,
diffraction etc.

• Support for mobile resource-limited nodes: Mobile CDN simulators should
also take into account a key characteristic of mobile nodes: the limitation of
available resources. More specifically, the majority of such nodes that make up a
mobile CDN are limited in terms of energy availability. Hence, models that de-
scribe the power consumption behaviour of such nodes (changes between sleep,
transmit, receive and idle modes) under different scenarios should be designed
and implemented in new add-on modules. Ultimately, such modules will aid in
the correct simulation of mobile nodes behaviour under the above limitations and
will allow the experimentation on techniques that aim in energy conservation.

In terms of simulation testbeds, ORBIT8 is a wireless network testbed that sup-
ports research in wireless technologies. It consists of large-scale wireless networks
made up from 400 high-speed cellular (3G) and IEEE 802.11 enabled nodes in-
terconnected in a grid layout. The obvious advantage of ORBIT over other large-
scale testbeds is the support of mobility through well known mobility models such
as the Brownian motion or the random waypoint model. This provides the ability
to examine various wireless applications and technologies such as MANETs and
location-oriented services.

From an experimentation perspective, we expect that mobile CDNs would im-
prove the mean response time of mobile users as well as increase the byte hit ra-
tio in the cache of surrogate servers. On one hand, the mean response time repre-
sents the users waiting time in order to serve their requests. On the other hand, the
byte hit ratio provides an indication for the performance of the network. Moreover,
we expect that surrogate servers in mobile CDNs would have low replica redun-
dancy due to their high degree of cooperation. This is a critical issue if we take

8 Open-Access Research Testbed for Next-Generation Wireless Networks(ORBIT): http://
www.orbit-lab.org

14 Information Dissemination in Mobile CDNs 359

under consideration that high data redundancy leads to waste of money for CDN
providers [27]. Finally, it is expected that mobile CDNs can improve the QoS of
mobile users by serving the majority of their requests. Without such an infrastruc-
ture, many mobile users might face denial of services.

14.7 Future Research Directions

Mobile wireless networks are characterized by the high variability in user demand
as well as the high demand for dynamic content and media applications. For exam-
ple, a driver wants to be alerted for any emergency situations during his/her journey
using multimedia data. Another characteristic of mobile networks is the scarcity of
resources. For instance, consider a person who wishes to upload a video to a server
in order to free up his/her camera so as to accept more pictures/videos. Therefore,
crucial issues should be addressed. In the following subsections, we discuss the fu-
ture research directions for mobile CDNs in terms of content placement techniques,
disseminating dynamic content and mobile streaming media.

14.7.1 Content Placement Techniques

The content placement problem is to decide where content is to be replicated so that
some objective function is optimized based on requests and resource constraints.
This problem has been extensively studied for static user demands [19, 28, 44, 51].
However, due to mobility and resource constraints, the existing schemes are not ap-
plicable to a mobile wireless environment. Specifically, new approaches should be
investigated, which deal with the high demand for dynamic content, media applica-
tions and user mobility.

In this context, the content placement approaches for dynamic user demands are
of interest [8, 25, 31, 33]. An algorithm that dynamically places replicas and orga-
nizes them into an application-level multicast tree with limited knowledge of the
network topology was presented by Chen et al. [8]. This algorithm aims at satisfy-
ing both user-perceived latency and server capacity. In [25] the authors presented
another framework for dynamic content placement. In this approach, the problem
of optimal dynamic content placement has been described as a semi-Markov deci-
sion process, where the user requests are assumed to follow a Markovian model.
Presti et al. [31] address the dynamic content replication by using a non-linear inte-
ger programming formulation. Specifically, the decision on how the system should
evolve is the outcome of a nonlinear integer programming formulation of the prob-
lem. Rabinovich et al. [33], presented an application CDN (called ACDN) which
is dedicated to deliver dynamic content. They proposed a heuristic algorithm which
dynamically places replicas based on past observed demand.

360 N. Loulloudes et al.

However, none of the above content-placement techniques has been evaluated
under a wireless network infrastructure. Motivated by this fact, the authors in [1]
presented an online heuristic algorithm for dynamic placement of content replicas
in a mobile CDN. The proposed algorithm (called online MDCDN) is based on a
statistical forecasting method, called Double Exponential Smoothing (DES). Taking
user demand variations into account, this method predicts the future demand at each
surrogate server. These predictions are used to decide whether to add a new content
replica or remove an existing one in order to minimize the total traffic over the back-
bone. For the experiments, the authors used a mobility simulator [22] and modeled
a 20-km radial city, divided into area zones based on population density and natural
limits (e.g. rivers, highways, etc.).

A distributed algorithm, called DbC, was proposed by Miranda et al. [23] in or-
der to place the content as evenly as possible among all the servers that belong to a
wireless ad-hoc network. Thus, the replicas of the data items are sufficiently distant
from each other to prevent excessive redundancy. On the other hand, the replicas
remain close enough to each end-user to improve information dissemination. Sim-
ulation results showed that DbC improves the dissemination of items throughout
the network. Three efficient content placement techniques for a wireless ad hoc net-
work infrastructure have also been proposed by [17]. These methods place the repli-
cas on mobile hosts taking into account either the PT values9 of objects (E-SAF -
Extended Static Access Frequency) or the PT values of objects and the neighboring
mobile hosts (E-DAFN - Extended Dynamic Access Frequency and Neighborhood),
or the PT values of objects and the whole network topology (E-DCG - Extended Dy-
namic Connectivity based Grouping). Experiments performed in [17] have shown
that E-DCG gives the highest accessibility and the E-SAF method gives the lowest
traffic.

14.7.2 Disseminating Dynamic Content

The applications that disseminate dynamic content have high sensitivity to delays.
For instance, a driver wants to know which road is better to follow in order to avoid
any delays due to a traffic jam. In such a case, a delay - even a few seconds - may be
intolerable. Thus, the efficient dissemination of dynamic content in mobile environ-
ments is a critical issue. To this end, a wide range of proposed approaches and tech-
niques have been proposed under the CDN infrastructure in order to accelerate the
generation and dissemination of dynamic content to mobile users [1, 5, 34]. Many
of the proposed approaches are implemented in commercial systems (Websphere

9 PT value is defined as the product of the popularity of the object and the time remaining until the
object is updated next.

14 Information Dissemination in Mobile CDNs 361

Edge services of IBM10, EdgeSuite network of Akamai11) proving in this way the
importance and applicability of dynamic content technology.

Fragment-based policies have received considerable attention from the research
community in recent years [5, 34], since experiments have shown that the typical
overhead of composing a Web page from fragments is minor to the overhead of
constructing the whole page from scratch [5]. Akamai has also enhanced fragment-
based policies using the Edge Side Includes technology [14]. A novel scheme to
automatically detect and flag “interesting” fragments in dynamically generated Web
pages that are cost-effective cache units, is proposed by Ramaswamy et al. [34].
A fragment is considered to be interesting if it is shared among multiple pages or if
it has distinct lifetime or personalization characteristics.

Instead of caching fragments of Web pages, another common approach for dis-
seminating dynamic content is to cache the means which are used in order to gen-
erate the pages over the surrogate servers. This approach is based on the fact that
generation of content on demand needs more time than simply fetching any other
dynamic content, since it requires to issue one or more queries to a database. Thus, a
simple idea is to cache the application code at the CDN surrogate servers, and keep
the data centralized. This technique is the basic module of the Edge Computing
product from Akamai and ACDN [33]. A disadvantage of this approach is that all
users requests should be served by a central database. This centralized architecture
leads to performance bottlenecks. In order to address this issue, another approach
is to create a partial copy of the database in each surrogate server. The systems that
have been implemented this approach are known as Content-Aware Caching sys-
tems (CAC). Finally, another approach is to cache the result of database queries as
they are issued by the application code. This approach is known as Content-Blind
query Caching (CBC) [35]. When a query is issued, it is checked whether the query
result is cached or not. Experiments results presented by Sivasubramanian et al. [41],
have shown that the CBC presents the best performance when the query workload
exhibits high locality. On the other hand, the Edge Computing and the CAC present
better performance than the CBC when the query workload exhibits low locality.

14.7.3 Disseminating Mobile Streaming Media

The increased bandwidth of next-generation mobile systems makes streaming media
a critical component of future content delivery services. Thus, the efficient dissemi-
nation of streaming media in mobile environments is a challenging issue. Typically,
streaming media content can be categorized as follows:

• Live content: the content is disseminated “instantly” from the encoder to the
media server and then onto the end-user.

10 IBM WebSphere Application Server:
http://www-306.ibm.com/software/webservers/appserv/was/
11 Akamai: http://www.akamai.com/

362 N. Loulloudes et al.

• On-demand content: the content is encoded and then stored as streaming media
files on media servers. The content is then available for request by the end-users.

The media server is a specialized one which consists of a software that runs on a
general-purpose server. Its task is to serve the digitized and encoded content to end-
users. When a user requests a certain content, the media server responds to the query
with the specific video or audio stream. Design requirements of such servers under
the context of CDNs are discussed by Roy et al. [36]. However, the dissemination
of media content to a large number of mobile users creates serious problems due
to the strict requirements of streaming media, the inherent limitations of wireless
networks and the mobility of users.

In this context, a mobile CDN may address these limitations by distributing the
high demands of mobile users for streaming media to its surrogate servers. Fur-
thermore, CDN surrogate servers improve the dissemination of streaming content
by employing state-of-the-art compression techniques (caching, encoding). Specifi-
cally, a mobile streaming media CDN should consider the following issues:

• Surrogate server selection: When a user requests an object, his/her request should
be directed to a surrogate server for serving the requested content. To achieve
this, Yoshimura et al. [49], proposed a mobile streaming media CDN architec-
ture in which the surrogate server selection is determined by a SMIL12 file mod-
ification. The SMIL file is stored in the streaming media server and contains
information about the status of surrogate servers. In this architecture, the mobile
users read the SMIL file in order to select the best surrogate server in CDN.

• Media Caching: Earlier research efforts have shown that CDN performance is
improved when caching techniques are integrated in a CDN. The problem is to
determine what media streams should be cached in surrogate servers disks. A
solution would be to store all the media streams. However, such a solution is not
feasible since media streams require huge amounts of storage. Therefore, effi-
cient data management schemes should be considered in the context of mobile
streaming CDNs. In such a scheme, the cache manager manages efficiently the
content that has been replicated to each surrogate server. A simple idea is to par-
tition the objects into segments. In particular, the media objects are divided into
smaller units so that only partial units are cached. This leads to efficient stor-
age and network utilization. In the literature, several variants have been proposed
for caching segmentations [7]. Prefix caching [39], and variable sized segmenta-
tion [47] are some indicative techniques for caching segmentation.

• Managing Session Handoffs: In streaming media, the user sessions are usually
long-lived. However, the long-lived nature of streaming sessions in a mobility
environment has raised the issue of managing in an efficient way the session
handoffs among surrogate servers. During a handoff, no frames should be lost,
and the data stream to the video player should be kept as smooth as possible. In
[49], a SMIL file is used to control the session handoffs.

12 The SMIL (Synchronized Multimedia Integration Language) is a W3C Recommended XML
markup language for describing multimedia presentations. It defines markup for timing, layout,
animations, visual transitions, and media embedding among other things.

14 Information Dissemination in Mobile CDNs 363

A mobile streaming media CDN (MSM-CDN) architecture, which enables media
delivery over next-generation mobile networks has been described by Apostolopou-
los et al. [3]. The MSM-CDN architecture has been designed to be modular and
interoperable with other systems and underlying networks. In this scheme, the over-
lay servers are the basic components of the MSM-CDN; their task is to cache media
streams. Here, an overlay server can be considered as surrogate server. The delivery
of media is done through streaming and data-transfer interfaces. Specifically, the
interfaces in MSM-CDN facilitate the delivery of media streams to mobile users.
Another mobile streaming media CDN architecture has been proposed in [49]. The
originality of this architecture is that all the technologies related to CDN are enabled
by SMIL modification.

14.8 Conclusion

The recent advances in mobile content networking (e.g. GSM/3G, WiFi, etc.) enable
the wireless network infrastructures to support bandwidth-intensive services such as
streaming media, mobile TV etc. The information which is usually requested by mo-
bile users is either dynamic content or media applications. Taking into account that
mobile user appetites for information is expected to keep growing, we need inno-
vative techniques that can improve information dissemination. However, the emer-
gence of typical CDNs cannot meet these challenges in a mobile wireless network
due to the inherent limitations of such an infrastructure as well as the distinguished
characteristics of mobile devices. Traditional CDNs do not take the mobility of users
into account. In this context, mobile CDNs may address these issues by accelerating
the information dissemination in mobile wireless network infrastructures. A mobile
CDN differentiates from typical CDNs in terms of the topology of surrogate servers,
content outsourcing policy, and application services.

In this chapter, we presented a pathway for mobile CDNs, in order to understand
their role in the recent evolution of the mobile networking infrastructure, as well
as to investigate how the information dissemination can be improved by the emerg-
ing mobile CDN practices. In this context, the main characteristics of mobile CDNs
were given. Next, we presented the most popular methodologies and implementa-
tions of mobile CDNs in terms of disseminating dynamic content, content place-
ment techniques and mobile streaming media. Finally, we presented the network
infrastructures of mobile CDNs and explored existing information dissemination
techniques.

In summary, information dissemination in a mobile wireless environment is an
interesting, useful, and challenging problem. The emergence of mobile CDNs has
opened new perspectives in the research community. Although several research
works exist, there is a lot of room for improvement in both theoretical and prac-
tical applications, since technology in the areas of mobile computing and mobile
networking is still evolving.

364 N. Loulloudes et al.

References

1. Aioffi, W.M., Mateus, G.R., Almeida, J.M., Loureiro, A.A.F.: Dynamic content distribution
for mobile enterprise networks. IEEE Journal on Selected Areas on Communication 23(10)
(2005)

2. Anda, J., LeBrum, J., Ghosal, D., Chuah, C.N., Zhang, M.: Vgrid: Vehicular ad-hoc network-
ing and computing grid for intelligent traffic control. In: Vehicular Technology Conference,
2005. VTC 2005-Spring. 2005 IEEE 61st, Vol. 5, pp. 2905–2909 (2005)

3. Apostolopoulos, J.G., Wee, S., tian Tan, W.: Performance of a multiple description streaming
media content delivery network. In: Proceedings of the 2002 International Conference on
Image Processing (ICIP 2002), pp. 189–192. Rochester, New York, USA (2002)

4. Chae, M., Kim, J.: What’s so different about the mobile internet? Commun. ACM 46(12),
240–247 (2003)

5. Challenger, J., Dantzig, P., Iyengar, A., Witting, K.: A fragment-based approach for efficiently
creating dynamic web content. ACM Trans. Inter. Tech. 5(2), 359–389 (2005)

6. Chand, N., Joshi, R.C., Misra, M.: Cooperative caching in mobile ad hoc networks based on
data utility. Mobile Information Systems 3(1), 19–37 (2007)

7. Chen, S., Wang, H., Zhang, X., Shen, B., Wee, S.: Segment-based proxy caching for internet
streaming media delivery. IEEE MultiMedia 12(3), 59–67 (2005)

8. Chen, Y., Katz, R.H., Kubiatowicz, J.: Dynamic replica placement for scalable content de-
livery. In: Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS),
pp. 306–318. Cambridge, USA (2002)

9. Chen, Y., Qiu, L., Chen, W., Nguyen, L., Katz, R.: Efficient and adaptive web replication
using content clustering. IEEE Journal on Selected Areas in Communications 21(6), 979–994
(2003)

10. Chisalita, I., Shahmehri, N.: A peer-to-peer approach to vehicular communication for the sup-
port of traffic safety applications. In: Proceedings of IEEE 5th International Conference on
Intelligent Transportation Systems, pp. 336–341 (2002)

11. Daly, E.M., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant
manets. In: Proceedings of the 8th ACM international symposium on Mobile ad hoc network-
ing and computing, pp. 32–40 (2007)

12. Dikaiakos, M.D.: Intermediary infrastructures for the world wide web. Computer Networks
45(4), 421–447 (2004)

13. Dikaiakos, M.D., Florides, A., Nadeem, T., Iftode, L.: Location-aware services over vehic-
ular ad-hoc networks using car-to-car communication. IEEE Journal on Selected Areas in
Communications 25(8) (2007)

14. Dilley, J., Maggs, B.M., Parikh, J., Prokop, H., Sitaraman, R.K., Weihl, W.E.: Globally dis-
tributed content delivery. IEEE Internet Computing 6(5), 50–58 (2002)

15. Dow, C.R., Lin, P.J., Chen, S.C., Lin, J.H., Hwang, S.F.: A study of recent research trends and
experimental guidelines in mobile ad hoc networks. In: AINA ’05: Proceedings of the 19th
International Conference on Advanced Information Networking and Applications, pp. 72–77
(2005)

16. Günes, M., Siekermann, J.: Cosmos - communication scenario and mobility scenario generator
for mobile ad-hoc networks. In: Proceedings of the 2nd Int. Workshop on MANETs and
Interoperability Issues (MANETII’05) (2005)

17. Hara, T.: Replica allocation methods in ad-hoc networks with data update. Mobile Networks
and Applications (MONET) 8(4), 343–354 (2003)

18. Housel, B.C., Samaras, G., Lindquist, D.B.: Webexpress: a client/intercept based system for
optimizing web browsing in a wireless environment. Mobile Networking and Applications
3(4), 419–431 (1998)

19. Kangasharju, J., Roberts, J.W., Ross, K.W.: Object replication strategies in content distribution
networks. Computer Communications 25(4), 376–383 (2002)

14 Information Dissemination in Mobile CDNs 365

20. Krajzewicz, D., Hertkorn, G., Rossel, C., Wagner, P.: Sumo (simulation of urban mo-
bility); an open-source traffic simulation. In: 4th Middle East Symposium on Simula-
tion and Modelling (MESM2002), pp. 183–187. SCS European Publishing House (2002).
Http://sumo.sourceforge.net/ (last accessed January 2007)

21. Mahdy, A.M., Deogun, J.S., Wang, J.: Mobile ad hoc networks: a hybrid approach for the
selection of super peers. In: Proceedings of the 2nd IFIP International Conference on Wireless
and Optical Communications Networks (WOCN 2005), pp. 280–284 (2005)

22. Mateus, G.R., Goussevskaia, O., Loureiro, A.A.F.: Simulating demand-driven server and ser-
vice location in third generation mobile networks. In: Proceedings of the 9th International
Euro-Par Conference, pp. 1118–1128. Klagenfurt, Austria (2003)

23. Miranda, H., Leggio, S., Rodrigues, L., Raatikainen, K.E.E.: An algorithm for dissemination
and retrieval of information in wireless ad-hoc networks. In: Proceedings of the 13th Interna-
tional Euro-Par Conference, pp. 891–900. Rennes, France (2007)

24. Morris, R., Jannotti, J., Kaashoek, F., Li, J., Couto, D.D.: Carnet: A scalable ad hoc wireless
network system. In: Proceedings of the 9th ACM SIGOPS European workshop: Beyond the
PC: New Challenges for the Operating System, pp. 61–65. Kolding, Denmark (2000)

25. N. Bartolini, F.L.P., Petrioli, C.: Optimal dynamic replica placement in content delivery net-
works. In: 11th IEEE International Conference on Networks (ICON 2003), pp. 125–130.
Sydney, Australia (2003)

26. Nadeem, T., Dashtinezhad, S., Liao, C., Iftode, L.: Trafficview: traffic data dissemination using
car-to-car communication. SIGMOBILE Mob. Comput. Commun. Rev. 8(3), 6–19 (2004)

27. Pallis, G., Vakali, A.: Insight and perspectives for content delivery networks. Commun. ACM
49(1), 101–106 (2006)

28. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., Manolopoulos, Y.: A latency-
based object placement approach in content distribution networks. In: Third Latin American
Web Congress (LA-Web 2005), pp. 140–147. Buenos Aires, Argentina (2005)

29. Pathan, A.M.K., Buyya, R.: A taxonomy and survey of content delivery networks. Technical
Report, GRIDS-TR-2007-4, Grid Computing and Distributed Systems Laboratory, The Uni-
versity of Melbourne (2007)

30. Pitoura, E., Chrysanthis, P.K.: Caching and replication in mobile data management. IEEE
Data Eng. Bull. 30(3), 13–20 (2007)

31. Presti, F.L., Petrioli, C., Vicari, C.: Dynamic replica placement in content delivery networks.
In: Proceedings of the 13th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS 2005), pp. 357–360. Atlanta, GA,
USA (2005)

32. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison Wesley (2002)
33. Rabinovich, M., Xiao, Z., Douglis, F., Kalmanek, C.R.: Moving edge-side includes to the real

edge - the clients. In: Proceedings of the USENIX Symposium on Internet Technologies and
Systems, pp. 12–26. Seattle, Washington, USA (2003)

34. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic fragment detection in dynamic
web pages and its impact on caching. IEEE Trans. Knowl. Data Eng. 17(6), 859–874 (2005)

35. Rilling, L., Sivasubramanian, S., Pierre, G.: High availability and scalability support for web
applications. In: SAINT ’07: Proceedings of the 2007 International Symposium on Applica-
tions and the Internet. IEEE Computer Society, Washington, DC, USA (2007)

36. Roy, S., Ankcorn, J., Wee, S.: Architecture of a modular streaming media server for con-
tent delivery networks. In: Proceedings of the 2003 International Conference on Multimedia
and Expo (ICME ’03), Vol. 3, pp. 569–572. IEEE Computer Society, Washington, DC, USA
(2003)

37. Royer, E., Toh, C.: A review of current routing protocols for ad-hoc mobile wireless networks.
Personal Communications, IEEE 6(2), 46–55 (1999)

38. Sailhan, F., Issarny, V.: Energy-aware web caching for mobile terminals. In: Proceedings of
the 22nd International Conference on Distributed Computing Systems, pp. 820–825. IEEE
Computer Society (2002)

39. Sen, S., Rexford, J., Towsley, D.F.: Proxy prefix caching for multimedia streams. In: Proceed-
ings of the IEEE INFOCOM, pp. 1310–1319. New York, USA (1999)

366 N. Loulloudes et al.

40. Sidiropoulos, A., Pallis, G., Katsaros, D., Stamos, K., Vakali, A., Manolopoulos, Y.: Prefetch-
ing in content distribution networks via web communities identification and outsourcing.
World Wide Web 11(1), 39–70 (2008)

41. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of caching and replication
strategies for web applications. IEEE Internet Computing 11(1), 60–66 (2007)

42. T Nadeem, P.S., Iftode., L.: A comparative study of data dissemination models for vanets.
Proceedings of the 3rd Annual International Conference on Mobile and Ubiquitous Systems
(MOBIQUITOUS) (2006)

43. Teng, W.G., Chang, C.Y., Chen, M.S.: Integrating web caching and web prefetching in client-
side proxies. IEEE Trans. Parallel Distrib. Syst. 16(5), 444–455 (2005)

44. Tse, S.S.H.: Approximate algorithms for document placement in distributed web servers.
IEEE Trans. Parallel Distrib. Syst. 16(6), 489–496 (2005)

45. Vakali, A., Pallis, G.: Content delivery networks: status and trends. IEEE Internet Computing
7(6), 68–74 (2003)

46. Wu, T., Dixit, S.: The content driven mobile internet. Wireless Personal Communications: An
International Journal 26(2–3), 135–147 (2003)

47. Xu, Z., Guo, X., Wang, Z., Pang, Y.: The dynamic cache algorithm of proxy for streaming
media. In: Proceedings of the International Conference on Intelligent Computing (ICIC 2005),
pp. 1065–1074. Hefei, China (2005)

48. Yin, L., Cao, G.: Supporting cooperative caching in ad-hoc networks. IEEE Trans. Mob.
Comput. 5(1), 77–89 (2006)

49. Yoshimura, T., Yonemoto, Y., Ohya, T., Etoh, M., Wee, S.: Mobile streaming media cdn en-
abled by dynamic smil. In: Proceedings of the 11th International World Wide Web Conference,
WWW2002, pp. 651–661. Honolulu, Hawaii, USA (2002)

50. Zemlianov, A., de Veciana, G.: Capacity of ad hoc wireless networks with infrastructure sup-
port. IEEE Journal on Selected Areas in Communications 23(3), 657–667 (2005)

51. Zhuo, L., Wang, C.L., Lau, F.C.M.: Load balancing in distributed web server systems with
partial document replication. In: Proceedings of the 31st International Conference on Parallel
Processing (ICPP), p. 305. Vancouver, Canada (2002)

Chapter 15
Infrastructures for Community Networks

Thomas Plagemann, Roberto Canonico, Jordi Domingo-Pascual,
Carmen Guerrero, and Andreas Mauthe

15.1 Introduction

Content delivery has undergone a sea of changes in recent years. While even only
ten years back the major delivery channels were television and radio broadcast,
nowadays content is delivered digitally via the Internet or other electronic deliv-
ery channels. The engineering problem of delivering multimedia content through
the Internet has received much attention by the research community. However, the
delivery of content to heterogeneous mobile terminals in a community context still
poses many problems. Early Internet based content delivery systems were designed
as centralized systems where content is provided from a central server to a large
population of the end users (see Fig. 15.1-(a)). This trend is now shifting towards
decentralized systems, such as Peer-to-Peer (P2P) systems, in which the role of the
content provider and producer is no longer restricted to a few professional content
creators. Thus, the content delivery paths is not anymore only from a central server
through backbone networks to the end users, but also from one end user to other end
user(s) (see Fig. 15.1-(b)). This has been triggered by the emergence of relatively
cheap consumer electronics enabling everybody to become a content producer; and

Thomas Plagemann
Department of Informatics, University of Oslo, Norway, e-mail: plageman@ifi.uio.no

Roberto Canonico
Consorzio Interuniversitario Nazionale per l’Informatica CINI - Laboratorio Nazionale per
l’Informatica e la Telematica Multimediali ITEM at University of Napoli, Italy, e-mail:
roberto.canonico@unina.it

Jordi Domingo-Pascual
Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Jordi Girona,
1–3. Campus Nord. Barcelona 08034, Spain, e-mail: jordi.domingo@ac.upc.es

Carmen Guerrero
Departamento de Ingenierı́a Telemática, Universidad Carlos III de Madrid, Spain,
e-mail: carmen.guerrero@uc3m.es

Andreas Mauthe
InfoLab 21, Computing Department, Lancaster University, Lancaster LA1 4WA, UK,
e-mail: andreas@comp.lancs.ac.uk

R. Buyya et al. (eds.), Content Delivery Networks, 367
c© Springer-Verlag Berlin Heidelberg 2008

368 T. Plagemann et al.

Fig. 15.1 Content delivery paths: (a) traditional, (b) today’s P2P, (c) future community networks
to the home (based on [44])

the high penetration of high-speed network access (e.g. xDSL networks) and P2P
technologies turning computer users into content providers.

The European Network-of-Excellence CONTENT [65] studies future develop-
ments in this area with a specific focus on the resulting research challenges related
to content delivery for and within community networks. Here, the end users not only
consume content but also produce it and provide core elements of the network in-
frastructure, i.e. the physical community network. Thus, the content delivery path
in community networks does not necessarily use any infrastructure provided by In-
ternet Service Providers (ISPs) (see Fig. 15.1-(c)).

While the term “community network” is intuitively well understood it is worth-
while to analyze the concept of community networks. Rosson et al. define [54] com-
munity networks as follows:

“A network community is a group of people whose communication and collabo-
ration over networks strengthens and facilitates their shared identity and goals. The
emergence of network communities is a striking example of what might be called
grassroots technology development[..] A community network is a special case of
a network community in which a physical community coextends with the network
community.”

According to this definition, the community is not only formed by people col-
laborating through the network, but also by people contributing with their own re-
sources (like in civic and neighborhood networks). Community members mainly
provide the access network in the form of several kinds of wireless network tech-
nologies, which are connected to the Internet via one or several ISPs. Since a (sub-
stantial) part of the content delivery in community networks can be done within the
physical community networks without any ISP involvement, there is no evidence
that communities might be a larger threat to the Internet than classical Content De-
livery Network (CDN) and P2P users, quite the contrary.

With respect to the content delivery, the most important insight is that the “grass-
roots technology development” in community networks is driven by “people”, i.e.
the average end users, which might not have any particular education and skills in
computer and network administration, software development etc. Thus, decentral-
ization of content delivery must be combined with self-configuring, self-organizing,

15 Infrastructures for Community Networks 369

self-managing, and self-adapting solutions at all technical layers to minimize the
need for human intervention.

Furthermore, Cowan et al. [20] identified in 1998 that content services play a
central role:

“In fact, communities are repositories of large amounts of heterogeneous infor-
mation that need to be searched, read, explored, acted upon, updated, and that offer
opportunities for collaboration and other forms of two-way communication.”

In 1998, multimedia content was not central to this insight. However, we argue
that the technological developments in consumer electronics and Information Com-
munication Technologies enable the easy use of multimedia content, and by this
create a strong demand for various kinds of content services in community net-
works. Community members do not only want to consume content, but they want
to share it, to search for particular content, to combine artifacts, and to edit complex
multimedia objects.

Thus, content delivery and usage is special in the context of community networks
for two major reasons: first, autonomic network and overlay solutions are needed to
establish and maintain proper CDNs over physical community networks; and sec-
ond, arbitrary and complex content services (e.g. content adaptation, transcoding,
indexing, storage) are needed that go far beyond the simple transfer and consump-
tion of content.

In order to describe the current state and short and long term research challenges,
the reminder of this chapter is structured as follows: the following section gives
background information on community networks, including a simple architectural
framework and related work. The description of industrial challenges and long term
research challenges follows this architectural framework. In the conclusions, the
most important aspects of content delivery and content service for community net-
works are summarized.

15.2 Background and Related Work

An interesting phenomenon of the last few years is the creation of a number of
Wireless Community Networks (WCNs) that provide Internet access in urban areas
to community members. These networks were created either by the spontaneous col-
laboration of people who shared their own xDSL home connection to the Internet,
or by the initiative of local institutions. For example, councils and universities have
started to offer wireless access to Internet services to user communities (e.g. stu-
dents) in limited areas (e.g. neighbourhoods, campuses, commercial halls) or public
buildings. An example of “institutional” WCN is the Wireless Mesh Networks pro-
vided by the Town of Amherst [4] to its citizens.

The most popular “spontaneous” WCN is created by the so called “FON com-
munity” [25]. FON members (i.e. Foneros) share some of their home xDSL Internet
connection and get free access to the Community’s FON Spots worldwide. The FON
community has also created a business, selling Internet access to those who decide

370 T. Plagemann et al.

not to share any connection with the rest of community. Up to now, FON is just
acting as a WiFi ISP with just a peculiar business model. Some commercial Internet
Service Providers in Europe have already raised concerns about legal issues related
to the sharing of residential Internet access [41]. In the future, content services might
be provided to the community and thereby increasing its business value. The idea
of providing services to the community is already supported by the Ninux.org, an
Italian community [43] that provides dynamic-DNS and a SIP-based PBX service
to its members.

Interestingly enough, the spontaneous community network model has also proven
to be successful in less developed countries, in particular to provide Internet connec-
tivity in rural areas. The Dharamsala Wireless-Mesh community network came to
life in February 2005, following the deregulation for outdoor use of WiFi in India.
Now the network provides broadband Internet services to a few thousands users.
Apart from Internet access, community members use the network for file-sharing
applications, off-site backups, playback of high quality video from remote archives
and extensive VoIP telephony.

To meet today’s and future challenges of content delivery and usage in commu-
nity networks, it is not sufficient to address individual sub-systems only, like only
the CDN. Instead, the entire system, comprising IP based networks, CDNs, content
services, and end users must be covered.

15.2.1 Architectural Framework

In the architectural framework depicted in Fig. 15.2, community networks are ex-
pected to play a central role in the intermediate future since they provide basic
connectivity. In this context, physical community networks are the sum of all the
networks that interconnect devices within home environments, neighborhoods, and
their combination into multi-hop and mesh networks. Comparable to social net-
works the primary aim of community networks is to support the local community.
Since multimedia content is usually distributed over such networks, several new
appealing research issues come up, as for example, mobility, nomadicity, resource
assignment, user required/perceived Quality of Service (QoS) and Quality of Expe-
rience (QoE), topological robustness, resilience, and network protection.

Fig. 15.2 High level
architectural framework

Quality of Experience

Content Services Network

Delivery Infrastructure

Community Networks

C
r
o
s
s

L
a
y
e
r

15 Infrastructures for Community Networks 371

Typically, overlay network solutions are used to implement CDNs, which is cap-
tured in our architectural framework by the delivery infrastructure level. They in-
clude more and more end users as well, visible as peers and overlay nodes that
provide certain resources and services to the network. Overlay networks provide
an abstraction that hides the irksome details in the underlying physical networks,
e.g. of a wireless mesh network that forms a community network. However, over-
lay network solutions must also be aware of the basic properties of the underlying
community networks to fulfill the non-functional requirements of services, such as
resilience and performance. Typical functional aspects of overlays are caching and
request routing. They can be solved through networks of proxy caches or distributed
hash tables that interconnect peers directly.

On top of the delivery infrastructures, content services networks consist of a set
of services for handling multimedia content. These services should support the en-
tire life-cycle of audiovisual content and should also be able to interoperate to create
complex services through the combination of several simpler ones. Typical exam-
ples of content services are automatic analysis and indexing services for content
classification and content abstraction, transcoding services for format adaptation, as
well as search services providing sophisticate support for content search.

Finally, on top of the architectural framework is the QoE level, which reflects
the actual experience of the end user. In general, QoS is defined as a set of techni-
cal parameters capturing mainly quantitative aspects such as throughput, error rate,
delay, jitter, frames per second, and bits per pixel. The lower levels of the archi-
tectural framework cover networking aware QoS parameters. However, these QoS
parameters do not actually reflect the user experience, which depends not only on
technical parameters, but also on the effects that failures and faults have on the ac-
tual perceived quality. Although QoE is a function of different QoS parameters at
network, system and application level, there is not a direct translation between QoS
parameters and QoE. Therefore, it has to be established which kind of degradation
actually lowers the user experience the least.

Orthogonal to these basic four levels of the architectural framework there are
several cross layer issues which are relevant for the scenario of content delivery in
community networks. One important class of these cross layer issues is related to
QoS parameters at different levels and how they relate and correlate to each other.
Another class of cross layer issues is related to the problem that functions at different
layers might impact each other, which could in the case of self-adapting solutions
lead to cascading effects or unstable system behavior.

15.2.2 Community Networks

Community networks are generally networking infrastructures not owned by ISPs
but by individual users or groups of users sharing resources distributed in a relatively
small geographical area, like a neighborhood. Providing connectivity to community
networks is a challenging task since nodes use a diversity of access technologies
and can display a degree of mobility.

372 T. Plagemann et al.

Current technologies which may be used for community network infrastruc-
ture are: xDSL, Powerline, FTTH for fixed nodes connected to an ISP; WiMAX,
MBWA, 3G/UMTS/HSDPA for nodes with wireless access to an ISP; WiFi and
Bluetooth for mobile nodes and home networks. Due to the availability of such a
large variety of networking technologies, community networks may include nodes
not only acting as user terminals, but also as routers, relays, or gateways. Fixed
nodes, for instance, may behave as hot-spots, whilst visiting nodes, i.e. devices trav-
eling through the area of the community network, may behave as a mobile gateway,
router or terminal.

Within the concept of community networking, multiple networking technologies
come together such as mobility with Mobile IPv4 and IPv6, multihoming, network
mobility (NEMO), mobile ad-hoc networks (MANETs), wireless mesh networks
(WMNs), and even wireless sensor networks (WSNs) and wireless multimedia sen-
sor networks (WMSN). Usually, this interworking of different networking technolo-
gies is not pre-planned nor is it managed by operators. Hence, self-configuration
capabilities as addressed by autonomic networks are required. In summary, commu-
nity networks exploit a wide range of network technologies and techniques resulting
in a challenging research environment.

The community networking scenario adds extra complexity to the handover pro-
cess since in addition to handover within the same technology (i.e. horizontal han-
dover) the handover between different networking technologies (i.e. vertical han-
dover) also has to be supported. In order to efficiently manage such heterogeneous
environments, the IEEE 802.21 standard is currently being developed within IEEE.
This standard aims at enabling handover and interoperability between heteroge-
neous network types, including 802 and non-802 networks. The 802.21 standard
defines an abstraction layer, providing Media Independent Handover (MIH) func-
tions with the goal of simplifying the management of handovers to and from differ-
ent access technologies.

As the distribution of multimedia content includes real-time delivery, QoS be-
comes a key aspect in community networks. QoS provision is still an open issue in
wired networks, but it is even more complex in wireless environments. In this con-
text, the evolution of the IEEE 802.11 extensions to provide QoS is crucial for the
deployment of Multimedia Wireless. Also, contributions for QoS in MANETs and
WMNs are of utmost importance for content delivery in community networks.

15.2.3 Delivery Infrastructures

Delivery infrastructure in the context of this chapter refers to a logical infrastructure
created on top of a community network with the specific purpose of enabling ac-
cess to content services. Most of today’s delivery infrastructures mainly aim at the
efficient delivery of content to community members. To overcome the limitations
of the traditional client/server approach, the P2P paradigm is becoming more and
more popular. P2P infrastructures usually implement some form of overlay network

15 Infrastructures for Community Networks 373

to deploy services that cannot be directly embedded in the underlying network, e.g.
multicast routing object location, and event propagation.

Typical supporting services implemented by means of overlays are for instance
request routing and actual content delivery. These services can either be imple-
mented with the collaboration of end systems alone, or with support of specialized
proxies.

A common theme in the research of delivery infrastructures for community net-
works is autonomicity. Community networks are largely based on collaborating in-
dividuals that provide resources to the community network. Therefore, P2P tech-
nologies are very important not only in the case of downloading and streaming of
stored content, but also for live streaming and every other aspect of resource sharing.

Considering the key building blocks of the widely deployed P2P based CDNs,
three basic elements can be distinguished, viz. the peer-to-peer overlay network, a
specific content delivery strategy, and a caching strategy. The overlay network is
responsible for connecting the participating peers, management of joining and leav-
ing peers, and routing of queries and other messages. The content delivery strategy
is responsible for delivering the required content from the source to its destination.
The last strategy increases the availability of the content in the P2P system and its
efficiency.

The enormous potential and advantages of decentralized infrastructures has al-
ready become apparent in the days of Napster. Since then, significant research ef-
forts have been invested in designing self-organized, scalable, robust, and efficient
overlay networks. However, it is crucial to note that the performance of a P2P over-
lay depends on various factors (e.g. application, resources of participating peers, and
user behavior) that are less relevant in centralized systems. For example, a specific
overlay design can perform well in the case of low churn rate whereas in the case of
high churn its performance may decrease to average. Furthermore, content delivery
systems pose certain requirements on overlay networks, like finding users that are
sharing the demanded files, incentive mechanisms, or enabling efficient inter-peer
communication at low costs. Thus, there are many research initiatives to study the
direct or indirect influences and dependencies between P2P overlay networks and
the underlined networking strategies in a content delivery system.

Considering content delivery strategies, many aspects have to be taken into ac-
count separately alongside of interdependencies that might exist. Their influence
is crucial for the overall efficiency and performance of a content delivery system.
One of the most important aspects is choosing a scheduling strategy for the files
to be transmitted. Download strategies as the one used by BitTorrent or network
coding are proven to be very efficient for long and large scale downloading ses-
sions [26, 27]. However, with the current trend of content delivery technology, such
as Podcasting, new challenges are arising. Therefore, it is necessary to investigate if
the aforementioned state-of-the-art strategies are still appropriate, given the require-
ments of emerging content sharing and delivery strategies.

Not only file sharing, but also the use of live streaming applications is grow-
ing fast in community environments. These applications and many others relying on
continuous data flows, from IPTV to massive multiplayer online games, have special

374 T. Plagemann et al.

needs. They are delay sensitive, need group communication and QoS support. Many
solutions have been proposed, but none has been adopted on a wider scale. Nowa-
days, protocols designed for continuous data flows do not rely exclusively on the
classical client/server model, but can also organize the receivers into an overlay net-
work, where they are supposed to collaborate with each other following the P2P
paradigm.

Many recent proposals related to Live Audio/Video Streaming using P2P over-
lays are derived from initial work that extended application-level multicast to the
end systems [17]. The first generation control-driven approach focuses on building
an initial overlay corresponding to the control plane and is usually implemented
as a mesh or a tree. A second overlay, usually a spanning tree, is then created and
managed for the actual data transmission. Peercast [12] is the most famous example
with a popular implementation and a large audience. A lot of work has been car-
ried out to improve the control plane in order to cope with the high dynamics of the
P2P overlay. For example, Nice is using a sophisticated clustering scheme [8]. More
recent work tries to improve robustness using a hybrid tree/structure. An example
for this is Bullet [31]. A new generation, data-driven approach stresses the need to
cope directly with data. Peers exchange data availability and then they choose their
neighborhood according to the data they need [8]. Further, epidemic algorithms are
currently being proposed in systems such as Donet [63] to improve the data deliv-
ery. P2P Live Streaming is already reality. However, so far little has been done to
demonstrate their efficiency on a very large scale. Simulation is one way to validate
the feasibility of such dynamic infrastructures [50]. An alternative approach is to
study proprietary applications in real testbeds, like PlanetLab [46]. The largest P2P
Live Streaming deployments are related to IPTV applications and are only associ-
ated to proprietary protocols and architectures [41, 47, 48, 53, 56, 57, 58]. Thus,
only their behavior but not the protocols itself can be analyzed.

The behavior of peers in a community network plays a key role. At the one end
of the scale are altruistic peers that provide resources without expecting any return.
At the other end there are so called “free riders” who only consume but do not
provide any resources, which is a rational behavior in systems without any sharing
incentives. Therefore, it has become clear that some kind of incentive scheme is
necessary to achieve an optimal utilization of system resources in a system context
as well as for individual peers. This is currently an active research area.

15.2.4 Content Services Networks

On top of the delivery infrastructure resides the content services network. A con-
tent services network is an infrastructure that provides a whole range of services
to optimize the content experience. Users might be able to access such services for
easier navigation, and personalized adaptation of content to their needs. In fact, the
idea is to use so called content services in conjunction with the underlying network
infrastructure to provide a network of content services and by doing so, create a

15 Infrastructures for Community Networks 375

content network. Content services network subsumes a number of sub-areas that
can be grouped into:

• Content Services Network Architecture and Services Framework comprising
issues related to the underlying architectural model for content service networks.

• Service Interaction encompassing all issues related to service integration and
usage in general, such as service discovery, service description, service quality,
service level agreement, etc.

• Service Instances include specific content services that improve the delivery and
user experience in content service networks.

The aim of building a content services network is to integrate, in an open way, tools
and mechanisms that enable the creation and re-purposing of assets for the bene-
fit of the communities of users as well as allowing commercial use by innovative
companies. In order to achieve this, a suitable model and architecture that allows to
easily “plug” such content services into the services network is necessary. Recently,
the concept of Service Oriented Architecture (SOA) has been introduced to achieve
optimal support for business processes through the underlying IT architecture [13].
The main benefits of a SOA are reusable components that can be easily organized
to build flexible and modular applications. Therefore it seems to be an appropriate
abstraction for content services networks. At present, the SOA paradigm is mostly
realized using Web Services [7].

Two major research issues within a service based content network architecture
are related to service interaction, i.e. the way services are described and the way
appropriate services are discovered. Service description is a fundamental issue for
ensuring easy user access and a simple management of services. Examples of stan-
dards in this area are for instance those defined by the W3C for the Semantic Web
[2]. Several formalisms have been proposed, at various expressivity levels, from
simple semantic mark-up syntaxes (e.g. RDF [36]) to ontologies (e.g. OWL [19]).
An OWL-based Web Service Ontology, OWL-S, has been proposed specifically for
Web services, in order to describe their properties unambiguously [37]. A recent ini-
tiative defined a Semantic Web Services Framework (SWSF) [11], which includes
the Semantic Web Services Language. There is considerable ongoing work in the
area of service discovery. Both, UDDI [59] and the ebXML registry [24], for exam-
ple, support finding services by name, type, and binding according to a taxonomy.
Another specification effort is WS-Dynamic Discovery [38], a local area network
service discovery mechanism for discovering Web services by using local-scoped
multicast.

Service instances represent the value added services that are provided within (or
at the edge) the communication infrastructure for tailored and adapted content deliv-
ery. Many different kinds of services can be envisaged in this context; for example,
content adaptation service and QoE. Issues related to content adaptation have been
addressed for some time. For instance, Smith, Mohan and Li have presented re-
search dealing with ad-hoc adaptation for heterogeneous terminals. Their work has
focused on the definition of techniques for content representation, among which the
so-called InfoPyramid [39] plays a major role. Lemlouma and Layaida present in

376 T. Plagemann et al.

their work a novel technique for content negotiation [34]. They introduce the Ne-
gotiation and Adaptation Core (NAC), a basic system for negotiating and adapting
multimedia services to heterogeneous terminals. Lum and Lau highlight in [35] the
need for content adaptation and propose to use a Decision Engine as the logical
entity in charge of taking decisions on how to adapt a specific content to client’s
presentation capabilities. Boll, Klas and Wandel propose in [15] a three-stage adap-
tation strategy, based on Augmentation, i.e. pre-adaptation during which alternative
versions of a content are realized; Static Adaptation, i.e. deletion of the non-relevant
alternatives; and Dynamic Adaptation, i.e. choice of the most appropriate alternative
among those who survived the previous phase.

Previous research efforts towards the assessment of the end user perceived qual-
ity are mostly adequate for MPEG-2 videos only. They are based on either objec-
tive or subjective procedures. Subjective approaches assume human experience as
the only grading factor, i.e. QoE. Objective procedures are performed without hu-
man intervention and give more stable results, but do not necessarily reflect the
user quality perception. Examples of objective metrics are PSNR, MAE, MSE, and
RMSE [52, 60, 61]. The methods for assessing the perceived video quality objec-
tively do not usually take the Human Visual Senses (HVS) sufficiently into account.
The human senses cover many errors quite effectively. Thus, objective measure-
ments may not reflect the user perceived quality. Other methods that also consider
HVS are therefore required (see [33, 62, 64]). The goal of this work is to provide
QoE assessment as a service within the Content Services Infrastructure.

15.3 Visionary Thoughts for Practitioners

Industry related and short term research challenges are, in contrast to the long-term
research challenges, less speculative and more focused on what can be realized
within the coming years. In the following, different aspects in the context of the
identified architectural areas are being discussed.

15.3.1 Community Networks

Mobility has been a research topic during the last years and solutions focused on
different layers of the OSI stack have been explored. Specifically, the IETF has
standardized mobility solutions at the IP layer, i.e. Mobile IPv4 [45] and Mobile
IPv6 [29]. In addition, it has standardized three extensions to Mobile IPv6: Fast
Handovers [30], Hierarchical Mobile IPv6 [51], and Network Mobility [22].

It has been shown in a number of studies [5, 6] that maintaining the connection
while the device is moving is still a big challenge. In addition, these protocols do
not explicitly support heterogeneous networking environments. Achieving seamless
handover in a heterogeneous environment presents many challenges especially when

15 Infrastructures for Community Networks 377

considering multihoming. Multihoming [28] is a technique where the main objec-
tive is to increase reliability of Internet connections for networks or single nodes.
This technique uses multiple interfaces connected to different ISPs. In this way, a
multihomed node has different paths available for communication. Many research
papers [18, 42, 49] have been published exploiting the benefits of multihoming in
static nodes or networks. However, using multihoming in mobile and heterogeneous
networking is a relatively new research topic that presents many challenges.

The IEEE 802.21 [23] is a recent effort of the IEEE that aims at enabling han-
dover and interoperability between heterogeneous network types including both 802
and non-802 networks. The IEEE 802.11e task group has refined the 802.11 MAC
to provide audio and video applications with QoS guarantees [9]. The recently ap-
proved version of IEEE 802.11e introduces an improvement on the DCF algorithm
aiming to distinguish traffic categories.

Due to the distributed nature of IEEE 802.11 DCF, the protocol under review is
also used for the case of multi-hop communication [14, 16]. Currently, the area of
ad hoc and mesh networks [3, 10] enjoys the attention of a significant portion of
the scientific community. Communication via multiple hops is closely linked with
the problem of routing and is still a hot research topic. Here the knowledge of the
available bandwidth in a given area is one of the key factors since most of these
routing protocols support QoS based on the bandwidth available within an area.

Finally, in such an open scenario where network management and device’s con-
figuration relays on the users misbehavior detection and traffic anomaly detection,
security threats such as Distributed Denial of Service (DDoS) attacks should be con-
sidered as a critical aspect. Misbehavior detection is especially important in WMN
at MAC level while traffic anomaly detection covers the whole CDN.

15.3.2 Delivery Infrastructures

The current challenge to improve P2P-based content delivery infrastructures con-
sists in creating overlays that are better suited to the particular requirements of con-
tent services.

Delivery of traditional Web content to user communities may benefit from the
possibility of clustering clients according to their network location. One such clus-
tering may be helpful for efficiently moving content replicas or proxy caches to-
wards those parts of the network where clients are more densely distributed. A
research proposal for real-time Web clients clustering appeared in [32] and it is
based on client IP addresses extraction from the Web server logs and clustering
of addresses based on BGP routing information. One such approach may only
be pursued in traditional CDNs, where the content provider and the CDN service
provider closely cooperate to serve the content provider’s objective of optimal con-
tent delivery.

The P2P model has been recently applied to Voice over Internet Protocol (VoIP)
applications, such as Skype, proving its usefulness for both searching users location

378 T. Plagemann et al.

and relaying voice packets. Selecting one or multiple suitable peers to relay voice
packets is a critical factor for the quality, scalability, and cost of a VoIP system.
However, Ren et al. [53] show that the network probing activity, required for peer
selection, may affect the scalability of the whole application and its performance. To
reduce the network overhead imposed by several uncorrelated P2P overlays, Nakao
et al. [40] propose to establish some basic services into the network (underlay)
to properly and efficiently support the creation of concurrent application-specific
overlays.

Another challenge proposed by P2P applications is the tendency of the huge traf-
fic they produce to “escape” the Traffic Engineering efforts of ISPs [55]. Recently
it has been proposed [1] to try and pursue some form of cooperation between P2P
applications and ISPs, in order to find a common benefit.

Finally, today’s solutions for classical content delivery infrastructures are well
designed considering the topology or the wide area network in which they serve.
However, they are restricted in the sense that they are not concerned with the last
mile to the client and the end user community infrastructures. They regard the last
mile just as a link to the client and do not consider the topology of the network
connecting the client to the content delivery infrastructure. The recent trends in
technology clearly indicate that neighborhood networks and home networks will
connect clients to the core CDN. The adaptation of the delivery path also in the
neighborhood and end user networks and its proper integration with the wide-area
distribution infrastructure is a problem that has yet to be systematically addressed.
Combinations of P2P and classical CDNs seem to be one good starting point. Early
work on this topic is presented by Cowan et al. [20].

15.3.3 Content Services Network

Content services that are available to typical community network members are
mainly concerned with the consumption of audiovisual content, like RealPlayer and
Windows Media player. Furthermore, content provisioning is possible through Web
based services and streaming services. However, services and applications that are
related to the creation and re-purposing of content, including management and edit-
ing are not available. Thus, the service offering is currently limited to the provision
and consumption of media. Further, there is also little freedom for users to add their
own content and create their own communities. Examples such as YouTube and
MySpace show that there is a desire for sharing information and content between
users. However, in contrast to these examples, in community networks there is a
target “audience”, i.e. the members of the community.

This implies that on the one hand there is a need for new services that give
users more freedom in the way they interact and share content. On the other hand,
there should be more services that allow users to create (new) content, set-up their
own communities, and control their environment. This goes beyond the existing
model (such as FlickR) where users are basically only able to manage and share the

15 Infrastructures for Community Networks 379

content. In this new model, they would also be able to determine (to a certain extent)
how content is delivered (e.g. over a video streaming service), what to do in case
of insufficient resources (i.e. what kind of adaptation strategy should be applied),
and even what kind of incentive mechanisms should be used. Thus, there should be
two different basic service types, viz. the more traditional content services and the
content and infrastructure support services. Especially the latter is not sufficiently
provided at this moment.

In order to be open and compatible, in this context, it is important to have a
service framework that allows different service providers to offer their content or
support services. Inspired by the idea behind Web services, a proper content ser-
vices network architecture needs to be developed so that it provides a framework
in which all the different services for optimized delivery and content usage can be
placed. This effectively provides an opportunity for commercial and private service
providers to offer services in the longer term, within a community content network
environment. Such a content service network framework effectively creates a mar-
ket place for services alongside a more community oriented service provisioning. In
order to achieve this fully, the open research questions in the next section have to be
addressed first.

15.4 Future Research Directions

In this section, the long term research challenges and some of the research direc-
tions that are followed by the CONTENT Network-of-Excellence to address these
challenges are presented.

15.4.1 Community Networks

Today’s research in content delivery related communication is, for instance, dealing
with streaming, network caching, QoS, and P2P issues. These are well developed
research areas with an established set of researchers addressing different parts of
the problem space. For community-based content networks, WMN are becoming
more and more important since they can be deployed without having to invest in an
expensive wired infrastructure. However, there are still a number of research issues
to be addressed in this context, e.g. regarding link quality, channel assignment and
routing, gateway selection, etc. These have to be investigated before WMN can be
a fully integral part of content networks. It is envisaged that integrated multihomed
networks will be functional by the end of the decade, based on the research progress
in WMN, network selection and other related research open issues.

In order to provide seamless communication, an End-to-End (E2E) infrastruc-
ture is required. This infrastructure will integrate different network types under a
unifying architecture dealing with aspects such as E2E QoS provision, E2E QoS

380 T. Plagemann et al.

routing, and traffic engineering. Another research strand is dealing with misbehavior
detection and the protection of content networks from attacks. This research is go-
ing to result in misbehavior-sensitive networks that provide resilience mechanisms
for the detection and protection of the network. A further, parallel development is
the autonomous distribution of content. This includes autonomic communication
architectures based on P2P principles. Issues here are related to the delivery, like
P2P streaming, but also to trust, co-ordination and management aspects. Autonomic
content delivery will also include certain service aspects (see below). Highly inter-
active applications within community content networks are still a major challenge.
By the next decade we envisage that highly heterogeneous infrastructures based on
different network types will be able to cope with this and provide the necessary
support.

15.4.2 Delivery Infrastructures

The core challenge for future delivery and service infrastructures for community
networks is to develop autonomic Content Networks (CNs) that integrate autonomic
overlay structures and content services, like content management. CNs will improve
the reliability and efficiency of traditional CDNs and reduce their management over-
head. Furthermore, CNs will also extend the application spectrum of traditional so-
lutions by, for instance, transparently supporting streaming media to mobile users,
providing interactive multimedia applications, or adapting them to a community
networking scenario. Research in this context requires dealing with the design of a
novel architecture for autonomic CNs, including novel methods for linking content
management with content delivery, and new protocols for the efficient transport of
control information. Research issues that need to be addressed here are related to the
actual delivery, but also how to appropriately orchestrate content management, ser-
vices functions, and communications. The latter can be achieved using cross-layer
information flow to better coordinate the different parts.

Current efforts are often only focused on a particular application domain, like
VoD, IPTV, or Web browsing, and targeted towards fairly rigid dissemination struc-
tures. In contrast, future P2P technologies need to be adaptive and follow a more
flexible approach than the rather constrained approaches in the context of a tradi-
tional CDN.

How to capture the systems aspects of the related processes and how to facili-
tate these developments through an appropriate architectural model have not been
sufficiently investigated. Important in this context is that the content delivery infras-
tructure and the content management functionality are well synchronized. In order
to achieve this, the area of cross-layer interaction plays a key role. This includes
functional and interface work on interaction between the different layers of the com-
munications architecture in order to facilitate the development and implementation
of emerging ubiquitous content networks as well as enabling content management
environments that allow faster production and easier access.

15 Infrastructures for Community Networks 381

Future research needs to expedite the convergence of content production and
delivery, and bridge the technological gap between the two areas. As a consequence
new possibilities for content creation, programme formats, and end-to-end content
delivery within one framework are becoming possible.

One of the guiding principles to improve content delivery is adaptation to net-
work conditions. If designed correctly, adaptation can lead to a much better system
utilization and efficiency. However, using adaptation in two sub-systems that are
independent of each other, i.e. using self-organizing cooperative caching schemes
on top of adaptive overlays without any further precaution, can result in a situa-
tion where the adaptation at one level thwarts the adaptation carried out in the other
system part. Furthermore, the conditions that can trigger adaptation consider only
data that is derived through network measurements. Therefore, cross layer issues
represent a particular challenge in this context.

15.4.3 Content Services Networks

While more advanced and better content services are needed for the future, it is
also important to structure them in a way that allows to combine existing service
instances to more complex services. Different service providers can offer services
ranging from infrastructure support to actual content provision. The former, for ex-
ample, can include a service providing a live video streaming infrastructure accord-
ing to a specified Service Level Agreement (SLA). This service in turn can make
use of other infrastructure services (e.g. a QoE assessment service). A user or com-
munity group could rent such a service for the distribution of their content and ef-
fectively create a content delivery service on top of it.

In order to establish such a framework the supporting concepts and underlying
architecture have to be well specified while still leaving room for flexible service
provisioning. The services within such a framework themselves form a content ser-
vices network with each service providing a distinct, self-contained service function.
Services can be distributed throughout the infrastructure and form a mesh of coor-
dinated mechanisms using either standard service interfaces for their coordination
or service specific protocols. The role of the content service architect is to allow
different services to be placed into the overall service framework and make them
part of the content network infrastructure. Services in this context range from in-
frastructure services (e.g. QoS and QoE assessment) over delivery support services
(such as transcoding and content adaptation), to content centric services (e.g. video
summarization and indexing).

The service architecture follows a generic Service Oriented Architecture (SOA)
model. The service model provides a generic service specification that deals with
aspects all content services have to conform to. This description leaves sufficient
scope for individual services to provide their own specification detailing the full ser-
vice interface and functionality. A content service has to provide a set of interfaces
through which it communicates with other services or applications. The internal

382 T. Plagemann et al.

organization and service structure is not part of this model, neither is the service
specific interface description or service specific functionality specification.

A service can be stateful or stateless. Stateful services have to provide an inter-
face to the service user to query the state of its execution. It should also be possible
to enter into an agreement about the provisioning of QoS. This requires the specifi-
cation of an SLA. The SLA itself is service specific and its format needs to be spec-
ified in the service description. Context awareness refers to the services that take
information from the application or environmental context to control and manage
the service. Through cross-layer interaction the service retrieves information from
underlying layers and system components. Through this it becomes more aware of
the system environment and can either adapt or try to influence the underlying com-
ponents. User interaction allows the specification of preferences by the user in order
to adapt the service to user needs. Figure 15.3 shows the generic content service
model.

Service
Input

State

Service
Output

Context
Data

Metadata

Cross-layer Interaction

User Preference

Service
Mechanisms

Service Module

Service
Data

SLA

Fig. 15.3 Content service model

The content service framework provides the context within which the services are
placed. Crucial in the context of the service framework is the service description and
its representation within the service registry. Services can use other services through
this service registry via standard interfaces. Such an approach allows dynamic and
automatic composition of content services and opens up new business opportunities
for brokerage services.

15.4.4 Cross Layer Issues

It is generally accepted in the research community that besides their advantages,
layered system architectures have also clear disadvantages. In order to enable re-
source aware distributed applications, access to network layer information is neces-
sary. Cross layered approaches are used to achieve this kind of awareness beyond
layer interfaces, but they are designed for particular solutions. Thus, understanding

15 Infrastructures for Community Networks 383

and developing a better architectural solution than strict layering is an important
research challenge in general. However, cross layer issues are especially important
in the context of future CNs for community networks since autonomic solutions, like
self-adapting functions, need to be applied. As mentioned earlier, independent adap-
tation of different functions might influence each other since they share resources.
For instance, both might have an impact on network traffic. The first step towards
addressing this challenge is to identify a set of metrics for each layer, including QoS
parameters and resource consumption parameters and to model their dependencies
between the layers. This first step seems trivial, but to carry it out successfully,
this set of metrics and their definitions need to be accepted and used by the entire
research community working in this area. Nowadays, many different and incompat-
ible metrics and definitions are used. Modeling the dependency among parameters
needs also to include the understanding of the functional behavior of the system
elements. To provide the proper tools for this challenge, the CONTENT Network-
of-Excellence investigates the development of a generic benchmarking suite for CNs
following a modular approach in which the different levels of a CN might be con-
sidered as the system under test and the other levels represent the environment and
the workload.

15.5 The CONTENT Approach

The CONTENT architectural framework does not provide a blueprint for the imple-
mentation of community based content networks, it much rather provides guidelines
and develops basic principles according to which such networks can be developed.
In order to validate the proposed principles and mechanisms within the framework a
number of aspects are currently being assessed. The strategy hereby is to implement
key elements and assess their performance through measurements and simulations.
This is carried out in the context of the three architectural layers, or in the case of
cross layer activities, related to inter-layer aspects. We illustrate this in the following
with three sample research activities and results in CONTENT.

At the community network level, simulation and measurement in a real testbed
is being used for studying performance and QoS in the case of mobile terminals
performing both vertical and horizontal handovers. Also simulation is used to vali-
date new proposals for available bandwidth estimation in wireless networks. Finally,
measurements in real testbeds are being made to analyze and define the appropriate
metrics for QoS at network level and other metrics which may be useful for upper
layers. As a sample of the preliminary results obtained, Fig. 15.4 shows a compar-
ison of the instantaneous available bandwidth estimation in a community network
using both the pathChirp tool and our proposal. The proposal under study is based
on in-line measurements and does not provoke congestion to make the estimation
of the available bandwidth. The graph shows how this new proposal behaves and
approximates the real available bandwidth.

384 T. Plagemann et al.

Fig. 15.4 Available bandwidth estimation

As part of the delivery infrastructure the principles of P2P caching are for ex-
ample being investigated. Initial work in this area has focused on how P2P caches
can be structured, dynamically established, and how the different elements are co-
ordinated. The goal of P2P caching is to bring content close to the user. However,
in contrast to “normal” caching, caches are not required after a content item has
reached a certain popularity since at this stage it will be widely available in the
vicinity. The idea is that peers are elected (based on request frequency) to join the
P2P cache. Content is cached according to requests and after this content is avail-
able, it is taken from the cache. A simulation study has been carried out assuming
between 5000 and 7000 nodes and different download scenarios. The study shows
that the major overhead is caused by coordination interaction between the caching
nodes. This is offset by bandwidth savings due to bringing content closer. It is also
found that the bandwidth that can be saved is considerable, whereas the additional
effort is marginal. However, the size of the content items and access patterns are
crucial. Further work can be carried out to establish how this changes with varying
download speeds and content penetration scenarios.

Besides the use of simulation tools, some prototypes are being developed to show
the applicability of the research results in a realistic scenario in the field of content
delivery in community networks. Several application scenarios are identified, based
on existing commercial services, to validate the architectural framework. In partic-
ular, we investigate a VoD application scenario that enhances a community Web
portal with video and by building a P2P application as add-on to their client-based

15 Infrastructures for Community Networks 385

community portal. Both the community members and the community provider can
offer videos for downloading. These videos can be for free or paid content. For ex-
ample, a golf player’s community can offer typical paid content such as professional
golf videos (e.g. report of a PGA tournament). It can also offer private videos but
paid content (e.g. a video of a golf trainer about how to improve your practice) or
totally free content.

15.6 Conclusion

Community networks provide many opportunities for new content services as well
as for the communication and interaction of community members. In this model the
community members provide the resources in terms of networks and nodes, e.g. in
the form of wireless mesh networks, and they provide, manage, and use content.
Since these are typical end users that do not necessarily have special training in net-
work management and system administration, autonomic solutions at the network
and overlay level are very important to reduce the necessary human intervention in
order to establish and maintain content delivery infrastructures. Wireless networks
and mobility play an important part in these delivery infrastructures. Therefore, it is
important that services can be dynamically adapted to available resources. To pro-
vide the foundation for self-adapting solutions, one of the most important research
challenges is to understand and model cross layer interactions and dependencies
among functions and among metrics. Furthermore, services need to be dynamically
composed out of simple service instances to exactly provide the services that is re-
quired by the users with respect to their functional needs and the available resources.

Acknowledgements This work has been supported by the CONTENT Network-of-Excellence,
which is funded by the European Commission in the 6th Framework Programme (Project No. IST-
FP6-038423). It includes contributions from all project partners. Therefore, the authors would like
to especially thank their colleagues from University Pierre and Marie Curie (Paris 6), University
of Coimbra, National and Kapodistrian University of Athens, Technische Universität Darmstadt,
AGH University of Science and Technology, and Delft University of Technology.

References

1. Aggarwal V, Feldmann A, Scheideler C (2007) Can ISPS and P2P users cooperate for
improved performance. SIGCOMM Computer Communications Review, Vol. 33, no. 3,
pp. 29–40

2. Akkiraju R, Farell J, Miller JA, Nagarajan N, Sheth A, Verma K (2005) Web Service Seman-
tics - WSDL-S. W3C Workshop on Frameworks for Semantics in Web Services

3. Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a survey. Computer Networks,
Vol. 47, no. 4, pp. 445–487

4. http://www.amherstma.gov/departments/Information Technology/community wireless.asp

386 T. Plagemann et al.

5. Aparicio AC, Serral-Gracià R, Jakab L, Domingo-PascualJ (2005) Measurement Based Anal-
ysis of the Handover in a WLAN MIPv6 Scenario. Dovrolis C (Ed.): Passive and Active
Measurements 2005 Boston USA, LNCS 3431, pp. 207–218

6. Aparicio AC, Julian-Bertomeu H, Núñez-Martı́nez J, Jakab L, Serral-Gracià R, Domingo-
Pascual J (2005) Measurement-Based Comparison of IPv4/IPv6 Mobility Protocols on a
WLAN Scenario. Networks UK, Publishers of the HET-NETs ‘05 Technical Proceedings
(ISBN 0-9550624-0-3) Ilkley, UK

7. Austin D, Barbi A, Ferris C, Garge S (2004) Web Services Architecture Requirements. W3C
Working Group Note, http://www.w3.or/TR/wsa-reqs/

8. Banerjee S, Lee S, Bhattacharjee B, Srinivasan A (2003) Resilient multicast using overlays. In
Proceedings of the 2003 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pp. 102–113, New York, NY, USA, ACM Press

9. Joe I, Batsell SG (2000) Reservation CSMA/CA for Multimedia Traffic over Mobile Ad-hoc
Networks. ISCC’2000, Antibes – Juans les Pins, France

10. Aguayo D, Bicket J, Biswas S, Judd G, Morris R (2004) Link-Level Measurements from an
802.11b Mesh Network. Proc. of ACM SIGCOMM 2004, Portland, Oregon, USA

11. Battle S, Bernstein A, Boley H, Grosof B, Gruninger M, Hull, R, Kifer M, Martin D, McIl-
raith S, McGuinness D, Su J, Tabet S (2005) Semantic Web Services Framework (SWSF)
Overview Version

12. Bawa M, Deshpande H, Garcia-Molina H (2002) Streaming live media over peers. HotNets-I,
Princeton, NJ, pp. 107–112

13. Berbner R, Heckmann O, SteinmetzR (2005) An Architecture for a QoS driven Composi-
tion of Web Service based Workflows. Proceedings of Networking and Electronic Commerce
Research Conference (NAEC2005) Riva del Garda, Italy

14. Biswas S, Morris R (2005) Opportunistic Routing in Multi-Hop Wireless Networks. Proceed-
ings of SIGCOMM 2005, Philadelphia, PA, USA, pp. 69–74

15. Boll S, Klas W, Wandel J (1999) A cross-media adaptation strategy for multimedia presen-
tations. Proceedings of the seventh ACM International Conference on Multimedia (Part 1),
pp. 37–46, New York, NY, USA

16. Broch J, Maltz DA, Johnson DB, Hu YC, Jetcheva J (1998) A performance comparison of
multi-hop wireless ad hoc network routing protocols. Mobile Computing and Networking,
pp. 85–97

17. Chu YH, Rao SG, Seshan S, Zhang H (2002) A Case for End-System Multicast. In IEEE
Journal on Selected Areas in Communications, special issue on Network Support for Multicast
Communications, Vol. 20, Issue 8, pp. 1456–1471

18. Cidon I, Rom R, Shavitt Y (1999) Analysis of multi-path routing. IEEE/ACM Transactions
on Networking, Vol. 7, no. 6, pp. 855–867

19. Dean M, Connolly D, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-
Schneider PF, Stein LA (2002) OWL Web Ontology Language 1.0 Reference. W3C Working
Draft

20. Cowan DD, Mayfield CI, Tompa FW, Gasparini W (1998) New role for community networks.
Communications of the ACM, Vol. 41, Issue 4

21. Darlagiannis V, Mauthe A, Steinmetz R (2006) Sampling Cluster Endurance for Peer-to-Peer
based Content Distribution Networks. Proceedings of Multimedia Communication and Net-
working (MMCN 2006, part of IS&T/SPIE Electronic Imaging 2006 Symposium)

22. Devarapalli V, Wakikawa R, Petrescu A, Thubert P (2005) Network Mobility (NEMO) Basic
Support Protocol. RFC 3963

23. Dutta A, Das S, Famolari D, Ohba Y, Taniuchi K, Kodama T, Shulzrinne H (2005) Seamless
Handover across Heterogeneous Networks - An IEEE 802.21 Centric Approach. Proceedings
of WPMC2005

24. ebXML Registry Services and Protocols, Committee Draft 01 (2005)
25. http://www.fon.com
26. C. Gkantsidis, T. Karagiannis, P. Rodriguez, M. Vojnovic Planet Scale Software Updates,

ACM/SIGCOMM‘06, Pisa. Sep 2006

15 Infrastructures for Community Networks 387

27. C. Gkantsidis and P. Rodriguez, Network Coding for Large Scale Content Distribution,
IEEE/INFOCOM‘05, Miami. March 2005.

28. G. Huston, Architectural Approaches to Multi-homing for IPv6, RFC 4177, 2005
29. Johnson D, Perkins C, Arkko J (2004) IP Mobility Support for IPv6. RFC 3775
30. Koodli R, ed (2005) Fast Handovers for Mobile IPv6 RFC 4068
31. Kostic D, Rodriguez A, Albrecht J, Vahdat A (2003) Bullet: high bandwidth data dissemina-

tion using overlay mesh. ACM SIGOPS Operating Systems Review, ACM SOSP
32. Krishnamurthy B, Wang J (2000) On network-aware clustering of Web clients. Proceedings

of ACM SIGCOMM
33. Kuhmünch C, Kühne G, Schremmer C, Haenselmann T (2001) Video-scaling algorithm based

on human perception for spatio-temporal stimuli. Technical Report Lehrstuhl Praktische In-
formatik IV, University of Mannheim, Germany

34. Lemlouma T, Layada N (2003) Media resources adaptation for limited devices. Proceedings of
the 7th ICCC/IFIP International Conference on Electronic Publishing, Universidadedo Minho,
Portugal

35. Lum WY, Lau FCM (2002) A context-aware decision engine for content adaptation. IEEE
Pervasive Computing, 1(3):41–49

36. Manola F, Miller E (2004) RDF Primer. W3C Recommendation
37. Martin D, ed (2003) OWL-S: Semantic Markup for Web Services. Technical Overview (asso-

ciated with OWL-S Release 1.1)
38. Microsoft Corporation I (2004) Web Services Dynamic Discovery (WS-Discovery)
39. Mohan R, Smith JR, Li CS (1999) Adapting multimedia internet content for universal access.

IEEE Transactions on Multimedia, 1(1):104–114
40. Nakao A, Peterson L, Bavier A (2003) A Routing Underlay for Overlay Networks. Proceed-

ings of the ACM SIGCOMM Conference
41. http://wiki.ninux.org/
42. Ogier R, Ruenburg V, Shacham N (1993) Distributed algorithms for computing shortest pairs

of disjoint paths. IEEE Transactions on Information Theory, Vol. 93, no. 2, pp. 443–456
43. (2006) Wi-Fi service breaches ISP conditions. OUT-LAW News, 27/09/2006. http://www.out-

law.com/page-7335
44. Parker A (2005) P2P: Opportunity of Thread. Panel presentation at IEEE Workshop on Web

Content Caching and Distribution, Sophia Antipolis, France
45. Perkins C (2002) IP Mobility Support for IPv4. RFC 3344
46. PlanetLab: http://www.planet-lab.org/
47. PPLive web site, http://www.pplive.com.
48. PPStream web site, http://www.ppstream.c
49. Raju J, Garcia-Luna-Aceves JJ (1999) A new approach to on-demand multipath routing. IEEE

ICCCN
50. Silverston T, Fourmaux O (2006) Source vs Data-Driven Approach for Live P2P Streaming.

Proceedings of IEEE ICN 2006, Mauritius
51. Soliman H, Castelluccia C, Malki EK, Bellier L (2005) Hierarchical Mobile IPv6 Mobility

Management (HMIPv6). RFC 4140
52. Stockhammer T, Hannuksela MM, Wiegand T (2003) H.264/AVC in Wireless Environ-

ments. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, Issue 7,
pp. 657–673

53. Ren S, Guo L, Zhang X (2006) ASAP: an AS-Aware Peer-relay protocol for high quality
voIP. Proceedings of the 26th International Conference on Distributed Computing Systems
(ICDCS‘06), Lisbon, Portugal

54. Rosson MB, Carroll JM (1998) Network communities, community networks. CHI 98 confer-
ence summary on Human factors in computing systems CHI ‘98

55. Seetharaman S, Ammar M (2006) On the Interaction between Dynamic Routing in the Native
and Overlay Layers. IEEE INFOCOM

56. SOPcast web site, http://www.sopcast.com.
57. http://tibtec.org/?q=node/60

388 T. Plagemann et al.

58. TVants web site, http://www.tvants.com.
59. UDDI Spec Technical Committee (2003) UDDI Version 3.0.1. http://uddi.org/pubs/

uddi v3.htm
60. Verscheure O, Frossard P, Hamdi M (1999) User-Oriented QoS Analysis in MPEG-2 Video

Delivery. Journal of Real-Time Imaging, special issue on Real-Time Digital Video over Mul-
timedia Networks, Vol. 5, no 5, pp. 305–314

61. Wiegand T, Schwarz H, Joch A, Kossentini F, Sullivan GJ (2003) Rate-constrained coder
control and comparison of video coding standards. IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 13, no 7, pp. 688–704

62. Winkler S (2005) Digital Video Quality - Vision Models and Metrics. Wiley
63. Zhang X, Liu J, Li B, Yum TP (2005) Coolstreaming/donet: A data-driven overlay network

for peer-to-peer live media streaming. Proceedings IEEE Infocom
64. Wang Z, Sheikh HR, Bovik AC (2003) Objective Video Quality Assesment. In The Hand-

book of Video Databases: Design and Applications, eds Furht B, Marqure O, CRC Press,
pp. 1041–1078

65. CONTENT Network of Excellence, IST-FP6-038423. http://www.ist-content.eu/

Chapter 16
Internetworking of CDNs

Mukaddim Pathan, Rajkumar Buyya, and James Broberg

16.1 Introduction

The current deployment approach of the commercial Content Delivery Network
(CDN) providers involves placing their Web server clusters in numerous geograph-
ical locations worldwide. However, the requirements for providing high quality ser-
vice through global coverage might be an obstacle for new CDN providers, as well
as affecting the commercial viability of existing ones. It is evident from the ma-
jor consolidation of the CDN market, down to a handful of key players, which has
occurred in recent years. Unfortunately, due to the proprietary nature, existing com-
mercial CDN providers do not cooperate in delivering content to the end users in
a scalable manner. In addition, content providers typically subscribe to one CDN
provider and thus can not use multiple CDNs at the same time. Such a closed, non-
cooperative model results in disparate CDNs. Enabling coordinated and cooperative
content delivery via internetworking among distinct CDNs could allow providers
to rapidly “scale-out” to meet both flash crowds [2] and anticipated increases in
demand, and remove the need for a given CDN to provision resources.

CDN services are often priced out of reach for all but large enterprise customers.
Further, commercial CDNs make specific commitments with their customers by
signing Service Level Agreements (SLAs), which outline specific penalties if they
fail to meet those commitments. Hence, if a particular CDN is unable to provide
Quality of Service (QoS) to the end user requests, it may result in SLA violation
and end up costing the CDN provider. Economies of scale, in terms of cost effec-
tiveness and performance for both providers and end users, could be achieved by

Mukaddim Pathan
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia, e-mail: ap-
athan@csse.unimelb.edu.au

Rajkumar Buyya
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia, e-mail:
raj@csse.unimelb.edu.au

James Broberg
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia, e-mail:
brobergj@csse.unimelb.edu.au

R. Buyya et al. (eds.), Content Delivery Networks, 389
c© Springer-Verlag Berlin Heidelberg 2008

390 M. Pathan et al.

leveraging existing underutilized infrastructure provided by other CDNs. For the
purposes of this chapter, we term the technology for interconnection and interopera-
tion between CDNs as “peering arrangements” of CDNs or simply “CDN peering”,
which is defined as follows:

Definition of ‘peering arrangement’ – A peering arrangement among CDNs is
formed by a set of autonomous CDNs {CDN1, CDN2, . . ., CDNn}, which cooperate
through a mechanism M that provides facilities and infrastructure for cooperation
between multiple CDNs for sharing resources in order to ensure efficient service de-
livery. Each CDNi is connected to other peers through a ‘conduit’ Ci, which assists
in discovering useful resources that can be harnessed from other CDNs.

While the peering of CDNs is appealing, the challenges in adopting it include de-
signing a system that virtualizes multiple providers and offloads end user requests
from the primary provider to peers based on cost, performance and load. In particu-
lar we identify the following key issues:

• When to peer? The circumstances under which a peering arrangement should be
triggered. The initiating condition must consider expected and unexpected load
increases.

• How to peer? The strategy taken to form a peering arrangement among multiple
CDNs. Such a strategy must specify the interactions among entities and allow for
divergent policies among peering CDNs.

• Who to peer with? The decision making mechanism used for choosing CDNs to
peer with. It includes predicting performance of the peers, working around issues
of separate administration and limited information sharing among peering CDNs.

• How to manage and enforce policies? How policies are managed according to
the negotiated SLAs. It includes deploying necessary policies and administering
them in an effective way.

Therefore, an ad-hoc or planned peering of CDNs requires fundamental research
to be undertaken to address the core problems of measuring and disseminating
load information, performing request assignment and redirection, enabling content
replication and determining appropriate compensation among participants on a ge-
ographically distributed “Internet” scale. Moreover, to ensure sustained resource
sharing between CDN providers, peering arrangements must ensure that sufficient
incentive exists for all participants [18]. These issues are deeply interrelated and
co-dependent for a single CDN. However, they must now be considered in a coor-
dinated and cooperative manner among many peered CDNs, whilst satisfying the
complex multi-dimensional constraints placed on each individual provider. Each
provider must ensure that their individual SLAs are met when serving content for
its own customers to end users, while meeting any obligations it has made when
participating in a group of many providers.

In this chapter, we present an approach for CDN peering, which helps to create
“open” CDNs that scale well and can share resources with other CDNs, and thus
evolving past the current landscape where non-cooperative CDNs exist. In our ar-
chitecture, a CDN serves end user requests as long as the load can be handled by
itself. If the load exceeds its capacity, the excess end user requests are offloaded to

16 Internetworking of CDNs 391

the CDN network of the peers. We also present two new models to support peering
of CDNs and identify the challenges associated with realizing these models.

The remainder of the chapter is organized as follows. In Sect. 16.2, we demon-
strate the significance and relevance of CDN peering. Next we present the related
work highlighting their shortcomings. In Sect. 16.4, we present our approach for
CDN peering, followed by the new models to assist CDN peering. Then we dis-
cuss the challenges in implementing peering CDNs. In Sect. 16.7, we also identify
related core technical issues to be addressed. Finally, we conclude the chapter in
Sect. 16.8.

16.2 Significance of CDN Internetworking

As noted in earlier chapters, popular Web sites often suffer congestion, bottlenecks,
and even lengthy downtime due to large demands made on the resources of the
provider hosting them. As discussed in Chap. 11, this phenomenon can manifest
itself as instances of unexpected flash crowds resulting from external events of ex-
treme magnitude and interest or sudden increases in visibility after being linked
from popular high traffic Websites like Slashdot1 or Digg.2 Increases in demand on
Web servers can also be more predictable, such as the staging of a major events
like the Olympic Games or the FIFA World Cup. The level of demand generated
for many popular Web sites can often be impossible to satisfy using a single Web
server, or even a cluster. In 1998, the official Soccer World Cup Website received
1.35 billion requests over 3 months, peaking at 73 million requests per day, and 12
million requests per hour [2]. Similarly high volumes were seen during the 1998
Winter Olympic Games, with the official Website servicing 56.8 million requests
on a peak day (and a maximum of 110,414 requests per minute) [13]. During Sept.
11, 2001, server availability approached 0 % for many popular news Websites with
pages taking over 45 sec. to load, if at all [15]. Given that end users will wait as
little as 10 sec. before aborting their requests, this can lead to further bandwidth and
resource wastage [12].

Peering CDNs could be a solution to handle flash crowds, Web resources over-
provisioning, and adverse business impact. It is evident that significant gains in cost
effectiveness, performance, scalability and coverage could be achieved if a frame-
work existed that enabled peering between CDNs to allow coordinated and coopera-
tive load sharing. To better understand the peering of CDNs, consider the following
scenario in Fig. 16.1. Suppose that the ICC Cricket World Cup is being held in the
Caribbean, and www.cricinfo.com is supposed to provide live media coverage. As a
content provider, www.cricinfo.com has an exclusive SLA with the CDN provider,
Akamai [10]. However, Akamai does not have a Point of Presence (POP) in Trinidad
and Tobago (a Caribbean island), where most of the cricket matches will be held.

1 http://www.slashdot.org
2 http://www.digg.com

392 M. Pathan et al.

Fig. 16.1 A CDN peering scenario

16 Internetworking of CDNs 393

As being the host of most of the cricket matches, people of this particular part of
Caribbean are expected to have enormous interest in the live coverage provided by
www.cricinfo.com. Since Akamai is expected to be aware of such event well in
advance, its management can take necessary initiatives to deal with the evolving sit-
uation. In order to provide better service to the clients, Akamai management might
decide to place its surrogates in Trinidad and Tobago, or they might use their other
distant edge servers (as shown in Fig. 16.1(a)). Firstly, placing new surrogates just
for one particular event would be costly and might not be useful after the event.
On the other hand, Akamai risks its reputation if it can not provide agreed QoS for
client requests, which could violate the SLA and still cause profit reduction. Hence,
the solution for Akamai could involve cooperating with other CDN provider(s) to
form a peering arrangement in order to deliver the service that it could not provide
otherwise (depicted in Fig. 16.1(b)).

Peering arrangements between CDNs may vary in terms of the purpose, scope,
size, and duration. We anticipate that in case of flash crowds, such a peering ar-
rangement should be automated to react within a tight time frame—as it is unlikely
that a human directed negotiation would occur quickly enough to satisfy the evolved
niche. In case of long-duration events (as in Fig. 16.1), we would expect negotia-
tion to include a human-directed agent to ensure that any resulting decisions comply
with participating companies’ strategic goals.

16.3 Related Work

Internetworking of resource providers is gaining popularity in the research commu-
nity. An example of such a research initiative is InterGrid [3], which describes the
architectures, mechanisms, and policies for internetworking grids so that grids can
grow in a similar manner as Internet. Analyses of previous research efforts suggest
that there has been only modest progress on the frameworks and policies needed
to allow peering between providers. In CDNs context, the reasons for this lack of
progress range from technological problems that need solving, to legal and com-
mercial operational issues for the CDNs themselves. For CDNs to peer, they need
a common protocol to define the technical details of their interaction as well as the
duration and QoS expected during the peering period. Furthermore, there can often
be complex legal issues involved (e.g. embargoed or copyrighted content) that could
prevent CDNs from arbitrarily cooperating with each other. Finally, there may sim-
ply be no compelling commercial reason for a large CDN provider such as Akamai
to participate in CDN peering, given the competitive advantage that its network has
the most pervasive geographical coverage of any commercial CDN provider.

The internet draft by Internet Engineering Task Force (IETF) proposes a Con-
tent Distribution Internetworking (CDI) Model [9], which allows CDNs to have a
means of affiliating their delivery and distribution infrastructure with other CDNs
who have content to distribute. According to the CDI model, each content network
treats neighboring content networks as black boxes, which uses commonly defined

394 M. Pathan et al.

protocol for content internetworking, while internally uses its proprietary protocol.
Thus, the internetworked content networks can hide the details from each other. The
CDI Internet draft assume a federation of CDNs but it is not clear how this federa-
tion is built and by which relationships it is characterized.

A protocol architecture [21] for CDI attempts to support the interoperation and
cooperation between separately administered CDNs. In this architecture, perfor-
mance data is interchanged between CDNs before forwarding a request by an au-
thoritative CDN (for a particular group), which adds an overhead on the response
time perceived by the users. Moreover, being a point-to-point protocol, if one end-
point is down the connection remains interrupted until that end-point is restored.
Since no evaluation has been provided for performance data interchange, the effec-
tiveness of the protocol is unclear.

CDN brokering [3] allows one CDN to intelligently redirect end users dynami-
cally to other CDNs in that domain. This DNS-based system is called as Intelligent
Domain Name Sever (IDNS). The drawback is that, the mechanism for IDNS is pro-
prietary in nature and might not be suitable for a generic CDI architecture. Although
it provides benefits of increased CDN capacity, reduced cost, and better fault toler-
ance, it does not explicitly consider the end user perceived performance to satisfy
QoS while serving requests. Moreover, it demonstrates the usefulness of brokering
rather than comprehensively evaluating a specific CDN’s performance.

Amini et al. [1] present a peering system for content delivery workloads in a fed-
erated, multi-provider infrastructure. The core component of the system is a peering
algorithm that directs user requests to partner providers to minimize cost and im-
prove performance. However, the peering strategy, resource provisioning, and QoS
guarantees between partnering providers are not explored in this work.

From a user-side perspective, Cooperative Networking (CoopNet) [15] provides
cooperation of end-hosts to improve network performance perceived by all. This
cooperation between users is invoked for the duration of the flash crowd. CoopNet
is found to be effective for small Web sites with limited resources. But the main
problem of the user-side mechanisms is that they are not transparent to end users,
which are likely to restrict their widespread deployment. Hence, it can not be used as
a replacement and/or alternative for cooperation among infrastructure-based CDNs.

CoDeeN [16, 23] provides content delivery services, driven entirely by end user
demands. However, utilizing its services is not transparent to the end users, as they
require them to “opt-in” by setting their browser proxy manually to interact with the
CoDeeN network. This user-driven approach means that CoDeeN is essentially an
elaborate caching mechanism rather than a true CDN. The authors also noted that the
system could be easily abused by bandwidth hogs, password crackers, and licensed
content theft, requiring CoDeeN to implement some rudimentary measures such
as IP blacklisting and privilege separation for local and external users. Currently,
CoDeeN only runs on PlanetLab nodes. Cooperation with external content providers
is mentioned by the authors but has yet to be explored.

CoralCDN [11] utilizes a novel Peer-to-Peer (P2P) DNS approach to direct users
to replica nodes in the CoralCDN overlay network, reducing the stress on origin
servers and improving performance for users. CoralCDN is a cooperative network,

16 Internetworking of CDNs 395

but there is no means for nodes (or providers) to participate in peering or internet-
working with nodes that are outside of PlanetLab. The nodes that can participate
are only offered a coarse level control over their participation (such as allowing in-
dividual servers to specify their maximum peak and steady-state bandwidth usage)
but there is no fine grained control over exactly what content a node has agreed to
serve, nor are there service guarantees. Naturally, given that the service is free and
research oriented, content is served on a best effort basis and no compensation is
given for participating nodes.

Globule [19, 20] is an open-source collaborative CDN that allows almost any Web-
hosting server to participate by installing a customized Globule Apache model, lever-
aging the ubiquitous nature of Apache as the leading Web server platform. Globule en-
ables server-to-server peering, ad-hoc selection, creation, and destruction of replicas,
consistency management and relatively transparent redirection (via HTTP or DNS)
of clients to high-performing replicas. Participants in the Globule CDN can act as a
hosting server, a hosted server, or both. This means they can serve content for other
users sites as well as their own, in addition to leveraging other participants resources
to replicate their own sites. Bandwidth and resource limits can be applied to hosted
servers but depend on appropriate facilities being available on the hosting server to
enforce this (such as bandwidth limiting Apache modules and “jail” environments to
cap resource usage) rather than being handled by Globule itself. A brokerage service
is offered where participants can register and access other participants’ details in order
to initiate negotiations for hosting requests. Such negotiations could include pricing
and compensation agreements but this has not been explored deeply in Globule. Se-
curity and data integrity aspects (such as dealing with malicious users) are recognized
but still remain an open problem for the Globule CDN.

DotSlash [25] is a community driven “mutual” aid service that offers support
for small sites that would not have the resources to cope during instances of flash
crowds. Provided the site in question has configured itself to access DotSlash, the
service automatically intervenes during the flash crowd, allocating and releasing
“rescue” servers depending on the load, and is phased out once the flash load passes.
A service directory is utilized to allow participants to find each other easily. Partici-
pants in DotSlash can only exist in three fixed and mutually exclusive states—SOS
state where a participant is overloaded and receiving help from other participants,
rescue state where a participant is aiding another participant in SOS state, and
normal state. Given the community-driven nature of DotSlash, there is no facility
available for internetworked nodes to receive compensation (monetary or resources
in-kind) for participating in the peering arrangement.

16.4 Architecture for CDN Internetworking/Peering

Internetworking between different CDNs remains an open problem. The notion of
CDN internetworking through a peering mechanism is appealing as a means to ad-
dress unexpected flash crowds, as well as anticipated short or long term increases in

396 M. Pathan et al.

demand, when a single CDN has insufficient resources. They could also allow CDNs
(that may not have resources in a particular location) to utilize the resources of other
CDNs, by forming a peering arrangement. Thus, peering CDNs can address local-
ized increases in demand for specific content. However, as discussed in Sect. 16.3,
many collaborative CDNs exist, who function in isolation from each other and com-
mercial CDNs operate with differing policies, methodologies, and QoS expectation.
As such, in order for these disparate CDNs to peer, we need to formalize the manner
in which they will peer, how they interact, and how QoS levels are set and managed.

In previous work [5, 17], we have presented a policy-driven peering CDNs frame-
work (depicted in Fig. 16.2). The terminologies used to describe the system archi-
tecture are listed in Table 16.1. The initiator of a peering negotiation is called a
primary CDN; while other CDNs who agree to provide their resources are called
peering CDNs. The endpoint of a peering negotiation between two CDNs is a con-
tract (SLA) that specifies the peer resources (Web servers, bandwidth etc.) that will
be allocated to serve content on behalf of the primary CDN. The primary CDN
manages the resources it has acquired insofar that it determines what proportion
of the Web traffic (i.e. end user requests) is redirected to the Web servers of the
peering CDNs.

Figure 16.3 illustrates the typical steps to create a peering arrangement. We sum-
marize these steps in the following:

Step 1. Creation of a peering arrangement starts when the (primary) CDN
provider realizes that it cannot handle a part of the workload on its Web server(s).
An initialization request is sent to the mediator.

CDN 2

Pvo

Pws

Pws

Pws

Pws

PVO

PVO

Pws

PWS

PM

PM

Mediator

Mediator

Policy
repository

Policy
repository

Peering
Agent
(PA)

Peering
Agent
(PA)

Peering
Arrangement

Peering
Agent
(PA)

Policy
repository

Web Services Host
(e.g. Apache)

Policy Agent

SMP Cluster

Internet

Enterprise
System

Web Server

Web Server

Web Server

Web Server

CDN N

CDN 1

Service Registry

SLA-based Allocator

PM

Web Server

Web Server

Web Server

Web Server

Service Registry

Service Registry

Mediator

Content request

Fig. 16.2 Architecture of a system to assist the creation of peering CDNs

16 Internetworking of CDNs 397

Table 16.1 List of commonly used terms

Terminology Description

Web server (WS) A container of content
Mediator A policy-driven entity, authoritative for policy negotiation and

management
Service registry (SR) Discovers and stores resource and policy information in local domain
Peering Agent (PA) A resource discovery module in the peering CDNs environment
Policy repository (PR) A storage of Web server, mediator and peering policies
PWS A set of Web server-specific rules for content storage and management
PM A set of mediator-specific rules for interaction and negotiation
PPeering A set of rules for creation and growth of the peering arrangement

Step 2. The mediator instance obtains the resource and access information from
the SR, whilst SLAs and other policies from the PR.
Step 3. The mediator instance on the primary CDN’s behalf generates its ser-
vice requirements based on the current circumstance and SLA requirements of its
customer(s). Hence, it needs to be expanded to include additional resources from
other CDNs.
Step 4. The mediator instance passes the service requirements to the local Peer-
ing Agent (PA). If there are any preexisting peering arrangements (for a long
term scenario) then these will be returned at this point. Otherwise, it carries out
short term negotiations with the PA identified peering targets.
Step 5. When the primary CDN acquires sufficient resources from its peers to
meet its SLA with the customer, the new peering arrangement becomes op-
erational. If no CDN is interested in such peering, peering arrangement cre-
ation through re-negotiation is resumed from Step 3 with reconsidered service
requirements.

An existing peering arrangement may need to either disband or re-arrange itself if
any of the following conditions hold: (a) the circumstances under which the peering
was formed no longer hold; (b) peering is no longer beneficial for the participating

Hotspot
generated

(5) Acquire
resources from
peered CDNs

(4) Contact PAs
of other CDNs

(5) Store
negotiated

policies

(4) Request to create
a peering of CDNs

Client
requestsWS

WS

WS

(1) Initialization
request

(2) Obtain
service and

policy
information

PA

PR
PA

PA

PA

SR
instance

Mediator
instance

(5) A peering
arrangement

formed

(3) Determine service
requirements and policies
for resource negotiation

Fig. 16.3 Typical steps for creating a peering arrangement

398 M. Pathan et al.

CDNs; (c) an existing peering arrangement needs to be expanded further in order
to deal with additional load; or (d) participating CDNs are not meeting their agreed
upon contributions.

We have chosen to adapt the IETF policy-based framework to administer, man-
age, and control access to network resources [24]. Whilst the usage of such a frame-
work has received preliminary investigation for individual CDNs [22], it had not
been considered under a framework with multiple peering CDNs. The policy frame-
work consists of four basic elements: policy management, policy repository, policy
enforcement point (PEP), and the policy decision point (PDP).

In the standard IETF policy framework, the admin domain refers to an en-
tity which administers, manages, and controls access resources within the system
boundary. An administrator uses the policy management tools to define the policies
to be enforced in the system. The PEPs are logical entities within the system bound-
ary, which are responsible for taking action to enforce the defined policies. The
policies that the PEPs need to act on are stored in the policy repository. The results
of actions performed by the PEPs have direct impact on the system itself. The policy
repository stores polices generated by the administrators using the policy manage-
ment tools. The PDP is responsible for retrieving policies from the policy repository,
for interpreting them (based on policy condition), and for deciding on which set of
policies are to be enforced (i.e. policy rules) by the PEPs. Choosing where these
logical elements reside in a CDN system will obviously have a significant effect
on the utility and performance experienced by participating CDNs and end users,
and must be considered carefully and specifically depending on the particular CDN
platform that is implementing them.

A policy in the context of peering CDNs would be statements that are agreed
upon by the participants within the group of peered CDNs. These statements define
what type of contents and services can be moved out to a CDN node, what resources
can be shared between the participants, what measures are to be taken to ensure QoS
based on negotiated SLAs, and what type of programs/data must be executed at the
origin servers.

The proposed model for peering CDNs in Fig. 16.2 has been mapped to the IETF
policy framework, as shown in Table 16.2. The policy repository is responsible for
storing policies generated by the policy management tool used by the administrator
of a particular peering group of CDNs – typically the initiator of the grouping. The
policy repository virtualizes the Web server, mediator, and peering policies. These
policies are generated by the policy management tool used by the administrator of a
particular peering group. The distribution network and the Web server components
(i.e. Web Services host, Policy Agent, SLA-based Allocator) are the instances of
PEPs, which enforce the peering CDN policies stored in the repository. The peering
agent and mediator are instances of the PDPs, which specify the set of policies to be
negotiated at the time of collaborating with other CDNs, and pass them to the peer-
ing agent at the time of negotiation. The policy management tool is administrator
dependent, and will vary depending on the CDN platform. A direct benefit of using
such policy-based architecture is to reduce the cost of operating of CDNs by pro-
moting interoperability through a common peering framework, and thus allowing
CDNs to meet end user QoS requirements under conditions of heavy load.

16 Internetworking of CDNs 399

Table 16.2 Policy mapping

Policy Framework
Component

Peering CDNs
Component

Specified
Policies

Description

System Peering CDNs All policies in
the system

The distributed computing and
network infrastructure for
peering CDNs

Admin domain Peering
arrangement

Negotiated
peering
policies

An administrative entity for
resource management and
access control

Policy
management
tool

Administrator
dependent

– An administrator dependent tool to
generate policies

Policy repository Policy repository Web server,
peering and
mediator
policies

Storage of policies in the system

Policy
Enforcement
Points (PEPs)

Web Services
host, Policy
Agent,
SLA-based
allocator

Web server
policies

A logical entity which ensures
proper enforcement of policies

PDPs Mediator Mediator
policies,
peering
policies

An authoritative entity for
retrieving policies from the
repository

16.4.1 Performance Gain Through Peering

We develop the performance models based on the fundamentals of queuing theory
to demonstrate the effects of peering between CDNs and to characterize the QoS
performance of a CDN.

It is abstracted that N independent streams of end user requests arrive at a con-
ceptual entity, called dispatcher, following a Poisson process with the mean arrival
rate λi, i ∈ {1,2, . . . ,N}. The dispatcher acts as a centralized scheduler in a particu-
lar peering relationship with independent mechanism to distribute content requests
among partnering CDNs in a user transparent manner. If, on arrival, a user request
can not be serviced by CDN i, it may redirect excess requests to the peers. Since this
dispatching acts on individual requests of Web content, it endeavors to achieve a fine
grain control level. The dispatcher follows a certain policy that assists to assign a
fraction of requests of CDN i to CDN j.

For our experiments, we consider an established peering arrangement consisting
of three CDNs. It is assumed that the total processing of the Web servers of a CDN
is accumulated and each peer contains same replicated content. The service time of
each CDN’s processing capability follows a general distribution. The term ‘task’ is
used as a generalization of a request arrival for service. We denote the processing
requirements of an arrival as ‘task size’. Each CDN is modeled as an M/G/1 queue

400 M. Pathan et al.

with highly variable Hyper-exponential distribution which approximates a heavy-
tailed Bounded Pareto service distribution (α, k, p) with variable task sizes. Thus,
the workload model incorporates the high variability and self-similar nature of Web
access.

In our performance models, participating providers are arranged according to a
non-preemptive Head-Of-the-Line (HOL) priority queuing system. It is an M/G/1
queuing system in which we assume that user priority is known upon their arrival
to a CDN and therefore they may be ordered in the queue immediately upon entry.
Thus, various priority classes receive different grades of service and requests are
discriminated on the basis of known priority. In our model, an incoming request
(with priority p) joins the queue behind all other user requests with priorities less
than or equal to p and in front of all the user requests with priority greater than p.
Due to this nature of the peering CDNs model, the effect of peering can be captured
irrespective of any particular request-redirection policy.

For our experiments, we consider the expected waiting time as an important pa-
rameter to evaluate the performance of a CDN. The expected waiting time corre-
sponds to the time elapsed by a user request before being served by the CDN. In our
peering scenario, we also assume an SLA of serving all user requests by the primary
CDN in less than 20000 time units.

16.4.1.1 QoS Performance of the Primary CDN

First, we provide the evidence that a peering arrangement between CDNs is able to
assist a primary CDN to provide better QoS to its users. The Cumulative Distribution
Function (C.D.F) of the waiting time of the primary CDN can be used as the QoS
performance metric. In a highly variable system such as peering CDNs, the C.D.F
is more significant than average values.

Figure 16.4(a) shows the C.D.F of waiting time of the primary CDN without
peering at different loads. From the figure, we see that for a fair load ρ = 0.6, there
is about 55 % probability that users will have a waiting time less than the threshold

0 4000 8000 12000 16000 20000
Waiting Time (Time Units)

0

0.2

0.4

0.6

0.8

1

0 4000 8000 12000 16000 20000
Waiting Time (Time Units)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Fair load (ρ = 0.6)
Moderate load (ρ = 0.7)
Heavy load (ρ = 0.9)

Fair load (ρ = 0.6)
Moderate load (ρ = 0.7)
Heavy load (ρ = 0.9)

(a) without peering (b) in a peering arrangement

Fig. 16.4 Cumulative distribution of waiting time of the primary CDN

16 Internetworking of CDNs 401

of 20000 time units. For a moderate load ρ = 0.7, there is about 50 % probability
to have a waiting time below the threshold, while for a heavy load ρ = 0.9, the
probability reduces to > 24 %.

Figure 16.4(b) shows the C.D.F of the primary CDN with peering at different
loads. By comparing Fig. 16.3(a) and Fig. 16.3(b), it can be found that for a fair
load ρ = 0.6, there is about 80 % probability that users will have a waiting time
less than the threshold of 20000 time units. Therefore, in our scenario, peering as-
sists the primary CDN to achieve a QoS performance improvement of about 31 %.
For a moderate load ρ = 0.7, there is > 81 % probability for users to have wait-
ing time below the threshold, an improvement of about 38 %. For a heavily loaded
primary CDN with ρ = 0.9, the probability is about 70 %, which leads to an im-
provement of > 65 %. Moreover, for loads ρ > 0.9, still higher improvement can
be predicted by the performance models. Based on these observations, it can be
stated that peering between CDNs, irrespective of any particular request-redirection
policy, achieves substantial QoS performance improvement when comparing to the
non-peering case.

16.4.1.2 Impact of Request-Redirection

Now, we study the impact of request-redirection on the expected waiting time of
users on the primary CDN. A request-redirection policy determines which requests
have to be redirected to the peers. We have evaluated different request-redirection
policies within the peering CDNs model. Here, we only demonstrate the perfor-
mance result using Uniform Load Balanced (ULB) request-redirection policy that
distributes the redirected content requests uniformly among all the peering CDNs.
Our aim is to show that even with a simple request-redirection policy, our perfor-
mance model exhibits substantial performance improvement on the expected wait-
ing time when compared to the non-peering case.

In our experiments, no redirection is assumed until primary CDN’s load reaches
a threshold load (ρ = 0.5). This load value is also used as the baseline load for
comparing waiting times at different primary CDN loads. Any load above that will
be ‘shed’ to peers. Each peer is ready to accept only a certain fraction (acceptance
threshold) of the redirected requests. Any redirected request to a given peer exceed-
ing this acceptance threshold is simply dropped to maintain the system equilibrium.
We consider lightly loaded peers (load of peer 1 and peer 2 are set to ρ = 0.5 and
ρ = 0.4 respectively), while tuning the primary CDN’s load (0.1 ≤ ρ ≤ 0.9). It can
be noted that a weighted average value of waiting time is presented in order to cap-
ture the effect of request-redirection.

From Fig. 16.5, we find that, without request-redirection when the primary
CDN’s load approaches to 1.0, the user perceived performance (in terms of wait-
ing time) for service by the primary CDN tends to infinity. On the other hand, with
request-redirection the waiting time of the primary CDN decreases as the requests
are redirected to the peers. It is observed that for a fair load ρ = 0.6, there is about
43 % reduction in waiting time, while for a moderate load ρ = 0.7, it becomes about

402 M. Pathan et al.

Fig. 16.5 Impact of request-redirection on waiting time of the primary CDN for uniform request-
redirection policy

66 %, and for a heavy load ρ = 0.9, it reaches to > 90 %. From the results, it is clear
that even a naive request-redirection policy like ULB can guarantee that the maxi-
mum waiting time is below 20000 time units (as per the SLA). Therefore, better per-
formance results can be anticipated with a scalable and efficient request-redirection
policy. Our results also confirms that redirecting only a certain fraction of requests
reduces instability and overload in the peering system because the peers are not
overwhelmed by bursts of additional requests.

16.5 New Models for CDN Peering

In this section, we propose two new models to assist CDN peering. They are
brokering-based and QoS-driven (customized) brokering-based models. They can
be used to complement our peering CDNs model presented in Sect. 16.4. To bet-
ter understand the uniqueness of these endorsing models and to compare them with
existing ones, we first revisit conventional, P2P-based, and Internetworked/peered
CDNs. Then we present our newfangled ideas for forming peering CDNs. In
Table 16.3, we compare the existing and proposed CDN models and summarize
their unique features.

16.5.1 Existing CDN Models

In a conventional CDN, end users request content from a particular content pro-
vider’s Web site. The actual content itself is served by the CDN employed by the
content provider from the edge server nearest the end user. There is typically an

0

20000

40000

60000

80000

100000

0.1 0.3 0.5 0.7 0.9
Load on Primary CDN

W
ai

ti
n

g
 T

im
e

(T
im

e
U

n
it

s) Before Redirection
After Redirection: ULB
Baseline load, ρ = 0.5

16 Internetworking of CDNs 403

Ta
bl

e
16

.3
C

om
pa

ri
so

n
of

C
D

N
m

od
el

s

Fe
at

ur
es

Ty
pi

ca
lC

D
N

M
od

el
s

A
dv

an
ce

d
M

od
el

s
fo

r
C

D
N

Pe
er

in
g

C
on

ve
nt

io
na

lC
D

N
s

P2
P-

B
as

ed
C

D
N

s
Pe

er
in

g
C

D
N

s
B

ro
ke

ri
ng

-B
as

ed
Q

oS
-D

ri
ve

n
(C

us
to

m
iz

ed
)

B
ro

ke
ri

ng
-B

as
ed

N
at

ur
e

of
C

on
te

nt
D

el
iv

er
y

B
as

ed
on

W
eb

se
rv

er
C

ol
la

bo
ra

tio
n

B
as

ed
on

pe
er

in
g

an
d

co
nt

en
t

av
ai

la
bi

lit
y

B
as

ed
on

C
D

N
in

te
rn

et
-

w
or

ki
ng

/p
ee

ri
ng

B
as

ed
on

C
D

N
pe

rf
or

m
an

ce
B

as
ed

on
us

er
de

fin
ed

Q
oS

(C
us

to
m

iz
ed

)

R
es

po
ns

ib
ili

ty
fo

r
ef

fe
ct

iv
e

co
nt

en
t

de
liv

er
y

C
D

N
Pr

ov
id

er
Pe

er
s/

U
se

rs
Pr

im
ar

y
C

D
N

Pr
ov

id
er

C
on

te
nt

Pr
ov

id
er

C
on

te
nt

Pr
ov

id
er

E
nt

iti
es

in
ag

re
em

en
t

C
D

N
-C

on
te

nt
Pr

ov
id

er
N

o
re

al
ag

re
em

en
t

(S
el

f-
in

te
re

st
ed

us
er

s)

C
D

N
-C

on
te

nt
Pr

ov
id

er
,

C
D

N
-C

D
N

C
D

N
-C

on
te

nt
Pr

ov
id

er
C

D
N

-C
on

te
nt

Pr
ov

id
er

A
gr

ee
m

en
tn

at
ur

e
St

at
ic

N
/A

Sh
or

t-
te

rm
or

lo
ng

-t
er

m
Po

lic
y-

ba
se

d
D

yn
am

ic
Sc

al
ab

ili
ty

L
im

ite
d

H
ig

h
H

ig
h

H
ig

h
H

ig
h

C
oo

pe
ra

tio
n

w
ith

ex
te

rn
al

C
D

N
s

N
o

N
o

Y
es

Y
es

Y
es

C
oo

pe
ra

tio
n

be
tw

ee
n

C
D

N
s

N
o

N
o

Y
es

N
o,

C
D

N
s

w
or

k
in

pa
ra

lle
l

N
o,

C
D

N
s

w
or

k
in

pa
ra

lle
l

C
oo

pe
ra

tio
n

be
tw

ee
n

us
er

s
N

o
Y

es
N

o
N

o
N

o

404 M. Pathan et al.

agreement between the content provider and the CDN provider specifying the level
of service that the content provider expects its end users to receive, which may
include guaranteed uptime, average delay, and other parameters. Examples of con-
ventional CDNs include Akamai, Limelight Networks, and Mirror Image. They are
typically singular entities that do not collaborate with each other to deliver content
and meet their service obligations. This approach is most suited to providers that al-
ready have pervasive, globally deployed infrastructure and can deploy edge servers
close to the majority of their customers, and have enough capacity to deal with peak
loads (caused by flash crowds) when their occur. Whilst cooperation between CDNs
does not occur, the Web servers of a CDN cooperate among themselves (collabo-
rative content delivery) to ensure content is replicated as needed and all SLAs are
met. Responsibility for effective content delivery rests solely on the CDN provider
that has agreed to deliver content on behalf of a content provider.

In a P2P-based CDN, content providers utilize end users nodes (either fully or
as a supplement to a traditional CDN) in order to deliver its content in a timely
and efficient manner. Examples of P2P-based CDNs include CoDeeN, Coral, and
Globule. The first two are deployed on the volunteer nodes in PlanetLab, while the
third runs on end user nodes. CoopNet and DotSlash are other examples where the
first allows end users to cooperate during the period of flash crowds to improve user
perceived network performance; and the latter is a community-driven “mutual” aid
service to alleviate flash crowds. In this type of CDNs, end users can cooperate to
improve the performance perceived by all, especially in the same geographical area
as many users around the same edge can assist each other in receiving content. This
cooperation can be invoked dynamically in the time of need (flash crowds). No real
agreement exists that defines a minimal level of participation from contributing end
users, making specific QoS targets hard to enforce for content providers. Given that
the users themselves are self-interested entities that receive no compensation for
participating in such a peering arrangement, they will only perform content delivery
when it suits them.

In Internetworked/peered CDNs, like the conventional CDNs, a content provider
employs a particular CDN provider to serve its content to end users. The chosen
CDN could peer with other CDN(s) to assist it to deliver content and meet any SLA
it may have established with the content provider. Examples of peering CDNs in-
clude IETF CDI model [9], CDN brokering [3], peering of multi-provider content
delivery services [1] and our peering CDNs [5, 17]. However, we note that it is ulti-
mately the primary CDN provider’s responsibility to ensure that the target QoS level
is met. In this case, end users request for content from a particular content provider’s
Web site. Content can be served by any CDN in the peering relationship. A central-
ized dispatcher (or an authoritative CDN) within a particular peering relationship,
typically run and managed by the initiator of the peering, is responsible for redirect-
ing requests to multiple peers. The agreement between multiple CDNs is separate
from that made between a content provider (customer) and the primary CDN. As
such, the originating CDN is responsible for the performance of any peering CDN
it employs to meet its obligation to the content provider.

16 Internetworking of CDNs 405

16.5.2 Brokering-Based Peering CDNs

Figure 16.6 shows the first of the two models that we propose to assist the cre-
ation of peering CDNs. In this case, “cooperative” content delivery is achieved
by the content provider, who leverages the services of multiple CDNs to en-
sure appropriate geographical coverage and performance targets are met. Con-
tent provider has the responsibility for efficient content delivery. The interaction
flows are: (1) users request content from the content provider by specifying its
URL in the Web browser. Client’s request is directed to content provider’s ori-
gin server; (2) the content provider utilizes a brokering system of its own in or-
der to select CDN(s) for delivering content to the end users. A given content
provider can select multiple CDNs (based on a CDN’s QoS performance, capabil-
ities, current load, and geographical location) for delivering content to its users.
The selected CDNs do not need to be aware that they are working in parallel
with each other, as the content provider handles the management and separation
of responsibilities; (3) a policy-based agreement between the content provider and
CDN(s) is established; (4) once peering is established, the proprietary algorithm
of the selected CDN(s) chooses optimal Web server to deliver desired content to
the user.

In order to join in a peering arrangement according to this model, CDN providers
can compete each other to provide improved performance. Content provider will
keep track of CDNs’ performance. Hence, selection of CDN(s) can be based on
history information on performance for similar content. It can also give preferential
treatment to its users based on certain policy (can be as simple as “receive service
according to payment” or any other complex policy).

Fig. 16.6 Brokering-based approach to form peering CDNs

406 M. Pathan et al.

16.5.3 QoS-Driven (Customized) Brokering-Based Peering CDNs

While the model in the previous section considers the performance of each poten-
tial participant for creating peering CDNs, it does not specifically consider the QoS
required by the end users. Users can have dynamic requirements depending on situ-
ations (e.g. flash crowds) that will “customize” content delivery. Therefore, sophis-
tication on user-defined QoS is required to be adopted in the model, which may
depend on the class of users accessing the service. Hence, in Fig. 16.7 we show
an improvement on the previous model to assist peering CDNs formation. In this
model, content provider performs the participant selection dynamically based on the
individual user (or a group of users) QoS specifications. The interaction flows are:
(1) users requests content from the content provider with specific QoS requirements
and it reaches the content provider’s origin server; (2) content provider uses a dy-
namic algorithm (based on user-defined QoS) to select CDN(s); (3) content provider
establishes dynamic agreement with the CDNs it utilizes to ensure user QoS targets
are met; (4) once peering is established with the selected CDN(s), desired content is
delivered from the optimal Web server of the selected peer(s).

Such peering arrangements are user-specific and they vary in terms of QoS tar-
get, scope, size, and capability. It is evident that content provider has the responsi-
bility for effective content delivery through dynamic peering arrangements. Thus, if
a particular peering arrangement fails to meet the target QoS to effectively deliver
content to the users, content provider re-negotiate with the CDN providers to estab-
lish new peering arrangement(s). In Fig. 16.7, we show that in the initial peering
arrangement, CDN 1 is responsible for delivering content to the users. As the user
QoS requirements change (shown in dotted line), content provider revokes the (cus-
tomized) CDN selection logic to re-establish a new peering arrangement. In new

Fig. 16.7 QoS-driven (customized) brokering-based approach to form peering CDNs

16 Internetworking of CDNs 407

peering arrangement, CDN N is the new participant, which delivers content to the
end users from its Web server.

16.6 Challenges in Implementing the CDN Peering

There are a number of challenges, both technical and non-technical (i.e. commercial
and legal), that have blocked rapid growth of peering between CDNs. They must be
overcome to promote peering CDNs. In this section, we outline some of the more
common stoppers for uptake of CDN peering.

• Legal/copyright issues. There can often be complex legal issues associated with
the content to be delivered (e.g. embargoed or copyrighted content) that could
prevent CDNs from arbitrarily cooperating with each other. Interactions between
peering partners must consider any legal issues associated with the content to
be served when delegating it to participating mirror servers from different CDN
providers. For instance, if a content provider needs some software or documents
that contained logic or information that was embargoed by certain governments
(i.e. its access is restricted), all participating CDN providers would have to en-
sure this was enforced to comply with the appropriate laws. Currently, academic
CDNs such as CoDeeN and Coral offer little to no control on the actual content
a participating node delivers, and as such participants in these systems could be
inadvertently breaking these laws. Content that is copyrighted (e.g. publications,
digital media) needs to be carefully managed to ensure that the copyright holder’s
rights are respected and enforced. The operation (e.g. caching and replication) of
some CDNs are user-driven rather than initiated by the content provider, who
would prefer to distribute their content on their own terms rather than have it
populated in caches worldwide without their consent.

• Global reach. As discussed in the previous section, the most common scenario
for CDN providers is a centrally managed, globally distributed infrastructure.
Companies such as Akamai and Mirror Image have their own far-reaching global
networks that cover the vast majority of their customers needs. Indeed, their per-
vasive coverage is essentially their competitive advantage, and allows them to
target the higher end of the customer market for these services. However, few
providers can match their global reach, and as such they have little commercial
or operational incentive to peer with other smaller providers.

• Consolidation in CDN market. Direct peering might be advantageous for small
CDN providers, if they wish to compete with larger providers based on coverage
and performance. In recent years there has been an enormous consolidation of
the CDN marketplace from 20-30 providers down to 5-10 providers of note. It
is clear that smaller providers found it difficult to compete on coverage and per-
formance with Akamai and Mirror Image, and subsequently ceased operation or
were acquired by the larger providers.

• Challenges in brokering-based CDN peering. An approach where a content
provider itself manages the selection and contribution of many CDNs to distribute

408 M. Pathan et al.

its content seems appealing, especially, if they have the resources and know-how
to manage such an effort. CDN providers could be chosen on their respective
merits (e.g. locality, performance, price) and their efforts combined together to
provide a good experience for their customers. However, enforcing QoS to ensure
a good end user experience (essentially trying to create a robust and predictable
overlay network) could be challenging when dealing with multiple providers,
especially when they are not actually collaborating, rather simply operating in
parallel.

• Challenges in P2P-based CDN peering. There has been a growing trend in the
last decade toward exploiting user-side bandwidth to cooperatively deliver con-
tent in a P2P manner. Whilst initially this started against the wishes of content
providers (e.g. Napster, Gnutella), eventually content providers embraced P2P
technology, in particular BitTorrent, in order to distribute large volumes of con-
tent with scalability and performance that vastly exceeded what was possible
with a traditional globally distributed CDN. Content providers have utilized this
effectively to distribute digital media (movies, music), operating systems (e.g.
Linux) and operating systems patches, games and game patches. With end user
bandwidth increases as a result of the proliferation of high-speed broadband,
content providers leverage the masses, which upload data segments to peers as
they download the file themselves. However, this approach is only effective for
popular files, and can lead to poor end user experience for a content that is not
being ‘seeded’ by enough users. As such, it is difficult for content providers to
guarantee any particular QoS bounds when the nodes distributing the content are
simply end users themselves that may have little motivation to cooperate once
they have received their data.

• Lack of incentives for cooperation. Further complicating the widespread depen-
dence of this approach is a backlash by Internet Service Providers (ISPs) who
are unhappy with the content providers pushing the burden and cost of content
delivery onto end users (and subsequently the ISPs themselves). Many ISPs are
now actively blocking or throttling BitTorrent and other P2P traffic in response
to this trend, to minimize increased utilization and reduction in revenue per user
and the resulting cost it places on the ISP in provisioning additional capacity.
Many ISPs in more geographically isolated countries (on the so-called ‘edges’)
such as Australia and New Zealand are in particularly unique situations, depend-
ing on a small number of expensive data pipes to North America and Europe. As
a result, the broadband access offered by ISPs in these regions have fixed data
quotas (rather than ‘unlimited’) that end users are restricted to, in order to ensure
they remain profitable. These conditions further discourage widespread adoption
and participation by end users in cooperative content delivery.

16.7 Technical Issues for Peering CDNs

Proper deployment of peering CDNs exhibits unique research challenges. In this
section, we present some of those unique issues that are to be addressed for peering

16 Internetworking of CDNs 409

CDNs. While there are some solutions existing for related problems in the CDN do-
main, the notion of internetworking/peering of CDNs poses extra challenges. There-
fore, we provide a research pathway by highlighting the key research questions for
the realization of peering CDNs.

16.7.1 Load Distribution for Peering CDNs

The load distribution strategy for peering CDNs includes request assignment and
redirection, load dissemination, and content replication. Coordination among these
core issues is another important consideration for successful exploitation of load
distribution strategy.

Request redirection and assignment to geographically distributed Web servers of
peers requires considering end user’s location, server loads, and link utilization be-
tween the end user and server in addition to task size (i.e. processing requirements of
a content request). It should also address the need to handle dynamically changing
conditions, such as flash crowds and other unpredictable events. Request assignment
and redirection can be performed in a CDN at multiple levels – at the DNS, at the
gateways to local clusters and also (redirection) between servers in a cluster [7, 8].
Commercial CDNs predominantly rely on DNS level end-user assignment com-
bined with a rudimentary request assignment policy (such as weighted round robin,
or least-loaded-first) which updates the DNS records to point to the most appropri-
ate replica server [10]. In the peering CDNs, end-users can be assigned via DNS (by
the peering agents of participating CDNs updating their DNS records regularly) and
also via redirection at the CDN gateway (i.e. mediator, PA and policy repository as
a single conceptual entity) when appropriate.

To deal with Load dissemination issue, the behavior of traffic can be modeled
under expected peak load since in this case the server load is most severely tested.
Load information can be measured and disseminated within individual CDNs and
among other CDNs. A load index can provide a measure of utilization of a single
resource on a computer system. Alternatively, it can be a combined measure of mul-
tiple resources like CPU load, memory utilization, disk paging, and active processes.
Such load information needs to be disseminated among all participating CDNs in
a timely and efficient manner to maximize its utility. Such indices will also be cru-
cial to identify situations where forming a peering arrangement is appropriate (e.g.
when servers or entire CDNs are overloaded) or when CDNs resources are under-
utilized and could be offered to other CDN providers. In this context, a hierarchical
approach can be anticipated, where current bandwidth and resource usage of web
servers in a CDN is reported to the CDN gateway in a periodic or threshold-based
manner. The gateways of participating CDNs then communicate aggregated load
information describing the load of their constituent servers.

Content replication occurs from origin servers to other servers within a CDN. Ex-
isting CDN providers (e.g. Akamai, Mirror Image) use a non-cooperative pull-based
approach, where requests are directed (via DNS) to their closest replica server [10].

410 M. Pathan et al.

If the file requested is not held there, the replica server pulls the content from the ori-
gin server. Co-operative push-based techniques have been proposed that pushes con-
tent onto participating mirror servers using a greedy-global heuristic algorithm [6].
In this approach, requests are directed to the closest mirror server, or if there is
no suitable mirror nearby, it is directed to the origin server. In the context of peer-
ing CDNs, this replication extends to participating servers from other CDNs in a
given peering arrangement, subject to the available resources it contributes to the
collaboration.

In summary, the following questions are to be addressed for distributing loads
among peering CDNs:

• How to deduce a dynamic request assignment and redirection strategy that cal-
culates ideal parameters for request-routing during runtime?

• How to ensure reduced server load, less bandwidth consumption (by particular
CDN server) and improve the performance of content delivery?

• How do participating CDNs cooperate in replicating content in order to provide
a satisfactory solution to all parties?

• What measures can be taken to ensure that the cached objects are not out-of-date?
How to deal with uncacheable objects?

16.7.2 Coordination of CDNs

Any solution to the above core technical issues of load distribution must be coor-
dinated among all participants in a peering arrangement in order to provide high
performance and QoS. A cooperative middleware must be developed to enable the
correct execution of solutions developed to address each core issue. Related to this
issue, the key question to be addressed is:

• What kind of coordination mechanisms need to be in place which ensure effec-
tiveness, allow scalability and growth of peering CDNs?

16.7.3 Service and Policy Management

Content management in peering CDNs should be highly motivated by the user pref-
erences. Hence, a comprehensive model for managing the distributed content is cru-
cial to avail end user preferences. To address this issue, content can be personalized
to meet specific user’s (or a group of users) preferences. Like Web personaliza-
tion [14], user preferences can be automatically learned from content request and
usage data by using data mining techniques. Data mining over CDN can exploit
significant performance improvement through dealing with proper management of
traffic, pricing and accounting/billing in CDNs. In this context, the following ques-
tions need to be addressed:

16 Internetworking of CDNs 411

• How to make a value-added service into an infrastructure service that is accessi-
ble to the customers?

• What types of SLAs are to be negotiated among the participants? What policies
can be generated to support SLA negotiation?

• How can autonomous policy negotiation happen in time to form a time-critical
peering arrangement?

16.7.4 Pricing of Content and Services in CDNs

A sustained resource sharing between participants in peering CDNs must ensure
sufficient incentives exist for all parties. It requires the deployment of proper pric-
ing, billing, and management systems. The key questions to be addressed in this
context are:

• What mechanisms are to be used in this context for value expression (expres-
sion of content and service requirements and their valuation), value translation
(translating requirements to content and service distribution) and value enforce-
ment (mechanisms to enforce selection and distribution of different contents and
services)?

• How do CDN providers achieve maximum profit in a competitive environment,
yet maintain the equilibrium of supply and demand?

16.8 Conclusion

Present trends in content networks and content networking capabilities give rise to
the interest for interconnecting CDNs. Finding ways for distinct CDNs to coordinate
and cooperate with other content networks is necessary for better overall service. In
this chapter, we present an approach for internetworking CDNs, which endeavors to
balance a CDN’s service requirements against the high cost of deploying customer
dedicated and therefore over-provisioned resources. In our approach, scalability and
resource sharing between CDNs is improved through peering, thus evolving past the
current landscape where disparate CDNs exist. In this chapter, we also present two
new models to promote CDN peering and identify the associated research chal-
lenges. Realizing the concept of CDN peering should be a timely contribution to the
ongoing content networking trend.

Acknowledgements Some of the materials presented in this chapter appeared in a prelimi-
nary form at IEEE DSOnline [5], UPGRADE-CN’07 [17], and TCSC Doctoral Symposium—
CCGrid’07 [18]. This work is supported in part by the Australian Research Council (ARC), through
the discovery project grant and Department of Education, Science, and Training (DEST), through
the International Science Linkage (ISL) grant. The material in this chapter greatly benefited from
discussions with K. H. Kim and Kris Bubendorfer.

412 M. Pathan et al.

References

1. Amini, L., Shaikh, A., and Schulzrinne, H. Effective peering for multi-provider content de-
livery services. In Proc. of 23rd Annual IEEE Conference on Computer Communications
(INFOCOM’04), pp. 850–861, 2004.

2. Arlitt, M. and Jin, T. Workload characterization of the 1998 world Cup Web site. IEEE Net-
work, 14:30–37, 2000.

3. Assuncao, M., Buyya, R., and Venugopal, S. Intergrid: A case for internetworking islands of
grids, Concurrency and Computation: Practice and Experience (CCPE), Willey press, New
York, USA, 2007.

4. Biliris, A., Cranor, C., Douglis, F., Rabinovich, M., Sibal, S., Spatscheck, O., and Sturm, W.
CDN brokering. Computer Communications, 25(4), pp. 393–402, 2002.

5. Buyya, R., Pathan, M., Broberg, J., and Tari, Z. A case for peering of content delivery net-
works, IEEE Distributed Systems Online, 7(10), 2006.

6. Cardellini, V., Colajanni, M., and Yu, P. S. Efficient state estimators for load control policies
in scalable Web server clusters. In Proc. of the 22nd Annual International Computer Software
and Applications Conference, 1998.

7. Cardellini, V., Colajanni, M., and Yu, P. S. Request redirection algorithms for distributed Web
systems. IEEE Trans. on Parallel and Distributed Systems, 14(4), 2003.

8. Colajanni, M., Yu, P. S., and Dias, D. M. Analysis of task assignment policies in scalable
distributed Web-server systems. IEEE Trans. on Parallel and Distributed Systems, 9(6), 1998.

9. Day, M., Cain, B., Tomlinson, G., and Rzewski, P. A Model for Content Internetworking.
IETF RFC 3466, 2003.

10. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman R., and Weihl, B. Globally distributed
content delivery. IEEE Internet Computing, pp. 50–58, 2002.

11. Freedman, M. J., Freudenthal, E., and Mazières, D. Democratizing content publication with
coral. In Proc. of 1st Symposium on Networked Systems Design and Implementation, San
Francisco, CA, pp. 239–252, 2004.

12. Guo, L., Chen, S., Xiao, Z., and Zhang, X. Analysis of multimedia workloads with impli-
cations for internet streaming. In Proc. 14th international Conference on World Wide Web
(WWW), pp. 519–528, 2005.

13. Iyengar, A. K., Squillante, M. S., and Zhang, L. Analysis and characterization of large-scale
Web server access patterns and performance. World Wide Web, 2(1–2), 1999.

14. Mobasher, B., Cooley, R., and Srivastava, J. Automatic personalization based on Web usage
mining, Communications of the ACM, 43(8), pp. 142–151, 2000.

15. Padmanabhan, V. N. and Sripanidkulchai, K. The Case for Cooperative Networking. In Proc.
of International Peer-To-Peer Workshop (IPTPS02), 2002.

16. Pai, V. S., Wang, L., Park, K. S., Pang, R., and Peterson, L. The dark side of the Web: an open
proxy’s view. In Proc. of the Second Workshop on Hot Topics in Networking (HotNets-II),
Cambridge, MA, USA, 2003.

17. Pathan, M., Broberg, J., Bubendorfer, K., Kim, K. H., and Buyya, R. An architecture for
virtual organization (VO)-based effective peering of content delivery networks, UPGRADE-
CN’07, In Proc. of the 16th IEEE International Symposium on High Performance Distributed
Computing (HPDC 2007), Monterey, California, USA, 2007.

18. Pathan, M. and Buyya, R. Economy-based content replication for peering CDNs. TCSC Doc-
toral Symposium, In Proc. of the 7th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2007), Brazil, 2007.

19. Pierre, G. and van Steen, M. Globule: A platform for self-replicating Web documents. In Proc.
of the 6th International Conference on Protocols for Multimedia Systems (PROMS’01), The
Netherlands, pp. 1–11, 2001.

20. Pierre, G. and van Steen, M. Globule: a collaborative content delivery network. IEEE Com-
munications, 44(8), 2006.

21. Turrini, E. An architecture for content distribution internetworking. Technical Report UBLCS-
2004-2, University of Bologna, Italy, 2004.

16 Internetworking of CDNs 413

22. Verma, D.C., Calo, S., and Amiri, K. Policy-based management of content distribution net-
works, IEEE Network, 16(2), pp. 34–39, 2002.

23. Wang, L., Park, K. S., Pang, R., Pai, V. S., and Peterson, L. Reliability and security in
the CoDeeN content distribution network. In Proc. of Usenix Annual Technical Conference,
Boston, MA, 2004.

24. Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B., Herzog, S, Huynh, A.,
Carlson, M., Perry, J., and Waldbusser, S. Terminology for policy-based management, IETF
RFC 3198, 2001.

25. Zhao, W. and Schulzrinne, H. DotSlash: A self-configuring and scalable rescue system for
handling Web hotspots effectively. In Proc. of the International Workshop on Web Caching
and Content Distribution (WCW), Beijing, China, 2004.

Index

Acquisitions, 15, 72
Adaptive request routing, 312
Akamai, 9, 17, 223, 257, 361, 391
Anycasting, 55, 57
Application-Level Multicast (ALM), 47, 84,

89, 90, 102, 137
Autonomous distribution, 380
Autonomous System (AS), 46, 156

Back-end, 106, 116
BackSlash, 282
Betweenness centrality, 356
BitTorrent, 13, 185, 283, 373, 408
Border Gateway Protocol (BGP), 17, 46,

61, 96
Broadband Services Forum (BSF), 10
Bursty traffic, 8, 212, 218
Byte hit ratio, 145

Cache Array Routing Protocol (CARP), 39, 40
Cache digest, 39, 41
Caching proxy, 8, 39
CAN, 87, 283
CDN peering, 55, 58, 390
Centralized directory model, 58
Centralized Directory Service (CDS), 86
Chord, 87, 200, 283
Client automaton, 305, 307
Client latency, 90
Client polling, 137
Client-side redirection, 157, 169, 176
CoDeeN, 22, 139, 357, 394
Code red attack, 279
Collaborative CDNs, 396
Collaborative Learning on-Demand

(CLoD), 314
Consolidation, 15, 72, 270, 389
Content Access Point (CAP), 20
Content-Aware Caching (CAC), 117, 118,

136, 361

Content-Blind Caching (CBC), 117, 361
Content Distribution Internetworking

(CDI), 393
Content Management and Online Reporting

(CMOR), 19
Content negotiation, 4, 376
Content outsourcing, 4, 43, 47, 150, 348
Continuous Route Optimization Software

(CROS), 18
Cooperative Association for Internet Data

Analysis (CAIDA), 258
CoralCDN, 23, 66, 139, 282, 357, 394
Cumulative Distribution Function (CDF), 101,

145, 215, 334, 400

Data grid, 11
D-dimensional tori, 198
De Bruijn graphs, 197
Delivery support services, 381
Delta consistent, 137
On-demand update, 51, 66, 135, 142
Dispatcher, 157, 399
Distributed database, 13, 294
Distributed Denial of Service (DoS), 14, 60,

109, 130, 207, 277, 377
Distributed Hash Table (DHT), 23, 58, 87, 282
Distributed location services, 87, 88, 89
Distributed Routing and Location (DOLR)

system, 80, 94, 102
Distributed Tutored Video Instruction

(TVI), 314
DNS-based Request Routing, 55, 288
Document routing model, 58
DotSlash, 281
Download time, 8, 17, 43
Dynamic adaptation, 376
Dynamic cache partition, 133, 142
Dynamic content, 25, 41, 108, 134, 155, 214,

343, 361

415

416 Index

Edge computing, 26, 110, 114, 136, 361
Edge server, 5, 109, 157, 393
Edge Side Includes (ESI), 18, 113, 135
EdgeStream, 18
Encoded media, 5
End-to-End (E2E), 379
Entire replication, 43
Extensible Rules Engine (XRE), 16, 20

First-mile bottleneck, 252
Flash crowds, 3, 4, 10, 14, 17, 95, 158,

211, 275
Flooded request model, 58
Free-riding, 184
Frequent network disconnections, 346
Front-end, 106, 111
Full compression, 143

Gateway, 379, 409
Geographical proximity, 60, 61
Global content caching, 16
Global Server Load Balancing (GSLB), 55
Globule, 24, 54, 139, 395
Gnutella, 33, 98, 184, 408

Head-Of-the-Line (HOL), 400
Heavy-tailed behavior, 277
Hierarchical caching, 9, 281
Hit ratio, 145
Horizontal handover, 372
Hosted server, 395
Hosting server, 395
Hotspot, 3, 23, 275
HTTP redirection, 56, 159, 292
HTTP streaming, 18, 107
Hypertext Caching Protocol (HTCP), 39, 41
Hypertext Transfer Protocol (HTTP), 5, 18, 40,

56, 107, 138, 159

IBM WebSphere, 26, 361
Incentives, 184, 212, 374
Infrastructure services, 381
Intelligent Domain Name Server (IDNS), 394
Inter-cluster caching, 49
Interleaved caching, 112
Internet Cache Protocol (ICP), 39, 40
Internet Congestion Tunnel Through

(ICTT), 18
Internet Data Centers (IDCs), 80, 89, 283
Internet Engineering Task Force (IETF),

10, 393
Internet Service Providers (ISPs), 7, 47, 109,

129, 323
Internetworking, 389

Intra-cluster caching, 49
Invalidation, 51, 113, 137
IPTV, 16, 373

KaZaA, 33, 185

Layer 4–7 switch, 9
Limelight Networks, 19, 156
Live streaming, 254, 373
Live Webcasting, 16
Load dissemination, 409
Load index, 409

Materialized Query Table (MQT), 118
Mean response time, 145
Media Independent Handover (MIH), 372
Mergers, 15, 72
Metadata, 5, 322, 382
Middle-mile bottleneck, 252
Mirror Image, 20, 156
Mirroring, 71, 145, 159, 252
Misbehavior-sensitive networks, 380
Mobile Ad-Hoc Networks (MANETs),

353, 355
Mobile nodes constraints, 346
Multihoming, 71, 252, 372, 377
Multimedia content, 107, 140, 211, 320
Mutual consistency, 137

Naı̈ve placement, 92, 94
Nash Equilibria, 192, 195
National Internet Measurement Infrastructure

(NIMI), 258
Negotiation and Adaptation Core (NAC), 376
Network Element Control Protocol (NECP), 39
Network fragmentations, 346
Network Mobility (NEMO), 372
Network Operations Control Center

(NOCC), 16
Network probing, 60, 257, 378
Network traffic, 3, 58, 128, 282, 328, 343, 383

Open Systems Interconnection (OSI), 5
Origin server, 5, 37, 109, 239
Ortiva Wireless, 28, 350
Overlay, 37, 87, 157, 185, 251

Page fragments, 107, 142
Partial compression, 143
Partial replication, 44, 117, 228
Password cracking, 279
Pastry, 87, 199, 283
Peer-to-Peer (P2P), 11, 139, 183, 214, 282, 340
Percentile-based pricing, 212, 221

Index 417

Periodic update, 50, 135
Points of Presence (PoP), 47, 61, 109, 130, 391
Policy Decision Point (PDP), 398
Policy Enforcement Point (PEP), 398

Quality of Experience (QoE), 370
Quality of Service (QoS), 3, 8, 37, 61
Query response time, 171, 175

RaDaR, 84
Read-one write-all, 170
Real Time Performance Monitoring Service

(RPMS), 18
Real Time Streaming Protocol (RTSP), 5
Reflectors, 255
Remote redirection ratio, 166, 171
Replica placement, 45, 81, 86, 127, 293, 320
Replica search, 90, 94
Replica server, 5, 25, 37, 94, 318, 409
Replicated Directory Service (RDS), 86
Request For Comments (RFCs), 10
Request redirection, 4, 69, 131, 155
Request response time, 164, 171, 177
Resilient Overlay Networks (RON), 258
Reverse proxy, 22, 159, 286
Routing mesh, 87

Search-Insertion-Deletion-Update (SIDU)
operations, 140, 144

Segment caching, 112
Self-provisioning, 215, 219
Sequential caching, 112
Server automaton, 305, 306
Server farm, 9, 252
Server load, 43, 63, 90, 135, 281
Server migration, 158, 177
Server placement, 45, 47, 226
Server Sharing, 158
Server-side redirection, 157, 159, 168
Service interaction, 375
Service Level Agreement (SLA), 89, 381, 389
Service Oriented Architecture (SOA), 26, 375
SlashDot, 3, 4, 65, 275
Small to Medium Enterprise (SME), 8
Smart placement, 92, 94
Social optima, 192, 196, 201

Static adaptation, 376
Static cache partition, 132, 142
Static content, 7, 18, 41, 107, 132, 156, 281
Streaming media, 42, 61, 83, 88, 361
Strongly consistent, 137
Surrogate, 5, 43, 45, 87, 110, 130, 286,

345, 357
Surrogate placement, 36, 45
SYN attack, 279
Synthetic workload, 95

Tapestry, 80, 87, 199
Time-To-Live (TTL), 50, 112, 136, 289
Total ordering, 170
Traffic monitoring, 60, 354
Tutored Video Instruction (TVI), 314

Uniform Resource Locator (URL), 5, 9, 55,
157, 293

Unpredictable-update, 135
Update propagation, 51, 119
URL rewriting, 57, 66, 85, 157, 292
User Generated Videos (UGV), 7

Vehicular Ad-Hoc Networks (VANETs),
353, 355

Vehicular Ad-Hoc Server (VAHS), 356
Vehicular Information Transfer Protocol

(VITP), 355
Vertical handover, 372
Video-on-Demand (VoD), 10, 380
Virtual Private Networks (VPN), 161, 255, 270
Voice over Internet Protocol (VoIP), 255,

270, 377

Weak consistent, 137
Web Cache Control Protocol (WCCP), 39, 40
Web Cache Invalidation Protocol (WCIP), 137
Web cluster, 5, 71, 158
Web Content Distribution Protocol (WCDP),

137
Web traces, 95, 100, 278, 357
Wireless Mesh Networks (WMN), 372
Wireless Sensor Networks (WSN), 372

Zipf distribution, 202, 279

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

