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Abstract. We consider the problem of counting the number of indis-
tinguishable targets using a simple binary sensing model. Our setting
includes an unknown number of point targets in a (simply- or multiply-
connected) polygonal workspace, and a moving point-robot whose sen-
sory input at any location is a binary vector representing the cyclic order
of the polygon vertices and targets visible to the robot. In particular, the
sensing model provides no coordinates, distance or angle measurements.
We investigate this problem under two natural models of environment,
friendly and hostile, which differ only in whether the robot can visit the
targets or not, and under three different models of motion capability.

In the friendly scenario we show that the robots can count the targets,
whereas in the hostile scenario no (2 − ε)-approximation is possible, for
any ε > 0. Next we consider two, possibly minimally more powerful
robots that can count the targets exactly.

1 The Problem and the Model

Simple, small and inexpensive computational and sensing devices are currently at
the forefront of several research areas in computer science. These devices promise
to bring computational capabilities into areas where previous approaches (usu-
ally consisting of complex and bulky hardware) are not feasible or cost-effective.
Such devices are being successfully used in various monitoring systems, military
tasks, and other information processing scenarios. Their main advantages are
quick and easy deployment, scalability, and cost-effectiveness. However, in or-
der to realize the full potential of these technologies, many new and challenging

� Work done while the author was a visiting professor at the Institute of Theoret-
ical Computer Science, ETH, Zurich. The author wishes to acknowledge the sup-
port provided by the National Science Foundation under grants CNS-0626954 and
CCF-0514738.

�� Work partially supported by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a center supported by the
Swiss National Science Foundation under grant number 5005 – 67322.

M. Kuty�lowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 32–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Counting Targets with Mobile Sensors 33

research problems must be solved, because the classical schemes designed for cen-
tralized and desktop computational hardware are inapplicable to the lightweight
and distributed computational model of sensor nodes. The inherent limitations of
the systems based on these simple devices have inspired the research community
to consider the computation with a minimalistic view of hardware complexity,
sensing and processing, energy supply, etc.

In this paper we use such a minimalistic approach in the area of mobile sensors
– simple robots. We consider and define robots of unsophisticated sensing and
mobile capabilities and investigate their computational power on an elementary
yet natural problem of counting objects of interest in the robots’ environment.
We model the environment by a polygon P (simply or multiply-connected) in
the plane and the objects of interest, namely, targets are modeled as a set of
points inside P .

We assume that the robot is a (moving) point, equipped with a simple camera
that can sense just the combinatorial features of the surrounding. In particular,
the robot can see a vertex of P or a target, can distinguish a target from a
vertex, but the vertices and the targets are otherwise indistinguishable, i.e., all
vertices are visually identical and all targets are visually identical. It is only the
cyclic order in which the robot sees the features that distinguishes them from
each other. We assume that the ordering is always consistent, which we take,
without loss of generality, to be counterclockwise. We model such a discrete
vision by a point identification vector (piv), which is a binary vector defined by
the cyclically ordered list of targets and polygon vertices that are visible from
the current robot’s position, where each bit indicates whether the corresponding
point is a target (value 1) or a vertex of the polygon (value 0). Sitting at a
vertex of P , we assume that the cyclic order of the visible points (vertices and
targets) starts with the neighboring vertex, i.e., the first component of the piv
always represents the neighboring vertex (and therefore has value 0). For the
robot located on a target, we make no assumption about the first component of
the robot’s piv – it is chosen by an adversary.

Moreover, the robot can see the edges of the polygon. This is modeled by a
combinatorial visibility vector (cvv), a binary vector of length k whose i-th bit
encodes whether there is an edge between vertex i − 1 and vertex i of the k
vertices visible from the robot’s position. See Fig. 1 for illustration.

robot

P

Fig. 1. An illustration of a point identi-
fication vector (piv) and a combinatorial
visibility vector (cvv) in polygon P (with
4 targets); piv is (0, 1, 0, 0, 1, 1, 0, 0) and
cvv is (1, 1, 0, 1, 0, 1)

Fig. 2. If a robot only senses the num-
ber of targets then the number of targets
cannot be approximated within o(n)
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The robot has no other sensing capability, and in particular has no information
about distances, angles, or world coordinates. This also motivates our simplistic
model of the robot’s movement. Roughly speaking, the robot can pick a direction
based on its sensing system and move in that direction until the environment
prevents the robot to go any further. The direction of a robot’s movement is the
direction to one of the visible points (a vertex of P or a target) in the robot’s
piv, and the robot stops when it reaches that point. The robot can sense the
environment only when it is not moving.

The robots model simple and small mobile sensors, which possess a low-
resolution camera and limited computational power, which allows the robots
to perform only simple image processing tasks, such as finding areas of substan-
tial light changes. The limited power and equipment prevents learning anything
more, like distances, angles, etc., and thus a binary sensing reflects appropriately
what robots sense. The robots shall explore an unknown environment, which is
physically bounded, such as buildings (with walls), or streets of a city. Thus we
naturally arrive at the model with a polygon P and discrete sensing via piv and
cvv.

Due to these unsophisticated vision and motion primitives, seemingly easy
tasks become difficult in this model. For instance, a robot sitting at a vertex u
can specify a visible vertex v by its index in the cvv of u. However, if the robot
moves from u to v, it is not possible in general to recover the position of u with
respect to v. A way to circumvent this issue is to mark u with a pebble before
moving to v. A pebble is visually distinguishable from vertices and targets. If
no other pebbles are visible from v, the position of u can be recovered. For a
detailed discussion of the implications of this minimalistic model, see [1].

We are interested in how the robots can solve various environment exploration
tasks and what limitations are implied by our simplistic assumptions on robots’
capabilities. In this paper we consider the problem of determining the number
of targets in an unknown polygon P . Throughout this paper we refer to this
problem as the counting problem. By n we denote the number of vertices of
P and by m the number of targets therein. For simplicity we assume that the
targets and polygon vertices are in a general position, i.e., no three points are
collinear. In this paper we consider two different scenarios to model two basic
classes of applications. In the friendly environment, the robot is allowed to walk
to any target. In the hostile environment, the robot is not allowed to walk to
targets. This scenario models the situation where a target represents an unsafe
entity and coming into an imminent closeness to targets is dangerous.

For the friendly scenario we show that a single robot with two pebbles (mark-
ers) can count the number of targets in any polygon P . In contrast, we show that
in the hostile scenario, the robots cannot count the targets in general. Thus, re-
quiring the robots to count targets only from afar is a more complicated problem,
and we must endow the robots with some additional capabilities. Surprisingly,
we show that these additional capabilities are quite minor, yet subtle. In fact,
we consider two possible models, and show their implications on our problem.
We consider robots that can walk along edge or diagonal extensions, i.e., if a
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robot picks a visible vertex u as the direction of its walk, the robot can continue
its walk in the same direction after it reaches u, if there is no polygonal edge
to prevent it. In the second model we consider one additional global direction
(think of “north”) in which the robot can walk from any vertex of P . In both
models the robots can solve the counting problem.

We are interested in deterministic algorithms and their worst-case analysis,
which we express in terms of the number of steps (movements) of robots and in
the amount of used memory. We work with word-memory units, where one word
of memory has Θ(log(max{m, n})) bits. We are also interested in approximation
algorithms, i.e., in algorithms that deliver a (provably good) estimate on the
number of targets. Further, we look for estimates that are never smaller than
the actual number of targets. We say that an algorithm is a ρ-approximation for
the counting problem if for the setting with m targets, m ∈ IN, the algorithm
estimates the number of targets by z, for which m ≤ z ≤ ρ · m.

To demonstrate the notion of approximation and to justify our sensing model
we illustrate that for the following weaker sensing model no non-trivial approxi-
mation exists: consider the sensing of the vertices in the same way as we defined
before, but consider the sensing of the targets only by their presence, i.e., not
interleaved with the vertices. Thus, the only information the robot gets is the
number of visible targets (but not their ordering within the vertices of P ). Con-
sider Fig. 2. It depicts two different scenarios, one scenario with m = 1 target
and the second scenario with m = n/3 targets. In both scenarios the robot
senses from every vertex exactly one target and therefore cannot distinguish the
scenarios. Hence, for this simple sensing model no approximation algorithm can
guarantee a ratio better than n/3.

Related Work. Suri et al. [1] considered simple robots with combinatorial sensing
of the environment and investigated some elementary questions of what infor-
mation about the topology of the environment can be deduced by simple robots.
In our paper, we consider the same robots, but enlarge the complexity of the
environment by adding the targets into the environment. Although the robots
are strongly limited in capabilities, it is shown in [1] that the robots can solve
non-trivial tasks. A robot cannot decide whether a vertex is convex, but can
decide whether the polygon is convex. Also, a robot cannot decide which is the
outer boundary of a multiply-connected polygon P , although it can discover and
count all the boundary components in P . Furthermore, a robot with one pebble
can build a mental map of the vertices of any (simply- or multiply-connected)
polygon P in O(n3) steps and with O(n) memory, which allows the robot to
navigate from any vertex i to any vertex j. The navigation result is an impor-
tant building block in our paper. Further, the paper shows that the robot can
compute a triangulation of P and solve a distributed version of the famous Art
Gallery Problem [2] with �n/3� guarding positions.

Combinatorial geometric reasoning is used in many motion planning and ex-
ploration tasks in robotics [3,4]. Minimalistic models of robots has been previ-
ously studied in [5,6,7,8]. However, the nature of problems investigated in our
paper does not seem to be addressed in the past. The aforementioned papers
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deal with different problems such as navigation and pursuit evasion [6,7,8], and
not with recognition of important points (targets) in the environment. Learning
about the geometrical nature of the environment is the problem studied in [5],
where the environment is not a polygon, and it contains labeled features, which
allows sensors to distinguish these landmarks.

2 The Friendly Environment

In this section we show that in a friendly environment a robot with two pebbles
can count the targets in any simply or multiply connected polygon.

We consider simply-connected polygons first. In the beginning the robot
counts n, the number of vertices of the polygon: the robot leaves a pebble on the
starting vertex and walks around the polygon’s boundary, counting the vertices
until it returns to the pebble. Let 1, 2, . . . , n denote the vertices of the polygon,
ordered in the counterclockwise direction, starting at the robot’s initial position.

The idea of the algorithm is to go to every vertex i, i = 1, 2, . . . , n, and count
the targets that are visible from i and that are not visible from any vertex j,
j < i. We call these targets newly visible at vertex i. Thus, the robot can go
through vertices i = 1, 2, . . . , n and sum up all newly visible targets. Clearly, no
target will be counted twice, and therefore the resulting sum is the total number
of targets.

We now describe how the robot can identify whether a target is newly visible.
Being at vertex i, the robot wants to identify whether a k-th target in its visibility
vector is newly visible. The robot goes to the target, leaves a pebble there, and
checks for every vertex j < i, whether the pebble is visible from j. The navigation
from the target back to the vertex i can be done by leaving the second pebble at
i and checking the position of i in the visibility vector of the target. Obviously,
the target is newly visible if and only if the pebble is not visible from any
vertex j, j < i. Overall, the robot needs two pebbles and a constant number
of memory words (to remember the number of vertices, the current position i,
the position j and the position k of the considered target at i, and to mark
the newly visible targets in the visibility vector of vertex i). Hence, in 2i steps
we can check whether a target visible from the i-th vertex is newly visible. To
check all targets at position i we need at most 2mi steps. Thus, the robot needs
O(mn2) steps to count the targets in P .

If the time is crucial, one can achieve a O(mn) number of steps at the ex-
pense of used memory. For each vertex i the robot maintains the piv with the
additional information stating whether a given target is newly visible. In the be-
ginning, every target in the piv is marked as newly visible. Then for every vertex
i the robot marks each newly visible target with a pebble and walks around the
boundary towards vertex n and at every vertex j, if the robot sees the pebble,
it marks the corresponding bit in the bit array of vertex j as not newly visible.
Thus, the robot walks m times around the boundary (for each target it walks
exactly once and at most n steps), resulting into O(mn) steps of the robot. The
robot needs O(nm) memory.
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Theorem 1. In the friendly environment a robot with two pebbles can count the
targets in a simply-connected polygon in O(mn2) steps and with O(1) memory,
or in O(mn) steps and with O(nm) memory.

The result can be easily extended to polygons with holes (multiply-connected
polygons), if we can navigate through the vertices in a consistent way. In [1], a
navigation in an arbitrary multiply connected polygon was demonstrated with
a robot with one pebble in a polynomial number of steps and with polynomial
space. Our robot has all the capabilities of the robot described there, therefore
the robot can first compute the navigation instructions, which are then stored
in the robot’s memory. Alternatively, we can use an additional, globally distin-
guishable pebble and perform the vertex navigation on the fly.

Theorem 2. In the friendly environment a robot with two pebbles can count the
targets in any polygon in polynomially many steps and with polynomial memory.

3 Hostile Environment

After solving the counting problem in the scenario where robots can walk to
targets, we consider now the scenario where robots walk only on vertices of P .

3.1 Inapproximability and Approximation

Inapproximability. We show that the counting problem cannot be approximated
within a factor 2 − ε, for any ε > 0, even if the polygon P is simply-connected.
We start with a warm-up example to illustrate the idea. Consider the polygon
in Fig. 3. The polygon consists of four spikes attached to the four sides of a
rectangle. It depicts two scenarios with a different number of targets. In the
first scenario there are 6 targets and in the second scenario there are 4 targets.
Considering any vertex of the polygon, the vectors cvv and piv are the same
in both scenarios. Hence, the robot cannot distinguish the two scenarios, which
shows a lower-bound of 6/4 = 3/2 for the approximation ratio.

This construction can be extended to a general-sized polygon, where 2k spikes
are attached to a regular 2k-gon, using 2k and 4k − 2 targets in two different
scenarios, thus giving the desired inapproximability lower-bound of 2 − ε.

Fig. 3. The counting problem cannot be approximated within a factor 3/2
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Theorem 3. The counting problem cannot be approximated within a factor 2−ε,
for any ε > 0, even in a simply-connected polygon.

Note that this inapproximability result relies only on the visibility limitations of
the robots and not on their limited navigation capabilities.

Proof. We assume n is even, i.e., n = 2k. The shape of the polygon is depicted in
Fig. 4 and 5. The polygon consists of n outer vertices y1, y2, . . . , yn and n inner
vertices x1, x2, . . . , xn. It can be viewed as an n-gon, a regular polygon formed
by vertices xi, i = 1, . . . , n, connected on each side xi, xi+1 to a triangular spike
xi, yi, xi+1. Here and further in the text, the indices are to be understood in a
cyclic fashion. The line yixi intersects the segment xi+1xi+2 in the middle. Thus,
the visibility region of yi, i.e., the cone of yi defined by lines yi, xi and yi, xi+1,
intersects the visibility regions of vertices yi−1 and yi+1, but not the visibility
regions of other yjs.

Observe first that a robot at vertex yi sees only two vertices of P , namely
vertex xi and vertex xi+1. Further, a robot sitting at vertex xi sees all vertices
xj , j = 1, 2, . . . , n, and vertices yi−1 and yi.

The aim is to place the targets in a way that a robot sitting at vertex y2l+1
sees one target (the piv is (0, 1, 0)), and a robot sitting at vertex y2l sees 2 targets
(the piv is (0, 1, 1, 0)). For a robot at vertex xi, i = 1, . . . , n, we want the robot to
see exactly 1 target between each two consecutive vertices of its piv, i.e., we want
the piv to be (0, 1, 0, 1, 0, 1, . . . , 0, 1, 0). Observe that the consecutive vertices of
piv at vertex xi are yi, xi+1, . . . , xn, x1, . . . , xi−1, yi−1. We show how to achieve
such visibility with two different number of targets. First we use only n targets
and then we use 2n − 2 targets.

To place the n targets we proceed as follows. We place one target into each
triangle yi, xi, xi+1. Observe that the triangle is divided into three parts by the
lines yi−1, xi and yi−1, xi−1. Let us label the parts P1, P2 and P3, starting at a
part containing the vertex xi+1. Fig. 4 illustrates the partition. For odd i, we
place the target into part P2. For even i, we place the target into P1. Observe
now that a robot indeed sees one target from every vertex y2l+1 and two targets
from every vertex y2l. Observe also that any vertex xj sees exactly one target
between two consecutive vertices xi, xi+1, i, i + 1 �= j, because the parts P1 and
P2 of triangle yi, xi, xi+1 contain exactly one target and the parts are completely
visible from xj within the segment xi, xi+1. There is also one target visible in
the segment yj, xj+1 and in the segment xj−1, yj which shows the claim for n
targets.

We now use 2n − 2 targets in P to achieve the same visibility configuration.
First, we place one target into every triangle xi, yi, xi+1 such that the target is
visible only from vertices xi, yi and xi+1. This can be easily achieved when the
target is placed very close to yi. This leads to piv being (0, 1, 0) at vertices yi and
piv being (0, 1, 0, 0, . . . , 0, 0, 1, 0) at vertices xi. The remaining n − 2 targets are
placed in the following way. For the presentation purposes we label the targets
t1, . . . , tn−2. Each target ti is placed close to vertex xi and in the cone Ci of
xi defined by the vertices xn−1, xn. More precisely, by placing ti close to xi we
mean to place the target ti into the triangle Ti := xi−1, xi, xi+1. Observe now
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xi

yi

xi+1

yi−1

xi−1
P3

P2

P1

Fig. 4. The partition of the triangle
yi, xi, xi+1 into three parts P1, P2 and
P3 by the lines yi−1, xi−1 and yi−1, xi

xn

xn−1

Fig. 5. A placement of 2n−2 targets into
the polygon P . The arrows indicate the
position of the targets.

that for any placement of target ti into Ci ∩Ti the piv of vertex xi is as desired,
i.e., (0, 1, 0, 1, 0, . . . , 0, 1, 0). Indeed, for vertex xi, i ≤ n−2, the cone Ci contains
ti and thus the target is visible between xn−1 and xn. For every other cone
of xi defined by vertices xj and xj+1, the target tj lies in that cone. Also, for
vertex xn−1 the cone of xn−1 defined by vertices xi and xi+1 contains exactly
one target, namely ti+1. Similarly, the cone of vertex xn defined by vertices xi

and xi+1 contains exactly one target, namely ti. To achieve the desired piv from
the vertices yi, we place each target ti within Ti either to the left or to the right
of line yi−1, xi−1. For i − 1 = 2l we place ti to the right of the line yi−1, xi−1,
so that ti is visible from yi−1 (i.e., into the cone of yi−1 defined by vertices xi−1
and xi). For i − 1 = 2l + 1 we place ti to the left of line yi−1, xi−1, so that ti
is not visible from yi−1. It is easy to observe that for every vertex yi, its piv is
(0, 1, 0) if i = 2l + 1, and (0, 1, 1, 0) if i = 2l. A placement of 2n − 2 targets into
the polygon P with 2n vertices, where n = 12, is depicted in Fig. 5. This ends
the proof. �	

Approximation. Since the counting problem cannot be solved optimally, it is nat-
ural to look for approximate solutions, i.e., for good estimates of m, the number
of targets. Observe first that m is at least the number of targets visible from any
vertex of P . Let mi denote the number of targets that are visible from vertex
i. We have m ≥ maxi mi. On the other hand, clearly, m ≤

∑
i mi. Since every

target is visible from at least three vertices of P (consider a triangulation of P
and the vertices of the triangle, in which the target lies), we have m ≤ 1

3

∑
i mi.

A robot can compute the sum z =
∑

i mi with one pebble that allows the robot
to navigate through all vertices of P (even with holes [1]). Obviously, reporting
1
3z as the estimate for the number of targets yields an n

3 -approximation. Alter-
natively, if we denote by k the number of vertices with non-zero mi, the value z
becomes a k

3 -approximation.
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Although the approximation is not sound at first sight (consider a convex
polygon with a single target in it), it gives some insight into the complexity
of the counting problem. Notice that the derived approximation ratio depends
solely on the number of vertices n (or on k, the number of vertices with a view
on at least one target) and not on the number of targets. Hence, if m grows in
comparison to n or k, the approximation ratio gets better. In other words, the
approximation ratio does not grow with the number of targets, but is determined
by the structure of the polygon (i.e., by n) and by the way how the targets are
placed in this structure (i.e., by k).

A 2-approximation algorithm can be designed under a slightly stronger model
[9] (but weaker than the one described in Section 3.3). In this model, the 2 − ε
inapproximability result still holds.

3.2 More Power to the Robots

We have seen in the previous subsection that a simple robot cannot count the
targets in a simple polygon. We therefore look at possible enhancements of capa-
bilities, which keep the robots as simple as possible and at the same time enable
the robots to count the targets. We consider two such enhancements.

In the first one we allow the robots to walk along edge-extensions and diagonal-
extensions, i.e., if a robot at vertex v picks a vertex w as the direction of the
robot’s walk, the robot is allowed to continue walking in the same direction after
it reaches w, and it will stop only when it hits the boundary, at a point w′. Fig. 6
illustrates this enhancement. The line vw′ is called an edge-extension (diagonal-
extension) if vw is an edge (diagonal) of P . If we do not need to distinguish
whether vw′ is an edge- or diagonal-extension, we simply say that vw′ is an
extension. If a pebble is placed at w′, it is then visible in the same way as a
vertex of P , and therefore the robot can go there from any vertex visible to it.
w′ is then visually distinguishable from the other regular vertices of P , because
it is marked with a pebble.

In the second enhancement one additional, global direction is introduced, in
which a robot can move. Without loss of generality we assume that it is the
direction of a vertical line going through the robot’s position. For simplicity of
presentation we assume that the polygon does not have vertical edges. On top of
that we assume the robot can tell whether a visible point (a vertex or a target)
is to the left or right of the vertical line, and whether it is above or below the
robot, i.e., above or below the horizontal line going through the robot’s position.
Such an enhancement can be viewed as a navigation with compass. If a robot
walks from a vertex v in the vertical direction we say that it walks along the
vertical extension of v.

For both enhancements we present algorithms that allow robots to count the
number of targets inside the polygon P .

Partition of the Polygon and Counting. The algorithms are based on the
idea of partitioning the polygon into triangles and counting the targets in these
triangles exactly. To illustrate the idea, consider a partition of P into triangles
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having their vertices on the boundary of P with the property that every triangle
has at least one side on the boundary of P . We call such a triangle a baseline tri-
angle, and the edge of the triangle that lies on the boundary of P a baseline edge.
A partition of a polygon into baseline triangles is called a baseline triangulation.
We might want to require that the baseline triangles of a baseline triangulation
are triangles in the classical sense, i.e., specified only by vertices of P – these
are called baseline vertex triangles. A triangulation into baseline vertex triangles
is called a Hamiltonian triangulation, as its dual is a path.1 Unfortunately, a
Hamiltonian triangulation does not always exist, see Fig. 7. Either of the two
robot enhancements which we have introduced allows robots to use additional
points of the boundary of P to compute a baseline triangulation.

v

w

w′

Fig. 6. At v, a robot chooses vw as the di-
rection of the robot’s walk. After reaching
w, it can continue in the same direction un-
til it hits the boundary at point w′.

Fig. 7. A polygon and its unique trian-
gulation with triangles specified solely
of vertices of the polygon. The triangu-
lation is depicted by dashed lines.

In the case of a baseline triangulation a robot can count the targets with the
following algorithm. For every baseline triangle the robot moves to the vertex
of the triangle (recall that this might not be a vertex of the polygon) opposite
to the baseline edge, and counts the targets that are visible between the two
vertices of the edge. Clearly, in this way every target is counted exactly once.
Hence, a general algorithm that allows a robot to solve the counting problem is
as follows: it is composed of a procedure to produce a baseline triangulation and
of a navigation scheme to visit every baseline triangle exactly once.

Narasimhan [10] presents an algorithm that recognizes whether a polygon has
a Hamiltonian triangulation and computes one. The algorithm can be adapted
for a robot that can discern convex vertices from reflex vertices [9] (which is not
directly possible in our model [1]). Hence, such a robot can resolve whether a
polygon admits a Hamiltonian triangulation and exactly count the number of
targets in that case. However, when the polygon is non-Hamiltonian, this ap-
proach does not give anything useful, whereas our scheme, given in the following
section, works for general polygons.

3.3 Walking Along Edge- and Diagonal-Extensions

In this section we consider robots that can walk along edge- and diagonal-
extensions. We show that such robots can partition any simple polygon into
baseline triangles, and thus can count the targets.
1 A dual of a triangulation is a graph, where each triangle corresponds to one vertex

and there is an edge between two vertices iff the two corresponding triangles share
an edge in the triangulation.
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w2 v2
w1

P2

P1v1 = p1

v

v5

v4

p2 = v3

Fig. 8. The extensions of a vertex v
define baseline triangles and pockets
of v

1

23
4

Fig. 9. The resulting baseline triangu-
lation of the algorithm and the visited
pockets (grey). The labeled dots show
the order of the recursion calles.

Consider a robot at a vertex v of the polygon P . Let v1, v2, . . . , vi . . . denote
the visible vertices from v, cyclically ordered in the counterclockwise direction.
Observe that the lines vvi partition the visible part of P into baseline triangles
(all with a common point v), each with at least one baseline edge. See Fig. 8 for
an illustration, where the triangles vw1v2, vv2w2, vv3v4 and vv4v5 partition the
visible part of P . Thus we can partition the visible part of P . Observe that the
invisible part of P is a set of disjoint simple sub-polygons. In the example from
Fig. 8 the sub-polygons P1 and P2 form the invisible part of P . We call such
a sub-polygon a pocket of P . Observe that a pocket is created by a line which
is an edge-extension or a diagonal-extension. Applying a recursive partitioning
approach on the pockets, we create a partition of P into triangles with at least
one edge on the boundary of P (see Fig. 9). Let T denote this triangulation.

The main idea of the algorithm is to count all targets from the robot’s position
v and then proceed recursively in the corresponding pockets of the polygon, thus
navigating through T and counting the targets in the triangles of T . We begin
with a high-level description. For a vertex v let P1, . . . , P� denote pockets of P
defined by all extensions originating at v. Let pi, i = 1, . . . , �, denote the visible
vertex whose extension defines Pi. Let wi be the point of P for which vwi is the
extension of vpi.

Counting in Simple Polygons
1. Count all the targets that are visible from the robot’s position at

vertex v.
2. Put a pebble at v and remember the position of v in the respective

piv of every vertex pi and of every point wi.
3. Recursively count the targets in Pi, i = 1, . . . , �, by marking the

point wi with a pebble and going to pi.

When a robot walks to vertex pi to start a recursive call for pocket Pi, it
first checks the position of the pebble that marks the point wi. Next the robot
determines which vertices (and targets) visible from pi belong to pocket Pi. Let
k be the number of vertices (including wi) and targets visible from pi. Let h be
the index of wi in the piv of vertex pi. If pocket Pi lies to the right of piwi, then
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Pi contains the vertices and targets from the piv of pi with index 1, 2, . . . , h. If
pocket Pi lies to the left of piwi, then Pi contains the vertices and targets from
the piv of pi with index h, h + 1, . . . , k. Observe that Pi lies to the right of piwi

if and only if pi is the first end-point of the diagonal in piv of vertex v.
The robot at vertex pi knows which part of its piv represents the sub-polygon

Pi and it can therefore perform the same steps of the Counting in Simple
Polygons algorithm on the pocket Pi only. Before that, the pebble from wi is
collected as it is no longer needed. When the robot finishes the counting in Pi it
returns to the vertex v (using the stored navigation information) and continues
there.

Theorem 4. A robot with one pebble, able to walk along extensions, can count
the number of targets in a simple polygon of n vertices in O(n) steps with O(n)
memory.

Proof. Let T be the baseline triangulation of P produced by the algorithm.
The triangles of T are defined by vertices of P and intersection points between
polygonal edges and extensions. Observe first that the algorithm provides a
consistent navigation scheme through T . Thus every target is counted exactly
once. Note that the dual of T is a tree. The edges of every triangle of T contain
three vertices of P , which are then mutually visible and build a triangle. Since
any triangulation of a polygon (in the classical sense) has exactly n−2 triangles,
T can only be smaller and the dual of T has O(n) vertices, which is also the
number of steps of the algorithm (since the robot spends a constant number
of steps in every triangle of T ). The robot stores the necessary information to
return from a recursive call – the predecessor v of every vertex pi. Hence, O(n)
memory is sufficient. �	

3.4 Walking with a Compass

In this section we consider in addition one fixed direction in which the robot can
move. Without loss of generality, we assume that a robot sitting at a vertex can,
additionally to moving to all visible vertices, move also along the vertical line
going through the robot’s position.

We present an algorithm that computes a baseline triangulation in any simply-
or multiply-connected polygon and navigates the robot such that each triangle
is considered for counting exactly once and thus it allows the robot to count the
number of targets in the polygon. To simplify the presentation we first use an
arbitrary number of pebbles – we show later how to use only a constant number
of pebbles.

The key observation is that all the vertical extensions from vertices of a poly-
gon P partition the polygon into baseline triangles and convex quadrilaterals
for which two opposite sides are on the boundary of P (Fig. 10). Each quadri-
lateral can be subsequently partitioned into two baseline triangles (by picking a
diagonal as the common boundary of the triangles).

Hence, using at most 2n pebbles, the robot can mark every end-point of every
vertical extension which then imposes a baseline triangulation. This can be done
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baseline triangle

quadrilateral

Fig. 10. A multi-connected polygon with its partition by vertical extensions

by visiting every vertex of P (using one pebble) [1]. To count every target exactly
once, the robot goes through every vertex or pebble p and considers only triangles
lying above p and on its right (if any). Since every triangle has one vertical side,
the robot can always reach the opposite vertex of the baseline side in one step
and count the targets in the triangle, and return back.

We now show how to reduce the number of used pebbles at the cost of an
increased number of steps. The robot does not mark all the quadrilaterals at
once, but one by one. Let us call an endpoint of a vertical extension a q-node.
We show how to navigate through all the vertices and q-nodes in a consistent
way. We begin with the navigation through vertices of P from [1] (the navigation
can be computed in O(n3) steps with O(n) memory), where every edge of P is
visited exactly once. If a robot moves in this navigation along a polygonal edge
uv, we compute all the q-nodes lying on this edge and before the robot moves
to v it visits all the q-nodes in the order of increasing distance from u.

Let us consider the situation where the robot is at a point p (a vertex u or a q-
node) of the edge uv and it wants to move to the next q-node. The robot can find
the next q-node by sequentially creating all q-nodes (by going to every vertex
of P ) and checking which one lies on the edge uv and closest to p. Specifically,
using a pebble the robot marks the initial position p. The next pebble is used
to mark the so-far closest q-node on the edge uv. The robot goes through every
vertex w of P and creates q-nodes lying on the vertical extensions of w. For
every such q-node the robot checks whether it lies on the edge uv and whether
it is closer to u than the current best. The two pebbles make this operation easy
for the robot.

Theorem 5. A robot with 2 pebbles, able to walk along vertical extensions, can
count the number of targets in a polygon with n vertices in O(n3) steps and with
O(n) memory.

4 Conclusions

We considered a minimalistic computational framework of mobile sensors – sim-
ple robots, whose visibility-based sensing reflects just the combinatorial character
of the environment. We investigated their capabilities on the problem of count-
ing points of interest (targets) in a polygon P and considered two scenarios. We
have shown that in the friendly environment the robots can count the targets
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using two pebbles. In the hostile environment the robots cannot count the tar-
gets and they cannot even approximate the number of targets by a multiplicative
factor less than 2.We have looked at possible minimum extensions of the robots’
capabilities that allow to count targets. We have considered two such extensions
– walking along edge- and diagonal-extensions, and walking with compass.

We have not answered all interesting questions and many of these remain open
for the future research. For example, what is the best approximation ratio of the
problem? Is the lower bound tight or is there a better approximation algorithm?
What is the inherent power of pebbles: can we do anything without them? Are
there simpler robots’ enhancements that allow the robots to count the targets?
Can a collaboration of more robots do better than a single robot?
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