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Preface

Wireless ad-hoc sensor networks have recently become a very active research
subject due to their high potential of providing diverse services to numerous im-
portant applications, including remote monitoring and tracking in environmen-
tal applications and low-maintenance ambient intelligence in everyday life. The
effective and efficient realization of such large-scale, complex ad-hoc networking
environments requires intensive, coordinated technical research and development
efforts, especially in power-aware, scalable, robust, wireless distributed protocols,
due to the unusual application requirements and the severe resource constraints
of the sensor devices.

On the other hand, a solid foundational background seems necessary for
sensor networks to achieve their full potential. It is a challenge for abstract
modeling, algorithmic design and analysis to achieve provably efficient, scal-
able and fault-tolerant realizations of such huge, highly dynamic, complex, non-
conventional networks. Various features, including the extremely large number of
sensor devices in the network, the severe power, computing and memory limita-
tions, their dense, random deployment and frequent failures, pose new interesting
abstract modeling, algorithmic design, analysis and implementation challenges
of great practical impact.

This workshop aimed to bring together research contributions related to
diverse algorithmic and complexity theoretic aspects of wireless sensor networks.
This was the third event in the series. ALGOSENSORS 2004 was held in Turku,
Finland, ALGOSENSORS 2006 was held in Venice, Italy. Since its beginning,
ALGOSENSORS has been collocated with ICALP.

The Third International Workshop on Algorithmic Aspects of Wireless Sen-
sor Networks (ALGOSENSORS 2007) was organized by Wroc�law University of
Technology. The workshop was held on July 14, 2007, in conjunction with ICALP
2007. After a careful review by the Program Committee of 25 submissions, 11
regular papers were accepted to ALGOSENSORS 2007. Apart from the regular
talks, two keynote speeches were given at the workshop.

October 2007 Miros�law Kuty�lowski
Jacek Cichoń

Przemys�law Kubiak
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Algorithmic Challenges for Sensor Networks

– Foreword to ALGOSENSORS 2007

Miros�law Kuty�lowski

Institute of Mathematics and Computer Science,
Wroc�law University of Technology, Poland

miroslaw.kutylowski@pwr.wroc.pl

Advances in sensor technology lead to new research and technology challenges
that are essential for success or failure of sensor networks in practice. Solutions
for these challenges have fundamental importance for determining direction and
scope of practical applications. At the same time, many brilliant solution ideas
from the early stage of development of sensor networks have to be reconsidered
and adjusted to the changing state of technology and practical limitations that
we were not aware of.

It turns out that design of sensor networks is an interdisciplinary task. Prob-
lems arising for sensor networks concern, among others, radio communication
issues, hardware design and quite specific distributed algorithms. For instance,
limitations of bandwidth in wireless communication and need to preserve en-
ergy impose severe demands on intelligent data analysis and compresssion be-
fore a sensor actually starts a transmission. So, despite simplicity of a sensor,
sophisticated but efficient methods of data analysis must be applied on site. A
layered design, so successful for wired communication protocols and operating
systems, might be of little use here. Many fundamental problems for sensor net-
works require a co-design approach, i.e. components of communication protocol
of different levels should be considered simultaneously.

One of important and crucial elements for the successful design of sensor
networks is the algorithmic component which defines the way in which the sensors
and other elements cooperate in order to build a well-functioning, dependable
and robust system. The number of problems is manifold. Below we touch only
a few of them.

Energy Aware Design. One of the crucial problems for sensors is energy
supply: improvement over capacity of batteries turn out to be possible, but
relatively slow. Consequently, a designer of a sensor network has to be aware
about technical feasibility regarding energy usage. The most problematic issue
is relatively very high energy usage for radio communication; it concerns both
broadcasting data and passive monitoring of the radio channel.

Exchanging exhausted batteries is limited to some application scenarios; in
quite many cases we apply sensors at places that are hardly accessible, or
even hidden (for instance, it might be the case for sensors monitoring pollu-
tion by a chemical factory, otherwise the sensing devices could be damaged or
manipulated).

M. Kuty�lowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 1–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



2 M. Kuty�lowski

Due to the reasons described, it is very important to design algorithmic
schemes that reduce energy usage. This may concern amount of computations
performed by a sensor, duration of sensing activities, however the key issue is
to reduce amount of communication and to optimize transmission parameters.
For instance, even if a destination of data sent by a sensor is in the transmission
range of the sensor, it might be useful to send data via a few intermediate sensors
- each time sending a short range message to the next sensor on a path to the
destination point. This should save energy, since the amount of energy required
to send on distance d is at least of order d2. However, such an approach gener-
ates a few new problems: one of them might be congestion of messages passing
through a node. Even if each of these messages requires a low amount of energy,
the number of messages and necessity to monitor the radio channel for a longer
time may lead to exhausting energy at this point.

Energy saving is a topic that goes across all layers of design, however a few
challenges can be addressed already during hardware design. For instance, pro-
tecting data contents could be tuned to special needs of sensor networks: rela-
tively weak mechanisms could be implemented directly in hardware so that data
are encoded and decoded fast and almost no communication overhead arises.

Network Architecture. At an early stage of research on sensor networks it
has been assumed that the sensors compose a fully autonomous communication
network that works in an ad hoc mode. This was motivated by applications
for which a sensor network should be as independent as possible (networks for
emergency and military purposes).

On the other hand, in quite many practical situations data can be gathered
by strong units having external power supply and therefore not so limited in
communication. Furthermore, they can use broad communication links (wired
and wireless) to process data to their final destinations. They can also take some
responsibility for configuring the sensors and run-time administration.

Even if such an architecture simplifies design of sensor networks, it implies
new challenges. An example of such a challenge is presence of more than one
strong unit in the communication range of a sensor. In this case the strong
units can partition the sensors between themselves, but this is a solution that
might be inefficient for many reasons. In order to build a robust and reliable
system with overlapping coverage areas it is necessary to share sensors between
adjacent strong units. How to coordinate their work so that no conflicts and
waste of resources occur?

Channel Access, Interference. One of the key technical problems for sensor
networks is to organize access to its shared radio channel. A simultaneous trans-
mission by more than one sensor may result in a collision so that no message will
be received, and therefore transmission time will be wasted. This is a problem
since energy and transmission time are limited resources.

Interference between signals can occur in a somewhat unpredictable way, it
depends on many issues that are hard to be modeled mathematically. For exam-
ple, the unit graph model does not describe exactly propagation of radio signals:
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Algorithmic Challenges for Sensor Networks 3

A propagation range of a sensor’s transmitter cannot be stated as a single value,
a more realistic model concerns probability of recognizing a message as a func-
tion of distance between the transmitter and the receiver. Reflection of signals,
lack of equidirectional transmission, peculiarities of interferences between differ-
ent frequencies, radio traffic in other frequency bands, noise in the radio channel
coming from the environment, and many further issues make it hard to predict
exactly what kind of problems will occur after deploying a sensor network.

Even if communication architecture of a sensor network is simple and can
be modeled as (overlapping) single hop networks with strong units gathering
data and coordinating all activities in the network, many uneasy problems arise.
A good example is a network that has to warn about certain conditions (like
increasing temperature). The main issue is that we do not know who, where and
when will need to report some event. Moreover, if such an event occurs there
might be many sensors that would like to transmit at the same time. Round
Robin strategy might be a bad choice in this case, especially if reaction time of
the network is the key issue.

New Features of Communication Complexity. Certainly, complexity mea-
sures such as communication complexity are very helpful for designing algorithms
for sensor networks. However, the communication volume does not capture well
all specific issues of sensor networks. A more adequate complexity measure may
be based on active communication time (expressed for instance in the number
of bits that can be sent or received in this time). However, we have to consider
also the number of activity periods of a receiver/transmitter, since activating it
requires both time and energy - and for this reason sending just a few bits can
be very costly regardless of the small volume sent. The second issue is exploiting
asymmetry: energy consumption for sending and and for receiving messages are
comparable, still the difference can be used to optimize the energy usage. In
particular, we could look for communication schemes reduce transmission time
of the sensors and assign transmission chores to strong units.

Last not least, in many situations we should treat a sensor network as a whole
and consider communication like an activity that uses distributed resources and
in this way decays the capabilities of the network as a whole. In some settings it
is better to sacrifice a single sensor (due to energy exhaustion) and save energy
of other sensors than to use energy of all sensors in an egalitarian way. New
complexity measures have to capture somehow the global resources usage of
a sensor network and not its individual units.

Preprocessing of Data. Data aggregation is a process that must take into
account limitations of communication and local computing capabilities of a sen-
sor. The simplest strategy of forwarding all data sensed resolves the problem of
data analysis by the sensor, but leads to communication congestion and waste
of energy. Therefore, data should be preprocessed by a sensor and only essential
information should be transmitted by the sensor.

The problem is that the sensor has typically only local knowledge and a limited
knowledge from its neighborhood. For the sake of energy preserving a sensor’s
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4 M. Kuty�lowski

receiver should not be switched on all the time, so inevitably some messages
broadcasted could be unnoticed by the sensor, despite that the sensor was in the
proper range.

This problem is particularly visible when we concern warning function of sen-
sors. Detecting anomalies (which are the most crucial ways of detecting critical
situations) is not always equivalent with detecting certain numeric values, some-
times it is their gradient or an abnormal pattern of values in some area. How to
detect abnormal patterns by a set of sensors without large communication is an
interesting question that involves issues of game theory, distributed algorithms
and communication complexity.

Heterogeneous Networks. In many practical applications we could share
the basic infrastructure composed by sensors. This helps to reduce deployment
costs and compose many virtual sensor networks out of the same set of devices.
Inevitably, we may come to a situation when a virtual sensor network consists
of devices that are deployed by more than one provider. Consequently, sensor
type and their configuration may differ, sometimes quite significantly.

Since sensors are weak devices, it might be an uneasy for them to emulate
different configurations in order to serve the needs of diverse virtual networks.
Therefore, algorithms and protocols designed for sensor networks should to cer-
tain degree disregard particular features of the sensors - a good algorithm should
be as independent of the features of the sensors as possible. At the same time,
it should make use of any additional features available at certain nodes of the
network.

Standard algorithm design is not focused on such a situation: usually it is as-
sumed that in a distributed system all network units have comparable properties.
Therefore most of the algorithms for distributed systems have to be redesigned
or at least reconsidered before being deployed for sensor networks.

Network Evolution. Heterogenuity may arise for yet another important rea-
son: after some time new sensors become deployed in order to upgrade its func-
tionality or to replace malfunctioning or dead units. Location, functionality and
purpose of strong units may change as well. So finally we are faced with many
compatibility problems: new devices should work well within an old network,
however, they have to take adventage of newer technology in order to improve
the network performance.

The problem is a more difficult than in the classical networks. Sometimes it
is impossible to exchange fully the old units. Sometimes we share sensors with
another provider who can decide to make a replacement without our accord. The
problem is that communication protocols for sensor networks are not that stable
as for the classical networks, so a replacement may have profound consequences.

Since we have to assume that changes within the network may be frequent
and quite significant, and involve dramatically different hardware, we have to
design self-organization paradigms yielding algorithms that are robust to these
changes. We have to design algorithmic schemes (and not only data framework!)
that support upwards and downwards compatibility.
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Algorithmic Challenges for Sensor Networks 5

Dependability. There are many factors that may cause faults of the sensors.
Extreme physical conditions may cause both transient and permanent failures.
Internal failures may occur as well. Furthermore, the sensors might be manip-
ulated or even damaged on purpose. Finally, some errors might occur due to
design faults. Sometimes design bugs cannot be corrected - the faulty code may
be written in a ROM memory. Sensor network algorithms should take into ac-
count all these problems.

So far there are not many algorithms focused on fault conditions. Even worse,
majority of algorithms break down at the moment when faults occur. Sometimes
they loose efficiency, hang on, or even yield wrong results.

There are many algorithmic challenges in this area. One of the hard problems
is to redesign self-organization algorithms so that they yield proper results even
if different sensors may have inconsistent view of the state of the shared radio
channel. For example, it may happen that some sensors receive a message and can
interpret it correctly, while other sensors find it unreadible. Classical algorithms
assume that a message is either scrambled or accessible for all sensors that haaave
their receivers switched on.

Trustworthiness. For some application areas it is necessary to guarantee that
the data delivered by sensor networks are trustworthy. For instance, if a sensor
network has to monitor environment pollution, then the data provided by the
network should serve as a indisputable evidence in a court. So it is necessary to
design some mechanisms that insure the data origin, time, location, and lack of
manipulation. On the other hand, it is quite easy to find a sensor and replace it,
or manipulate unprotected radio messages.

Contemporary cryptography provides a full range of cryptographic tools for
authentication and protecting data against manipulations and unauthorized
reading. The problem is that the classical methods are quite “heavy” and not well
suited for sensor networks. The problems are communication overhead, compu-
tational resources necessary for performing cryptographic operations, key man-
agement and quite high probability of compromising some nodes.

New algorithms and schemes should take into account these issues: they should
reduce communication and computation demands and become safe even if a cer-
tain fraction of nodes become compromised. This seems to be hardly possible to
meet all these demands, but the challenge is not to secure each single node (which
might be hard), but to guarantee smooth operation of the network as a whole.
Lack of security of single units should be compensated by “joint behavior” of
the network.
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Topology and Routing in Sensor Networks�

Sándor P. Fekete and Alexander Kröller

Department of Computer Science
Braunschweig University of Technology

D-38106 Braunschweig, Germany
{s.fekete,a.kroeller}@tu-bs.de

Abstract. At ALGOSENSORS 2004 we presented a first algorithm to
detect the boundary in a dense sensor network. This has started a new
field of research: how to establish topology awareness in sensor networks
without using localization. Three years later, at ALGOSENSORS 2007,
we present a number of further results.

After discussing issues of distance estimation and computation of co-
ordinates, we give an overview over the boundary recognition problem
and show a new approach to solving it. Then we show how to use the
boundaries for higher-order topology knowledge; the outcome is a graph
that describes the network topology on a very high level, while being
small enough to be distributed to all nodes. This allows every node in
the network to obtain knowledge about the global topology. Finally, we
show how to use these structures for efficient routing.

1 Introduction

In recent time, the study of wireless sensor networks (WSN) has become a rapidly
developing research area. Typical scenarios involve a large swarm of small and
inexpensive processor nodes, each with limited computing and communication
resources, that are distributed in some geometric region; communication is per-
formed by wireless radio with limited range. Upon start-up, the swarm forms a
decentralized and self-organizing network that surveys the region.

From an algorithmic point of view, these characteristics imply absence of a
central control unit, limited capabilities of nodes, and limited communication
between nodes. This requires developing new algorithmic ideas that combine
methods of distributed computing and network protocols with traditional cen-
tralized network algorithms. In other words: how can we use a limited amount
of strictly local information in order to achieve distributed knowledge of global
network properties? As it turns out, making use of the underlying geometry is
essential.

In this paper, we give an overview of topics and results discussed and pre-
sented during an invited presentation at ALGOSENSORS 2007. Section 2 deals
with location awareness; we start by describing distance estimation without the
use of special hardware; this is followed by a discussion of the limitations of the
� This invited survey article is based in parts on excerpts from our articles [6,7,8,15].

M. Kuty�lowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 6–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Topology and Routing in Sensor Networks 7

computation of node coordinates. Section 3 gives a description of our approach to
topology recognition, consisting of boundary recognition and topological cluster-
ing, which has been turned into a video, based on large-scale simulation. Section 4
describes some new approaches to routing.

2 Location Awareness

One of the key problems in sensor networks is to let nodes know their location,
for example, by storing coordinates w.r.t. a global coordinate system. Unless all
nodes are equipped with special localization devices (e.g., GPS/Galileo), there
needs to be an algorithm that computes positions based on information available
to the network.

2.1 Distance Estimation

Practical localization algorithms often use connectivity information enriched
with distance estimates for adjacent nodes [17]. Note that the corresponding
decision problem is NP-hard [1].

Various ways to measure distance exist. Examples include the transmission
time-of-flight over a wireless channel, the latency of infrared communication, or
the strength of a wireless signal that decreases with distance. Good approaches
have an average error of about 10–20% of the maximal communication range.

Our approach does not rely on special hardware or node capabilities. Assuming
the probability of successful communication decreases with increasing distance,
the expected fraction of a node’s neighbors that it shares with an adjacent node
defines a monotonically decreasing function that can be inverted, resulting in a
distance estimator based on this fraction. All that is required is the ability to
exchange neighbor lists and a model of communication characteristics.

We assume that nodes are uniformly distributed over the plane, with den-
sity δ. That is, the expected number of nodes in a region A ⊂ R

2 of area λ(A)
equals δλ(A). The neighborhood Ni of a node i depends on communication
characteristics, which are modelled by an appropriate communication model.
We focus on symmetric models only, i.e., i ∈ Nj iff j ∈ Ni. The model is a prob-
ability function p(d) that defines the probability that two nodes i and j with
distance d = ‖i − j‖ are connected. Hence, the expected size of a neighborhood
is E[|Ni|] = δ

∫
R2 p(‖x‖)dx for all nodes i.

We want to estimate the distance of i and j by counting how many of i’s
neighbors are shared with j. The expected size of this fraction is

fp(d) := E[|Ni ∩ Nj |/|Ni \ {j}|] (1)

=

∫
R2 p(‖x‖)p(‖x − (d, 0)T‖)dx

∫
R2 p(‖x‖)dx

,

where d = ‖i − j‖. If f−1
p exists, two nodes i and j can exchange their neighbor

lists, compute the shared fraction ϕi,j = |Ni ∩ Nj |/|Ni \ {j}| and estimate their
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8 S.P. Fekete and A. Kröller

Table 1. Average estimation errors for different densities

Scaled density πδ 5 8 10 15 20 40 80

Error (inner nodes) .225 .183 .165 .137 .120 .087 .062
Error (boundary nodes) .257 .201 .182 .154 .135 .101 .077

distance as f−1
p (ϕi,j). Note that ϕi,j and ϕj,i may be different, so some additional

tie breaking or averaging scheme must be used.
There is an elegant way to implement this approach for practical purposes, as

proposed by Buschmann et al. [3]: Instead of f−1
p , a small discrete value table

of fp is stored in the nodes, and the estimate is done by reverse table lookup.
This even works for p or fp obtained by numerical or field experiments, and it
can be implemented using only integer arithmetic.

A widely used model for radio networks is the Unit Disk Graph (UDG), where
two nodes i and j are connected by a link iff ‖i − j‖ � 1.

For UDGs, the estimated neighborhood fraction (1) is f : [0, 1] → [0, 1] with

f(d) =
2
π

(

arctan(d
2 ) − d

2

√
1 − (d

2 )2
)

. (2)

f−1 exists, but unfortunately we lack a closed formula for it. Instead, we ap-
proximate f−1 by its Taylor series about f(0) = 1. Here, we use the 7th-order
Taylor polynomial

t7(ϕ) = − π

1! 2
(ϕ − 1) − π3

3! 25 (ϕ − 1)3

− 13π5

5! 29 (ϕ − 1)5 − 491π7

7! 213 (ϕ − 1)7. (3)

We do not use a higher order because evaluating the polynomial on practical
embedded systems would become numerically unstable.

To evaluate the UDG estimator’s performance, we ran some simulations. Ta-
ble 1 shows their results. The first row contains the expected size of a neighbor-
hood, without boundary effects. For UDGs, this is πδ. Furthermore, the average
errors are reported. The error is relative to the communication range, which is the
common measure for distance estimators. The average is taken separately for two
classes of links: for “inner” links, the communication ranges of both end-nodes
are fully contained in the network region. For “boundary” links, both end-nodes
lie at most 1 from a straight boundary. This separation has two benefits: First,
the estimate in its current form focuses on the inner links only, and second, it
removes the dependency on the network region’s shape from the evaluation.

One can see how our approach already reaches the desired accuracy of 20%
for an average neighborhood size of just eight, and gets even better for larger
neighborhood size.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Topology and Routing in Sensor Networks 9

Fig. 1. Left: Example network with marked anchor nodes. Right: Result of Ad-Hoc
Positioning [18].

Fig. 2. Left: Result of Robust Positioning [20]. Right: Result of N-Hop Multilateration
[21].

2.2 Coordinates

When trying to understand the network structure, a seemingly natural approach
is to determine the underlying node coordinates, based on trigonometric com-
putations that use node distances. A variety of methods have been proposed,
including [18, 20, 21, 19]. Unfortunately, these methods show a number of prob-
lems in the presence of errors and large numbers of nodes: see our Figures 1, 2,
3 for an example with 2200 nodes, with a subset of “anchor” nodes that know
their precise coordinates marked in black; node distances have an a random error
with a standard deviation of 1%.

Quite clearly, the resulting embeddings do not only produce imprecise node
coordinates; more importantly, they do not accurately reflect the network topol-
ogy. This means that in the context of exploiting the network topology for
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Fig. 3. Left: Result of Anchor-Free Localization [19]. Right: Our alternative: clusters
and cluster graph.

purposes such as routing, computing more or less accurate coordinates is in-
deed a red herring; as will show in the following, a suitable alternative is to
consider topological clustering, as motivated in Figure 3. See our article [15] for
more technical details.

3 Topology Awareness

3.1 Boundary Recognition

Recognizing the network boundary is vital for detecting objects entering or leav-
ing the monitored area or events that affect the network structure. Boundary
detection is also a stepping stone towards organizing the network.

In the setting described above, we first proposed the problem in [9], using
a probabilistic setting; see [5] for a refined approach. A different approach for
our problem was suggested by Funke [11], and requires a particular boundary
structure and sufficient density; see [12] for details. Another approach was pro-
posed by Wang et al. [22]. Our method described in [14] yields deterministically
provable results for any kind of boundary structure. We assume that the com-
munication graph is a

√
2/2-quasi unit disk graph, a generalization of unit disk

graphs first introduced by [2].
See Figure 4 for a geometric representation of a graph called a flower. Non-

neighboring nodes have a minimum distance, so an independent node set requires
a certain amount of space in the embedding. On the other hand, the space
surrounded by a cycle is limited. This packing argument allows conclusions about
the relative embedding of nodes. Applying a similar argument repeatedly, the
central nodes can deduce that they lie inside of the outer cycle.

Because flowers are strictly local structures, they can be easily identified by
local algorithms. In the shown example network of 60,000 sparsely connected
nodes, our procedure identified 138 disjoint flowers; a single suffices for the second
stage of our algorithm.
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Fig. 4. Top: A sensor network, obtained by scattering 60,000 nodes in a of street net-
work. Bottom left: A flower subgraph, used for reasoning about boundary and interior
of the network. Right: A flower in the context of the network shown above.

In this second stage (cf. Figure 5), we augment flowers by adding extensions
to their outer cycles, such that insideness can still be proven for all contained
nodes. By repeating a local search procedure, the flowers grow to enclose more
and more nodes and merge together, eventually leading to a single structure that
contains most of the network.

3.2 Topological Clustering

We use the identified boundaries to construct a topological clustering; see Fig-
ure 6. By considering the hop count from the boundary, we get a shortest-path
forest. Nodes that have almost the same distance to several pieces of the bound-
ary form the medial band of the region. Nodes close to three different boundary
portions form vertices of the medial band, or medial vertices. After identifying
a set of medial vertices, we also know their distance from the boundary. This
makes it easy to grow the corresponding intersection cluster to just the right
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Fig. 5. Top left: A set of expanding flowers in a network. Top right: A later stage of
the flower expansion. Bottom left: Flowers merging together. Bottom right: The result
of boundary recognition.

size. Thus, we can identify all intersection clusters in the network. Finally, parts
of the network adjacent to intersection clusters give rise to street clusters.

In the end, we have structured the network into a natural set of clusters that
reflect its topology. This makes it is possible to perform complex tasks, such as
tracking and guiding, based on purely local operations.

3.3 Our Video

Using our toolbox Shawn [16] for the simulation of large and complex networks,
we have produced a video that illustrates two procedures for dealing with the
above algorithmic challenges: one identifies the boundaries of the network; the
other constructs a clustering that describes the network topology. For more tech-
nical details of the underlying algorithmic side, see our paper [14]. Our software
is freely available at www.sourceforge.net/projects/shawn.

The video starts by describing sensor nodes and their deployment. Follow-
ing an introduction of the algorithmic challenge, the next scene illustrates the
problem of boundary recognition. Next is the concept of flowers and the way
they allow local, deterministic reasoning about nodes lying in the interior of the
network. Their extension by augmenting cycles is demonstrated in the following
scene, leading to full-scale boundary recognition. The next part introduces the
medial band and the recognition of medial vertices. In the final sequence, this
leads to the construction of clusters.
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Fig. 6. Top left: The shortest-path forest defines the medial band. Top right: Medial
band and medial vertices. Bottom: The resulting intersection and street clusters.

4 Routing

Once the above cluster structure has been extracted, it is straightforward to use
it for network tasks such as routing and tracking: on the large scale, use the
cluster graph G, either on a global scale (if G is small enough to be available
all over the network), or for local handover between clusters (if G is not avail-
able); within each cluster, use virtual coordinates that arise (a) by hop distance
from the cluster boundary (b) by hop distance along the cluster boundary. Using
more refined geometric structures and properties, it is possible to achieve good
routing results. See the forthcoming Ph.D. thesis [13] of the second author for
details.

A related problem is to find approximately shortest paths in a clustered sensor
network, without having access to node coordinates or a detailed routing table.
For the case of a subdivision into convex clusters, our group has developed
a memory-efficient, local algorithm that guarantees a 5-approximation of the
shortest routing path. See the masters thesis by Förster [10], and our related
paper [4] for details.
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Abstract. Sensing, processing and transmitting data are arguably the
key activities of common nodes in a wireless sensor network once em-
bedded in a physical process unfolding in time and space. To process
the data and transmit it reliably and efficiently over noisy links along
the network, sensor nodes require codes that are capable of exploiting
the natural correlation of the gathered data and of combating the im-
pairments caused by noisy communication channels.

Once we define reasonable models for the information sources and
the communication channels, information theory offers powerful tools to
study the ultimate performance limits for any coding scheme designed
for this class of communication and computation systems. To illustrate
this observation, we start by modeling the sensor network as a set of
multiple correlated sources that are observed by partially cooperating
encoders and transmitted over a network of independent channels. Based
on this formulation, we are able to characterize the network capacity, i.e.,
the exact conditions on the sources and the channels under which there
exist codes for reliable communication with the data collection point.
An important conclusion to be drawn from our proofs, is that for a
large (and arguably most relevant) class of sensor networks, separate
data compression and error correction codes provide an optimal system
architecture.

The proofs also offer hints on how to construct practical algorithms
for distributed compression and joint inference of correlated data col-
lected by hundreds of sensor nodes. After showing that the optimal de-
coder based on minimum mean square estimation (MMSE) is unfeasible
– its complexity grows exponentially with the number of nodes – we
present a two-step “scalable” alternative: (1) approximate the correla-
tion structure of the data with a suitable factor-graph, and (2) perform
joint source/channel decoding on this graph using the sum-product al-
gorithm. Based on this general approach, which can be applied to sensor
networks with arbitrary topologies, we give an exact characterization of
the decoding complexity, as well as optimization algorithms for finding
optimal factor trees under the Kulback-Leibler criterion. Finally, we are
able to show how these ideas can also be used for distortion-optimized in-
dex assignments for low-complexity distributed quantization, and source-
optimized hierarchical clustering.

� Keynote speech.
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Abstract. We study the problem of localizing and tracking multiple
moving targets in wireless sensor networks, from a network design per-
spective i.e. towards estimating the least possible number of sensors to
be deployed, their positions and operation chatacteristics needed to per-
form the tracking task. To avoid an expensive massive deployment, we
try to take advantage of possible coverage ovelaps over space and time,
by introducing a novel combinatorial model that captures such overlaps.

Under this model, we abstract the tracking network design problem
by a combinatorial problem of covering a universe of elements by at least
three sets (to ensure that each point in the network area is covered at any
time by at least three sensors, and thus being localized). We then design
and analyze an efficient approximate method for sensor placement and
operation, that with high probability and in polynomial expected time
achieves a Θ(log n) approximation ratio to the optimal solution. Our
network design solution can be combined with alternative collaborative
processing methods, to suitably fit different tracking scenaria.

1 Introduction

1.1 Problem Description

We wish to solve the problem of localizing and continuously tracking mobile
objects moving in a domain described by a set of set of three-dimensional curves,
S, over a period of time T i.e. we want the wireless sensor network to be able to
detect the position of any moving object, at any time t in T . We allow multiple
targets that arise in the network area at random locations and at random times.
The movement of each target can follow an arbitrary but continuous path i.e.
we disallow the target to instantaneously “jump” to another location; still, we
can handle such discontinuities as multiple targets.

In our setting, the set S of 3D curves is the set of possible trajectories of
objects moving for some time within the period T . Such a moving object might
follow a part of a curve in S, and possibly arrive to an intersection of curves and
then follow another curve.
� This work was partially supported by the IST/FET/Global Computing Programme

of the European Union, under contact number IST-2005-15964 (AEOLUS).
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We can assume that each such curve in S is specified (for t = 0, . . . , T ) by
an analytic equation (e.g. in x, y, z coordinates). Thus, we can compute a curve
(route) piece τij for the curve (route) Ri, via some criterion (e.g. to split Ri into
pieces of equal length). We, then, wish to deploy some sensors (either standing
or even moving for some time) in some (initial) places within S. A basic demand
for such a deployment consists of the following rule:

(Rule R) For every point
⇀
p= (x, y, z) in S and for every t ∈ [0, T ] there are

at least three sensors, active at time t, whose sensing range includes the point
⇀
p . Here, for a sensor σ operating at time t, its sensing range is a sphere of some
radius Rσ(t) and with center the position of σ at time t.

Note that rule R guarantees localization of any moving target in S at any
time t in T , via triangulation.

We follow a network design approach to this problem. Let us assume, hypo-
thetically, that we could have an abundance of sensors, each characterized by
an initial position, an operation period, and an initial available energy (battery)
that allows a particular implementation of sensing ranges during the operation
of the sensor. Then, the decision to actually select one sensor (with the initial
position, operating period and available energy) has a certain cost. Our goal is
to be able to select a subset of sensors that implement rule (R) and is of nearly
minimal cost.

The problem we study is related (but different) to the problems of network
coverage and tracking. In fact, we extend the well-studied coverage problems by
being able to track the moving path, and by also taking time into account. On
the other hand, to reduce the energy dissipation and overhead of our tracking
solution, we avoid some of the collaborative information processing components
(like which nodes should sense, which have useful information and should com-
municate, which should receive information and how often). Thus, we are not
dealing directly with queries of the type “how many targets are in a certain re-
gion during a certain time interval”. Still, our solution performs the collaborative
processing tasks (triangulation by at least three sensors) that allow localization
of the targets as they move in the network. Also, we discuss how alternative
collaborative processing methods can be combined with our approach to provide
full tracking.

1.2 Our Contribution

Our approach indeed tries to avoid the expensive, massive placement of all the
time functioning sensors all over the monitoring area, by exploiting possible over-
laps of routes at certain places in the network area, using sensors that can si-
multaneously monitor pieces of several (nearby) routes during their operation,
or even exploit sensors on top of certain moving objects of our own that wander
in the maze of routes. Thus, we somehow “multiplex” (both over space and time)
the use of deployed sensors, since our approach identifies overlaps over space and
time and thus deploys fewer sensors compared to the trivial approach.

In fact, the analysis of our method shows that it is very efficient, especially in
very large domains, both with respect to computational time and the deployment
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cost, since it finds in polynomial expected time a deployment solution which
approximates the optimal solution within a logarithmic factor. Thus, we avoid
expensive dense deployment of sensors, where the information about the target
is simultaneously generated by multiple sensors; we instead achieve a low cost
solution (by removing unnecessary redundance) that still keeps tracking accuracy
at high levels.

To be able to handle overlaps, we propose a novel combinatorial model for
possible routes in the network domain. This model, although abstract, captures
several of the technical specifications of real sensor devices, such as the energy
spent as a function of the transmission range, the ability to vary this range to
save energy or increase connectivity, the ability of sensors to employ power saving
(sleep-awake) schemes to save energy etc. This combinatorial model allows us
to reduce the tracking problem to a variation of a combinatorial problem of set
covering (in particular to “at least 3 cover”, i.e. having each point of the domain
covered at any time by at least 3 sensors, and thus being localized). We feel
that this combinatorial model is of independent interest and can (itself or its
variatios) be used in modeling other problems as well.

1.3 Related Work and Comparison

As discussed in the problem definition part, the problem we study is relevant to
network coverage and tracking, that we discuss below.

Coverage. Sensor deployment strategies play a very important role in providing
better QoS, which relates to the issue of how well each point in the sensing field
is covered. However, due to severe resource constraints and hostile environmental
conditions, it is nontrivial to design an efficient deployment strategy that would
minimize cost, reduce computation, minimize node-to-node communication, and
provide a high degree of area coverage.

Several deployment strategies have been studied for achieving an optimal sen-
sor network architecture. Dhilon et al. ([4]) propose a grid coverage algorithm
that ensures that every gridpoint is covered with a minimum confidence level.
They consider a minimalistic view of a sensor network by deploying a minimum
number of sensors on a grid that would transmit a minimum amount of data.
Their algorithm is iterative and uses a greedy heuristic to determine the best
placement of one sensor at a time. It terminates when either a preset upper limit
on the number of sensors is reached or sufficient coverage of the gridpoints is
achieved. However, the algorithm assumes line of sight of the target and the sen-
sor. Also, since a complete knowledge of the terrain is assumed, the algorithm is
not very applicable in cluttered environments, such as interior of buildings, be-
cause modeling obstacles becomes extremely difficult in those scenarios. Finally,
a main difference of this approach (and in fact the other coverage methods as
well) with ours, is that we explicitly take time into account.

In contrast to static sensor networks, nodes in mobile sensor networks are ca-
pable of moving in the sensing field. Such networks are capable of self-deployment

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Efficient Sensor Network Design 21

starting from an initial configuration. The nodes would spread out such that cov-
erage in the sensing field is maximized while maintaining network connectivity.
A potential field-based deployment approach using mobile autonomous robots
has been proposed to maximize the area coverage ([14]). Clearly, the assump-
tions of this method (and the one described below) are different to ours, since
we do not use sensor mobility as an algorithmic design element (although we
handle mobility when it appears).

Similar to the potential field approach, a sensor deployment algorithm in the
presence of mobility based on virtual forces has been proposed in [19] to increase
the coverage after an initial random deployment. A sensor is subjected to forces,
which are either attractive or repulsive in nature. In this approach, obstacles
exert repulsive forces, while areas of preferential coverage (sensitive areas where
a high degree of coverage is required) exert attractive forces, and other sensors
exert attractive or repulsive forces. A hard threshold distance is defined between
two sensors to control how close they can approach each other.

Other interesting network coverage approaches are discussed in the book chap-
ter by A. Ghosh and S. Das in [16].

Tracking. Our method follows and extends the well-established line of research
for a network architecture design for centralized placement/distributed tracking
(see e.g. the book [16] for a nice overview). According to that approach, optimal
(or as efficient as possible) sensor deployment strategies are proposed to ensure
maximum sensing coverage with minimal number of sensors, as well as power
conservation in sensor networks.

Centralized Approaches. In one of the methods ([3]), that focuses on deploy-
ment optimization, a grid manner discretization of the space is performed. Their
method tries to find the gridpoint closest to the target, instead of finding the
exact coordinates of the target. In such a setting, an optimized placement of
sensors will guarantee that every gridpoint in the area is covered by a unique
subset of sensors. Thus, the sensor placement problem can be modeled as a spe-
cial case of the alarm placement problem described by Rao [15]. That problem
is the following: given a graph G, which models a system or a network, one
must determine how to place alarms on the nodes of G so that any single node
fault can be diagnosed. It has been shown in [15] that the minimal placement of
alarms for arbitrary graphs is an NP-complete problem. Clearly, their problem
is easier than ours, since they relax the requirement to find exact coordinates of
moving objects by just finding the nearest gridpoint. Since their problem is com-
putationally difficult, this implies the inherently high complexity of our problem.
Another indication of the hardness of the problem is the fact that, as shown in
[2], the localization problem is NP-hard in sparse wireless sensor networks.

Also, our problem is related but different to the following other well known ap-
proach that focuses on power conservation: in [7] sleep−awake patterns for each
sensor node are obtained during the tracking stage, to obtain power efficiency.
The network operates in two stages: the surveillance stage during the absence
of any event of interest, and the tracking stage, in response to the presense of
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moving targets. Each sensor initially works in the low-power mode when there
are no targets in its proximity. However, it should exit the low-power mode and
be active continuously for a certain amount of time when a target is sensed, or
even better, when a target is shortly about to enter. Finally, when the target
passes by and moves farther away, the node should decide to switch back to the
low-power mode. Our approach is also power aware in the same sense (since we
also affect the duration of sensors’ operation), but additionally we also control
the transmission range (and thus the power dissipation).

Another centralized approach ([8]), is “sensor specific”, in the sense it uses
some smart powerful sensors that have high processing abilities. In particular,
this algorithm assumes that each node is aware of its absolute location via a GPS
or a relative location. The sensors must be capable of estimating the distance of
the target from the sensor readings.

Distributed Approaches. As opposed to centralized processing, in a distributed
model sensor networks distribute the computation among sensor nodes. Each
sensor unit acquires local, partial, and relatively coarse information from its en-
vironment. The network then collaboratively determines a fairly precise estimate
based on its coverage and multiplicity of sensing modalities. Several such dis-
tributed approaches have been proposed. Although we are not comparing with
them, we shortly discuss some of them, for completeness.

In [12], a cluster-based distributed tracking scheme is provided. The sensor net-
work is logically partitioned into local collaborative groups. Each group is respon-
sible for providing information on a target and tracking it. Sensors that can jointly
provide the most accurate information on a target (in this case, those that are
nearest to the target) form a group. As the target moves, the local region must
move with it; hence groups are dynamic with nodes dropping out and others join-
ing in. It is clear that time synchronization is a major prerequisite for this approach
to work. Furthermore, this algorithm works well for merging multiple tracks cor-
responding to the same target. However, if two targets come very close to each
other, then the mechanism described will be unable to distinguish between them.

Another nice distributed approach is the dynamic convoy tree-based collab-
oration (DCTC) framework that has been proposed in [17]. The convoy tree
includes sensor nodes around the detected target, and the tree progressively
adapts itself to add more nodes and prune some nodes as the target moves. In
particular, as the target moves, some nodes lying upstream of the moving path
will drift farther away from the target and will be pruned from the convoy tree.
On the other hand, some free nodes lying on the projected moving path will
soon need to join the collaborative tracking. As the tree further adapts itself
according to the movement of the target, the root will be too far away from
the target, which introduces the need to relocate a new root and reconfigure
the convoy tree accordingly. If the moving targets trail is known a priori and
each node has knowledge about the global network topology, it is possible for
the tracking nodes to agree on an optimal convoy tree structure; these are at
the same time the main weaknesses of the protocol, since in many real scenaria
such assumptions are unrealistic.
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The interested reader is encouraged to refer to [18], the nice book by F. Zhao
and L. Guibas, that even presents the tracking problem as a “canonical” problem
for wireless sensor networks. Also, several tracking approaches are presented
in [16].

2 The Model and Its Combinatorial Abstraction

2.1 Sensors and Sensor Network

We abstract the most important technological specifications of existing wireless
sensor systems. Each sensor in our model is a fully-autonomous computing and
communication device, equipped with a set of monitors (e.g. sensors for tem-
perature, humidity etc.) and characterized mainly by its available power supply
(battery) and the energy cost of (1) sensing (i.e. receiving and processing) (2)
data sending. The sensing range R1(t) is of particular importance here. We also
assume that the sensor can transmit data (to nearly devices) within a range
R2(t). Both these ranges may vary with time. This means that the power spend-
ing by the sensor can be set at various different levels. We also assume some
law of energy consumption that is range-dependent (e.g. the order of the energy
spent is quadratic in the transmitting distance; depending on environmental
conditions and their harschness the exponent can be larger than 2).

Let n be the total number of available sensor devices for deployment. Let S
be the set of possible deployment positions (i.e. the union of 3D curves as we
described earlier). Let T be a period of time. For each sensor σ of the n available
sensors, a placement act, Aσ, is a decision (i) either not to deploy σ or (ii) to
deploy σ in an initial position

⇀
p in S, for a period Tσ ⊆ T , with a pre-specified

pattern of R1(t), R2(t) (t ∈ Tσ) and a possible trajectory of σ moving in S for all
t in Tσ. All the placement acts, together, form a sensor network N . We assume
here that N is capable of (somehow) reporting the sensing of local events (i.e.
tracking events) to some set of sinks TN .

2.2 A Model for Targets

In contrast to models that allow only a single moving target, we allow multiple
targets. We assume that the initial positions of all targets are arbitrary. Also, we
assume that all targets arise in arbitrary times during the network operation.

With respect to target mobility, we assume that each target follows an ar-
bitrary path in S which is however continuous i.e. we disallow the target to
instantaneously “jump” to another location. Furthermore, we do not limit the
movement speed of targets; we only assume that when a target enters the sensing
area of an (awake) sensor, it does not manage to leave this area before being
sensed. This limit on motion speed is rather trivial, since sensing speed is very
high i.e. practically the time needed for a target to be sensed is very close to
zero.
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2.3 The Combinatorial Model

Assume a given complicated 3D domain, S, with obstacles that disallow signal
transmissions (e.g. a set of corridors in buildings or different shape obstacles in
a mountain). By “complicated” we mean that the domain can be represented by
arbitrary three-dimensional curves (see also the problem description subsection),
i.e. the only modeling restriction on the curves is their continuity. We further
assume that the domain can be represented by the union of λ routes R1, . . . , Rλ

(each can be realized by e.g. a moving robot or air-vessel). We are also given a
period T of time.

We wish to equip each route with sensors (of varying capabilities e.g. varying
transmission range and operation times) so that any moving object in the do-
main at any time t in T can be “seen” by at least three sensors (and, thus, its
instantaneous position can be found by triangulation). If we can manage this,
we can monitor the motion of any moving object within S during T .

A trivial, but very costly, solution is to equip each route with sensors (in
various points of the route) each operating during the whole T and being able
to track any motion in a part of the route. However, one could exploit overlaps
of routes at certain places, sensors that can monitor pieces of several routes
(“nearby”) during their operation, or even sensors on top of certain moving
objects of our own that wander in the maze of routes.

In order to argue about such economic tracking methods, we view each Ri

partitioned into several “route pieces” rij . Let ni be the number of the pieces
of Ri. We also partition the period T into suitable intervals τ1, . . . , τk so that
T = τ1 + · · · + τk.

We call an “element” each pair (rij , τm) , for 1 ≤ i ≤ λ, 1 ≤ j ≤ ni and

1 ≤ m ≤ k. There are n =
(∑λ

i=1 ni

)
· k such elements.

We can then describe sensor placements (that work for a certain duration
each) as relations (sets) between those elements. For example: (a) a sensor placed
at ri5 can also “see” rj7, rk30. This sensors can operate for 3 intervals. If we start
it at τ1 then the element (ri5, τ1) “covers” the elements (ri5, τ2), (ri5, τ3) but
also (rj7, τ1), (rj7, τ2), (rj7, τ3) and (rk30, τ1) (rk30, τ2) (rk30, τ3). (b) A sensor
is attached to a moving object that moves from r11 to r12 to r13 and then r34,
r35, r36. The sensor lasts 6 intervals and our moving object starts at τ5. Then,
element (r11, τ5) “covers” elements (r12, τ6), (r13, τ7) and also (r34, τ8), (r35, τ9),
(r36, τ10) (and itself, of course).

In general, each placement of a certain sensor activated at a certain time and
operating for a certain time, corresponds to a set of “covered” elements. Each
such “set” has a certain cost e.g. it is more expensive if the sensor’s battery is
such that the sensor lasts for a long time. Also it is more expensive if its sensing
range is large and can “see” more route pieces.

Definition 1. A redundant monitoring design (RMD) D is a set of possible
choices of q ≤ n sensors σ1, . . . , σq, each with a placement act A(σi) of the form
“deploy” and the associated cost of the placement act.
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Each RMD results in a family of sets Σ1, . . . , Σq, each having a cost c(Σi) > 0
and each being a subset of our universal set of elements U = {e : e is a pair
(rij , τm)}.

For feasibility of the RMD we can require:

(a) that the union of all Σi is U .
(b) that each e in U belongs to at least 3 Σi sets initially.

However, this is not necessary for our method, since the method itself will
discover an infeasible RMD.

Definition 2. Given are an instance of an RMD of sets Σ1, . . . , Σq on the uni-
verse U of elements related to the domain S and the period T , and also a cost
c(Σi) ≥ 0 for each Σi. Then, an optimal final monitoring decision (Optimal
FMD) is a sub-collection, F , of sets {Σt1 , . . . , Σtq′ } (where q′ ≤ q and each

ti ∈ {1, 2, . . . , q}), whose total cost c(F ) =
∑q′

j=1 c(Σtj ) is minimum, and such
that (i) ∪i

∑
ti

= U (ii) each e in U belongs to at least 3 sets in the sub-
collection F .

We note that we can construct several RMDs for each run of our Algorithm, get
a close to optimal solution (FMD) for each and select the best among them.

3 A Way to Compute Near Optimal FMDs

From the above formulation, the Optimal FMD problem is actually the following
“AT-LEAST-3-SET-COVER” problem:

AT-LEAST-3-SET-COVER (≥ 3SC): Given D = (Σ1, . . . , Σq) where each
Σi ⊆ U (and the union of all Σi is U) and given the costs c(Σi) ≥ 0, select a
minimum total cost sub-collection F of D so that each element e in U belongs
to (is “covered” by) at least 3 sets in F .

Important note: Note that geometry and geometric covers can not help here
because the domain since S is a complicated 3D domain that can be highly
irregular; also, the timing parts of the elements escape the Cartesian geometry;
finally, the cost of each Σi is a complicated function of placement decisions of
sensors of various capabilities.

The problem of ≥ 3SC is NP-hard. This is so, since the usual min-cost SET-
COVER problem can be reduced to it by adding to any instance of SET-COVER
two sets of zero cost, each covering all elements.

We now describe a formulation of the problem as an integer linear program
and give an approximate solution based on randomized rounding. Note that our
method can be extended to low cost “SET-COVER by a at least l sets” (let us
denote this problem as ≥ l-SET-COVER if the redundancy of l > 3 is needed to
make the redundant monitoring decision D easier to construct and fault-tolerant.

We remind the reader of the computational complexity of set covering pto-
blems: Lund and Yannakakis ([13]) showed in 1994 that set cover cannot be
approximated in polynomial time to within a logarihmic factor, unless NP has
quasi-polynomial time algorithms. Feige ([6]) improved their inapproximability
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lower bound, under the same assumptions, giving a slightly better bound that
essentially matches the approximation ratio achieved by the greedy algorithm.
Alon, Moshkovitz, and Safra established in [1] a larger lower bound, under the
weaker assumption that P �= NP. The k-set cover problem is a variant in which
every set is of size bounded by k. While k-set cover problem can be solved in
polynomial time (via matchings) for k = 2, it is NP-complete and even MAX
SNP-hard for k ≥ 3. Greedy algorithms in that case achieve a approximation ra-
tio of ln k+Θ(1). Hardness results in [6] show that it is not approximable within
(1 − ε) ln n, under strong complexity-theoretic evidence. For 3-set cover, besides
linear programming techniques (fractional covers), also local and “semi-local”
approximation techniques have been used e.g. in [9,10,5].

3.1 The Randomized Rounding Method

For set Σ let x(Σ) be 1 if Σ is selected and 0 else. We want to

minimize
∑

Σ in D

x(Σ) · c(Σ)

subject to
(1) x(Σ) ∈ {0, 1}
(2) Let E(e) be the collection of all Σ containing element e. Then, for each
element e,

∑

Σ in Ee

x(Σ) ≥ 3

Let IP1 be the above integer linear program.
We relax the above integer program to the following linear program (LP1):

minimize
∑

Σ in D

x(Σ)c(Σ)

given that
(1)∀Σ, 0 ≤ x(Σ) ≤ 1
(2) ∀e,

∑
Σ in E(e) x(Σ) ≥ 3

Let {p(Σ)} be the optimal solution to the above (i.e. x(Σ) = p(Σ) get the
minimum). We can find {p(Σ)} in polynomial time in the size n of the redundant
monitoring decision D.

We then form a subcollection of sets as follows:

Initially C = ∅
Experiment E.
For each Σ in D, put Σ into the sub-collection C with probability p(Σ),

independently of the others.

The experiment E above outputs a sub-collection C. Clearly,

E(cost(C)) =
∑

Σ in D

c(Σ) Pr{Σ is picked} =
∑

Σ in D

c(Σ)p(Σ) = OPTf

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Efficient Sensor Network Design 27

where OPTf is the optimal value of the linear program LP1. The found collection
C has a very nice expected cost (even better than what one can achieve in our
original integer problem) but we have to examine feasibility.

Since we want to get a C where each e in U belongs to at least 3 sets of C,
we must examine whether the (random) C obtained has this property.

Definition 3. Let α be an element in U and C obtained by the experiment E.
We denote by p(α, C) the probability that α belongs to at least 3 sets of C.

Let w.l.o.g. Σ1, . . . , Σλ be the sets of our RMD containing element α. Here, we
must have λ ≥ 3, else LP1 will report infeasibility. W.l.o.g. denote by pi the
probability p (

∑
i) obtained via LP1, i.e. that Σi is chosen to be in C. Assuming

that LP1 is feasible we get:

γ = p1 + · · · + pλ ≥ 3 (1)

Let A3, N0, N1, N2 be the events:
A3 = “α is covered by at least 3 sets in C”
N0 = “α does not belong to any set in C”
N1 = “α belongs to exactly one set in C”
N2 = “α belongs to exactly two sets in C”
Now,

p(α, C) = Pr{A3} = 1 − Pr{N0} − Pr{N1} − Pr{N2} (2)

We now estimate Pr{Ni}, for i = 0, 1, 2:
We will repeatedly use the following fact:

Fact (*). If the numbers x1, . . . , xλ are each in [0, 1] and x1 + · · ·+xλ ≥ γ, then
(1 − x1) · · · (1 − xλ) ≤

(
1 − γ

λ

)λ ≤ e−γ (it is assumed that γ ≤ λ).
Fact (*) can be proved via an easy induction, or via the fact that the arithmetic

mean is bigger or equal than the geometric one.

Proof of Fact (*). Let yi = 1−xi, i = 1, . . . , λ. Then,
∑

yi = λ−
∑

xi ≤ λ−γ.
So, ∑

yi

λ
≤ 1 − γ

λ
(3)

But,
∑

yi

λ ≥ λ
√

πyi (arithmetic mean vs geometric mean), so:
∑

yi

λ
≥ λ

√
(1 − x1) · · · (1 − xλ)

So, by Equation (3), λ
√

(1 − x1) · · · (1 − xλ) ≤ 1 − γ
λ . So, (1 − x1) · · · (1 − xλ) ≤

(
1 − γ

λ

)λ �
We now have:

(a) Pr{N0} = (1 − p1) · · · (1 − pλ). By the Fact (*), then

Pr{N0} ≤
(
1 − γ

λ

)λ

≤ exp(−γ).
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Also, by inclusion-exclusion,

Pr{N1} = p1 · Pr{no cover of α in the trials of Σ2, . . . , Σλ}

+(1−p1) Pr{1 cover of α in the trials of Σ2, . . . , Σλ}≤p1·
1

eγ−p1
+(1−p1) Pr{N1}

(because p2+ · · ·+pλ = γ−p1 so (1−p2) · · · (1−pλ) ≤
(
1 − γ−p1

λ

)λ
= exp(−(γ−

p1)) and also because Pr{1 success in the trials of Σ2, . . . , Σλ} ≤ Pr{N1 } ).
So,

Pr{N1} ≤ p1 · 1
eγ−p1

+ (1 − p1) Pr{N1}

so
Pr{N1} ≤ 1

eγ−p1
≤ 1

eγ−1

Similarly,

Pr{N2} = p1 · Pr{1 cover of α in the trials of Σ2, . . . , Σλ}

+(1−p1)Pr{2 covers of α in the trials of Σ2, . . . , Σλ }≤p1·
1

eγ−p1
+(1−p1)Pr{N2}

also, so Pr{N2} ≤ 1
eγ−1 .

Thus,

Pr{A3} = p(a, c) ≥ 1 − 1
eγ

− 2
eγ−1

and γ ≥ 3. So, Pr{A3} = p(a, c) ≥ 1 − 1
e3 − 2

e2 > 1
2 . Let ξ = 1 − 1

e3 − 2
e2 . Hence,

we get the following:

Theorem 1

Pr{α is covered by at least 3 sets in C} = p(α, c) ≥ 1 − 1
e3 − 2

e2 = ξ

We now repeat the experiment E (with the same p(Σi)) to get r = c log n such
collections C1, C2, . . . , Cr.

Let V = C1 ∪ C2 ∪ . . . ∪ Cr. By independence of the repeated experiments, if
the event AV3 is :

AV3 =“element α is not covered by at least 3 sets in V ” then

Pr{AV3} ≤ (1 − ξ)c log n

We can always choose c so that (1 − ξ)c < 1/4. Then,

Pr{AV3} ≤
(

1
4

)log n

≤ 1
n2

Thus the probability that there is an element in U not covered by at least 3 sets
of V is bounded by above by n · n−2 = 1/n.

So, we get the following:
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Theorem 2. The collection V obtained satisfies: (i)

Pr{V covers each element by at least 3 sets} ≤ 1 − 1
n

and (ii)
E(cost(V )) ≤ c log n OPTf ≤ c log n OPT

where OPT is the cost of the optimal FMD.

Let ρ = c log n. Note that by the Markov inequality it is

Pr{cost(V ) < 2ρ OPTf} ≥ 1
2

Thus, the probability that V is valid and has cost less than 2ρOPTf is at
least

1 −
(

1
n

+
1
2

)

=
1
2

− 1
n

We can then repeat the whole process an expected number of at most 2 times
and get a V which is verified to be an almost optimal and valid FMD. Note that
we have also shown:

Theorem 3. The problem ≥ 3SC can be approximated in polynomial expected
time with an approximation ratio Θ(log n).

4 The Triangulation Issue

The solution to ≥ 3SC of the last section selects a close to optimal FMD. Thus, it
also specifies the initial positions of the associated (selected) sensors. However,
no guarantee is provided that for any element e, the 3 elements “covering” e
actually form a triangle (e.g. they may be on a line). We propose to handle this
via a “post-processing” step as follows:

For each e = (rij , τm) let σ1(e), σ2(e), σ3(e) be the 3 sensors covering e (i.e.
covering rij at τm). We now modify their placement act by perturbing the po-
sitions p∗i of σi(e) at τm by a random, small perturbation of center their p∗i and
radius ε > 0, small enough so that the same sets are covered by them. We per-
form the perturbation act only for those e for which the σi(e) are not forming a
triangle.

At the end of the post-processing step, each e in U is covered by (at least) 3
sensors, whose positions (during τm) form a triangle with high probability. We
can repeat the perturbation until the triangle is indeed formed.

This post-processing step can always be done, provided that S gives an in-
finitesimal free space around each of its points. This is safe to assume for any
application. We note that our solution works for static sensors, and moving sen-
sors whose motion is controlled by us, while it can not be applied to the case of
sensors moving on their own.
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5 Alternative Collaborative Processing Methods for Our
Approach

Our method is based on an easy to get RMD which is then “cleared” via the
randomized rounding technique to get a low cost final monitoring decision. Its
result is a selection of sensor placement acts, guaranteed to monitor each point
⇀
p in S by at least 3 sensors for any time in the period T . When our localization
method is combined with ability to distinguish all observed objects (e.g. by using
unique IDs) then tracking of objects can be performed.

Clearly our method must be complemented by a way to report target posi-
tions and their associated times to some central facility. If the reporting delay is
comparable to the speed of the target then the central facility can reconstruct
the targets motion in real time. To this end, Delay and Disruption Tolerant
Networking (DTN, see e.g. [11]) approaches can be useful, to improve network
communication when connectivity is periodic, intermittent or prone to disrup-
tions and when multiple heterogeneous underlying networks may need to be
utilized to effect data transfers.

The sensor network may handle the localization reports (i.e. reports on target
position at a certain time) distributedly. This reduces communication cost but
the central facility must have a way to compare those reports into a consistent
information about the trajectory of the target. The issues of local clocks and
their synchronization is crucial for this and we do not solve it here. In fact, we
view our approach as a building block for full tracking approaches.

6 Conclusions

To design low cost sensor networks able to efficiently localize and track multiple
moving targets, we try to take advantage of possible coverage ovelaps over space
and time, by introducing an abstract, combinatorial model that captures such
overlaps. Under this model, we abstract the localization and tracking problem
by a combinatorial problem of set covering (by at least three sets, to ensure
localization of any point in the network area, via triangulation). We then provide
an efficient approximate method for sensor placement and operation, that with
high probability and in polynomial expected time achieves monitoring decisions
with a Θ(log n) approximation ratio to the optimal solution.

We can start with redundant monitoring decisions D giving least frequency
of covering an element which is very high. This allows a high flexibility in possi-
ble places, timings and motions of sensors to initially “over-cover” the domain.
Then, we can run our algorithm to choose an economic implementation. Note
that our solution is of low cost and also achieves continuous monitoring of any
moving object in the period T . By extending our techniques, we can prove that
the problem ≥ λ-SET-COVER (λ any constant) has a (polynomial time) ap-
proximation ratio of Θ(log n).
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Abstract. We consider the problem of counting the number of indis-
tinguishable targets using a simple binary sensing model. Our setting
includes an unknown number of point targets in a (simply- or multiply-
connected) polygonal workspace, and a moving point-robot whose sen-
sory input at any location is a binary vector representing the cyclic order
of the polygon vertices and targets visible to the robot. In particular, the
sensing model provides no coordinates, distance or angle measurements.
We investigate this problem under two natural models of environment,
friendly and hostile, which differ only in whether the robot can visit the
targets or not, and under three different models of motion capability.

In the friendly scenario we show that the robots can count the targets,
whereas in the hostile scenario no (2 − ε)-approximation is possible, for
any ε > 0. Next we consider two, possibly minimally more powerful
robots that can count the targets exactly.

1 The Problem and the Model

Simple, small and inexpensive computational and sensing devices are currently at
the forefront of several research areas in computer science. These devices promise
to bring computational capabilities into areas where previous approaches (usu-
ally consisting of complex and bulky hardware) are not feasible or cost-effective.
Such devices are being successfully used in various monitoring systems, military
tasks, and other information processing scenarios. Their main advantages are
quick and easy deployment, scalability, and cost-effectiveness. However, in or-
der to realize the full potential of these technologies, many new and challenging
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research problems must be solved, because the classical schemes designed for cen-
tralized and desktop computational hardware are inapplicable to the lightweight
and distributed computational model of sensor nodes. The inherent limitations of
the systems based on these simple devices have inspired the research community
to consider the computation with a minimalistic view of hardware complexity,
sensing and processing, energy supply, etc.

In this paper we use such a minimalistic approach in the area of mobile sensors
– simple robots. We consider and define robots of unsophisticated sensing and
mobile capabilities and investigate their computational power on an elementary
yet natural problem of counting objects of interest in the robots’ environment.
We model the environment by a polygon P (simply or multiply-connected) in
the plane and the objects of interest, namely, targets are modeled as a set of
points inside P .

We assume that the robot is a (moving) point, equipped with a simple camera
that can sense just the combinatorial features of the surrounding. In particular,
the robot can see a vertex of P or a target, can distinguish a target from a
vertex, but the vertices and the targets are otherwise indistinguishable, i.e., all
vertices are visually identical and all targets are visually identical. It is only the
cyclic order in which the robot sees the features that distinguishes them from
each other. We assume that the ordering is always consistent, which we take,
without loss of generality, to be counterclockwise. We model such a discrete
vision by a point identification vector (piv), which is a binary vector defined by
the cyclically ordered list of targets and polygon vertices that are visible from
the current robot’s position, where each bit indicates whether the corresponding
point is a target (value 1) or a vertex of the polygon (value 0). Sitting at a
vertex of P , we assume that the cyclic order of the visible points (vertices and
targets) starts with the neighboring vertex, i.e., the first component of the piv
always represents the neighboring vertex (and therefore has value 0). For the
robot located on a target, we make no assumption about the first component of
the robot’s piv – it is chosen by an adversary.

Moreover, the robot can see the edges of the polygon. This is modeled by a
combinatorial visibility vector (cvv), a binary vector of length k whose i-th bit
encodes whether there is an edge between vertex i − 1 and vertex i of the k
vertices visible from the robot’s position. See Fig. 1 for illustration.

robot

P

Fig. 1. An illustration of a point identi-
fication vector (piv) and a combinatorial
visibility vector (cvv) in polygon P (with
4 targets); piv is (0, 1, 0, 0, 1, 1, 0, 0) and
cvv is (1, 1, 0, 1, 0, 1)

Fig. 2. If a robot only senses the num-
ber of targets then the number of targets
cannot be approximated within o(n)
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The robot has no other sensing capability, and in particular has no information
about distances, angles, or world coordinates. This also motivates our simplistic
model of the robot’s movement. Roughly speaking, the robot can pick a direction
based on its sensing system and move in that direction until the environment
prevents the robot to go any further. The direction of a robot’s movement is the
direction to one of the visible points (a vertex of P or a target) in the robot’s
piv, and the robot stops when it reaches that point. The robot can sense the
environment only when it is not moving.

The robots model simple and small mobile sensors, which possess a low-
resolution camera and limited computational power, which allows the robots
to perform only simple image processing tasks, such as finding areas of substan-
tial light changes. The limited power and equipment prevents learning anything
more, like distances, angles, etc., and thus a binary sensing reflects appropriately
what robots sense. The robots shall explore an unknown environment, which is
physically bounded, such as buildings (with walls), or streets of a city. Thus we
naturally arrive at the model with a polygon P and discrete sensing via piv and
cvv.

Due to these unsophisticated vision and motion primitives, seemingly easy
tasks become difficult in this model. For instance, a robot sitting at a vertex u
can specify a visible vertex v by its index in the cvv of u. However, if the robot
moves from u to v, it is not possible in general to recover the position of u with
respect to v. A way to circumvent this issue is to mark u with a pebble before
moving to v. A pebble is visually distinguishable from vertices and targets. If
no other pebbles are visible from v, the position of u can be recovered. For a
detailed discussion of the implications of this minimalistic model, see [1].

We are interested in how the robots can solve various environment exploration
tasks and what limitations are implied by our simplistic assumptions on robots’
capabilities. In this paper we consider the problem of determining the number
of targets in an unknown polygon P . Throughout this paper we refer to this
problem as the counting problem. By n we denote the number of vertices of
P and by m the number of targets therein. For simplicity we assume that the
targets and polygon vertices are in a general position, i.e., no three points are
collinear. In this paper we consider two different scenarios to model two basic
classes of applications. In the friendly environment, the robot is allowed to walk
to any target. In the hostile environment, the robot is not allowed to walk to
targets. This scenario models the situation where a target represents an unsafe
entity and coming into an imminent closeness to targets is dangerous.

For the friendly scenario we show that a single robot with two pebbles (mark-
ers) can count the number of targets in any polygon P . In contrast, we show that
in the hostile scenario, the robots cannot count the targets in general. Thus, re-
quiring the robots to count targets only from afar is a more complicated problem,
and we must endow the robots with some additional capabilities. Surprisingly,
we show that these additional capabilities are quite minor, yet subtle. In fact,
we consider two possible models, and show their implications on our problem.
We consider robots that can walk along edge or diagonal extensions, i.e., if a
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robot picks a visible vertex u as the direction of its walk, the robot can continue
its walk in the same direction after it reaches u, if there is no polygonal edge
to prevent it. In the second model we consider one additional global direction
(think of “north”) in which the robot can walk from any vertex of P . In both
models the robots can solve the counting problem.

We are interested in deterministic algorithms and their worst-case analysis,
which we express in terms of the number of steps (movements) of robots and in
the amount of used memory. We work with word-memory units, where one word
of memory has Θ(log(max{m, n})) bits. We are also interested in approximation
algorithms, i.e., in algorithms that deliver a (provably good) estimate on the
number of targets. Further, we look for estimates that are never smaller than
the actual number of targets. We say that an algorithm is a ρ-approximation for
the counting problem if for the setting with m targets, m ∈ IN, the algorithm
estimates the number of targets by z, for which m ≤ z ≤ ρ · m.

To demonstrate the notion of approximation and to justify our sensing model
we illustrate that for the following weaker sensing model no non-trivial approxi-
mation exists: consider the sensing of the vertices in the same way as we defined
before, but consider the sensing of the targets only by their presence, i.e., not
interleaved with the vertices. Thus, the only information the robot gets is the
number of visible targets (but not their ordering within the vertices of P ). Con-
sider Fig. 2. It depicts two different scenarios, one scenario with m = 1 target
and the second scenario with m = n/3 targets. In both scenarios the robot
senses from every vertex exactly one target and therefore cannot distinguish the
scenarios. Hence, for this simple sensing model no approximation algorithm can
guarantee a ratio better than n/3.

Related Work. Suri et al. [1] considered simple robots with combinatorial sensing
of the environment and investigated some elementary questions of what infor-
mation about the topology of the environment can be deduced by simple robots.
In our paper, we consider the same robots, but enlarge the complexity of the
environment by adding the targets into the environment. Although the robots
are strongly limited in capabilities, it is shown in [1] that the robots can solve
non-trivial tasks. A robot cannot decide whether a vertex is convex, but can
decide whether the polygon is convex. Also, a robot cannot decide which is the
outer boundary of a multiply-connected polygon P , although it can discover and
count all the boundary components in P . Furthermore, a robot with one pebble
can build a mental map of the vertices of any (simply- or multiply-connected)
polygon P in O(n3) steps and with O(n) memory, which allows the robot to
navigate from any vertex i to any vertex j. The navigation result is an impor-
tant building block in our paper. Further, the paper shows that the robot can
compute a triangulation of P and solve a distributed version of the famous Art
Gallery Problem [2] with �n/3� guarding positions.

Combinatorial geometric reasoning is used in many motion planning and ex-
ploration tasks in robotics [3,4]. Minimalistic models of robots has been previ-
ously studied in [5,6,7,8]. However, the nature of problems investigated in our
paper does not seem to be addressed in the past. The aforementioned papers
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deal with different problems such as navigation and pursuit evasion [6,7,8], and
not with recognition of important points (targets) in the environment. Learning
about the geometrical nature of the environment is the problem studied in [5],
where the environment is not a polygon, and it contains labeled features, which
allows sensors to distinguish these landmarks.

2 The Friendly Environment

In this section we show that in a friendly environment a robot with two pebbles
can count the targets in any simply or multiply connected polygon.

We consider simply-connected polygons first. In the beginning the robot
counts n, the number of vertices of the polygon: the robot leaves a pebble on the
starting vertex and walks around the polygon’s boundary, counting the vertices
until it returns to the pebble. Let 1, 2, . . . , n denote the vertices of the polygon,
ordered in the counterclockwise direction, starting at the robot’s initial position.

The idea of the algorithm is to go to every vertex i, i = 1, 2, . . . , n, and count
the targets that are visible from i and that are not visible from any vertex j,
j < i. We call these targets newly visible at vertex i. Thus, the robot can go
through vertices i = 1, 2, . . . , n and sum up all newly visible targets. Clearly, no
target will be counted twice, and therefore the resulting sum is the total number
of targets.

We now describe how the robot can identify whether a target is newly visible.
Being at vertex i, the robot wants to identify whether a k-th target in its visibility
vector is newly visible. The robot goes to the target, leaves a pebble there, and
checks for every vertex j < i, whether the pebble is visible from j. The navigation
from the target back to the vertex i can be done by leaving the second pebble at
i and checking the position of i in the visibility vector of the target. Obviously,
the target is newly visible if and only if the pebble is not visible from any
vertex j, j < i. Overall, the robot needs two pebbles and a constant number
of memory words (to remember the number of vertices, the current position i,
the position j and the position k of the considered target at i, and to mark
the newly visible targets in the visibility vector of vertex i). Hence, in 2i steps
we can check whether a target visible from the i-th vertex is newly visible. To
check all targets at position i we need at most 2mi steps. Thus, the robot needs
O(mn2) steps to count the targets in P .

If the time is crucial, one can achieve a O(mn) number of steps at the ex-
pense of used memory. For each vertex i the robot maintains the piv with the
additional information stating whether a given target is newly visible. In the be-
ginning, every target in the piv is marked as newly visible. Then for every vertex
i the robot marks each newly visible target with a pebble and walks around the
boundary towards vertex n and at every vertex j, if the robot sees the pebble,
it marks the corresponding bit in the bit array of vertex j as not newly visible.
Thus, the robot walks m times around the boundary (for each target it walks
exactly once and at most n steps), resulting into O(mn) steps of the robot. The
robot needs O(nm) memory.
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Theorem 1. In the friendly environment a robot with two pebbles can count the
targets in a simply-connected polygon in O(mn2) steps and with O(1) memory,
or in O(mn) steps and with O(nm) memory.

The result can be easily extended to polygons with holes (multiply-connected
polygons), if we can navigate through the vertices in a consistent way. In [1], a
navigation in an arbitrary multiply connected polygon was demonstrated with
a robot with one pebble in a polynomial number of steps and with polynomial
space. Our robot has all the capabilities of the robot described there, therefore
the robot can first compute the navigation instructions, which are then stored
in the robot’s memory. Alternatively, we can use an additional, globally distin-
guishable pebble and perform the vertex navigation on the fly.

Theorem 2. In the friendly environment a robot with two pebbles can count the
targets in any polygon in polynomially many steps and with polynomial memory.

3 Hostile Environment

After solving the counting problem in the scenario where robots can walk to
targets, we consider now the scenario where robots walk only on vertices of P .

3.1 Inapproximability and Approximation

Inapproximability. We show that the counting problem cannot be approximated
within a factor 2 − ε, for any ε > 0, even if the polygon P is simply-connected.
We start with a warm-up example to illustrate the idea. Consider the polygon
in Fig. 3. The polygon consists of four spikes attached to the four sides of a
rectangle. It depicts two scenarios with a different number of targets. In the
first scenario there are 6 targets and in the second scenario there are 4 targets.
Considering any vertex of the polygon, the vectors cvv and piv are the same
in both scenarios. Hence, the robot cannot distinguish the two scenarios, which
shows a lower-bound of 6/4 = 3/2 for the approximation ratio.

This construction can be extended to a general-sized polygon, where 2k spikes
are attached to a regular 2k-gon, using 2k and 4k − 2 targets in two different
scenarios, thus giving the desired inapproximability lower-bound of 2 − ε.

Fig. 3. The counting problem cannot be approximated within a factor 3/2
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Theorem 3. The counting problem cannot be approximated within a factor 2−ε,
for any ε > 0, even in a simply-connected polygon.

Note that this inapproximability result relies only on the visibility limitations of
the robots and not on their limited navigation capabilities.

Proof. We assume n is even, i.e., n = 2k. The shape of the polygon is depicted in
Fig. 4 and 5. The polygon consists of n outer vertices y1, y2, . . . , yn and n inner
vertices x1, x2, . . . , xn. It can be viewed as an n-gon, a regular polygon formed
by vertices xi, i = 1, . . . , n, connected on each side xi, xi+1 to a triangular spike
xi, yi, xi+1. Here and further in the text, the indices are to be understood in a
cyclic fashion. The line yixi intersects the segment xi+1xi+2 in the middle. Thus,
the visibility region of yi, i.e., the cone of yi defined by lines yi, xi and yi, xi+1,
intersects the visibility regions of vertices yi−1 and yi+1, but not the visibility
regions of other yjs.

Observe first that a robot at vertex yi sees only two vertices of P , namely
vertex xi and vertex xi+1. Further, a robot sitting at vertex xi sees all vertices
xj , j = 1, 2, . . . , n, and vertices yi−1 and yi.

The aim is to place the targets in a way that a robot sitting at vertex y2l+1
sees one target (the piv is (0, 1, 0)), and a robot sitting at vertex y2l sees 2 targets
(the piv is (0, 1, 1, 0)). For a robot at vertex xi, i = 1, . . . , n, we want the robot to
see exactly 1 target between each two consecutive vertices of its piv, i.e., we want
the piv to be (0, 1, 0, 1, 0, 1, . . . , 0, 1, 0). Observe that the consecutive vertices of
piv at vertex xi are yi, xi+1, . . . , xn, x1, . . . , xi−1, yi−1. We show how to achieve
such visibility with two different number of targets. First we use only n targets
and then we use 2n − 2 targets.

To place the n targets we proceed as follows. We place one target into each
triangle yi, xi, xi+1. Observe that the triangle is divided into three parts by the
lines yi−1, xi and yi−1, xi−1. Let us label the parts P1, P2 and P3, starting at a
part containing the vertex xi+1. Fig. 4 illustrates the partition. For odd i, we
place the target into part P2. For even i, we place the target into P1. Observe
now that a robot indeed sees one target from every vertex y2l+1 and two targets
from every vertex y2l. Observe also that any vertex xj sees exactly one target
between two consecutive vertices xi, xi+1, i, i + 1 �= j, because the parts P1 and
P2 of triangle yi, xi, xi+1 contain exactly one target and the parts are completely
visible from xj within the segment xi, xi+1. There is also one target visible in
the segment yj, xj+1 and in the segment xj−1, yj which shows the claim for n
targets.

We now use 2n − 2 targets in P to achieve the same visibility configuration.
First, we place one target into every triangle xi, yi, xi+1 such that the target is
visible only from vertices xi, yi and xi+1. This can be easily achieved when the
target is placed very close to yi. This leads to piv being (0, 1, 0) at vertices yi and
piv being (0, 1, 0, 0, . . . , 0, 0, 1, 0) at vertices xi. The remaining n − 2 targets are
placed in the following way. For the presentation purposes we label the targets
t1, . . . , tn−2. Each target ti is placed close to vertex xi and in the cone Ci of
xi defined by the vertices xn−1, xn. More precisely, by placing ti close to xi we
mean to place the target ti into the triangle Ti := xi−1, xi, xi+1. Observe now
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xi

yi

xi+1

yi−1

xi−1
P3

P2

P1

Fig. 4. The partition of the triangle
yi, xi, xi+1 into three parts P1, P2 and
P3 by the lines yi−1, xi−1 and yi−1, xi

xn

xn−1

Fig. 5. A placement of 2n−2 targets into
the polygon P . The arrows indicate the
position of the targets.

that for any placement of target ti into Ci ∩Ti the piv of vertex xi is as desired,
i.e., (0, 1, 0, 1, 0, . . . , 0, 1, 0). Indeed, for vertex xi, i ≤ n−2, the cone Ci contains
ti and thus the target is visible between xn−1 and xn. For every other cone
of xi defined by vertices xj and xj+1, the target tj lies in that cone. Also, for
vertex xn−1 the cone of xn−1 defined by vertices xi and xi+1 contains exactly
one target, namely ti+1. Similarly, the cone of vertex xn defined by vertices xi

and xi+1 contains exactly one target, namely ti. To achieve the desired piv from
the vertices yi, we place each target ti within Ti either to the left or to the right
of line yi−1, xi−1. For i − 1 = 2l we place ti to the right of the line yi−1, xi−1,
so that ti is visible from yi−1 (i.e., into the cone of yi−1 defined by vertices xi−1
and xi). For i − 1 = 2l + 1 we place ti to the left of line yi−1, xi−1, so that ti
is not visible from yi−1. It is easy to observe that for every vertex yi, its piv is
(0, 1, 0) if i = 2l + 1, and (0, 1, 1, 0) if i = 2l. A placement of 2n − 2 targets into
the polygon P with 2n vertices, where n = 12, is depicted in Fig. 5. This ends
the proof. �	

Approximation. Since the counting problem cannot be solved optimally, it is nat-
ural to look for approximate solutions, i.e., for good estimates of m, the number
of targets. Observe first that m is at least the number of targets visible from any
vertex of P . Let mi denote the number of targets that are visible from vertex
i. We have m ≥ maxi mi. On the other hand, clearly, m ≤

∑
i mi. Since every

target is visible from at least three vertices of P (consider a triangulation of P
and the vertices of the triangle, in which the target lies), we have m ≤ 1

3

∑
i mi.

A robot can compute the sum z =
∑

i mi with one pebble that allows the robot
to navigate through all vertices of P (even with holes [1]). Obviously, reporting
1
3z as the estimate for the number of targets yields an n

3 -approximation. Alter-
natively, if we denote by k the number of vertices with non-zero mi, the value z
becomes a k

3 -approximation.
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Although the approximation is not sound at first sight (consider a convex
polygon with a single target in it), it gives some insight into the complexity
of the counting problem. Notice that the derived approximation ratio depends
solely on the number of vertices n (or on k, the number of vertices with a view
on at least one target) and not on the number of targets. Hence, if m grows in
comparison to n or k, the approximation ratio gets better. In other words, the
approximation ratio does not grow with the number of targets, but is determined
by the structure of the polygon (i.e., by n) and by the way how the targets are
placed in this structure (i.e., by k).

A 2-approximation algorithm can be designed under a slightly stronger model
[9] (but weaker than the one described in Section 3.3). In this model, the 2 − ε
inapproximability result still holds.

3.2 More Power to the Robots

We have seen in the previous subsection that a simple robot cannot count the
targets in a simple polygon. We therefore look at possible enhancements of capa-
bilities, which keep the robots as simple as possible and at the same time enable
the robots to count the targets. We consider two such enhancements.

In the first one we allow the robots to walk along edge-extensions and diagonal-
extensions, i.e., if a robot at vertex v picks a vertex w as the direction of the
robot’s walk, the robot is allowed to continue walking in the same direction after
it reaches w, and it will stop only when it hits the boundary, at a point w′. Fig. 6
illustrates this enhancement. The line vw′ is called an edge-extension (diagonal-
extension) if vw is an edge (diagonal) of P . If we do not need to distinguish
whether vw′ is an edge- or diagonal-extension, we simply say that vw′ is an
extension. If a pebble is placed at w′, it is then visible in the same way as a
vertex of P , and therefore the robot can go there from any vertex visible to it.
w′ is then visually distinguishable from the other regular vertices of P , because
it is marked with a pebble.

In the second enhancement one additional, global direction is introduced, in
which a robot can move. Without loss of generality we assume that it is the
direction of a vertical line going through the robot’s position. For simplicity of
presentation we assume that the polygon does not have vertical edges. On top of
that we assume the robot can tell whether a visible point (a vertex or a target)
is to the left or right of the vertical line, and whether it is above or below the
robot, i.e., above or below the horizontal line going through the robot’s position.
Such an enhancement can be viewed as a navigation with compass. If a robot
walks from a vertex v in the vertical direction we say that it walks along the
vertical extension of v.

For both enhancements we present algorithms that allow robots to count the
number of targets inside the polygon P .

Partition of the Polygon and Counting. The algorithms are based on the
idea of partitioning the polygon into triangles and counting the targets in these
triangles exactly. To illustrate the idea, consider a partition of P into triangles
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having their vertices on the boundary of P with the property that every triangle
has at least one side on the boundary of P . We call such a triangle a baseline tri-
angle, and the edge of the triangle that lies on the boundary of P a baseline edge.
A partition of a polygon into baseline triangles is called a baseline triangulation.
We might want to require that the baseline triangles of a baseline triangulation
are triangles in the classical sense, i.e., specified only by vertices of P – these
are called baseline vertex triangles. A triangulation into baseline vertex triangles
is called a Hamiltonian triangulation, as its dual is a path.1 Unfortunately, a
Hamiltonian triangulation does not always exist, see Fig. 7. Either of the two
robot enhancements which we have introduced allows robots to use additional
points of the boundary of P to compute a baseline triangulation.

v

w

w′

Fig. 6. At v, a robot chooses vw as the di-
rection of the robot’s walk. After reaching
w, it can continue in the same direction un-
til it hits the boundary at point w′.

Fig. 7. A polygon and its unique trian-
gulation with triangles specified solely
of vertices of the polygon. The triangu-
lation is depicted by dashed lines.

In the case of a baseline triangulation a robot can count the targets with the
following algorithm. For every baseline triangle the robot moves to the vertex
of the triangle (recall that this might not be a vertex of the polygon) opposite
to the baseline edge, and counts the targets that are visible between the two
vertices of the edge. Clearly, in this way every target is counted exactly once.
Hence, a general algorithm that allows a robot to solve the counting problem is
as follows: it is composed of a procedure to produce a baseline triangulation and
of a navigation scheme to visit every baseline triangle exactly once.

Narasimhan [10] presents an algorithm that recognizes whether a polygon has
a Hamiltonian triangulation and computes one. The algorithm can be adapted
for a robot that can discern convex vertices from reflex vertices [9] (which is not
directly possible in our model [1]). Hence, such a robot can resolve whether a
polygon admits a Hamiltonian triangulation and exactly count the number of
targets in that case. However, when the polygon is non-Hamiltonian, this ap-
proach does not give anything useful, whereas our scheme, given in the following
section, works for general polygons.

3.3 Walking Along Edge- and Diagonal-Extensions

In this section we consider robots that can walk along edge- and diagonal-
extensions. We show that such robots can partition any simple polygon into
baseline triangles, and thus can count the targets.
1 A dual of a triangulation is a graph, where each triangle corresponds to one vertex

and there is an edge between two vertices iff the two corresponding triangles share
an edge in the triangulation.
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w2 v2
w1

P2

P1v1 = p1

v

v5

v4

p2 = v3

Fig. 8. The extensions of a vertex v
define baseline triangles and pockets
of v

1

23
4

Fig. 9. The resulting baseline triangu-
lation of the algorithm and the visited
pockets (grey). The labeled dots show
the order of the recursion calles.

Consider a robot at a vertex v of the polygon P . Let v1, v2, . . . , vi . . . denote
the visible vertices from v, cyclically ordered in the counterclockwise direction.
Observe that the lines vvi partition the visible part of P into baseline triangles
(all with a common point v), each with at least one baseline edge. See Fig. 8 for
an illustration, where the triangles vw1v2, vv2w2, vv3v4 and vv4v5 partition the
visible part of P . Thus we can partition the visible part of P . Observe that the
invisible part of P is a set of disjoint simple sub-polygons. In the example from
Fig. 8 the sub-polygons P1 and P2 form the invisible part of P . We call such
a sub-polygon a pocket of P . Observe that a pocket is created by a line which
is an edge-extension or a diagonal-extension. Applying a recursive partitioning
approach on the pockets, we create a partition of P into triangles with at least
one edge on the boundary of P (see Fig. 9). Let T denote this triangulation.

The main idea of the algorithm is to count all targets from the robot’s position
v and then proceed recursively in the corresponding pockets of the polygon, thus
navigating through T and counting the targets in the triangles of T . We begin
with a high-level description. For a vertex v let P1, . . . , P� denote pockets of P
defined by all extensions originating at v. Let pi, i = 1, . . . , �, denote the visible
vertex whose extension defines Pi. Let wi be the point of P for which vwi is the
extension of vpi.

Counting in Simple Polygons
1. Count all the targets that are visible from the robot’s position at

vertex v.
2. Put a pebble at v and remember the position of v in the respective

piv of every vertex pi and of every point wi.
3. Recursively count the targets in Pi, i = 1, . . . , �, by marking the

point wi with a pebble and going to pi.

When a robot walks to vertex pi to start a recursive call for pocket Pi, it
first checks the position of the pebble that marks the point wi. Next the robot
determines which vertices (and targets) visible from pi belong to pocket Pi. Let
k be the number of vertices (including wi) and targets visible from pi. Let h be
the index of wi in the piv of vertex pi. If pocket Pi lies to the right of piwi, then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Counting Targets with Mobile Sensors 43

Pi contains the vertices and targets from the piv of pi with index 1, 2, . . . , h. If
pocket Pi lies to the left of piwi, then Pi contains the vertices and targets from
the piv of pi with index h, h + 1, . . . , k. Observe that Pi lies to the right of piwi

if and only if pi is the first end-point of the diagonal in piv of vertex v.
The robot at vertex pi knows which part of its piv represents the sub-polygon

Pi and it can therefore perform the same steps of the Counting in Simple
Polygons algorithm on the pocket Pi only. Before that, the pebble from wi is
collected as it is no longer needed. When the robot finishes the counting in Pi it
returns to the vertex v (using the stored navigation information) and continues
there.

Theorem 4. A robot with one pebble, able to walk along extensions, can count
the number of targets in a simple polygon of n vertices in O(n) steps with O(n)
memory.

Proof. Let T be the baseline triangulation of P produced by the algorithm.
The triangles of T are defined by vertices of P and intersection points between
polygonal edges and extensions. Observe first that the algorithm provides a
consistent navigation scheme through T . Thus every target is counted exactly
once. Note that the dual of T is a tree. The edges of every triangle of T contain
three vertices of P , which are then mutually visible and build a triangle. Since
any triangulation of a polygon (in the classical sense) has exactly n−2 triangles,
T can only be smaller and the dual of T has O(n) vertices, which is also the
number of steps of the algorithm (since the robot spends a constant number
of steps in every triangle of T ). The robot stores the necessary information to
return from a recursive call – the predecessor v of every vertex pi. Hence, O(n)
memory is sufficient. �	

3.4 Walking with a Compass

In this section we consider in addition one fixed direction in which the robot can
move. Without loss of generality, we assume that a robot sitting at a vertex can,
additionally to moving to all visible vertices, move also along the vertical line
going through the robot’s position.

We present an algorithm that computes a baseline triangulation in any simply-
or multiply-connected polygon and navigates the robot such that each triangle
is considered for counting exactly once and thus it allows the robot to count the
number of targets in the polygon. To simplify the presentation we first use an
arbitrary number of pebbles – we show later how to use only a constant number
of pebbles.

The key observation is that all the vertical extensions from vertices of a poly-
gon P partition the polygon into baseline triangles and convex quadrilaterals
for which two opposite sides are on the boundary of P (Fig. 10). Each quadri-
lateral can be subsequently partitioned into two baseline triangles (by picking a
diagonal as the common boundary of the triangles).

Hence, using at most 2n pebbles, the robot can mark every end-point of every
vertical extension which then imposes a baseline triangulation. This can be done
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baseline triangle

quadrilateral

Fig. 10. A multi-connected polygon with its partition by vertical extensions

by visiting every vertex of P (using one pebble) [1]. To count every target exactly
once, the robot goes through every vertex or pebble p and considers only triangles
lying above p and on its right (if any). Since every triangle has one vertical side,
the robot can always reach the opposite vertex of the baseline side in one step
and count the targets in the triangle, and return back.

We now show how to reduce the number of used pebbles at the cost of an
increased number of steps. The robot does not mark all the quadrilaterals at
once, but one by one. Let us call an endpoint of a vertical extension a q-node.
We show how to navigate through all the vertices and q-nodes in a consistent
way. We begin with the navigation through vertices of P from [1] (the navigation
can be computed in O(n3) steps with O(n) memory), where every edge of P is
visited exactly once. If a robot moves in this navigation along a polygonal edge
uv, we compute all the q-nodes lying on this edge and before the robot moves
to v it visits all the q-nodes in the order of increasing distance from u.

Let us consider the situation where the robot is at a point p (a vertex u or a q-
node) of the edge uv and it wants to move to the next q-node. The robot can find
the next q-node by sequentially creating all q-nodes (by going to every vertex
of P ) and checking which one lies on the edge uv and closest to p. Specifically,
using a pebble the robot marks the initial position p. The next pebble is used
to mark the so-far closest q-node on the edge uv. The robot goes through every
vertex w of P and creates q-nodes lying on the vertical extensions of w. For
every such q-node the robot checks whether it lies on the edge uv and whether
it is closer to u than the current best. The two pebbles make this operation easy
for the robot.

Theorem 5. A robot with 2 pebbles, able to walk along vertical extensions, can
count the number of targets in a polygon with n vertices in O(n3) steps and with
O(n) memory.

4 Conclusions

We considered a minimalistic computational framework of mobile sensors – sim-
ple robots, whose visibility-based sensing reflects just the combinatorial character
of the environment. We investigated their capabilities on the problem of count-
ing points of interest (targets) in a polygon P and considered two scenarios. We
have shown that in the friendly environment the robots can count the targets
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using two pebbles. In the hostile environment the robots cannot count the tar-
gets and they cannot even approximate the number of targets by a multiplicative
factor less than 2.We have looked at possible minimum extensions of the robots’
capabilities that allow to count targets. We have considered two such extensions
– walking along edge- and diagonal-extensions, and walking with compass.

We have not answered all interesting questions and many of these remain open
for the future research. For example, what is the best approximation ratio of the
problem? Is the lower bound tight or is there a better approximation algorithm?
What is the inherent power of pebbles: can we do anything without them? Are
there simpler robots’ enhancements that allow the robots to count the targets?
Can a collaboration of more robots do better than a single robot?
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Abstract. A scalable energy-efficient training protocol is proposed for
massively-deployed sensor networks, where sensors are initially anony-
mous and unaware of their location. The protocol is based on an intuitive
coordinate system imposed onto the deployment area which partitions
the anonymous sensors into clusters. The protocol is asynchronous, in
the sense that the sensors wake up for the first time at random, then
alternate between sleep and awake periods both of fixed length, and no
explicit synchronization is performed between them and the sink. Theo-
retical properties are stated under which the training of all the sensors
is possible. Moreover, a worst-case analysis as well as an experimental
evaluation of the performance is presented, showing that the protocol is
lightweight and flexible.

1 Introduction

Ultra-high integration and low-power electronics have enabled the development
of miniaturized, low-cost, battery-operated sensor nodes (sensors, for short) that
integrate signal processing and wireless communications capabilities [1,14]. Many
applications require the aggregation of massively deployed sensors into sophis-
ticated infrastructures, called sensor networks. Recently, it has been recognized
that it would be beneficial to augment the sensor networks by more powerful
entities, called sinks. While the sensors are tasked mainly to sense their immedi-
ate neighbourhood, the sinks collect, aggregate and fuse the data harvested by
the sensors in order to act on the environment in a meaningful way. The typical
mode of operation of a sink is to task the sensors in a portion of a disk of radius
ρ centered at itself to produce data relevant to the mission at hand. Once this
data has been aggregated, the sink has a good idea of what action to take. For
instance, Figure 1(a) and Figure 1(b) illustrate, respectively, a disk around a
sink and a disk subdivided in portions.
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The massive deployment of tiny sensors results in sensors initially unaware of
their location. However,many probable applications as well as the sink assignment
of tasks to the sensors require that individual sensors have to determine either their
exact geographic location or else a coarse-grainapproximation thereof. The former
task is referred to as localization and has been extensively studied in the literature
[8,10]. The latter task, referred to as training, has been considered in several recent
papers by Olariu et al. [3,11,12,13]. In particular, they devised some training pro-
tocols for sensor networks, which differ on whether or not sensors and sink need
some kind of explicit synchronization. Such training protocols have different per-
formance, measured in terms of total time for training, overall sensor awake time,
and number of sensor sleep/wake transitions.

The main contribution of this paper is to further study the task of training,
assuming the same asynchronous model as that originally defined in [13]. In
particular, the model in [13] assumes that the sink and the sensors are asyn-
chronous, in the sense that the sensors wake up for the first time at random and
then alternate between sleep and awake periods both of fixed length, while no
explicit synchronization is performed between them and the sink. The present
paper completes the work of [13], by stating novel theoretical properties of the
parameters of the training protocol under which the training of all the sensors in
the network is possible. Moreover, improvements of the protocol are presented
which are lightweight in terms of both the number of wake/sleep transitions and
the overall sensor awake time for training.

The remainder of this paper is organized as follows. Section 2 discusses the
wireless sensor network model and introduces the task of training. Training im-
poses a coordinate system which divides the sensor network area into equiangular
wedges and concentric coronas centered at the sink, as first suggested in [12].
Section 3 is the backbone of the entire paper, presenting the theoretical under-
pinnings of the training protocol, along with its worst-case performance analysis.
Section 4 presents an experimental evaluation of the performance, tested on ran-
domly generated instances, showing that the protocol behaves much better in the
average case than in the worst case. Finally, Section 5 offers concluding remarks.

2 The Network Model

In this work a wireless sensor network is assumed that consists of a sink and a set
of sensors randomly deployed in its broadcast range as illustrated in Figure 1(a).
For simplicity, the sink is centrally placed, although this is not really necessary.

A sensor is a device that possesses three basic capabilities: sensory, com-
putation, and wireless communication, and operates subject to the following
fundamental constraints:

a. Each sensor has a modest non-renewable energy budget and a transmission
range of r;

b. In order to save energy, each sensor alternates between sleep periods and awake
periods – the sensor sleep-awake cycle is of total length L out of which the
sensor is in sleep mode for L − d time and in awake mode for d time;
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  (a)        (b)

Fig. 1. (a)The sensors in a disk centered at a sink. (b) The disk subdivided in portions.

c. Each sensor is asynchronous – it wakes up for the first time according to
its internal clock and is not engaging in an explicit synchronization protocol
with either the sink or the other sensors;

d. Each sensor has no global information about the network topology, but can
hear transmissions from the sink;

e. Sensors are anonymous – to assume the simplest sensor model, sensors do
not need individually unique IDs;

f. Individual sensors must work unattended – once deployed it is either infea-
sible or impractical to devote attention to individual sensors.

The task of training is essential in several applications. One example is clustering
where the set of sensors deployed in an area is partitioned into clusters [1,2,5].
As a result of training, we impose a coordinate system onto the sensor network
in such a way that each sensor belongs to exactly one cluster. The coordinate
system involves establishing [12]:

1. Coronas: The deployment area is covered by k coronas c0, c1, . . . , ck−1 de-
termined by k concentric circles, centered at the sink, whose radii are 0 <
r0 < r1 < · · · < rk−1 = ρ;

2. Wedges: The deployment area is ruled into a number of equiangular wedges,
centered at the sink, which are established by directional transmission [11].

For the sake of simplicity, in this paper, it is assumed that the corona width
is equal to the sensor transmission range r, and hence the (outer) radius ri of
corona ci is equal to (i + 1)r. As illustrated in Figure 1(b), at the end of the
training period each sensor has acquired two coordinates: the identity of the
corona in which it lies, as well as the identity of the wedge to which it belongs.
In particular, a cluster is the locus of all nodes having the same coordinates in
the coordinate systems [11].

3 The Corona Training Protocol

The main goal of this section is to present the details of the corona training
protocol (the wedge training protocol is similar and will not be discussed), where
each individual sensor has to learn the identity of the corona to which it belongs,
regardless of the moment when it wakes up for the first time. To see how this is
done, it is useful to assume the time ruled into slots. The sensors and the sink
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use equally long, in phase slots, but they do not necessarily start counting the
time from the same slot.

The idea of the protocol, called Flat–, is as follows. Immediately after deploy-
ment the sink cyclically repeats a transmission cycle which involves k broadcasts
at successively lower power levels. Each broadcast lasts for a slot and transmits
a beacon equal to the identity of the outmost corona reached. Precisely, the sink
starts out by transmitting the beacon k − 1 at the highest power, sufficient to
reach the sensors up to the outmost corona ck−1; next, the sink transmits the
beacon k −2 at a power level that can be received up to corona ck−2, but not by
the sensors in corona ck−1. For the subsequent k − 2 slots, the sink continues to
transmit at decreasing power levels until it concludes its transmission cycle with
a broadcast that can be received only by the sensors in corona c0. In general, at
time slot τ , with τ ≥ 0, the sink transmits the beacon k − 1 − |τ |k with a power
level that can reach all the sensors up to corona ck−1−|τ |k , where |a|b stands
for the non negative remainder of the integer division between a and b (i.e. |a|b
is the same as a modulo b). The sink transmission cycle is repeated for a time
sufficient to accomplish the entire corona training protocol.

In order to describe the Flat– protocol for sensors, it is crucial to point out that
each sensor is aware of the sink behaviour and of the total number k of coronas.
Immediately after deployment, each sensor wakes up at random within the 0-th
and the (k −1)-th time slot and starts listening to the sink for d time slots (that
is, its awake period). Then, the sensor goes back to sleep for L − d time slots
(that is, its sleep period). Such a sleep/wake transition will be repeated until
the sensor will learn the identity of the corona to which belongs, that is, until
the sensor will be trained. Each sensor, during the training process, uses a k-bit
register R to keep track of the beacons, i.e. corona identities, transmitted by the
sink while the sensor is awake. As soon as the sensor hears a sink transmission
for the first time, it starts to fill the register R and it is able to learn the sink
global time t within the current sink transmission cycle, that is t = |τ |k. From
now on, such a time will regularly increase so that the sensor can derive from
t the beacon |k − 1 − t|k that the sink is transmitting. Then, in each time slot
when the sensor is awake, one entry of R can be always set either to 0 or to
1. In fact, if the sensor hears beacon c, then it sets Rc = 1, while if the sensor
hears nothing, it sets R|k−1−t|k = 0. Note that the awake sensors which belong
to corona c, with c > 0, are able to receive any transmitted beacon from c up to
k−1, whereas they cannot hear the beacons from 0 up to c−1. Hence, if a sensor
sets Rc = 0 (resp., Rc = 1) then it belongs to a corona whose identity is higher
than (resp., smaller than or equal to) c. Note that only the sensors in corona 0
can hear beacon 0 and thus they are the only ones which can set R0 = 1. From
the above discussion, the following training condition holds:

Lemma 1. A sensor which belongs to corona c, with c > 0, is trained as soon
as the entries Rc and Rc−1 of its register R are set to 1 and 0, respectively. A
sensor which is in corona 0 is trained as soon as R0 is set to 1.

In the following, some conditions on the parameters k, L, and d will be investi-
gated which guarantee that all the sensors are trained, independent of their first
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wakeup time and from the corona c they belong to. Hereafter, let (a, b) denote
the greatest common divisor between a and b. Moreover, if (a, b) = 1, let

∣
∣ 1
a

∣
∣
b

be
the multiplicative inverse of a modulo b (e.g. see [7]).

Consider a sensor that wakes up for the first time at the global time slot
τ = x, while the sink is transmitting the beacon cx = |k − 1− τ |k = |k − 1−x|k.
The i-th sleep-awake cycle of such a sensor starts at time x + iL while the sink
is transmitting the beacon |k − 1 − x − iL|k = |cx − i|L|k|k, with i ≥ 0. Observe
that L and k can be rewritten as L = gL′ and k = gk′, where g = (L, k). Since
|L|k = |gL′|k = g|L′|k′ , one has |cx − i|L|k|k = |cx − ig|L′|k′ |k. Hence, there are
exactly k′ different coronas which can be transmitted by the sink when the sensor
starts its awake period, independent of how long the training process will be. In-
deed, since |cx − (i + k′)|L|k|k = |cx − (i + k′)g|L′|k′ |k = |cx − (ig + k′g)|L′|k′ |k
= |cx − (ig + k)|L′|k′ |k = |cx − ig|L′|k′ |k, the same corona is transmitted again
at the beginning of any two awake periods of the sensor which are k′ apart.
Moreover, for any two awake periods, say the i-th and the j-th ones, such that
i > j and i − j < k′, the coronas cx+iL and cx+jL are distinct and differ by a
multiple of g. Such overall k′ corona identities can be rearranged so that in the
new order two consecutive coronas differ exactly by g. Indeed the s-th corona
in the new order, that is |cx − sg|k, corresponds to the first beacon transmit-
ted in the

∣
∣s| 1

L′ |k′
∣
∣
k′ -th awake period, with 0 ≤ s ≤ k′ − 1. Therefore, after

exactly k′ sleep-awake cycles, and hence k′L time slots, the sink has performed
k′L
k = k′L

gk′ = L
g = L′ transmission cycles. From now on, the behaviour of the

sensor and the sink is cyclically repeated with a period of k′L time slots. In
other words, in the k′-th awake period, the sensor and the sink are in the same
reciprocal state as in the 0-th one, the only difference being that the sensor has
heard the sink at least once. Summarizing:

Lemma 2. Fixed L, d, and k, there are exactly k′ = k
(L,k) different corona iden-

tities that can be transmitted by the sink when the sensor starts any awake period.
Assuming that the sensor wakes up for the first time at slot x, 0 ≤ x ≤ k − 1,
then the corona identity transmitted when the sensor starts its i-th awake period
is |cx − i(L, k)|L′|k′ |k = |cx − |i|k′ (L, k)|L′|k′ |k. Such k′ coronas identities can
be reindexed as |cx − s(L, k)|k, for 0 ≤ s ≤ k′ − 1.

Thus, since during an awake period of the sensor the sink transmits d distinct
beacons, overall the sink transmits no more than k′d different corona identities
during the first k′ awake periods of the sensor, and such coronas will be repeat-
edly transmitted again. Recalling that a sensor starts to fill R only after it heard
the sink for the first time and observing that all the entries that the sensor can
fill are set in further k′ sleep-awake cycles, it follows:

Lemma 3. Fixed L, d, and k, all the entries of R the sensor can fill are set
within the first 2k

(L,k) sleep-awake cycles, or equivalently, 2L
(L,k) sink transmission

cycles.

In other words, if a sensor has not been trained after 2kL
(L,k) time slots, it will

never be trained, independent of how long the training process will continue.
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Theorem 1. The training condition is satisfied for all the sensors after at most
2k′ = 2 k

(L,k) sleep/wake cycles if and only if d ≥ (L, k).

Proof. For brevity let g = (L, k). By contradiction, suppose that all the sensors
have been trained and let d < g. By Lemmas 2 and 3, after at most 2k

g sleep-
awake periods, each sensor has filled at most k′d entries of R. Since d < g, each
sensor has filled less than k entries of R. Such filled entries depend on the time
slot x when the sensor woke up for the first time. Consider now all the sensors
that woke up at the same time x. Note that they have filled, although with
different configurations, the same positions of R independent of the corona they
belong. Let c be one unfilled entry of R. By the hypothesis of massive random
deployment, there is at least one sensor that woke up at time x in each corona,
and hence at least one sensor in corona c. Clearly, such a sensor will not be
trained because the training condition in Lemma 1 will be never satisfied.

Conversely, if d ≥ g, by Lemma 2, in k′ consecutive sleep-awake cycles, the
beacons transmitted by the sink in the first slot of such k′ cycles are exactly g
apart. Since an awake period lasts d ≥ g slots, at least g new corona identities
are transmitted by the sink during an awake period of the sensor. Hence, after
the first k′ awake periods, the sensor fills at least g entries of R in each awake
period and completely fills R in at most other k′ awake periods. Therefore, the
sensor is trained in at most 2k′ consecutive awake periods by Lemma 3. Note
that this happens for all the sensors, independent of their first wake-up time x
and of the corona c to which they belong.

In the following, some properties of the training protocol are analyzed starting
from a couple of particular cases, namely, when d = (L, k) and d = |L|k. Note
that, since d = |L|k = (L, k)|L′|k′ , Theorem 1 holds in both cases.

First, the maximum number of sleep/wake transitions required to train a
sensor is discussed. Precisely, the following lemma specifies when a sensor, that
wakes up for the first time at slot x, is awake while the sink is transmitting c.

Lemma 4. Let c be any corona identity and assume d = (L, k). The sink trans-
mits the beacon c during the ic,x-th awake period of a sensor that wakes up for

the first time at slot x, where ic,x =
∣
∣
∣
⌊
|cx−c|k

d

⌋ ∣
∣ 1
L′

∣
∣
k′

∣
∣
∣
k′

, L′ = L
d , and k′ = k

d .

Proof. When the sensor wakes up at time x the sink is transmitting the bea-
con cx. Moreover, the beacon values decrease within a sink transmission cycle.
Thus, the beacon c will be transmitted, starting from cx, during the j-th group
of d consecutive corona identities such that j =

⌊
|cx−c|k

d

⌋
. Such a j-th group

of d consecutive corona identities will be transmitted during the ic,x-th sensor

awake period in which the sink transmits
∣
∣
∣cx −

⌊
|cx−c|k

d

⌋
d
∣
∣
∣
k

as the first beacon.

Hence, by Lemma 2, ic,x is derived by solving the equation |cx − ic,x(L, k)|L′|k′ |k
=

∣
∣
∣cx −

⌊
|cx−c|k

d

⌋
d
∣
∣
∣
k
. Recalling that d = (L, k), the solution of the equation is

ic,x =
∣
∣
∣
⌊
|cx−c|k

d

⌋ ∣
∣ 1
L′

∣
∣
k′

∣
∣
∣
k′

.
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Lemma 5. Let c be any corona identity and assume d = |L|k. The sink trans-
mits the beacon c during the ic,x-th awake period of a sensor which wakes up for

the first time at slot x, where ic,x =
⌊
|cx−c|k

d

⌋
.

Theorem 2. Let (L, k) ≤ d < |L|k. A sensor which wakes up for the first time
at slot x and belongs to corona c, with c > 0, is trained during the i-th awake
period where i = ic−1,x, if ic,x ≤ ic−1,x, or i ≤ ic,x +

∣
∣ 1
L′

∣
∣
k′ , if ic,x > ic−1,x. If

c = 0, then i = i0,x.

Proof. Consider first the case d = (L, k). If ic,x ≤ ic−1,x, during the ic,x awake
period the sensor hears the beacon c and hence it sets Rc = 1. Moreover, during
the ic−1,x awake period, the sensor sets Rc−1 = 0 because it does not hear c − 1
but, having already heard c, it knows what the sink is transmitting. If ic,x >
ic−1,x, in the worst case the sensor hears for the first time during the ic,x-th awake
period and sets Rc = 1. Then, the beacon c − 1 will be transmitted at the i-th
awake period such that |cx−i(L, k)|L′|k′ |k = |cx−(j+1)d|k, where j =

⌊
|cx−c|k

d

⌋
.

Solving the above equation, one has i =
∣
∣(j + 1)

∣
∣ 1
L′

∣
∣
k′

∣
∣
k′ = ic,x +

∣
∣ 1
L′

∣
∣
k′ . When

d > (L, k), since by Lemma 2 the k′ coronas transmitted by the sink when the
sensor wakes up do not depend on d, the sensor cannot be trained later than in
the case d = (L, k).

Theorem 3. Let |L|k ≤ d < k. A sensor which wakes up for the first time at
slot x and belongs to corona c, with c > 0, is trained during the i-th awake period
where i = ic−1,x, if ic,x ≤ ic−1,x, or i ≤ ic,x + 1, if ic,x > ic−1,x. If c = 0, then
i = i0,x.

In order to analytically evaluate the performance of the Flat– training protocol,
let us consider the number ν of sensor sleep/wake transitions, the overall sensor
awake time ω, and the total time τ for training. Since a sleep-awake period has
length L, and a sensor is awake for d time slots per sleep-awake period, one has
ω = νd and τ = νL. Thus, the worst case performance for the Flat– protocol
can be summarized as follows:

Corollary 1. Fixed L, d, and k, if d < (L, k) then there are sensors which
cannot be trained by the Flat– protocol; otherwise all the sensors are trained,
and:

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) +

∣
∣ 1
L′

∣
∣
k′ , where k′ = k

(L,k) and L′ = L
(L,k) ;

2. If |L|k ≤ d < k, then ν ≤
⌊

k
|L|k

⌋
+ 1,

3. If d=k, then ν ≤ 2.

3.1 Improvements

The Flat– protocol can be improved so as to reduce the number ν of sleep/wake
transitions, and hence also the overall sensor awake time as well as the total time
for training.
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In fact, as soon as a sensor hears the sink transmission for the first time, it
learns from the beacon the sink global time modulo the sink transmission cycle.
Therefore, it can immediately retrieve backwards the coronas which it did not hear
and which were transmitted by the sink during its previous awake periods, setting
to 0 the corresponding entries of R. The resulting improved protocol is called Flat.
Observed that the sensor behaviour is the same as it would have set the entries of
R since its first wake up, Lemma 3 and Theorem 1 can be restated as follows:

Lemma 6. Fixed L, d, and k, all the entries of R the sensor can fill are set
within the first k

(L,k) sleep-awake cycles, or equivalently, L
(L,k) sink transmission

cycles.

Theorem 4. The training condition is satisfied for all the sensors after at most
k′ = k

(L,k) sleep/wake cycles if and only if d ≥ (L, k).

In other words, after at most k′L time slots the training process is completed.
Such a bound is tight in the particular case that d = (L, k), while it can be
lowered when d = |L|k. Indeed, Theorems 2 and 3 become:

Theorem 5. A sensor which wakes up for the first time at slot x and belongs
to corona c is trained during the i-th awake period where i = max{ic−1,x, ic,x},
if c > 0, or i = i0,x, if c = 0.

Note that i varies between 0 and k
|L|k when d ≥ |L|k, whereas it varies between

0 and k
(L,k) otherwise. Hence, the worst case performance for the Flat protocol

is summarized below:

Corollary 2. Fixed L, d, and k, if d < (L, k) then there are sensors which
cannot be trained by the Flat protocol; otherwise all the sensors are trained, and:

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) ;

2. If |L|k ≤ d < k, then ν ≤ � k
|L|k �;

3. If d = k, then ν = 1.

Note that, when d = (L, k) or d = |L|k, each of the k distinct beacons is trans-
mitted exactly once in the �k

d� awake periods during which each sensor is trained.
A further improvement to the Flat protocol exploits the fact that when a

sensor hears a beacon c, it knows that it will also hear all the beacons greater
than c, and thus it can immediately set to 1 the entries from Rc up to Rk−1.
Similarly, when a sensor sets an entry Rc to 0, it knows that it cannot hear any
beacon smaller than c, and thus it can immediately set to 0 the entries from
Rc−1 down to R0, too. In contrast to the previous protocols, the sensor now fills
entries of R relative to beacons not yet transmitted during its awake periods.
Therefore, it can look ahead to decide whether it is worthy or not to wake up
in the next awake period. If the d entries of R that will be transmitted by the
sink in the next awake period have already been filled, then the sensor can skip
its next awake period, thus saving energy. The sensor repeats the look ahead
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process above until at least one unfilled entry is detected among the d entries
corresponding to a future awake period. The resulting protocol is called Flat+.
Clearly, the number ν of sleep/wake transitions of Flat+ cannot be larger than
that of Flat. Moreover, when d = |L|k or d = (L, k), one can find bad instances
where ν, in the worst case, is the same for both Flat+ and Flat. For example,
when d = |L|k, a sensor which belongs to corona c and wakes up when the sink
transmits cx = c − 1 requires �k

d � transitions to be trained by both protocols.
However, as it will be experimentally checked in the following section, the average
behaviour of Flat+ is much better than that of Flat.

4 Experimental Tests

In this section, the worst and average performance of the Flat–, Flat, and Flat+
protocols are experimentally tested. In the simulation, the number k of coronas
is fixed to 64, and each corona has a unit width. There are N = 10000 sensors
uniformly distributed within a circle, centered at the sink, having radius ρ = k.
Precisely, the polar coordinates of each sensor are generated choosing at random
two real numbers. The first one, uniformly distributed between 0 and k, repre-
sents the radial coordinate of the sensor, that is, its distance from the sink. The
second number, uniformly distributed between 0 and 2π, represents the angular
coordinate of the sensor, that is, the positive angle required to reach the sensor
from the polar axis. The length L of the sensor sleep-awake cycle assumes the
values 104 and 168. Finally, in all the experiments, the sensor awake period d
is an integer that varies, with a step of 4, between the greatest common divi-
sor (L, k) = 8 and k = 64, thus including |L|k = 40. The results are reported
only when all the sensors can be trained, that is for d ≥ 8, and are averaged
over 3 independent experiments. In the experiments, both the worst and average
number of transitions, denoted by νmax and νavg, as well as both the worst and
average overall sensor awake time, ωmax and ωavg, are evaluated. Such average
values are obtained by summing up the values for each single sensor and then
dividing by the number of sensors. Moreover, the total time τ , which measures
the time required to terminate the whole training process, is evaluated.

Figure 2 shows the number νmax and νavg of transitions for the different values
of d. According to Corollaries 1 and 2, Flat– has νmax = 13 when d = 8, while
both Flat and Flat+ have νmax = 8. Similarly, when d = 40, all protocols take
νmax = 2 transitions. Except for the extreme values d = 8 and d = 64, the
greatest percentage of gain for νmax is achieved when d = 24, where both Flat+
and Flat employ forty percent less transitions than Flat–. As regard to the
average performance, one notes that νavg is considerable better than νmax for all
three protocols. Flat and Flat– have almost the same average performances, while
Flat+ always behaves better than them. In particular, its greatest percentage of
gain for νavg is obtained in the range 8 ≤ d ≤ 20, where Flat+ improves about
twenty/thirty percent upon Flat–.

Figure 3 shows the awake times ωmax = νmaxd and ωavg = νavgd, which
measure the overall energy spent by each sensor to be trained. Although the
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Fig. 3. Overall sensor awake time when k = 64, L = 104, and 8 ≤ d ≤ 64

number of transitions decreases as d increases, Figure 3 suggests to choose a
small value of d from the sensor awake time perspective. The minimum ωmax is
achieved by Flat and Flat+ for d = 8 and d = 64, as expected by Corollaries 1
and 2. However, when d = 8, ωavg lowers to about two thirds of ωmax for Flat–
and Flat, and to about one third for Flat+. Note that Flat+ has the maximum
gain when d is small. Indeed, it can fill the same entries of R just listening to
the sink for a single slot or for d slots. Hence, small values of d save the same
number of transitions as larger values, but allow sensors to reduce their energy
consumption because they stay awake for smaller periods.

Figure 4 exhibits the total time τ required to accomplish the entire training
task, for both L = 104 and L = 168. Since |168|64 = |104|64 = 40, by Lemma 2,
each protocol maintains the same behaviour with respect to the number of
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transitions. Thus, the plots for L = 168 of νmax and νavg, and hence of ωmax
and ωavg, are exactly the same as those shown in Figures 2 and 3. Recalling that
τ = νmaxL, the total time for L = 168 scales by a constant 168

104 , as depicted
in Figure 4. In general, all values of L such that |L|k is the same present the
properties above, namely, ν and ω are identical, while τ scales. Therefore, the
minimum total time τ is achieved for the smallest value of L. However, larger
values of L could be also selected in order to increase the longevity of the wireless
sensor network. Fixed d, a longer L results in a longer life as the life of a sensor
is measured in terms of the overall number of sleep-awake cycles until its energy
is exhausted.

5 Concluding Remarks

In this work a protocol has been proposed which employs the asynchronous
model originally presented in [13] and is lightweight in terms of the number of
sleep/wake transitions and overall sensor awake time for training. Among the
protocol variants, Flat– is the simplest one from the computational viewpoint
because each sensor performs O(1) operations per time slot. In contrast, Flat+
has the best performance for small values of d, but it cannot be used if the sensor
is not allowed to skip one or more awake periods.

The results presented in this paper show that the protocol is flexible, in the
sense that its parameters can be properly tuned. For instance, fixed the number
k of coronas, one can decide the optimal values of d and L so as to minimize
the number of sleep/wake transitions and/or the overall awake time per sensor.
Conversely, one can fix the desired number of sleep/wake transitions, and then
select suitable values of d and L.

However, several questions still remain open. First of all, it would be inter-
esting to provide the analytical average behaviour of the protocol. In addition,
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a good idea for further work should be that of comparing the performance of
the protocol proposed in the present paper with that devised in [3]. Indeed, the
synchronous training protocol of [3] presents an irregular toggling between sleep
and wake periods, so as to optimize the overall time for training, but it con-
sumes energy in the explicit synchronization between the sensors and the sink
to handle such irregular sleep/wake toggling. In contrast, the protocol proposed
in Section 3 may force sensors to be awake for a longer time but avoids irregular
toggling because sensors alternate between awake and sleep periods both of fixed
length. Moreover, in this paper, a boolean (i.e. on/off) transmission model was
assumed. That is, for each sink transmission range ir, all the sensors within a
disk of radius ir around the sink hear the transmission, while all the sensors out
of such a disk do not. Unfortunately, fading and shadowing impact on the con-
nectivity of the network making such an on/off assumption almost impossible in
practice [6]. Thus, the impact of the pseudo-ring corona in a real scenario is a
very interesting aspect to be further investigated.
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Abstract. Motivated by a routing protocol with VCG-style side pay-
ments, this paper investigates the combinatorial problem of placing new
devices in an ad-hoc network such that the resulting shortest path dis-
tances are minimum. Here, distances reflect transmission costs that are
quadratic in Euclidean distance. We show that the general problem of
placing multiple new wireless devices, either with different or identi-
cal transmission ranges, is NP-hard under multiple communication re-
quests. On the positive side, we provide polynomial-time algorithms for
the cases with only one new device and/or one communication request.
To that end, we define geometric objects that capture the general geo-
metric structure of wireless networks.

1 Introduction

Wireless ad-hoc networks promise the functionality of classical networks, without
the burden of having to construct and install a fixed network infrastructure.
Each wireless device in an ad-hoc network has a restricted transmission range,
and communication between two devices typically takes place in a multi-hop
fashion along intermediate devices. It is far from clear, however, if and why
an intermediate device would be willing to sacrifice its own battery power and
bandwidth to forward data packets destined for other devices.

Recently, several papers have addressed the issues caused by selfish devices in
wireless ad-hoc networks. In particular, Anderegg and Eidenbenz [3] proposed
a routing protocol that issues payments to the intermediate wireless devices, so
as to compensate them for their energy costs. This compensation follows the
marginal contribution principle by Vickrey, Clarke, and Groves, the key idea of
the issued VCG payments being to reward a device for the gain in overall benefit
that its participation causes (a good overview of VCG mechanisms is provided
in [15]).

The VCG nature of the payments in [3] guarantees that devices will truthfully
report their distances to other devices. In particular, the profit a device makes
� Supported by the Swiss National Science Foundation through the NCCR project
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from the VCG payments depends on its position in the network. This motivates
the main question studied in this paper: Where should a device position itself
in the network so as to maximize its profit from the VCG payments? Although
inspired by a game-theoretic setting, this is a purely combinatorial question that
we study in the more general setting of several devices to be positioned for several
communication requests, under a transmission cost model that is quadratic in
Euclidean distance.

1.1 Model and Notation

More formally, we model the above setting as a graph G = (V, E), with the
vertex set V = {1, . . . , n} representing the set of incumbent wireless devices.
Each vertex is embedded in the plane, and its coordinates are specified by a
placement function p : V → R

2. We use the Euclidean distance measure, with
|uv| denoting the distance between two devices u and v, and also writing |xx′| for
the Euclidean distance between two points x, x′ in the plane. We assume that the
distance between any two device positions can be computed in constant time.
The transmission ranges of the devices are modeled by a transmission range
function r : V → R+, specifying the maximal distance r(u) from device u at
which another device can still receive a signal from u via direct communication.

The edge set E of size m contains a directed edge (u, v) whenever device
v lies within the transmission range of device u, that is, if and only if |uv| ≤
r(u). The cost c(u, v) of a directed edge (u, v) reflects the energy requirement
for transmitting a unit size data packet along the edge. Following the most
common theoretical models of power attenuation, the cost is taken proportional
to the squared Euclidean distance as c(u, v) = γ|uv|2, with γ some constant. For
convenience, we set the cost of all non-edges (u, v) �∈ E to c(u, v) = ∞.

The network needs to accommodate a number of communication requests be-
tween devices, which we model by a commodity set K = {(s1, t1), . . . , (sk, tk)},
with si and ti being the i-th source device and destination device, respectively.
Each communication request is for a single unit size packet, and no two com-
modities share both the source and destination device. Hence, k can be as large
as

(
n
2

)
. If there is only one commodity, then we denote the source by s and the

destination by t. We refer to a tuple of the form (V, E, K, p, r, c) as a transmission
graph T , where c depends on p and γ.

By SPT (s, t) we denote a shortest path in the transmission graph T from s
to t with respect to the edge costs c. Further, SP−u

T (s, t) denotes the length of a
shortest s−t-path not using the vertex u, and SP−U

T (s, t) the length of a shortest
s − t-path not using any vertex in the set of vertices U ⊂ V . The total costs of
any path P are denoted by c(P ), and by c(T ) =

∑
i∈K c(SPT (si, ti)) we refer to

the total path costs over all commodities (assuming that every commodity in K
is connected by a path of finite cost).

For finding a shortest path from a source vertex s to a destination vertex
t in a transmission graph T , [3] proposes the following incentive-compatible
ad-hoc VCG protocol . First, the protocol basically asks the vertices for their
positions and mutual distances during a flooding broadcast phase. Using this
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information, the protocol computes the edge costs c(u, v), and a shortest path
SPT (s, t). Finally, it pays each vertex u ∈ SPT (s, t) an amount c(SP−u

T (s, t)) −
c(SPT (s, t))+c(u, v), where (u, v) is the outgoing edge of u in SPT (s, t). Because
of the VCG nature of the payments, the computed c(u, v) are equal to the true
transmission costs. Thus, a vertex u gains a profit of c(SP−u

T (s, t))−c(SPT (s, t)).
This principle extends to the case where a selfish agent controls a set of devices
U , and gains a profit of c(SP−U

T (s, t)) − c(SPT (s, t)).

1.2 The Device Placement Problem

Inspired by the ad-hoc VCG protocol, this paper takes the perspective of a profit
maximizing selfish agent that enters an existing transmission graph T with a set
ΔV = {n+1, . . . , n+Δn} of Δn new devices, each with a maximal transmission
range r(v), v ∈ ΔV . Assuming that the communication requests for the near
future are known, the agent’s goal is to determine positions for its Δn devices
such that the profit from the resulting VCG payments is maximum. Denoting
by T ′ the new transmission graph including the new devices ΔV at their chosen
positions, the objective function is defined as

maximize
k∑

i=1

(
c(SPT (si, ti)) − c(SPT ′(si, ti))

)
= c(T ) − c(T ′). (1)

Since the first term in Equation 1 is independent of the positions of the devices
in ΔV , the problem is equivalent to:

minimize c(T ′). (2)

Thus, besides the game-theoretic motivation, the resulting device placement
problem can also be defined in purely combinatorial terms: place Δn additional
devices such that the shortest paths in the resulting transmission graph T ′ are
of minimum length.

We investigate the algorithmic complexity of the device placement problem
for Δn = 1 as well as for general Δn, and for k = 1 communication request
as well as for general k. Depending on the form of the maximal transmission
ranges of the additional devices, we study two problem variants: with identical
new devices that each have the same transmission range r(n + 1) = r(n +
2) = . . . = r(n + Δn), and with individual new devices, each having their own
transmission range r(v), v ∈ ΔV . Clearly, the two problem variants do not differ
for a single additional device. Hence, we simply refer to this case as the single
device placement problem.

1.3 Related Work

Network upgrade problems where an existing network has to be extended such
that the resulting network exhibits certain properties are classical optimization
problems. Several variants of these problems have been considered, and the work
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closest to ours, although still quite different, is the thesis by Krumke [14]. Given
a graph and a function specifying the cost of shortening an edge, he investigated
how to determine an optimal strategy to minimize the total weight of a minimum
spanning tree within a budget restriction.

The idea of our approach in this paper is in a similar vein to the work on
network creation games in [10]. The main goal there is to explain the structure
of networks constructed by independent selfish agents from a game-theoretic
point of view. Different authors [2,5,6,7,12] continued this line of study in related
network creation models.

1.4 Our Contribution

We show that the most general problem of placing Δn new wireless devices,
each with its own transmission range, is already NP-hard for only k = 2 com-
munication requests. We also prove that the problem is still NP-hard when the
newly placeable devices have identical transmission ranges, but in this case for
a general number k of communication requests.

On the positive side, we provide a polynomial-time algorithm for the problem
of placing Δn new devices with identical transmission ranges under a single
communication request. To arrive at this result, we first study the case with
a single communication request and a single new device, analyze its geometric
structure, and propose geometric objects that capture this structure. We further
present a polynomial-time algorithm for optimally placing a single new device
under k communication requests.

2 Placing Multiple Devices for Multiple Commodities

We first show that the problem of placing multiple identical new devices for
multiple commodities is NP-hard. The decision version of this problem is stated
as follows:

Problem: Identical Device Placement.
Instance: An instance I=(T, Δn, r, Z) consists of a transmission graph T =

(V, E, K, p, r, c), a positive integer Δn, an identical maximal transmission
range r(v) for each additional device v ∈ ΔV , and a positive number Z.

Question: Is there a placement for the Δn additional devices such that the
difference c(T ) − c(T ′) ≥ Z, where T ′ is the transmission graph after the
placement of the additional devices?

Theorem 1. Identical Device Placement is NP-hard.

As the proof of Theorem 1 is quite lengthy and involved, we only present a proof
sketch. The entire proof can be found in the appendix of the full version of this
paper [4].

Proof sketch. The main idea of the proof is to reduce a restriction of planar
Exact Cover By 3-Sets (X3C) to Identical Device Placement. In an
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X3C instance I(U, S, b) we are given a set U of 3b elements, a collection of
3-element subsets S = {S1, . . . , S|S|} of U , and a budget b. We are looking for
a subcollection of size b from S whose union is U . We use the restricted version
of X3C where the corresponding bipartite graph is planar and each element
appears in either two or three sets [9], and denote it by X3C-3.

The idea of the reduction is to introduce a device for every element and every
set from the X3C-3 instance. For embedding these devices in the plane, we use
a result by Kant [13] for drawing a triconnected 3-planar graph with horizontal
and vertical edge segments on a grid. Every element device forms one source-
destination pair with an additional global destination device.

Further, we show that one can construct a chain consisting of a polynomial
number of devices at and between any two points x, x′, such that the cost of
the shortest path between the devices at x and x′ is bounded by their distance.
Using such chains, we ensure that the only possible paths between an element
device and the global destination device go through the set devices the element is
member of. The cost of these paths is the same for all source-destination pairs.
Moreover, the placement of an additional device within a chain yields only a
small profit. Indeed, only one position induces a large improvement between each
set device and the global destination device. Hence, the number of reasonable
positions for the additional devices is limited to the number of subsets in S, and
there is a one-to-one correspondence between such a position and a subset. �

For individual devices that each have a specific maximal transmission range, we
have to specify exactly which additional device is placed at which position. The
decision version of the corresponding problem is defined as follows.

Problem: Individual Device Placement

Instance: An instance I=(T, Δn, r, Z) consists of a transmission graph T =
(V, E, K, p, r, c), a positive integer Δn, an individual maximal transmission
range r(v) for each additional device v ∈ ΔV , and a positive number Z.

Question: Is there a placement for the Δn additional devices such that c(T ′) ≤
Z, where T ′ is the transmission graph after the placement of the additional
devices?

Since the identical device placement problem is a special case of the individ-
ual device placement problem, it immediately follows that Individual Device

Placement is NP-hard. Below, we prove that it is already NP-hard for only
two commodities.

Theorem 2. Individual Device Placement is NP-hard for k = 2
commodities.

Proof. The proof is by a reduction from Partition (SP12 in [11]). In Parti-

tion, we are given a set A = {a1, . . . , a|A|} of positive integer numbers. The
goal is to decide whether there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = B/2,

where B =
∑

ai∈A ai. We construct a device placement instance consisting of
the four devices {1, . . . , 4}, placed at the vertices of a square with device 1 at
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position 〈0, 0〉, device 2 at position 〈B/2+1, 0〉, device 3 at position 〈0, M〉, and
device 4 at position 〈B/2 + 1, M〉, with M an integer much larger than B. The
maximal transmission ranges of these devices are set to one. Further, the device
pair (1, 2) constitutes the first commodity, and the device pair (3, 4) the other
one. The number Δn of additional devices is set to |A|, and the maximal trans-
mission range r(u) is set to av−n, for v = n+1, . . . , n+Δn. Finally, we set Z to
2 +

∑
ai∈A a2

i . A solution of the partition problem immediately gives a solution
for the device placement problem: we place the devices with index in A′ one
after another on the line segment between s1 and t1, starting at distance 1 from
s1, such that their maximal transmission ranges are just exactly large enough to
reach the next device. The remaining devices in A\A′ are placed between s2 and
t2 in a similar fashion. The total cost of the shortest path for the first commodity
is now equal to 1 +

∑
ai∈A′ a2

i , and that for the second commodity is equal to
1 +

∑
aj∈A\A′ a2

j . If the partition problem has no solution, then no placement of
the devices connects both source-destination pairs, and total shortest path cost
of infinity cannot be avoided. �

3 Identical Device Placement for a Single Commodity

This section studies the basic geometric structure of the identical device place-
ment problem for a single commodity. We first characterize the optimal position
of one additional device. Next, we use that characterization to construct an al-
gorithm for optimally placing an additional device, and extend that algorithm
to compute the optimal positions of multiple identical devices.

3.1 The Optimal Position of an Additional Device

Suppose the transmission graph consists of only two devices u and v that wish
to communicate, and we are interested in the best position for an additional
device v′. Let the impact Fuv(v′) of the additional device v′ be the difference
between the cost of the direct communication from u to v and the cost of the
communication from u to v via the additional device v′. That is, Fuv(v′) =
c(u, v) − (c(u, v′) + c(v′, v)). Note that the impact may be negative. Figure 1
illustrates the following observation relating the impact Fuv(v′) to the position
of v′.

Observation 1. The impact of an additional device v′ between devices u, v is
equal to Fuv(v′) = c(u, v)/2 − 2γ · |v′, Muv|2, where Muv is the middle point of
the line segment from u to v.

Observation 1 implies that device positions with the same impact lie on a circle
with center Muv, with the maximum impact achieved at Muv. From there the
impact decreases quadratically in each direction, and it is equal to zero for
positions on a circle with center Muv and radius |uv|/2.

Next, we include a single source-destination pair (s, t) into the impact func-
tion. To that end, we define the impact F st

uv(v′) of an additional device v′ on a
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Q

Fuv(v′) = c(u,v)
2 − 2γ|v′, M(u, v)|2

v′

v

Muv

Fuv(v′) = 0

u

u v

Fig. 1. Points with same impact Fuv(v′) are on circles around M(u, v) (left), and the
corresponding graph of Fuv(v

′) in R
3

device pair (u, v) with respect to the single source-destination pair (s, t) as the
difference between the shortest s − t-path length without v′, and with v′ and
(u, v′), (v′, v) as a mandatory partial path.

Observation 2. The impact of an additional device v′ for a device pair (u, v)
and a source-destination pair (s, t) is:

F st
uv(v′) = c(SPT (s, t)) − c(SPT (s, u))− 2γ · |v′, Muv|2 − c(u, v)/2− c(SPT (v, t)).

Proof. F st
uv(v′) = c(SPT (s, t)) − [c(SPT (s, u) + c(u, v′) + c(v′, v) + c(SPT (v, t))],

so the observation follows by using Observation 1. �

Note that the impact is defined for every pair of devices u, v ∈ V , and that it
can be negative. An additional device induces a shortest path along (u, v′, v) if
its impact is positive. The impact is again equal for all positions with the same
distance to Muv, and the maximum impact is achieved at position Muv. Observe
that the circle with positions of zero impact does not necessarily go through the
positions of devices u and v. Indeed, if u and v are not on a shortest path before
inserting the additional device, then the circle with positions of zero impact has
a smaller radius than |Muv, u|.

Some positions with positive impact may be unreachable due to small maximal
transmission ranges of both the additional device and the existing devices. Thus,
we define the profit region PRst

uv as the set of positions for an additional device v′

where F st
uv(v′) is positive, u can reach v′, and v′ can reach v, given the maximal

transmission ranges. Geometrically, a profit region PRst
uv is the intersection of

three disks: the disk around Muv where F st
uv(v′) ≥ 0, the disk with center u and

radius r(u), and the disk with center v and radius r(v′). See Figure 2 for three
possible shapes of such an intersection. The boundary of a shape consists of at
most four circle segments. We define Gst

uv(·) to be the function F st
uv(·) restricted

to the corresponding profit region. That is, Gst
uv(v′) is equal to F st

uv(v′) for all
positions of v′ inside PRst

uv, and −∞ otherwise.
Assuming that the profit region PRst

uv is not empty and that v′ is placed be-
tween u and v, the position inside PRst

uv with minimal distance to the point Muv
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Fig. 2. Profit region PR(u, v, (s, t)) building an asymmetric lens, a circle, and a shape
bounded by four arcs

is the best position for v′ because it maximizes Gst
uv(v′). If the maximal trans-

mission ranges of u and v′ are large enough, then this is the same as Muv itself.
If the maximal transmission range of v′ or u is too small, then the best position
moves on the line segment between u and v towards device u respectively v until
it enters the profit region. Such a best position is denoted by p∗(u, v, (s, t)), and
it can be computed in constant time given the distance between u and v and the
maximal transmission ranges r(u) and r(v′).

3.2 Multiple Identical Device Placement for a Single Commodity

The fact that one additional device reduces the cost between exactly one device
pair enables us to state the following geometric formulation for placing a single
additional device for a single commodity:

max
p(v′)∈R2

max
u,v∈V

Gst
uv(v′). (3)

Below, we use this formulation to derive an algorithm for placing multiple iden-
tical devices for a single commodity. As a first step, however, we note that
Observation 2 and formulation (2) together induce an algorithm for the simpler
problem of optimally placing a single device for a single commodity.

To that end, we define the following expanded 2-layer graph to encode the
restriction that only one additional device is available. The graph has two layers,
labeled 0 and 1, each containing a copy of the transmission graph. We add an
edge from each vertex (u, 0) on layer 0 to each vertex (v, 1) on layer 1, for
u �= v. The cost of such an edge is equal to c(u, p∗) + c(p∗, v), the transmission
cost between u and v via an additional device at position p∗(u, v, (s, t)). For
simplicity, we exclude edges with infinite cost. In this graph, we then search
a shortest path from vertex (s, 0) to vertex (t, 0) and another one from (s, 0)
to vertex (t, 1). By construction, the minimum of these two paths corresponds
to optimally placing the additional device. Note that a shortest path does not
necessarily use the additional device as the maximal transmission range of the
additional device might be too small to be useful.

The above approach can be extended as follows to optimally place Δn iden-
tical additional devices, instead of only one. In principle, the best positions for
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h ≤ Δn additional devices between a fixed pair (u, v) of devices are to distribute
the additional devices in equal distances on the segment connecting u and v.
However, limited maximal transmission ranges of device u or of the additional
devices may make such equal distances impossible. In such a case, the additional
devices are distributed on the feasible part of the segment connecting u and v
as evenly as possible. Based on this insight, we construct a (Δn+1)-layer graph
H = (VH , EH) with a copy of the transmission graph on each layer. For each
layer h < Δn and each ‘higher’ layer h′ > h, we add an edge from each ver-
tex (u, h) to each vertex (v, h′), for u �= v, the cost of which are equal to the
transmission cost from u to v via (h′ − h) optimally placed additional devices
between u and v, as discussed before. Edges with infinite cost are again excluded
for simplicity.

Theorem 3. The multiple identical device placement problem for a single com-
modity can be solved in time O((Δn)2n2).

Proof. We use the (Δn + 1)-layer graph H described above, compute a short-
est path between (s, 0) and (t, h) for each h, 0 ≤ h ≤ Δn, and output a
path with length min0≤h≤Δn c(SP ((s, 0), (t, h))). Since the cost of each edge
((u, h), (v, h′)) ∈ EH correctly reflects the cost of a subpath from u to v contain-
ing exactly (h′−h) optimally placed additional devices between u and v, the cor-
rectness of the algorithm follows. The construction of H needs time O((Δn)2n2),
as there are that many potential edges in the graph. All shortest paths can be
found in time O((Δn)2n2) using Dijkstra’s algorithm to find a shortest path tree
rooted at (s, 0). �

4 Single Device Placement for Multiple Commodities

With multiple commodities(k > 1), the optimal position for a single additional
device may be different from the optimal point p∗(u, v, (si, ti)) between some exist-
ing devices u and v, and a specific commodity i. Rather, the best position could be
a position where connections between several source-destination pairs use the new
device. Unfortunately, the ideas from the previous section do not easily extend to
a polynomial-time algorithm for the single device and multiple commodities case.
Therefore, we first present a different algorithm for the single device and single
commodity case, which has worse running time than the algorithm above, but is
extendable to the single device and multiple commodities case.

4.1 Single Maximization Diagram Approach

An alternative approach to solve the single device and single commodity case is
to directly use the geometric formulation in (3). There, the term maxu,v∈V Gst

uv(·)
defines exactly the upper envelope of the impact functions Gst

uv(·), u, v ∈ V , that
is, the the point-wise maximum of the curves Gst

uv(·). The maximization diagram
M of the impact functions Gst

uv(·) divides the plane into maximal connected
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Fig. 3. Upper envelope of the impact functions for two device pairs, and the corre-
sponding maximization diagram

cells, such that within one cell the same function Gst
uv(·) attains the upper en-

velope defining maximum (see [1] for a detailed description of maximization
diagrams). Figure 3 shows the upper envelope of two impact functions, and the
corresponding maximization diagram. Thus, a cell in M has a characterizing
device pair, and for each point in the cell, that device pair yields the maximum
impact. Inside a given cell, the optimal position for a new device is defined by
the maximum of the concave function Gst

uv(·) for the characterizing device pair
(u, v), and is hence easy to compute. For a polynomially bounded number of
cells, this approach gives rise to a polynomial time algorithm.

Figure 3 illustrates that an edge in M arises either from the intersection of
two impact functions Gst

uv(·), or from a domain boundary of an impact func-
tion. These domain boundaries are circle segments, and the following observa-
tion states that an intersection yields a line segment. Thus, the edges of any
maximization diagram cell are either line or circle segments.

Observation 3. The intersection of two impact functions Gst
u1v1

(·) and Gst
u2v2

(·)
is a line.

Proof. Consider the impact functions for device pairs (u1, v1) and (u2, v2), and
an additional device v′. Both impact functions Gst

uivi
(v′) are of the form Hi −

2 · γ|v′, Muivi |, where the constant Hi depends on the positions of the devices,
for i = 1, 2 . If we set Gst

u1v1
(·) = Gst

u2v2
(·), then the set of points fulfilling the

equation constitutes a line. �

Lemma 1. Given a 2-dimensional maximization diagram cell c, represented by
a list of its nc incident edges, with a characterizing pair (u, v), the optimal po-
sition inside c with respect to Gst

uv(·) can be found in time O(nc).

Proof. Inside c, the profit of any position is equal to the concave impact function
Gst

uv(·). Hence, the maximum inside c is either attained at the single point where
the gradient is equal to zero, if this point lies inside c, or it is attained somewhere
on the boundary of c. For the function Gst

uv(·), the gradient is zero at position
Muv, and if this position is inside c, we are done. Otherwise, we go along the
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Algorithm. MaxDiagram(s, t).

Output. Optimal position for one additional device for one commodity (s, t).
forall device pairs (u, v) do

compute Gst
uv(·);

compute maximization diagram M of ∪u,vGst
uv(·);

compute the global optimum over all 2-dimensional max. diagram cells c ∈ M;

boundary edges of c, where, for a single edge, the maximum is attained at the
position with smallest distance to Muv.

Testing whether Muv is inside c can be done in time linear in nc by comparing
the position to each edge. The maximum computation for all nc edges needs
linear time as well, since the position on a line segment or circle segment edge
with smallest distance to Muv can be determined in constant time. �

Lemma 2. The single device placement problem for a single commodity can be
solved in time O(n4+ε).

Proof. We use Algorithm MaxDiagram that extends the above approach by con-
sidering all maximization diagram cells. First, we compute the single source
shortest paths tree from s, and the single destination shortest paths tree to t.
This can be done in time O(n log n+m). The for-loop over all device pairs needs
time O(n2), and within one iteration we evaluate Gst

uv for a device pair (u, v).
As a single evaluation can be executed in constant time using the shortest path
trees, this step runs in time O(n2).

It was shown in [1] that the maximization diagram of � partially defined
functions in R

3 can be computed in time O(�2+ε′
), for any ε′ > 0. Thus, the

maximization diagram M of the O(n2) functions Gst
uv(·) can be computed in

time O(n4+ε), and the combinatorial complexity of M is O(n4+ε) as well. Using
Lemma 1 and the fact that each edge is incident to at most two cells, computing
the maximum over all 2-dimensional cells in M takes time O(n4+ε). All together,
the running time is O(n4+ε). �

4.2 Multiple Maximization Diagrams Approach

Next, we extend the above approach to the single device placement problem for
multiple commodities, by means of the following geometric formulation:

max
p(v′)∈R2

k∑

i=1

max
u,v∈V

Gsiti
uv (v′). (4)

We first compute the maximization diagram Mi for each commodity i ∈ K. Now,
each point in the plane is part of one cell in each Mi, and that cell determines
the characterizing pair for the corresponding commodity i (if it exists). We use
this fact to determine the regions in which each point has the same characterizing
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Algorithm. MaxDiagramOverlay(K).

Output. Optimal position for one additional device for the commodity set K.
forall commodities i ∈ K do

forall device pairs (u, v) do
compute Gsiti

uv (·);
compute maximization diagram Mi of ∪u,vGsiti

uv (·);
compute O = overlay

(
M1, . . . , Mk

)
;

compute the global optimum over all 2-dimensional overlay cells c ∈ O;

pair for each single commodity. More precisely, we construct the overlay O of the
cell sets M1, . . . , Mk (see Chapter 2 in [8] for a discussion of overlays). Then, for
every single commodity, the characterizing pair is the same for every point in an
overlay cell. Lemma 3 states the complexity of computing the optimal position
inside a single overlay cell, and Theorem 4 the resulting complexity of the above
approach.

Lemma 3. Given a 2-dimensional overlay cell c with a (possibly empty) charac-
terizing pair (ui, vi) for each commodity i ∈ K, and represented by a list of its nc

incident edges, the optimal position inside c with respect to the profit
∑

i Gsiti
uv (·)

can be found in time O(nc).

Proof. The position for which
∑

i Gsiti
uv (·) attains the maximum is the optimal

position inside c. As the functions Gsiti
uv (·) are concave inside c for all characteriz-

ing pairs, and for all commodities i ∈ K, the sum over these functions is concave
as well. As in Lemma 1, the maximum of the resulting concave function is either
attained at the single point where the gradient is zero, or on the boundary of c.
Here, the single point where the gradient is zero evaluates to the center of mass
of the positions Muivi . The remainder of the proof is the same as in the proof
of Lemma 1. �

Theorem 4. The single device placement problem for multiple commodities can
be solved in time O(k2n8+2ε log (kn4+ε)).

Proof. We use Algorithm MaxDiagramOverlay that summarizes the above de-
scribed approach. The nested for-loop needs time O(kn4+ε) as we compute a
maximization diagram for each of k commodities. The overlay of two sets of
planar geometric objects with combinatorial complexities �′ and �′′ can be com-
puted in time O(� log (�′ + �′′)) where � is the combinatorial complexity of the
resulting overlay (see Chapter 2 in [8]). As the combinatorial complexity of the
overlay is O((kn4+ε)2), it can be constructed in time O(k2n8+2ε log (kn4+ε)).
Using Lemma 3 and the fact that each edge is incident to at most two cells,
the running time for computing the global optimum over all overlay cells is in
O(k2n8+ε). Thus, the computation of the overlay dominates the overall running
time of the algorithm. �
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Abstract. We consider the problem of bounded hops converge cast
in ad-hoc networks. Let us assume that stations are located on the d-
dimensional Euclidean space and there is one distinguished station called
a base station. This problem, called the d-Dim h-Hops ConvergeCast,
is defined as finding a minimal energy-cost range assignment, which al-
lows each station to communicate with a base station in at most h hops.
Clementi et al. [2] proposed a distributed protocol h-Prot for d = 2
and proved that in case of h = 2 the expected approximation ratio of
this protocol is O(1) on random instances. However, for h = 3, . . . , 8
they provided only an experimental study showing that the protocol
has good performances. In this paper, we introduce the protocol (d, h)-
Prot which extends the protocol h-Prot on the d-dimensional space.
We address the probabilistic analysis and show formally that the proto-
col (d, h)-Prot achieves an approximation ratio of O(1) in expectation
on random instances for any d, h ≥ 2.

1 Introduction

We consider an ad-hoc network consisting of processing units, called stations that
are located on the d-dimensional Euclidean space. We assume that S denotes a
set of stations and we assign to each station a transmission range R : S → R

+.
The transmission range of a station s ∈ S is exactly the area in which another
station t ∈ S can receive messages sent by s, i.e. d(s, t) ≤ R(s), where d(s, t) is
the Euclidean distance between s and t. The transmission range depends on the
energy power supplied to the station and we assume that stations can change
their transmission ranges by adequately supplying the energy power. The power
Ps, required by a station s to exchange data with another station t, must satisfy
the inequality

Ps > γ · d(s, t)α, (1)

where α ≥ 1 is the path loss exponent, and γ ≥ 1 is the transmission quality
parameter. The parameter α depends on the environment conditions and a ter-
rain structure, and can vary between 1 and more then 6 in heavily built urban
� Partially supported by the EU within the 6th Framework Programme under contract

001907 (DELIS).
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areas. The α = 2 for propagation in free space. Let S = {s1, s2, . . . , sn}. Notice
that a range assignment R determines a directed transmission graph G(S, E),
where edge (si, sj) ∈ E if and only if d(si, sj) ≤ R(si). We need to find such a
range assignment R for which the corresponding transmission graph G satisfies
connectivity constraints and the overall energy supplied is minimized. Thus the
overall energy (i.e. the cost) of a range assignment R : S → R

+ is defined as

cost(R) =
∑

s∈S

R(s)α. (2)

In this paper, we address the range assignment problem in which G is required to
contain a tree directed towards a given base station b, spanning S and of depth
at most h.

The d-Dim h-Hops Convergecast problem is a particular case of the well-
know Minimal h-hops Spanning Tree problem (h-Hops MST) which is defined
as follows. Let G(V, E) be a graph with non-negative edge weights and b ∈ V .
We need to find a minimum-cost directed tree rooted at b of depth at most h and
spanning the graph G. In fact, d-Dim h-Hops Convergecast corresponds to h-
Hops MST, where nodes represent stations and edges represent communication
links between stations in such a way, that for any pair of stations si and sj there
exists an edge if their weight is d(si, sj)α.

Clementi et al. proposed in [2] an efficient distributed heuristics h-Prot for 2-
Dim h-Hops Convergecast and analyzed its expected solution cost for h = 2
hops. They proved that for h = 2 their protocol has a constant expected approx-
imation ratio and stated an open problem whether the expected approximation
ratio for any h > 2 is constant or not. In this paper, we address this problem.
By Theorem 4 for d = 2, we show that the expected approximation ratio of
the protocol h-Prot is constant for any h ≥ 2. Furthermore, we generalize the
protocol for the d-Dim h-Hops Convergecast problem and prove that it has
an approximation ratio of O(1) in expectation for any d, h ≥ 2.

The structure of this paper is as follows. In Section 2 we give an overview
of previous results. The algorithm (d, h)-Prot is introduced in Section 3. In
Section 4 we provide probabilistic analysis of the algorithm and we prove that
the expected energy cost in the network is within O(1) of an optimal solution.
We conclude in Section 5.

2 Previous Results

Alfandari and Paschos [1] proved that even the 2-Hops MST with non-negative
edge weights is NP-hard and that the metric version of the problem is MaxSNP-
hard. Moreover, they proved that the general 2-Hops MST in graph of order
n cannot be approximated within better then O(log n) of optimum. As pointed
out by Gouveia in [9], the 2-Dim 2-Hops MST is equivalent to the Simple Un-
capacitated Facility Location (SUFL) problem. Thus, we can apply existing ap-
proximation algorithms for SUFL to 2-Dim 2-Hops MST. Furthermore, in [4,9]
authors evaluated and compared solutions for the d-Dim h-Hops MST problem
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on random instances, mainly by performing computer experiments. However,
just recently Clementi et al. [3,5] showed a tight analysis of the expected op-
timal cost for the d-Dim h-Hops MST on random instances. They proved the
following theorem.

Theorem 1 ([3,5]). Let h and d be fixed positive integers. Let S be a random
instance of n points in a d-cube of side length L and let T be any tree of height
h and spanning S. Then, it holds that

cost(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Θ
(
L · n 1

h

)
, if d = 1, α = 1,

Θ
(
L · n1− 1

d + d−1
dh+1−d

)
, if d ≥ 2, α = 1,

Θ
(
L2 · n

1
h

)
, if d = 2, α = 2

with probability at least 1 − e−c·n, for some constant c > 0.

Moreover, they presented the asymptotically cost-optimal heuristic h-Party for
the d-Dim h-Hops MST problem on random instances. The proposed heuristic is
based on the well-know technique divide and conquer and requires global knowl-
edge of the network and centralized decisions. They showed that the centralized
heuristic h-Party has the approximation ratio of O(1). However, the key issue
of the optimality of the heuristic h-Party is the size of the grid partition of the
d-cube. Thus, in a distributed model this heuristic would be very expensive and
therefore impractical.

To that end, in [2] Clementi et al. proposed a distributed protocol h-Prot

to address the 2-Dim h-Hops Convergecast problem. They analyzed the ex-
pected solution costs for h = 2 hops and proved the following.

Theorem 2 ([2]). Let S be a random instance of n nodes selected from a square
Q of edge size L and let b ∈ S be a base station. Then, for h = 2, the expected cost
of the range assignment R returned by protocol h-Prot satisfies the following
bounds

E[cost(R)] = O(Lαn
2

α+2 ) .

As a corollary of Theorem 2, they obtained that the protocol 2-Prot has the
expected approximation ratio of O(1). They also stated as an open problem,
whether the expected approximation ratio for any h > 2 is O(1) or not.

3 Distributed Protocol (d, h)-Prot

We consider d-Dim h-Hops Convergecast on an ad-hoc network and a dis-
tributed randomized protocol (d, h)-Prot (see Fig. 1) which, for a given set S
of stations and a base station b ∈ S, constructs a feasible range assignment R.
The distributed protocol (d, h)-Prot is a quite straightforward extension of the
existing protocol h-Prot (see [2]) on a d-dimensional space. However, beside
adding modifications of the way messages have to be sent on greater distances
(line 2 and 11, Fig. 1), we properly modify the probability p∗(d, h, j, n, α) (line
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procedure (d, h)-Prot(b,n,α,L)

var level : integer
connected : boolean
coin : integer

1. if s = b then
2. send(”start”,

√
dL); connected := true; level := 0;

3. else
4. wait(”start”); connected := false;
5. for j = 1, . . . , h do
6. if connected = false then
7. if j < h then

8. coin :=

{
1, with probability p∗(d, h, n, j − 1, α)
0, with probability 1 − p∗(d, h, n, j − 1, α)

9. else
10. coin := 1

11. for r = 20, 21, . . . , 2log�
√

dL� do
12. if connected = false and coin = 1 then
13. if received(”echo:v”) = true then
14. R(s) := d(s, v); connected := true; level := j;
15. else
16. send(”search:s”, r);
17. else
18. if level = j − 1 then
19. if received(”search:v”) = true then
20. if d(s, v) = min{d(s′, v) : s′ received ”search:v”} then
21. send(”echo:s”, d(s, v));

Fig. 1. Pseudo-code of (d, h)-Prot algorithm executed by a single station s ∈ S

8, Fig. 1) on the d-dimensional space. The important and the most difficult part
is to formally analyse the protocol. In Section 4, we provide a formal probabilis-
tic analysis and prove that the protocol (d, h)-Prot has indeed the expected
approximation ratio of O(1), for any d, h ≥ 2.

Firstly, we give a brief description of the main idea of the protocol (d, h)-Prot.
As we mentioned before, apart some necessary modifications, the protocol (d, h)-
Prot is based on the existing protocol h-Prot, so its description is similar to
the one we can find in [2]. Therefore, we only briefly outline how the protocol
constructs a range assignment R. We assume that every station knows only its
label, position on the d-cube and its side length L. If stations have repeated labels
then we have to run an initialization algorithm [6,7,8,11]. The protocol (d, h)-
Prot works as follows. At the beginning the base station b sends a start message
to all stations S\{b} and sets connected := true and level := 0. In the meantime,
remaining stations S \ {b} are waiting for this message and after receiving it,
they set connected := false. Next, at the phase j ∈ {1, 2, . . . , h − 1}, each non-
connected station flips a biased coin with the probability p∗(d, h, n, j − 1, α) of
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heads coming up and at the phase j = h, each remaining non-connected station
flips a biased coin with the probability 1 of heads coming up. If a non-connected
station s has just thrown a head (coin = 1), then it sends a search message at
range r = 20, 21, . . . , 2log�√dL�, until it receives an echo message from the closest
station v that has been connected at level j − 1. Therefore, a station s chooses v
as its predecessor by fixing the range assignment on d(s, v), i.e. R(s) = d(s, v).
At this point, a station s sets connected := true and level := j. Once a station
s is connected, it will be waiting for messages from non-connected stations at
level j + 1 just like connected stations at level j − 1 are waiting for messages
from non-connected stations at level j. So, if a connected station at level j − 1
receives a search message from station v at level j then it sends an echo message
containing information about the closest to v connected station.

The probability of heads coming up at level j + 1, we define as

p∗(d, h, j, n, α) = n−λ(d,h,j,α), where λ(d, h, j, α) =
∑h−j−1

i=1 (d/α)i

∑h−j
i=1 (d/α)i

. (3)

Let assume that a station s ∈ S throws a head at level 1 ≤ j ≤ h. Then, it starts
sending messages at increasing distances r = 20, 21, . . . , 2log�√dL� and it stops
when it receives an echo message from some station v. In this case, the station
s sets its range assignment, i.e. R(s) = d(s, v). Therefore, its maximal sending
range r cannot be larger then 2 · R(s) since at each time we double the range
distance r. Moreover, at level j + 1 ≤ h the station s will send echo message at
ranges equal to those of the corresponding descendant.

We conclude this section by providing the following theorem, which has been
proved in [2].

Theorem 3 ([2]). Let R̂(s) be the maximal transmission range used by a station
s ∈ S during any level of the protocol and R be the range assignment returned
by the protocol. Then, it holds that

cost(R̂) =
∑

s∈S

R̂(s)α = Θ(cost(R)).

4 Probabilistic Analysis

In this section, we show that the expected energy cost of the protocol (d, h)-Prot

is within O(1) of an optimal solution. Let S be a set of stations. Without loss of
generality, we assume that S = {1, . . . , n}, where n is the number of stations, and
that a station with identifier n is the base station b. We consider that all stations
are uniformly randomly distributed on a d-cube Q = {(x1, x2, . . . , xd) ∈ R

d : 0 ≤
x1 ≤ L, 0 ≤ x2 ≤ L, . . . , 0 ≤ xd ≤ L} of side length L. Let {Ps : s ∈ S} be an
independent collection of random variables denoting coordinates of stations in
Q. At each level, each station has to decide whether it will be connected at this
level or not. Let {Bj

s : s ∈ S \ {b}, 1 ≤ j ≤ h} be a collection of independent
random variables denoting the result of tossing a biased coin by a station s at
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level j. We say that a station s ∈ S has thrown a head if Bj
s = 1 and a tail if

Bj
s = 0. Thus, we obtain that

P[Bj
s = 1] = p∗(d, h, j − 1, n, α), P[Bj

s = 0] = 1 − p∗(d, h, j − 1, n, α), (4)

for s ∈ S \ {b}, j = 1, 2, . . . , h. Let Hs be a random variable denoting a level at
which a station s ∈ S \ {b} becomes connected. A station can become connected
at level j if it has just tossed a head and before that it had tossed only tails.
Therefore, the probability that a station s ∈ S \ {b} becomes connected at level
j is defined as

P[Hs = j] =

⎧
⎨

⎩

0, for j = 0,
P[B1

s = 0, . . . , Bj−1
s = 0, Bj

s = 1], for 1 ≤ j ≤ h − 1,
1 − P[B1

s = 0, . . . , Bh−1
s = 0], for j = h.

(5)

Lemma 1. For every station s ∈ S \ {b} and j = 1, 2, . . . , h − 1, the following
inequalities hold

P[B1
s = 0, . . . , Bj−1

s = 0, Bj
s = 1] ≤ p∗(d, h, 0, n, α), (6)

P[B1
s = 0, . . . , Bj

s = 0] ≤ 1 − p∗(d, h, 0, n, α), (7)

for either α = 1, d ≥ 2 or α = 2, d = 2.

Proof. By the assumption that random variables Bj
s have independent distribu-

tions and by (4), we get

P[B0
s = 0, . . . , Bj−1

s = 0] =
j∏

k=1

P[Bk
1 = 0] =

j−1∏

k=0

(1 − p∗(d, h, k, n, α)),

for every station s ∈ S. The probability p∗(d, h, k, n, 1) is given by (3). Therefore,
for the case α = 1 and d ≥ 2, we have

p∗(d, h, j, n, 1) = n−λ(d,h,j,1), where λ(d, h, j, 1) =
dh − dj+1

dh+1 − dj+1 .

Now we can show that

λ(d, h, j − 1, 1) > λ(d, h, j, 1), for j = 1, 2, . . . , h − 2. (8)

Notice that λ(d, h, j, 1)= 1−dj+1/dh

d−dj+1/dh . Let f(x)= 1−x
d−x =1− d−1

d−x . Then λ(d, h, j, 1) =

f(dj+1

dh ), for j = 1, 2, . . . , h − 2. Since f(x) is a strictly decreasing function on
the interval [0, 1], thus the inequality (8) holds, so we obtain

1 ≥ 1 − p∗(d, h, 0, n, 1) ≥ 1 − p∗(d, h, 1, n, 1) ≥ . . . ≥ 1 − p∗(d, h, h − 2, n, 1). (9)
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Thus the inequality (7) holds. Similarly, we obtain

P[B0
s = 0, . . . , Bj−1

s = 0, Bj
s = 1] = P[Bj

s = 1]
j∏

k=1

P[Bk
1 = 0]

= p∗(d, h, h − 2, n, 1)
j−1∏

k=0

(1 − p∗(d, h, k, n, 1)).

By inequality (9), we finally get

P[B0
s = 0, . . . , Bj−1

s = 0, Bj
s = 1] ≤ p∗(d, h, 0, n, 1).

Thus the inequality (6) holds.
Now let us consider the case α = 2 and d = 2. We have the probability

p∗(2, h, j, n, 2) = n−λ(2,h,j,2), where λ(2, h, j, 2) =
h − j − 1

h − j
.

It follows immediately that

λ(2, h, j − 1, 2) > λ(2, h, j, 2), for j = 1, 2, . . . , h − 2.

Therefore, similarly we can show that inequalities (6) and (7) holds. ��

Lemma 2. Let μ ∈ R
+ and d ≥ 2 be a natural number. Then

∫ ∞

0
e−μxd

dx = Γ
(

1 +
1
d

)

· 1
d
√

μ
, (10)

where Γ(x) stands for the Gamma function [10].

Proof. By substitution t = μxd, we obtain that
∫ ∞

0
e−μxd

dx =
∫ ∞

0

1
d

μ− 1
d t

1
d−1e−tdt.

Since Γ(x) =
∫ ∞
0 tx−1e−tdt and Γ(x + 1) = x · Γ(x) the proof is complete. ��

Lemma 3. The expected cost of the range assignment R returned by the protocol
(d, h)-Prot satisfies the following bound

E[cost(R)] =

⎧
⎨

⎩

O
(
L · n

1− 1
d + d−1

dh+1−d

)
, if d ≥ 2, α = 1,

O
(
L2 · n 1

h

)
, if d = 2, α = 2,

for any fixed h ≥ 2.
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Proof. Let h be a fixed number of hops toward the base station b, either greater
then or equal 2. Let {Dj

s : s ∈ S \ {b}, 1 ≤ j ≤ h} be a collection of random
variables denoting a minimal distance between a station s which is connected
at level j and any station at level less then j, for s ∈ S and j = 1, 2, . . . , h.
Therefore, by the assumption that the base station b has an identifier n, we
obtain

E[cost(R)] = E

⎡

⎣
∑

s∈S\{b}
R(s)α

⎤

⎦ =
∑

s∈S\{b}
E [R(s)α]

=
n−1∑

i=1

h∑

j=1

E[R(i)α|Hi = j]P(Hi = j).

Case α = 1 and d ≥ 2. To calculate a conditional expected cost R(i) for a
station i ∈ S \ {b}, given that station i has been connected at level j, we need
to compute the following integral

E[R(i)|Hi = j] =
∫ ∞

0
P[Dj

i > ρ|Hi = j]dρ.

At first we calculate a conditional probability that a station i at level j has a
minimal distance to any station at level j − 1 greater then ρ. Let Ci,ρ = {q ∈
Q : d(Pi, q) < ρ} be the area of the intersection between the disk of radius ρ
centered at Pi and the d-cube Q. Then, for j = 1, we obtain

P[D1
i > ρ|Hi = 1] = P[Pb /∈ Ci,ρ] = 1 − |Ci,ρ|

L2 .

Furthermore, for a station i ∈ S\{b} the minimal distance Dj
i between a station i

that is connected at level j (Hi = j) and any station at level less then j, is
greater then ρ at level j, if a station s ∈ S \ {b, i} has not been connected
yet, i.e. B1

s = 0, . . . , Bj−1
s = 0 or its distance from station i is greater then ρ,

i.e. Ps /∈ Ci,ρ. Since station i can be directly connected to the base station b,
thus the distance from b has to also be greater then ρ, i.e. Pb /∈ Ci,ρ. Thus, for
j = 2, 3, . . . , h, we have that P[Dj

i > ρ|Hi = j] is equal to

P[(∀s ∈ S \ {i, b})((B1
s = 0, . . . , Bj−1

s = 0) ∨ Ps /∈ Ci,ρ) ∧ Pb /∈ Ci,ρ].

Let βj = (1 − P[B0
1 = 0, . . . , Bj−1

1 = 0]). Then, by De Morgan’s laws and by the
assumption that Bj

i and Ps are independent random variables, we obtain

P[Dj
i > ρ|Hi = j] =

∏

s∈S\{i,b}
P[(B1

s = 0, . . . , Bj−1
s = 0) ∨ Ps /∈ Ci,ρ]P[Pb /∈ Ci,ρ]

=
∏

s∈S\{i,b}

(

1 − (1 − P[B1
s = 0, . . . , Bj−1

s = 0]) P[Ps ∈ Ci,ρ]
)

P[Pb /∈ Ci,ρ]

=
(

1 − |Ci,ρ|
L2

)(

1 − βj
|Ci,ρ|
L2

)n−2

≤
(

1 − βj
|Ci,ρ|
L2

)n−1

,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Analysis of the Bounded-Hops Converge-Cast Distributed Protocol 79

for j = 2, 3, . . . , h. Let (x)+ = max{0, x}. Then, by the fact that |Ci,ρ| ≥ ρd/2d+1

if ρ ≤ 2
√

dL, we obtain the following inequality

P[Dj
i > ρ|Hi = j] ≤

{
(1 − ρd

2d+1Ld )+, for j = 1,

(1 − βj
ρd

2d+1Ld )n−1
+ , for 2 ≤ j ≤ h.

(11)

Now, we can calculate conditional expected R for j = 1 as follows

E[R(i)|Hi = j] =
∫ ∞

0

(

1 − ρd

2d+1Ld

)

+
dρ ≤ Γ

(

1 +
1
d

)

2 d
√

2L (12)

and for j = 2, 3, . . . , h, we have

E[R(i)|Hi = j] =
∫ ∞

0

(

1 − βj
ρd

2d+1Ld

)n−1

+
dρ. (13)

By the well-know inequality 1 − x ≤ e−x and Lemma 2, the integral (13) can be
bounded above by

∫ ∞

0

(

1 − βj
ρd

2d+1Ld

)n−1

+
dρ ≤

∫ ∞

0
e−((n−1)βjρd)/(2d+1Ld)dρ

= Γ
(

1 +
1
d

)
2 d
√

2L
d
√

βj(n − 1)

and it follows by Lemma 1 that the probability βj can be lower bounded by

βj = 1−P[B0
1 = 0] · . . . ·P[Bj−1

1 = 0] ≥ 1− (1−p∗(d, h, 0, n, 1)) = p∗(d, h, 0, n, 1).

Combining these two inequalities leads to that E[R(i)|Hi = j] can be bounded
above by

E[R(i)|Hi = j] ≤
Γ

(
1 + 1

d

)
2 d
√

2L
d
√

βj(n − 1)
≤ 8L

d
√

p∗(d, h, 0, n, 1)(n − 1)

≤ 8L
d
√

n−(dh−1−1)/(dh−1)(n − 1)
≤ 8L

d

√
1
2n1−(dh−1−1)/(dh−1)

≤ 8 d
√

2L
n(dh−2(d−1))/(dh−1)

, (14)

for j = 2, 3, . . . , h. The first inequality for E[R(i)|Hi = j] follows from the fact
that Γ(1 + 1

d) ≤ 2 if d ≥ 2. By Lemma 1 the overall expected energy cost can be
bounded above by

E[cost(R)] =
n−1∑

i=1

h∑

j=1

E[R(i)|Hi = j]P(Hi = j)

≤ n−(dh−1−1)/(dh−1)
h∑

j=1

n−1∑

i=1

E[R(i)|Hi = j].
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We calculate
∑h

j=1 E[R(i)|Hi = j] by splitting it into two terms as follows

E[R(i)|Hi = 1] +
h∑

j=2

E[R(i)|Hi = j].

Therefore, by inequalities (12) and (14) respectively, we obtain

h∑

j=1

E[R(i)|Hi = j] ≤ 8 · L +
8 d
√

2(h − 1)L
n(dh−2(d−1))/(dh−1)

≤ 8 d
√

2(h − 1)L,

for i = 1, 2, . . . , n − 1. Finally, the overall expected energy cost can be bounded
above by

E[cost(R)] ≤ 8 d
√

2 · h · (n − 1) · L · n−(dh−1−1)/(dh−1)

= O
(
L · n1−(dh−1−1)/(dh−1)

)
= O

(
L · ndh(d−1)/(dh+1−d)

)

= O
(
L · n

1− 1
d + d−1

dh+1−d

)
.

Case α = 2 and d = 2. To calculate a conditional expected cost R(i)2 for a
station i ∈ S \ {b}, given that station i has been connected at level j, we need
to compute the following integral

E[R(i)2|Hi = j] = 2
∫ ∞

0
ρ · P[Dj

i > ρ|Hi = j]dρ,

where P[Dj
i > ρ|Hi = j] by (11) for d = 2 is given by

P[Dj
i > ρ|Hi = j] ≤

{
(1 − ρ2

8L2 ), for j = 1,

(1 − βj
ρ2

8L2 )n−1, for 2 ≤ j ≤ h.

Now we can calculate a conditional expected R for j = 1. Thus, we obtain

E[R(i)2|Hi = j] = 2
∫ ∞

0
ρ ·

(

1 − ρ2

8L2

)

+
dρ ≤ 8L2 (15)

and for j = 2, 3, . . . , h, we have

E[R(i)2|Hi = j] = 2
∫ ∞

0
ρ ·

(

1 − βj
ρ2

8L2

)n−1

+
dρ. (16)

By the inequality 1−x ≤ e−x and since
∫ ∞
0 xe−μx2

dx = 1
2μ , for any μ ∈ R+, we

obtain

2
∫ ∞

0
ρ ·

(

1 − βj
ρ2

8L2

)n−1

+
dρ ≤ 2

∫ ∞

0
ρ · e−((n−1)βjρ2)/(8L2)dρ

=
8L2

βj(n − 1)
.
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By Lemma 1 for α = 2, d = 2, we obtain the following inequality

βj = 1−P[B0
1 = 0] · . . . ·P[Bj−1

1 = 0] ≥ 1− (1−p∗(d, h, 0, n, 2)) = p∗(d, h, 0, n, 2)

and thus E[R(i)2|Hi = j] can be bounded above by

E[R(i)2|Hi = j] ≤ 8L2

βj(n − 1)
≤ 8L2

p∗(d, h, 0, n, 2)(n − 1)

≤ 8L2

n−(h−1)/h(n − 1)
≤ 8L2

1
2n1−(h−1)/h

≤ 16L2

n1/h
. (17)

Thus, by Lemma 1 for α = 2, d = 2 we have

E[cost(R)] =
n−1∑

i=1

h∑

j=1

E[R(i)2|Hi = j]P(Hi = j)

≤ n−(h−1)/h
h∑

j=1

n−1∑

i=1

E[R(i)2|Hi = j].

Therefore, by inequalities (15) and (17) respectively, we obtain

h∑

j=1

E[R(i)2|Hi = j] ≤ 8 · L2 +
16(h − 1)L2

n1/h
≤ 32(h − 1)L2,

for i = 1, . . . , n − 1. Finally, we get

E[cost(R)] ≤ 32 · h · (n − 1) · L2 · n−(h−1)/h

= O
(
L2 · n1−(h−1)/h

)
= O

(
L2 · n 1

h

)
.

��
We are ready to prove the claimed approximation ratio of the protocol (d, h)-
Prot.

Theorem 4. The protocol (d, h)-Prot on random instances, for either α =
1, d ≥ 2 or α = 2, d = 2 and any fixed h ≥ 2 achieves an approximation ratio of
O(1) in expectation.

Proof. By Theorem 3, we have that the energy cost of the protocol (d, h)-Prot

is Θ(cost(R)). Then, combining Theorem 1 and Lemma 3 concludes the proof.

5 Conclusion

In this paper we presented the protocol (d, h)-Prot for d-Dim h-Hops Con-

vergecast problem. The (d, h)-Prot is an extension of the existing protocol
h-Prot proposed in [2] on a d-dimensional space. The main result of our work
is the formal proof that the protocol (d, h)-Prot achieves the approximation
ratio of O(1) in expectation for any d, h ≥ 2 on random instances. Therefore, in
particular our result answers positively the open problem stated by Clementi et
al. in [2].
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Abstract. We consider a single-hop data-gathering sensor network, consisting
of a set of sensor nodes that transmit data periodically to a base-station. We are
interested in maximizing the lifetime of this network. With our definition of net-
work lifetime and the assumption that the radio transmission energy consumption
forms the most significant portion of the total energy consumption at a sensor
node, we attempt to enhance the network lifetime by reducing the transmission
energy budget of sensor nodes by exploiting three system-level opportunities.

We pose the problem of maximizing lifetime as a max-min optimization prob-
lem subject to the constraint of successful data collection and limited energy sup-
ply at each node. This turns out to be an extremely difficult optimization to solve.
To reduce the complexity of this problem, we allow the sensor nodes and the
base-station to interactively communicate with each other and employ instanta-
neous decoding at the base-station. The chief contribution of the paper is to show
that the computational complexity of our problem is determined by the complex
interplay of various system-level opportunities and challenges.

Keywords: Sensor networks, Lifetime maximization, Multi-access networks,
Joint source-channel coding, Data correlation, Slepian-Wolf coding, Scheduling.

1 Introduction

Many extant and future applications of the sensor networks demand long operational
lifetimes of the networks. The sensor nodes constituting these networks are supposed
to be tiny devices with modest energy reserves and limited capabilities of computation
and communication. In such situations, the key challenge is to devise communication
protocols and network architectures that are conscious of these constraints, yet provide
long operational lifetimes for such networks. A broad concensus exists on devising
aggressive system-level strategies impacting many layers of the protocol stack to meet
the lifetime requirement of extant and future sensor networks.

We consider a single-hop, data-gathering wireless sensor network. Sensor nodes pe-
riodically sample a field and transmit the data directly to a base-station. We define
network lifetime as the time until the first node in the network runs out of the energy to
communicate. While somewhat pessimistic, this definition is well-suited for the appli-
cations where the failure of even a single node can have disastrous consequences on the
network’s performance (for example, reducing coverage or causing network partition-
ing.) This definition also has the benefit of being simple and popular [1, 2]. It should
be noted that our model of sensor networks is also applicable to the networks, where

M. Kutyłowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 83–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the nodes are organized as clusters [3] and the network lifetime maximization problem
reduces to multiple cluster lifetime maximization problems.

Our definition of network lifetime implies that to maximize it, we need to minimize
the energy consumption at sensor nodes. Sensor nodes expend energy in sensing, com-
puting, and communication. We neglect the energy consumed by the nodes in sensing
and computing as sensing costs are independent of the communication strategy em-
ployed and computing costs are often negligible compared to communication costs.

The energy expended by a sensor node in communication has two components: re-
ception energy and transmission energy. The energy consumed in reception depends on
the number of bits received and the per bit energy cost to keep the receiver circuitry en-
ergized. The transmission energy depends on a number of factors such as number of bits
to transmit, transmit power levels, receiver sensitivity, channel state (including path loss
due to distance and fading), and the channel coding scheme employed. We assume that
optimal channel coding is employed. We ignore the energy cost of reception, as it can
be easily incorporated in our proposed model. This reduces the problem of maximizing
the network lifetime to the problem of minimizing the energy cost of transmission of
the nodes.

We propose to exploit three system-level opportunities to minimize the radio transmit
energy cost of sensor nodes. First, sensor data in a data-gathering network is spatially
and temporally correlated. In [4], Slepian and Wolf show that it is possible to compress
a set of correlated sources down to their joint entropy, without explicit communication
among sources. Recent advances in distributed source coding [5,6], allow us to take ad-
vantage of data correlation to reduce the number of transmitted bits, with concomitant
savings in energy. Second, [7] shows that channel coding can be used to reduce trans-
mission energy by increasing the transmission time. Finally, sensor nodes are supposed
to be cooperative. This collaborative nature allow us to exploit the first two opportuni-
ties to minimize transmission energy consumption at nodes.

We pose the problem of maximizing network lifetime as an optimization problem,
subject to the constraint of successful data collection and limited energy supply at each
node. However, to our surprise, we find that even with ample simplification, analyzing
the performance of our model of the sensor network is far from easy. The chief contri-
bution of the paper is to illustrate the dependence of the computational complexity of
our problem on the complex interplay of above system-level opportunities. We provide
various insights, analyses, and algorithms for several scenarios. In some situations, our
problem admits a greedy solution while in others, the problem is shown to be NP-hard.

There is much related work in this area. Energy conscious networking strategies
have been proposed mainly at the MAC [8] and routing layer [1, 9, 10, 11, 12, 13]. Our
study was motivated by the work in [14, 15], which explicitly incorporate aggregation
costs in gathering sensor data. However, both [14] and [15] are interested in minimizing
total energy expenditure, as opposed to maximizing network lifetime. There the optimal
solution is shown to be a greedy solution based on ordering sensors according to their
distance (which reflects data aggregation cost) from the base-station. However, we show
that this solution is not optimal for maximizing network lifetime. This paper generalizes
the work in [16], placing it in a wider context and lending it a firm theoretical basis.
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2 System Model

We consider a network of N battery operated sensor nodes strewn uniformly in a cov-
erage area and communicating directly with the base-station. The network operates in a
time-division multiple access (TDMA) mode. In each time-slot, every sensor is allotted
a certain amount of time to communicate its data to the base-station. We only consider
the spatial correlation among sensor readings in a time-slot and ignore the temporal
correlation over different time-slots, as latter can be easily incorporated in our work for
data sources satisfying the Asymptotic Equipartition Property (AEP).

Initially, sensor node k, 1 ≤ k ≤ N , has access to Ek units of energy. The wireless
channel between sensor k and the base-station is described by a path loss factor dk,
which captures various channel effects such as distance induced attenuation, shadowing,
and multipath fading. For simplicity, we assume dk’s to be constant. This is reasonable
for static networks and also in the scenarios where the path loss parameter varies slowly
and so, can be accurately tracked.

The general sensor network lifetime maximization problem is to solve joint source-
channel coding problem for multi-access networks. We assume the separation between
source and channel coding, albeit at some loss of optimality. This suboptimality occurs
as it is well-known that, in general, the source-channel separation does not hold for the
multi-access joint source-channel coding problem [17]. So, in general, Slepian-Wolf
coding followed by optimal channel coding is not optimal for this problem. Also, turn-
ing a multiple-access channel into an array of orthogonal channels by using a suitable
MAC protocol (TDMA in our case) is well-known to be a suboptimal strategy, as the
set of rates achievable with orthogonal access is strictly contained in the Ahlswede-
Liao capacity region [18]. However, despite these sub-optimalities, we argue like [19]
and [20] that there are strong economic gains in the deployment of networks based on
such technologies, due to the low complexity and cost of existing solutions, as well as
the availability of vast experience in the design and operation of such systems.

The problem addressed in this paper is to find optimal rate (the number of bits to
transmit) and transmission time vectors for all nodes, which maximize network life-
time. Both the rate and time allocation are constrained. The rate allocation should fall
within the Slepian-Wolf achievable rate region and the sum of transmission times should
be less than the period of a time-slot (which is taken to be unity.) However, finding
the optimal rates and time allocations are computationally challenging problems as the
Slepian-Wolf achievable rate region for N nodes is defined by 2N − 1 constraints and
within a time-slot, the nodes can cooperate by varying their transmission times.

As a pragmatic step forward, we propose to solve the optimal rate allocation prob-
lem by allowing the sensor nodes and the base-station to communicate interactively and
employing instantaneous decoding at the base-station. Allowing interactive communi-
cation, lets us model the “sensor nodes - base-station” communication as the “multiple
correlated informants - single recipient” communication, discussed in [6]. “Instanta-
neous decoding” implies that the decoding at the base-station be instantaneous in the
sense that once a particular node has been polled, the data generated at that node is
recovered at the base-station before the next node is polled. The introduction of these
two concepts, reduces the network lifetime maximization problem to finding an optimal
scheduling strategy (optimal polling order and transmission time allocation.)
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We assume that the communication takes place over N binary, error-free channels,
where each channel connects a sensor with the base-station. A sensor node and the
base-station can communicate back and forth over the channel connecting them, but
the sensors cannot communicate directly with each other [6]. We concern ourselves
only with the problem of maximizing the average lifetime of the network, as in [6]-
IV.B and make following assumptions, which without altering the general nature of our
results, simplify the presentation of our ideas. The sensor nodes and the base-station
communicate using the two message protocol proposed in [6]-II.E. We use entropies,
instead of average code lengths. Also, we ignore the energy costs of reception at the
sensors and both, the transmission and reception energy costs at the base-station.

Notation. Let Π be the set of all permutations of the set, {1, 2, . . . , N}. Let π(k) denote
the kth polled node in the schedule π ∈ Π . Instantaneous decoding implies that the
number of information bits transmitted per slot by π(k) is the conditional entropy of
the data source at π(k), given the data generated by all previously polled nodes, it is
denoted as hπ(k). Let tπ(k) be the corresponding transmission time alloted to node k.

3 General Channel Scenario

In this section, we consider the sensor network lifetime maximization problem, exploit-
ing all three system-level opportunities discussed in “Introduction”. The spatial corre-
lation in sensor data helps in reducing the number of bits that a node has to transmit,
improving the network lifetime. The cooperative nature of the sensor nodes and chan-
nel coding can then be exploited to improve the network lifetime further by varying the
transmission times of the nodes. For example, highly correlated nodes can finish their
transmissions sooner, allowing weakly correlated nodes more time to transmit in order
to improve system lifetime. However, in such a scenario, we not only have to find the
optimal scheduling order, but also the optimum transmission time for each node.

We consider, both, the static and dynamic schedules. In static scheduling, a fixed
sensor polling order is followed in all time-slots until the network dies. Under dynamic
scheduling, possibly different schedules are employed in different time-slots to poll the
sensor nodes. More specifically, we employ offline dynamic scheduling, where before
the actual data-gathering starts, the base-station computes the optimum set of schedules
and the number of slots for which each schedule is used; rather than online dynamic
scheduling, where at the beginning of every time-slot, the base-station computes the
optimum sensor polling schedule, based on its latest estimate of network state.

We consider the channel coding scenarios where the transmission energy is the con-
vex decreasing function of the transmission time [7]. Let f(h, x)d be the energy re-
quired to transmit h bits of information in x units of time with path loss factor d. We
model the energy function f(h, x) as follows.

1. f(h, x) is a strictly decreasing continuous positive convex function in x.
2. limx→0 f(h, x) = ∞

For the rest of this section, we assume that f(h, x) is:

f(h, x) = x(2
h
x − 1) (1)
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3.1 Static Scheduling

In static scheduling, each permutation, π ∈ Π corresponds to a TDMA schedule. Let
Lπ be the network lifetime achievable under schedule π. Note that lifetime is integer-
valued, but we treat it as a real number. The optimal static schedule is the solution to
the following optimization problem.

max
π∈Π

Lπ( = min
1≤k≤N

Ek

f(hπ(k), tπ(k))dk
) (2)

tπ(k) ≥ 0, 1 ≤ k ≤ N,

N∑

k=1

tπ(k) = 1.

However, using the “Channel Aware” algorithm proposed in [16], for every schedule π,
we can compute the maximum lifetime and the corresponding transmission times allo-
cation vector {tπ(k)}N

k=1. Also, for this transmission time allocation, all sensor nodes
achieve the same lifetime. So, (2) reduces to:

max
π∈Π

Lπ (3)

s.t. f(hπ(k), tπ(k))dk =
Ek

Lπ
, 1 ≤ k ≤ N

tπ(k) ≥ 0, 1 ≤ k ≤ N

N∑

k=1

tπ(k) = 1.

For a given energy consumption function, the computational complexity of the problem
in (2) or (3) depends largely on the sensor data correlation model. The following three
examples amply illustrate this.

For our first two examples, let us consider the first model of spatial correlation in
sensor data introduced in [21], with α1 = 1.0, β1 = 1.0. So, let us define B(Xi/Xj),
the number of bits that the node i has to send when the node j has already sent its bits
to the base-station, as follows:

B(Xi/Xj) =
{

�dij� if dij ≤ n
n if dij > n,

(4)

where Xi be the random variable representing the sampled sensor reading at node i ∈
{1, . . . , N}, n is the maximum number of bits that a node can send, and dij denotes the
distance between nodes i and j.

Let us define B(Xi/X1, . . . , Xi−1), the conditional information when more than
one node has already sent its information to the base-station, as follows:

B(Xi/X1, . . . , Xi−1) = min
1≤j<i

B(Xi/Xj) (5)
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Example 1. Assume that Ek/dk = constant, for every sensor k, 1 ≤ k ≤ N . This
assumption models the scenario, where given the equal energies of all the nodes, the
distance of the base-station from any node is much more than any inter-node distance.
This assumption is also valid when a roving base-station gathers the sensor data. For the
energy consumption model of (1), the time to transmit depends only on the number of
bits that a node sends to the base-station. So, a sensor polling schedule that minimizes
B(X1, . . . , XN ), the total number of bits sent by N nodes, also minimizes the sum of
transmission times of all the nodes, and subsequently maximizes the network lifetime.

Theorem 1. A greedy scheme provides the optimal solution.

Proof. Starting with any node as the first node of the schedule, choose the next node in
the schedule to be the node that minimizes the conditional number of bits. However, for
the correlation model of (4) and (5), this amounts to finding the nearest node. So, the
schedule that selects the nearest neighbor as the next node to be polled is the optimum
schedule and we call it “Nearest Neighbor Next (NNN)” schedule. For a desired value of
network lifetime, the NNN schedule will give the smallest value of B(X1, X2, . . . , XN)
and the smallest sum of the transmission times, so using the “Channel Aware” algorithm
proposed in [16], we can prove that this schedule is optimum. �	
Example 2. Consider the general problem, where for sensor k, 1 ≤ k ≤ N , we do not
assume that Ek/dk = constant.

Theorem 2. The static scheduling problem in (3) is NP-hard.

Proof. An arbitrary instance of “Shortest Hamiltonian Path” problem can be reduced
to this problem as in the proof in Example 3. �	
Example 3. Let us consider a spatial correlation model, where the sensor data is mod-
eled by Gaussian random field [15]. Thus, we assume that an N dimensional jointly
Gaussian multivariate distribution f(X) models the spatial data X of N sensor nodes.

f(X) =
1

(
√

2π)N det(K)1/2
e−

1
2 (X−μ)T K−1(X−μ), (6)

where K is the (positive definite) covariance matrix of X, and μ the mean vector. The
diagonal entries of K are the variances Kii = σ2

i . The rest of Kij depend on the
distance between the nodes i and j: Kij = σ2 exp(−ad2

i,j).
Let us assume that the data at each sensor node is quantized with the same quantiza-

tion step, then differential entropy differs from entropy by a constant and without any
loss of generality, can be used instead of entropy.

Theorem 3. The static scheduling problem in (3) is NP-hard.

Proof. Consider the decision version of this problem: does there exist a schedule π, for
which the network achieves the lifetime L, with the following constraints?

f(hπ(k), tπ(k))dk =
Ek

L
, 1 ≤ k ≤ N (7)

tπ(k) ≥ 0, 1 ≤ k ≤ N

N∑

k=1

tπ(k) ≤ 1.
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Next, we reduce an arbitrary instance of “Shortest Hamiltonian Path (SHP) Problem”
[22] over Euclidean and complete graph to some instance of the problem in (7). The
rest of the proof is given in the Appendix. �	

3.2 Dynamic Scheduling

In this section, we explore if the network lifetime can be increased by employing pos-
sibly different schedules in different time-slots. Two or more schedules can collaborate
by having the nodes use non-optimal transmit energies over two or more time-slots to
increase the lifetime of the network.

We have a total of N ! schedules. If only m, 1 ≤ m ≤ N ! schedules cooperate, then
there are C(N !, m) sets of m schedules. For a given set of m schedules, let τπi denote
the number of time-slots for which schedule πi, i ∈ {1, . . . , m} is employed. Then, the
optimal network lifetime L is the solution to the following problem.

L = max
m

1≤m≤N !
max

[π1,...,πm]
π1,...,πm∈Π

m∑

i=1
τπi (8)

s. t.
m∑

i=1
f(hπi(k), tπi(k))dkτπi ≤ Ek, 1 ≤ k ≤ N

N∑

k=1
tπi(k) = 1, 1 ≤ i ≤ m

Specifically for m = N !, we have:

L = max
N !∑

i=1
τπi (9)

s. t.
N !∑

i=1
f(hπi(k), tπi(k))dkτπi ≤ Ek, 1 ≤ k ≤ N

N∑

k=1
tπi(k) = 1, 1 ≤ i ≤ N !

Note that for m = 1, (8) reduces to the static scheduling problem in (3). So, the compu-
tational complexity of this problem cannot be any less than that of the static scheduling
problem, which is proven to be NP-hard for the most of scenarios of interest. How-
ever, we still wonder if the dynamic scheduling can improve the network lifetime. In
the following, we prove that even for the simplest case of the network of two nodes, it
is indeed so, and then generalize this results for N > 2 or m > 2.

Theorem 4. For N = 2, dynamic scheduling performs better than the optimal static
scheduling.

Proof. For the network of two nodes, let us consider two schedules: π1, where node 1 is
polled before node 2, and π2, where the nodes are polled otherwise. Using the “Channel
Aware” algorithm in [16], for a given polling schedule, we can find the optimal alloca-
tion of the transmission times such that both the nodes spend same amount of energy
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and die simultaneously. Assume that for schedule π1, this happens when the node 1
transmits for t units of time and node 2 transmits for 1 − t units of time. Similarly, for
schedule π2, let the corresponding times be t′ and 1 − t′. Let h and h1|2 denote the
entropies of first and second node polled in the schedule, respectively. So, for schedule
π1: h1 = h, h2 = h2|1 = h1|2 and for schedule π2: h1 = h1|2, h2 = h. Given the
optimality of t and t′ for the schedules π1 and π2 respectively, we have:

For schedule π1 : f(h, t)d1 = f(h1|2, 1 − t)d2, (10)

For schedule π2 : f(h1|2, t′)d1 = f(h, 1 − t′)d2. (11)

Assuming that the schedule π1 is the optimum static schedule, we have:

f(h, t)d1 = f(h1|2, 1 − t)d2 ≤ f(h1|2, t′)d1 = f(h, 1 − t′)d2

Let us consider a 2D Cartesian plot, where the energy consumption E1 of the node 1 and
E2 of the node 2, define the X and Y axes, respectively. In this plot, we draw the energy
consumption curves for the schedules π1 and π2, for different values of t, 0 < t < 1
and t′, 0 < t′ < 1 respectively. Given the form of these curves, it is easy to verify that
these curves are convex and intersect at only one point.

The equation of the “equal energy line” that passes through the pair of points (f(h, t)
d1, f(h1|2, 1 − t)d2) and (f(h1|2, t′)d1, f(h, 1 − t′)d2), is:

E1 = E2 (12)

Now, let us also consider a line passing through the points (f(h, r)d1, f(h1|2, 1− r)d2)
and (f(h1|2, s)d1, f(h, 1 − s)d2) on the curves corresponding to the schedules π1 and
π2, respectively with 0 < r < 1 and 0 < s < 1. The equation for such a line is:

E2 = f(h1|2, 1 − r)d2 + m(r, s)(E1 − f(h, r)d1 (13)

where m(r, s) =
f(h, 1 − s)d2 − f(h1|2, 1 − r)d2

f(h1|2, s)d1 − f(h, r)d1
.

At the point of intersection of these two lines, we have:

E1 = E2 (14)

=
f(h1|2, 1 − r)d2 − m(r, s)f(h, r)d1

1 − m(r, s)

=
f(h1|2, 1 − r)f(h1|2, s)d2 − f(h, 1 − s)f(h, r)d2

f(h1|2, s) − f(h, r)

To prove that the dynamic scheduling can perform better than the static scheduling, we
must prove that there exists at least one pair of values (r, s), such that:

E1(r, s) < f(h, t)d1 (15)

E2(r, s) < f(h1|2, 1 − t)d2
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Substituting the expressions of E1(r, s) and E2(r, s) from (14) in (15), and using the
properties of the energy consumption function, we prove that for all (r, s) such that

r < t (16)
ht − (h − h1|2)

h1|2
< s,

the dynamic scheduling outperforms static scheduling. �	

This result implies that two schedule can cooperate to give longer network lifetime
compared to optimum static schedule. Now, we generalize this result.

Theorem 5. Lm ≥ Lm−1, where Lm, 2 ≤ m ≤ N !, denotes the optimum network
lifetime for m schedule cooperation.

Proof. Omitted for brevity. �	

Theorem 6. For every N, there exists an optimum set S∗ of m∗
N schedules, such that

for any other optimum set S of m, m∗
N < m ≤ N ! schedules, Lm = Lm∗

N
.

Proof. Omitted for brevity. �	

These two theorems together imply that as m varies from 1 to N !, there exists a unique
set of m optimal schedules, which maximizes the network lifetime for the m schedule
cooperation. Also, for 1 < m ≤ m∗

N , Lm ≥ Lm−1, but when m∗
N < m ≤ N !,

Lm = Lm∗
N

.

4 Small Rate Region Approximation

Let us assume that transmission rate is linearly proportional to signal power. This as-
sumption is motivated by Shannon’s AWGN capacity formula, which is approximately
linear for low data rates. The low rate assumption implies, as shown below, that transmit
energy is independent of transmission time. Hence, the optimal time allocation problem
is trivial and we only need to find the optimal polling schedule.

In the following, we show that our assumption admits greedy, polynomial time so-
lutions for the optimal rate allocation problem, in contrast to the generally NP-hard
solutions of the last section. However, this reduction in the computational complexity
is achieved by settling for possibly lower network lifetimes, as the nodes can no more
cooperate to improve the network lifetime by varying their transmission times, as in the
previous section.

We assume that for the small data rates, the energy consumption function for node
π(k) is f(hπ(k), tπ(k))dk = hπ(k)dk. For example, by inverting Shannon’s AWGN
channel capacity formula, we get [7]:

f(hπ(k), tπ(k))dk = tπ(k)(2
hπ(k)
tπ(k) − 1)dk.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



92 S. Agnihotri, P. Nuggehalli, and H.S. Jamadagni

So, for the small data rates, this gives for some constant c ≥ 0:

f(hπ(k), tπ(k))dk ≈ tπ(k)(1 + c
hπ(k)

tπ(k)
− 1)dk

= chπ(k)dk.

4.1 Static Scheduling

Under the “small rate region approximation”, the static scheduling problem in (2) re-
duces to:

max
π∈Π

min
1≤k≤N

Eπ(k)

hπ(k)dπ(k)
(17)

The objective function represents the lifetime of node π(k). In the following, we de-
scribe a polling strategy, which we call “Minimum Cost Next (MCN)”. When a schedul-
ing decision needs to be taken, MCN chooses that node (among the unpolled ones),
which consumes the smallest fraction of its initial energy. The MCN schedule is de-
noted by πMCN .

Algorithm. MCN

1 S : set of all N nodes.
2 A : set of nodes whose polling order has been computed.
3 Initialization: A = φ, k = 1.
4 while (k ≤ N)
5 πMCN (k) = argmini∈S−A

dih(Xi|A)
Ei

.
6 A = A ∪ πMCN (k).
7 k = k + 1.

Theorem 7. MCN schedule is the optimal static schedule.

Proof. We describe an iterative procedure to modify a given schedule into MCN sched-
ule such that network lifetime does not decrease. This proves that MCN schedule is op-
timal, since we can start with an optimal schedule and iteratively apply our procedure
to obtain MCN schedule, at no loss of network lifetime. Let πOLD be any schedule that
differs from πMCN first in the mth position, that is:

πOLD(k) = πMCN (k), 1 ≤ k ≤ m − 1 (18)

πOLD(m) 
= πMCN (m).

Then, there exists a number l such that πOLD(l) = πMCN (m), l > m. We construct
a new schedule πNEW by modifying πOLD as follows:

πNEW (k) = πMCN (k), 1 ≤ k ≤ m (19)

πNEW (k) = πOLD(k − 1), m < k ≤ l

πNEW (k) = πOLD(k), l < k ≤ N
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In words, in πNEW , we poll πMCN for first m-slots, followed by πOLD for next N −m
slots. For any schedule π, let g(π, k) be the lifetime of the kth polled node. Let us define:

g(π, k) =
Eπ(k)

hπ(k)dπ(k)
.

To establish that πNEW is at least as good as πOLD, we need to show that

min
1≤k≤N

g(πNEW , k) ≥ min
1≤k≤N

g(πOLD, k) (20)

From construction, it follows that for 1 ≤ k ≤ m − 1 and l + 1 ≤ k ≤ N

g(πNEW , k) = g(πOLD, k)

So, it suffices to show that

min
m≤k≤l

g(πNEW , k) ≥ min
m≤k≤l

g(πOLD, k) (21)

Using the fact that conditioning reduces entropy, we have

min
m+1≤k≤l

g(πNEW , k) ≥ min
m+1≤k≤l

g(πOLD, k) (22)

Moreover, the MCN construction ensures that

g(πNEW , m) ≥ g(πOLD, m) (23)

Equations (22) and (23), together imply (21), proving the theorem. �	

Now we state without proof, two properties of the MCN schedule. First, the MCN
schedule not only maximizes the minimum lifetime, but also maximizes all lifetimes
from 2nd minimum lifetime to N th minimum lifetime. This is desirable in the situations,
where the network has to continue to operate even when one or more nodes die out.
Second, MCN solution is Pareto-optimal, as given an MCN schedule, no other schedule
can help increase any node’s lifetime without decreasing some other node’s lifetime.

The MCN algorithm is a greedy algorithm and its worst-case computational com-
plexity is O(N2).

4.2 Dynamic Scheduling

In this section, we explore how network lifetime can be increased by employing mul-
tiple schedules under the “small rate region approximation”. Under this assumption,
as the general static scheduling problem in (2) reduced to (17), the general dynamic
scheduling problem in (9) reduces to:

L = max
∑

π∈Π

τπ (24)

s.t.
∑

π∈Π

hπ(k)dkτπ ≤ Ek, 1 ≤ k ≤ N
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τπ is the number of slots for which the schedule π is used. Once more, the constraints
ensure that the time assignment is feasible for each node with respect to its energy
capability. Also, as in subsection 3.2, (24) can be treated as a linear program. A dynamic
schedule, τ , is given by the set {τπ}.

Given N ! variables, in general, there seems to be no easy way to solve (24). How-
ever, the special nature of our problem can be exploited to yield efficient methods. It is
reasonable to assume that sensor readings at a node are strongly correlated only with
neighboring nodes. For any schedule, the energy consumed by a node will then depend
primarily on its relative order in the schedule with respect to its neighbors. This cluster-
ing phenomena leads to considerable reduction in computational effort. Moreover, the
max-min nature of our optimization problem simplifies the search for an optimal sched-
ule and allows us to easily determine when a schedule is optimal. These properties are
exploited in “Lifetime Optimal Clustering ALgorithm (LOCAL)”, introduced in [16].

Algorithm. LOCAL

1 k = 0, C0
j = π(j), Rk = N .

2 repeat
3 for (j = 1 to Rk)
4 Solve eqn (24) for nodes in Ck

j .
5 Find lifetime Lk

j = mini∈Ck
j

lki .

6 s = arg min1≤j≤Rk
Lk

j .
7 if (s == Rk)
8 then L = Lk

s . BREAK.
9 else

10 Merge Ck
s and Ck

s+1.
11 Rk = Rk − 1.
12 k = k + 1.

Theorem 8. LOCAL is optimal.

Proof. Suppose LOCAL terminates in stage k. Then:

Lk
Rk

= min
1≤j≤Rk

Lk
j

We prove that LOCAL is optimal by showing that, under any dynamic schedule, the
minimum of the lifetimes of nodes in cluster, Ck

Rk
, cannot exceed Lk

Rk
. Since network

lifetime can only be less than or equal to cluster lifetime, optimality is proved. Un-
der LOCAL, all nodes which do not belong to cluster Ck

Rk
are scheduled before Ck

Rk
.

Hence nodes in cluster Ck
Rk

are maximally conditioned. This fact, along with the cluster
level optimization performed in stage k, ensures that no dynamic schedule can assure a
greater lifetime for nodes in cluster Ck

Rk
. �	

In the worst case, when all the nodes merge into one single cluster, LOCAL reduces to
(24) and this determines the worst-case complexity of LOCAL.
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5 Conclusions

We have considered the problem of maximizing the lifetime of a data-gathering wireless
sensor network. Our contribution differs from previous research in two respects. Firstly,
we proposed a practical source-channel coding framework to mitigate the energy cost
of radio transmission. Secondly, we have explicitly maximized network lifetime. To
the best of our knowledge, both these aspects have not been explored in the context of
sensor networks previously.

The chief contribution of our work lies in explicitly demonstrating the dependence
of the computational complexity of the sensor network lifetime maximization prob-
lem, exploiting a few system-level opportunities, on the relationship between energy
consumption and transmission rate as well as model assumptions about correlation in
sensor data, path loss, and initial energy reserves.
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Appendix. Proof of Theorem 3

Proof. For the given instance of SHP problem, interpret the edge cost between nodes
i and j, as the spatial distance between the nodes i and j of our problem. So, as we
visit a node k in the SHP tour π, we can compute the conditional entropy hπ(k) of that
node using the knowledge of the model for spatial correlation among the sensor nodes
as well as the history of the tour so far. Using the first constraint of (7), we can compute
the minimum time tπ(k) that node π(k) needs to transmit hπ(k) bits of information to
the base-station. So, for every schedule π, we can compute the sum of the minimum
transmission times.

Let us consider an Euclidean, complete graph of N = 5 nodes with vertex set
[A, B, C, D, E] and symmetric edge costs, as in figure 1. We have chosen this graph
only to illustrate the main idea of the reduction, but our approach can also be used for
bigger, yet similar networks. Let us consider two schedules ABCDE and ABDCE.

1 11

1

D B A

C

E

1

3

2 2

Fig. 1. Network graph for Example 2. Note that dAC = dCE =
√

3
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Let us assumes that the length of Hamiltonian path dABCDE for schedule ABCDE
is less than the Hamiltonian path length dABDCE for the schedule ABDCE. In the
following, we prove that with this assumption, the sum of transmission times for the
schedule ABCDE is less than the corresponding sum for the schedule ABDCE. For
the spatial correlation model of interest (6), for every schedule, we can compute the
conditional entropy of every node based on all the nodes visited previously [18]. For
example, if the schedule is ABCDE and XA, XB, XC , XD denote data samples of the
nodes A, B, C, and D, respectively, then:

h(XA) =
1
2

log(2πeσ2
A),

h(XB/XA) =
1
2

log((2πe) det(KAB)),

h(XC/XA, XB) =
1
2

log
(

(2πe)
det(KABC)
det(KAB)

)

,

h(XD/XA, XB, XC) =
1
2

log
(

(2πe)
det(KABCD)
det(KABC)

)

,

where KAB, KABC , and KABCD, respectively denote the covariance matrices of vec-
tors (XA, XB), (XA, XB, XC), and (XA, XB, XC , XD).

Let us define a few quantities as follows:

Σ[A,B,C] = e−2αd2
AB + e−2αd2

AC + e−2αd2
BC ,

Σ[A,B,D] = e−2αd2
AB + e−2αd2

AD + e−2αd2
BD ,

Σ[A,B,C,D] = Σ[A,B,C] + e−2αd2
AD + e−2αd2

BD + e−2αd2
CD .

Let σi = 1, i ∈ [A, B, C, D, E]. Then, expanding the determinants above gives:

h(XA)=
1
2

log(2πe), (25)

h(XB/XA)= 1 +
1
2

log(1 − σ2e−2αd2
AB ) − h(XA), (26)

h(XC/XA, XB)=
1
2

+
1
2

log
1 − σ2Σ[A,B,C] + 2σ3e−α(d2

AB+d2
AC+d2

BC)

1 − σ2e−2αd2
AB

,

≈ 1
2

+
1
2

log
1 − σ2Σ[A,B,C]

1 − σ2e−2αd2
AB

, (27)

h(XD/XA, XB, XC)≈ 1
2

+
1
2

log
1 − σ2Σ[A,B,C,D]

1 − σ2Σ[A,B,C]
. (28)

Let us denote the transmission times of the nodes A, B, C, D, and E under schedule
ABCDE as tA, tB, tC , tD, and tE , respectively. For the schedule ABDCE, let the
corresponding times be t′A, t′B, t′C , t′D, and t′E , respectively. Note that tA = t′A, tB =
t′B, tE = t′E . Now,

tA + tB + tC + tD + tE < t′A + t′B + t′C + t′D + t′E (29)

if tC + tD < t′C + t′D. (30)
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Assume that the transmission time tπ(k) of nodes k ∈ [A, B, C, D, E], is exponentially
dependent on the corresponding entropy hπ(k) of the node1. Substituting the values
of tC , tD, t′C , and t′D in (30) and then a little algebraic manipulation of the resulting
expression, gives:

[
1 − σ2Σ[A,B,C]

1 − σ2e−2αd2
AB

] 1
2

+
[
1−σ2Σ[A,B,C,D]

1 − σ2Σ[A,B,C]

] 1
2

(31)

<
[
1 − σ2Σ[A,B,D]

1 − σ2e−2αd2
AB

] 1
2

+
[
1−σ2Σ[A,B,C,D]

1 − σ2Σ[A,B,D]

] 1
2

Consider the inequality:

(B

A

) 1
2

+
(C

B

) 1
2

<
(B′

A

) 1
2

+
( C

B′
) 1

2
, (32)

which always holds if 0 < C < B < B′ < A < 1. So, (31) will hold true if we can
prove that

1 − σ2Σ[A,B,C] < 1 − σ2Σ[A,B,D]

Or σ2Σ[A,B,C] > σ2Σ[A,B,D]

Or e−2αd2
AC + e−2αd2

BC > e−2αd2
AD + e−2αd2

BD

Or e−2α(d2
AC+d2

BC) > e−2α(d2
AD+d2

BD)

Or d2
AC + d2

BC < d2
AD + d2

BD (33)

For the graph in figure 1, it is obvious that (33) holds. Also for this graph, it is straight-
forward to show that dABCDE < dABDCE =⇒ d2

AC + d2
BC < d2

AD + d2
BD.

So, if a schedule has smaller Hamiltonian path length, then the corresponding sum of
the transmission times will be smaller too. This implies that the solution of SHP gives
the smallest value of the sum of the transmission times. So, for the schedule that gives
shortest Hamiltonian path, we can compute the sum of the transmission times and if
this sum is less than 1, then we have at least one schedule that gives the lifetime L. �	

1 This follows from numerically solving the first constraint in (7) for ti, assuming Ek
dk

=
const, 1 ≤ k ≤ N .
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Abstract. We study fractional scheduling problems in sensor networks,
in particular, sleep scheduling (generalisation of fractional domatic par-
tition) and activity scheduling (generalisation of fractional graph colour-
ing). The problems are hard to solve in general even in a centralised
setting; however, we show that there are practically relevant families
of graphs where these problems admit a local distributed approxima-
tion algorithm; in a local algorithm each node utilises information from
its constant-size neighbourhood only. Our algorithm does not need the
spatial coordinates of the nodes; it suffices that a subset of nodes is des-
ignated as markers during network deployment. Our algorithm can be
applied in any marked graph satisfying certain bounds on the marker
density; if the bounds are met, guaranteed near-optimal solutions can be
found in constant time, space and communication per node. We also show
that auxiliary information is necessary—no local algorithm can achieve
a satisfactory approximation guarantee on unmarked graphs.

1 Introduction

The scalability of distributed algorithms presents a basic hurdle to the envis-
aged large-scale implementations of sensor networking, in particular due to the
bounded resources of the individual network nodes. Simply put, if we want to
operate arbitrarily large sensor networks, we cannot apply network control al-
gorithms where the communication or computation per node increases with in-
creasing network size. Indeed, if each individual network node is powered by a
battery with bounded capacity, there is always a threshold size for the network
beyond which the energy consumption for network control exceeds the battery
capacity of a node.

1.1 Local Algorithms

In this work we study local algorithms [1], where each node must operate solely
based on information that was available at system startup within a constant-
size neighbourhood of the node. A local algorithm provides an extreme form
of scalability: assuming constant-size input per node, the communication, space

M. Kuty�lowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 99–113, 2008.
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and time complexity of a local algorithm is constant per node. Thus, a local
algorithm scales to an arbitrarily large (or even infinite) resource-constrained
network. We detail the model of computation in Sect. 3.

A local algorithm is clearly the ideal choice for sensor networks, but even
from a theoretical perspective it is not immediate whether such algorithms can
exist for practical computational problems arising in network control. This work
shows that various NP-hard scheduling problems admit deterministic, local ap-
proximation algorithms provided that the network meets certain assumptions on
its structure.

1.2 Scheduling Problems

We study two basic scheduling problems pertinent to sensor networks: sleep
scheduling, a fractional packing problem, and (conflict-free) activity scheduling,
a fractional covering problem. Both problems can be formulated as a linear
program (LP), but the number of variables in the LP can be exponential in the
size of the network; both problems are NP-hard to solve even in a centralised
setting.

To ease the exposition, we present the scheduling problems first in a cen-
tralised setting; the requirements for a proper distributed solution are detailed
together with the local computational model in Sect. 3. We require a few pre-
liminaries to present the definitions. All graphs are undirected. We model the
network topology by a communication graph G = (VG , EG), where each node
v ∈ VG corresponds to a sensor device and each edge {u, v} ∈ EG indicates
that u and v can directly communicate with each other. We denote by dG(u, v)
the shortest-path distance (hop count) between nodes u, v ∈ VG in G and ex-
tend the notation to subsets U ⊆ VG by dG(U, v) = minu∈U dG(u, v). For v ∈
VG and r ≥ 0, we define the closed ball of radius r centred at v in G by
BG(v, r) = {u ∈ VG : dG(u, v) ≤ r}.

Problem 1 (Sleep Scheduling). The input to the problem consists of (i) the
communication graph G; (ii) a subgraph R of G called the redundancy graph; and
(iii) a battery capacity b(v) ≥ 0 for each node v ∈ VR. Each edge {u, v} ∈ ER
indicates that the nodes u and v are pairwise redundant; each node may sleep
only if at least one of its neighbours in R is awake. The valid sets of awake
nodes are precisely the dominating sets of R. For a dominating set D, we define
D(v) = 1 if v ∈ D and D(v) = 0 if v /∈ D. Denoting by x(D) the length of the
time period associated with the dominating set D, the task in the problem is
to maximise the total length

∑
D x(D) subject to

∑
D D(v)x(D) ≤ b(v) and

x(D) ≥ 0, where v ranges over VR and D ranges over all the dominating sets of
R. To simplify subsequent analysis, we assume that the values b(v) are chosen
from a fixed, finite set of nonnegative rational numbers (say, the capacities of the
standard batteries in stock); in particular, a constant number of bits per node
suffice to encode the input, as it is enough to identify which battery is installed
in the device instead of encoding an arbitrary battery capacity.
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The sleep scheduling problem is a generalisation of fractional domatic partition.
It captures the problem of maximising the lifetime of a battery-powered sensor
network by letting each node sleep occasionally, subject to coverage constraints
under a pairwise redundancy model [2, 3, 4, 5, 6].

Problem 2 (Activity Scheduling). The input to the problem consists of
(i) the communication graph G; (ii) a subgraph C of G called the conflict graph;
and (iii) an activity requirement a(v) ≥ 0 for each node v ∈ VC . Each edge
{u, v} ∈ EC indicates that the nodes u and v are mutually conflicting; at most
one of the two nodes may be active at any given time. The valid sets of active
nodes are precisely the independent sets of C. For an independent set I, we
define I(v) = 1 if v ∈ I and I(v) = 0 if v /∈ I. Denoting by x(I) the length of the
time period associated with the independent set I, the task in the problem is to
minimise the total length

∑
I x(I) subject to

∑
I I(v)x(I) ≥ a(v) and x(I) ≥ 0,

where v ranges over VC and I ranges over all the independent sets in C. Again,
we assume that the values a(v) are chosen from a fixed, finite set of nonnegative
rational numbers.

The activity scheduling problem is a generalisation of fractional graph colouring.
It captures the problem of minimising the total duration of radio transmissions
subject to pairwise interference constraints [7].

1.3 Assumptions on Network Structure

Unfortunately, both scheduling problems just presented are hard to solve exactly
or approximately [8, 9, 10], even in a centralised setting. To arrive at problem
instances that can be solved approximately in a distributed manner, one must
impose constraints on the structure of the communication graph G. Furthermore,
to obtain a local approximation algorithm, there is a need to break symmetry
between the nodes to obtain any satisfactory approximation guarantee, as we
will make apparent in Lemma 1.

An embedding of G in a low-dimensional ambient space could be used as a
remedy for both aforementioned difficulties. Indeed, graphs with geometric con-
straints (for example, unit-disk graphs) in many cases admit efficient approxi-
mation algorithms at least in the centralised case, and the spatial coordinates of
the nodes break symmetry. However, equipping the nodes with self-positioning
capabilities (such as GPS) may not be feasible in large-scale installations, and
neither is it practical to inform each node about its physical location during
network deployment.

Rather than rely on a geometric embedding, in this work we investigate a
minimalistic solution to break symmetry—one marker bit of information per
node. Furthermore, we use purely combinatorial constraints on the marked G to
arrive at a locally tractable setting. We characterise the admissible distributions
of the nodes with the marker bit set (the markers) in G by nonnegative integer
parameters �1, �μ, and μ, where �1 < �μ.
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Definition 1. A (Δ, �1, �μ, μ)-marked graph is a pair (G, M), where G is a graph
and M ⊆ VG is a set of markers such that, for all v ∈ VG , (i) the degree of v in
G is at most Δ; (ii) dG(M, v) ≤ �1; and (iii) |M ∩ BG(v, �μ)| ≤ μ.

In other words, every node has at most Δ neighbours, there is at least one marker
within �1 hops from any node, and there are at most μ markers within �μ hops
from any node. Examples of marked graphs appear in Sect. 5.

1.4 Contributions

As the main technical contribution, we prove the following theorems in Sect. 4.
In both theorems, the marking constraint applies to the communication graph
G only.

Theorem 1. There is a local (1+ ε)-approximation algorithm for sleep schedul-
ing in (Δ, �1, �μ, μ)-marked graphs for any ε > 4Δ/�(�μ − �1)/μ�.

Theorem 2. There is a local 1/(1 − ε)-approximation algorithm for activity
scheduling in (Δ, �1, �μ, μ)-marked graphs for any ε > 4/�(�μ − �1)/μ�.

To contrast these positive results, we also demonstrate that the algorithms in
Theorems 1 and 2 make near-optimal use of the marking information. In par-
ticular, we present a family of marked graphs where our algorithm for sleep
scheduling (respectively, activity scheduling) achieves the approximation ratio
1 + 9ε (respectively, 1/(1 − 9ε)) while no local approximation algorithm can
achieve the approximation ratio 1 + ε (respectively, 1/(1 − ε)).

2 Earlier Work

2.1 Local Algorithms

Previous work on local algorithms mainly focuses on combinatorial problems
such as independent set and graph colouring. Linial [11] shows that any dis-
tributed algorithm requires Ω(log∗ n) communication rounds to find a maximal
independent set or a 3-colouring of a ring with n nodes, implying in particular
that no local algorithm exists for these tasks. Naor and Stockmeyer [1] present
positive results for locally checkable labelling problems; for example, it is possible
to 2-colour the nodes of a graph using a local algorithm so that each node has
at least one neighbour with a different colour, provided that all nodes have odd
degree.

Closer to the present work is the work of Kuhn et al. [12], who present local
approximation algorithms for fractional covering and packing problems. How-
ever, in their work the size of the LP is polynomial in the size of the network,
while the size of the LPs that arise from sleep scheduling and activity scheduling
can be exponential.
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2.2 Shifting Strategy

The present work can be seen as an extension of a classical design paradigm
for geometric approximation algorithms—the shifting strategy [13]—into a local,
coordinate-free, and nongeometric setting. In a typical application of the shifting
strategy [13, 14, 15, 16, 17], one uses a grid to partition the (low-dimensional)
geometric space into small cells. Each cell defines a subproblem; for example,
the subgraph induced by the nodes which are located within or near the cell.
Each subproblem is solved optimally, and the solutions are combined to form a
feasible global solution. A number of possible locations for the grid are evaluated
and the best one is chosen as the solution.

Unfortunately, there are two basic obstacles hindering the application of the
shifting strategy in large-scale distributed systems. First, it has been argued
that the shifting strategy is “inherently central” [18]; in particular, the final step
involves determining which of the candidate solutions is the best one. Second, a
straightforward application of the shifting strategy requires that we know how
the input is embedded in an ambient space.

Our previous work [3] partially overcomes the aforementioned obstacles in a
specific problem: sleep scheduling. To avoid the need for centralised control, we
note that the scheduling problem is of fractional nature: one can take two valid
schedules and interleave them in order to obtain another valid schedule. To avoid
a global coordinate system, we place markers in the underlying communication
graph; the constraints for the locations of the markers are geometric, but the
algorithm does not use the locations. The present work generalises this previ-
ous work in the following aspects: (i) The algorithm is extended to fractional
covering problems in addition to fractional packing problems. (ii) No geometric
constraints are required; in particular, G need not have an embedding in a low-
dimensional space. (iii) There is no lower bound for the distance between a pair
of markers.

3 Preliminaries

3.1 Model of Computation

We assume a communication graph G where each node has degree bounded
by a constant Δ. Each node in G executes the same distributed deterministic
algorithm.

An algorithm is local if there exist a constant L (“the local horizon”) such
that for every problem instance, each node v ∈ VG makes its decisions based
on information in the nodes BG(v, L) only. In the sleep scheduling problem,
this information consists of the identifiers of the nodes BG(v, L), the subset of
markers M ∩ BG(v, L), the subgraph of the communication graph G induced by
BG(v, L), the subgraph of the redundancy graph R induced by BG(v, L) ∩ VR,
and the battery capacity b(u) for each node u ∈ BG(v, L) ∩ VR. The definition
is analogous for activity scheduling.
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We assume that the node identifiers form an ordered set. An algorithm cannot
access the absolute value of an identifier, but only the ordering of the identifiers.
In particular, the identifiers need only be unique in BG(v, L) for each v ∈ VG .
Therefore our computational model is slightly weaker in comparison with the
model used by Linial [11]. (To motivate this weakening, see Naor and Stock-
meyer [1, Theorem 3.3].)

With these definitions, the number of bits communicated, stored and pro-
cessed by any node during the execution of a local algorithm is bounded by a
constant. Thus also the time complexity is constant per node.

In the scheduling problems, a node does not report any output; instead, a
node executes the schedule it has locally computed by controlling its sleeping
(respectively, activity). To enable execution of the schedule, it is assumed that
(i) each node has access to a clock and (ii) the clocks are (locally) synchronised.

A local (1 + ε)-approximation algorithm for sleep scheduling guarantees that
the nodes that are awake form a dominating set of the redundancy graph at any
point in time during the first q/(1 + ε) time units, where q is the length of an
optimal solution. A local (1+ ε)-approximation algorithm for activity scheduling
guarantees that the nodes that are active form an independent set of the conflict
graph at any point in time and each node completes its activity within (1 + ε)q
time units, where q is the length of an optimal solution.

3.2 Limitations

The chosen local model of computation is very restrictive. For example, Linial
[11] shows that (with respect to a strictly stronger model of computation) no local
algorithm can properly 3-colour rings. Thus, it is not surprising that scheduling
problems in rings are not approximable by local algorithms.

Lemma 1. No local algorithm on an unmarked graph has an approximation
ratio better than 3 for the sleep scheduling problem or any finite approximation
ratio for the activity scheduling problem.

Proof. Consider an arbitrary local algorithm with local horizon L ∈ N. Let the
communication graph G be a ring of 6L nodes, that is, VG = {0, 1, . . . , 6L−1} and
EG = {{0, 1}, {1, 2}, . . . , {6L − 2, 6L − 1}, {6L − 1, 0}}. The node identifiers are
ordered by 0 < 1 < . . . < 6L − 1. For sleep scheduling, let R = G and b(v) = 1
for each v ∈ VR; for activity scheduling, let C = G and a(v) = 1 for each v ∈ VC .
Now the local neighbourhood BG(v, L) has the same structure for each node in
U = {L, L + 1, . . . , 5L − 1}. At any point in time, all these nodes have to make
the same decision.

In the case of sleep scheduling we can obtain a schedule of length 3 by choosing
the congruence classes modulo 3 as the dominating sets and by assigning 1 time
unit to each. However, if each node in U makes the same decision in the local
algorithm, then all of them have to be awake at any point in time; otherwise, e.g.,
the node L + 1 would not be dominated. Thus if the local algorithm produces
a feasible sleep schedule, the length of the schedule is at most 1, implying that
the local algorithm cannot guarantee an approximation ratio better than 3.
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In the case of activity scheduling we can obtain a schedule of length 2 by
choosing the congruence classes modulo 2 as the independent sets and by as-
signing 1 time unit to each. However, if each node in U makes the same decision
in the local algorithm, then none of them can be active at any point in time;
otherwise a conflicting pair of nodes {L, L + 1} would be active simultaneously.
Thus, the nodes in U can never complete their activities, implying that the local
algorithm cannot guarantee any finite approximation ratio. 	


Therefore one has to incorporate auxiliary information to the communication
graph to obtain satisfactory approximation guarantees for scheduling.

4 Local Approximability of Scheduling

We assume that the marked communication graph (G, M) is a (Δ, �1, �μ, μ)-
marked graph with k = �(�μ − �1)/μ� > 0. Intuitively, a large k is desirable for
a good approximation and a small �μ is desirable in limiting the computational
effort.

4.1 Finding Cells

Each node v ∈ VG applies the following algorithm:

Find-Cells

1 d ← dG(M, v)
2 for i ← 0 to kμ − 1
3 do m(v, i) ← min(M ∩ BG(v, d + i))

First, the node finds the distance d to its nearest marker; note that d ≤ �1. Then,
for each configuration i = 0, 1, . . . , kμ − 1, the node finds the smallest marker
within the distance d + i; here we use the total order on the identifiers.

We define the cell of the marker m in configuration i by C(m, i) = {v ∈ VG :
m(v, i) = m}. We say that a node v ∈ VG is a boundary node in configuration
i if v has a neighbour u in G such that m(v, i) �= m(u, i). The following lemma
captures a key property of the configurations (cf. Floréen et al. [3, Lemma 4]).

Lemma 2. For any v ∈ VG, there are at most 4μ configurations i such that v is
a boundary node in i.

To prove Lemma 2, we start with two technical lemmata.

Lemma 3. For any node v ∈ VG , there are at most μ different values of m(v, i).

Proof. On line 3 in Find-Cells, it holds that d + i < �1 + kμ ≤ �μ, which
implies m(v, i) ∈ M ∩ BG(v, �μ) for each configuration i. By definition,
|M ∩ BG(v, �μ)| ≤ μ. 	


Lemma 4. For any node v ∈ VG , there are at most μ − 1 configurations i such
that m(v, i) �= m(v, i + 1).
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Proof. Consider an arbitrary v ∈ VG . By Lemma 3, it suffices to show that each
distinct value of m(v, i) corresponds to a single interval of configurations i; once
m(v, i) changes its value from m1 to m2 �= m1, it never changes back to m1.

Assume that m(v, i1) = m(v, i2) = m for arbitrary m and i1 ≤ i2. Then m
is a member of the ball BG(v, dG(M, v) + i1), and m is the smallest marker in
the larger ball BG(v, dG(M, v) + i2). Thus, for any i1 ≤ i ≤ i2, it holds that m
is the smallest smallest marker in BG(v, dG(M, v) + i), implying m(v, i) = m for
all i1 ≤ i ≤ i2. 	


Proof of Lemma 2. Consider an arbitrary v ∈ VG . By Lemma 4, we can divide
the list of configurations (0, 1, . . . , kμ − 1) into at most μ intervals, such that
m(v, i) is constant within each interval. We now prove that v can be a boundary
node at most 4 times on each interval.

This clearly holds for intervals of length at most 4. Next, consider an interval
from i1 to i2 with i2 ≥ i1 +4 such that m(v, i) = m for each configuration i with
i1 ≤ i ≤ i2.

Let u ∈ VG be any neighbour of v. Because dG(u, v) = 1, it holds that
|dG(M, v) − dG(M, u)| ≤ 1. By construction, m = m(v, i1) is a marker in
BG(v, dG(M, v)+ i1) ⊆ BG(u, dG(M, v)+ i1 + 1) ⊆ BG(u, dG(M, u)+ i1 + 2), and
m = m(v, i2) is the smallest marker in BG(v, dG(M, v) + i2) ⊇ BG(u, dG(M, v) +
i2 − 1) ⊇ BG(u, dG(M, u) + i2 − 2).

Therefore m is a marker in BG(u, dG(M, u) + i1 + 2) and furthermore m is
the smallest marker in BG(u, dG(M, u) + i2 − 2) ⊇ BG(u, dG(M, u) + i1 + 2). We
obtain m(u, i) = m = m(v, i) for i1 + 2 ≤ i ≤ i2 − 2.

As this holds for any neighbour u, the node v cannot be a boundary node in
the configurations i1 + 2 ≤ i ≤ i2 − 2. There are at most 4 configurations in the
ends of the interval such that v may be a boundary node. 	


The algorithm Find-Cells is local. In the following sections, we use the cells
and Lemma 2 to obtain local algorithms for the scheduling problems.

4.2 Sleep Scheduling

Let C̄(m, i) = {v ∈ VG : dG(C(m, i), v) ≤ 1}. For each marker m and configura-
tion i, solve the LP

maximise
∑

K xm,i(K)

subject to
∑

K K(v)xm,i(K) ≤ b(v) for all v,

xm,i(K) ≥ 0 for all K,
(1)

where v ranges over all nodes in C̄(m, i) ∩ VR, and K ranges over all subsets
K ⊆ C̄(m, i) ∩ VR such that K dominates C(m, i) ∩ VR in R. Note that the
boundary nodes may participate in domination, but they need not be dominated.
The LP has constant size and depends on the local information only. Let qm,i =∑

K xm,i(K) be the total length of the solution.
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Based on the computed solutions, each node controls its sleeping as follows.
We use the synchronised clocks to proceed in cycles of length δ time units for
some δ. Each cycle is further divided into kμ steps of length δ/(kμ). We label
the steps within each cycle by 0, 1, . . . , kμ − 1. The behaviour of each node at
step i is controlled as follows by the local solutions xm,i associated with the
configuration i.

First, consider a non-boundary node v ∈ VR. The node constructs a schedule
based on the solution xm,i where m = m(v, i). All nodes in C̄(m, i) ∩ VR con-
sider the sets K with a nonzero xm,i(K) in the same order K1, K2, . . . (say, the
lexicographic order). Let tj = δxm,i(Kj)/(kμqm,i). First, if v ∈ K1, the node is
awake for t1 time units; otherwise it is asleep for t1 time units. Then, if v ∈ K2,
the node is awake for t2 time units, and so on. This way we have scaled down
the entire schedule xm,i into one time step of length δ/(kμ).

Second, consider a boundary node v ∈ VR. As above, we construct a schedule
based on xm(v,i),i. Additionally we construct a schedule based on xm(u,i),i for
every u such that m(u, i) �= m(v, i) and {u, v} ∈ EG . We take the union of these
schedules: at any point in time, the node v is awake if it is awake according to
at least one of the schedules.

In each configuration i, each node is a member of C(m, i) for some m, and the
local solution xm,i guarantees that C(m, i) ∩ VR is dominated at every point in
time. Thus, this procedure is correct in the sense that VR is dominated at every
point in time, as long as no node runs out of battery.

Proof of Theorem 1. Let x be an optimal sleep schedule in the centralised setting;
let q =

∑
D x(D). The solution x can be used to construct a feasible solution to

each local LP (1): for each dominating set D, add x(D) units to xm,i(K) where
K = D∩ C̄(m, i); as D dominates VR, it follows that K dominates C(m, i)∩VR.
Thus, qm,i ≥ q, as xm,i is an optimal solution to (1).

Consider an arbitrary node v ∈ VR. During each step i when v is not a
boundary node, it is awake for at most δb(v)/(kμqm,i) ≤ δb(v)/(kμq) time units.
When v is a boundary node, this is increased by at most a factor Δ + 1 because
there are at most Δ neighbours and thus at most Δ different neighbouring cells.
By Lemma 2, the node v is a boundary node in at most 4μ configurations out of
kμ. Thus, v is awake for at most (kμ + 4Δμ)δb(v)/(kμq) = (1 + 4Δ/k)δb(v)/q
time units during an entire cycle of length δ. During �q/(δ(1 + 4Δ/k))� cycles,
v is awake for at most b(v) time units. Thus, the battery of v lasts at least
�q/(δ(1 + 4Δ/k))�δ ≥ q/(1 + 4Δ/k) − δ time units. By choosing a small δ, we
can obtain an approximation ratio 1 + ε for any ε > 4Δ/k.

To choose a small enough δ, we need some information on q. If q > 0 then
each node has to have at least one neighbour u with b(u) > 0; by letting all
nodes be awake as long as their batteries last, we obtain a trivial constant lower
bound for q from the smallest nonzero element of the finite set of possible b(v);
we use this bound to choose δ. The obtained δ (as well as any other value) is
trivially valid also in the case q = 0. 	
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4.3 Activity Scheduling

Let C◦(m, i) be the set of nodes v ∈ C(m, i) such that v is not a boundary node
in configuration i. For each marker m and configuration i, solve the LP

minimise
∑

K xm,i(K)

subject to
∑

K K(v)xm,i(K) ≥ a(v) for all v,

xm,i(K) ≥ 0 for all K,
(2)

where v ranges over all nodes in C◦(m, i) ∩ VC and K ranges over all subsets
K ⊆ C◦(m, i) ∩ VC such that K is an independent set in VC . Note that the
boundary nodes are not considered. The LP has constant size and depends on
the local information only. Let qm,i =

∑
K xm,i(K) be the total length of the

solution.
As in Sect. 4.2, we proceed in cycles of length δ and steps of length δ/(kμ).

Also the translation of local solutions into schedules is the same for nonboundary
nodes. However, the boundary nodes are inactive.

Proof of Theorem 2. Let x be an optimal activity schedule in the centralised
setting; let q =

∑
D x(D). The solution x can be used to construct a feasible

solution to each local LP (2): for each independent set I, add x(I) units to
xm,i(K) where K = I ∩C◦(m, i); as I is an independent set in C, so is K. Thus,
qm,i ≤ q, as xm,i is an optimal solution to (2).

Consider an arbitrary node v ∈ VC . During each step i when v is not a
boundary node, it is active for at least δa(v)/(kμqm,i) ≥ δa(v)/(kμq) time units.
By Lemma 2, the node v is a boundary node in at most 4μ configurations out of
kμ. Thus, v is active for at least (1−4/k)δa(v)/q time units during an entire cycle
of length δ. During �q/(δ(1−4/k))� cycles, v is active for at least a(v) time units.
Thus, the node can complete its activities in �q/(δ(1−4/k))�δ ≤ q/(1−4/k)+ δ
time units. By choosing a small δ, we can obtain an approximation ratio 1/(1−ε)
for any ε > 4/k. Again an appropriate δ can be chosen by bounding q using the
information on the possible values of a(v). 	


4.4 A Lower Bound for Local Approximability

We proceed to show that the value ε in the approximation guarantees of Theo-
rems 1 and 2 cannot be improved by a constant factor larger than 9.

Select integers N ≥ 100 and μ ≥ 10. Consider an arbitrary local algorithm
with local horizon L ∈ N. Construct the communication graph G by forming a
ring of n = (6N + 1)6L nodes, that is, VG = {0, 1, . . . , n − 1}, EG = {{0, 1},
{1, 2}, . . . , {n − 2, n − 1}, {n − 1, 0}}. The identifiers are ordered by 0 < 1 < . . .
< n − 1. Place the markers at the nodes v where v ≡ 0 (mod 6N + 1). The
construction is a (2, 3N, �μ(3N + 1/2)� − 1, μ)-marked graph.

For sleep scheduling, let R = G and b(v) = 1 for each v ∈ VR; for activity
scheduling, let C = G and a(v) = 1 for each v ∈ VC . Consider the nodes U =
{L, L + 1, . . . , n − L − 1}. For each j ∈ {0, 1, . . . , 6N}, the local neighbourhoods
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of the nodes v ∈ U with v ≡ j (mod 6N + 1) are identical; thus, each of these
nodes must make the same decision at any point in time.

In the case of sleep scheduling, there exists a schedule of length 3. However, the
local algorithm cannot achieve an optimal solution. Consider a chain of 6N + 1
nodes in U . If only 2N nodes are awake at a given point in time, then only 6N
nodes are awake in a chain of 18N + 3 nodes, as each subchain of length 6N + 1
behaves identically. However, 6N nodes cannot dominate a chain of 18N + 1
nodes; thus, there is at least one node in the chain which cannot be dominated.
Therefore at least 2N + 1 nodes have to be awake, and the total lifetime of the
nodes in a subchain of 6N +1 nodes is thus at most (6N +1)/(2N+1) = 3/(1+ε)
for ε = 2/(6N + 1) > 0.33/N . Our local algorithm achieves the approximation
guarantee 1 + ε for any ε > 8/k where k ≥ 3N − 1/μ − 3N/μ − 1/2 ≥ 2.694N .
That is, we can achieve ε = 9 × 0.33/N .

In the case of activity scheduling, there exists a schedule of length 2. In the local
algorithm, for each chain of 6N + 1 nodes there can be at most 3N nodes active
simultaneously, implying that the length of the schedule obtained by the arbitrary
local algorithm is at least (6N+1)/(3N) = 2/(1−ε) for ε = 1/(6N+1) > 0.165/N .
Our local algorithm achieves ε = 9 × 0.165/N .

In conclusion, we have presented an infinite family of parameters (Δ, �1, �μ, μ)
such that the ε in our approximation guarantees for both sleep scheduling and
activity scheduling is within factor 9 of the best possible that any deterministic
local approximation algorithm can achieve.

In this lower bound, we focused on the case �1 ≈ �μ/μ → ∞. The following
lemma shows that the case �1 � �μ/μ is trivial to local algorithms.

Lemma 5. If �μ ≥ (μ+1)(�1 +1/2), then the size of each connected component
of a (Δ, �1, �μ, μ)-marked graph is bounded by a constant.

Proof. Let (G, M) be a (Δ, �1, �μ, μ)-marked graph with �μ ≥ (μ + 1)(�1 + 1/2).
To reach a contradiction, assume that there exist nodes v0, vμ ∈ VG such that
dG(v0, vμ) = μ(2�1 + 1). Then there exist nodes v1, v2, . . . , vμ−1 ∈ VG such that
dG(vi, vi+1) = 2�1 + 1 and a node u ∈ VG such that dG(vi, u) ≤ �μ(�1 + 1/2)�.
For i = 0, 1, . . . , μ, let mi ∈ M be a marker having the minimum distance
to vi in G; the nodes m0, m1, . . . , mμ are distinct. Furthermore, it holds that
dG(mi, u) ≤ dG(mi, vi)+dG(vi, u) ≤ �1 +�μ(�1+1/2)� ≤ �1+μ(�1+1/2)+1/2 =
(μ + 1)(�1 + 1/2) ≤ �μ. This implies that we have μ + 1 markers in BG(u, �μ),
which is a contradiction with the assumption that (G, M) be a (Δ, �1, �μ, μ)-
marked graph. Thus, the diameter of each connected component of G is less
than μ(2�1 +1), and each connected component consists of at most 1+Δμ(2�1+1)

nodes. 	


5 Deploying a Marked Network

Any local algorithm for scheduling requires some auxiliary information, marking
or otherwise, to break symmetry (Lemma 1). Thus, to apply a local algorithm,
one must incorporate this information into the network when the network is de-
ployed. In particular, a practically feasible way to deploy the network is required.
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We conclude this paper by developing a series of examples that illustrate how
one might go about and deploy a marked network in a physical area so that
Definition 1 is met.

An intuitive picture to keep in mind in what follows is a graduate student
walking about an area where a network is to be deployed with two (heavy) bags
of sensor devices. One bag contains devices with the marker bit set, and the
other bag devices with the bit reset.

We start with a purely combinatorial setup and proceed in steps towards more
realistic scenarios.

5.1 Grids

Consider an infinite 2-dimensional grid graph G, where VG = Z
2 and EG =

{{(x1, x2), (y1, y2)} : |x1 − y1| + |x2 − y2| = 1}. Choose an integer N > 1.
Deploy the markers at nodes MG = {(Ni, Nj) : i + j odd}. The constructed
(G, M) is a (4, N, 2N − 1, 4)-marked graph. Generalisation to higher dimensions
is immediate.

For large N we obtain an approximation ratio 1 + ε where ε ≈ 64/N for
sleep scheduling and ε ≈ 16/N for activity scheduling. In this sense, our lo-
cal approximation algorithm is a local approximation scheme for grid graphs:
any approximation ratio above 1 can be achieved by deploying the markers in
a sufficiently sparse manner. Furthermore, the rule for deploying the markers
is arguably practically feasible from the perspective of a combinatorial entity
traversing the grid.

5.2 Globally Grid-Like Graphs

The communication topology in a real physical environment does not have a
perfect grid structure. To arrive at a more versatile model, consider an infinite
connected graph H where every node has degree at most ΔH. We assume that
the large-scale structure of H is similar to a 2-dimensional grid graph G, but the
small-scale structure of H can be arbitrary. In precise terms, we assume that
the metric spaces (VG , dG) and (VH, dH) are quasi-isometric1; that is, we assume
that there exist mappings h : VG → VH, g : VH → VG and constants C ≥ 0,
λ ≥ 1 such that dH(h(x), h(y)) ≤ λdG(x, y)+C, dG(g(u), g(v)) ≤ λdH(u, v)+C,
dG(g(h(x)), x) ≤ C, and dH(h(g(v)), v) ≤ C for all x, y ∈ VG and u, v ∈ VH.
Define the marking of H from a marking of G by MH = h(MG).

Lemma 6. Any marked graph (H, MH) that satisfies the above conditions is
a (ΔH, �λN + 2C�, �2λN − (2C + 1)/λ�, �2λ2�2)-marked graph where N is the
constant used to mark G.

Proof. Let v ∈ VH. Let m be the marker closest to g(v) in G; dG(m, g(v)) ≤ N .
We have h(m) ∈ MH and dH(h(m), v) ≤ dH(h(m), h(g(v))) + dH(h(g(v)), v)
≤ �λdG(m, g(v)) + C� + �C� ≤ �λN + C� + �C� ≤ �λN + 2C�. We can choose
�1 = �λN + 2C�.
1 Ghys [19] attributes this definition of quasi-isometry to G. A. Margulis.
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Let �μ = �2λN − (2C + 1)/λ�. Let v ∈ VH and m ∈ MG be such that
dH(v, h(m)) ≤ �μ. Then dG(g(v), m) ≤ dG(g(v), g(h(m))) + dG(g(h(m)), m) ≤
λ�μ +2C ≤ 2λ2N −1 ≤ �2λ2�N −1. For any x ∈ VG and positive integer κ there
are at most κ2 markers in BG(x, κN −1); thus there are at most �2λ2�2 markers
in BH(v, �μ). We can choose μ = �2λ2�2. 	

Again we obtain an approximation scheme; any approximation ratio above 1 can
be achieved by placing the markers in a sufficiently sparse manner in G.

Intuitively, each element of VG corresponds to a geometric area and g(v) ∈ VG
is the area where the device v ∈ VH is located. The choice of MH reflects the
following rule for deploying the markers. First, some geometric areas MG are
selected based on the grid structure. Second, one marker is deployed in each of
these geometric areas.

In the small scale, quasi-isometry allows arbitrary structure to occur; the
small-scale structure of realistic communication graphs is irregular and unpre-
dictable due to the complex nature of the physics of radio propagation. In the
large scale, quasi-isometry requires that shortest-path distances in the commu-
nication graph reflect the distances in the ambient space; this is a reasonable
assumption from a dense deployment of sensors in an area devoid of large-scale
obstructions.

5.3 Serendipity of Locality

The defining property of a local algorithm is that the behaviour of each network
node is uniquely determined by the radius-L neighbourhood of the node. In other
words, all things being equal in the neighbourhood, the large-scale topology of
the network has no effect in the operation of a network node. This is particularly
useful from the perspective of network deployment—to fulfil the intended sensing
objective, it suffices to deploy the sensor nodes in a manner that, from the
perspective of mission-critical sensor nodes, looks like a benign topology, even if
the actual topology is not.

In more concrete terms, let us assume that we have some two-dimensional
area A of arbitrary shape that we want to monitor by a sensor network. Let us
also assume that we have a method of network deployment that would produce a
(Δ, �1, �μ, μ)-marked graph if applied to the infinite two-dimensional plane; say,
the method produces a globally grid-like marked graph (H, MH).

Now, to deploy a network to monitor A, all one has to do is to apply the
deployment method to A plus its constant-width surroundings. More precisely,
we deploy so that for any node v that is placed within A, its (L + 1)-hop neigh-
bourhood is indistinguishable from its neighbourhood in (H, MH). By locality it
follows immediately that any node within A (or with a neighbour in A) operates
exactly as it would operate in the case of (H, MH). For example, if the nodes
execute the sleep scheduling algorithm, then full coverage for every node within
A is guaranteed, with a lifetime at least as good as in the case of an infinite
graph. Other nodes may fail in an arbitrary manner, but this does not affect the
operation within A; for example, in the case of activity scheduling, these nodes
cannot conflict with the nodes within A.
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Again it can be argued that this deployment scheme is straightforward to
implement in practice. The overhead (in the number of extra nodes that need to
be deployed outside A) depends on the shape and size of A, but if the shape of
A is not too irregular, the relative overhead approaches zero as the surface area
of A increases.

Both the deployment of the markers and the deployment of the extra nodes
in the surroundings of A can be seen as examples of a basic tradeoff in computa-
tional effort: minor (and, from the perspective of the deployer, computationally
straightforward) extra effort invested in deployment pays off by enabling local
approximation of fundamental scheduling problems.
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Abstract. We introduce Semi-Matching with Demands (SMD),
which models a certain problem in sensor networks of assigning indi-
vidual sensors to sensing tasks. If there are multiple sensing tasks or
missions to be accomplished simultaneously, and if sensor assignment
must be exclusive, then this is a bipartite semi-matching problem. Each
mission is associated with a demand value and a profit value; each sensor-
mission pair is associated with a utility offer (possibly 0). The goal is a
sensor assignment that maximizes the profits of the satisfied missions
(with no credit for partially satisfied missions). SMD is NP-hard and
as hard to approximate as Maximum Independent Set. Therefore we
investigate less difficult constrained versions of the problem. We give a
simple greedy Δ-approximation algorithm for a degree-constrained ver-
sion (Δ-SMD), in which each mission receives positive utility offers from
at most Δ sensors. For small Δ, we show that Δ-SMD is equivalent to
k-Set Packing (with k = Δ), which yields a polynomial-time (Δ+1)/2-
approximation. For Δ = 2, we solve the problem optimally by reduction
to maximum matching. Finally, we introduce a geometric version which
remains strongly NP-hard but has a PTAS.

1 Introduction

A sensor network consists of a large number of small sensing devices that are
able to collect information about their surroundings. When a sensor network is
deployed in the field it may be tasked with achieving multiple, possibly conflict-
ing, missions. Hence, schemes that match sensor resources to mission demands
become necessary. If there are multiple sensors and multiple missions, we must
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choose the best matching of sensors to missions. A given sensor may offer differ-
ent missions varying amounts of information (because of geometry, obstructions,
or remaining battery level, for example), or none at all.

Missions may vary in both importance (profit) and difficulty (demand), and
these properties need not be correlated. An ongoing surveillance mission may be
expensive but of minor importance, whereas an urgent mission for information
about one particular spot may be low-demand but very important. In many
applications, partial satisfaction will be no better than zero satisfaction. If the
goal of a given mission is to reconstruct the 3D shape of an object, for example,
then this may be accomplished with images from two cameras, but an image
from just one camera will be useless. Indeed, accepting the single image could
actually be harmful since the drain on the sensor’s battery could preclude a
future mission that might otherwise have been satisfiable. In our model we only
receive profit, therefore, from missions whose demands are fully met. Hence the
problem is to choose the “best” assignment of sensors to missions, in the sense
that profits from satisfied missions are maximized.

Since this problem is NP-hard even to approximate, we investigate con-
strained versions for which approximation algorithms exist. First, we bound
the number of sensors that may offer contributions to any single mission. This
is a reasonable assumption in realistic settings in which sensors have a limited
sensing range and the sensors are distributed in such a way as to limit sensing
redundancy. Indeed, covering an entire field using as few sensors as possible is an
important problem in sensor networks (see Section 2). Second, we assume that
sensors and missions are located at points in the plane or higher-dimensional
metric space; we also assume a bounded sensing range and a bounded density of
sensors and missions. These assumptions may apply to settings in which sensors
are physical objects that exist in the world and that take up space and missions
can be similarly localized.

The rest of this paper is organized as follows. Section 2 discusses some related
work in sensor networks and in assignment problems. In Section 3 we formally
define the sensor assignment problem and study its computational complexity. In
Section 4, we introduce the degree-bounded version. We give a Δ-approximation
greedy algorithm for degree Δ and an efficient optimal algorithm for degree 2.
We also show that the problem is equivalent to Δ-Set Packing, which yields
a (Δ + 1)/2-approximation. In Section 5 we introduce a geometric version and
give a shifting-based PTAS. Finally, Section 6 concludes the paper.

2 Related Work

Sensor networks. The general problem of choosing sensors to achieve an ob-
jective has received sizable attention lately. Several selection objectives have
been considered. In [20,22], for example, the goal is to cover the region us-
ing few sensors in order to conserve energy. Sensor selection schemes have also
been proposed to efficiently track and locate targets. In [24], for example, the
most informative sensor for tracking a target is chosen based on the concept of
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information gain. This information is then passed on to the next active node,
which is chosen by considering the target’s expected path. Target localization
using acoustic sensors is considered by [14]. The goal there is to minimize the
mean squared error of the target location as perceived by the active nodes. Our
work, however, is motivated by contention between multiple missions with vary-
ing profit values, and therefore focuses on mission selection rather than sensor
selection.

There has also been some work on frameworks for single and multiple mis-
sion assignment problems. [3] e.g. defines a framework modeling the assignment
problem with notions of utility and cost. The goal is to find a solution that maxi-
mizes the utility while staying under a predefined budget. In [18], a market-based
method is used in which sensors provide information or “goods” which can be
purchased while observing certain budgets. Our problem differs in two impor-
tant respects. First, we maximize the profits uncategorically; the only “budget”
is the set of available sensors. Second, we do not simply maximize total received
utility. Solution quality for our problem is more strict in that partial satisfaction
receives no partial credit.

Algorithms. Although we use the terminology of sensors and missions for
concreteness, SMD can be viewed as a more general problem of resource alloca-
tion. An alternative interpretation regards scheduling jobs on unrelated parallel
machines. As in other (maximization) scheduling problems [23], the goal is a
schedule that maximizes profit earned from jobs completed, subject to certain
constraints. The twist is that each job specifies not the set of machines that can
perform it, but the set of families of machines that can perform it. (A job may
be too difficult to be performed by any single machine.) The feasibility constraint
is that no machine can be assigned more than one “sub-job”.

SMD also relates to other optimization problems, such as the Bin Covering
problem, in which the goal is to use a set of items to fill completely as many
bins as possible. SMD is a generalization of (weighted) Bin Covering in that an
“item” may take up different amounts of space in different “bins”. In this way,
an analogy can be seen between Bin Covering and SMD and the Multiple

Knapsack and Generalized Assignment [7] problems.

Combinatorial Auctions. In contrast to conventional auctions, in combina-
torial auctions players can bid of sets or combinations of items (which may entail
exponentially many bids). Given a fixed supply of goods, the goal of the winner
determination problem is to maximize revenue earned from the sale of disjoint
item combinations. Since this is a difficult problem, much of the research focus
has been on AI or algorithm-engineering approaches. (See [5] for a survey.) An-
other way of understanding our problem is as a combinatorial auction in which
bidders are the missions, the items are the sensors and the missions, and each
mission places a bid (equal to its own profit) for any set that can be constructed
as follows: the set contains the mission itself and some subset of sensors that
together satisfy the mission’s demand. The language of profits, demands, and
edge values, however, allows for a succinct representation of bids.
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Many weaker and often fractional models of sensor-mission assignment can be
reduced to maximal matching or network flow problems, and thus can be solved
optimally in polynomial time [1]. A survey of sensor selection and assignment
problems, including simple theoretical models of the problem, can be found in [21].

3 Problem Definition

Given is a complete weighted bipartite graph, whose vertex sets consist of sensors
S = {S1, ..., Sn} and missions {M1, ..., Mm}. A positively weighted edge (Si, Mj)
means that Si is applicable to Mj . The weight of the edge (eij) indicates the
utility (or quality of information) that Si could contribute to Mj if this pairing
were chosen. Also given is a positive-valued demand dj associated with each
mission Mj, indicating the total utility the mission requires. What we seek is a
semi-matching of sensors to missions, so that (ideally) each mission demand is
satisfied. That is, a sensor may be assigned to at most one of the missions to
which it is applicable, but it is legal for a mission to accept utility from multiple
sensors. Of course, satisfying all missions may not be feasible; in general, the
goal is to maximize a weighted sum of the satisfied missions. We assume there is
a profit pj associated with achieving mission Mj. We then seek to maximize the
total satisfied profit. Note that there is no profit awarded for a partially satisfied
mission in this model.

Unless there is structure to the weights of the sensor-mission edges, for ex-
ample if they relate to the geometry of node positions, we can assume without
loss of generality that each demand is 1. For each mission Mj with demand dj ,
simply divide edge value eij by dj to obtain an instance with unit demands.
Unless otherwise stated, we will assume this normalization henceforth, though
it is sometimes convenient to allow for non-unit demands. With this in mind, we
define the problem formally.

Instance: A weighted bipartite graph G = (S, M, P, E), where S = {S1, ..., Sn}
is a collection of sensors, M = {M1, ..., Mm} is a collection of missions, P =
{p1, ..., pm} is a collection of positive mission profits, and E is a collection
of non-negative weights for the edges S × M .

Goal: Find a semi-matching F ⊆ E (no two chosen edges share the same sen-
sor), in which

∑
Mj∈A pj is maximized, where A ⊆ M is the set of missions

satisfied by F (i.e.,
∑

(i,j)∈F eij ≥ 1 for each Mj ∈ A).

The problem can easily be expressed by an Integer Programming formulation.
The formulation below employs two sets of decision variables: yj indicating
whether mission Mj is satisfied, and xij indicating whether sensor Si is assigned
to mission Mj . Finding a solution can be seen as a two-step process: decide which
missions to satisfy, and then decide how to satisfy them. Each mission Mj has a
constraint requiring that the sum of utility received by Mj be at least the value
yj , which is 0 or 1. When yj = 0, this constraint is automatically satisfied.
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Fig. 1. Integrality gap instance

Maximize:
∑

j pjyj

Such that:
∑n

i=1 xijeij ≥ yj , for each mission Mj,∑m
j=1 xij ≤ 1, for each sensor Si, and

xij ∈ {0, 1}, for each variable xij and yj ∈ {0, 1}, for each variable yj

Note that if we had not normalized to unit demands, the first constraint would
be:

∑n
i=1 xijeij ≥ yjdj .

Remark 1. This IP has unbounded integrality gap, since instances can be con-
structed in which OPTLP = m/2 and OPTIP = 1, where m is the number of
missions. To create such an instance (see Fig. 1), introduce and connect a sepa-
rate sensor to each pair of missions, so that each mission has m − 1 neighbors,
and set all demands to m−1 and all profits to 1. Then setting all edge weights to
1/2 will clearly half-satisfy each mission, but only one can be satisfied integrally.

A relaxed version of this problem, in which profits are awarded fractionally for
partial satisfaction and sensors can be assigned fractionally to multiple missions,
can be solved with this formulation by Linear Programming, and certain versions
can be solved by reduction to max-flow (see [21]), but this version cannot. A
well known reduction from MIS [15] for the winner determination problem for
Combinatorial Auctions [15] also applies to the (more specific) SMD problem.
We briefly sketch it for completeness.

Proposition 1. SMD is NP-hard and at least as hard to approximate as Max-

imum Independent Set (MIS).

Proof. Given an MIS graph G = (V, E), an SMD instance is created with a
mission Mv for each each v ∈ V , with dv = deg(v) and pv = 1, and a sensor Su,v

for each edge (u, v) ∈ E, which offers utility 1 to missions Mu and Mv. Then the
optimal SMD solution yields the the optimal maximum independent set (and
both share the same solution quality). QED

Because of this reduction, known hardness results for MIS also apply to SMD.
MIS is the same as Maximum Clique on the complement graph, and Maximum

Clique is known to be hard to approximate within |V |1−ε for any ε > 0, unless
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Algorithm 1. Δ-Approximation Greedy Algorithm
for each mission Mj in order of decreasing Pj

for each still-available sensor Si in order of decreasing eij

assign Si to Mj

if Mj is satisfied then break
if Mj is not satisfied then

return any sensors assigned to it

NP=ZPP (and hard within |V |1/2−ε even without this assumption) [9]. This
means that the best achievable approximation ratio can be little better than m,
i.e., satisfying only about one mission out of m, which can be done by simple
greedy algorithms.

We briefly note two special cases of this problem. The hardness properties
above apply to both special cases.

Profits = demands: Set pj to the original (pre-normalization) demand dj .
Cardinality: Set pj = 1, in which case the objective function is simply the

number of satisfied missions.

4 Degree-Bounded Approximation Problem

Because of the difficulty of the approximation problem as defined, we will con-
strain it in order to render it more tractable. Let |OPT | indicate the optimal so-
lution value for a given problem instance, and let |ALG| indicate a corresponding
approximate solution value. We will say that an algorithm is a c-approximation
for c ≥ 1 if c ≤ |OPT |

|ALG| for every problem instance.
We will assume that the problem instance has bounded degree, in the following

sense. If a sensor Si makes a non-zero offer to a mission Mj, then say that Si

is Mj ’s neighbor. Then the assumption is that no mission has more than Δ
neighbors, for some small constant Δ. (If all zero-weight edges are removed, this
is the same as saying Δ bounds the degrees of all mission nodes in the SMD

graph.) We call this problem Δ-SMD.
A simple greedy algorithm considers missions in decreasing order of profit.

For each mission, the algorithm assigns it available sensors in decreasing order
of offer utility, until the mission is satisfied. If the mission does not succeed,
then all sensors are returned. Assuming that m = O(n log n), the running time
is O(mn log n).

Definition 1. Let a star consist of a mission and a minimally satisfying set of
sensors for it. The sensor set is minimal in the sense that no proper subset of
it would completely satisfy the mission in question. (Notice that a given mission
may in general be part of many stars.) Say that a mission is tight if it has degree
Δ and requires all Δ sensors in order to be satisfied. Two stars overlap if they
share one or more sensors, if they share a mission, or both, including the case
that the stars are identical.
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Proposition 2. Algorithm 1 produces a Δ-approximation.

Proof. Let OPT be the set of missions satisfied in some optimal solution (with
solution quality |OPT |), and let ALG be the missions satisfied by Algorithm 1
(with quality |ALG|). We want to show that |OPT | ≤ Δ · |ALG|, i.e., that

∑

Mj∈OPT

pj ≤
∑

Mj′∈ALG

Δ · pj′ (1)

To prove Ineq. 1, we account for each term pj on the LHS with one of the
terms Δ · pj′ on the RHS. For each Mj ∈ OPT , say that Mj charges to the
highest-profit mission Mj′ ∈ ALG whose star overlaps with Mj ’s star, and write
Mj ∈ ch(Mj′). (There must be one such Mj′ with pj ≤ pj′ since Algorithm 1
satisfies a maximal set of missions, selected in decreasing order of profit.) Then
let Mj′ be an arbitrary mission in ALG. Mj′ is either tight or not. Suppose tight,
in which case that mission has only one star. If Mj′ ∈ OPT , then only Mj′ itself
charges to Mj′ ∈ ALG; if Mj′ /∈ OPT , then at most Δ stars in OPT can charge
to Mj′ (those that share at least one of its sensors). Now suppose Mj′ is not
tight, so that it contains ≤ Δ − 1 sensors. Then at most Δ stars in OPT can
charge to Mj′ (those that share at least one of its sensors, and possibly one that
shares its mission). Thus we have

∑

Mj∈ch(M ′
j)

pj ≤ Δ · pj′ (2)

By summing Ineq. 2 over all missions in ALG, we obtain Ineq. 1. QED

It is easy to construct an example with Δ+1 missions to show that the Δ bound
is tight: let one mission have profit 1 + ε and require all Δ sensors; let the rest
have profit 1 and require one sensor each.

Corollary 1. By the MIS reduction, Δ-SMD (for Δ ≥ 3) is APX-hard [19].
Given the approximation of Algorithm 1, Δ-SMD (for Δ ≥ 3) is APX-complete.

Proposition 3. 2-SMD is in P.

Proof. We reduce to the (weighted) maximal matching problem (see Fig. 2).
The node set for the resulting graph will consist of the 2-SMD instance’s sensors
and missions. Whenever a mission Mj will be satisfied only by both its neighbors
Si1, Si2, draw an edge (Si1, Si2) with weight equal to the mission profit; whenever
a mission Mj will be satisfied by a single sensor Si, draw an edge (Si, Mj) with
weight equal to the mission profit. Now find a maximal weighted matching in
this (non-bipartite) graph in polynomial time. Each selected edge corresponds
to a satisfied mission. It is clear that no sensor or mission will be used more than
once. The optimal solution values of the matching graph and the SMD are by
construction the same. QED
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Fig. 2. Converting SMD to graph

Since the graph of a 2-SMD instance is sparse, the maximal weighted matching
can be found in time O(m2 log m) [8], where m is the number of missions. The time
for finding the maximal matching is the dominant component of the running time.

We now relate Δ-SMD and Δ-Set Packing. These problems turn out to be
equivalent for Δ “small enough”. In the Set Packing problem, we are given a
family of subsets of a universe of elements. Each subset has a positive weight.
The goal is to choose a max-weight family of subsets without using any element
more than once. Δ-Set Packing is the variant of Set Packing in which each
set has at most Δ elements.1

Proposition 4. Δ-SMD reduces to Δ-Set Packing, when Δ = O(log nm).

Proof. The idea of the reduction is that each star in our SMD instance will
become a set in the Set Packing instance. (Since a given mission may have
degree Δ, it can have O(2Δ) many stars. Because of the bound on Δ, however,
the resulting Set Packing instance will be at most polynomially larger than the
initial SMD instance size.) Specifically, a star with s < Δ sensors will become an
s+1-element set containing the star’s sensors and mission; a star with Δ sensors
will become a Δ-element set containing only the star’s sensors. Since a mission
can have only one tight star of size Δ, the mission need not be included in the
resulting star. Choosing a max-weight family of disjoint sets will now be the
same as choosing a max-weight set of disjoint stars. It is interesting to note that
the distinction between sensors and missions has now disappeared: no element
can be used more than once. QED

Proposition 5. Δ-Set Packing reduces to Δ-SMD.

Proof. Each element in the Δ-Set Packing universe will correspond to a sensor
in the resulting Δ-SMD instance. For each set in the Δ-Set Packing instance,
we create a separate mission that requires all the sensors in this set in order to
be satisfied. Then each mission has degree at most Δ by construction. QED

For small enough Δ relative to problem instance size, Δ-Set Packing and
Δ-SMD are equivalent. Therefore for such Δ, Δ-SMD can be construed both
a covering problem and a packing problem. An existing local search algorithm
1 The parameter used is typically k, but we are interested in the case k = Δ.
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from Berman [2] gives a (Δ+1
2 +ε)-approximation for Δ+1-Claw-Free MIS,

which Δ-Set Packing reduces to. (ε is a running-time parameter, specifically,
a k

(k−1)
Δ+1

2 approximation can be found in time polynomial in O(kn).) Hence
there is a Δ+1

2 approximation for Δ-SMD (for small Δ). It was recently shown
[10] that even for the cardinality version, approximating Δ-Set Packing within
a factor better than Δ

ln Δ is NP-hard. Following Jain et al.’s LP for Facility

Location [13], we can define a simpler IP formulation in terms of stars. When
Δ = O(log nm), there will only be polynomially many stars for a single problem
instance. For a given element A (either sensor or mission), there will certainly
be at most polynomially many stars containing A. In the following IP, decision
variable yt indicates that we choose star t; we have a constraint for each element.
Intuitively, this IP has the advantage that it has just one set of decisions to make:
which stars to pick? The profit for a star is simply the profit for the mission it
includes; each sensor or mission can be used at most once.

Maximize:
∑

t ptyt

Such that:
∑

Rt:As∈Rt
yt ≤ 1, for each sensor or mission As and

yt ∈ {0, 1}, for each variable yt

Remark 2. This IP has integrality gap at least Δ+1
2 , since instances can be con-

structed in which OPTLP = Δ+1
2 and OPTIP = 1, where m is the number of

missions. In fact, Δ+1
2 is also a lower bound on the integrality gap of the first

IP formulation, in the case of bounded degree.

5 Geometric Approximation Problem

We now introduce Geometric SMD (or GeomSMD), in which all nodes (i.e.,
sensors and missions) lie in the plane (or higher-dimensional space) and geomet-
rically inspired constraints are imposed. First, each sensor and mission now lie
at a particular point in the plane. Second, we assume sensors have a bounded
sensing range, i.e., eij can only be non-zero when the distance between Si and
Mj is less than this bound. (Without loss of generality, let the sensing range be
1. In this case, every star will lie in a unit disk.) We also assume a geometric
analog to bounded degree, specifically an upper bound on the number of sensors
or missions contained in any unit disk. This constraint will be satisfied automat-
ically if the graph is drawn in a civilized manner [12], i.e, so that any two nodes
are separated by some minimum distance λ > 0. Hence GeomSMD is a special
case Δ-SMD for some Δ.

The NP-hardness argument will involve the Unit-Disk MIS (UD-MIS)
problem [4], which is MIS variant in which the problem instance is the intersec-
tion graph for a set of unit disks lying in the plane. Equivalently, UD-MIS can
be defined so that given a set of points in the plane, two points are connected
by an edge iff their distance is strictly less than a global constant. We will ar-
gue that the NP-hardness proof for UD-MIS also applies to a density-bounded
UD-MIS. The NP-hardness proof for UD-MIS from [4] is recounted in [16].
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Algorithm 2. Shifting PTAS (error ε)
k ← �2/ε�; S = ∅
for each (i, j) ∈ [0, k)2

lay the mesh with offset (i, j); Sij ← ∅
for each cell Ct within the mesh

Sij ← Sij ∪ opt(Ct)
if val(S) < val(Sij) then S ← Sij

Proposition 6. GeomSMD is strongly NP-hard.

Proof. We reduce from 3SAT to UD-MIS [4,16] to GeomSMD. Given the
3SAT instance, first apply the known UD-MIS reduction, which results in a
UD-MIS graph and a number k (there is an independent set of size k iff the
formula was satisfiable). It is clear that the resulting UD-MIS instance can be
drawn with at most O(1) disk per unit square (by inspection, at most 4 disks
intersect at any point, and squeezing a chain of 3 disks so that all 3 centers lie
in a unit disk will introduce a new edge). There are O(#vars · #clauses) disks,
which is clearly polynomial in the 3SAT size.

Now we convert this UD-MIS decision-problem instance (G, k) into a Ge-

omSMD decision-problem instance (G′, k), by replacing each disk with a mis-
sion at the disk’s center, and every maximal intersection of disks with a sensor
needed by all of them. Since each mission needs all the sensors lying in its disk
in order to be satisfied, k missions can be satisfied iff k independent disks can
be chosen. Since in the UD-MIS construction each unit square contains at most
O(1) such intersections, in the resulting GeomSMD instance, each unit square
will contain at most O(1) missions and O(1) sensors, and the sensing distance
is respected by construction. Thus 3SAT is reduced to GeomSMD. QED

Since 3SAT is strongly NP-hard, it follows that an FPTAS is unlikely for Ge-

omSMD. A PTAS, which we now give, is the best that can be hoped for. We
employ the shifting technique originally introduced by Hochbaum & Maass [11].
Within a c × c cell, there will be at most O(Δc2) sensors and missions, for some
constant Δ. As c increases, the fraction of the a cell’s area near to the edge will
decrease. For a c × c cell, the internal portion can be solved brute-force in time
exponential in c and Δ, but polynomial in the problem instance size nm.

We now give the PTAS,2 which is similar to the Unit-Disk MIS [17] PTAS
(following the presentation in [6]). For now, assume for simplicity that all points
are bounded by a square region I whose size is polynomial in the input size. Then
for a desired error bound ε, we can choose c = �2/ε�. Now lay a grid on the plane
with integer coordinates and cells of size c×c. Each (i, j) ∈ [0, c)2 corresponds to
a possible offset for the grid. For a given grid position, we eliminate all sensor-
mission edges not fully contained within a single cell. Within any cell, there
are O(Δc2) sensors and missions; therefore we can find the optimal assignment

2 Although we focus on the plane, it is easy to extend to a fixed higher dimension D.
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restricted to that cell by enumerating all O((Δc2)Δc2
) possible assignments. The

solution for a given offset pair (i, j) is the union of the solutions for the individual
cells. We compute the solution for each possible offset pair.

We now justify our initial assumption. If the points lie in an extremely large
region, then the method as stated may not run in polynomial time, since there
may be exponentially many cells to check. This can be easily fixed. First, notice
that there will be at most polynomially many non-empty cells, which can be
found by iterating through the point coordinates. For each non-empty cell, we
can “grow” it outward, to obtain a maximally non-empty region. Performing
this action on every non-empty cell (i.e., Union-Find) produces a polynomial
collection of independent regions. Now simply run the original algorithm on
each independent region, rather than on the entire space.

Proposition 7. Algorithm 2 is a PTAS.

Proof. Consider the optimal star-set OPT with total profit Popt. By the Shifting
Lemma [11], there must be some vertical offset j that crosses a subset of OPT
with total profit at most Popt/c. Similarly, there must be some horizontal offset
i that crosses a subset of OPT with total profit at most Popt/c. Therefore the
union of the cell-optimal solutions for this (i, j) will be within factor (1−1/c)2 ≥
1 − 2/c =≥ 1 − ε of the optimal. QED

6 Conclusion

In this paper, we introduced a sensor-mission matching problem. We analyzed
its complexity, defined constrained versions, and presented approximation algo-
rithms for them. There are many open problems, such as:

– Seek efficient constant-factor approximation algorithms algorithms for Geom
SMD.

– Seek LP-based (Δ + 1)/2 approximations than run in bounded time.
– Close the approximation gap for Δ-SMD and k-Set Packing.
– Define online variants of the problem that would admit nontrivial competi-

tive algorithms.
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Abstract. Coverage is a measure of the quality of surveillance offered by a given
network of sensors over the field it protects. Geometric characterization of, and
optimization problems pertaining to, a specific measure of coverage - maximal
breach - form the subject matter of this paper. We prove lower bound results for
maximal breach through its geometric characterization. We define a new measure
called average maximal breach and design an optimal algorithm for it. We also
show that a relaxed optimization problem for the proposed measure is NP-Hard.

1 Introduction

Recent advances in wireless technologies coupled with theoretical work have led to cen-
tralised and distributed algorithms for various information processing tasks using low
cost and low power devices. All these have made Wireless Sensor Networks (WSNs) a
common and effective solution in a wide range of applications. Research effort in the
past few years, in the area of WSNs, has become the meeting ground of researchers in
signal processing and embedded computation [5], [6], network architecture and proto-
cols [7], distributed algorithms [2] and computational geometry [1], [3], [4], to name
just a few.

In this paper, we dwell on one of the basic problems of WSNs, viz., Coverage [1,2,8].
Coverage is a generic name for a class of measures that quantify the quality of sur-
veillance offered by a given network of sensors over the field it protects. Geometric
characterization of, and optimization problems pertaining to, a specific measure of cov-
erage - Maximal Breach - form the subject matter of this paper. Problems related to
single-pair maximal breach was first explored in [1]. The coverage problem can be
viewed from two angles - the intruder’s view and the defender’s view. These two view
points give rise to two generic combinatorial optimization problems - searching for
“safe” paths in the field (important for the intruder) and optimizing the degree of cov-
erage over all parts of the field (important for the defender).

The principle contributions of this paper are the following: (i) mathematical formula-
tion of the problem of optimizing the maximal breach coverage measure for WSNs; (ii)
a negative lower bound result on single-pair maximal breach; (iii) a simple but impor-
tant extension to the maximal breach measure - all-pairs average maximal breach - and
an optimal algorithm for computing it; (iv) for average maximal breach - a lower-bound
result analogous to the single-pair case and an NP-Hardness result.

M. Kutyłowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 126–137, 2008.
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In the next section, we present some basic definitions, followed by a brief account
of the existing literature on maximal breach. In Section 3, we present lower-bound
result for single-pair maximal breach. This leads to Section 4, where we define All-Pairs
Average Maximal Breach, and deal with its computation and optimization in Section 5.
We end with some pointers to future work in Section 6.

2 Background and Prior Work

The bulk of this section is based on [1] and [8]. The Maximal Breach measure of WSN
coverage was first proposed in [1]. To distinguish it from a closely related measure we
propose in Section 4, we shall refer to it as single-pair maximal breach.

Suppose, S � �s1� s2� � � � � sN � be a set of N sensors deployed over a field modelled as
a unit square region A. Each sensor node is a point si � (xi� yi) � A, where xi� yi � IR.
The intruder has complete knowledge of the coordinates of all the sensors in S .

2.1 Maximal Breach

Suppose an intruder tries to traverse the field from an initial point i to a final point f .
We denote points within A with lower-case letters and paths with upper-case letters.
Consider a path P(i� f ) through the field from i to f .

Definition 1 [Breach] [1]. The quantity breach is defined as the minimum Euclidean
distance from P(i� f ) to any sensor in the field.

In A, there are infinitely many paths connecting i and f . One of these has a special
property:

Definition 2 [Maximal Breach Path] [1]. Among the infinitely many paths connecting
i and f , one that has the maximum breach value is called a maximal breach path,
Pb(i� f � S ). Maximal Breach, breachmax(i� f � S ), is the breach of the maximal breach
path.

For the intruder, the maximal breach path is the best path to take within the field, be-
cause the closest sensor encountered is at the farthest possible distance.

2.2 Prior Work on Maximal Breach

There are uncountably many paths connecting any pair of points in A. How do we find
the special path Pb(i� f � S )? A fundamental result is established in [1] that reduces the
search space (set of candidate paths) to a finite size: At least one maximal breach path
must lie along the edges of the bounded Voronoi diagram [10] determined by the sensor
nodes S and the boundaries of the unit-square field A.

In the algorithms developed in [1] and [8], a weighted, undirected graph, called the
associated graph, GVD is computed from VD(S ), where VD(S ) denotes the Voronoi
diagram for S bounded by A. For each voronoi vertex in VD(S ), there is a node in GVD.
Additionally, the peripheral edges of VD(S ) intersect the boundaries of A. There is a
node in GVD for each such intersection point. Finally, the four corners of A are added
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to the node set of GVD. There is an edge E � (u� v) in GVD iff the corresponding points
in VD(S ) are connected by a voronoi edge or are adjacent points on the boundary of A.
In the former case, the weight w(E) is set to breach(E) (a quantity proportional to the
length �ss��, where s, s� are the sensors that share the voronoi edge); in the latter case,
the weight w(E) is set to its distance from the nearest site. See [1], [8] for details.

Megerian et al. [1] use a combination of BFS and binary search on GVD to compute
maximal breach. But, they assumed integral Euclidean distances in their algorithm - an
unreasonable assumption, given that xi� yi � IR. In [8], we have published a centralised
polynomial time algorithm for maximal breach that gives exact results (does not need
the integral weights assumption of [1]) and also computes the maximal breach path at
no extra run-time cost. It uses network flow concepts and computes the maximal breach
measure, as well as the path, in O(N log N) time.

3 Single-Pair Maximal Breach - A Lower-Bound Result

We begin this section with some notations and equations.

3.1 Notation

– VE(S ), VV(S ) denote the set of edges and vertices in VD(S ) respectively. GVD �

(VVD� EVD) denotes the associated graph for VD(S ).
– Pb(i� f � S ) denotes a maximal breach path in �A� S � and bS (i� f ) the breach value.
– eb

cr(i� f � S ) denotes the critical edge in Pb(i� f � S ), defined further down.

3.2 General Equations for Breach

Let d(x� y) denote the euclidean distance between points x and y. Given S and a point
p � A, the closest sensor observability at p [2] is defined as

IC(p� S ) � min
s�S

d(s� p)� (1)

We define breach in terms of IC(p� S ). For a path P in A connecting the points i� f � A,
breach(P) is the minimum IC value over all points on P. Let �(i� f ) denote the set of
all (infinitely many) paths, within A, connecting i and f . The maximal breach between
i and f is defined as

breachmax(i� f� S) � max
P��(i� f )

breach(P) � max
P��(i�f)

min
p�P

IC(p� S) (2)

and any path that attains this breach value is a maximal breach path.

Breach in GV D. We mentioned above that the algorithms in [1] and [8] use the graph
GVD for computing maximal breach. In GVD, an edge e � EVD is assigned a weight
w(e) proportional to the distance of E from its nearest sensor, where E is the VD(S )
counterpart of e. Let the nodes s, t � VVD correspond to the points i, f � VV(S ). In
GVD, the set �(s� t) of all paths connecting s and t, is finite. For GVD, the problem of
computing the maximal breach path between s, t can be expressed succinctly as per the
following equation.
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breachmax(s� t�GVD) � max
P��(s�t)

min
e�P

w(e)� (3)

There is a special edge, the critical edge eb
cr, in GVD (and correspondingly, in VD(S )),

which defines the value of maximal breach.

Definition 3 [Critical Edge]. A critical edge eb
cr is characterized by the following prop-

erties: (i) breachmax(i� f � S ) � w(eb
cr); (ii) eb

cr corresponds to the lightest edge in
Pb(i� f � S ); (iii) take an arbitrary path P(i� f ) connecting i, f along a sequence of
voronoi edges. Let e � GVD be the counterpart of the lightest edge in P. Then w(e) �
w(eb

cr).

In short, the maximal breach in �A� S � is the weight of the critical edge. See [1] and [8]
for details.

3.3 Optimizing Maximal Breach

The coverage optimization problem is, in general terms: Given a number of sensors,
how to deploy them so as to achieve the maximum coverage at every point on the field.
For maximal breach, the optimization problem is a minimization problem. The defender
would try to secure the weakest segments of the field by reducing the minimum distance
from a sensor that the intruder must encounter along any path. We look at two flavors
of optimization, and accordingly, frame two optimization problems.

Problem 1. [P1] (Optimal Coverage) Given A, two points i and f in A, and a set of
N sensors, find an arrangement of the sensors such that breachmax(i� f � S ) is mini-
mized. Here, the defender optimizes the breach (coverage) value with a fixed number of
sensors.

Problem 2. [P2] (Optimal Number of Sensors) Given A, two points i and f in A, and a
positive real number T , find the smallest set of sensors S such that breachmax(i� f � S ) �
T . Here, the defender tries to meet a breach threshold with a minimum number of
sensors.

We give a constructive proof of [P1], [P2] having trivial solutions. For this, we need four
lemmas describing the behavior of maximal breach under insertion/deletion of sensors
into/from S . Their proofs, omitted here for space considerations, can be found in [14].

3.4 Maximal Breach Under Insertion and Deletion of Sensors

The first two lemmas describe the monotonicity of maximal breach, and the latter two
describe certain “critical” regions such that addition/removal of sensors to/from those
regions affect the maximal breach path.

Lemma 1. Let S � be an arrangement of sensors over A formed by adding one or more
sensors to the configuration S . Then, for any two points i� f � A, breachmax(i� f � S �) �
breachmax(i� f � S ).
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Lemma 2. Let S � be an arrangement of sensors over A formed by deleting one or more
sensors from the configuration S . Then, for any two voronoi vertices i and f common
to both VD(S ) and VD(S �), breachmax(i� f � S �) � breachmax(i� f � S ).1

Let C(p� q� r) denote the circle through the points p, q and r.

Lemma 3. 2 Let a and b be the endpoints of the critical edge ecr of PS
b (i� f ), the maximal

breach path in VD(S ), and let s0 and s1 be the corresponding sites. Then Ains(i� f � S ) �
C(s0� a� s1) 	 C(s0� b� s1) is a region such that insertion of any point s within it will
guarantee that bS �

� breachmax(i� f � S �) � breachmax(i� f � S ) � bS , where S �
� S 	�s�.

Lemma 4. Let s0 and s1 be the sites across the critical edge ecr of PS
b (i� f ), the maximal

breach path in VD(S ), and let Adel(i� f � S ) � �s0� s1�. Then the deletion of a point s � S
will guarantee bS �

� breachmax(i� f � S �) � breachmax(i� f � S ) � bS if and only if s �

Adel(i� f � S ), where S �
� S 
 �s�.

3.5 Non-existence of a Lower Bound on Single-Pair Maximal Breach

We now establish that optimizing the single-pair maximal breach is a trivial problem.

Theorem 1. Given a unit-square-field A, two points i and f in A and any positive num-
ber B, there exists a set of sensors S min, �S min� � 8, such that B � breachmax(i� f � S min).

Proof. We prove the theorem by constructing the set S min. We start with a set of sensors
S � �s1� s2� � � � � sN � chosen as follows. Pick any positive number Æ and draw circles,
CÆ(i) and CÆ( f ), of radius Æ centred on i and f respectively (Æ should be small enough
so that CÆ(i) and CÆ( j) do not overlap). Place three sensors at random on the circumfer-
ences of each of CÆ(i) and CÆ( f ). Call the subset of S made up solely of these 6 dummy
sensors S d. Place the remaining N � 6 sensors at random within A 
 [CÆ(i) 	 CÆ( f )].
Note that i are f are forced to be vertices in VD(S ).

Now compute bS (i� f ). If bS (i� f ) � B, well and good. Else, repeatedly augment S ,
one sensor at a time, in the critical region Ains(i� f � S ) until bS (i� f ) � B. Note that, by
virtue of Lemma 3, we are bound to end up with such a set.

Finally, let ecr(i� f � S ) be the critical edge of Pb(i� f � S ) and sp, sq the corresponding
sites. Set S min � �sp� sq� 	 S d. Delete all sensors in S 
 S min. Clearly, by Lemma 4,
this does not increase maximal breach. Thus breachmax(i� f � S min) � B and S min is our
required set.3 �

Figure 1 provides an intuitive view of the foregoing theorem - maximal breach between
the points i, f in the figure can be reduced arbitrarily if we cluster the sensors along the
segment ab and slide ab towards one of the corners. But, in clustering all our sensors on
ab or a�b�, we leave a considerably large region a�b� f a� unattended. This is the primary
motivation behind the all-pairs average maximal breach measure.

1 If VD(S ) and VD(S �) do not have a common pair of vertices, choose any two corners of A for
i and f .

2 Note that, Lemma 3 expresses a sufficient condition for the alteration of maximal breach path,
but not a necessary one.

3 We could have made breachmax(i� f � S ) � 0 by placing sensors at i and f . However, consider
a situation where it is impossible to place sensors on i or f (e.g., i, f could be located on
water bodies). The geometric significance of the above theorem is in the existence of alternate
locations in A where sensors can be placed to reduce breachmax(i� f ) without bound.
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a
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f

Fig. 1. No lower-bound on breach. The value of breachmax(i� f � S ) can be reduced arbitrarily.

4 All-Pairs Average Maximal Breach

Until this point, the object of study has been single-pair maximal breach. We have
established that it is trivial to optimize single-pair maximal breach between any des-
ignated pair of points i and f . We now propose and study a new measure - all-pairs
average maximal breach - a straight-forward extension of its single-pair counterpart.

4.1 Average Maximal Breach

Instead of confining ourselves to a fixed pair of starting and ending coordinates (of
the intruder), we consider all possible pairs of points (i� f ) within A. We determine the
critical edge of the maximal breach path between each pair of points, and then take the
average. We make our domain finite by restricting the set of feasible starting and ending
positions to the set of vertices of VD(S ). This makes sense, since a voronoi vertex is
the center of a maximum empty circle [9], [10]. It is precisely the point that has the
maximum value of IC(p� S ) (Equation 1) in its immediate vicinity. So, an intruder would
always prefer to land up on a voronoi vertex.

Definition 4 [Average Maximal Breach]. Let Eb(S ) � �e � EVD � �i� j � VVD such
that eb

cr(i� j� S ) � e�. In other words Eb(S ) is the subset of EVD made up of only the
critical edges of maximal breach paths in �A� S �. Then,

avgBreachmax(S ) �

�

e�Eb (S )

w(e)

�Eb(S )�
� (4)

Clearly, �Eb� is O(N). Lemma 5 proves that Eb(S ) is nothing but the Maximum Cost
Spanning Tree [13] of GVD. Thus �Eb� � �VVD� � 1.
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4.2 Significance of the Measure

The average breach measure is designed to meet the following goals:

1. An optimal value of avgBreachmax provides the desired level of coverage uniformly
all over the field because the set of vertices of GVD (the voronoi vertices and the
intersection of the voronoi edges with the boundaries of A), is uniformly dispersed
over A.

2. The measure should be sound - it should conform to the intuitive requirement that
adding sensors to S gives better coverage.

3. The measure should be useful in practical scenarios. This is true for avgBreachmax

because we take into account all reasonable trajectories of the intruder within A.

5 An Optimal Algorithm for Computing Average Maximal Breach

In [8], we have developed a greedy algorithm that computes the single-pair maximal
breach path. In this section, we develop an optimal, greedy algorithm for computing
all-pairs average maximal breach. The algorithm hinges upon the following lemma.

5.1 Maximal Breach Path and Maximum Cost Spanning Tree

The Maximum Cost Spanning Tree (MaxST) of a connected graph can be computed
by an O(�E� log �E�) greedy algorithm that parallels Kruskal’s Minimum Cost Spanning
Tree algorithm [13]. The associated graph GVD is connected, and �EVD� � O(N). Thus,
MaxST(GVD) can be computed in O(N log N) time by first sorting EVD in descending
order of weights and then running Kruskal’s algorithm on GVD. The only difference is
that at each step we pick the heaviest feasible edge, instead of the lightest one.

Lemma 5. Suppose T is a Maximum Cost Spanning Tree of GVD computed by the
greedy algorithm outlined above. Pick any pair of nodes s� t � VVD. Then the path
PT (s� t) in T between s and t is also a maximal breach path between s and t in GVD.

Proof. Call the edges in T the branch edges, denoted by bi, and the edges in GVD 
T the
arc edges, denoted by a j. Let ET � �b1� b2� � � � � b�VVD��1� denote the set of all branches
and PT (s� t) � �bl1 � bl2 � � � � � blk�. Also, let P�(s� t) � �er1 � er2 � � � � � eri � � � � � erp� be another
path, in GVD, between s and t.

Suppose eri � a j � (u� v) is the first arc in the sequence P�(s� t). Then, bls � ers ,
1 � s � i � 1 (because PT (s� t) is a unique path in T ). Now, a j could have been omitted
from T for two reasons:

1. All the branches were considered before a j. Then, w(a j) � min�b � b � ET �. In this
case, the minimum edge in PT (s� t) is heavier than that of P�.

2. The introduction of a j would have created a cycle s� u 
 v� s in the spanning
forest of GVD. This implies, at the point of time a j was considered, there already
existed a path PT (s� v) between s and v, using only branches encountered before a j.
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Since we wish to maximise the minimum edge of P�, we can discard the prefix
�er1 � � � � � a j� in favour of PT (s� v).

In this manner, all arcs a j can be eliminated. They either do not figure as the critical
edge, or can be discarded in favour of alternate paths comprising only branches. �

Lemma 5 leads directly to a simple algorithm for computing all-pairs average breach.
The algorithm follows.

5.2 The Algorithm

Input: GVD � (VVD� EVD), the associated graph of VD(S ).
Output: avgBreachmax(S ).
Method: See Algorithm 1.

Algorithm 1. MaxSTAverageBreach
1: Variables:
2: F: S et of S ets and E: Array of Edges. {F stores the spanning forest of GVD at all times.}
3: e: Edge; u, v: Node.
4: Tu, Tv, T : S et of Edges.
5: Bmax: �VVD�� �VVD� two-dimensional Array of Edges. {Bmax[i� j] stores the critical edge of the

maximal breach path between i and j.}
6: F � ��1�� �2�� � � � � ��VVD���. {The nodes of GVD are numbered 1, 2, � � �}
7: E � EVD .
8: Sort E in descending order of weights.
9: while �F� � 1 do

10: e � E�pop f irst().
11: u � e�source(), v � e�target().
12: Tu � Find(u), Tv � Find(v).
13: if Tu � Tv then
14: F�remove(Tu), F�remove(Tv).
15: �i � Tu, � j � Tv, Bmax[i� j] � e.
16: T � Union(Tu� Tv).
17: F�insert(T ).
18: end if
19: end while
20: avgBreach �

COS T (F)
�VVD ��1 .

5.3 Correctness and Analysis

Algorithm 1 makes just one addition to Kruskal’s algorithm: the assignment in line 15,
where the critical edge between a set of node-pairs (i� j) is actually determined. The
following lemma justifies the assignment.

Lemma 6. Let F � �T1� T2� � � � � Tn� be the Maximum Cost Spanning Forest of GVD

just before an edge e � (u� v) is added to F. Let Tu and Tv be trees in F to which the
endpoints u and v of e belong. Then, �i � Tu, � j � Tv, the critical edge between i and j
is e.
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Proof. Consider nodes i � Tu and j � Tv. See Fig. 2. Adding e � (u� v) to F connects
Tu and Tv and introduces a path PT (i� j) between i and j. Moreover, PT (i� j) is the path
connecting i and j in the Maximum Cost Spanning Tree constructed by the algorithm.
Thus, by Lemma 5, PT (i� j) is a maximal breach path between i and j, and e is one of its
edges. But, since the algorithm picks heavier edges first, w(e) � min�b � b � Tu 	 Tv�.
Thus, e must be the critical edge of PT (i� j). �

u

Tu

v

Tv

i j

ecr

Fig. 2. Computing critical edges bottom-up

Lemma 6 helps us prove the following loop-invariant for Algorithm 1.

Lemma 7. Let F � �T1� T2� � � � � Tn� be the Maximum Cost Spanning Forest of GVD at
the end of the ith iteration (1 � i � �VVD� � 1) of the loop starting at line 9. Then, for
all nodes x and y that are connected in F, the critical edge of the maximal breach path
between x and y is known, and does not change thereafter.

Proof. Let bi denote the branch added to F during the ith iteration, 1 � i � �VVD� � 1.
The proof is by induction on i.

For the base case (i � 1), note that b1 � (u1� v1) is the heaviest edge in GVD. So b1

constitutes the maximal breach path, as well as the critical edge, between u1 and v1.
Also u1 and v1 are the only nodes connected in F at this point. Thus the loop invariant
holds at the end of iteration 1.

Suppose the invariant holds at the end of some iteration i�1. During the ith iteration,
the new branch bi � (ui� vi) joined the trees Tui and Tvi , and connected exactly �Tui ���Tvi �

new node-pairs in F. By Lemma 6, bi is the critical edge for all these pairs. Hence, the
invariant holds after the ith iteration as well. �

Finally, we have the following theorem.

Theorem 2. Algorithm 1 is optimal and computes the the average breach over all pairs
of nodes in GVD in O(N2) time.

Proof. Firstly, the algorithm halts because at each iteration exactly one edge is added
to F, until there is a single connected component in F. This outcome is guaranteed
because GVD, by definition, is connected.

When the algorithm terminates, all nodes in GVD are connected by F. Thus, by
Lemma 7, the critical edges between all pairs of nodes is correctly known.
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For computing the time-complexity, recall that �EVD� � O(N). Lines 6 and 7 take
O(N) time. The sorting in line 8 takes O(N log N). Within the while loop of line 9, the
operations of lines 10 and 11 take constant-time. The Union-Find operations (lines 12
and 16) can be done in O(log� N). And the set operations of lines 14 and 17 can be
done in linear time. Since the while loop runs O(N) times, in the absence of line 15, the
loop-complexity would have been O(N2).

The costliest operation in the loop is done in line 15. By aggregate analysis, we need
to populate O(N2) entries. Thus the entire algorithm runs in O(N2) time.

The algorithm is optimal because it computes O(N2) quantities in O(N2) time. �

5.4 Non-existence of a Lower Bound on Average Maximal Breach

We have, as a counterpart of Theorem 1, a negative result.

Theorem 3. Let F � A be a set of N points in A. The points in F act as feasi-
ble starting and ending points for an intruder dropped inside A. For any choice of
F, and any positive real number B, there exists a set S of O(N2) sensors such that
avgBreachmax(S ) � B.

Proof. Pick any pair of points i and f from F. By Theorem 1, there exists a set of
sensors S i� f , �S i� f � � 8, such that breachmax(i� f � S i� f ) � B. Now, this is true for all
i� f � F. Observe that, as far as satisfying the breach upper-bound B is concerned, each
pair of points i� f can be treated independently. This is because additional sensors can
only decrease the value of breachmax(i� f � S i� f ), by Lemma 1. So, let

S �

�

i� f�F

S i� f �

It follows from the preceding argument that B � breachmax(i� f � S ), �i� f � F. Hence, B
� avgBreachmax(S ). Moreover, since we have O(N2) pairs of points, and 8 sensors for
each pair, �S � � O(N2). �

Like in the case of single-pair maximal breach, the theorem above says that all-pairs
average breach has no lower bound for any given set of points acting as feasible starting
and ending positions of an intruder’s tours through A. However, there is one funda-
mental difference. In case of single-pair breach, any breach threshold can be met with
a constant number of sensors. For all-pairs average breach, however, we could poten-
tially need O(�F �2) sensors. As we shall show below, the problem of minimizing the
number of sensors while meeting a given average breach threshold is a non-trivial (in
all probability, NP-Hard) problem.

5.5 Optimization/Decision Problems in Terms of Average Measures

Theorem 3 states that with at most 8�F �2 sensors (where F is the set of feasible starting
and ending points for the intruder), any average breach threshold is achievable. But
there is no guarantee that this is the optimal number of sensors. Next, we concentrate on
the problem of meeting the threshold with the optimal number of sensors. The average
breach version of problem [P2] can be framed in a manner identical to Section 3.3, with
the measure avgBreachmax substituting for breachmax(i� f ).
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5.5.1 Decision Problem Restricted to Finite Domain
Note that the solution space of the problem is uncountable, and as such, not combinato-
rial in nature. A has uncountably many feasible positions at which sensors from S might
be placed. We shall follow the technique used by [11] to restrict the feasible solution
space to a finite size.

We restrict the field A to a set of N discrete points on the plane. Without loss of
generality as in [11] we can restrict the points in A to ones with integral coordinates
(i� j). The set A represents the feasible positions for placing sensors, as well as feasible
starting and ending positions of tours made by the intruder. In this restricted setup, the
decision problem takes the following form.

Problem 3. [P2-AVG-DEC-FINITE] Given A, a positive real number Tb and a positive
integer n, does there exist a set of points S , �S � � n, such that avgBreachmax(S ) � Tb?
We can encode an instance of this problem by the tuple �A� n� Tb( or Ts)�. Clearly, the
size of the problem is determined by �A� � N.

To the best of our knowledge, the question of hardness of [P2-AVG-DEC-FINITE] is
open. But we have a result about a “relaxed” version of the problem, stated below as
Problem 4.

5.5.2 Maximum-Breach-Finite: An NP-Hard Problem
Problem 4. [Maximum-Breach-Finite] Given A, a positive real number Tb and a pos-
itive integer n, does a set of points S � A exist such that �S � � n and for any i� j � A and
any path P(i� j) between them, breach(P(i� j)) � Tb?

In geometric terms, this problem requires us to find a set of points S such that all points
in any arbitrary path in A are within a distance Tb from at least one point in S .

Theorem 4. Maximum-Breach-Finite is NP-Hard.

Proof. We prove this theorem by reducing Minimum-Geometric-Disc-Cover [12] to
Maximum-Breach-Finite.

An instance Imgdc of Minimum-Geometric-Disc-Cover (MGDC) is given by
�A� Tb� n�, where the goal is to determine whether the points in A can be covered by
at most n discs of radius Tb. The corresponding instance Imb f of Maximum-Breach-
Finite (MBF) is also �A� Tb� n�, where the interpretation is as given in the theorem
statement.

Suppose answer(Imgdc) � yes. Then we have a set � of at most n discs of radius Tb

such that A is covered by �. Then, let S � �si � si is the center of the ith disc in �,
1 � i � ����. By hypothesis, for all points p � A, there is an s � S such that d(s� p) � Tb.
This is sufficient to ensure that breach(P(i� j)) � Tb for any points i� j � A and any path
P(i� f ) connecting them. Thus answer(Imb f ) � yes.

Similarly, it can be proved that if answer(Imb f ) � yes, i.e. there exists a set S , �S � � n
that satisfies the maximum breach criterion, then �S � disks of radius Tb centered on the
points in S will cover A. �
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6 Conclusions and Future Work

Our study of the geometric and combinatorial properties of single-pair and average
maximal breach has led to exact polynomial time algorithms for computing the mea-
sures. We have framed and solved the problem of optimizing single-pair maximal
breach. For average maximal breach, we have proved a “relaxed” problem NP-Hard.
We have also presented important lower-bound results for both the measures. However,
we have not been able to decide the complexity of [P2-AVG-DEC-FINITE]. We need
to address this and solve the problem exactly or approximately, as the case may be.
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Abstract. We consider two problems. First, sorting of n integer keys
from the [0, 2m − 1] range, stored in p stations of a single-hop and single
channel radio network. Second problem is routing of the packets between
the stations of the network. We introduce counting-sort algorithm which
has 3mri + si + di + 3 energetic cost and nm + n + p time cost, where
station ai stores si keys (ri distinct keys) and receives di keys. On the
basis of this sorting, we construct routing protocols with energetic costs
(3�log2 p�+2)ri + si + di +5 and (3�log2 p�+4)ri + si + di +6, and time
costs n�log2 p�+n+3p and r�log2 p�+n+r+3p, respectively, where r is
sum of all ri. Our routing is attractive alternative for previous solutions,
since it is efficient, deterministic and simple.

1 Introduction

Radio network is a distributed system with no central arbiter, consisting of p
radio transceivers called stations. Stations are usually small devices running on
batteries. Therefore, it is of big importance to design protocols for radio networks
with power efficiency in mind, i.e., the station must consume as little power as
possible. We assume that each of p stations belonging to the radio network has
unique ID – an integer in the [0, p − 1] range. We consider only static radio
networks where the number of station is fixed and no members join or leave the
network during the protocol operation. In this paper we focus on single-hop radio
networks where each single station lies within the transmission range of all other
stations. Finally, we only consider model with single channel of communication.
A station uses energy only when its transceiver is active, i.e. while sending or
receiving any information. When transceiver is inactive the energy consumption
is very small and therefore is ignored. We assume that a station uses one unit of
energy for sending or receiving single message.

Let p denote the number of stations. For 0 ≤ i ≤ p − 1, station ai initially
stores si items (with ri distinct values) and is destination of di items from qi

other stations. By n =
∑p−1

i=0 si we denote total number of items. Let r =
∑p−1

i=0 ri

and q =
∑p−1

i=0 qi. We assume that during a single round each station can send

� Partially supported by KBN grant 3 T11C 011 26.

M. Kuty�lowski et al. (Eds.): ALGOSENSORS 2007, LNCS 4837, pp. 138–149, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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or receive no more than single message containing either single key or an integer
between 0 and n.

We consider two problems. First, sorting n integer keys of range [0, 2m − 1]
stored in p stations of a single-hop and single channel radio network. Second,
problem of routing of the packets between the stations of the network.

1.1 Previous Works

Some energy efficient sorting algorithms are described in [7,8,2,3]. Singh and
Prasanna [7,8] proposed sorting algorithm based on quick-sort and balanced
selection with Θ(log n) energy cost and Θ(n

c log n) time cost, where c is the
number of communication channels. Sorting based on merging and an algorithm
for merging with energetic cost O(log∗ n) has been proposed in [2]. In these
algorithms it is assumed that each station stores single key (i.e. p = n). The
algorithm described in [3] extends results from [2] for sorting n keys stored in p
stations (where each station stores n

p keys) with 8n
p log2 p + 2(log2 p + 1) log2 p

energetic cost and (3n + 2p − 2) log2 p time cost.
Some energy efficient permutation routing protocols are described in [5,1]. The

protocol described by Nakano, Olariu and Zomaya routes n packets between p
station (each station stores n

p and is destination for n
p packets) with (4d+7b−1)n

p

energetic cost and (2d+2b+1)n
c +c time cost, where d =

⌈
log n

c

log n
p

⌉
and b =

⌈
log c
log n

p

⌉
.

In such case, if we consider only single channel radio network the cost reaches
(4

⌈
log p
log n

p

⌉
− 1)n

p for energy and (2
⌈

log p
log n

p

⌉
+1)n+1 for time. Datta and Zomaya

in [1] presented algorithm with 6n
p + 2p + 8 energetic cost and 2n + p2 + p + 2

time cost. Both algorithms are effective when p ≈
√

n.
In [6] Nakano, Olariu and Zomaya introduced randomized routing protocol

where for every f ≥ 1 the task of routing n items in p stations can be completed
with probability exceeding 1 − 1/f in time n + O(q + ln f) with energetic cost
below si + di + O(qi + ri log p + log f).

1.2 Our Results

In this paper we present two following results (we use the notation introduced
so far)

Theorem 1. For the single hop and single channel radio network with p stations
there exists sorting algorithm for n integer keys of range [0, 2m − 1] that works
in mn + n + p rounds of time and where each station ai uses no more than
3mri + di + si + 3 energy.

Theorem 2. For the single hop and single channel radio network with p stations
there exist routing algorithms that work

1. in n�log2 p�+n+3p rounds of time with each station ai using no more than
(3�log2 p� + 2)ri + si + di + 5 energy;
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2. in r�log2 p� + n + r + 3p rounds of time with each station ai using no more
than (3�log2 p� + 4)ri + si + di + 6 energy.

The second algorithm is much faster than the first one, if n � r (and r is always
bounded by min{n, p(p − 1)}).

For p nearing n (for example when n ≈ p log2 p) our routing is more effi-
cient than algorithms described in [5,1]. Besides it is more universal (arbitrary
vs. permutation routing). Also comparing with randomized algorithm described
in [6] our protocol is simpler and has comparable energy complexity, without
randomization.

2 Preliminaries

We assume that each key is an integer in the range [0, 2m−1]. Let bi(key) denote
ith bit in the binary representation of key (i.e. key =

∑m−1
i=0 2i · bi(key)). Let

gl(key) =
∑m−1

i=l 2i−l · bi(key). For each (level) l, m ≥ l ≥ 0, we say that key is
in the group G (gl(key), l) (i.e. G(g, l) = {k : 0 ≤ k ≤ 2m − 1 ∧ gl(k) = g}).
There are 2m−l disjoint groups on level l, partitioning the set {0, . . . , 2m − 1}
into blocks of size 2l.

The number of the stations in the network is denoted by p. For 0 ≤ i ≤ p− 1,
ai denotes the ith station of the network. Each station initially stores si keys
in its local (sorted) table key[ai][0 . . . si − 1]. Let n =

∑p−1
i=0 si denote the total

number of keys. Let POS = {(i, j) : 0 ≤ i < p ∧ 0 ≤ j < si} (set of positions
of elements). And let ri denote the number of distinct values of the keys in
key[ai]. Each ai stores these values in key′[ai][0 . . . ri − 1]. For 0 ≤ j ≤ ri − 1,
ci,j denotes the number of copies of key′[ai][j] in key[ai]. Thus si =

∑ri−1
j=0 ci,j .

Let r =
∑p−1

i=0 ri.
Let di be the number of keys for which ai is final destination, and let qi be

the number of stations that initially stored such keys (qi ≤ di).

3 Counting-Rank

We use following additional local variables in station ai:

– lrm[ai] – copy of last received message (if needed),
– rig[ai][j] – rank of key[ai][j] in its “current” group,
– rng[ai][j] – rank of key[ai][j] in its “next” group,
– gs[ai][j] – number of keys in group of key[ai][j],
– bg[ai][j] – number of keys in groups preceding group of key[ai][j].
– rank[ai][j] – “current” rank of key[ai][j].
– first[ai][j], last[ai][j] – additional Boolean variables used in routing

procedures

We say that “(i, j) is in G(g, l)” if and only if key[ai][j] ∈ G(g, l).
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In the procedure Init, each station ai learns the total number of keys n and
the initial ranks of its keys in the (single) group on level m. Note that this initial
ranking depends only on the initial positions of the keys and totally ignores
their values: rank[ai][j] < rank[ai′ ][j′] if and only if (i, j) is less than (i′, j′) in
lexicographical ordering.

procedure Init(〈a0, . . . , ap−1〉,m)
begin

Each station ai does, for each j: bg[ai][j] ← 0;
station a0 does: begin

lrm[a0] ← 0;
foreach j ∈ {0, . . . , s0 − 1} do rig[a0][j] ← j;

end
for i ← 0 to p − 2 do

ai sends 〈x〉, where x = lrm[ai] + si;
ai+1 receives 〈x〉 and does: begin

lrm[ai+1] ← x;
foreach j ∈ {0, . . . , si+1 − 1} do rig[ai+1][j] ← j + x;

end

In the last time slot: begin
station ap−1 broadcasts 〈x〉, where x = lrm[ap−1] + sp−1;
each other station receives 〈x〉;
each station ai does, for each j: n[ai] ← gs[ai][j] ← x;

end
each station ai does, for each j: begin

if si > 0 and rig[ai][0] = 0 then rng[ai][0] ← 0;
rank[ai][j] ← bg[ai][j] + rig[ai][j];

end
end

Algorithm 1. Procedure Init

Init is used in the procedure Counting-rank. In the procedure Counting-rank we
compute the final ranks of the keys in the sorted sequence of n keys. For equal
keys their ordering is the same as in the initial sequence. Hence, our procedure
is suitable for stable sorting. For each station as and for 0 ≤ i < n, we define set
of indexes S(as, i) as follows: S(as, t) = {j : bg[as][j] < t < bg[as][j]+gs[as][j]}.
Note that the value S(as, t) depends only on the local variables of as and may be
computed by internal computations of as. Intuitively, it denotes the set positions
(s, j) located in as that are in the same “current” group as the position with
rank t. (We will show in Lemma 2(5), that all positions have consistent view of
their current group.)

For m ≥ l ≥ 0, for (i, j) ∈ POS, we say that (i, j) is classified on level l if
and only if the following conditions are satisfied:

1. gs[ai][j] is the number of positions (i′, j′) in G(gl(key[ai][j]), l), and
2. bg[ai][j] is the total number of positions (i′, j′) in the groups G(g, l) such

that 0 ≤ g < gl(key[ai][j]), and
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procedure Counting-rank(〈a0, . . . , ap−1〉,m)
begin

Init(〈a0, . . . , ap−1〉,m);
(* REGROUPING PHASE *)
for l ← m − 1 downto 0 do

for t ← 0 to n − 1 do
For the (unique) pair (asnd, j′) such that rank[asnd][j′] = t, asnd does:
begin

if rig[asnd][j
′] = 0 then lrm[asnd] ← 0;

Let x = lrm[asnd] + (1 − bl(key[asnd][j
′]));

if |S(asnd, t)| < gs[asnd][j
′] and

( rig[asnd][j
′] = gs[asnd][j

′] − 1 or j′ = ssnd − 1 or
bg[asnd][j

′ + 1] �= bg[asnd][j
′] ) then

asnd sends message 〈x〉
end
For the (at most one) pair (arcv, j) such that rank[arcv][j] = t + 1 and
bg[arcv][j] ≤ t < bg[arcv][j] + gs[arcv][j], arcv listens to 〈x〉 (unless
arcv = asnd) and does:
(* CASE A: key[arcv][j] is successor of key[asnd][j

′] in its group *)
begin

if bl(key[arcv][j]) = 0 then rng[arcv][j] ← x;
else rng[arcv][j] ← rig[arcv][j] − x;
lrm[arcv] ← x;

end
Each arcv such that ∃j bg[arcv][j] ≤ t = bg[arcv][j] + gs[arcv][j] − 1,
listens to 〈x〉 (unless arcv = asnd) and does, for each j ∈ S(arcv, i):
(* CASE B: key[asnd][j

′] is the last one in its group *)
begin

if bl(key[arcv][j]) = 0 then
gs[arcv][j] ← x;

else
bg[arcv][j] ← bg[arcv][j] + x;
gs[arcv][j] ← gs[arcv][j] − x;

rig[arcv][j] ← rng[arcv][j];
rank[arcv][j] ← bg[arcv][j] + rig[arcv][j];

end

each ai, for each j, does: begin
if rig[ai][j] = 0 then first[ai][j] ← true; else first[ai][j] ← false;
if rig[ai][j] = gs[ai][j] − 1 then last[ai][j] ← true;
else last[ai][j] ← false;

end
end

Algorithm 2. Procedure Counting-rank

3. rig[ai][j] is the rank (in the lexicographical ordering by (i, j)) of (i, j) in
G(gl(key[ai][j]), l), and

4. rank[ai][j] = bg[ai][j]+rig[ai][j] (final result, if we ignore the bits l−1, . . . , 0
in the keys).
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For m > l′ ≥ 0 and 0 ≤ t′ < n, let slot(l′, t′) denote the time slot of RE-
GROUPING PHASE in which the variables l and t have values l′ and t′, re-
spectively. Let slot(−1, 0) denote the first time slot after the REGROUPING
PHASE. Let next(t, l) denote the next slot after slot(t, l). For m > l ≥ 0,
next(l, t) = slot(l, t + 1) if 0 ≤ t < n − 1, and next(l, n − 1) = slot(l − 1, 0).

Lemma 1. In Counting-rank:

1. For any (i, j) ∈ POS, if, after some time slot, rig[ai][j] = 0, then in all the
following time slots rng[ai][j] = rig[ai][j] = 0.

2. For any (i, j) ∈ POS, before each slot after Init, we have rank[ai][j] =
bg[ai][j] + rig[ai][j].

Proof. The code ensures that rng[ai][j] becomes zero whenever rig[ai][j] be-
comes zero. If at the beginning of time slot rig[ai][j] = 0 then rank[aj ][j] =
bg[aj]. Thus if rank[ai][j] = t + 1 then t < bg[ai][j] and ai will not execute
code of CASE A of REGROUPING PHASE (the only fragment that could change
rng[ai][aj ]). Consequently rng[ai][j] and rig[ai][j] will remain equal to zero. The
property 2 can be easily seen from the code. ��

Lemma 2. For m − 1 ≥ l ≥ 0 and 0 ≤ t < n or (l, t) = (−1, 0), for each
(i, j) ∈ POS, at the beginning of slot(l, t):

1. either:
– t < bg[ai][j] + gs[i][j] and (i, j) is classified on level l + 1, or
– t ≥ bg[ai][j] + gs[i][j] and (i, j) is classified on level l,

and
2. if t ≥ rank[ai][j] then rng[ai][j] is the rank (in the lexicographical ordering

by (i, j)) of key[ai][j] in the group G(gl(key[ai][j]), l), and
3. if t = rank[ai][j] and rig[ai][j] > 0, then lrm[ai][j] is the number of pairs

(i′, j′) in G(gl+1(key[ai][j], l + 1)) with rig[ai′ ][j′] < rig[ai][j] and
bl(key[ai′ ][j′]) = 0, and

4. {rank[ai][j] : (i, j) ∈ POS} = {0, . . . , n − 1}, and
5. for each two pairs (i, j) and (i′, j′), such that 0 ≤ i, i′ < p, and 0 ≤ j < si,

0 ≤ j′ < si′ , either:
– bg[i][j] = bg[i′][j′] and gs[i][j] = gs[i′][j′], or
– bg[i][j] + gs[i][j] ≤ bg[i′][j′], or
– bg[i′][j′] + gs[i′][j′] ≤ bg[i][j].

Proof. We prove Lemma 2 by induction on time slots of REGROUPING PHASE.
(I.e. we show that the conditions of the lemma hold for slot(m − 1, 0) and that if
they hold for slot(l, t) then they also hold for next(l, t).) For slot(m − 1, 0), the
conditions of Lemma 2 are enforced by the Init procedure. Let us assume that the
conditions hold for slot(l, t), where m − 1 ≥ l ≥ 0 and 0 ≤ t < n. By condition 4,
there is exactly one pair (asnd, j

′) such that rank[asnd] = t. By condition 1, (snd, j)
is classified on level l + 1, since t = rank[asnd][j′] = bg[asnd][j′] + rig[asnd][j′] <
bg[asnd][j′] + gs[asnd][j′]. Let G′ = G(gl+1(key[asnd][j′]), l + 1). By conditions 5
and 1, all the pairs (i, j) in G′ are classified on level l + 1. Let G′

0 = {k ∈ G′ :
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bl(k) = 0} and G′
1 = G′ \ G′

0 (the two groups on level l that are halves of G′).
The value x computed by asnd is the number of pairs (i, j) in G′

0 with rig[ai][j] ≤
rig[asnd][j′], since either rig[asnd][j′] = 0 and asnd executed lrm[asnd] ← 0, or it
follows from condition 3.

We look at variables at the beginning of slot(l, t) and define three sets:

A = {(i, j) : bg[ai][j] ≤ t < bg[ai] + gs[ai] − 1}
B = {(i, j) : t = bg[ai] + gs[ai] − 1}
C = {(i, j) : t < bg[ai] ∨ bg[ai][j] + gs ≤ t}

Note that, by conditions 5 and 1: A, B, C is a partition of POS, and A ∪ B is
the set of pairs that are in G′, and either A = ∅ or B = ∅.

Consider the case A �= ∅ (CASE A). Then there is exactly one pair (rcv, j) in
G′ such that rank[arcv][j] = t + 1. If rcv �= snd, then |S(asnd, t)| < gs[asnd][j′]
and either j′ = ssnd−1 or bg[asnd][j′+1] �= bg[asnd][j′]+1. (Otherwise rcv = snd
since key[asnd] is sorted and the keys in key[asnd] from G′ are blocked together
and have consecutive ranks.) Hence asnd broadcasts 〈x〉, if necessary. (rcv, j) is
preceded by rig[arcv][j] pairs (i′, j′) in G′ and x of them are in G′

0. Thus (rcv, j)
should be ranked in its group on level l on position x, if bl(key[arcv][j]) = 0,
and on position rig[arcv][j]−x, otherwise. It follows that rng[arcv][j] is updated
so that condition 2 is satisfied in next(l, t). The execution of lrm[arcv] ← x
makes the condition 3 satisfied in next(l, t). Condition 1 remains satisfied in
next(l, t), since (in CASE A) next(t, l) = slot(l, t + 1) and, for each pair (i, j)
in G′, t + 1 < bg[ai][j + gs[ai][j] and (i, j) remains classified on level l + 1. For
all pairs in C condition 1 does not change. Conditions 4 and 5 remain satisfied,
since none of the involved variables is changed.

Consider the case B �= ∅ (CASE B). For all pairs (rcv, j) in G′, the station
arcv has the same values bg and gs. Hence, all of them execute code for CASE B.
If there is some pair (rcv, j) in G′, such that rcv �= snd, then |S(asnd, t)| <
gs[asnd][j′]. Since, in CASE B, t = rank[asnd][j′] = bg[asnd][j′] + gs[asnd][j′] − 1,
it follows that rank[asnd][j′] − bg[asnd][j′] = rig[asnd][j′] = gs[asnd][j′] − 1, and
asnd broadcasts 〈x〉, if necessary. Since (snd, j) is the last pair in G′, the value
x is the number of pairs in G′

0. Hence, each pair (rcv, j) ∈ G′
0 properly updates

gs[arcv][j] to x (bg[arcv][j] remains unchanged), and each pair (rcv, j) ∈ G′
1

properly decreases gs[arcv][j] and increases bg[arcv][j] by x, for classification on
level l. Besides (by condition 2) each pair (rcv, j) in G′ properly updates the
values of rig[arcv][j] and rank[arcv][j]. Thus in next(l, t), all the pairs in G′ are
classified on level l and all the pairs in C are classified as before and condition
1 holds in next(t, l). Note that all ranks used by the pairs in G′ in classification
on level l + 1 are “recycled” by them in classification on level l, thus condition
4 holds in next(l, t). Condition 5 holds in next(l, t) since all pairs that are in
the same group on level l are classified on the same level (either l or l + 1). Let
(i, j) be the pair with rank[ai][j] = (t+1) mod n. Condition 3 holds in next(l, t)
since rig[ai][j] = 0. Condition 2 holds in next(l, t) since (by Lemma 1(1)) also
rng[ai][j] = 0, and either (t+1) = 0 or positions with rank < t had proper values
of rng by induction hypothesis and no variable rng is modified in CASE B. ��
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By Lemma 2(1), after the REGROUPING PHASE (i.e. before slot(−1, 0)), all
pairs are classified on level 0, which means the stable ranking of the keys.

4 Sorting

After the ranks of the keys have been computed we may send each key with
rank r to its destination station adest(r). The function dest should be globally
known, however its definition may depend on further applications. For example
we may define dest(r) = �p · r/n�, or dest(r) = r mod p. Procedure Route-by-
ranks performs this task.

procedure Route-by-ranks(〈a0, . . . , ap−1〉)
begin

for i ← 0 to n − 1 do
the (unique) station asnd containing (unique) j such that i = rank[asnd][j]
sends message 〈x〉, where x = key[asnd][j] (if adest(i) �= asnd);
the station adest(i) listens (if adest(i) �= asnd) and stores x;

end

Algorithm 3. Procedure Route-by-ranks

procedure Counting-sort(〈a0, . . . , ap−1〉,m)
begin

Counting-rank(〈a0, . . . , ap−1〉,m)
Route-by-ranks(〈a0, . . . , ap−1〉)

end

Algorithm 4. Procedure Counting-sort

5 Routing

In the case of routing, we assume that each key is a number of the station that
is destination of the packet containing this key in the address field of its header.
Hence we should route the packets by the keys rather than by the ranks of
the keys. However, we use Counting-rank in the preprocessing phase of routing.
Besides the ranks rank[ai][j], we also use the values rig[ai][j], gs[ai][j] and n[ai]
computed by Counting-rank. Thus each key is from the set {0, . . . , p − 1} and
the parameter m (number of bits) is �log2 p�. After computing the ranks of
the keys, the stations perform procedure Compute-intervals. Each station learns
time interval in which it should receive its incoming packets in the procedure
Finish-routing. The interval for ai will be stored in variables i1[ai] and i2[ai]. The
packets are then broadcast in the sequence of their ranks. The whole routing is
performed by the procedure Route-packets. Note that each packet is transmitted
only once (in Finish-routing), while in preprocessing phase the stations transmit
only the integers from the range [0, n], which are usually much shorter than the
whole packets.
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procedure Compute-intervals(〈a0, . . . , ap−1〉)
begin

for i ← 0 to p − 1 do
in time slot 2 · i: begin

the (at most one) station asnd containing (unique) j with
key[asnd][j] = i and first[asnd][j] = true sends 〈x〉, where
x = rank[asnd][j];
ai listens and does: if there was a message then i1[ai] ← x;
else i1[ai] ← i2[ai] ← (−1);

end
in time slot 2 · i + 1: begin

the (at most one) station asnd containing (unique) j with
key[asnd][j] = i and last[asnd][j] = true sends 〈x〉, where
x = rank[asnd][j];
if i1[ai] �= (−1) then ai listens and does: i2[ai] ← x;

end

end

Algorithm 5. Procedure Compute-intervals

procedure Finish-routing(〈a0, . . . , ap−1〉)
begin

for i ← 0 to n do
in time slot i: begin

the (unique) station asnd containing (unique) j with rank[asnd][j] = i
sends packet addressed by key[asnd][j];
the (unique) arcv with i1[arcv] ≤ i ≤ i2[arcv] receives this packet;
(* should be: rcv = key[asnd][j] *)

end

end

Algorithm 6. Procedure Finish-routing

procedure Route-packets(〈a0, . . . , ap−1〉)
begin

(* In each station ai there are si outgoing packets sorted by their destination
addresses, which are stored in the table key[ai] *)
Counting-rank(〈a0, . . . , ap−1〉,�log2 p�);
Compute-intervals(〈a0, . . . , ap−1〉);
Finish-routing(〈a0, . . . , ap−1〉);

end

Algorithm 7. Procedure Route-packets

6 Complexities of the Procedures

Recall, that for each station ai, si denotes the number of keys initially stored
by ai, ri is the number of distinct values of these keys, di is the number of keys
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procedure Expand-ranks(〈a0, . . . , ap−1〉)
begin

Each ai, for each 0 ≤ j < si, does: first[ai][j] ← last[ai][j] ← false;
Each ai, for each 0 ≤ j′ < ri, does: begin

first[ai][min P (ai, key′[ai][j
′])] ← first′[ai][j

′];
last[ai][max P (ai, key′[ai][j

′])] ← last′[ai][j
′];

end
Each ai does: lrm[ai] ← 0;
for t ← 0 to r − 2 do

the (unique) asnd with table rank′[asnd] containing t, does: begin
Let j be such that rank′[asnd][j] = t;
asnd assigns sequential ranks lrm[asnd], . . . , lrm[asnd] + csnd,j − 1 to
the positions P (asnd, key′[asnd][j]) of the table rank[asnd], where
csnd,j = |P (asnd, key′[asnd][j])|;
asnd sends message 〈x〉, where x = lrm[asnd] + csnd,j ;

end
the (unique) arcv with table rank′[arcv] containing t + 1, receives 〈x〉 and
does: lrm[arcv] ← x;

the (unique) asnd with table rank′[asnd] containing r − 1, does: begin
Let j be such that rank′[asnd][j] = r − 1;
asnd assigns sequential ranks lrm[asnd], . . . , lrm[asnd] + csnd,j − 1 to the
positions P (asnd, key′[asnd][j]) of the table rank[asnd], where
csnd,j = |P (asnd, key′[asnd][j])|;
asnd sends message 〈x〉, where x = lrm[asnd] + csnd,j .

end
each ai �= asnd listens to 〈x〉;
each ai does: n[ai] ← x;

end
Algorithm 8. Procedure Expand-ranks

for which ai is destination, and qi is the number of stations that initially stored
such keys. Also p is the number of stations, n =

∑p−1
i=0 si and r =

∑p−1
i=1 ri.

Lemma 3. For Init the energetic cost of listening, for each ai, is at most 2 and
the energetic cost of sending is at most 1. Time of Init is p.

Lemma 4. For Counting-rank, for each ai, the energetic cost of listening is at
most 2m · ri + 2 and the energetic cost of sending is at most m · ri + 1. Time of
Counting-rank is m · n + p.

Proof. Ranks of the keys from the same group g are continuous in a single station
ai, and all keys with the same value v are always in the same group. For each such
group g, ai has to listen only to the predecessor of its key with the lowest rank
in g and to the last element in g, if it is in another station. Similar arguments
can be used to estimate the cost of sending. Time complexity is easily seen from
the code of the procedure. ��

Lemma 5. For Route-by-ranks, for each ai, the energetic cost of listening is at
most di and the cost of sending is si. The time of Route-by-ranks is n.
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Lemma 6. For Counting-sort, for each ai, the energetic cost of listening is 2m ·
ri + di + 2 and the cost of sending is m · ri + si + 1. (The total energetic cost is:
3m · ri + di + si + 3.) The time is m · n + n + p.

Lemma 7. For Compute-intervals, for each ai, the energetic cost of listening is
2 and energetic cost of sending is at most 2ri. The time is 2p.

Lemma 8. For Finish-routing, for each ai, the energetic cost of listening is di,
and the energetic cost of sending is si. The time is n.

Lemma 9. For Route-packets, for each ai, the energetic cost of listening is 2m ·
ri + di + 4, and the cost of sending is m · ri + si + 2ri + 1, where m = �log2 p�
and ri ≤ p − 1 (no station sends packets to itself). (Total energetic cost is:
3m · ri + si + di + 2ri + 5). The time is m · n + n + 3p.

7 Accelerating Counting-Rank

Time complexity of Counting-rank contains component m · n. Note that, in the
case of routing, r ≤ p(p − 1) (each station sends packets to at most p − 1
other stations) and m = �log2 p�. We may expect that n is much larger than r.
In this section we show how to replace this component with (m + 1) · r while
the energetic cost for each ai is increased by at most 2ri + 1. By Compressed-
counting-rank we denote the procedure Counting-rank with the code modified as
follows: Each station ai pretends that it contains only one key of given value
(i.e. it uses key′, rank′, last′, first′, ri and r instead of key, rank, last, first,
si and n, respectively.) The code of the sub-procedure Init is modified the same
way. The computed results are stored in rank′, first′ and last′. At the end of
Compressed-counting-rank we add procedure Expand-ranks (Algorithm 8) which
computes ranks and proper values first and last, for all keys, and proper value
of n in each station. Let P (ai, k) = {j | key[ai][j] = k}. The time of Expand-ranks
is r and its energetic cost for each ai is 2ri + 1. (Each ai may need to listen and
send at most once for each its key value and listen to the last message.) Let us
call the resulting algorithm Accelerated-Routing.

Lemma 10. For Accelerated-Routing, for each ai, the energetic cost of listening
and sending is 3�log2 p� · ri + si + di + 4ri + 6, where ri ≤ p − 1. The time is
�log2 p� · r + n + r + 3p.
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Abstract. In this paper, we present an Intrusion Detection System de-
signed for wireless sensor networks and show how it can be configured
to detect Sinkhole attacks. A Sinkhole attack forms a serious threat to
sensor networks. We study in depth this attack by presenting how it can
be launched in realistic networks that use the MintRoute protocol of
TinyOS. MintRoute is the most widely used routing protocol in sensor
network deployments, using the link quality metric to build the corre-
sponding routing tree. Having implemented this attack in TinyOS, we
embed the appropriate rules in our IDS system that will enable it to
detect successfully the intruder node. We demonstrate this in our own
sensor network deployment and we also present simulation results to con-
firm the effectiveness and accuracy of the algorithm in the general case
of random topologies.

1 Introduction

Most of the applications in wireless sensor networks (WSN) require the unat-
tended operation of a large number of sensors. This fact along with the limited
computational and communication resources of their nodes make them suscep-
tible to attacks. Sensor networks cannot rely on human intervention to face an
adversary’s attempt to compromise the network or hinder its proper operation.
Instead, an autonomic response of the network that relies on the embedded
pre-programmed policies and a coordinated, cooperative behavior is the most
effective way to gain maximum advantage against adversaries.

So far, research in sensor networks security has made certain progress in pro-
viding specialized security mechanisms, like key establishment [1], secure local-
ization [2], or secure aggregation [3]. Also, security protocols have been designed
with the goal of protecting a sensor network against particular attacks, like se-
lective forwarding [4], sinkhole [5] or wormhole [6] attacks. However, all these
protocols fall prey to insider attacks, in which the attacker has compromised
and retrieved the cryptographic material of a number of nodes. Because of their
resource constraints, sensor nodes usually cannot deal with such strong adver-
saries. So what is needed is a second line of defense: An Intrusion Detection
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System (IDS) that can detect a third party’s attempts of exploiting protocol
weaknesses and warn of malicious behavior. Using an IDS, the network will be
able to respond and isolate the intruder in order to protect and guarantee its
normal operation.

In [7], we proposed an IDS for sensor networks which is designed to work with
only partial and localized information available in each node. In particular, we
concentrated on how such an IDS could detect blackhole and selective forwarding
attacks. The nodes simply monitor their neighborhood and collaborate with
each other sharing valuable information that eventually leads to the successful
detection of the attack.

In this paper we extend this IDS system so that it can detect sinkhole at-
tacks, a particularly severe attack that prevents the base station from obtaining
complete and correct sensing data, thus forming a serious threat to higher-layer
applications. By showing how the detection of such attacks can be integrated in
the IDS, we move a step further towards a complete intrusion detection solution
for sensor networks.

Current routing protocols in sensor networks are susceptible to sinkhole at-
tacks [8]. This is because these protocols were not designed having security
threats in mind. In this paper, we concentrate on MintRoute, which is among
the most widely used routing protocols in TinyOS. MintRoute is used in most
real sensor networks deployments today, as for example in [9,10,11], therefore it
is important to guarantee protection of such networks from sinkhole attacks. To
emphasize this further, we also demonstrate how easily it is for an intruder to
launch a sinkhole attack against a network having MintRoute as its underlying
routing protocol. We implemented both the attack and the IDS in TinyOS to
demonstrate the effectiveness and accuracy of the intrusion detection process.

The remainder of this paper is organized as follows. Section 2 references re-
lated work. In Section 3, we review MintRoute emphasizing on its basic charac-
teristics that an attacker could exploit to launch a sinkhole attack. In Section 4,
we present in detail how this attack can be realized by an intruder node, and in
Section 5, we present the architecture of our IDS system. Finally, in Section 6, we
present simulation results that show the behavior of the IDS in several random
topologies and our demonstration on a realistic sensor network deployment.

2 Related Work

There are currently only a few studies in the area of intrusion detection in
wireless sensor networks. Da Silva et al. [12] and Onat and Miri [13] propose
two similar IDS systems, where certain monitoring nodes in the network are
functioning as watchdogs for their neighbors, looking for intruders. They listen
to messages in their radio range and store in a buffer specific message fields that
might be useful to an IDS system running within a sensor node, but no details
are given how this system works. In these architectures, there is no collaboration
among the monitor nodes. It is concluded from both papers that the buffer size
is an important factor that greatly affects the rate of false alarms.
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A first approach on the intrusion detection of sinkhole attacks has been pre-
sented in [5]. However this approach involves the base station in the detection
process, resulting in a high communication cost for the protocol. Furthermore, it
cannot be generalized to an IDS that could detect more types of attacks, as it is
designed just for that particular attack. We believe that having a more general
IDS architecture first can be enriched later with the support for more attacks
leading to a complete solution.

3 Mintroute

MintRoute is one of the most commonly used routing protocol in TinyOS. It
uses link quality estimates as the routing cost metric to build the routing tree
towards the base station. For the calculation of these link estimates, each node
periodically transmits a packet, called “route update”.

Each node estimates the link quality of its neighbors based on the packet loss
of the route update packets received from each corresponding neighbor. The list
of these estimates for each neighbor is broadcasted by the node periodically in
its own route update packets.

Every node maintains a Neighbor Table and updates it when it receives a
route update packet. This table stores a list with the IDs of all neighboring
nodes and their corresponding link costs. The node chooses its “parent node” to
be the one with the best link quality in the Neighbor Table. Note that the hop
distance of each neighbor to the base station is not taken under consideration in
choosing the parent.

The parent changing mechanism is triggered each time the link quality of one
or more nodes becomes 75% better than the link quality of the current parent,
or the link quality of the current parent drops below 25 (in absolute value). In
such case, the node with the highest quality becomes the new parent. However,
if two of such candidate nodes happens to have the same link quality, the new
parent will be the first one found in the Neighbor Table.

4 Sinkhole Attack

In a Sinkhole attack [8] a compromised node tries to draw all or as much as
possible traffic from a particular area, by making itself look attractive to the
surrounding nodes with respect to the routing metric. As a result, the adversary
manages to attract all traffic that is destined to the base station. By taking part
in the routing process, she can then launch more severe attacks, like selectively
forwarding, modifying or even dropping the packets coming through.

A compromised node does not necessarily have to target other nodes from
areas outside its neighborhood in order to control traffic. The adversary needs
only to launch the sinkhole attack from a node as close as possible to the base
station. In this case, by having the neighboring nodes choose the intruder as
their parent, all the traffic coming from their descendants will also end up in the
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sinkhole. So the attack can be very effective even if it is launched locally, with
small effort from the side of the attacker.

In the case of a routing protocol, like MintRoute, that uses link estimates
as the routing metric, the compromised node launching the sinkhole attack will
try to persuade its neighbors to change their current parents and choose the
sinkhole node as their new one, by trying to make these parents look like they
have much worse link quality than itself. Note that in this case of MintRoute,
the attacker cannot launch a sinkhole attack by advertising that is has a lower
hop count to the base station, as this metric is not used in the routing protocol.
So the attacker needs to come up with more sophisticated ways.

Moreover, by just advertising a high link quality to the other nodes may
not be enough to make them change their parents, since most of these routing
protocols try to be robust, meaning that they don’t allow the nodes change
parents frequently and for no good reason. For example, when a node changes
its parent, that could create a routing cycle in the network, which is followed by
an extra cost to resolve it. Therefore, aside from advertising a high link quality
for itself, the attacking node needs to make the current parents look like they
have a very poor link quality, which will trigger the parent changing mechanism
in their children. Then the new parent to be chosen will be the sinkhole node.

One sinkhole attack using the MintRoute as the underlying routing protocol
is presented in [14]. The method of this attack is to change the link quality
estimates sent by the nodes, within the route update packets. To do that, the
attacker listens to the route update messages from its neighbors, alters them and
replays them impersonating the original sender. Even if there is an underlying
key mechanism which nodes can use to communicate securely with each other,
most probably the attacker will be using a broadcast key shared with the nodes
to be able to overhear change and send these packets.

Let’s take for example the case shown in Figure 1, where node C is the attacker
and node B is the current parent of node A. Node C has sent its own route
update packets advertising a fake link quality (at the maximum value of 255),
but this is not enough to make node A change its parent. Therefore, when it
receives the route update packet of node A, it changes the link quality of node

A

C

B

NeighborTable
B 170
C 255

A

C

B

NeighborTable
B 20
C 255

Fig. 1. The two phases of sinkhole attack. In the first phase node C (attacker) receives
the route update packet of node A and in the second phase it sends the forged packet
to A impersonating B.
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B to a low value and sends it back to A as a unicast packet, impersonating B.
Upon receiving this packet, node A thinks it is a route update packet from B
and updates the corresponding entry in the Neighbor Table. This will trigger
the parent changing mechanism and since the link quality of node B is below
25, that node will be ignored and node C will be chosen.

After performing the above attack for all of its neighbors, eventually the
Sinkhole node will attract most (if not all) of the networks traffic.

5 Intrusion Detection

In this section we propose an IDS for sensor networks that is able to detect
an ongoing sinkhole attack. For the design of our solution we have assumed a
routing layer that is based on link quality metrics to form a routing tree towards
the base station.

The intrusion detection system follows a distributed architecture. It is com-
posed of identical IDS clients running in each node in the network. Then the
IDS clients communicate with each other in order to reach a conclusion on
an intrusion event. The functionality of each IDS client can be summarized as
following:

– Network Monitoring: Each IDS client listens on the network and captures
and examines individual packets passing from its immediate neighborhood
in real time. Since all communication in a WSN is conducted over the air,
and each node can overhear the traffic in its neighborhood, this is a natural
audit source for the IDS client.

– Intrusion Detection: Each IDS client follows a specification-based approach
in order to detect attacks, i.e., it detects deviations from normal behavior
based on user defined rules. The network administrator have to define and
embed in the motes the corresponding rules for each attack that the IDS
should detect. In this paper we define the rules for the sinkhole attack,
which we will present shortly.

– Decision Making: Due to its myopic vision around its neighborhood, a node
may not be able to make a final decision whether a node is indeed an intruder.
But even if it is, it cannot be trusted by the network, as it can be malicious
itself. Therefore, if an anomaly is detected by an IDS client then a cooperative
mechanism is initiated with the neighboring nodes so that all of them come
to a mutual conclusion.

– Action: Every node has a response mechanism that allow it to respond to
an intrusion situation.

Based on these functions we build the architecture of the IDS client around
five conceptual modules, as shown in Figure 2. Each module is responsible for a
specific function, which we describe in the sections below. The IDS clients are
identical in each node and they can exchange messages with clients in neighbor-
ing nodes.
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Fig. 2. The building blocks of the IDS client existing in each sensor node

5.1 Local Packet Monitoring

This module gathers audit data to be provided to the local detection module.
Audit data in a sensor network IDS system can be the communication activities
within its radio range. This data can be collected by listening promiscuously to
neighboring nodes’ transmissions. As sensor nodes have this capability, this can
be very useful for intrusion detection.

In particular, in our IDS design we require that for each node in the network,
any of its neighbors listening to the packets that this node is sending or receiving
will participate in the intrusion detection procedure. Therefore, the neighbors
of a node function as watchdogs for that node. As we will see in Section 5.3,
one watchdog is not enough to detect a sinkhole attack, but if all neighbors
contribute their point of view to the rest of them, then the picture becomes
complete, and the attacker is revealed.

More importantly, there is no need for the watchdogs to store the overheard
packets or any other information in their memory. It is just enough to temporarily
buffer each packet in order to apply the rules defined by the local detection engine
and see if any of these rules are satisfied. Then the packet can be discarded. No
historical or statistical data need to be kept in the node’s memory.

5.2 Local Detection Engine

The local detection engine stores and applies all the specifications that describe
what is a correct operation and monitors audit data with respect to these con-
straints, in order to identify any deviations from normal behavior. These specifi-
cations are defined in the form of rules, specified by the developer, since we want
to avoid the overhead of training the network to what is a normal behavior.

In order to detect the sinkhole attack we add two rules that will trigger an
alert whenever the malicious node tries to impersonate another node, according
to the attack we described in Section 4. The intuition is that route update packets
should originate only from their legitimate sender and the nodes should defend
against impersonation attacks.
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Rule 1: “For each overhead route update packet check the sender field, which
must be different than your node ID. If this is not the case, produce an alert and
broadcast it to your neighbors.”

Rule 2: “For each overhead route update packet check the sender field, which
must be the node ID of one of your neighbors. If this is not the case, produce an
alert and broadcast it to your neighbors.”

For a node that detects an anomaly according to the above rules it is only
an indication that a sinkhole attack is in process. However there is no way to
know which node is trying to launch the attack, since the sender field is altered.
The only conclusion that can be drawn so far is that the attacker is one of the
neighboring nodes, since the route update packets are only broadcasted locally.
So, we need to rely on the cooperation of the nodes to reduce the candidates to
one node, i.e. the attacker.

5.3 Cooperative Detection Engine

The problem we need to solve is how the intruder node will be revoked from
the network. Basing this decision on an individual node is not sufficient for two
reasons:

1. The node who makes the final decision can be compromised itself. Then it
could choose not to revoke an attacking node or revoke a legitimate one. So,
the decision should be collaborative, and should come from all the nodes
that are involved, i.e. the watchdogs.

2. In the case of sinkhole attack there is not enough information in only one
node to conclude on the attacker.

Therefore, we need a cooperative detection engine that will guide the nodes
through a safe conclusion on which node is the intruder so that it can be revoked
by the network. In particular, we are going to exploit the fact that when a
malicious node launches a sinkhole attack, one of the two rules in the local
detection engine will be triggered at several of its neighbors. If these neighbors
collaborate, it turns out that they can identify the attacker.

The collaborative approach consists of having each watchdog node broadcast-
ing its neighbors list. As we said, each watchdog that produces a local alert can
conclude nothing more than that the attacker is one of its neighbors. However, if
all the nodes that produce the alert communicate their neighbors to each other,
the attacker has to be one of the nodes in the intersection of these sets.

So, to set it more formally, if there is evidence of intrusion produced at the
local detection engine, the cooperative detection module broadcasts an alert to
the neighboring nodes. The alert is composed by the list of the IDs of the sender’s
neighbors. Upon receiving such an alert, and provided that it is a watchdog itself,
a node excludes from the potential attackers all the node IDs in the alert that
are not part of its own neighbor list. Thus it performs an intersection between
its own neighbor list and the node list found in the alert. The result will be
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Fig. 3. An example topology where node 6 is the attacker. If each node broadcasts an
alert with the list of its neighbors, the intersection of the alerts each node receives is
node 6.

stored and used for the intersection with the next alert that the node is going
to receive. Thus each time a watchdog is receiving an alert, the intersection will
give an even smaller set of nodes. If at the end there is only one node left at the
result, that node is the attacker.

The intuition in this is that each time a node broadcast an alert with its
neighbors, this set is a set that includes the attacker. By exchanging these sets
and performing the intersections, nodes are looking to find which nodes are
common within the sets. If some nodes manage to reduce this set down to one
node, then they can be sure about the intruder’s identity. Let’s see this in an
example.

In Figure 3, the attacker is node 6. Each node broadcasts an alert including
its neighbor list. Then, it intersects the lists from the alerts it receives along with
its own neighbor list. So, we will have the following results:

Node 1: {2, 4, 6} ∩ {1, 3, 5, 6} = {6}
Node 4: {1, 3, 5, 6} ∩ {2, 4, 6} ∩ {4, 6, 7} = {6}.
Node 5: {4, 6, 7} ∩ {1, 3, 5, 6} ∩ {5, 6} = {6}.
Node 7: {5, 6} ∩ {4, 6, 7} = {6}

Each node remains with a set of one node, the attacker. It could be the case
(not demonstrated in the example) that the set had more than one node and then
no conclusion could be drawn. However, we will see in the experimental section
that more than 75% of the attacker’s watchdogs will manage to successfully
detect it, meaning that they will end up with only one node ID as the result of
the cooperative detection process.
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5.4 Local Response

Once the watchdogs are aware that an intrusion has taken place and have de-
tected the compromised node, appropriate actions are taken by the local response
module. The first action is to cut off the intruder as much as possible and isolate
the compromised node. After that, proper operation of the network must be
restored. This may include changes in the routing paths, updates of the cryp-
tographic material (keys, etc.) or restoring part of the system using redundant
information distributed in other parts of the network. Autonomic behavior of
sensor networks means that these functions must be performed without human
intervention and within finite time.

Depending on the confidence and the type of the attack, we categorize the
response to two types:

– Direct response: Excluding the suspect node from any paths and forcing
regeneration of new cryptographic keys with the rest of the neighbors.

– Indirect response: Notifying the base station about the intruder or reducing
the quality estimation for the link to that node, so that it will gradually
loose its path reliability.

We will not go in more depth regarding the local response process, since for
this paper we are more concentrated on the former steps of the intrusion detec-
tion. However, let us note that in any case, the local response cannot be based
on the claims of one of a few nodes, since the attacker may have compromised
and use more than one node during the attack. Therefore, we require that the
majority of the attacker’s neighbors have successfully detect the sinkhole node.
Otherwise we count the case as a false negative, i.e. the network could not reach
a safe conclusion. We measure the false negative rate in the experimental section
that follows.

6 Experimental Evaluation

We have simulated a sensor network of 100 nodes placed uniformly at random
in order to test our proposed intrusion detection system. For each run of the
simulation, we chose at random one node to launch a sinkhole attack. This way
we could have the watchdogs of that node apply the intrusion detection and
monitor its behavior.

To measure the success of the IDS system on identifying the intruder, we
first run the simulation 1000 times and produced the average number of the
watchdogs that ended up with only one ID (the intruder ID) as the result of the
alerts intersection. As we see in Figure 4(a), the majority of the watchdogs were
able to detect the malicious node. Let’s also note that as the network density
increases, the results improve, meaning that bigger portion of the watchdogs
manage to identify the attacker. This is due to the fact that more watchdogs
are within the range of each other, so the intersection of the alerts is more likely
that it will produce a unique node ID. For example, for a network density of
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Fig. 4. (a) The percentage of watchdogs that successfully detect the attacker for dif-
ferent network densities. (b) False-negative rate for different network densities.

6 neighbors on average, 75% of them will identify the attacker, while for 12
neighbors, the percentage goes up to 88.3%.

Next we measured the false negative rate of our IDS system. We define a
false negative as the case where the majority of the watchdogs were not able
to conclude to one node ID and therefore identify the attacker. This is possible
if the topology is such that the intersection of the alerts that each watchdog
receives produces a set of more than one node. However, as we see in Figure
4(b), the probability that less than half of the watchdogs remain inconclusive is
very low and becomes even lower as the network density increases. For example,
for a network density of 6 neighbors on average, the false negative rate is 11%,
while for 10 neighbors it is 5.3%.

Next we implemented our IDS system in TinyOS in order to evaluate it in a
realistic deployment of sensor nodes (Mica2) and analyze its memory require-
ments per node. In particular, it required 1.5 KB in RAM (out of 4 KB available)
and 3.9 KB in ROM (out of 128 KB available), which are realistic memory over-
heads for an intrusion detection system. However we are not aware of any other
IDS implementation in TinyOS to use as a comparative measure.

We programmed a node (node 5) to launch the sinkhole attack as described
in Section 4. Then we programmed the rest of the nodes with MintRoute so that
they could form a routing tree as shown in Figure 5. We also wired our IDS
client in each of these nodes to see if they could detect the attack and identify
the intruder node.

Indeed, nodes 1, 4, 6 and 8 produced intrusion alerts and successfully identified
node 5 as the attacker. Let’s consider node 8 for example. Its neighbors are nodes
{1, 4, 5, 6}. The attacker tried to impersonate it, sending routing update packets
to its children, node 4, so an alert was produced due to rule 1, as we described
in Section 5.2. Moreover, it received the alerts from nodes 4, 8 and 1, which
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Fig. 5. The routing tree formed by the sensor nodes using MintRoute. Node 5 is the
attacker launching a sinkhole attack.

also produced alerts when the attacker tried to attract the rest of the nodes.
The intersection of these alerts with its own neighbors resulted in just node 5:
{1, 4, 5, 6} ∩ {4, 8, 5} ∩ {8, 6, 5} ∩ {0, 2, 3, 5, 8} = {5}.

Similarly, for the rest of the nodes we had

Node 1: {0, 2, 3, 5, 8} ∩ {4, 1, 0, 5, 6} = {5}
Node 4: {8, 6, 5} ∩ {4, 8, 5} ∩ {4, 1, 0, 5, 6} = {5}
Node 6: {4, 8, 5} ∩ {4, 1, 0, 5, 6} ∩ {8, 6, 5} = {5}

Let us note that the attacker’s neighbors are {1, 2, 4, 6, 8}. Therefore, 4 out of its
5 neighbors successfully detected the attack. No rules were triggered for nodes
2 and 3, so they remained out of the process.

7 Conclusions

In this paper, we described a model for a distributed intrusion detection sys-
tem that uses a large number of autonomous, but localized, cooperating agents
in order to detect a node launching a sinkhole attack. The nodes use coordi-
nated surveillance by incorporating inter-agent communication and distributed
computing in decision making to identify characteristic signs of the attack, and
raise an appropriate alarm. In particular, we concentrated on the sinkhole attack
against routing update protocols based on link quality like MintRoute and we
described the appropriate specifications that need to be implemented by the IDS
system so that it can detect such attacks. We believe this set of principles can be
used as a valuable tool for developing more robust and secure sensor networks
in the future and enable further research in the area.
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