
Discovery of Frequent Distributed Event Patterns in
Sensor Networks�

Kay Römer

Institute for Pervasive Computing, ETH Zurich, Switzerland
roemer@inf.ethz.ch

Abstract. Today it is possible to deploy sensor networks in the real world and
collect large amounts of raw sensory data. However, it remains a major chal-
lenge to make sense of sensor data, i.e., to extract high-level knowledge from the
raw data. In this paper we present a novel in-network knowledge discovery tech-
nique, where high-level information is inferred from raw sensor data directly on
the sensor nodes. In particular, our approach supports the discovery of frequent
distributed event patterns, which characterize the spatial and temporal correla-
tions between events observed by sensor nodes in a confined network neighbor-
hood. One of the key challenges in realizing such a system are the constrained
resources of sensor nodes. To this end, our solution offers a declarative query
language that allows to trade off detail and scope of the sought patterns for re-
source consumption. We implement our proposal on real hardware and evaluate
the trade-off between scope of the query and resource consumption.

1 Introduction

Systems research in sensor networks has reached a point where we can build and deploy
medium-sized sensor networks and collect large amounts of raw or preprocessed sensor
data during months of unattended operation. However, it remains a major challenge to
make sense of the collected data, i.e., to extract the relevant knowledge from the raw
data. Most existing techniques for knowledge discovery from sensor data are centralized
and require the extraction of raw sensor data from the network. However, this can be
very costly due to the large data volume and does not scale to large networks.

In a previous position paper [20] we sketched an in-network knowledge extraction
technique that supports the discovery of frequent distributed event patterns. In this pa-
per, we turn this idea into a complete system, implement it on sensor nodes and study
important performance metrics. The key advantage of our in-network approach is that
the extracted knowledge is directly available to the sensor nodes and can be used to
control the behavior of the sensor nodes (e.g., to prioritize processing of event patterns
that occur infrequently). Also, the extracted knowledge is often much more compact
than raw sensor data and can therefore be more efficiently extracted from the sensor
network than raw sensor data.

Our approach is based on events, that is, each sensor node locally analyzes the out-
put of its sensors to find relevant real world occurrences. In many applications it is

� The work presented in this p aper was partially supported by the Swiss National Science Foun-
dation under grant number 5005-67322 (NCCR-MICS).

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 106–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Discovery of Frequent Distributed Event Patterns in Sensor Networks 107

important to put such events into a spatial and temporal context, i.e., to consider the
correlation of an event observed by a sensor node with events observed by surrounding
sensor nodes in the recent past. In an equipment monitoring application (e.g., [1]), for
example, one is interested in understanding if abnormal vibration signatures are cor-
related with nearby abnormal temperature readings. In a bird monitoring application
(e.g., [21]), one is interested in understanding if certain events in the neighborhood of a
nesting burrow (e.g., noise, motion) are correlated with birds leaving their nests.

Our approach supports this type of application by providing a framework to analyze
the correlation of a certain type of event on a sensor node with context events observed
by nodes in a confined neighborhood of this node in the recent past. For example, we
might find that in 30% of the cases where a bird left its nest, motion has been detected
by at least one sensor located within 10 meters of the nest no more than 3 minutes in
the past. We call such a correlation of events a distributed event pattern. Our technique
discovers such distributed event patterns that occur with a frequency not less than a user-
specified minimum. Besides a minimum frequency, a user has to specify local events of
interest and certain temporal and spatial constraints using a declarative query language.

The discovered set of frequent event patterns can be considered as a compact char-
acterization of the “common behavior” observed by a set of sensor nodes over long
periods of time. Likewise, an event pattern that is not frequent can be considered as
an exceptional occurrence. Frequent event patterns can be used in two primary ways:
Firstly, by a user to learn about the common behavior, or to be notified of exceptional
behavior or of significant changes to the common behavior. Secondly, as the event pat-
terns are computed on the sensor nodes, the latter can use this information to control
or adapt their behavior, for example, to allocate more resources for the processing and
communication of rare event patterns than for more common ones.

In this paper we focus on how frequent event patterns can be efficiently computed
on resource-constrained sensor nodes. Although sensor nodes are becoming more pow-
erful over time, constrained node resources are the primary challenge in designing and
implementing our in-network knowledge extraction technique. Our approach to deal
with this challenge lies in the query language, which allows the user to define the detail
(e.g., granularity of temporal and spatial relationships between local events) and scope
(e.g., minimum pattern frequency, involved local events, maximal temporal or spatial
distance between local events) of sought patterns: the more detailed or the larger the
scope of sought patterns, the more expensive is pattern discovery. Thus, we offer the
user a turning knob to trade off detail and scope for resource consumption.

Note that the above discovery of frequent events patterns is different from detection
of event patterns. For the latter, the user needs to specify in advance and exactly which
event patterns the system should detect. With our approach, the system itself identifies
event patterns that occur frequently given certain constraints on the sought event pat-
terns. As such, our approach can be considered as a relaxation of detection of event
patterns.

We begin with an overview of the system in Sect. 2 and introduce patterns and queries
in Sect. 3, before presenting the core algorithms in Sect. 4. Important implementation
aspects are discussed in Sect. 5. We evaluate our proposal in Sect. 6.

108 K. Römer

2 System Overview

The overall architecture of the proposed system is as follows. A user can pose a query
to the system using a declarative language. Such a query defines the local events of
interest and additional constraints on the sought frequent distributed event patterns, see
Sect. 3 for details. A query is compiled into executable code (containing both the query
parameters and the pattern discovery algorithm) at the gateway of the sensor network
and the resulting executable is distributed to each node in the sensor network using a
code distribution protocol.

Using the query parameters, the pattern discovery algorithm executing at a sensor
node continuously collects event notifications from nodes in a confined network neigh-
borhood and computes the set of frequent distributed events patterns as detailed in
Sect. 4. This set can now be used in a number of different ways as discussed in Sect. 1.

Depending on the application scenario, the pattern discovery algorithm may be exe-
cuting at some sensor nodes (e.g., only on nest nodes in the bird monitoring example in
Sect. 1) or on every node of the sensor network.

3 Patterns and Queries

We will illustrate the notion of distributed event patterns using the bird monitoring
example given in Sect. 1. Here, sensor nodes are deployed in and around the nest and
can detect two types of events: motion (of creatures) and a bird leaving its nest. We
are interested in understanding how leave events are correlated with motion events in
the vicinity of the nest. Here, our system might find a frequent distributed event pattern
such as

(motion, <10m, <3min, >=1) : leave [30%]

This pattern has to be read as follows: In 30% of the cases where a bird left its nest,
motion has been detected by at least 1 sensor located within 10 meters of the nest sensor
no more than 2 minutes in the past.

In general, a pattern consists of a local event (right of the pattern’s column) and a
term that summarizes occurrences of context events (left of the pattern’s column) in
a spatial and temporal neighborhood of the above event. The frequency or support of
a pattern equals the number of occurrences of the local event for which the left-hand
term of the pattern also applies, divided by the number of occurrences of the local event
(regardless if the left-hand side of the pattern applies or not). A frequent pattern is a
pattern whose support is greater than or equal to a given minimum support.

In order to discover such patterns, a user has to specify a query. The query defines
events and context events of interest and a number of constraints on the sought pat-
terns. These constraints are needed to cut down the otherwise huge search space for
possible patterns to allow an implementation of the pattern discovery algorithm on
resource-constrained sensor nodes. Fig. 1 shows a possible query for our bird moni-
toring example.

In our system, time is divided into epochs of fixed length. Nodes are synchronized
such that epochs begin and end at approximately the same real-time instants at all nodes

Discovery of Frequent Distributed Event Patterns in Sensor Networks 109

across the network. Since typical epoch durations are in the order of seconds or tens of
seconds, required synchronization is rather loose and easily achieved with existing syn-
chronization protocols. In our example query, epoch length is 60 seconds as specified
in line 2. Epochs are identified by monotonically increasing integer numbers starting
with zero.

In each epoch, a sensor node
1 // epoch length
2 epoch = 60 // [seconds]
3 // event definitions
4 event motion { max:accel[0] > threshold }
5 event leave { max:pir [0] == 0 &&
6 max:pir [1] == 1}
7 // events and context events
8 levents {leave}
9 cevents {motion}

10 // temporal and spatial scope
11 neighborhood = 1 // [hop]
12 history = 6 // epochs
13 // minimum support and error bound
14 minsupport = 30 // [%]
15 error = 5 // [%]
16 // distance partitions [meters]
17 distance { near =(0,10], far =(10,20] }
18 // time interval partitions [epochs]
19 time { now=0, recent =[1,3], old =[4,6] }
20 // frequency partitions [number]
21 frequency { none=0, some=[1,infty] }

Fig. 1. An example query

can generate at most one in-
stance of each possible event
type. In our sample query,
two event types motion and
leave are defined in lines 4
to 6, respectively. A motion
event (i.e., ground is vibrat-
ing) is generated in an epoch if
the maximum output value of
the accelerometer sensor in that
epoch is greater than a thresh-
old (i.e., max:accel[0] >
threshold is true, where the
“0” in square brackets refers to
the current epoch). A leave
event is generated in the current
epoch if the passive infrared
sensor (PIR) detected presence of a bird in the previous epoch (i.e., max:pir[1]
== 1 is true, where the “1” in square brackets refers to the previous epoch), but not in
the current epoch (i.e., max:pir[0] == 0 is true). We assume that PIR is a binary
sensor that outputs either zero or one. The set of all events given in a query will be
denoted by E.

The builtin event definition language only supports simple predicates over aggre-
gated sensor values in the current and past epochs. In every epoch, sensor values are
aggregated in predefined ways (e.g., minimum, maximum, average). For more complex
and realistic events, the query language supports external events whose detection is im-
plemented outside of our system (e.g., using more elaborate sensor signal processing
techniques).

Lines 8 and 9 in our sample query define leave as a local event and motion as a
context event, respectively. Note that an arbitrary numbers of local events and context
events can be specified and event types may be declared as both local events and context
events. The set of all context and local events defined in a query will be denoted by Ec

and El, respectively.
Lines 11 and 12 define the spatial and temporal scope that should be considered

for the correlation analysis. The spatial scope, denoted by SSCOPE, is given as a
maximum hop count, such that only correlations between events generated by nodes at
most SSCOPE hops apart are considered. The temporal scope, denoted by TSCOPE
is given as a number of epochs, such that only correlations between events that occurred
within a time window of TSCOPE epochs are considered. In the example, if the node

110 K. Römer

in the nest executing the pattern discovery algorithm observes a local event during a
given epoch, only context events generated no more than 6 epochs in the past by nodes
no more than one hop away (including the nest node itself) will be considered for the
correlation analysis.

Recall that our system will only discover patterns that occurred with a given mini-
mum support, which is given in line 14 of the sample query. Further, we allow a certain
error (given in line 15 of the sample query), such that a pattern may be reported as being
frequent by our system if its true support is greater than or equal to minimum support
minus error bound. We will denote minimum support and error bound as MS and MSe,
respectively.

Finally, the query contains a quantization of Euclidean distances between nodes,
time intervals (between event occurrences, where time is measured in epochs), and fre-
quency of event occurrences into a set of discrete partitions. Each partition is an interval
that is either open (parenthesis) or closed (bracket). Note that the set of distance (time,
frequency) partitions does not need to cover the whole domain of distances (time, fre-
quency). By this, a user can constrain the search space for patterns to certain distances
and time intervals between events as well as to certain frequencies of events. We as-
sume the existence of an implicit, possibly non-continuous or empty partition ⊥ that
covers the part of the domain that is not covered by partitions that have been explicitly
defined. The sets of all distance, time, and frequency intervals defined in a query will be
denoted by DP , TP , and FP , respectively. We assume the existence of mapping func-
tions mapd, mapt, and mapf , which map a given distance, time interval, and frequency
to elements of DP ∪ {⊥}, TP ∪ {⊥}, and FP ∪ {⊥}, respectively.

We can now specify the general form of a pattern in terms of the query parameters
as follows: ∧

i=1..N

(ec
i , dpi, tpi, fpi) :

∧

j=1..M

el
j [s] (1)

Here, ec
i ∈ Ec is a context event, dpi ∈ DP is a distance partition, tpi ∈ TP is a

time partition, and fpi ∈ FP is a frequency partition. el
j ∈ El is a local event and s is

the support of the pattern. Note that the above pattern is equivalent to M patterns with
only one local event and identical terms on the left-hand sides, but with possibly differ-
ent support values. The pattern is frequent if s ≥MS. One example pattern would be:

(motion, near, recent, some) AND
(motion, near, now, some) : leave [30%]

Note that while the above discussion is based on the notion of events (defined as a
state change), patterns can also be used to reason about correlations between different
states as well as between states and events. In our bird monitoring example, we could
define an event present as follows: event present { max:pir[0] == 1 }.
This event would fire in every epoch as long as a bird is in the nest, thus implementing
the state “a bird is in the nest”.

4 Discovery of Frequent Patterns

The pattern discovery algorithm executing at a sensor node consists of several com-
ponents which will be discussed in this section. Firstly, a sensor node collects event

Discovery of Frequent Distributed Event Patterns in Sensor Networks 111

occurrences from a confined network neighborhood and transforms this information
into a pattern for each epoch (Sect. 4.1). These patterns are represented as sets of small
integers, so-called itemsets (Sect. 4.2). From the resulting stream of itemsets, frequent
itemsets are discovered (Sects. 4.3 and 4.4).

4.1 Data Collection and Pattern Generation

The pattern discovery algorithm is executing at one or more sensor nodes (as specified
by the user using mechanisms outside of the scope of this paper) to discover frequent
event patterns. We will denote such sensor nodes as discovery nodes. Sensor nodes that
are within the spatial scope SSCOPE of a discovery node are called client nodes. Note
that a single sensor node may both act as a discovery node and as a client node to one or
more other discovery nodes. Also note that the set of client nodes may change over time
due to fluctuation of wireless links and due to nodes dying or being added. Throughout
this section we consider a single discovery node.

The pattern discovery algorithm executing on the discovery node proceeds as fol-
lows. After each epoch t, the algorithm checks if any local events occurred locally
during t. If so, a pattern is constructed for epoch t. Otherwise, nothing needs to be
done.

To construct the pattern, a request message is sent to all client nodes containing the
identity and location of the discovery node and epoch t. Client nodes reply a message
containing the event occurrences during TSCOPE. Essentially, a reply message from
node i contains values freqi(e, dp, dt) for each context event e, distance partition dp,
and time partition dt that have been defined in the query. This value equals 1 iff event e
occurred on node i in the distance partition dp during time partition dt with respect to
the requesting discovery node and is zero otherwise. The discovery node computes the
sums freq(e, dp, dt) =

∑
i freqi(e, dp, dt) over all client nodes to obtain the follow-

ing pattern for epoch t:
∧

∀e∈Ec,dp∈DP,tp∈TP

(e, dp, tp, mapf(freq(e, dp, tp))) :
∧

El(t) (2)

where El(t) refers to the set of local events that occurred at the discovery node during
epoch t.

If SSCOPE = 1 (i.e., a spatial scope of one hop), then the request is implemented
by a broadcast message from the discovery node to all child nodes and the replies
are implemented by unicast messages from the child nodes to the discovery node. If
SSCOPE > 1, then networking abstractions such as Abstract Regions [23] may be
used which support the above communication pattern also for multi-hop neighborhoods.
Also, in-network aggregation [18] may be used to compute the sums freq(e, dp, tp) in
the network rather than at the discovery node.

4.2 Pattern Representation

Patterns are represented by so-called itemsets, i.e., a set of items. Conversion of pat-
terns to itemsets and vice versa is accomplished as follows. Each term on the left-
hand side of a pattern is mapped to an item by concatenating the event identifier,

112 K. Römer

distance partition identifier, time partition identifier, and frequency partition identi-
fier. Each local event is mapped to an item consisting of the respective event identi-
fier. The reserve mapping is analogous. In the remainder of the paper, we will use the
terms pattern and itemset synonymously. For example, the pattern (motion, near,
recent, some) AND (motion, near, now, some) : leavemaps to the item-
set {motion.near.recent.some, motion.near.now.some, leave}. It is easy to see that the
maximum size of an itemset is

|Ec| × |DP | × |TP | × |FP |+ |El| (3)

Hence, itemsets can be implemented as sets of small integers by mapping each pos-
sible item to an integer between 1 and the above maximum size. In our system, itemsets
are implemented as bitvectors.

4.3 Frequent Patterns

The procedure described in Sect. 4.1 produces a stream of patterns (one for each epoch
where a local event occurs), each of which is represented as an itemset as described in
Sect. 4.2. We now need to find itemsets which are frequent with respect to this stream
S of itemsets.

We will constrain our search to frequent itemsets is which contain only one local
event e ∈ El. The support of such an itemset is defined as the number of itemsets in
S of which is is a subset, divided by the number of itemsets in S which contain e as a
local event. An itemset is frequent if its support is greater than or equal to the minimum
support MS given in the query. Note that frequent itemsets are not necessarily elements
of S, but they are subsets of one or more elements of S. Also note that every subset of
a frequent itemset is also frequent and its support is greater than or equal to the support
of the superset.

Several algorithms have been proposed to discover frequent itemsets from a stream
of itemsets (e.g., [7,10,15]). The difficulty of this problem lies in the fact that only one
pass over S is possible as S grows without bounds over time and hence cannot be stored
completely on resource-constrained devices. Much better algorithms exist if multiple
passes over S are possible. Typical single-pass algorithms therefore use a so-called
synopsis data structure, which is essentially a compressed version of the data stream.
Frequent itemsets can then be computed from the synopsis data structure which can
be randomly accessed. However, synopsis data structures used by the above algorithms
are still too large to fit into the constrained memory of a sensor node. Also, as we are
ultimately interested in frequent itemsets (and not in the synopsis), memory is needed
for both the synopsis data structure and frequent itemsets.

We therefore developed an algorithm that directly generates frequent itemsets with-
out using a separate synopsis data structure. The algorithm basically splits S into small
blocks B of fixed size which fit into main memory. An efficient multi-pass algorithm is
used to discover frequent itemsets FIBi in each block Bi. Each itemset is ∈ FIBi is
associated with a counter is.c that holds the number of itemsets in Bi of which is is a
subset. That is, the support of is in B equals is.c × 100%/|B|. The frequent itemsets
in all blocks are then merged in an incremental fashion to obtain the frequent itemsets

Discovery of Frequent Distributed Event Patterns in Sensor Networks 113

FIS of S. Initially, FIS is empty. To merge FIBi into FIS, we merge each frequent
itemset is ∈ FIBi into FIS by either inserting is into FIS if is �∈ FIS, or by adding
is.c to the counter value of the existing itemset in FIS. The support of an itemset
is ∈ FIS then equals is.c× 100%/|S|.

For the ease of exposition we assume that the query contains only a single local
event, i.e., |El| = 1. If more than one local event has been defined, the data stream will
be split into |El| data streams each of which contains only patterns with a single type
of local event. These streams will then be processed separately as described above, but
the resulting frequent itemsets will all be merged into a single instance of FIS.

Although simple, it is not clear that

0%

MS

100%

N blocks

k bad blocks N - k full blocks

C

Fig. 2. Stream of itemsets that maximizes s − s.
Grey bars indicate the support s in a block on a
scale from 0 to 100%.

the above approach obtains the correct
result, as an itemset that is frequent in
S may not be frequent in some blocks
Bi, such that the support of an itemset
in S is not computed correctly. To fix
this problem, we will use a smaller sup-
port value MS < MS when discover-
ing frequent itemsets in a block. We will
select MS such that we meet the error
bound MSe given in the query. That is,
the support s we compute for an itemset
with respect to S will be not less than
the true support s of that itemset minus
MSe. Due to this, all itemsets in FIS
with s ≥MS−MSe will be considered frequent. This set of itemsets includes all true
frequent itemsets (i.e., for which s ≥ MS) plus additional ones that are actually not
frequent with bounded error s− s ≤MSe.

How do we compute MS given MS and MSe? For this, let us assume we have
chosen some value MS < MS. Let us consider an itemset is which is frequent in the
stream S with support s. Our algorithm will output a value s ≤ s for the frequency
of is. We are interested in computing an upper bound for the error s − s. For this, let
us assume for now that S is split into N equal-sized blocks. We will see later that the
actual length of the stream is irrelevant. Let us further consider a worst-case stream
S that maximizes s − s, i.e., which minimizes s. Note that our algorithm only makes
an error if the support of is in a block is smaller than MS. In this case, is will not
be considered a frequent itemset in this block and its support in this block will not be
considered when computing s. That is, to maximize the error, there should be as many
blocks as possible where the support of is is just below MS. To maximize the number
of such “bad” blocks, is must have a support of 100% in the remaining blocks (“full”
blocks), such that the global support of is for the whole stream is s. It follows that the
(fractional) number k of bad blocks in the worst-case stream must satisfy the constraint
k ×MS + (N − k)× 100% = N × s, which can be solved for k to obtain

k = N
100%− s

100%−MS
(4)

114 K. Römer

It follows that the worst-case configuration includes �k	 bad blocks, N −
k� full
blocks, and optionally one block with support C = (k−�k)×MS+(
k�−k)×100%
with MS < C < 100% unless k is an integer. If k is an integer then that block doesn’t
exist and C = 0. The worst-case configuration of S is illustrated in Fig. 2. Note that the
order of the blocks in the stream is irrelevant.

We can now express the error s− s as follows:

s− s = s− (N −
k�)× 100% + C

N
= s− (N − k)× 100% + (k − �k)×MS

N

≤ s− (N − k)× 100%
N

(5)

The “≤” holds because (k − �k) ×MS ≥ 0. Inserting Eq. 4 into Eq. 5 and rear-
ranging terms we obtain

s− s ≤ s− (s−MS)
100%

100%−MS
(6)

Note that N has been eliminated, that is, the derived error bound is independent
of the actual length of the stream. It can be easily verified that the right-hand side of
Eq. 6 is monotonically decreasing in s for all MS > 0. That is, we obtain the largest
error s− s for the smallest possible value of s, which is MS. s cannot be smaller than
MS, since itemset is would then not be frequent in contradiction to our assumption.
Replacing s by MS and rearranging terms we obtain

s− s ≤MS − MS −MS

100%−MS
100% (7)

To ensure that s − s ≤ MSe, we require that the right hand side of Eq. 7 equals
MSe. Solving for MS we obtain

MS =
MSe × 100%

100% + MSe −MS
(8)

Using Eq. 8, we can compute the minimum support MS to be used for discovering
frequent itemsets in a block, such that the resulting error s−s is never greater than MSe.

4.4 Closed Patterns

Since there may be a large number of frequent itemsets, we will consider so-called
closed itemsets instead [22,24]. A closed itemset is a frequent itemset which has only
proper supersets with smaller support than itself. In can the shown that the set of closed
itemsets of S contains the same information as the set of frequent itemsets of S. In
practice, the number of closed itemsets can be orders of magnitude smaller than the
number of frequent itemsets. In our algorithm, FIB and FIS will be sets of closed
itemsets.

The algorithm for discovering closed itemsets of S proceeds as follows. It collects
itemsets (generated as described in Sect. 4.1) into a block B until a complete block of

Discovery of Frequent Distributed Event Patterns in Sensor Networks 115

size BN has been filled. Then, the block is compressed by removing duplicate itemsets
B[i] = B[j] (equality does not consider the counter values B[].c): we set B[i].c ←
B[i].c + B[j].c and remove B[j].

We can now implement a function isfreq(is) as depicted in Fig. 3 that computes
the support of an itemset is for B and checks whether or not that itemset is frequent in
B by iterating over the compressed block and computing the number of itemsets in B
of which is is a subset (lines 7 and 8). The function terminates early (lines 9 and 10) if
the number of unprocessed itemsets in B is too small to make is frequent.

To find closed itemsets in block B that

1 bool isfreq (itemset &is) {
2 int rest←BN ;
3 int minc←BN ×MS/100%
4 is.c← 0;
5 foreach bis ∈ B {
6 rest← rest− bis.c;
7 if (is ⊂ bis)
8 is.c← is.c + bis.c;
9 else if (is.c + rest < minc)

10 return false ;
11 }
12 return true ;
13 }

Fig. 3. Algorithm to compute the support of
itemset is in the current block

contain local event el, function block() is
used as depicted in Fig. 4 (left). After execu-
tion, FIB will hold all closed itemsets. With
the help of traverse() (also given in Fig.
4), block() basically enumerates all possible
itemsets which contain local event el, com-
putes their support and stores closed item-
sets in FIB. However, two properties of
closed itemsets are exploited to prune the
huge search space significantly. Firstly, if
itemset is is not frequent, no superset of is
is frequent. Secondly, if adding an item i to
itemset is does not change the support of is,
then is cannot be a closed itemset. Exploit-
ing these properties for pruning is a standard
technique [5]. Additional techniques exist, but these require significant amounts of
memory [24] or do not have a large impact on runtime according to our experience.

In more detail, block() creates the itemsets is which contain only local event el in
line 27, computes the support of this itemset in line 28, and invokes traverse(is, tail)
in line 29, which recursively enumerates supersets of is by incrementally moving items
from tail to is. Initially, tail contains all possible items except items that represent local
events (line 25). The first loop in traverse() implements pruning by moving all items
from tail to is that do not change the support of s (lines 5 - 8), exploiting the second
of the properties mentioned above. Also, if adding an item from tail to is makes is
infrequent, then that item is removed from tail (line 10). The second loop (line 12)
implements the recursion step for all items remaining in tail. Finally, is is added to
FIB if the latter doesn’t contain an itemset which is a superset of is and has same
support (lines 19-21). If such a superset exists in FIB, then is cannot be a closed
itemset. Note that traverse() implements a depth-first search of the itemset space, that
is, before is is considered for insertion into FIB, all supersets of is are considered first.

Next, function merge() as depicted in Fig. 4 (right) is used to merge the closed
itemsets in FIB for the current block into FIS. The latter set of itemsets holds closed
itemsets of the stream S seen so far.

Basically, merging is implemented by considering each possible intersection of item-
sets from FIS and FIB (is in line 35). If is �∈ FIS, then the support of is with respect

116 K. Römer

1 void traverse (itemset is, tail) {
2 foreach item i ∈ tail {
3 itemset nis← is ∪ {i};
4 if (isfreq (nis)) {
5 if (nis.c = is.c) {
6 is← nis;
7 tail← tail \ {i};
8 }
9 } else

10 tail← tail \ {i};
11 }
12 foreach item i ∈ tail {
13 itemset nis← is ∪ {i};
14 tail← tail \ {i};
15

16 if (isfreq (nis))
17 traverse (nis, tail);
18 }
19 if (� ∃fib ∈ FIB : is ⊂ fib
20 ∧is.c = fib.c)
21 FIB← FIB ∪ {is};
22 }
23

24 void block (event el) {
25 // � = complete itemset
26 itemset tail← � \ El;
27 FIB←∅;
28 itemset is←{el};
29 isfreq (is);
30 traverse (is, tail);
31 }

32 void merge () {
33 foreach itemset fis ∈ FIS {
34 foreach itemset fib ∈ FIB {
35 itemset is = fis ∩ fib;
36 if (is ∩ El �= ∅) {
37 if (is �∈ FIS) {
38 is.c← fis.c;
39 is.c2← 0;
40 FIS← FIS ∪ {is};
41 }
42 if (FIS[is].c < fis.c)
43 FIS[is].c← fis.c;
44 if (FIS[is].c2 < fib.c)
45 FIS[is].c2← fib.c;
46 } } }
47

48 foreach fib ∈ FIB {
49 if (fib �∈ FIS) {
50 fib.c2← fib.c;
51 fib.c← 0;
52 FIS← FIS ∪ {fib};
53 } else
54 FIS[fib].c2← fib.c;
55 }
56

57 foreach fis ∈ FIS {
58 FIS[fis].c← FIS[fis].c
59 + FIS[fis].c2;
60 FIS[fis].c2← 0;
61 }
62 }

Fig. 4. Algorithm to discover closed itemsets

to FIS equals the support of the superset sis ⊃ is with maximum support among all
supersets sis ∈ FIS. The analog applies for the support of is with respect to FIB. The
support of each intersection is is incrementally computed in lines 37-45 and stored in
the fields is.c (support with respect to FIS) and is.c2 (support with respect to FIB).
An separate loop in lines 48-55 is used to add all itemsets fib ∈ FIB to FIS. To
compute the support values fib.c and fib.c2, we can assume that either fib ∈ FIS, or
fib has support 0 in FIS. If fib has nonzero support in FIS and is not contained in
FIS, then a superset of fib must be contained in FIS. However, in this case fib has
already been added previously as an intersection, because the intersection of fib with a
superset of itself equals fib.

Finally, the new support values of all itemsets in FIS are computed in lines 57-61
by adding the support in FIS (counter c) and the support in FIB (counter c2). All
itemsets is ∈ FIS that satisfy is.c ≥ (MS−MSe)×|S|/100% afterwards are output
as closed itemsets of the stream S seen so far.

4.5 Maximal Patterns

In some cases it is sufficient to know whether or not an itemset is frequent, that is,
the exact support does not matter. In these cases, we can compute the set of maximal
itemsets [11,14] given the set of closed itemsets computed as described in the previous
section. A frequent itemset is is maximal if there are no supersets of is which are

Discovery of Frequent Distributed Event Patterns in Sensor Networks 117

frequent. Note that an itemset is frequent if and only if it is a subset of a maximal
itemset. Hence, knowing the set of maximal itemsets a user knows all frequent itemsets
and he could send inquiries to the sensor network to learn the frequencies of specific
frequent itemsets.

The number of maximal itemsets is often orders of magnitude smaller than the
number of closed itemsets. Maximal itemsets are typically an extremely compact and
human-readable summary of the “common behavior” observed by a sensor network,
see Sect. 6 for an example.

5 Implementation Aspects

We have developed two implementations of the proposed system. The first implemen-
tation is based on the BTnode [25] sensor node platform and supports a spatial scope of
one hop. We chose the BTnode platform mainly because it provides 256 kB of RAM.
Otherwise, the BTnode is similar to a MICA2: the microcontroller is an Atmel AT Mega
128L and the radio is a ChipCon CC1000.

The second implementation uses pre-recorded logs of sensor values instead of real
sensors. The log contains sensor data also from neighbor nodes, such that communi-
cation between nodes is not required. This implementation runs both on BTnodes and
on PCs and is mainly used for evaluation. Apart from these differences, the two im-
plementations are identical. We will refer to these implementations as DistributedImpl
and SimulatorImpl. Below we discuss some important implementation aspects that are
shared by both programs.

5.1 Data Structures

The performance of our system significantly depends on an efficient implementation of
itemsets and sets of itemsets (i.e., FIB and FIS), as operations on these data structures
are frequently performed in the inner loops of algorithms for discovering and merging
closed itemsets.

Itemsets are represented as bitvectors, which are implemented as an array of bytes.
The size of the array is a compile-time parameter, such that the compiler can apply
loop-unrolling to optimize itemset operations. Most operations on itemsets (such as
union, intersection, subset tests) operate on bytes (i.e., 8 items at a time) rather than
on individual bits and are thus efficient. Note that itemsets in S are densely populated.
Eq. 2 implies that a fraction of about 1/|FP | of the bits are non-zero. That is, bitvectors
are also a space-efficient representation.

Sets of itemsets (i.e., FIB and FIS) only need to support insertion, lookup, deletion
of all elements, but not deletion of individual elements. Since FIS dominates the
memory footprint of our system, it is also important that per-element memory overhead
of these data structures is minimized. For example, many typical data structures (linked
lists, trees) require one or more pointers per element. Since a typical itemset is rather
small in the context of our work (typically < 10 bytes), this would represent a significant
overhead. We therefore decided for hash tables that are implemented with a fixed-size
array, which requires no per-element memory overhead. The hash function for FIS is

118 K. Römer

based on the bitvector contents of the itemset, while the hash function for FIB is based
on the support value of the itemset to support search for supersets (line 19 in Fig. 4).

5.2 Query Compilation

The query compiler reads a query as given in Fig. 1 and generates C code. The
output consists of functions to generate events from sensor output according to
the definitions given in the query (i.e., lines 4 to 6 in Fig. 1), mapping functions
mapd(), mapt(), mapf () that map distances, time intervals and event frequencies to
partitions, as well several constant definitions (e.g., for minimum support, temporal
and spatial scopes, epoch length). Among the latter is also the size of the bitvectors of
itemsets, which is computed using Eq. 3.

6 Evaluation

We study code size, runtime, memory footprint, and the output of the pattern discovery
algorithm for a typical query using sensor data logs [26]. In particular, we investigate
the trade-off between the scope of the query (i.e., minimum support and number of local
events) and resource consumption (i.e., runtime and memory footprint).

6.1 Code Size

We report the size of the code and data segments of DistributedImpl in Bytes. The pro-
gram consists of two main parts. The first part includes algorithms and data structures
for discovering frequent itemsets. The second part contains code for reading out sensors
and generating events, the protocol for data collection from a one-hop neighborhood,
as well as time synchronization. The latter simply uses the request messages of the data
collection protocol which are broadcast by the discovery node to synchronize all nodes
in the one-hop neighborhood to the time of the discovery node. Code has been compiled
by avr-gcc 3.4.5 using optimization flags -O3 -funroll-loops.

Function Code Data
pattern discovery 10628 260
data collection, sensors, time sync 5498 707
total 16126 967

6.2 Runtime and Memory Footprint

To evaluate runtime and memory footprint of the pattern discovery algorithm, we use
SimulatorImpl executing on a BTnode, using sensor data collected during one month
from 54 sensor nodes in the Intel Research Lab Berkeley [26]. This dataset was col-
lected with an epoch duration of about 30 seconds (resulting in a total of about 65000
epochs) and contains, among others, temperature and light readings. Using this dataset,
we investigate how two key query parameters, namely minimum support and the num-
ber of local and context events, affect the resource consumption of our system in terms
of runtime and memory footprint.

Discovery of Frequent Distributed Event Patterns in Sensor Networks 119

Fig. 5 shows the relevant query parameters. We consider two types of events: warm
and light events. Each sensor node with a temperature reading > 23 degrees Celsius
in an epoch emits a warm event in this epoch. Every sensor node with a light reading
> 300 Lux emits a light event. Note that with these event definitions we are actually
investigating correlations between states “it is light” and “it is warm” as discussed in
Sect. 3. Both events are declared as both context and local events, which means that
we are interested in how light on a node correlates with light and temperature in its
neighborhood and how temperature on a node correlated with light and temperature in
its neighborhood.

For our experiment, we se-
1 epoch = 30
2 event warm { temp[0] > 23 }
3 event light { light [0] > 300 }
4 cevents {warm, light}
5 levents {warm, light}
6 history = 10
7 distance { near =(0,5), far =[5,10] }
8 time { now=0, recent =[1,4], old=[5,10] }
9 frequency { none=0, some=[1, infty] }

Fig. 5. Query used for evaluation

lected the node with ID 1 as
the discovery node executing
the pattern discovery algorithm.
We obtained very similar results
when selecting other nodes as
the discovery node. With the
above settings, mote 1 gener-
ates a warm event in about 23%
of all epochs and a light event in
about 14% of all epochs.

To evaluate runtime and memory footprint of the pattern discovery algorithm, we
compiled a preprocessed version of the sensor data for the first 30254 epochs into the
text segment of the SimulatorImpl executable that is running on a BTnode (more data
didn’t fit into the program flash). We then repeatedly ran the pattern discovery algo-
rithm on this data set with different values for MS and MSe, measuring execution
time, the number of itemsets in FIS, the number of closed itemsets among the item-
sets in FIS, as well as the number of maximal itemsets among the itemsets in FIS.
We also studied how the size of FIS grows over time as more and more blocks are
processed. Fig. 6 shows the results. The runtime is given as the ratio between execu-
tion time of the algorithm and total time of data collection (i.e., 30254 epochs × 30
seconds). In all cases, the resulting CPU duty cycle is very small (subfigure (a)). The
number of itemsets in FIS strongly depends both on minimum support MS and on
error bound MSe (subfigure (b)). Interestingly, the number of closed itemsets in FIS
is also strongly dependent on MS, but less so on MSe (subfigure (c)). This indicates
that reducing MSe results in the generation of additional itemsets that are frequent in
some blocks, but not frequent for the whole data stream. Also note that the number of
closed itemsets does also depend on structure of frequent itemsets, such that increas-
ing the error bound MSe may actually result in more closed itemsets as it is the case
in subfigure (c). Also note that only about half of the itemsets in FIS are actually
frequent. Again, this indicates that there are many itemsets which are frequent in in-
dividual blocks, but not for the whole data stream. The number of maximal itemsets
is at most 10 in all experiments (diagram not shown). That is, a very small number
of maximal itemsets is sufficient to characterize the “common behavior” observed by
the sensor network.

120 K. Römer

30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

min support [%]

du
ty

 c
yc

le
 [p

er
 m

ill
e] MSe=5%

MSe=10%
MSe=15%

30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

min support [%]

ite
m

se
ts

 in
 F

IS
 [#

]

MSe=5%
MSe=10%
MSe=15%

30 40 50 60 70 80 90 100
0

500

1000

1500

min support [%]

cl
os

ed
 it

em
se

ts
 in

 F
IS

 [#
]

MSe=5%
MSe=10%
MSe=15%

(a) (b) (c)

Fig. 6. Results for pattern discovery: (a) runtime (b) size of FIS (c) closed itemsets in FIS

30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10

−3

min support [%]

du
ty

 c
yc

le
 [p

er
 m

ill
e] MSe=5%

MSe=10%
MSe=15%

30 40 50 60 70 80 90 100
0

20

40

60

80

100

min support [%]

ite
m

se
ts

 in
 F

IS
 [#

]

MSe=5%
MSe=10%
MSe=15%

30 40 50 60 70 80 90 100
0

10

20

30

40

min support [%]
cl

os
ed

 it
em

se
ts

 in
 F

IS
 [#

]

MSe=5%
MSe=10%
MSe=15%

(a) (b) (c)

Fig. 7. Results for pattern discovery with simplified query: (a) runtime (b) size of FIS (c) closed
itemsets in FIS

The size of an itemset for the experiment query is 8 bytes (4 bytes for the bit vector,
2 bytes each for the counters c and c2). With this, the total RAM required for itemsets
in FIS was at most 30 kB in the course of our experiments.

Fig. 7 shows the same diagrams for a simplified query, which considers only light
as a context event and warm as a local event, but is otherwise identical to the query in
Fig. 5. We observe a qualitatively similar behavior as in Fig. 6, but at much lower abso-
lute values. This illustrates the capability of our system to trade off scope for resource
consumption by constraining the search to fewer local events.

To understand the reason for the above quantitative differences, let us estimate how
the number of discovered itemsets (i.e., patterns) increases when adding additional con-
text or local events to a query. For this, let us define Q(Ec, El) as the number of patterns
discovered for a query with context events Ec and local events El. Since our algorithm
only considers patterns with a single local event, adding a new local event results in an
additive increase of patterns:

Q({e1}, {e2, e3}) = Q({e1}, {e2}) + Q({e1}, {e3}) (9)

However, when adding an additional context event, we obtain a multiplicative in-
crease in patterns in the worst case:

Q({e1, e2}, {e3}) ≤ Q({e1}, {e3})×Q({e2}, {e3}) (10)

The reason for this is that potentially every frequent pattern that contains only e1 as
a context event could be combined with every frequent pattern that contains only e2 as

Discovery of Frequent Distributed Event Patterns in Sensor Networks 121

a context event to obtain a frequent pattern which contains both e1 and e2 as context
events. However, in practice this number is often significantly smaller as event patterns
with e2 and events patterns with e1 have to occur during the same epochs in the data
stream – otherwise the combined event pattern may not be frequent.

6.3 Communication Overhead

During the experiment duration of 30254 epochs, only in 8000 epochs a local event
occurred on the discovery node (i.e., mote 1). Recall that only when a local event
occurs, then the discovery node requests event occurrences during the last TSCOPE
epochs (i.e., 10 epochs for our experiment) from client nodes. In our experiment,
event occurrences for 12418 epochs have been requested by the discovery node. As
each event is represented by a single bit, every client node would have to transmit
24836 bits (since there are two context events defined in the query) or about 3 kB.
Assuming that every sensor reading requires one byte, the raw sensor data generated
by each node during the experiment would be about 60 kB. Also note that with our
approach communication among nodes is constrained to small neighborhoods, whereas
traditional data gathering applications require to transmit raw sensor readings through
the whole network to the sink.

6.4 Discovered Maximal Patterns

We would expect a strong correlation of the occurrence of light and warm events on
the discovery node with light and warm events on client nodes. The discovered pat-
terns confirm this expectation. For MS = 90%, for example, we obtain two maximal
itemsets that map to the following patterns:

(W,now,far,some) AND (W,recent,*,some) AND
(W,old,*,some) : L [96%]

(W,*,far,some) AND (L,now,far,some) AND
(L,{old,recent},*,some) : L [92%]

Here, “W” and “L” refer to warm and light events as defined above. The notations
“{... , ...}” and “*” mean that the enclosing term is valid for the set of given partition
identifiers or for all possible partition identifiers, respectively.

Packet loss is an issue in most multi-hop data collection sensor networks [9]. In par-
ticular, the dataset used for the experiments also had missing entries. In the context
of our work, packet loss may affect the correctness of discovered frequent patterns. In
particular, three cases can be distinguished. Firstly, a wrong frequency may be reported
for a frequent pattern. Secondly, an infrequent pattern may be reported as being fre-
quent. Thirdly, a frequent pattern may not be reported as being frequent. The latter two
problems apply predominantly to patterns with a frequency close to MS, where “close
to” is a function of the amount of packet loss. Hence, the likelihood of missing fre-
quent patterns due to packet loss can be decreased by reducing MS to a lower value. A
quantitative study of this aspect is the subject of future work.

122 K. Römer

7 Related Work

While data stream mining techniques have been used for other purposes in sensor net-
works, we are not aware of similar in-network approaches to discover frequent dis-
tributed event patterns. There are systems that support detection of given distributed
event patterns (e.g., [2,16]), but this is a fundamentally different problem as mentioned
in Sect. 1.

The authors of [17] apply itemset mining to find sensors that show the same value
concurrently for significant portions of time, which can be considered as a very specific
instance of distributed event patterns. However, their approach is centralized. Resource
requirements of their solution are too high to allow an implementation on sensor nodes.

In a more general context, data stream mining techniques have also been applied
to outlier detection [4] or to in-network reduction of sensor data streams [3] such that
certain properties of the original data stream are preserved. However, these are funda-
mentally different problems. Also, while the authors claim that their algorithms can be
implemented on resource-constrained sensor nodes, they resort to simulations.

Another approach that is loosely related to our work is distributed regression [12],
where sensor nodes cooperate locally to fit a global function to their measurements.
Implicitly, such a global function represents the correlation between sensor data of dif-
ferent nodes. However, this work is based on continuous sensor time series and makes
the fundamental assumption that sensor data is strongly correlated both spatially and
temporally. In contrast, our approach is based on discrete events and we make no as-
sumptions about the correlation of sensor data – instead, we want to find out whether
and how events on different sensor nodes are correlated.

There is a large amount of work regarding discovery of frequent itemsets from a data
stream. Many approaches are based on sliding windows (e.g., [6,8]), where frequent
itemsets are discovered from a small, moving fraction of the data stream. However, we
are interested in discovering patterns from the whole data stream. Several proposals ex-
ist for this problem (e.g., [7,10,15,13,19]). However, these approaches use synopsis data
structure in addition to the sought frequent itemsets, resulting in a memory footprint that
led us to develop an approach that fits the specific constraints of sensor nodes. For dis-
covery of closed itemsets from a small block of itemsets, we borrowed techniques from
existing multi-pass algorithms, most notably [5].

8 Conclusions

We presented a novel in-network knowledge discovery technique that supports the dis-
covery of frequent distributed event patterns in sensor networks, where event patterns
characterize the spatial and temporal correlations between events observed by sensor
nodes in a confined network neighborhood. To deal with the constrained resources of
sensor nodes, our system offers a declarative query language to specify the level of de-
tail and the scope of sought patterns, thus offering a turning knob to trade off detail and
scope for resource consumption. We implemented our proposal on the BTnode plat-
form and and showed that the resources of this platform are sufficient to handle typical
problem instances. We also showed that by reducing the scope of the query we could
decrease resource consumption.

Discovery of Frequent Distributed Event Patterns in Sensor Networks 123

References

1. Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M., Krishnamurthy, L., Kushalnagar, N.,
Nachman, L., Yarvis, M.: Design and Deployment of Industrial Sensor Networks: Experi-
ences from the North Sea and a Semiconductor Plant. In: Sensys 2005, San Diego, USA
(November 2005)

2. Ahn, S., Kim, D.: Proactive Context-Aware Sensor Networks. In: Römer, K., Karl, H., Mat-
tern, F. (eds.) EWSN 2006. LNCS, vol. 3868, Springer, Heidelberg (2006)

3. Akcan, H., Brönnimann, H.: Deterministic Data Reduction in Sensor Networks. In: MASS
2006, Vancouver, Canada (October 2006)

4. Branch, J., Szymanski, B., Gianella, C., Wolff, R., Kargupta, H.: In-Network Outlier Detec-
tion in Wireless Sensor Networks. In: ICDCS 2006, Lisboa, Portugal (July 2006)

5. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Algorithm for
Transactional Databases. In: ICDE 2001, Heidelberg, Germany (April 2001)

6. Chang, J.H., Lee, W.S.: Finding Recent Frequent Itemsets Adaptively over Online Data
Streams. In: SIGKDD 2003, Washington, USA (August 2003)

7. Cheung, W., Zaiane, O.R.: Incremental Mining of Frequent Patterns Without Candidate Gen-
eration or Support Constraints. In: IDEAS 2003, Hong Kong, China (July 2003)

8. Chi, Y., Wang, H., Yu, P.S., Muntz, R.M.: Moment: Mainatining Closed Frequent Itemsets
over a Stream Sliding Window. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275,
Springer, Heidelberg (2004)

9. Choi, J., Lee, J., Wachs, M., Levis, P.: Opening the sensornet black box. Technical Report
SING-06-03, Stanford Information Networks Group (2006)

10. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in Data Streams
at Multiple Time Granularities. In: NSF Workshop on Next Generation Data Mining 2002,
Baltimore, USA (November 2002)

11. Gouda, K., Zaki, M.J.: Efficiently Mining Maximal Frequent Itemsets. In: ICDM 2001, San
Jose, USA (November 2001)

12. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed Regression: an
Efficient Framework for Modeling Sensor Network Data. In: IPSN 2004, Berkeley, USA
(April 2004)

13. Jin, R., Agrawal, G.: An Algorithm for In-Core Frequent Itemset Mining on Streaming Data.
In: ICDM 2005, New Orleans, USA (November 2005)

14. Bayardo, Jr., R.J.: Efficiently Mining Long Patterns from Databases. In: SIGMOD 1998,
Seattle, USA (June 1998)

15. Li, H.-F., Lee, S.-Y., Shan, M.-K.: An Efficient Algorithm for Mining Frequent Itemsets over
the entire History of Data Streams. In: First Intl. Workshop on Knowledge Discovery in Data
Streams 2004, Pisa, Italy (September 2004)

16. Li, S., Son, S.H., Stankovic, J.A.: Event Detection Services Using Data Service Middle-
ware in Distributed Sensor Networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS,
vol. 2634, Springer, Heidelberg (2003)

17. Loo, K.K., Tong, I., Kao, B.: Online Algorithms for Mining Inter-Stream Associations from
Large Sensor Networks. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, Springer, Heidelberg (2005)

18. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny Aggregation Service
for Ad-Hoc Sensor Networks. In: OSDI 2002, Boston, USA (December 2002)

19. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: Bressan,
S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002.
LNCS, vol. 2590, Springer, Heidelberg (2003)

124 K. Römer

20. Römer, K.: Distributed Mining of Spatio-Temporal Event Patterns in Sensor Networks. In:
Workshop on Middleware for Sensor Networks, San Francisco, USA (June 2006)

21. Szewczyk, R., Polastre, J., Mainwaring, A., Culler, D.: Lessons from a Sensor Network Expe-
dition. In: Karl, H., Wolisz, A., Willig, A. (eds.) Wireless Sensor Networks. LNCS, vol. 2920,
Springer, Heidelberg (2004)

22. Wang, J., Han, J., Pei, J.: Searching for the Best Strategies for Mining Frequent Closed
Itemsets. In: SIGKDD 2003, Washington, USA (August 2003)

23. Welsh, M., Mainland, G.: Programming Sensor Networks Using Abstract Regions. In: NSDI
2004, Boston, USA (March 2004)

24. Zaki, M.J., Hsiao, C.: CHARM: An Efficient Algorithm for Closed Itemset Mining. In: SDM
2002, Arlington, USA (April 2002)

25. BTnodes, www.btnode.ethz.ch
26. Intel Lab Sensor Data, http://berkeley.intel-research.net/labdata/

www.btnode.ethz.ch
http://berkeley.intel-research.net/labdata/

	Discovery of Frequent Distributed Event Patterns in Sensor Networks
	Introduction
	System Overview
	Patterns and Queries
	Discovery of Frequent Patterns
	Data Collection and Pattern Generation
	Pattern Representation
	Frequent Patterns
	Closed Patterns
	Maximal Patterns

	Implementation Aspects
	Data Structures
	Query Compilation

	Evaluation
	Code Size
	Runtime and Memory Footprint
	Communication Overhead
	Discovered Maximal Patterns

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

