
Que: A Sensor Network Rapid Prototyping Tool

with Application Experiences from a Data
Center Deployment

David Chu1, Feng Zhao2, Jie Liu2, and Michel Goraczko2

1 CS Division, EECS Department, UC Berkeley, Berkeley, CA, USA
davidchu@cs.berkeley.edu

2 Microsoft Research, Redmond, WA, USA
{zhao,jie.liu,michelg}@microsoft.com

Abstract. Several considerable impediments stand in the way of sensor
network prototype applications that wish to realize sustained deploy-
ments. These are: scale, longevity, data of interest, and infrastructure
integration. We present a tool, Que, which assists those sensor net-
work deployments transitioning from prototypes to early production en-
vironments by addressing these issues. Que is able to simulate realistic
deployments with faithful data, provide fast and iterative feedback on
operations, and compose applications quickly in a platform-independent
manner. We demonstrate Que’s applicability via tests against our new
data center environment-monitoring deployment, DataCenter.NET.

1 Introduction

Sensor networks are notoriously difficult to build, deploy and maintain. Early
sensor network experiences are not without case studies of deployment that have
failed to mature or taken considerably longer to arrive at fruition than originally
anticipated.

For example, several geomorphologists, excited by the new science that sensor
networks might bring to their field, targeted an initial test deployment in a
modest desert cave to collect climatological data. They purchased a packaged
sensor network product from a major sensor networking company. The package
was billed as the most straightforward off-the-shelf solution offered, so their
realistic expectations were that such a system would last several months given
the energy provisions once deployed.

Unfortunately, the experiences were not encouraging. After spending several
days in the field trying to determine why the product failed to deliver results, the
geologists finally established connectivity and collected data for two hours before
the product failed permanently. Disillusioned, these users have since reconsidered
their sensor network efforts. While the brief two hours of data were beneficial,
the costs were very significant [24].

What can we do to remedy this lack of sensor network usability? Let us pur-
sue this question by first examining the development model surrounding sensor

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 337–353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

338 D. Chu et al.

network deployments today. Sensor network deployment efforts typically follow
a 4-step procedure:

1. Goals and requirements specifications
2. Prototype deployment
3. Prototype to production transition
4. Production deployment

Many scenarios are easy to prototype, but have difficulty achieving production
standards. This indicates that there are significant factors in the production
requirements that are unaccounted for in the prototype phase. To address these
disparities effectively, it is often more important to know what is wrong early,
often and approximately rather than late, infrequently and precisely.

We have built Que, a tool which provides a unified scripting and simula-
tion/emulation framework for multi-tier sensor network systems. Que assists the
transition from prototype to production by enabling fast iterations on whole-
system assembly and system input/output testing.

Several important factors influence why this transition is not straight forward,
and where a tool like Que aims to provide assistance:

Scale: In the prototype phase, it is important to get something working quickly.
This often means over-instrumentation with dense arrays of sensors in a lim-
ited area rather than finely-tuned capacity planning. However, scale is driven
upward in the production phase while the cost of ownership prohibits over-
instrumentation. Thus, determining the minimum density of sensors is a neces-
sary yet often unanswered question.

Longevity: In the prototype phase, the sensornet does not have to be long-lived
nor particularly reliable. In production, lifetime and manageability requirements
are dominant concerns. Frequently, longevity issues such as minimum sampling
interval and duty-cycling are deferred until production deployment, an expensive
phase in which to address a fundamental requirement of the sensor system. A
short-lived sensing system is often simply not useful [7].

Data: In the prototype phase, raw data is useful especially for exploration. In
production, distilled decision making information is most important. Thus, data
processing operations which were not present in the prototype must be intro-
duced in production. Furthermore, the operational dynamics are further compli-
cated in the case of online or in-network data processing. Thus, it is important
to test with realistic data input and control logic in the prototype phase.

Integration: Integration with the rest of infrastructure pyramid is not a priority
during prototyping. However, realistic production systems often involve many
elements in addition to the sensornet. Traditional sensornet development lacks
such multi-tier systems integration testing.

The goal of Que is to help answer these question through a combination of two
primary mechanisms. First, Que offers a scripting-based exploration environment
for operator-based system assembly across multiple platform tiers. Quick script-
ing makes it easy for developers to retask their system for new data processing

Que: A Sensor Network Rapid Prototyping Tool 339

either on mote- or microserver-class devices. Second, Que provides a simulation
and emulation environment for an entire multi-platform tiered system, so that
retasking can be quickly tested on the entire system against realistic scenar-
ios. The combination of these two mechanisms lends naturally to rich system
and data exploration, which are important in the transition from prototype to
production.

To validate our approach, we have applied Que to DataCenter.NET, an en-
tirely new deployment at Microsoft Research with significant material impact. A
significant problem in the modern computer data center is the lack of visibility
into power-intensive cooling support systems. DataCenter.NET is a compelling
application that assists data center operators with real-time high-granularity
feedback into operational metrics such as facilities and server temperatures.
As we worked toward a real production deployment with our operations col-
leagues, we realized that DataCenter.NET required addressing all of the key
issues mentioned above: scale, longevity, data and integration; hence, providing
a great testing environment for Que. Our main result here is that Que, posi-
tioned as a general rapid prototyping tool, does indeed provide fast insight into
these system-wide issues, while leaving definitive and highly-refined answers for
special-purpose tools.

The next section describes related work. Section 3 discusses the design prin-
ciples that drive Que. Section 4 introduces the Que environment. Section 5
describes the system architecture. Section 6 and 7 discusses our deployment
DataCenter.NET and our results in using Que to bring this system to produc-
tion. Finally, section 8 presents discussion and conclusions.

2 Related Work

Observing the practical difficulty of deploying sensor networks, a number of
projects provide “out-of-the-box” sensor network solutions [6,9]. Although these
solutions are convenient for data collection tasks, they do not address the inher-
ent customization necessary for many sensor network scenarios. Many proposed
sensornet programming systems have aimed to facilitate customization with new
programming models or APIs. Several have explicitly looked at the benefits to-
ward rapid prototyping [5, 4]. Also, customization may not mean programming
each sensor node directly. They can be expressed in declarative ways, such as
seen in TinyDB [23], Semantics Streams [26], and DSN [8]. Or, they can be
specified via composition languages.

Composition languages, sometimes referred to as “programming by compo-
nent wiring,” is used in many embedded systems programming and designs
[17, 14, 13, 10, 15, 22]. They are particularly useful at the system prototyping
and testing stages, where the users have some ideas of how they system works,
but need more hand tuning. EmStar [13] and Viptos [10] both provide two-
tier simulation environments. However, Emstar does not provide ways to pro-
gram at the sensor mote level. Sensors are primarily used as wireless interfaces
for microservers. Viptos is a visual programming interface where microserver

340 D. Chu et al.

components are implemented in Java. Que is similar to Viptos in spirit, but
by using a unified Python programming language at both sensor mote and mi-
croserver levels, users get access to the full capability of Python for experiment
control, data archiving, and visualization purposes. The text based general pur-
pose language gives users powerful and intuitive constructs like loops and con-
ditions when building prototypes. Que also takes advantage of MSRSense to
support web services and integration with web and enterprise applications.

Some of the preceding composition languages additionally provide model-
based semantics in addition to operational semantics [8, 10, 23]. Model-based se-
mantics often permit establishment of program guarantees beyond those available
with purely operational semantics, which may help with ensuring that prototype
and production systems both conform to user requirements. As a pure composi-
tion language, Que itself does not impose any models of computation. It relies on
subsystems like TinyOS and MSRSense [22] to provide execution semantics.

Que’s scripting environment is similar in spirit to those proposed in Mari-
onette [25] and Tinker [11]. Whereas Marionette uses scripting for debugging and
Tinker uses scripting for data exploration, Que employs this approach in whole
system development, as well as data exploration. In fact, Que offers a convenient
bridge to the server-side data manipulation operators offered by Tinker.

3 Design Goals

The Que functional interface is meant to be an extremely simple yet sufficiently
flexible for operator composition and simulation execution.

Simplicity: Que does not provide yet another programming approach to sensor
networks. Rather, Que directly provides the intermediate operator composition
language while other languages (e.g., C) provide operator implementations. It
has been argued that restricted coordination languages fit well for constructing
systems when operator boundaries are well-defined [20]. Indeed, Que users ben-
efit from the safety and simplicity of the language restrictions, yet retain the
ability to create new operators in native systems languages. This programming
paradigm is common in embedded systems [11, 14, 15, 22].

Leverage Existing Libraries: The lack of full node programmability means
that Que relies on others to provide the bulk of operator implementations.
By default, Que interfaces with three such operator libraries: MSRSense [22],
TinyOS [15] and Tinker [11] and additionally offers a general adapter to inte-
grate with other operator libraries.

Flexibility: Que exposes a Python-like shell for convenient interaction. We uti-
lize it as a flexible platform from which to perform operator composition, sensor
network to system integration, and data analysis.

There are some associated limitations with this model as well. Que is
best suited for operator-based programming. This implies establishment of
well-defined operator interfaces and libraries. Development of new device drivers
for example must still be done in native environments.

Que: A Sensor Network Rapid Prototyping Tool 341

1# Crea te t i n y o s o p e r a t o r graph
2 op man = t o s l i b . c r e a t e (’ t o s / sys tem/Main ’)
3 op os c = t o s l i b . c r e a t e (’ apps / O s c i l l o s c o p e / Osc i l l o s copeM ’)
4 op com = t o s l i b . c r e a t e (’ t o s / sys tem/UARTComm’)
5 l i n k (op man , ’ S tdCont ro l ’ , op osc , ’ S tdCont ro l ’)
6# . . . (3 i n s t a n t i a t i o n s and 7 l i n k a g e s e l i d e d)
7 l i n k (op osc , ’ DataMsg ’ , op com , ’ SendMsg [AM OSCOPEMSG] ’)
8

9# Crea te m i c r o s e r v e r o p e r a t o r graph
10 op tp r = ms l i b . c r e a t e (’ ComplexTOSPacketRece iver ’)
11 op tp r . setparam (’ messageType ’ , ’ ArrayOscopeMsg ’)
12 op d2x = ms l i b . c r e a t e (’DataToXml ’)
13 l i n k (op tp r , ’ output ’ , op d2x , ’ i n p u t ’)
14

15# Bind cro s s−p l a t f o rm po r t s
16 op amp = t o s l i b . createAMPort ()
17 op po r = ms l i b . c r ea teTcpPor t ()
18 l i n k (op com , ’ SendMsg ’ , op amp , ’ 10 ’)
19 l i n k (op amp , ’ 10 ’ , op por , ’ 9002 ’)
20 l i n k (op por , ’ 6001 ’ , op tp r , ’ i n p u t ’)
21

22# Execute emu l a to r
23 emusrc1 = emu la to r . DataCenterEmulator (c o nn s t r)
24 net = op en l o c a l (op amp , op por , emusrc=emusrc1)
25 r e s u l t s = run (net , time=60∗10 , appname=’ O s c i l l o s c o p e ’ , do s r cgen=True ,

docompi l e=True , d o s imu l a t e=True)

Listing 1.1. Instantiating and linking operators from operator libraries

4 Example User Session

Main OscM Sens

Timer

Uart

Leds

AM TCP Rec ToXml

TinyOS FooBar

Fig. 1. Operator graph demonstrated in ex-
ample session

Next we illustrate a user’s interaction
with Que via an example session. This
comprehensive example session cre-
ates, executes and postprocesses the
operator graph shown in Figure 1 that
spans both mote and microserver
platforms, while simultaneously em-
phasizing the minimal mechanism
presented to accomplish these objectives. The application corresponds to the
prototypical multi-sensor sampling application. Its function is to periodically
send all sensors’ measurements over the serial port to the microserver for XML
canonicalization.

The user is able to instantiate operators from platform-specific libraries from
the interactive shell. Listing 1.1 begins by showing the instantiation and linking of
several operators from a particular library, the TinyOS platform library (lines 2–4
and lines 5–7 respectively). The two important functions above are the operator
library create call and the link call. The create call instantiates new operators from
the platform-specific operator library toslib . The link call binds the output port of
one operator to the input port of another operator. There is also a function unlink

provided to unlink an object. For example, the Main operator and the OscilloscopeM

operators are linked together through the StdControl interface (line 5). Parameter-
ized interfaces, introduced in TinyOS, are also supported (e.g., line 7).

342 D. Chu et al.

Que provides integrated support for both TinyOS and MSRSense. MSRSense
is a .NET-based compenentized sensor network microserver. Lines 10–13 show
the manipulation of MSRSense operators in Que which by intention is the same
as manipulating the TinyOS operator library above. This uniform support for
cross-platform operator composition is one point where Que facilitates system
assembly.

Cross-platform operator composition such as MSRSense operator to TinyOS
operator composition is also easy to accomplish. Lines 16–20 show the binding
of ports between operators of different platforms. In particular, the special op-
erators opamp and oppor for Active Message and TCP ports respectively, serve as
conduits through which communication occurs between the two platforms. Que
identifies and appropriately handles this case, as discussed in Section 5.

In addition to easing system assembly, Que also provides a simulator with
great emphasis on ease of use (lines 23–25. The overall goal is to simulate the
operator graph consisting of heterogeneous elements. We next explain these three
important commands in detail.

First in line 23 of Listing 1.1, the user chooses an appropriate simulator for her
concerns. The emulator.DataCenterEmulator in particular draws ADC values from traces
collected in our new deployment which we describe subsequently in Section 6.
Section 5 describes more about possible emulators.

Second in line 24, the openlocal initializes the network topology with a min-
imum of user intervention. Our ease of use criterion means that the user can
either choose a predefined network or can query a preexisting network for its
parameters1. In addition, openlocal accepts chains of operators and binds these to
the nodes initialized in the network.

Third in line 25, the run simulates the given network, in conjunction with
the particular operator graph and sensor inputs. The heavy lifting underlying
this command will be explained in Section 5. The goal is to provide a very
minimal interface through which the details of the simulation are abstracted,
but the results are not. At the end of run, the results are brought from the
particular platform-specific simulations into the Que environment. The results
are naturally emitted by the endpoint(s) of the directed operator graph. For our
running example, the results are at the MSRSense operator op d2x.

The preceding three commands, and particularly the last one, present simple
interfaces for simplicity of use. Yet these allow full flexibility for exercising a
custom operator graph on a custom network topology with a custom simulation
data source.

By default, simulation results are returned as a sequence of arrays, one for ev-
ery message from the terminal operator in the graph. After some initial operator-
specific data marshalling, the user is able to apply Que’s script-based processing
to achieve very fast turnaround time for getting initial results. For example,
standard utility functions such as plotresults and plotcorrs generate scatter and to-
pographical plots respectively. ewma computes a tunable exponential weighted
moving average that is often useful in real-world data cleaning. In addition, the

1 The latter option is not yet implemented.

Que: A Sensor Network Rapid Prototyping Tool 343

wealth of native Python libraries is often a benefit for our scripting environment;
corrcoef is a built-in Python function that computes correlation coefficients. Addi-
tionally, Que can interface to the Tinker and Matlab-like matplotlib Python tools
in order to apply more standard data operations [11,16]. Section 7 demonstrates
the utility of this rapid data processing.

5 System Architecture

Our architecture, shown in Figure 2, consists of several major components: opera-
tor libraries, network libraries, and the simulator. We next discuss the mechanics
of each.

base environ
(python)

que environ

…
>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net)

opN

tos library

opM

ms library

msrsense
*.dll

ServiceLibraryToMoml

tinyos
*.nc

nc2moml*

(a) Unified operator composition from in-
terfaces of platform-specific operators.

base environ
(python)

que environ

…
>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net) Query network for stats

-- what types of nodes?
-- how many nodes?

Map operators to nodes

op2

op1?

(b) Creation of a network object based
upon a static network configuration or
querying of a live network. The operator
graph is assigned to platform-specific net-
work nodes.

compile

simulate

base environ
(python)

que environ

…

>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net)

tinyos
*.nc

nc
config

msr
config

instantiate configs

tossimmsr
sense

results

emulated
inputs

(c) The operator graph is run. This
involves instantiating operators (possi-
bly involving compilation) and invoking
platform-specific simulation environments.
Results are retrieved back into the Que en-
vironment.

base environ
(python)

que environ

…
>>> results = run(net)
>>> stdanalysis(results)
>>> myanalysis(results)

standard analysis output

custom analysis output

(d) The results are fed into standard analy-
sis and visualization tools. In addition, the
user has very flexible options for scripting
her own post-processing.

Fig. 2. The Que Architecture

344 D. Chu et al.

5.1 Operator Libraries

Operator libraries permit the creation of operators for manipulation in Que.
There is an operator library per platform which subclasses oplib . Often these
libraries correspond directly to existing software libraries available on the cor-
responding platforms. For example, the TinyOS and MSRSense platforms both
contain a fair number of operators in their distributions. In order to expose these
platform-specific elements as operators in Que, we provide platform-specific in-
terface extractors as illustrated in Figure 2(a). For TinyOS and MSRSense, this
functionality is provided by the tools nc2moml and ServiceLibrary2Moml respectively.
After instantiation from a platform-specific library, all operators behave consis-
tently, resulting in a uniform user experience.

New platforms are straightforward to expose to Que. The only requirements
are to subclass oplib for the platform’s operator library and populate the library
with a platform-specific interface extractor tool.

The goal of a platform-specific interface extractor is to generate operator in-
terface descriptor files which are used by operator library subclasses. We have
adopted a variant of the Ptolemy2 standard MOML interface [19].

The key elements of the interface descriptor interface are the exposition of
named input and output ports and operator parameters. We have found that the
two platforms we tested offer fairly natural mappings to this interface. MSRSense
input and output ports map directly to MOML input and output ports; TinyOS
uses and provides interfaces correspond to input and output ports respectively. In
addition, to support NesC-style interface parameterization, input and output
ports are permitted to be parameterized, such that a single port proxies for a
number of instances of the port determined at compile time.2

5.2 Network Libraries

The network library provides the network abstraction for the user. Subclasses
of netlib define a set of heterogeneous nodes and the interconnecting network.
For example, a subclassed network object may correspond to a predefined static
set of nodes, a set chosen from an asset catalog, or a dynamic set established
from querying an online prototype network. Currently, we provide a subclass
that supports a predefined static set as a default.

Another key function of the network object is to pin operators to nodes. As
illustrated in Figure 2(b), this determines the mapping of what operators each
node runs. Typically this assignment proceeds by associating platform-specific
operators with the nodes on which they are capable of running. At present, ev-
ery operator is targeted for only one platform so the mapping is straightforward.
However, cross-platform operators are also possible (e.g., with operator virtual-
ization or platform-independent operator implementations). These then permit
variable operator placement informed by metrics such as computational speed,

2 Note that MOML parameters are distinct from parameterized ports. MOML param-
eters are more akin to NesC generics [12].

Que: A Sensor Network Rapid Prototyping Tool 345

energy and sensitivity to network loss. Furthermore, they open the possibility of
dynamic operator placement optimization.

5.3 Simulator

The heart of Que is the heterogeneous network simulator. The simulator is ini-
tiated with the run command. As shown in Figure 2(c), the simulator executes
the following sequence of operations:

Operator configuration: The simulator first generates platform-specific configu-
ration files from operator graph specifications given as input. For example, for
TinyOS, the simulator generates NesC component wirings. For MSRSense, the
simulator generates XML operator configuration files.

Binary compilation: The simulator then enacts platform-specific compilation for
the configured system. This possibly involves multiple compilations for multiple
platforms.

Native execution: The simulator next executes the compiled operator graphs in
low-level native platform-specific simulators. The TOSSIM simulator is used for
TinyOS binaries [21]. Since MSRSense microserver is already contained within
the .NET virtual machine, it is natively executed. Also, the simulator draws
data inputs from its user-specified data source for either preset, trace-driven, or
emulated sensor readings. This provides for a customizable degree of fidelity. We
highlight that similar emulator drivers can also be provided for the network.

Channel establishment: A myriad of communication channels are needed for in-
teroperability in a mixed environment of heterogeneous platforms. For instance,
appropriate connection bindings are needed between the MSRSense runtime and
Serial Forwarder, a standard TinyOS communication channel, in order to achieve
heterogeneous network simulation. As another example, data input from the
user-specified data source also needs to be connected with the simulator. The
Que simulator establishes all of these channels and extra plumbing on the user’s
behalf when the run command is invoked.

At the conclusion of this process, the operator graph is transformed into a set
of results over the specified network and data source. These results are populated
back into the Que environment as easy-to-manipulate arrays.

5.4 Analysis Tools

The standard analysis tools provide helpful first-level diagnostics that go to-
ward answering the general prototype to production questions. These tools are:
visualizing the resulting output for each node; calculating and visualizing the
correlation map for the nodes of interest; and performing basic data cleaning
of the resulting data. Examples of there application are shown in Figure 2(d).
These are exposed as additional user scripts callable from Que. Likewise, we are
able to readily adopt Tinker and Matlab-like matplotlib built-in tools [11, 16].

346 D. Chu et al.

6 DataCenter.NET Deployment

6.1 The Problem

We focused the use of Que in a particular deployment, DataCenter.NET. The goal
ofDataCenter.NET is to reduce energy costs in the computer data center, a rapidly
rising concern [1,3]. The typical data center is an intense environment consisting of
thousands to tens of thousands of physical compute and storage servers, arranged
in vertical racks. This density of servers creates two compounding problems. First,
the servers require an intense amount of power to run.Hundreds ofwatts per square
foot is not uncommon. Second, the density of machinery places an immense cool-
ing requirement placed on the data center facilities; the Heating, Ventilation and
Air Conditioning (HVAC) energy expenditure is a sizable fraction of the overall
facilities energy expenditure. Therefore, both are significant sources of energy con-
sumption, and hence present significant opportunities for energy reduction.

Unfortunately, data center managers have relatively scarce information on
which to base facilities HVAC decisions. Traditional thermostats are generally
deployed at a very coarse grain, with one thermostat canvassing several thou-
sand servers. This means that HVAC settings are naturally adjusted to local
phenomenon first, and only slowly adapt to global temperature changes. Since
there is often a hard requirement to run all machines under certain machine-
specific temperatures or else risk overheating and hardware failure, facilities
managers are loathe to experiment aggressively with new thermostat settings.
Unfortunately, zeroing in on the right temperature setting is exactly a key factor
in saving data center energy consumption.

Further compounding the problem, data center operators often have little vis-
ibility into future request loads that are being executed by data center clients.
In addition, each rack is configured to contain a mix of varied processing and
storage elements, all of which exhibit different workloads. This leads to unpre-
dictable fluctuations in the space of optimal HVAC settings over time.

6.2 Our Approach

To tackle this problem, we worked with data center managers to develop a wire-
less network for environment sensing. Wireless sensors are a suitable fit for this
scenario for several reasons. First, the wireless sensors can be deployed incremen-
tally and flexibly. This is important for gradual rollout and avoiding high up-
front costs (e.g., of traditional thermostats or of upmarket environment sensing-
enabled server racks). Second, wireless sensors can cover a very fine-grained
spatial setting, and this density can be flexibly chosen and reconfigured.

With detailed temperature heat maps, data facilities managers are able to
make more informed decisions affecting data center operations. First, managers
gain visibility into better ways to design facilities, such as where to optimally
place new racks and improve HVAC distribution systems. Second, managers
and the server’s users can control job scheduling better so as to not only take
into account server load, but also heat displacement effects. With a flexible job

Que: A Sensor Network Rapid Prototyping Tool 347

allocation mechanism such as virtualization, we might even apply optimization
algorithms to job placement.

Fig. 3. The DataCenter.NET lab prototype
server racks consist of 35 wireless sensors
placed on the front and rear of 15 servers
and on the ceiling. The servers compromise
3 racks, two of which are visible in the fore-
ground and background here.

Commissioned with these high level
goals, we proceeded to build a modest
prototype data center before embark-
ing on a live pilot deployment. Our lab
prototype, DataCenter.NET, contains
14 servers arranged in racks of 5, 5
and 4 servers each. They are located
in a 10 ft by 15 ft contained testing
environment. We fully instrumented
each server with a wireless tempera-
ture sensor mote near the front intake
fan, and a mote near the back exhaust
fan. Similarly, we deployed 6 ambient
temperature sensors along the ceiling
in a grid arrangement. Along with a
base station to transmit all the data,
this formed a 35 mote deployment.
Figure 3 shows the components of this
setup.

6.3 Using Que in DataCenter.NET

DataCenter.NET is a fitting scenario in which to test Que. In fact, DataCen-
ter.NET highlights the importance of each of the areas of concern when transi-
tioning from prototype to production which we previously outlined in Section 1:

Scale: Our initial prototype consists of 35 motes deployed on 3 racks. However,
we are facing a massive scale-up to tens of thousand racks and a proportional
increase in the number of wireless sensors.

Longevity: Energy requirements are not initially an issue. However, as we tran-
sition to production, battery replacement becomes an increasingly important
concern. In particular, the number of radio messages sent, an energy intensive
operation, becomes important to monitor.

Data: Our prototype is capable of delivering all of the data to the end users.
However, facilities managers are only interested in faithful temperature trends
as opposed to noisy and lossy raw readings.

Integration: Lastly, a wireless sensing system is but one part of many tools for
facility managers. This must integrate cleanly with their other preexisting tools
and infrastructure.

In the Section 7, we address how Que answers these questions we had about
our deployment. Section 7 also shows how it was often necessary to modify exist-
ing mote and microserver operator graphs because some amount of customization
was necessary. Hence, it was not feasible to use readily available off-the-shelf solu-
tions [9, 2].

348 D. Chu et al.

(a) Rack 1 (b) Rack 2 (c) Rack 3

Fig. 4. An entire rack, Rack 2, actuated simultaneously during the day. Notice the
strange decrease in temperature after the initial temperature increase, especially at
Rack 1. Later investigations revealed the involvement of the building thermostat AC,
underscoring the nontrivial dynamics of the seemingly simple test deployment.

Presently, we illustrate some example temperature traces in Figure 4. Three
subfigures 4(a), 4(b) and 4(c), each correspond to a rack of machines. For ex-
ample, Subfigure 4(a) corresponds to five machines Server A, B, C, D and E
whose physical arrangement corresponds to the vertical ordering of their plots.
For each machine, the red plot indicates the exhaust temperature measurements
and the blue plot indicates the intake temperature measurements across time.

In the experiment corresponding to Figure 4, all servers in Rack 2 are turned on
at 1:50 PM. As expected, this causes a universal rise in room temperature which
is seen at all racks. However, slightly after 1:55 PM, Racks 1 and 3 proceed to cool
down(!). Further investigation revealed that as the temperature rose, the building
thermostat sensed the change and actuated the building AC, causing a depression
in temperature. This effect was more heavily felt at Rack 1 then at Rack 3 because
the AC ventilation was much closer to Rack 1. This sort of complex interaction is
common, yet difficult to identify without a rich coverage of sensors.

7 Evaluation

We first built an application that we ran on the nodes in the lab data center
testbed. This application was previously described in Section 4 and shown in
Figure 1. The application simply collects temperature readings periodically, and
send these back to a base station where they are canonicalized into a standard
XML format. We ran this application for approximately eighteen days.

Next we evaluated Que with respect to DataCenter.NET in the four important
areas of concern for sensor networks that we have outlined: scale, longevity, data
and integration. For evaluation purposes, we compare each area to the original
base application of Figure 1; in an actual Que usage scenario, each iteration
would improve upon the former. While rarely providing the final word on any
single topic, we argue that Que delivers on its ability to retask and reevaluate
systems quickly. We cover the results of each area of concern in-depth below,
and illustrate how Que was applied.

7.1 Scale

Scaling up deployments introduces many new issues. Presently, we use Que to
address just one particular issue in this process: what density of spatial coverage

Que: A Sensor Network Rapid Prototyping Tool 349

is necessary in a production deployment? This has previously been formulated
as a theoretical optimization problem [18].

Our test environment, as described in Section 6, embeds motes in a wealth of
locations in the environment: six on the ceiling, and two per server, for an average
of ten motes per rack. While this finely captures transitions in temperature across
space, the number of sensors may be saturating the environment for the utility
of the information provided.

1 net = op en l o c a l (opgraph , . . .)
2 r e s u l t s = run (net , . . .)
3 z = myappconverter (r e s u l t s)
4 cc = c o r r c o e f (z)
5 p l o t c o r r s (cc)

Listing 1.2. Que script to compute correlat-
ions between monitoring nodes in the server
room. Some optional parameters have been
omitted.

(a) Clustered sensors (b) Weakly correlated
sensors

Fig. 5. Histogram visualization of node corre-
lations

The task is then to determine
which sensors to retain if one were
to scale to many thousands of racks.
We focus on a primitive to mutual
information criteria used in [18],
the correlation coefficients between
every pair of sensors. We are less
concerned with network costs since
a single-hop base station suffices for
all communication in our scenario.

Listing 1.2 and Figure 5 show
the steps we performed in Que to
drill down on this question, and the
results generated respectively. The
correlations between pairs of nodes
are illustrated in a 3D histogram
where darker intensities correspond
to stronger correlations. For exam-
ple, in Figure 5(a), two clusters
emerge: one which contains the ma-
jority (eight nodes) and another
that contains the minority (two nodes). The larger cluster corresponds to the
front and back of one rack during a period of time when no server in the rack
was active. The smaller cluster corresponds to two nodes associated with another
rackwhich did have servers activatedduring the investigatedperiod. Hence, we can
start to suspect that if the server workload is highly localized to particular racks,
then clusters emerge around nodes of the same rack. In Figure 5(b), we tested a
different workload that varied across racks. Here, no clear clusters immediately
emerge. While more thorough investigation is warranted to determine the optimal
configuration for various server workloads, Que’s ease of data analysis permitted
us to quickly gain valuable ballpark intuition on the scaling issue.

7.2 Data

The data is the key benefit that draws clients to use sensor networks. One pre-
requisite of providing data of interest is extracting first level base data from
noisy sensor measurements. In particular, data cleaning and calibration is often
a mundane but necessary step.

350 D. Chu et al.

Main OscM Sens

Timer

Uart

Leds

AM TCP

Rec

ToXml

Ewma

TinyOS MSRSense

Fig. 6. Operator graph with MSRSense-
based EWMA

There are two approaches to data
cleaning in Que for the data collec-
tion operator graph of Figure 1. The
first option is the MSRSense operator,
ewma. An operator graph involving ewma

is shown in Figure 6. Alternatively,
Que provides simple ewma as part of
the standard set of data analysis tools, in case MSRSense is not part of the
operator graph. Its use is shown in Listing 1.3.

1 net = op en l o c a l (opgraph , . . .)
2 r e s u l t s = run (net , . . .)
3 z = myappconverter (r e s u l t s)
4# ewma : c l e a n i n g
5 ewmaz = ewma(z)
6 p l o t r e s u l t s (z , emaz)

Listing 1.3. EWMA applied as data
processing script

We ran the latter data cleaning pro-
cedure and converted initial results
shown in Figure 7(a) to those shown in
Figure 7(b). This offered a significant
improvement in the usable data val-
ues, as evidenced by the reduction in
variance. The procedure involved no
more than a handful of scripting calls
shown in Lemma 1.3. Que is effective
at quickly performing data processing
that, once tuned in the scripting environment, can then be applied in a straight-
forward fashion as a operator on the actual running platform.

7.3 Longevity

(a) Without EWMA (b) With EWMA

Fig. 7. A sample time series of data with
simple EWMA data cleaning applied

Next, we investigate ways to improve
the longevity and reliability of our sys-
tem. While many methods to increase
system longevity and reliability are
possible, we focused on one in particu-
lar: we attempted to increase network
reliability by performing application-
level data reduction and decreasing
cross-traffic. In addition, this reduces
the energy spent transmitting mes-
sages.

Main TrigM Sens

Timer

Uart

Leds

AM TCP Rec ToXml

TinyOS MSRSense

Fig. 8. Operator graph of threshold-
triggered reporting

Our approach here is a moving
threshold reporting scheme: we con-
vert collection from a periodic event
to one in which data is only reported
if the measurements are some thresh-
old beyond the previous report. Our
main changes to the previous opera-
tor graphs was the replacement of the
OscM operator by the TrigM operator. This is shown in Figure 8. The corresponding
Listing 1.4 is also shown.

Que: A Sensor Network Rapid Prototyping Tool 351

1 net = op en l o c a l (opgraph , . . .)
2 r e s u l t s = run (net , . . .)
3 z = myappconverter (r e s u l t s)
4 p l o t r e s u l t s (z)

Listing 1.4. Event trigger script

When we ran this series of op-
erators, Que immediately produced
odd graphs, shown in Figure 9. In
this case, Que allowed us to quickly
identify an operator that behaved
strangely and produced nonsensical
results before we deployed into the
field.

7.4 Integration

Lastly, we are concerned with the lack of support testing end to end systems
with traditional sensor network prototyping systems. In the case of DataCen-
ter.NET, this means that a system controller should function as part of the
running simulation in an entirely integrated system.

Fig. 9. A bug revealed in trigger program

We explored this area by devel-
oping and deploying an open-loop
controller alongside our sensor net-
work. This controller assigns jobs to
servers in a predetermined fashion,
without input from the environment,
much like existing controllers used in
commercial data centers. At present,
this controller is a separate appli-
cation. As a next step, it is natu-
ral to incorporate the controller as
a MSRSense microserver operator. In
this way, it may be manipulated just
like any other operator in Que.

We have already tested the response of a realistic job load on this controller.
Figure 10(a) is a deployed Internet service workload trace representative of one
day. We scaled it appropriately to fully load our servers at peak requests.

The temperature fluctuations displayed by our controller are shown in
Figure 10. We note several features of this dataset, in particular the high degree

(a) 24-hour work-
load

(b) Rack 1 (c) Rack 2 (d) Rack 3

Fig. 10. Open-loop controller measurement results over day and half period. Results
for part of this time are shown. Notice the large irregularities in local server and rack
temperatures as jobs are scheduled without knowledge of environmental conditions.

352 D. Chu et al.

of fluctuation of the exhaust measurements, and also the uneven degree to which
servers are actuated. On several occasions, the fluctuations are on the order of
tens of degrees in several minute’s time, suggesting that the variance is indeed
very great in a very short time span. These results strongly encourage inves-
tigation of more informed closed-loop controllers that incorporate temperature
feedback. Quick and frequent guidance such as this that Que provides has been
very useful for guiding our systems integration rapid prototyping efforts.

8 Conclusion

We have presented Que, an environment in which promising prototypes may be
grown into substantial production deployments with relative ease through a sim-
ple yet flexible operator wiring and general-purpose scripting. We have argued
that a primary ingredient in healthy application maturation is fast diagnoses of
areas of concern as they arrise throughout the prototype process. Four areas of
concern which we focused on were scale, longevity, data and integration. With
Que, users can quickly assess application peformance in these areas. By lever-
aging several Que features such as unified system assembley, iterative data pro-
cessing, and high-level interfacing, we have explored our new DataCenter.NET
deployment, and validated the utility of Que as a general rapid prototyping tool.

References

1. How to choose the location for your next data center (it’s the power stupid). The
Data Center Journal (March 2006), http://www.datacenterjournal.com

2. Veriteq humidity and temperature mapping and validation with wireless data log-
gers (2007), http://www.veriteq.com/validation-data-loggers

3. 109th U.S. Congress. H.r. 5646: To study and promote the use of energy efficient
computer servers in the united states (2005–2006)

4. Arumugam, U.: Rapid Prototyping and Quick Deployment of Sensor Networks.
PhD thesis, Michigan State University, East Lansing, Michigan, USA (2006)

5. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B.,
Gruenwald, C., Torgerson, A., Han, R.: Mantis os: An embedded multithreaded
operating system for wireless micro sensor platforms. Mobile Networks and Appli-
cations 10(4), 563–579 (2005)

6. Buonadonna, P., Hellerstein, J., Hong, W., Gay, D., Madden, S.: Task: Sensor
network in a box. In: Proceedings of European Workshop on Sensor Networks
(2005)

7. Carlson, D.: Keynote address. In: SenSys 2006 (2006)

8. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S.,
Stoica, I.: The design and implementation of a declarative sensor network system.
In: SenSys 2007. 5th ACM Conference on Embedded Networked Sensor Systems
(to appear, November 2007)

9. Corporation, A.R.: Demo abstract: A new embedded web services experience for
wireless sensor networks. In: Proc. of 4th ACM Conference on Embedded Net-
worked Sensor Systems (2006)

http://www.datacenterjournal.com
http://www.veriteq.com/validation-data-loggers

Que: A Sensor Network Rapid Prototyping Tool 353

10. Elaine Cheong, E.A.L., Zhao, Y.: Viptos: A graphical development and sim-
ulation environment for tinyos-based wireless sensor networks. Technical Re-
port UCB/EECS-2006-15, EECS Department, University of California, Berkeley
(February 15, 2006)

11. Elson, J., Parker, A.: Tinker: A tool for designing data-centric sensor networks.
In: IPSN 2006. Proceedings of the fifth international conference on Information
processing in sensor networks, pp. 350–357. ACM Press, New York (2006)

12. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc
language: A holistic approach to networked embedded systems. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2003 (2003)

13. Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., Estrin, D.:
Emstar: A software environment for developing and deploying wireless sensor net-
works. In: 2004 USENIX Technical Conference, Boston, MA (2004)

14. Gnawali, O., Greenstein, B., Jang, K.-Y., Joki, A., Paek, J., Vieira, M., Estrin, D.,
Govindan, R., Kohler, E.: The tenet architecture for tiered sensor networks. In:
Sensys (2006)

15. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System
architecture directions for networked sensors. In: Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 93–104 (2000)

16. Hunter, J.D.: Matplotlib (2006), http://matplotlib.sourceforge.net
17. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular

router. In: The 17th Symposium on Operating Systems Principles (2000)
18. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor place-

ments: maximizing information while minimizing communication cost. In: IPSN
2006. Proceedings of the fifth international conference on Information processing
in sensor networks, pp. 2–10. ACM Press, New York (2006)

19. Lee, E.A.: Overview of the ptolemy project. Technical Report Technical Memoran-
dum No. UCB/ERL M03/25, EECS Department, University of California, Berkeley
(July 2, 2003)

20. Lee, E.A.: The problem with threads. Technical Report UCB/EECS-2006-1, EECS
Department, University of California, Berkeley (January 10, 2006)

21. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: Accurate and scalable simula-
tion of entire tinyos applications. In: SenSys 2003. Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems (2003)

22. Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems. In:
Second IEEE/CreateNet International Workshop on Broadband Advanced Sensor
Networks (Basenets) (November 2005)

23. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acquisitional
query processing system for sensor networks. In: TODS. Transactions on Database
Systems (March 2005)

24. Malmon, D.: Personal correspondence. In: United States Geological Survey (2006)
25. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,

P., Culler, D.: Marionette: Using rpc for interactive development and debugging of
wireless embedded networks. In: IPSN 2006. Proceedings of the fifth international
conference on Information processing in sensor networks, pp. 416–423. ACM Press,
New York (2006)

26. Whitehouse, K., Zhao, F., Liu, J.: Semantic streams: A framework for composable
inference over sensor data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006.
LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

http://matplotlib.sourceforge.net

	Que: A Sensor Network Rapid Prototyping Tool with Application Experiences from a Data Center Deployment
	Introduction
	Related Work
	Design Goals
	Example User Session
	System Architecture
	Operator Libraries
	Network Libraries
	Simulator
	Analysis Tools

	DataCenter.NET Deployment
	The Problem
	Our Approach
	Using Que in DataCenter.NET

	Evaluation
	Scale
	Data
	Longevity
	Integration

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

