
Activity Recognition from On-Body Sensors:

Accuracy-Power Trade-Off by Dynamic Sensor
Selection

Piero Zappi1, Clemens Lombriser2, Thomas Stiefmeier2, Elisabetta Farella1,
Daniel Roggen2, Luca Benini1, and Gerhard Tröster2

1 Department of Electronic Informatic and System,
University of Bologna, Italy

{pzappi,efarella,lbenini}@deis.unibo.it
www.micrel.deis.unibo.it

2 Wearable Computing Lab., ETH Zürich, Switzerland
{lombriser,stiefmeier,droggen,troster}@ife.ee.ethz.ch

www.wearable.ethz.ch

Abstract. Activity recognition from an on-body sensor network enables
context-aware applications in wearable computing. A guaranteed classi-
fication accuracy is desirable while optimizing power consumption to en-
sure the system’s wearability. In this paper, we investigate the benefits
of dynamic sensor selection in order to use efficiently available energy
while achieving a desired activity recognition accuracy. For this pur-
pose we introduce and characterize an activity recognition method with
an underlying run-time sensor selection scheme. The system relies on a
meta-classifier that fuses the information of classifiers operating on in-
dividual sensors. Sensors are selected according to their contribution to
classification accuracy as assessed during system training. We test this
system by recognizing manipulative activities of assembly-line workers
in a car production environment. Results show that the system’s lifetime
can be significantly extended while keeping high recognition accuracies.
We discuss how this approach can be implemented in a dynamic sensor
network by using the context-recognition framework Titan that we are
developing for dynamic and heterogeneous sensor networks.

1 Introduction

Wearable computing aims at supporting people by delivering context-aware ser-
vices [1]. Gestures and activities are an important aspect of the user’s context.
Ideally they are detected from unobtrusive wearable sensors. Gesture recognition
has applications in human computer interfaces [2], or in the support of impaired
people [3]. Developments in microelectronics and wireless communication enable
the design of small and low-power wireless sensors nodes [4]. Although these
nodes have limited memory and computational power, and may have robustness
or accuracy limitations [5,6], unobtrusive context sensing can be achieved by
integrating them in garments [7,8] or accessories [9].

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 17–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 P. Zappi et al.

In an activity recognition system, high classification accuracy is usually de-
sired. This implies the use of a large number of sensors distributed over the body,
depending on the activities to detect. At the same time a wearable system must
be unobtrusive and operate during long periods of time. This implies minimizing
sensor size, and especially energy consumption since battery technology tends
to be a limiting factor in miniaturization [10].

Energy use may be reduced by improved wireless protocols [11,12], careful
hardware selection [13], or duty cycling to keep the hardware in a low-power
state most of the time [14]. Energy harvesting techniques may also complement
battery power [15], although the unpredictability of energy supply typical of
harvesting makes it difficult to manage duty cycling schedules [16].

Activity recognition requires fixed sensor sampling rate and continuous sensor
node operation, since user gestures can occur at any time and maximum classifi-
cation accuracy is desired. Therefore adaptive sampling rate and unpredictable
duty cycling can not be used to minimize energy use. Current approaches typ-
ically rely on a small, fixed number of sensors with characteristics known and
constant over time [17]. Once one sensor runs out of energy the system is not
able to achieve its objective and maintenance is needed.

Here we investigate how to extend network life in an activity recognition sys-
tem, while maintaing a desired accuracy, by capitalizing on an redundant number
of small (possibly unreilable) sensors placed randomly over the user arms. We
introduce an activity recognition system with a metaclassifier-based sensor fu-
sion method that exploits the redundancy intrinsic in the sensor network. We
modulate the number of sensors that contribute to activity recognition at run-
time. Most sensor nodes are kept in low power state. They are activated when
their contribution is needed to keep the desired classification accuracy, such as
when active nodes fail or turn off due to lack of energy. This approach copes
with dynamically changing networks without the need for retraining and allows
activity recognition even in the presence of unexpected faults, thus reducing the
frequency of user maintenance. The algorithm can be easily parallelized to best
use the computational power of a sensor network. We show how this approach
fits the Titan framework that we are developing for the execution of distributed
context recognition algorithms in dynamic and heterogeneous wireless sensor
networks.

The paper is organized as follows. In sec. 2 we describe the activity recognition
algorithm with dynamic sensor selection. In sec. 3 we analyze the performance
of the system in terms of classification accuracy and system life time. In sec. 4
we describe the Titan framework and how the activity recognition algorithms fit
in it. We discuss results in sec. 5 and conclude in sec. 6.

2 Activity Recognition with Dynamic Sensor Selection

We introduce a method to recognize activities (gestures) from on-body sensors.
This method relies on classifier fusion to combine multiple sensor data and com-
prises a dynamic sensor selection scheme. It exploits the intrinsic redundancy

Activity Recognition from On-Body Sensors 19

in a network of small and inexpensive acceleration sensors distributed on the
body to achieve a desired recognition accuracy while minimizing the number
of used sensors. Gesture classification is performed on individual nodes using
Hidden Markov Models (HMM) [18]. A Naive Bayes classifier fuses these indi-
vidual classification results to improve classification accuracy and robustness.
This method is tested by recognizing the activities of assembly-line workers in a
car production environment. Activity recognition enables the delivery of context-
aware support to workers [19,17].

2.1 Metaclassifier for Activity Recognition

The activity recognition algorithm is based on a metaclassifier fusing the contri-
butions from several sensor nodes [20]. The sensor nodes comprise a three-axis
accelerometer to capture user motion (Analog Device ADXL330). Each axis of
the accelerometer is considered as an independent sensor. Fig. 1 illustrates the
activity recognition principle.

Fig. 1. Activity recognition architecture. Features extracted from the sensor data are
classified by competing Hidden Markov Models (HMM), each one trained to model
one activity class. The most likely model yields the class label. The labels are fused to
obtain an overall classification result. Two fusing scheme have been compared: naive
Bayesian and majority voting.

First on isolated instances, features are extracted from the raw acceleration
data. The features are the sign of the acceleration magnitude (positive, negative
or null). This is obtained by comparing the acceleration value with corresponding
thresholds (-400mg and +400mg)1. Each sample is thus converted in one out of
three possible symbols.

The features are then classified using discrete HMMs which model the gesture
dynamics in the feature space. HMMs, together with Dynamic Time Warping
1 Use of alternative features will be investigate in future works.

20 P. Zappi et al.

(DTW) [21] and neural networks [22], are a common approach to handle tempo-
ral dynamics of gestures. Our choice is motivated by previous work which showed
HMMs to be a good approach [17,23]. We use ergodic HMMs with 4 states. For
each accelerometer axis we train one HMM per class using the Baum-Welch al-
gorithm starting with 15 random initial models and selecting the one that shows
best classification accuracy on the training set. During activity recognition, the
HMMs compete on each input sequence. The HMM best modelling the input
sequence indicates the gesture class label. Training and evaluation of sequences
is done using the Kevin Murphy’s HMM Toolbox.

Finally, in order to end up with a single classification result we fuse the class
label output from each accelerometer using a naive Bayes technique. The naive
Bayes classifier is a simple probabilistic classifier based on the Bayes’ theorem
and the (strong) hypothesis that the input features are independent. The clas-
sifier combines the Bayes probabilistic model with a decision rule. A typical
decision rule is to classify an instance as belonging to the class that maximizes
the a posteriori probability [24].

Given the conditional model P (C|A0, A1, ..., An), where C denotes the class
and Ai n input attributes (in our case, the HMMs output from the sensors), we
can use the Bayes theorem to define:

P (C|A1, A2, ..., An) =
P (A1, A2, ..., An|C) P (C)

P (A1, A2, ..., An)

Posterior =
Likelihood × Prior

Marginal
(1)

Posterior is the probability of a certain class given the input sequence. Likelihood
is the conditional probability of a certain sequence given a certain class, Prior
is the prior probability of the selected class, and Marginal is the probability of
having the input sequence.

Applying the hypothesis of independence and the decision rule we obtain:

Cout(a1, a2, ..., an) = argmaxc
P (C = c)

∏n
i=1 P (Ai = ai|C = c)

P (A1 = a1, A2 = a2, ..., An = an)
(2)

As the denominator in equation 2 is identical for every class we only need
to compute the numerator for each class and find argmax. Also, since all the
classes in our experiments have the same probability, we do not need to compute
P (C = c). The Likelihood is thus the only parameter that has to be calculated.
This step is achieved during training by building the confusion matrix2 for each
HMM and defining P (Ai = ai|C = c) = tc

t , where tc is the number of training
instances for which the class C = c and the attribute Ai = ai and t is the number

2 A confusion matrix is a visualization tool typically used in supervised learning. Each
column of the matrix represents the classifier output (predicted class), while each
row represents the actual class of the instances. One benefit of a confusion matrix
is that it clearly shows whether the system is confusing two classes (i.e. commonly
mislabeling one as another).

Activity Recognition from On-Body Sensors 21

of training instances for class c. However, depending on the training data, for
some classes c we may not have a sample for which Ai = ai. In this situation,∏n

i=1 P (Ai = ai|C = c) of that class is always zero, despite the value of the
other input attribute. For this reason we used the M-estimate of the Likelihood
presented in Eq. 3, where p is an a priori probability of a certain value for an
attribute, while m is the number of virtual sample per class added to the training
set. In our experiment p = 1

10 and m = 1.

P (Ai = ai|C = c) =
tc + m p

t + m
(3)

As we deal with dynamic networks where the number of active nodes varies
during time, the Posterior probability is calculated including only the contribu-
tion of the active nodes in the network.

Feature extraction and classification can be computed in parallel on all the
sensor nodes, thus allowing the exploitation of intrinsic parallelism within the
sensor network, while sensor fusion is performed on a single node.

2.2 Evaluation of Activity Recognition Performance

In order to assess our approach, we consider the recognition of the activities of
assembly-line workers in a car production environment. We consider the recog-
nition of 10 activity classes (Table 1) performed in one of the quality assurance
checkpoint of the production plant. These classes are a subset of 46 activities
performed in this checkpoints [25].

Table 1. List of activity classes to recognize from body-worn sensors

Class Description

0 write on notepad

1 open hood

2 close hood

3 check gaps on the front door

4 open left front door

5 close left front door

6 close both left door

7 check trunk gaps

8 open and close trunk

9 check steering wheel

We evaluate the performance of the approach in terms of correct classification
ratio as a function of the number of nodes in the network. We perform a set of
experiments using 19 nodes placed on the two arms of a tester (10 nodes on the
right arm and due to a fault during the tests, 9 on the left arm) as illustrated in
Fig. 2. Since we do not want to rely on particular positioninig and orientation of
the nodes, the sensors were placed to cover the two arms without any particular

22 P. Zappi et al.

Fig. 2. Placements of the nodes on the right and left arm (dashed lines indicate nodes
placed behind the arm, numbers represent the unique ID of each node)

constraints, as it is difficult to achieve such a placement for sensors unobtrusively
integrated into people’s garments. The subject executed 19 times each gesture
listed in Table 1. Data from such trials has been recorded on a PC for subsequent
analysis. Cross validation techniques have been used to extend the validation test
up to all 19 instances. To perform cross validation, the input instances from the
sensors have been divided into 4 folds (3 made up of 5 instances for each class and
1 of 4 instances for each class). We built 4 distinct sets of HMMs and confusion
matrices. During the evaluation, for the classification of an instance we use a
model obtained from a training set that did not include that specific instance.

To evaluate the correct classification ratio as a function of the number of
nodes, we applied our algorithm to clusters of nodes with increasing size (one
to 19 nodes). Although we consider each accelerometer axis as an independent
sensor, the clusters are created in a nodewise manner. In other words a node is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of nodes

C
o

rr
ec

t
cl

as
si

fi
ca

ti
o

n
 r

at
io

Average
Minimum
Maximum

Fig. 3. Average, maximum and minimum correct classification ratio among random
cluster as a function of cluster size

Activity Recognition from On-Body Sensors 23

randomly selected and the contribution of its three axis is considered and fused.
The reason is that when a node runs out of energy, the contributions of all its
axes vanish. For each size we created 200 clusters from randomly selected sensor
nodes. For each cluster size the average, maximum and minimum classification
accuracy is recorded.

Figure 3 shows the correct classification ratio as a function of the cluster size.
We achieve 98% correct classification rate using all 19 nodes and, on average,
80% using a single node. For smaller clusters the nodes composing the cluster
influence the performance variance. For example, fusing the contributions from
nodes 1, 3, and 24 results in 97% correct classification ratio, a value close to the
accuracy that we can obtain using all the 19 nodes (Maximum curve in Fig. 3).
On the other hand, fusing the outputs from nodes 20, 22 and 25 results in 84%
accuracy (Minimum curve in Fig. 3) which is below what can be achieved using
only one “good” node, e.g. node 16 (86%).

2.3 Dynamic Sensor Selection

We introduce a dynamic sensor selection scheme to select at run-time the sen-
sors which are combined to perform gesture classification. This scheme seeks to
achieve a desired classification accuracy while prolonging the system lifetime by
minimizing the number of sensor used.

A minimum set of sensors to achieve the desired classification accuracy is first
selected. Then the sensor set is updated at run-time when a sensor is removed
from the network (e.g. due to failure or power loss). Since sensor nodes can
fail while a gesture is performed, the algorithm ensures that the loss of a any
single sensor still guarantees a performance above the desired minimum. In other
words, a cluster of size D must satisfy the following condition: all subclusters
of size D − 1 must still achieve the desired minimum correct classification ratio.
When a node fails, we first test wether the remaining nodes fulfill this condition.
If not, all the clusters of size D + 1 that can be built by adding one idle node
to the given cluster are tested. The one that achieves the best performance is
selected. If this new cluster fulfills the condition the system continues operation.
If not, another idle node is added to the cluster and the process is repeated until
a cluster that fulfills the condition is found or no idle nodes are left. In the latter
case the system is not able to achieve the desired performance anymore.

The training instances are used to computed the expected performance of new
clusters. This approach does not need system retraining, although it is valid only
as long as the training set is a good representation of the user’s gestures.

3 Characterization of Network Lifetime

Tests were done to assess the network lifetime (defined as the time until there
are no more sensors available to achieve the desired classification accuracy) by
simulating the evolution of the selected sensor set as nodes fail. For the sake of
generality, we do not rely on a particular power consumption or fault model for

24 P. Zappi et al.

network nodes, as it depends on the hardware and protocols chosen. In particular
we are not interested in specifically identifying how long each sensor uses its
radio or whether employs any kind of energy saving techniques. Instead we want
to assess how our dynamic sensor selection algorithm extends network lifetime
independently of these factors.

Since we assume that all nodes are identical and perform the same activity,
we model node lifetime as a random variable following a Gaussian distribution
with mean μ (arbitrary time units) and standard deviation as a percentage of
the mean: α×μ (α < 1)3. Network lifetime is then calculated as a multiple of μ.
The lifetime of all the nodes is fixed at the beginning of the simulation according
to this model.

The dynamic sensor selection algorithm then generates a subset of nodes able
to achieve a desired accuracy even if any node of the subset fails. Then at each
time step, we decrease the life of all the active nodes by one time unit. When
the lifetime of a node is over, we assume that it takes a controlling unit one
time unit to generate the next cluster. When no cluster matching the desired
performance requirement is found the lifetime of the system is reached.

With this lifetime model only μ influences the overall system lifetime. The
standard deviation has no effect on the overall system lifetime since augmenting
this parameter augments the probability to see both nodes with shorter and
longer lifetime thus compensating each other (see Table 2). In our tests we
selected α = 0.3.

Table 2. Network life as a function of the standard deviation chosen. Network life is
calculated as a multiple of the mean node life (µ).

Standard deviation (% of mean) 10 20 30 40 50 60

Average life (time) 4.010µ 4.154µ 3.986µ 4.049µ 4.134µ 4.136µ

We compare the system lifetime when the dynamic sensor selection scheme is
used to the system lifetime when all the sensors are used simultaneously (with
the same node life model). In Fig. 4 the results of one trial are illustrated when
the minimum accuracy required is 90%. The plot shows the performance of the
network in two situations: (i) all the 19 nodes are active at the same time (dashed
line); (ii) only a subset is used (continuous line). Since the objective of the net-
work is to keep performances above 90% it can be considered expired when, due
to node faults, is not possible to find a subset of nodes able to achieve such
accuracy. Using all the 19 nodes together, the starting performance is higher,
but quickly drops as the average node life (μ) is reached. With the dynamic
sensor selection scheme, as the nodes fail (drops in the continuous line) they are
replaced by inactive nodes, thus keeping the minimum required performance.
Even when nodes fail, the performance never drops below the fixed threshold.

3 The consequences of using other distribution to model the node lifetime will be
explored in the future.

Activity Recognition from On-Body Sensors 25

0 1 µ 2 µ 3 µ 4 µ 5 µ
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Network Life (time)

C
o

rr
ec

t
cl

as
si

fi
ca

ti
o

n
 R

at
io

Clustering
All nodes

Fig. 4. Performance of the network versus time in the case of 90% minimum correct
classification ratio. The network expires when its accuracy decreases under the fixed
threshold (horizontal line at 0.9). Using all 19 sensors together results in a shorter life
(dashed line), slightly above µ, while using dynamic sensor selection increases network
life above 4µ. In the latter case, when a node fails, the performance never decreases
below the fixed minimum.

0 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7 µ 8 µ
0.8

0.85

0.9

0.95

1

Network Life (time)

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n
 R

at
io

0 1 µ 2 µ 3 µ 4 µ 5 µ 6 µ 7 µ 8 µ
0.75

0.8

0.85

0.9

0.95

1

Network Life (time)

C
o

rr
ec

t
C

la
ss

if
ic

at
io

n
 R

at
io

Fig. 5. Performance of the network versus time in the case that 85% (top) and 80%
(below) minimum correct classification ratio

With a minimum classification accuracy of 90% the dynamic sensor selection
scheme leads to a system lifetime about four times longer than when all the
nodes are active. Network lifetime increases when the the minimum classification

26 P. Zappi et al.

80 85 90 95
1 µ

2 µ

3 µ

4 µ

5 µ

6 µ

7 µ

8 µ

Minimum accuracy required (%)

N
et

w
o

rk
 L

if
e

(t
im

e)

Fig. 6. Network life as a function of the minimum accuracy required

ratio is reduced. Fig. 5 shows the network lifetime for a minimum classification
ratio of 80% and 85%. We performed 4 sets of 10 tests each one with increasing
minimum accuracy required and calculated the average network life for each
set. Fig. 6 shows that the average network life increases from around 2μ when
minimum accuracy is 95% up to more than 7μ when minimum accuracy is 80%.

Without dynamic sensor selection all the sensors are used at the same time
and the minimum classification accuracy does not play a role. As the nodes
approach their average lifetime μ, they will fail within a short time window
(related to the lifetime variance).

In Fig. 7 we illustrate (dark spots) how the network evolves over time. The
size of clusters tends to increase over time. This evolution is explained by the fact
that the algorithm always looks at the smallest cluster that satisfies the required
accuracy. Once is not possible to find a cluster of the minimum size, the number
of nodes is increased. Note also, according to our model, the life of the nodes
varies according to a gaussian distribution with a standard deviation equal to
30% of the mean value.

Nodes

T
im

e

Start

1 μ

2 μ

3 μ

4 μ

5 μ

6 μ

7 μ

Stop
0 1 2 3

Start

1 μ

2 μ

3 μ

4 μ

5 μ

6 μ

7 μ

 Stop

Number of nodes

T
im

e

A)

Nodes

e
miT

Start

Stop
0 2 4 6

Start

Stop

B)

e
miT

Fig. 7. Evolution of the network. On the left, in dark, are the active nodes at a certain
time highlighted. On the right, the number of active nodes at a certain time is shown.
A) 80% minimum accuracy. B) 90% minimum accuracy.

Activity Recognition from On-Body Sensors 27

4 Implementation Using Tiny Task Networks (Titan)

The algorithm described above needs to be mapped on a wireless sensor network.
The Titan framework that we are developing for context recognition in hetero-
geneous and dynamic wireless sensor networks can be used for this purpose [26].
We develop Titan as part of the ongoing e-SENSE project as a tool to enable
and explore how context awareness can emerge in a dynamic sensor network.
Titan simplifies the algorithm description, automates data exchange between
selected sensor nodes, and adapts execution to dynamic network topologies. It
thus qualifies for the implementation of the algorithm presented before.

Most context recognition algorithms can be described as a data flow from
sensors, where data is collected, followed by feature extraction and a classifica-
tion algorithm, which produces the context information. Within Titan, context
recognition systems are represented as Task Graphs. It offers for each processing
step (sampling, feature extraction, and classification) a set of predefined tasks.
A task is usually a simple signal processing function, such as a filter, but may
also be a more complex algorithm such as a classifier. A context recognition algo-
rithm can be composed from those modular building blocks, which are provided
by the nodes participating in the network.

A set of tasks are programmed into the sensor network nodes as a Task Pool.
These tasks are instantiated when they are needed (i.e. they use RAM and CPU
cycles only when they are used by a Task Graph). In a heterogeneous network,
node processing power may vary, and nodes with higher processing power can
provide more complex Task Pools than simpler nodes.

Figure 8 shows the Titan architecture and illustrates how a classification task
graph is distributed on the sensor network; the Task Graph Database contains the
classification algorithm description containing sensor tasks Si, feature tasks Fi, a
classification task C, and an actuator A1 receiving the end result. Upon request
to execute the algorithm, the Network Manager inspects the currently available
nodes in the network, and decides on which node to instantiate what tasks,

Network Manager

Task Graph Database

Task Pool

Node 2

Task
Manager

Task Pool

Node 1

Task
Manager

S1 S2

F1 F2 F3

C

A1

Task Pool

Node 3

Task
Manager

S1

F1 F2

S2 F3

C A1

S1

F1 F2

S2

F2 F3

C A1

F1

Fig. 8. Titan configures an application task graph by assigning parts of the graph to
participating sensor nodes depending on their processing capabilities

28 P. Zappi et al.

such as to minimize processing load, overall power consumption, or maximise
network lifetime. The Network Manager then sends a configuration message to
the Task Managers on the sensor nodes, which instantiate the tasks on the local
node. The Task Manager assigns a share of dynamic memory to the tasks for
their state information and configures the connections between tasks, including
transmitting data to other nodes.

During execution of the task graph, the Network Manager receives error mes-
sages from tasks or sensor nodes, and checks whether all participating sensor
nodes are still alive. If changes to the current configuration are required, it
adapts the distribution of the task graph on the network.

Titan provides several advantages. Ease of use, since a designer can describe
his context recognition algorithm simply by interconnecting different tasks and
selecting a few configuration parameters for those tasks. Portability, because it
is based on TinyOS [27] which has been ported to a range of sensor network
hardware and due to the abstraction of tasks, it is able to run on heterogeneous
networks. Flexibility and speed, since it can reconfigure nodes in less than 1ms
in order to quickly react to changes in dynamic sensor networks.

The meta classifier with dynamic sensor selection presented above can be in-
corporated into Titan by dividing it into a set of tasks that can be instantiated
on different nodes. In particular, we define three new tasks: 1) a “gesture classi-
fication” task, which implements the HMM algorithm, 2) a “meta classification”
task that performs Bayesian inference and decides the gesture class, 3) a “dy-
namic sensor selection” task that defines the set of sensors contributing to the
meta classification task.

The initial cluster of nodes is created by the dynamic sensor selection task.
The Network Manager instantiates on each of the nodes within this cluster the
gesture classification task. The system runs as-is until a node fails (i.e. runs
out of power). When the meta classification tasks senses that a node fails to
send data it sends an error message to the Network Manager. The Network
Manager instantiates the dynamic sensor selection task on a device with sufficient
computational power (PDA, mobile phone), and then adapts the configuration
of the nodes as needed. Since the cluster can tolerate the failure of any one of
his nodes and guarantee the desired classification performance, the system can
work continuously even when the dynamic sensor selection task is running. This
relaxes the time constraint on this task and allows relatively complex clustering
algorithms for the dynamic sensor selection task.

The task of the Network Manager for running the presented distributed ges-
ture recognition algorithm is light-weight. To remember the current configuration
of the participating nodes, it has to store just 1 byte for the node ID, 1 byte
for their status (active,failed,not used,meta classifier), and a single byte for the
current cluster size. This amounts to 39 bytes of storage for running the gesture
recognition algorithm on our example of 19 nodes. The processing time is lim-
ited as well, as it just has to generate a small number of configuration messages
at every update of the network. We are thus confident that the algorithm pre-
sented here is able to run on sensor network nodes, with the exception of the

Activity Recognition from On-Body Sensors 29

non-optimized dynamic sensor selection task which runs on a PDA or mobile
phone.

5 Discussion

We have shown that by combining the fusion of classifier outputs operating on
single sensors with a dynamic sensor selection scheme it is possible to extend
the network lifetime while still achieving a minimum desired accuracy.

This technique may be easily used to adjust the number of sensors according
to dynamically changing application constraints. Such change can be adopted as
a consequence of changes in the user context (i.e. change in user location).

Active sensors may also be selected according to other criteria, such as the
performance of a node as a function of the gesture. If we integrate information
from the environment with the data of the sensor network, we may identify
a subset of gestures that are most likely performed at a certain time. Thus
active nodes may be selected among those which promise better classification
performances only on that subset of gestures. However, since any change in
configuration requires a set of messages to be sent among the nodes of the
network, further investigation must validate this choice.

This metaclassifier is highly parallelizable and thus well suited for wireless
sensor networks. Computation is shared among all active sensor nodes and none
of the them is a single point of failure of the whole system. This is very important
as we consider devices prone to fault or operating in environmental conditions
that may severely alter the topology of the network.

Our activity recognition algorithm can find similar application in other fields
of research. For example, sensor selection techniques try to extend network life
by using a subset of nodes able to achieve the minimum desired performances.
Such techniques are mainly used in environment monitoring [28] where dense
networks cover the area of interest and sensors coverage area are overlapped.

Clustering is a fundamental research topic in sensor networks as it makes it
possible to guarantee a basic level of system performance in presence of a large
number of dynamically changing nodes [29]. Clustering algorithms vary depend-
ing on their application, such as guaranteeing certain latency, or balancing the
activity among nodes and reducing power consumption. Energy aware cluster-
ing algorithms typically aim to reduce power consumption of the nodes either by
reducing the messages sent over the wireless link by aggregating redundant data
[30] or by keeping nodes in a low power state when there are other resources
able to provide the same information [31].

Another research area closer to our work is feature selection. Feature selection
includes a variety of techniques that aim to reduce the dimensionality of the input
instances of a classifier. Some of its objectives are: reducing the measurement
and storage requirements, reducing training and utilization times, defying the
curse of dimensionality to improve prediction performance [32]. If we consider
the HMM ouput as features, our approach may also be seen as a feature selection
technique: since we dynamically select only a subset of the available ones.

30 P. Zappi et al.

Energy scavenging techniques can also take advantages from our approach.
In fact now the nodes can rely on long periods when the application does not
need their contribution. In such period they can collect energy and this relaxes
the constraints on energy consumption due to the limited amount of energy that
can be harvested from the environment. For example we showed an example of
a network whose lifetime was extended by a factor 4 while still achieving 90%
correct classification ratio. Since the average node life is one fourth of the total
network life, each node may rely on three times its average life in order to harvest
energy.

6 Conclusion

Wearable computing seeks to empower users by providing them context-aware
support. Context is determined from miniature sensors integrated into garments
or accessories. In a general setting the sensor network characteristics may change
in unpredictable ways due to sensor degradation, interconnection failures, and jit-
ter in the sensor placement. The use of a dense mesh of sensors distributed on the
body may allow to overcome these challenges through sensor fusion techniques.
Since such systems must remain unobtrusive, the reduction of node dimension
and node interconnection is of high importance. Wireless sensor networks help
achieving this unobtrusiveness since they do not require any wire connection.
However, this implies that each sensor node must be selfpowered. In order to
reduce obtrusiveness, the battery dimension must be kept at minimum, which
results in low power availability.

Energy aware design aims to extend sensor nodes life by using low power
devices and poweraware applications. Poweraware applications typically rely on
duty cycling: they reduce the amount of time when the radio is active, and they
increase the amount of time when the node can be placed in a low power state.
In wearable computing, unpredictable duty cycles are proscribed. We described
a different approach to extend network life while achieving desired accuracy.
We capitalized on the availability of large number of nodes to implement a
dynamic sensor selection scheme together with a metaclassifier that performs
sensor fusion and activity recognition. This technique copes with dynamically
changing number of sensor without need to retrain the system.

The method minimizes the number of nodes necessary to achieve a given
classification ratio. Active nodes recognize locally gestures with hidden Markov
models. The output of active nodes is fused by a naive Bayes metaclassifier. In-
active nodes are kept in a low power state. Once an active node fails the system
activates one or more additional nodes to recover the initial performance. Com-
pared to a system where all sensor nodes are continuously active, our approach
can extend up to 4 times the network life while reaching 90% correct classifica-
tion ratio, and up to 7 times while reaching 80% correct classification ratio. This
method is highly parallelizable and well suited for wireless sensor networks.

We described how this method fits within the Titan framework that we
develop to support context-aware applications in dynamic and heterogeneous

Activity Recognition from On-Body Sensors 31

sensor networks. Titan allows fast network configuration and is well suited for
our technique as it allows to easily exploit network resources dynamically.

We now have demonstrated the advantage of a dynamic sensor selection
scheme for accuracy-power trade-off in activity recognition. The implementation
of this algorithm on wireless sensor nodes is still an open point. With qualita-
tively identical results, alternate classifiers and sensor selection methods that
minimize computational power may be investigated. We also plan to extend the
current method in order to be able to increase the inital number of nodes with
on-line learning. Other future works can explore the use of an heterogeneous
network that include different kind of sensors such as strain sensors or tilt sen-
sors. Finally energy scavenging techniques benefit from our activity recognition
algorithm: more time is available to harvest energy thanks to dynamic sensor
selection. Evaluation of network performance with dynamically changing power
availability needs to be carried out.

Acknowledgment

This work was supported by EU project WearIT@Work, contract number
004216, http://www.wearitatwork.com, and the 6th European Framework
Programme Integrated Projects e-SENSE, contract number 027227, http://
www.ist-e-SENSE.org.

References

1. Lukowicz, P., Junker, H., Staeger, M., von Bueren, T., Troester, G.: WearNET:
A distributed multi-sensor system for context aware wearables. In: Borriello, G.,
Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer,
Heidelberg (2002)

2. Kallio, S., Kela, J., Korpipää, P., Mäntyjärvi, J.: User independent gesture interac-
tion for small handheld devices. International Journal of Pattern Recognition and
Artificial Intelligence 20(4), 505–524 (2006)

3. Hernandez-Rebollar, J.L.: Gesture-driven american sign language phraselator. In:
ICMI 2005. Proceedings of the 7th international conference on Multimodal inter-
faces, pp. 288–292. ACM Press, New York (2005)

4. Benini, L., Farella, E., Guiducci, C.: Wireless sensor networks: Enabling technology
for ambient intelligence. Microelectron. J. 37(12), 1639–1649 (2006)

5. Watteyne, T., Augé-Blum, I., Ubéda, S.: Dual-mode real-time mac protocol for
wireless sensor networks: a validation/simulation approach. In: Proceedings of the
first international conference on Integrated internet ad hoc and sensor networks
(2006)

6. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wire-
less Communications 11(6), 54–61 (2004)

7. Van Laerhoven, K., Gellersen, H.W.: Spine versus porcupine: a study in distributed
wearable activity recognition. In: McIlraith, S.A., Plexousakis, D., van Harmelen,
F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 142–149. Springer, Heidelberg (2004)

8. Harms, H., Amft, O., Tröster, D.R.G.: Smash: A distributed sensing and process-
ing garment for the classification of upper body postures. In: Third interational
conference on body area networks (submitted, 2008)

32 P. Zappi et al.

9. Roggen, D., Bharatula, N.B., Stäger, M., Lukowicz, P., Tröster, G.: From sensors
to miniature networked sensorbuttons. In: INSS 2006. Proc. of the 3rd Int. Conf.
on Networked Sensing Systems, pp. 119–122 (2006)

10. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics.
IEEE Pervasive Computing 4(1), 18–27 (2005)

11. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wire-
less sensor networks. In: SenSys 2003: Proceedings of the 1st international confer-
ence on Embedded networked sensor systems, pp. 171–180. ACM Press, New York
(2003)

12. Zigbee Alliance: Zigbee specification (2006), http://www.zigbee.org

13. Hill, J., Culler, D.: Mica: A Wireless Platform for Deeply Embedded Networks.
IEEE Micro 22(6), 12–24 (2002)

14. Dai, L., Basu, P.: Energy and delivery capacity of wireless sensor networks with
random duty-cycles. In: IEEE International Conference on Communications, pp.
3503–3510 (to appear)

15. Moser, C., Thiele, L., Benini, L., Brunelli, D.: Real-time scheduling with regen-
erative energy. In: ECRTS 2006. Proceedings of the 18th Euromicro Conference
on Real-Time Systems, pp. 261–270. IEEE Computer Society Press, Washington
(2006)

16. Vigorito, C.M., Ganesan, D., Barto, A.G.: Adaptive control of duty cycling in
energy-harvesting wireless sensor networks. In: SECON 2007. 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, June 18–21, 2007, pp. 21–30 (2007)

17. Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Tröster, G.: Combining motion
sensors and ultrasonic hands tracking for continuous activity recognition in a main-
tenance scenario. In: 10th IEEE International Symposium on Wearable Computers
(2006)

18. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

19. Maurtua, I., Kirisci, P.T., Stiefmeier, T., Sbodio, M.L., Witt, H.: A wearable com-
puting prototype for supporting training activities in automative production. In:
IFAWC. 4th International Forum on Applied Wearable Computing (2007)

20. Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity
recognition from on-body sensors by classifier fusion: Sensor scalability and robust-
ness. In: 3rd Int. Conf. on Intelligent Sensors, Sensor Networks, and Information
Processing (2007)

21. Ming Hsiao, K., West, G., Vedatesh, S.M.K.: Online context recognition in mul-
tisensor system using dynamic time warping. In: Proc. of the 2005 International
Conference on Intelligent Sensors, Sensor Networks and Information Processing,
pp. 283–288 (2005)

22. Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part C 37(3), 311–324 (2007)

23. Ganti, R.K., Jayachandran, P., Abdelzaher, T.F., Stankovic, J.A.: Satire: a software
architecture for smart attire. In: MobiSys, pp. 110–123 (2006)

24. Rish, I., Hellerstein, J., Thathachar, J.: An analysis of data characteristics that
affect naive bayes performance. In: ICML-01 (2001)

25. Stiefmeier, T., Roggen, D., Tröster, G.: Fusion of string-matched templates for con-
tinuous activity recognition. In: 11th IEEE International Symposium on Wearable
Computers, pp. 41–44 (October 2007)

http://www.zigbee.org

Activity Recognition from On-Body Sensors 33

26. Lombriser, C., Stäger, M., Roggen, D., Tröster, G.: Titan: A tiny task network for
dynamically reconfigurable heterogeneous sensor networks. In: KiVS. Fachtagung
Kommunikation in Verteilten Systemen, pp. 127–138 (2007)

27. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System archi-
tecture directions for network sensors. In: Architectural Support for Programming
Languages and Operating Systems (November 2000)

28. Chen, H., Wu, H., Tzeng, N.F.: Grid-based approach for working node selection in
wireless sensor networks. In: IEEE International Conference on Communications,
June 20–24, 2004, vol. 6, pp. 3673–3678 (2004)

29. Yu, J.Y., Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks.
IEEE Communications Surveys 7(1), 32–48 (2005)

30. Pham, T., Kim, E.J., Moh, M.: On data aggregation quality and energy efficiency
of wireless sensor network protocols - extended summary. In: Proceedings of the
First International Conference on Broadband Networks, pp. 730–732 (2004)

31. Guo, Y., McNair, J.: An adaptive sleep protocol for environment monitoring using
wireless sensor networks. In: Communications and Computer Networks, pp. 1–6
(2005)

32. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

	Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection
	Introduction
	Activity Recognition with Dynamic Sensor Selection
	Metaclassifier for Activity Recognition
	Evaluation of Activity Recognition Performance
	Dynamic Sensor Selection

	Characterization of Network Lifetime
	Implementation Using Tiny Task Networks (Titan)
	Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

