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Abstract. By using Elliptic Curve Cryptography (ECC), it has been re-
cently shown that Public-Key Cryptography (PKC) is indeed feasible on
resource-constrained nodes. This feasibility, however, does not necessar-
ily mean attractiveness, as the obtained results are still not satisfactory
enough. In this paper, we present results on implementing ECC, as well
as the related emerging field of Pairing-Based Cryptography (PBC), on
two of the most popular sensor nodes. By doing that, we show that PKC
is not only viable, but in fact attractive for WSNs. As far as we know
pairing computations presented in this paper are the most efficient re-
sults on the MICA2 (8-bit/7.3828-MHz ATmega128L) and Tmote Sky
(16-bit/8.192-MHz MSP-430) nodes.

Keywords: Wireless Sensor Networks, Elliptic Curve Cryptography,
pairings, cryptographic primitives, implementation.

1 Introduction

Wireless sensor networks (WSNs) are ad hoc networks comprised mainly of small
sensor nodes with limited resources and one or more base stations (BSs). Usually
a BS is a much more powerful laptop-class node that connects the sensor nodes
to the rest of the world [1,2]. WSN’s are used for monitoring purposes, and
provide information about the area being monitored to the rest of the system.
Application areas range from battlefield reconnaissance and emergency rescue
operations to surveillance and environmental protection.

Like any wireless ad hoc network, WSNs are vulnerable to many different
attacks [3,4]. Besides the well-known vulnerabilities due to wireless communica-
tion and their distributed nature, WSNs face additional problems. Sensor nodes
are usually small, cheap devices that are unlikely to be made tamper-resistant
or tamper-proof and after deployment they are left unattended which makes
them easily accessible to malicious parties. It is therefore crucial to add security
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to WSNs, especially in those applications where nodes are distributed in open
environments.

Until recently it used to be thought that Public-Key Cryptography (PKC)
was impractical in resource-constrained nodes and that security primitives must
depend only on symmetric cryptosystems (e.g., RC5 [5] and SkipJack [6]). Al-
though more efficient than PKC, symmetric cryptosystems suffer from some
drawbacks (e.g., the key distribution problem1) which make them not well-suited
for every WSN application.

This fact has motivated work on how to compute PKC efficiently in sensor
nodes (e.g., [7,8,9,10]). The problem is challenging because those tiny devices
have very limited battery life and we cannot afford to spend too much pro-
cessor time on additional computations. By using Elliptic Curve Cryptography
(ECC) [11,12] it has been shown (e.g., [8,9]) that PKC is indeed feasible in
WSNs. This is because ECC demands considerably less resources than more
conventional PKC (e.g. RSA/DSA), for a given security level. This feasibility,
however, does not necessarily mean attractiveness, as the results presented so
far are still too time consuming for some applications.

In this paper, we present updated results on implementing ECC, and PBC,
over two of the most popular WSN platforms. By doing that, we show that
these types of PKC are not only viable, but in fact attractive for resource-
constrained sensor nodes. More specifically, we present results on computing
point multiplication and pairings over MICA2 and Tmote Sky nodes. Our main
contributions are

1. To show that ECC and PBC based PKC is not only viable, but in fact
efficient for resource-constrained nodes;

2. To present the first known implementation of pairings over binary field for
sensor networks.

Our code is based on Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL) [13], which is a publicly available library written in C, and
thus can be easily ported to other devices.

The remainder of this work is organized as follows. In Section 2, we discuss
related work. In Section 3, we introduce some basic ECC and PBC concepts.
Implementation issues and performance results are presented in Sections 4 and 5,
respectively. Finally, we conclude in Section 6.

2 Related Work

WSNs are a subclass of MANETs, and much work (e.g., [14,15]) has been pro-
posed for securing MANETs in general. These studies are not applicable to
WSNs because they assume laptop or palmtop-level resources, which are or-
ders of magnitude larger than those available in WSNs. Conventional public key

1 The key distribution problem is the problem of how to set up secret keys between
communicating nodes.
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based methods are an example of a type of application which, while practical in
a MANET, would be impracticable for a WSN.

Among the studies specifically targeted to resource-constrained WSNs, some
(e.g,[4,3]) have focused on attacks and vulnerabilities. Wood and Stankovic [4]
surveyed a number of denial of service attacks against WSNs, and discussed
some possible countermeasures. Karlof and Wagner [3] focused on routing layer
attacks, and showed how some of the existing WSN protocols are vulnerable to
these attacks.

Many security proposals for WSNs (e.g., [5,16,17,18,19,20,21,22,23,24]) have
focused on efficient key management of symmetric encryption schemes.
Perrig et al. [5] proposed SPINS, a suite of efficient symmetric key based se-
curity building blocks. Eschenauer et al. [16] looked at random key predistribu-
tion schemes, which provoked a large number of follow-on studies [25]. In [17]
Zhu et al. proposed LEAP, a rather efficient scheme based on local distribution
of secret keys among neighboring nodes.

The studies specifically targeted to PKC have tried either to adjust con-
ventional algorithms (e.g. RSA) to sensor nodes, or to employ more efficient
techniques (e.g. ECC) in this resource-constrained environment. All the seminal
papers of Watro et al. [7], Gura et al. [8], and Malan et al. [9] have used the AT-
mega128L microprocessor as the implementation platform. Watro et al. [7] pro-
posed TinyPK. To perform key distribution, TinyPK assigns RSA efficient public
operations to nodes and RSA expensive private operations to better equipped
external parties. Gura et al. [8] reported results for ECC and RSA primitives on
the ATmega128L and demonstrated convincingly that the former outperforms
the latter. Their ECC implementation is based upon arithmetic in the prime
finite field GF (p). In order to speed up integer multiplication in this field they
came up with the idea for the hybrid multiplication. In our work we exploit
improvements to this method to make it even more efficient on both considered
platforms. Malan et al. [9] have presented the first ECC implementation over
binary fields GF (2m) for sensor nodes. They used polynomials basis and pre-
sented results for the ECDH key exchange protocol. More recently, Liu et al.
developed TinyECC [26], an ECC library that provides elliptic curve arithmetic
over prime fields and uses inline assembly code to speed up critical operations on
the ATmega128 processor. Lately, they have also added support for the MSP430
and XScale platforms.

Some of the research in cryptographic implementation has focused specifi-
cally on the MSP430 processor. Guajardo et al. [27] have shown that scalar
point multiplication over prime fields can be achieved efficiently without any
stored/precomputed values. They used the MSP430x33x family of microproces-
sors which is not used in current WSN motes. Wang et al. [28] worked with the
TelosB mote [29], which also features the MSP430 processor. They presented
results for basic ECC operations over prime fields, such as point addition, point
doubling and point multiplication.

In the literature we can find some papers (e.g [30,31,32,33,34,35,10]) that envi-
sion WSNs as a scenario in which to exploit Pairing-based Cryptography (PBC).
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Of those related to pairing implementation on sensor nodes, McCusker et al. [33]
have focused on a hardware solution that both implements primitives for com-
puting the Tate pairing and meets the strict energy constraints of sensor nodes.
Doyle et al. [32] presented simulation results on pairings on the ARM7TDMI [36]
processor. This platform, however, is considerably more powerful than any of the
devices that are used in WSN’s at the moment. In [35] Oliveira et al. focused on
the ATmega128L and described the possibility of implementing the Tate pairing
on this platform. Nevertheless no actual implementation was presented. Finally,
Oliveira et al. [10] recently presented TinyTate and showed that software imple-
mentation of PBC is indeed viable in resource-constrained nodes, even though
its level of security was not adequate for all applications. TinyTate also targets
the ATmega128L and uses TinyECC as the underlying library.

3 Concepts

ECC was independently introduced by Miller [11] and Koblitz [12]. As opposed to
conventional PKC (e.g. RSA/DSA), there is no sub-exponential algorithm known
to solve ECC’s underlying hard problems and ECC can thus offer equivalent
security using smaller parameters [37].

Cryptography using Pairings (PBC), on the other hand, is an emerging field
related to ECC which has been attracting the interest of international cryptog-
raphy community, since it enables the design of original cryptographic schemes
and makes well-known cryptographic protocols more efficient. Pairings, such as
the Weil pairing, were first used in the context of cryptanalysis [38], but their
first use in cryptography is due to the works of Sakai [39] et al. and Joux [40].

In this section we briefly introduce some ECC and PBC concepts. For more
information on this issues please refer to, for instance, López et al. [37] and
Galbraith [41]. In what follows, let E/Fq be an elliptic curve over a finite field
Fq, and E(Fq) be the group of points on this curve, and #E(Fq) be the group
order.

Bilinear Pairing. Let � be a positive integer. Let G1 and G2 be additively-
written groups of order � with identity O, and let GT be a multiplicatively-
written group of order � with identity 1.

A bilinear pairing is a computable, non-degenerate function

e : G1 × G2 → GT .

The most important property of pairings in cryptographic constructions is the
bilinearity, namely:

∀P ∈ G1, ∀Q ∈ G2 and ∀ a, b ∈ Z
∗, we have

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P, Q)b = e(P, Q)ab.

In practice, the groups G1 and G2 are implemented using a group of points
on certain special elliptic curves and the group GT is implemented using a mul-
tiplicative subgroup of an extension of the underlying finite field. For certain
families of supersingular elliptic curves we have G1 = G2.
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Discrete Logarithm Problem. Let G = 〈α〉 be multiplicatively-written group
of order n with generator α and let β be an element of G. The Discrete Logarithm
Problem (DLP) is to compute an integer l such that β = αl.

Elliptic Curve Discrete Logarithm Problem. Elliptic Curve Discrete Log-
arithm Problem (ECDLP) is: given a point P of order n and Q ∈ 〈P 〉, compute
l ∈ [0, n− 1] such that Q = lP .

Elliptic Curve Diffie-Hellman Problem. Elliptic Curve Diffie-Hellman
Problem (ECDHP) is: given a point P , [a]P , and [b]P for some a, b ∈ Z

∗, com-
pute [ab]P .

Embedding Degree. A subgroup G of E(Fq) is said to have an embedding
degree k with respect to � if k is the smallest integer such that � | qk − 1.

Bilinear Diffie-Hellman Problem. Most of the pairing applications rely on
the hardness of the following problem for their security [41]: given P , [a]P , [b]P ,
and [c]P for some a, b ∈ Z

∗, compute

e(P, P )abc.

This problem is known as the Bilinear Diffie-Hellman Problem. The hardness
of the Bilinear Diffie-Hellman Problem depends on the hardness of the Diffie-
Hellman problems both on E(Fq) and in Fqk . So, for most pairing applications
the parameters q, �, and k must satisfy the following security requirements:

1. � must be large enough so that solving the ECDLP in an order-� subgroup
of E(Fq) is infeasible (e.g. using Pollard’s rho algorithm);

2. k must be large enough so that solving the DLP in Fqk is infeasible (e.g.,
using the index-calculus method).

The Tate Pairing. Let E(Fq) contain a subgroup of prime order � coprime
with q and with embedding degree k. (In most applications, � is also a large
prime divisor of #E(Fq).) The Tate pairing is the bilinear pairing

ê : E(Fqk)[�] × E(Fqk)/[�]E(Fqk) → F
∗
qk/(F∗

qk)�.

4 Implementation

Our implementation of Elliptic Curve primitives targets two different platforms
the 8-bit Atmel ATmega128L and the 16-bit Texas Instruments MSP430F1611,
as these are most commonly used processors in Wireless Sensor Network nodes
nowadays. Although both microcontrollers have RISC architectures, they differ
in many ways. ATmega128L [42] has a very modern advanced RISC architecture
where most of 133 instructions are executed in a single clock cycle. In contrast,
the MSP430F1611 [43] has a more traditional architecture, offers 27 instructions
in 7 addressing modes and uses mainly memory based operations. The former
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CPU has 32 8-bit registers and three 16-bit pointer registers, the latter provides
16 16-bit registers from which only 12 are available for general purpose use. The
Atmel product operates at 7.3828 MHz, and offers 4KB of RAM memory and
128 KB of program space, whereas MSP430 has 8.192 MHz frequency, 48 KB
ROM and 10 KB RAM. The Texas Instruments microcontroller also embeds a
16× 16 bit hardware multiplier and has an ultra-low power design, which makes
it more efficient in terms of current consumption than the ATmega128L.

We chose two popular WSN motes to test the performance of our ECC based
programs: The MICA2 [44] platform developed by Crossbow Technology and the
Tmote Sky [45] developed by Moteiv corporation. MICA2 mote is build upon the
ATmega128L processor, incorporates a 433 MHz radio and has 512 KB of FLASH
memory to store measurement data. The Tmote Sky uses the MSP430F1611
microcontroller and Chipcon CC2420 wireless transceiver which operates in the
2.4 GHz ISM band and provides transmission speeds up to 250 Kbps. Using
the TinyOS [46] operating system allowed us to run the same programs written
in nesC [47] language on both WSN motes. Porting the code from one device
to another was a lot easier with the use of TinyOS, which enables the use of
features like timers, I/O interfaces, LED’s, etc. in an unified way. This approach
allowed us to hid most of the hardware dependencies for different platforms and
simplified the programming.

Almost all of our code was written in the C/nesC language and can be eas-
ily ported to other 8, 16 or even 32-bit resource constrained platforms. This
approach is a trade-off between size and re-usability of the code. In order to
speed up the execution of particularly time-critical functions we have replaced
standard C code with some assembly language specific for each platform. Even
though we used inline assembly in our programs we made the whole process as
portable as possible. Our assembler routines were generated automatically by
special utility program from user defined macros. In this simple and convenient
way appropriate assembler code can be quickly developed for new platforms and
processors that are not yet supported.

4.1 Basic Primitives Implementation

NanoECC is based on MIRACL [13] (Multiprecision Integer and Rational Arith-
metic C/C++ Library) which provides all the necessary Elliptic Curve primi-
tives and functions to compute Pairings and to implement protocols like ECDH,
ECDSA. MIRACL is a set of tools that supports standard symmetric-key and
public-key cryptography. It handles big numbers arithmetic and offers full sup-
port for Elliptic Curve Cryptography over the prime field GF (p), and the binary
field GF (2m). MIRACL is also a good choice when implementing cryptographic
services in an embedded environment. It has built in features that allows to run
ECC even on very constrained environments and tiny architectures which do not
support a heap. In this case all memory can be allocated exclusively from the
stack. This allows maximum use and re-use of memory, and avoids fragmenta-
tion of precious RAM. We have optimized MIRACL library to achieve the best
ECC performance on our WSN motes.
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Different Elliptic Curve Cryptography implementations for sensor networks
[27], [26], [28], [8] were mainly focused on the prime finite fields. The choice
of the field was dictated by the fact that basic arithmetic operations can be
effectively optimized if pseudo-Mersenne primes are used in GF (p). GF (2m)
fields were not favoured because binary polynomial arithmetic (multiplication in
particular) is insufficiently supported by current CPU’s. This paper compares
results achieved using both types of finite fields and shows that in some cases
in this constrained environments, ECC operations over binary polynomial field
GF (2m) outperforms those in GF (p). On top of that timings for binary field case
would be significantly faster if a ”binary polynomial multiplication” instruction
was available on the considered architectures.

Modular arithmetic routines are fundamental operations in every Elliptic
Curve system. The overall performance of ECC depends greatly on the speed
of those primitives. In GF (p) big integer multiplication and reduction modulo
p of the result are the most time-critical operations and must be performed as
quickly as possible. We have used a variant of the hybrid multiplication method
proposed in [8] to achieve this goal. Our implementation minimizes the number
of operations on memory and uses additional CPU registers for catching and
storing the carry bits. The Hybrid method takes advantage of extra registers to
avoid unnecessary load operations and becomes more efficient with the number
of registers used. On ATmega128L we were able to implement hybrid multipli-
cation with column size d = 4. Due to the small number of general purpose
registers on MSP430F1611 we could only achieve d = 2, using all 12 available
registers. For more details concerning the implementation of our improved hy-
brid method see the paper [48]. For modular reduction a fast algorithm was
implemented that takes advantage of special form of p = 2160 − 2112 + 264 + 1
(a Solinas prime) as the modulus, using a 160-bit Elliptic Curve. Multiplication
and reduction along with squaring, modular addition and modular subtraction
were all implemented in assembly language. All the results for those routines
in instruction cycles, assuming 160-bit integer operands, are listed in Table 1.
Taking into account the 7.3828 MHz clock on the ATmega128L and the 8.192
MHz clock on Tmote Sky, 160-bit numbers multiplication can be performed in
0.36 ms and 0.21 ms respectively.

The field GF (2m) is usually constructed using a polynomial basis represen-
tation. In this case binary polynomials multiplication and reduction modulo

Table 1. Timings in instruction cycles for basic modular arithmetic routines using
160-bit integers on ATmega128L and MSP430F1611

ATmega MSP430

hybrid multiplication 2654 (d=4) 1746 (d=2)

squaring 2193 (d=4) 1373 (d=2)

modular reduction 1228 990

modular addition 340-470 105-235

modular subtraction 340-470 105-235
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an irreducible binary polynomial are the crucial operations. As described in
[49] Karatsuba-Ofman multiplication algorithm were adopted for the polynomial
case. This divide-and-conquer technique allowed us to reduce multiplication com-
plexity by using word size polynomial multiplication and extra additions (which
are very fast in GF (2m)). Throughout our research we observed that assembler
implementation of binary polynomials multiplication did not improve our tim-
ings as much as we had expected. This was due to the fact that binary polynomial
word multiplication and variable length shifts instructions were not available on
our target devices. In the end we decided to implement all binary field primitives
and operations using the standard C language. In order to speed up reduction
routines on both platforms we have developed fast field-specific code for the
reduction modulo the irreducible polynomials x163 +x7 +x6 +x3 +1 (as recom-
mended by NIST) and x271 + x201 + 1. For guidance on the optimal irreducible
polynomials for GF (2m) arithmetic to use in given circumstances please refer
to [50].

4.2 ECC Implementation

One difficulty in using ECC is that of finding a suitable Elliptic Curve. Curve
parameters have to be carefully chosen to allow efficient computations and pro-
vide a reasonable level of security. NIST recommends using at least 160-bit keys
in ECC systems to achieve security level equivalent to that offered by standard
RSA based solutions with 1024-bit keys. In our example programs we decided to
use NIST k163 Koblitz curve over GF (2163) binary field and y2 = x3 − 3x+157
curve with p = 2160−2112+264+1 over GF (p). The usage of Koblitz curve gives
a significant speed up when performing a point multiplication, as no expensive
point doublings are required. To satisfy security requirements mentioned in sec-
tion 3 our pairing parameters were chosen as k · � > 1024. In this inequality k
stands for embedding degree and � stands for number of bits in p (in the case
of prime fields GF (p)) or m (in case of binary fields GF (2m)). To satisfy these
conditions we chose the supersingular curve y2 + y = x3 + x2 with k = 4 and
x271 + x201 + 1 as the reduction polynomial for the binary field. For the pair-
ing program in the prime field we used a y2 = x3 + Ax + B curve, k = 4 and
256-bit modulus p. Parameter A was set to −3 in order to reduce the number of
operations for the point doubling routine.

ECC operations are based on arithmetic involving the points of the elliptic
curve and as mentioned before it is essential to optimize basic arithmetic op-
erations in underlying fields. Overall performance of the system is also highly
dependably on efficient implementation of curve operations. Two of those fun-
damental operations are point addition and point doubling. Please see [49] for a
geometrical explanation of those operations. The selection of points coordinate
system has a big influence on the performance of the above mentioned operations.
It has been shown that projective coordinate systems (x, y, z) are more efficient
than affine (x, y) systems. Rules for point addition and point doubling in affine
coordinates requires inversion in underlying field, which is usually much more ex-
pensive than multiplication. The same operations in projective coordinates uses
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greater number of cheaper multiplications and squarings in place of an inversion
and thus makes it more suitable to our target platforms.

A common operation in ECC is the computation of sP , where s is an integer
and P is a point on an elliptic curve. This operation is called point multiplication
and can be decomposed into a sequence of point additions and point doublings.
These operations dominate the overall execution time of elliptic curve crypto-
graphic schemes, and so optimization is important. The ECDH and ECDSA
protocols require multiplication by a scalar of a fixed base point on the selected
curve, and this can be carried out more quickly using precomputation. Our ex-
ample programs therefore implement a fixed point multiplication method using
additional storage to accelerate the calculations. The Comb method for point
multiplication described in [49] was used in this case. Precomputation was per-
formed with window size w = 4 resulting in 16 elliptic curve points stored in
ROM. With this approach point multiplication is a tradeoff between memory
space and computation time.

Pairing based systems have become more and more popular in Public Key
Cryptography schemes. At first it appeared that these operations are far too
complex to be calculated in reasonable amount of time on tiny architectures like
WSN nodes. However our implementation shows that pairings can by computed
quickly and efficiently on small and constrained devices such as MICA2 or Tmote
Sky. The Tate pairing denoted as e(P, Q), on an elliptic curve E(Fqk), evaluates
as an element of an extension field Fqk . This requires implementation of extension
field arithmetic routines. We used k = 4, so special procedures for multiplication,
squaring, exponentiation, inversion and calculation of square roots in quadratic
extension fields (Fp4 and F24m) were developed. More detailed descriptions of
those routines can be found in [51].

There has been a lot of work on efficient implementation of pairings on elliptic
curves. This research shows that some of the best results can be achieved on
supersingular curves over fields of low characteristic. For this reason we chose
the improved Duursma-Lee algorithm to compute the Tate pairing over GF (2m)
based on ηT pairing, which is one of the fastest known. Due to space limitations
please refer to [52] for a detailed description and explanation of this method. The
pairing operation in the prime field on MSP430 was implemented and optimized
as described in [53] and is based on Miller’s algorithm. We used a different
approach on the ATmega128L, where more program space was available. Here
we have implemented the Ate pairing on a non-supersinglar curve over GF (p)
as described in [54] with parameters k = 4, p a 256-bit prime, and a fixed point
P . Knowing P ’s coordinates allowed us to use precomputation, which speeds up
elliptic curve point multiplication. In the next section we will evaluate NanoECC
and show results for computing pairings and point multiplications.

5 Results

Efficient implementation of ECC on such constrained devices as WSN nodes
is not an easy task. Issues like the small amount of memory, limited CPU
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capabilities and scarce battery resources have to be taken into consideration.
Program code needs to be highly optimized to meet all those demands. That
is the reason why there is some confusion in the literature concerning timings
of basic Elliptic Curve operations on those constrained platforms. The results
presented in recent papers vary a lot. In our research we have tested the limits
of ECC in sensor networks and our results give a clear answer to the question of
how long Elliptic Curve Cryptography primitives take on standard WSN motes.

NanoECC is optimized for speed. Memory usage was our secondary concern
as optimizing for code size lowers functionality and portability due to greater
number of assembly routines. A large set of available library functions in Na-
noECC gives a lot of flexibility in writing ECC based programs. Most of the
procedures were developed using standard C which favors speed and allows us
to re-use the code on numerous other WSN platforms.

5.1 Point Multiplication

Our example programs were compiled under TinyOs operating system and run
on the MICA2 and Tmote Sky motes, so all measurements were taken on actual
devices. We decided to measure three most important parameters for sensor
nodes: computation time, memory usage and energy consumption. Both devices
had to be slightly modified to facilitate data acquisition. A precise one ohm
resistor was soldered between the mote and its battery pack to measure the exact
amount of current drained during program execution. Input/Output ports on
MICA2 and Tmote Sky were used to pass trigger signals to the measuring device.
We used National Instruments NI 5112 digitizer card to acquire measurement
data from both nodes. In this way exact timings and precise power consumption
information could be gathered without using the mote’s timers and other features
which increase computation overhead.

All experiments were carried out using LabVIEW software. Figure 1 shows an
example graph of Tmote Sky voltage levels during Elliptic Curve Diffie Helman
(ECDH) program execution. As we can see point multiplication takes a con-
siderable percentage of the total duration of the program. Current drawn from
the battery pack was calculated based on voltage levels. The average value of
current consumption was taken from all the samples within the program execu-
tion period. Both motes were powered with two AA batteries, so a voltage equal
approximately to 3 V was provided (assuming new batteries). Based on this in-
formation total energy consumption was calculated from the formula E = U ·I ·T ,
where T is code running time.

Results for point multiplication operation in binary and prime fields on
MICA2 and Tmote Sky nodes are listed in Table 2. Precomputation was used in
all cases to speed up the point multiplication routine. Point addition and point
doubling operations were not considered independently because their compu-
tation time is insignificant comparing to point multiplication. As we can see
point multiplication is faster on both platforms when using the prime field, but
the difference is not as big as we might have expected. Results in GF (2m) are
comparable to those in GF (p), even though both CPU’s don’t support special
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Fig. 1. Voltage levels on Tmote Sky during example ECDH program execution

Table 2. Performance evaluation of point multiplication on MICA2 and Tmote Sky

MICA2 Tmote Sky
Binary field Prime field Binary field Prime field

Computation time 2.16s 1.27s 1.04s 0.72s

Current draw 7.86mA 7.88mA 3.45mA 3.68mA

Energy consumption 50.93mJ 30.02mJ 10.76mJ 7.95mJ

ROM 32.4KB 46.1KB 32.1KB 31.3KB

RAM 1.7KB 1.8KB 2.8KB 2.9KB

instructions for binary field arithmetic. Achievements in binary field are even
more competitive because no assembly language routines were used in this case.
We used the hardware multiplier on Tmote Sky’s CPU to improve timings for
big numbers multiplication in the prime field. This fact has an influence on av-
erage current consumption, which is slightly higher when the multiplier unit
is turned on. Operations in binary field of course do not require the hardware
multiplier. On the MICA2 the average current drawn is almost the same using
both fields. Total energy consumption in all experiments was lower for the prime
field case, because of the faster execution time of point multiplication. Looking
at the power consumption on both platforms, it is clear that Tmote Sky is far
more efficient using even in some cases 5 times less energy for the same work
carried out.

Program size figures given in Table 2 include only our ECC implementation
without counting additional storage for TinyOs modules. The numbers for the
RAM memory requirement were not taken directly from TinyOs output, because
they did not include stack usage. Simulation environments such as AVR Studio
and IAR Embedded Workbench for MSP430 allowed us to achieve precise infor-
mation about RAM usage and stack size at any given time during our programs
execution. Figures for RAM, presented in Table 2 show the maximum usage
that we have encountered. Average RAM utilization was usually much lower
than that.
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Our results for point multiplication on Tmote Sky compares favourably with
numbers presented in [28]. Their experiments were performed on TelosB mote
which has exactly the same processor as Tmote Sky. In our experiments fixed
point multiplication on 160-bit elliptic curve was performed in 0.72s which is a
nice improvement comparing to 3.13s in [28]. Guajardo et al. [27] also tested
point multiplication performance on tiny architectures and achieved 3.4s at
1MHz on MSP430x33x family of devices. This result cannot be directly compared
with our achievements because they used a 128-bit prime in their implementa-
tion, which is not as secure as the 160-bit prime recommended by NIST. For point
multiplication in the binary field on the MSP430F1611 processor our results are
superior to those achieved in [55]. Their point multiplication in 163-bit finite
field takes 32.5s which is quite a lot comparing to 1.04s in our implementation.

There were several attempts to implement ECC on MICA2 platform. Point
multiplication in prime field was implemented by Gura et al. on ATmega128
[8]. They calculated point multiplication in 0.81s at 8MHz on secp160r1 curve.
In our implementation same operation using a different curve takes 1.27s at
7.3828MHz on MICA2 mote. Malan et al. [9] implemented point multiplication
in the binary field. However the result of 34.16s for this operation on a 163-bit
curve is far from being optimal. In [56] the authors managed to perform fixed
point multiplication in 6.74s on MICA2 but they used GF (2113) arithmetic which
should be much faster to calculate. Computation of the same routine in GF (2163)
in our implementation takes only 2.16s. To our knowledge, point multiplication
results in binary field reported in this paper are the fastest known so far.

5.2 Pairing Evaluation

Table 3 shows all the results for pairing computation achieved on the MICA2 and
Tmote Sky motes. Our timings show that pairing calculation can be performed
in as fast as 5.25s on a resource constrained WSN node. As we can see pairing
programs in binary field are much faster than in prime field on both our research
platforms. The difference is quite significant, as much as 7s. Binary field pairings
are also more efficient in terms of energy consumption and program size. Bigger
code size for pairings in the prime field is due primarily to precomputation data.
It is especially visible for MICA2 where constant precomputed values take 28K of
a total 71.9K of program memory. We couldn’t use that much of precomputation
on Tmote Sky due to the 48KB memory limit. Otherwise the pairing program

Table 3. Results for pairing implementation on MICA2 and Tmote Sky

MICA2 Tmote Sky
Binary field Prime field Binary field Prime field

Computation time 10.96s 17.93s 5.25s 11.82s

Current draw 7.86mA 7.88mA 3.45mA 3.68mA

Energy consumption 258.44mA 423.87mJ 54.34mJ 130.49mA

ROM 53.5KB 71.9KB 30.3KB 47.0KB

RAM 2.8KB 2.5KB 3.7KB 3.0KB
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on this platform would have been a bit faster. On the other hand RAM usage
was a critical issue on ATmega128L. All variables and runtime objects had to
be handled very carefully to fit 4KB of dynamic memory. All of our binary field
pairing programs have a big advantage that they do not need any precomputation
at all.

Although much research has been carried out in PBC, very little attention
has focused on implementing those operations on resource constrained devices.
Apparently pairings were considered as too heavyweight for WSN nodes. The
first pairing implementation in WSN’s was performed by Oliveira et al. [10]. In
that work a k = 2 Tate pairing with a 256-bit prime was implemented over a
supersingular curve y2 = x3 + x. The timing for this operation was estimated as
30.21s on 7.3828MHz MICAz mote (also ATmega128L CPU). Our implementa-
tion of the Tate pairing in the prime field on the MICA2 outperforms that result
with 17.93s and offers a much higher level of security using bigger parameters.
All of our results for pairing implementation show that those operations can be
performed in a reasonable amount of time on small and constrained devices. As
far as we know our pairing programs are at the moment the fastest implemen-
tations on popular WSN motes. Nevertheless we are pretty sure that further
optimizations are possible in terms of memory usage as well as execution time.

6 Conclusion

Recent results in WSN research area show that PKC based on elliptic curves is
indeed feasible in those constrained environments. However the performance of
many ECC implementations is still a disappointment in terms of running time
and resources usage. This fact prevents ECC based security protocols from being
used in certain applications. Our achievements presented in this paper prove
that ECC operations can be performed in a quick and efficient way on popular
sensor network platforms. As our contribution, we present updated results on
computing elliptic curve point multiplication and pairings. We also show that
ECC over prime field is not always the best option as pairings over GF (2m)
seem to be more efficient on this type of architecture. PBC offers a flexible
cryptographic primitive that can be used in many new security protocols. Fast
pairing computation enables Identity Based Encryption and thus opens new ways
for achieving security in sensor networks. Future work will address this issue
and will deal with some problems that need to be solved in order to develop a
complete security protocol.
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