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Preface

This volume contains the proceedings of EWSN 2008, the fifth European Confer-
ence on Wireless Sensor Networks, held in Bologna, Italy, during January 30–31
and February 1, 2008.

Its scope was the creation of a forum where researchers with different expe-
rience and background could discuss cross-layer approaches, novel solutions for
specific problems and envisage the future development of wireless sensor net-
works (WSNs).

Out of the 110 papers that were submitted, 23 were selected after a double-
blind peer-review process, leading to an acceptance rate of 21%. Six among
the accepted papers included authors from North America, three from Asia, all
others from Europe with the exception of one from Australia, and one from
Brazil: the conference brought together researchers from almost all corners of
the world!

Demonstration and poster papers were also presented at the conference, of
which separate proceedings were produced, under the supervision of the other
TPC Co-chair, Zach Shelby from Sensinode ltd, who managed the reviews of
these papers.

The range of topics covered by this conference, including communication pro-
tocols, information processing, middleware, operating systems, hardware and
field tests, is very wide. This made the vision of a coherent final technical pro-
gramme more difficult, as few papers cover each of the various topics. But what
made such a process even more challenging, is the intrinsic nature of WSNs,
which is cross-layer and requires the joint consideration of many aspects when
measuring or predicting the performance of a given algorithm, protocol, or tech-
nical solution.

As a result, unlike many other conferences and workshops dealing with com-
munication and information technologies, the papers needed to be grouped ac-
cording to considerations which cross the protocol stack through the various
layers; therefore, we put together under the same umbrella and in the same
conference session, papers dealing with separate aspects of the same problem.

For this reason this volume, which is organized according to the sequence
of sessions proposed in the conference technical programme, does not include
chapters devoted to routing, multiple access control, transmission techniques,
operating systems. Rather, the papers are grouped according either to the ver-
tical functionality (e.g., localization), the technology investigated (e.g., network
coding), or the air interface standard (e.g., Zigbee), etc.

The volume presents a separate block of papers, the best ones, to attract the
reader towards works that were judged as the most significant papers submitted
to EWSN 2008.



VI Preface

Reading the papers reported in this volume, one very interesting fact emerges.
The performance of the technical solutions provided is sometimes predicted
through analytical models, or assessed through simulation approaches, as usual
for a scientific conference; however, many papers report real measurements per-
formed over test beds where the technical solution, the protocol, and the software
developed have been implemented. The possibility offered by existing platforms
to customize them and programme the nodes according to the desire of engineers
and researchers was fully exploited in this conference, and many papers show
performance improvements measured on true prototypes, and platforms.

The editor of this volume, who led the review process for the full papers
submitted to the conference, is very thankful to the entire Technical Programme
Committee and the external reviewers, the TPC Operational Manager, Chiara
Buratti, who was the engine of this process, the Publication Chair, Virginia
Corvino, who led the final steps towards this volume, and the Authors of the
110 papers submitted. A special thanks to the Steering Committee, who assisted
me in the year before EWSN 2008 took place, in all strategic decisions.

January 2008 Roberto Verdone
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Predictive Modeling-Based Data Collection in Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Lidan Wang and Amol Deshpande

Localization

Distributed Inference for Network Localization Using Radio
Interferometric Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Dennis Lucarelli, Anshu Saksena, Ryan Farrell, and I-Jeng Wang

Speed, Reliability and Energy Efficiency of HashSlot Communication
in WSN Based Localization Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Marcel Baunach

Detection of Space/Time Correlated Events

Spatiotemporal Anomaly Detection in Gas Monitoring Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

X. Rosalind Wang, Joseph T. Lizier, Oliver Obst,
Mikhail Prokopenko, and Peter Wang

Discovery of Frequent Distributed Event Patterns in Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Kay Römer
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Clustering-Based Minimum Energy Wireless

m-Connected k-Covered Sensor Networks

Habib M. Ammari and Sajal K. Das

Center for Research in Wireless Mobility and Networking (CReWMaN)
Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, TX 76019, USA
{ammari,das}@cse.uta.edu

Abstract. Duty-cycling is an appealing solution for energy savings in
densely deployed, energy-constrained wireless sensor networks (WSNs).
Indeed, several applications, such as intruder detection and tracking, re-
quire the design of k -covered WSNs, which are densely in nature and
where each location in a monitored field is covered (or sensed) by at
least k active sensors. With duty-cycling, sensors can be turned on or
off according to a scheduling protocol, thus reducing the number of ac-
tive sensors required to k -cover a field and helping all sensors deplete
their energy slowly and uniformly. In this paper, we propose a duty-
cycling framework, called clustered randomized m-connected k-coverage
(CRACCmk), for k -coverage of a sensor field. We present two protocols
using CRACCmk, namely T-CRACCmk and D-CRACCmk, which dif-
fer by their degree of granularity of network clustering. We prove that
the CRACCmk protocols are minimum energy m-connected k -coverage
protocols in that each deploys a minimum number of active sensors to
k -cover a sensor field and that k -coverage implies m-connectivity be-
tween all active sensors, with m being larger than k. We enhance the
practicality of the CRACCmk protocols by relaxing some widely used
assumptions for k -coverage. Simulation results show that the CRACCmk

protocols outperform existing k -coverage protocols for WSNs.

Keywords: WSNs, Duty-cycling, Clustering, Coverage, Connectivity.

1 Introduction

Coverage and connectivity have been jointly addressed in wireless sensor net-
works (WSNs). While coverage is a metric that measures the quality of surveil-
lance provided by a WSN, connectivity provides a means for source sensors (or
simply sources) to report their sensed data to the sink. In particular, several
real-world applications, such as intruder detection and tracking, require high de-
gree of coverage. Hence, the first challenge is determining the number of active
sensors required to achieve a certain degree of coverage requested by an applica-
tion. Also, for such densely deployed WSNs, where sensors have limited battery
power (or energy), the second challenge is designing an energy-efficient duty-
cycling protocol that turns sensors on or off during the network operational
lifetime. This mechanism helps sensors save energy and extend their lifetime.

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 H.M. Ammari and S.K. Das

1.1 Motivations and Problem Statement

In this paper, we focus on m-connected k -coverage in highly dense deployed
WSNs, where each location in a sensor field (SF ) is covered (or sensed) by
at least k active (or awake) sensors while maintaining m-connectivity between
all active sensors. For some real-world applications, such as intruder detection
and tracking, the design of this type of over-deployed WSN (i.e., m-connected
k -covered WSNs) is necessary. Indeed, the limited energy of sensors and the
difficulty of replacing and/or recharging their batteries in hostile environments
require that sensors be deployed with high density [14] in order to extend the
network lifetime. Also, to cope with the problem of sensor failures due to low
energy and to achieve high data accuracy, redundant coverage is an effective solu-
tion. Moreover, connectivity between sources and sink should also be guaranteed
so data originated from the former could reach the latter for further analysis.
Thus, coverage and connectivity should be ensured for the correct operation of
WSNs. Finally, for such densely and energy-constrained WSNs, it is important
that sensors be duty-cycled to save energy. With duty-cycling, sensors are turned
on or off according to a scheduling protocol, thus reducing the number of active
sensors required for k -coverage so all sensors deplete their energy slowly and
uniformly. Our study is motivated by three main questions:

1. What is a necessary and sufficient condition of the sensor spatial density for
complete k -coverage of a SF?

2. What is a relationship between the sensing and communication ranges of
sensors to k -cover a SF while ensuring m-connectivity between active sen-
sors?

3. How can we design a duty-cycling protocol for densely deployed WSNs to
k -cover a SF with a minimum number of active and m-connected sensors?

1.2 Contributions and Organization

The major contributions of this paper can be summarized as follows:

1. We compute the minimum sensor density required to k -cover a SF. We find
that this density depends only on k and the sensing range of sensors.

2. We prove that all active sensors in a k -covered WSN are m-connected if the
communication range of sensors is at least equal to their sensing range.

3. We propose a duty-cycling framework, called clustered randomized
m-connected k-coverage (CRACCmk), for k -coverage of a SF while ensuring
m-connectivity between all active sensors. Then, we present two minimum-
energy configuration protocols using CRACCmk, namely T-CRACCmk and
D-CRACCmk, which differ by their degree of network clustering granular-
ity. Then, we relax some widely used assumptions for coverage in WSNs
to enhance the practicality of T-CRACCmk and D-CRACCmk. Simulations
show that D-CRACCmk outperforms other existing k -coverage protocols for
WSNs.
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The remainder of this paper is organized as follows. Section 2 presents some
assumptions and definitions while Section 3 reviews related work. Section 4 dis-
cusses the CRACCmk framework for m-connected k -coverage in dense WSNs and
Section 5 describes T-CRACCmk and D-CRACCmk protocols using CRACCmk.
Section 6 presents simulations of T-CRACCmk and D-CRACCmk while Section 7
concludes the paper.

2 Assumptions and Definitions

In this section, we present our assumptions and key definitions. Relaxation of
some widely used assumptions in WSN coverage will be discussed in Section 5.

Assumption 1 (Static and location-aware WSN). All sensors and a single
sink are static and aware of their locations via some localization technique [7].

Assumption 2 (Sensing and communication disk model). The sensing
range of a sensor si is a disk of radius ri, centered at ξi (the location of si)
and defined by the point set SD(ξi, ri) = {ξ ∈ IR2 : |ξi − ξ| ≤ ri} (also called
sensing disk of si), where |ξi − ξ| is the Euclidean distance between ξi and ξ.
Also, the communication range of a sensor si is a disk of radius Ri, centered at
ξi and defined by the point set CD(ξi, Ri) = {ξ ∈ IR2 : |ξi − ξ| ≤ Ri} (also
called communication disk of si).

Assumption 3 (Homogeneous sensors). All sensors have the same sensing
range and same communication range.

Assumption 4 (Random and uniform deployment). All sensors are ran-
domly and uniformly deployed in a square sensor field.

Definition 1 (Sensing neighbor set). The sensing neighbor set of a sensor
si, denoted by SN(si), consists of all sensors in the sensing disk of si.

Definition 2 (Communication neighbor set). The communication neighbor
set of a sensor si, denoted by CN(si), is a set of all sensors located in the
communication disk of si.

Definition 3 (k-Coverage, m-connectivity, and degree of coverage). A
point p in a region A is said to be k-covered if it belongs to the intersection of
sensing disks of at least k sensors. A region A is said to be k-covered if every
point p ∈ A is k-covered. A k-covered WSN is a WSN that k-cover a SF. We call
degree of coverage provided by a WSN the maximum value of k such that a SF
is k-covered. An m-connected WSN is a WSN in which each pair of sensors is
connected by at least m paths.

Definition 4 (Width of a closed convex area). The width of closed convex
area A is the maximum distance between parallel lines that bound A.

Definition 5 (Largest enclosed disk). The largest enclosed disk of a closed
convex area A is a disk that lays inside A and whose diameter is equal to the
minimum distance between any pair of points on A′s boundary.
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3 Related Work

Adlakha and Srivastava [1] proposed an exposure-based model to find the sen-
sor density required to achieve full coverage of a desired region based on the
physical characteristics of sensors and the properties of the target. Bai et al.
[3] proposed an optimal deployment strategy to achieve full coverage and
2-connectivity regardless of the relationship between R and r. Huang et al. [6]
studied the relationship between sensing coverage and communication connec-
tivity of WSNs and proposed distributed protocols to guarantee both coverage
and connectivity of WSNs. Kumar et al. [8] showed that the minimum number
of sensors needed to achieve k -coverage with high probability is approximately
the same regardless of whether sensors are deployed deterministically or ran-
domly, if sensors fail or sleep independently with equal probability. Lazos and
Poovendran [9] formulated the coverage problem in heterogeneous WSNs as a set
intersection problem and derived analytical expressions, which quantify the cov-
erage achieved by stochastic coverage. Li et al. [10] proposed efficient distributed
algorithms to optimally solve the best-coverage problem with the least energy
consumption. Megerian et al. [12] proposed optimal polynomial time worst and
average case algorithm for coverage calculation based on the Voronoi diagram
and graph search algorithms. Shakkottai, et al. [13] gave necessary and sufficient
conditions for 1-covered, 1-connected wireless sensor grid network. A variety of
algorithms have been proposed to maintain connectivity and coverage in large
WSNs. Xing et al. [16] proved that if the radius R of the communication range of
sensors is at least double the radius r of their sensing range, the network is con-
nected provided that coverage is guaranteed. They also proposed a k -coverage
configuration protocol regardless of the relationship between R and r. Zhang and
Hou [20] proposed a distributed algorithm, called Optimal Geographical Density
Control, to keep a small number of active sensors in a WSN regardless of the re-
lationship between sensing and communication ranges. Zhou et al. [21] discussed
the problem of selecting a minimum size connected k -cover. They proposed a
greedy algorithm to achieve k -coverage with a minimum set of connected sen-
sors. Tian and Georganas [15] improved on the work in [16], [20] by proving that
if the original network is connected and the identified active nodes can cover
the same region as all the original nodes, then the network formed by the active
nodes is connected when the communication range is at least twice the sensing
range.

Although all these approaches on coverage and connectivity are promising,
none of them provided an exact value on the minimum density of active sensors
required to achieve k-coverage. Moreover, all of them were based on the claim
that k-coverage implies k-connectivity when the radius of the communication
disks of sensors is at least double the radius of their sensing disks [16]. Our
work is complementary to these approaches in the two following ways: first, we
compute the minimum sensor spatial density necessary for complete k-coverage
of a sensor field. Second, we derive a tighter bound on network connectivity of
k-covered WSNs, where the radius of the communication disks of sensors only
needs to be at least equal to the radius of their sensing disks.
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4 Our Framework for m-Connected k-Coverage

In this section,wefirstmodel the m-connected k -coverage problem inWSNs.Then,
we present our duty-cycling framework, called clustered randomized m-connected
k-coverage (CRACCmk), to k -cover a SF while maintaining m-connectivity
between all active sensors.

4.1 m-Connected k-Coverage Problem Modeling

Solving the m-connected k -coverage problem in WSNs requires finding a sensor
deployment strategy such that each location in a SF is covered by at least k ac-
tive sensors while ensuring m-connectivity between all active sensors at any time
during the WSN operation. Our approach solution to the k -coverage problem in
WSNs consists of decomposing it into two sub-problems, namely sensor field slic-
ing and sensor selection, and solving them. The sensor field slicing problem is
to slice a SF into small regions of particular shape (which will be defined later),
each of which is guaranteed to be k -covered provided that at least k sensors are
randomly deployed in it. The sensor selection problem is to select a minimum
subset of sensors to remain active such that each location in a SF is guaranteed
to be k -covered. Thus, our solution to the k -coverage problem is to find out how
to achieve at least k -coverage of a SF and select an appropriate subset of active
sensors so that each location in a SF is k -covered. Besides selecting a minimum
number of active sensors, for energy efficiency, all selected sensors should have
the maximum remaining energy. Hence, the m-connected k -coverage problem
that we deal with is called min-max m-connected k-coverage and is described as
follows:

Problem: min-max m-connected k-coverage
Instance: A SF, a set S of sensors, and a positive integer k.
Question: Select a minimum subset Smin ⊂ S of sensors such that each location
in CF is k -covered, the network induced by all sensors in Smin is m-connected,
and

∑
si∈Smin

Erem(si) is maximized.

The problem of selecting a minimum subset of sensors to remain active for
k -coverage of a sensor field is NP-hard [21], and so is min-max m-connected
k-coverage. Hence, we propose efficient approximation algorithms to solve it.

4.2 Network Slicing-Based m-Connected k-Coverage

This section provides our solution to the sensor field slicing problem, where all
sensors have the same sensing and communication disks whose radii are r and
R, respectively. First, we provide a characterization of k -coverage of a SF. To
this end, we need to compute the maximum size of a convex area A that is
guaranteed to be k -covered when exactly k sensors are deployed in it. Lemma 1
gives an upper bound on the width of such a k -covered area.
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Lemma 1. Let r be the radius of the sensing disk of sensors and k ≥ 3. A
convex area A is guaranteed to be k-covered when k homogeneous sensors are
deployed in it, if the width of A does not exceed r.

Proof. Each point p ∈ A is k -covered if |ξi − p| ≤ r, for all 1 ≤ i ≤ k. In
particular, this should be true for the locations of sensors. Thus, for any pair
of sensors si and sj covering A the maximum distance between si and sj is r
so that any location in A is covered by k sensors. Otherwise, there must be a
pair of sensors si and sj such that |ξi − ξj | > r, meaning that the locations of
the two sensors are not being covered by both sensors at the same time. This
contradicts the hypothesis that all p ∈ A, including the locations of sensors, are
k -covered by all sensors sl, for all 1 ≤ l ≤ k, and in particular si and sj . Thus,
the width of region A cannot exceed r.

Lemma 2 (instance of Helly’s Theorem [4]) will help us compute the minimum
sensor spatial density required to guarantee k -coverage of a SF. More specifically,
this lemma together with a nice geometric structure, called Reuleaux triangle
[23], will be used to characterize k -covered WSN, i.e., how a WSN can guarantee
k -coverage of a SF.

Lemma 2. The intersection of k sensing disks is not empty if and only if the
intersection of any three of those k sensing disks is not empty, where k ≥ 3.

Theorem 1, which exploits the results of Lemma 1 and Lemma 2, computes the
minimum sensor spatial density necessary for complete k -coverage of a SF.

Theorem 1. Let k ≥ 3. The minimum sensor spatial density required to guar-
antee k-coverage of a SF is computed as λ(r, k) = 2 k

(π−√3) r2 , where r is the
radius of the sensing disks of sensors.

Proof. First, we compute the maximum area that is guaranteed to be k -covered
provided that k sensors are deployed in it. Let A be the intersection area of the

Fig. 1. Intersection of three disks Fig. 2. Reuleaux triangle
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sensing disks of k sensors. From Lemma 1, it is clear that the width of A should
be upper-bounded by r so that any location in A is k -covered by these k sensors.
Using the Venn diagram given in Figure 1, the maximum size of the intersection
of the sensing disks of sensors s1, s2, and s3, called Reuleaux triangle [23] and
denoted by RT (r), is obtained when s1, s2, and s3, are symmetrically located
from each other so that the distance between any pair of sensors is equal to r
(Figure 2). We refer to this model as the Reuleaux Triangle model. As can be seen
from Figure 1, a WSN is connected if each active sensor senses the location of at
least another active sensor. Thus, the maximum size of A denoted by Amax(r)
is upper-bounded by the area of RT (r), which is given by Amax(r) = A1 + 3A2,
where A1 =

√
3 r2

/
4 is the area of the central equilateral triangle of side r and

A2 = (π/6 −√3
/
4) r2 is the area of each of the three curved regions α. Hence,

to achieve k -coverage of a SF, k sensors should be deployed in an RT (r) area.
Thus, the minimum sensor spatial density that guarantees k -coverage of SF is
equal to λ(r, k) = k/Amax(r) = 2 k

/
(π −√3) r2.

Notice that λ(r, k) depends only on r and k, and decreases as r increases, thus
reflecting the expected behavior. Adlakha and Srivastava [1] also showed that the
number of sensors required to cover an area of size A is in the order of O (A/r̂2

2),
where r̂ 2 is a good estimate of the radius r of the sensing disk of sensors.
Specifically, r lies between r̂ 1 and r̂ 2, where r̂ 1 overestimates the number of
sensors required to cover A, while r̂ 2 underestimates it.

Theorem 2, which follows from Theorem 1, states a necessary and sufficient
condition for complete k -coverage of a SF.

Theorem 2. Let k ≥ 3. A SF is guaranteed to be k-covered if and only if any
Reuleaux triangle region in the SF contains at least k active sensors.

Theorem 3, which follows from the proof of Theorem 1, states that k -coverage
implies connectivity only if R ≥ r.

Theorem 3. Let k ≥ 3. A k-covered WSN is guaranteed to be connected if the
radius R of the communication range of sensors is at least equal to the radius r
of their sensing range, i.e., R ≥ r.

Theorem 4 computes the network connectivity of k -covered WSNs.

Theorem 4. Assume a uniformly random distribution of sensor in a square
sensor field and let r and R be the radii of the sensing and communication disks
of sensors, respectively, α = R/r and k ≥ 3. The connectivity m of a k-covered
WSN is given by m = π α2 k

/
2 (π −√3).

Proof. Consider a boundary sensor sb (i.e., sensor located at one corner of a
square field that has the least communication neighbor set). Although it has
been proved that the optimum location of the sink in terms of energy-efficient
data gathering is the center of the field [11], the sink could be located anywhere
in the field. Thus, sb can be either a sensor or the sink itself. Following the same
approach used by Xing et al. [16], sensor sb can be isolated by removing all of
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its communication neighbors. In other words, at least λ(r, k)× π R2
/
4 sensors

should be removed. Thus, the network connectivity of k -covered WSNs is equal
to m = π α2 k

/
2 (π −√3).

Given that α = R/r ≥ 1, it is easy to check that m ≥ 1.11k > k. However,
Xing et al. proved in [16] that the connectivity of k -covered WSNs is equal to k
provided that R ≥ 2 r. Moreover, Xing et al. [16] assumed in their analysis that
there are k coinciding sensors at some location. Our measure of network con-
nectivity of k -covered WSNs, however, is based on the minimum sensor spatial
density necessary for complete k -coverage of a SF. Thus, our network connec-
tivity measure is more realistic and tighter. Furthermore, we only require that
R ≥ r for a k -covered WSN to be m-connected, where m ≥ 1.11k. It is worth
noting that m-connectivity implies m disjoint paths between any pair of sensors
although the proof of Theorem 4 considers the number of communication neigh-
bors a sensor has. Indeed, under the assumption of uniform sensor distribution,
each sensor has at least m communication neighbors, where m ≥ 1.11k since
R ≥ r.

Previous Work on k-Coverage Characterization. According to [16] ([20],
respectively), a SF is k -covered if all intersection points (crossing points, respec-
tively) between the boundaries of sensing disks of sensors and all the intersection
points between the boundaries of sensing disks of sensors and the boundary of a
SF are k -covered. This is a generalization of the result for 1-coverage [5]. Hence,
if two sensing disks intersect, at least one more sensing disk needs to cover their
intersection/crossing point. In case of 1-coverage, a location that coincides with
an intersection/crossing point would be 3-covered instead of 1-covered. Thus,
both approaches [16], [20] require more than enough sensors to k -cover a SF.
In addition to characterizing k -coverage, our approach quantifies the minimum
sensor density λ(r, k) required to k -cover a SF.

Slicing Approach. Let SF be a square sensor field and k ≥ 3. Based on
the minimum sensor spatial density λ(r, k), it is easy to check whether a given
WSN can k -cover SF. For this purpose, we propose a slicing scheme of CF by
dividing it into overlapping Reuleaux triangles of width r, called slices, such that
two adjacent slices intersect in a region shaped as a lens (also known as the fish
bladder) as shown in Figure 3. This implies that SF is sliced into regular triangles
of side r. The result of this slicing operation is called slicing grid. Figure 4 shows
a slicing grid of SF.

4.3 Impact of Network Slicing on Sensor Selection

Slicing a WSN can be static or dynamic. Next, we show the problems caused by
a static slicing approach and propose a dynamic one as a remedy to the former.

Static Network Slicing. Our sensor selection scheme exploits the overlap
between adjacent slices to select a minimum number of active sensors in each
round for complete k-coverage of a SF. As can be seen from Figure 3, sensors
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Fig. 3. Intersection of adjacent slices Fig. 4. Random slicing grid of a field

located in the lens of two adjacent slices participate in the k -coverage of the area
associated with the union of these two slices. Lemma 3 states this result.

Lemma 3. Sensors located in a lens participate to k-cover its adjacent slices.

Notice that each slice overlaps with at most three others. By Lemma 3, sensors
located in the three lenses of a given slice should be selected first in each round.
This process is repeated until all slices in a SF are k -covered. We assume that
each slice has a unique id.

The sensor selection scheme described earlier generates only one subset of
active sensors to k -cover a SF. If this scheme is executed in each round on the
same slicing grid, such as the one given in Figure 4, sensors located in the lenses
would suffer from a severe energy depletion problem. Thus, it would be more
efficient if in each round a different subset of sensors is selected for k -coverage
of a SF. Next, we describe a strategy based on dynamic network slicing in order
to achieve this goal.

Dynamic Network Slicing. Our goal is to select different subsets of sensors
Si, i ≥ 1 such that each subset Si is selected to remain active in the ith round
to k -cover a SF. Notice that in order to achieve a better load balancing among
the sensors, we could add a restriction that the selected subsets are mutually
disjoint. However, the disjointness constraint yields a small number of mutually
disjoint subsets of sensors. Thus, we only require that those selected subsets of
sensors be partially disjoint.

The first question that we want to address now is: How would partially dis-
joint minimum subsets of sensors be selected to k-cover a SF? To address this
question, we consider the dynamics of slicing grid from one round to another.
Since our scheme for selecting active sensors highly prioritizes the ones located in
the lenses of all slices, it is important that those lenses be able to scan the entire
SF, and hence include distinct subsets of sensors in different rounds. Thus, the
slicing grid undergoes some dynamics to achieve balanced load among sensors
during the operation of T-CRACCmk and D-CRACCmk.
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The second question that we want to address now is: How would a slicing grid
of a SF be randomly generated? First, we randomly generate one point p1 in
a SF, which is temporarily considered as the center of the Euclidean plane. To
randomly determine a second point p2, we generate a random angle 0 ≤ θ ≤ 2 π
so that the segment p1p2 forms an angle θ with the x -axis centered at p1 and the
length of p1p2 is r. Then, we deterministically find a third point p3 to form the
first regular triangle (p1, p2, p3), called reference triangle, as shown in Figure 4.
All other regular triangles are computed based on the reference triangle.

5 m-Connected k-Coverage Protocol Design

In this section, we describe our T-CRACCmk and D-CRACCmk protocols for
m-connected k -coverage in WSNs based on their network clustering granularity.
Then, we relax some widely used assumptions to enhance their practicality.

In general, the sink is connected to an infinite source of energy, such as
a wall outlet, and thus has no energy constraint. In both T-CRACCmk and
D-CRACCmk, the sink is responsible for randomly generating a slicing grid of
a SF and selecting a cluster-head for each cluster in each round. Each cluster-
head is physically located within its cluster and is in charge of selecting some
of its sensing neighbors to k -cover it. To this end, the sink should be aware
of all sensors’ locations. Moreover, we do not assume any strict ordering of the
cluster-heads that determines the order in which cluster-heads select their active
sensors. However, neighboring cluster-heads need to coordinate between them-
selves through message exchanges in order to select a minimum number of sensors
to k-cover their clusters. The slicing grid generation and cluster-head selection
could be assigned to each sensor in a round-robin fashion. However, this solution
would be costly for sensors in terms of energy and space.

5.1 The T-CRACCmk Protocol

In T-CRACCmk, a cluster is a slice (“T” for Reuleaux triangle) in a slicing
grid and a cluster-head is called slice-head. Given that each slice has at most
three adjacent slices (Figure 5), the T-CRACCmk protocol requires that each
slice-head coordinates its activity with its adjacent slice-heads in order to select
a minimum total number of sensors to k -cover a SF. Figure 5 shows slice-head
sh0 sharing three lenses with slice-heads sh1, sh2, and sh3. For instance, sh0

could k -cover its slice by selecting sensors located in its three lenses. Then, it
communicates the numbers n1, n2, and n3 of sensors selected from lenses Lens 1,
Lens 2, and Lens 3, respectively, to its adjacent slice-heads sh1, sh2, and sh3,
respectively. Slice-head sh1 would need to select k − n1 more sensors from its
lenses to k -cover its slice. It would definitely coordinate with its adjacent slice-
heads to k -cover its slice and so does each slice-head. Theorem 5 states that
T-CRACCmk is a minimum-energy protocol.

Theorem 5. T-CRACCmk is a minimum energy-consuming protocol.
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Proof. Each slice-head ensures that each slice of a SF is k -covered by exactly k
sensors. Thus, by Theorem 2, T-CRACCmk guarantees that a SF is k -covered
with a minimum number of active sensors, and hence consumes a minimum
amount of energy in each round.

Fig. 5. Slice-heads for T-CRACCmk Fig. 6. Clustering for D-CRACCmk

5.2 The D-CRACCmk Protocol

D-CRACCmk (“D” for disk) has higher network clustering granularity than
T-CRACCmk. Precisely, each cluster consists of six adjacent slices forming a
disk (Figure 6). In each round, the sink selects for each cluster a sensor, called
disk-head, which is located nearer the center of its disk to k -cover it. Simi-
larly, each disk-head needs to coordinate with at most six adjacent disk-heads to
k -cover its disk with a minimum number of sensors. Each disk-head manages at
most six interior lenses (i.e., lenses between adjacent slices of the same disk) and
at most six boundary lenses (i.e., lenses between adjacent slices of two adjacent
disks). Hence, a disk-head should select sensors from its interior lenses with no
coordination with other disk-heads but should coordinate with its adjacent disk-
heads to select sensors from its boundary lenses. Theorem 6, which is similar to
Theorem 5, states that D-CRACCmk is a minimum-energy protocol.

Theorem 6. D-CRACCmk is a minimum energy-consuming protocol.

5.3 Promoting T-CRACCmk and D-CRACCmk

In this section, we relax the sensing and communication disk (Assumption 2 )
and homogeneous sensor (Assumption 3 ) models. Our goal is to promote the use
of T-CRACCmk and D-CRACCmk in real-world scenarios.

Relaxing the Unit Sensing and Communication Disk Models. Zhou
et al. [22] found that the communication range of radios is highly probabilistic
and irregular. In this section, for tractability of the problem, we consider convex
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sensing and communication models, where sensors have the same sensing and
communication ranges, which are convex but not necessarily circular.

The following results correspond to Lemma 1 and Theorem 1, respectively.
Their proof is literally the same as that in Section 4.2 by using the notion of
largest enclosed disk of the sensing ranges of sensors instead of their sensing
disk.

Corollary 1. Let k ≥ 3. A convex area A is guaranteed to be k-covered when
exactly k homogeneous sensors are deployed in it, if the width of A does not
exceed rled, where rled is the radius of the largest enclosed disk of the sensing
range of sensors.

Corollary 2. Let rled be the radius of the largest enclosed disk of the sensing
range of sensors and k ≥ 3. The minimum sensor spatial density required to
k-cover a SF by homogeneous convex sensing ranges is given by λ(rled, k) =
2 k

/
(π−√3) r2

led.

To implement T-CRACCmk and D-CRACCmk with the above convex models,
the sink should slice a SF into triangles of side rled. Assumption 2 can thus be
relaxed using the largest enclosed disk of the sensing ranges of sensors. It is worth
noting that even if the sensing and communication ranges of sensors do not have
the same convex shape, our results about coverage implying connectivity still
hold as long as the communication range of sensors is larger than their sensing
range, i.e., the sensing range is entirely included in the communication range.
This assumption is realistic and conforming to previous work [20] reporting that
the communication range of Berkeley motes is much higher than the sensing
range of several typical sensors.

Relaxing the Homogeneous Sensor Model. Real-world applications may
require heterogeneous sensors in terms of sensing and communication capabili-
ties in order to enhance network reliability and extend its lifetime [18]. In this
section, we consider heterogeneous sensors with different yet convex sensing and
communication ranges.

The following results correspond to Lemmae 1 and 2, and Theorem 1, respec-
tively. They can be proved using the concept of largest enclosed disk instead of
sensing disk.

Corollary 3. Let k ≥ 3. A convex area A is guaranteed to be k-covered when
exactly k heterogeneous sensors whose sensing ranges are convex but not neces-
sarily circular are deployed in it, if the width of A does not exceed rmin

led , where
rmin
led is the smallest radius of the largest enclosed disks of the sensing ranges of

sensors.

Corollary 4. Let k ≥ 3. The intersection of k heterogeneous convex sensing
ranges is not empty if and only if the intersection of any smallest three largest
enclosed disks of these k heterogeneous convex sensing ranges is not empty.
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Corollary 5. The minimum sensor spatial density required to k-cover a SF by
heterogeneous sensors whose sensing ranges are convex but not circular is given
by λ(rmin

led , k) = 2 k
/

(π−√3) rmin
led

2
, where rmin

led is the minimum radius of the
largest enclosed disks of the sensing ranges of heterogeneous sensors and k ≥ 3.

In this case, the sink slices a SF into regular triangles of side rmin
led and applies the

same processing as in Section 4.2. Therefore, the assumption of homogeneous sen-
sors can also be relaxed with slight updates to T-CRACCmk and D-CRACCmk.
Notice that while these corollaries hold, they may greatly overestimate the sen-
sor spatial density required for guaranteeing full k-coverage of a sensor field. For
instance, even if a single sensor with a very small sensing range is deployed,
the entire network would be required to have a large sensor spatial density. In
this case, it is important that the CRACCmk protocols adapt the sensor spatial
density to the sensing ranges of sensors in the area. Due to space limitations, we
will address this issue in our future work.

6 Performance Evaluation

In this section, we present the simulation results of T-CRACCmk and
C-CRACCmk using a high-level simulator written in the C programming lan-
guage. We consider a square field of side length 1000 m. We use the energy model
given in [19], where the sensor energy consumption in transmission, reception,
idle, and sleep modes are 60 mW, 12 mW, 12 mW, and 0.03 mW, respectively.
Following [20], one unit of energy is defined as the energy necessary for a sensor
to stay idle for 1 second. We assume that the initial energy of each sensor is 60
Joules enabling a sensor to operate about 5000 seconds in reception/idle modes
[19]. All simulations are repeated 20 times and the results are averaged.

Figure 7 plots λ(r, k) versus k, where r = 30 m. Figure 8 plots λ(r, k) versus
the r, where k = 3. We observe a perfect match between simulation and analyti-
cal results in both experiments. As expected, λ(r, k) decreases with r for a fixed
k, and increases with k for a fixed r. As can be observed from Figures 7 and 8,
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both T-CRACCmk and D-CRACCmk require the same number of active sensors.
From now on, we focus only on the performance of D-CRACCmk protocol.

Figures 9 and 10 show the number of active sensors versus the total number
of deployed sensors in the field for the D-CRACCmk protocol. In Figure 9, we
consider different values of k, while in Figure 10, we consider different values of
r. For higher values of k, more sensors need to be active to achieve the required
coverage. However, for higher values of r, less number of sensors is needed for
k -coverage. However, the number of active sensors for a given k does not depend
on the number of deployed sensors. It depends only on k and r.

Figure 11 plots k versus the number na of active sensors for D-CRACCmk.
As can be seen, k increases with na. Also, k increases with r for fixed na. There
is also a perfect match between our simulation and theoretical results.

We have also compared our D-CRACCmk protocol with two other distributed
k -coverage protocols, namely PKA [17] and DPA [21], which are close to ours.
Figure 12 shows that D-CRACCmk uses less number of sensors than PKA [17]
and DPA [21] to achieve the same degree k of coverage, thus yielding more energy
savings.
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7 Conclusion

We have addressed the problem of energy-efficient m-connected k -coverage con-
figuration in WSNs. We have characterized k -coverage in WSNs based on the
intersection of sensing disks of k sensors. We have also computed the minimum
sensor spatial density required to k -cover a SF . We have proved that k -coverage
of a SF implies m-connectivity with m ≥ 1.11k when the radius R of the com-
munication disks of sensors is at least equal to the radius r of their sensing disks,
i.e., R ≥ r. Since it is based on the minimum sensor density necessary to achieve
full k-coverage of a sensor field, our bound on connectivity of k-covered WSNs
is tighter than the one provided by Xing et al. [16] and adopted by all subse-
quent approaches for coverage and connectivity in WSNs. We have proposed two
minimum energy-consuming protocols, called T-CRACCmk and D-CRACCmk,
for complete k -coverage of a SF while all active sensors remain m-connected.
Finally, we have extended our analysis by relaxing several assumptions to pro-
mote the use of our CRACCmk protocols in real scenarios. Simulation results
have showed perfect match with our theoretical ones and that our CRACCmk

protocols outperform other existing k -coverage protocols.
Our future work is four-fold. First, we plan to conduct more simulations to

compare our protocols with existing ones with respect to energy savings. Second,
we also plan to extend T-CRACCmk and D-CRACCmk to three-dimensional
(3D) WSNs. For instance, underwater WSNs [2] require design in 3D rather
than 2D space. Third, we focus on joint m-connected k -coverage and routing in
WSNs. Indeed, most of the routing protocols for WSNs assume that all sensors
are always on during data forwarding. This assumption, however, is not valid in
real-world scenarios, where sensors are turned on or off to save energy. Fourth,
we intend to study m-connected k -coverage in WSNs using stochastic models of
sensing and communication ranges, and considering shadowing.
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Abstract. Activity recognition from an on-body sensor network enables
context-aware applications in wearable computing. A guaranteed classi-
fication accuracy is desirable while optimizing power consumption to en-
sure the system’s wearability. In this paper, we investigate the benefits
of dynamic sensor selection in order to use efficiently available energy
while achieving a desired activity recognition accuracy. For this pur-
pose we introduce and characterize an activity recognition method with
an underlying run-time sensor selection scheme. The system relies on a
meta-classifier that fuses the information of classifiers operating on in-
dividual sensors. Sensors are selected according to their contribution to
classification accuracy as assessed during system training. We test this
system by recognizing manipulative activities of assembly-line workers
in a car production environment. Results show that the system’s lifetime
can be significantly extended while keeping high recognition accuracies.
We discuss how this approach can be implemented in a dynamic sensor
network by using the context-recognition framework Titan that we are
developing for dynamic and heterogeneous sensor networks.

1 Introduction

Wearable computing aims at supporting people by delivering context-aware ser-
vices [1]. Gestures and activities are an important aspect of the user’s context.
Ideally they are detected from unobtrusive wearable sensors. Gesture recognition
has applications in human computer interfaces [2], or in the support of impaired
people [3]. Developments in microelectronics and wireless communication enable
the design of small and low-power wireless sensors nodes [4]. Although these
nodes have limited memory and computational power, and may have robustness
or accuracy limitations [5,6], unobtrusive context sensing can be achieved by
integrating them in garments [7,8] or accessories [9].
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In an activity recognition system, high classification accuracy is usually de-
sired. This implies the use of a large number of sensors distributed over the body,
depending on the activities to detect. At the same time a wearable system must
be unobtrusive and operate during long periods of time. This implies minimizing
sensor size, and especially energy consumption since battery technology tends
to be a limiting factor in miniaturization [10].

Energy use may be reduced by improved wireless protocols [11,12], careful
hardware selection [13], or duty cycling to keep the hardware in a low-power
state most of the time [14]. Energy harvesting techniques may also complement
battery power [15], although the unpredictability of energy supply typical of
harvesting makes it difficult to manage duty cycling schedules [16].

Activity recognition requires fixed sensor sampling rate and continuous sensor
node operation, since user gestures can occur at any time and maximum classifi-
cation accuracy is desired. Therefore adaptive sampling rate and unpredictable
duty cycling can not be used to minimize energy use. Current approaches typ-
ically rely on a small, fixed number of sensors with characteristics known and
constant over time [17]. Once one sensor runs out of energy the system is not
able to achieve its objective and maintenance is needed.

Here we investigate how to extend network life in an activity recognition sys-
tem, while maintaing a desired accuracy, by capitalizing on an redundant number
of small (possibly unreilable) sensors placed randomly over the user arms. We
introduce an activity recognition system with a metaclassifier-based sensor fu-
sion method that exploits the redundancy intrinsic in the sensor network. We
modulate the number of sensors that contribute to activity recognition at run-
time. Most sensor nodes are kept in low power state. They are activated when
their contribution is needed to keep the desired classification accuracy, such as
when active nodes fail or turn off due to lack of energy. This approach copes
with dynamically changing networks without the need for retraining and allows
activity recognition even in the presence of unexpected faults, thus reducing the
frequency of user maintenance. The algorithm can be easily parallelized to best
use the computational power of a sensor network. We show how this approach
fits the Titan framework that we are developing for the execution of distributed
context recognition algorithms in dynamic and heterogeneous wireless sensor
networks.

The paper is organized as follows. In sec. 2 we describe the activity recognition
algorithm with dynamic sensor selection. In sec. 3 we analyze the performance
of the system in terms of classification accuracy and system life time. In sec. 4
we describe the Titan framework and how the activity recognition algorithms fit
in it. We discuss results in sec. 5 and conclude in sec. 6.

2 Activity Recognition with Dynamic Sensor Selection

We introduce a method to recognize activities (gestures) from on-body sensors.
This method relies on classifier fusion to combine multiple sensor data and com-
prises a dynamic sensor selection scheme. It exploits the intrinsic redundancy
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in a network of small and inexpensive acceleration sensors distributed on the
body to achieve a desired recognition accuracy while minimizing the number
of used sensors. Gesture classification is performed on individual nodes using
Hidden Markov Models (HMM) [18]. A Naive Bayes classifier fuses these indi-
vidual classification results to improve classification accuracy and robustness.
This method is tested by recognizing the activities of assembly-line workers in a
car production environment. Activity recognition enables the delivery of context-
aware support to workers [19,17].

2.1 Metaclassifier for Activity Recognition

The activity recognition algorithm is based on a metaclassifier fusing the contri-
butions from several sensor nodes [20]. The sensor nodes comprise a three-axis
accelerometer to capture user motion (Analog Device ADXL330). Each axis of
the accelerometer is considered as an independent sensor. Fig. 1 illustrates the
activity recognition principle.

Fig. 1. Activity recognition architecture. Features extracted from the sensor data are
classified by competing Hidden Markov Models (HMM), each one trained to model
one activity class. The most likely model yields the class label. The labels are fused to
obtain an overall classification result. Two fusing scheme have been compared: naive
Bayesian and majority voting.

First on isolated instances, features are extracted from the raw acceleration
data. The features are the sign of the acceleration magnitude (positive, negative
or null). This is obtained by comparing the acceleration value with corresponding
thresholds (-400mg and +400mg)1. Each sample is thus converted in one out of
three possible symbols.

The features are then classified using discrete HMMs which model the gesture
dynamics in the feature space. HMMs, together with Dynamic Time Warping
1 Use of alternative features will be investigate in future works.
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(DTW) [21] and neural networks [22], are a common approach to handle tempo-
ral dynamics of gestures. Our choice is motivated by previous work which showed
HMMs to be a good approach [17,23]. We use ergodic HMMs with 4 states. For
each accelerometer axis we train one HMM per class using the Baum-Welch al-
gorithm starting with 15 random initial models and selecting the one that shows
best classification accuracy on the training set. During activity recognition, the
HMMs compete on each input sequence. The HMM best modelling the input
sequence indicates the gesture class label. Training and evaluation of sequences
is done using the Kevin Murphy’s HMM Toolbox.

Finally, in order to end up with a single classification result we fuse the class
label output from each accelerometer using a naive Bayes technique. The naive
Bayes classifier is a simple probabilistic classifier based on the Bayes’ theorem
and the (strong) hypothesis that the input features are independent. The clas-
sifier combines the Bayes probabilistic model with a decision rule. A typical
decision rule is to classify an instance as belonging to the class that maximizes
the a posteriori probability [24].

Given the conditional model P (C|A0, A1, ..., An), where C denotes the class
and Ai n input attributes (in our case, the HMMs output from the sensors), we
can use the Bayes theorem to define:

P (C|A1, A2, ..., An) =
P (A1, A2, ..., An|C) P (C)

P (A1, A2, ..., An)

Posterior =
Likelihood × Prior

Marginal
(1)

Posterior is the probability of a certain class given the input sequence. Likelihood
is the conditional probability of a certain sequence given a certain class, Prior
is the prior probability of the selected class, and Marginal is the probability of
having the input sequence.

Applying the hypothesis of independence and the decision rule we obtain:

Cout(a1, a2, ..., an) = argmaxc
P (C = c)

∏n
i=1 P (Ai = ai|C = c)

P (A1 = a1, A2 = a2, ..., An = an)
(2)

As the denominator in equation 2 is identical for every class we only need
to compute the numerator for each class and find argmax. Also, since all the
classes in our experiments have the same probability, we do not need to compute
P (C = c). The Likelihood is thus the only parameter that has to be calculated.
This step is achieved during training by building the confusion matrix2 for each
HMM and defining P (Ai = ai|C = c) = tc

t , where tc is the number of training
instances for which the class C = c and the attribute Ai = ai and t is the number

2 A confusion matrix is a visualization tool typically used in supervised learning. Each
column of the matrix represents the classifier output (predicted class), while each
row represents the actual class of the instances. One benefit of a confusion matrix
is that it clearly shows whether the system is confusing two classes (i.e. commonly
mislabeling one as another).
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of training instances for class c. However, depending on the training data, for
some classes c we may not have a sample for which Ai = ai. In this situation,∏n

i=1 P (Ai = ai|C = c) of that class is always zero, despite the value of the
other input attribute. For this reason we used the M-estimate of the Likelihood
presented in Eq. 3, where p is an a priori probability of a certain value for an
attribute, while m is the number of virtual sample per class added to the training
set. In our experiment p = 1

10 and m = 1.

P (Ai = ai|C = c) =
tc + m p

t + m
(3)

As we deal with dynamic networks where the number of active nodes varies
during time, the Posterior probability is calculated including only the contribu-
tion of the active nodes in the network.

Feature extraction and classification can be computed in parallel on all the
sensor nodes, thus allowing the exploitation of intrinsic parallelism within the
sensor network, while sensor fusion is performed on a single node.

2.2 Evaluation of Activity Recognition Performance

In order to assess our approach, we consider the recognition of the activities of
assembly-line workers in a car production environment. We consider the recog-
nition of 10 activity classes (Table 1) performed in one of the quality assurance
checkpoint of the production plant. These classes are a subset of 46 activities
performed in this checkpoints [25].

Table 1. List of activity classes to recognize from body-worn sensors

Class Description

0 write on notepad

1 open hood

2 close hood

3 check gaps on the front door

4 open left front door

5 close left front door

6 close both left door

7 check trunk gaps

8 open and close trunk

9 check steering wheel

We evaluate the performance of the approach in terms of correct classification
ratio as a function of the number of nodes in the network. We perform a set of
experiments using 19 nodes placed on the two arms of a tester (10 nodes on the
right arm and due to a fault during the tests, 9 on the left arm) as illustrated in
Fig. 2. Since we do not want to rely on particular positioninig and orientation of
the nodes, the sensors were placed to cover the two arms without any particular
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Fig. 2. Placements of the nodes on the right and left arm (dashed lines indicate nodes
placed behind the arm, numbers represent the unique ID of each node)

constraints, as it is difficult to achieve such a placement for sensors unobtrusively
integrated into people’s garments. The subject executed 19 times each gesture
listed in Table 1. Data from such trials has been recorded on a PC for subsequent
analysis. Cross validation techniques have been used to extend the validation test
up to all 19 instances. To perform cross validation, the input instances from the
sensors have been divided into 4 folds (3 made up of 5 instances for each class and
1 of 4 instances for each class). We built 4 distinct sets of HMMs and confusion
matrices. During the evaluation, for the classification of an instance we use a
model obtained from a training set that did not include that specific instance.

To evaluate the correct classification ratio as a function of the number of
nodes, we applied our algorithm to clusters of nodes with increasing size (one
to 19 nodes). Although we consider each accelerometer axis as an independent
sensor, the clusters are created in a nodewise manner. In other words a node is
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Fig. 3. Average, maximum and minimum correct classification ratio among random
cluster as a function of cluster size
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randomly selected and the contribution of its three axis is considered and fused.
The reason is that when a node runs out of energy, the contributions of all its
axes vanish. For each size we created 200 clusters from randomly selected sensor
nodes. For each cluster size the average, maximum and minimum classification
accuracy is recorded.

Figure 3 shows the correct classification ratio as a function of the cluster size.
We achieve 98% correct classification rate using all 19 nodes and, on average,
80% using a single node. For smaller clusters the nodes composing the cluster
influence the performance variance. For example, fusing the contributions from
nodes 1, 3, and 24 results in 97% correct classification ratio, a value close to the
accuracy that we can obtain using all the 19 nodes (Maximum curve in Fig. 3).
On the other hand, fusing the outputs from nodes 20, 22 and 25 results in 84%
accuracy (Minimum curve in Fig. 3) which is below what can be achieved using
only one “good” node, e.g. node 16 (86%).

2.3 Dynamic Sensor Selection

We introduce a dynamic sensor selection scheme to select at run-time the sen-
sors which are combined to perform gesture classification. This scheme seeks to
achieve a desired classification accuracy while prolonging the system lifetime by
minimizing the number of sensor used.

A minimum set of sensors to achieve the desired classification accuracy is first
selected. Then the sensor set is updated at run-time when a sensor is removed
from the network (e.g. due to failure or power loss). Since sensor nodes can
fail while a gesture is performed, the algorithm ensures that the loss of a any
single sensor still guarantees a performance above the desired minimum. In other
words, a cluster of size D must satisfy the following condition: all subclusters
of size D − 1 must still achieve the desired minimum correct classification ratio.
When a node fails, we first test wether the remaining nodes fulfill this condition.
If not, all the clusters of size D + 1 that can be built by adding one idle node
to the given cluster are tested. The one that achieves the best performance is
selected. If this new cluster fulfills the condition the system continues operation.
If not, another idle node is added to the cluster and the process is repeated until
a cluster that fulfills the condition is found or no idle nodes are left. In the latter
case the system is not able to achieve the desired performance anymore.

The training instances are used to computed the expected performance of new
clusters. This approach does not need system retraining, although it is valid only
as long as the training set is a good representation of the user’s gestures.

3 Characterization of Network Lifetime

Tests were done to assess the network lifetime (defined as the time until there
are no more sensors available to achieve the desired classification accuracy) by
simulating the evolution of the selected sensor set as nodes fail. For the sake of
generality, we do not rely on a particular power consumption or fault model for
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network nodes, as it depends on the hardware and protocols chosen. In particular
we are not interested in specifically identifying how long each sensor uses its
radio or whether employs any kind of energy saving techniques. Instead we want
to assess how our dynamic sensor selection algorithm extends network lifetime
independently of these factors.

Since we assume that all nodes are identical and perform the same activity,
we model node lifetime as a random variable following a Gaussian distribution
with mean μ (arbitrary time units) and standard deviation as a percentage of
the mean: α×μ (α < 1)3. Network lifetime is then calculated as a multiple of μ.
The lifetime of all the nodes is fixed at the beginning of the simulation according
to this model.

The dynamic sensor selection algorithm then generates a subset of nodes able
to achieve a desired accuracy even if any node of the subset fails. Then at each
time step, we decrease the life of all the active nodes by one time unit. When
the lifetime of a node is over, we assume that it takes a controlling unit one
time unit to generate the next cluster. When no cluster matching the desired
performance requirement is found the lifetime of the system is reached.

With this lifetime model only μ influences the overall system lifetime. The
standard deviation has no effect on the overall system lifetime since augmenting
this parameter augments the probability to see both nodes with shorter and
longer lifetime thus compensating each other (see Table 2). In our tests we
selected α = 0.3.

Table 2. Network life as a function of the standard deviation chosen. Network life is
calculated as a multiple of the mean node life (µ).

Standard deviation (% of mean) 10 20 30 40 50 60

Average life (time) 4.010µ 4.154µ 3.986µ 4.049µ 4.134µ 4.136µ

We compare the system lifetime when the dynamic sensor selection scheme is
used to the system lifetime when all the sensors are used simultaneously (with
the same node life model). In Fig. 4 the results of one trial are illustrated when
the minimum accuracy required is 90%. The plot shows the performance of the
network in two situations: (i) all the 19 nodes are active at the same time (dashed
line); (ii) only a subset is used (continuous line). Since the objective of the net-
work is to keep performances above 90% it can be considered expired when, due
to node faults, is not possible to find a subset of nodes able to achieve such
accuracy. Using all the 19 nodes together, the starting performance is higher,
but quickly drops as the average node life (μ) is reached. With the dynamic
sensor selection scheme, as the nodes fail (drops in the continuous line) they are
replaced by inactive nodes, thus keeping the minimum required performance.
Even when nodes fail, the performance never drops below the fixed threshold.

3 The consequences of using other distribution to model the node lifetime will be
explored in the future.
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Fig. 4. Performance of the network versus time in the case of 90% minimum correct
classification ratio. The network expires when its accuracy decreases under the fixed
threshold (horizontal line at 0.9). Using all 19 sensors together results in a shorter life
(dashed line), slightly above µ, while using dynamic sensor selection increases network
life above 4µ. In the latter case, when a node fails, the performance never decreases
below the fixed minimum.
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Fig. 5. Performance of the network versus time in the case that 85% (top) and 80%
(below) minimum correct classification ratio

With a minimum classification accuracy of 90% the dynamic sensor selection
scheme leads to a system lifetime about four times longer than when all the
nodes are active. Network lifetime increases when the the minimum classification
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ratio is reduced. Fig. 5 shows the network lifetime for a minimum classification
ratio of 80% and 85%. We performed 4 sets of 10 tests each one with increasing
minimum accuracy required and calculated the average network life for each
set. Fig. 6 shows that the average network life increases from around 2μ when
minimum accuracy is 95% up to more than 7μ when minimum accuracy is 80%.

Without dynamic sensor selection all the sensors are used at the same time
and the minimum classification accuracy does not play a role. As the nodes
approach their average lifetime μ, they will fail within a short time window
(related to the lifetime variance).

In Fig. 7 we illustrate (dark spots) how the network evolves over time. The
size of clusters tends to increase over time. This evolution is explained by the fact
that the algorithm always looks at the smallest cluster that satisfies the required
accuracy. Once is not possible to find a cluster of the minimum size, the number
of nodes is increased. Note also, according to our model, the life of the nodes
varies according to a gaussian distribution with a standard deviation equal to
30% of the mean value.
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4 Implementation Using Tiny Task Networks (Titan)

The algorithm described above needs to be mapped on a wireless sensor network.
The Titan framework that we are developing for context recognition in hetero-
geneous and dynamic wireless sensor networks can be used for this purpose [26].
We develop Titan as part of the ongoing e-SENSE project as a tool to enable
and explore how context awareness can emerge in a dynamic sensor network.
Titan simplifies the algorithm description, automates data exchange between
selected sensor nodes, and adapts execution to dynamic network topologies. It
thus qualifies for the implementation of the algorithm presented before.

Most context recognition algorithms can be described as a data flow from
sensors, where data is collected, followed by feature extraction and a classifica-
tion algorithm, which produces the context information. Within Titan, context
recognition systems are represented as Task Graphs. It offers for each processing
step (sampling, feature extraction, and classification) a set of predefined tasks.
A task is usually a simple signal processing function, such as a filter, but may
also be a more complex algorithm such as a classifier. A context recognition algo-
rithm can be composed from those modular building blocks, which are provided
by the nodes participating in the network.

A set of tasks are programmed into the sensor network nodes as a Task Pool.
These tasks are instantiated when they are needed (i.e. they use RAM and CPU
cycles only when they are used by a Task Graph). In a heterogeneous network,
node processing power may vary, and nodes with higher processing power can
provide more complex Task Pools than simpler nodes.

Figure 8 shows the Titan architecture and illustrates how a classification task
graph is distributed on the sensor network; the Task Graph Database contains the
classification algorithm description containing sensor tasks Si, feature tasks Fi, a
classification task C, and an actuator A1 receiving the end result. Upon request
to execute the algorithm, the Network Manager inspects the currently available
nodes in the network, and decides on which node to instantiate what tasks,
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Task Pool

Node 2
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Task Pool

Node 1

Task
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Fig. 8. Titan configures an application task graph by assigning parts of the graph to
participating sensor nodes depending on their processing capabilities
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such as to minimize processing load, overall power consumption, or maximise
network lifetime. The Network Manager then sends a configuration message to
the Task Managers on the sensor nodes, which instantiate the tasks on the local
node. The Task Manager assigns a share of dynamic memory to the tasks for
their state information and configures the connections between tasks, including
transmitting data to other nodes.

During execution of the task graph, the Network Manager receives error mes-
sages from tasks or sensor nodes, and checks whether all participating sensor
nodes are still alive. If changes to the current configuration are required, it
adapts the distribution of the task graph on the network.

Titan provides several advantages. Ease of use, since a designer can describe
his context recognition algorithm simply by interconnecting different tasks and
selecting a few configuration parameters for those tasks. Portability, because it
is based on TinyOS [27] which has been ported to a range of sensor network
hardware and due to the abstraction of tasks, it is able to run on heterogeneous
networks. Flexibility and speed, since it can reconfigure nodes in less than 1ms
in order to quickly react to changes in dynamic sensor networks.

The meta classifier with dynamic sensor selection presented above can be in-
corporated into Titan by dividing it into a set of tasks that can be instantiated
on different nodes. In particular, we define three new tasks: 1) a “gesture classi-
fication” task, which implements the HMM algorithm, 2) a “meta classification”
task that performs Bayesian inference and decides the gesture class, 3) a “dy-
namic sensor selection” task that defines the set of sensors contributing to the
meta classification task.

The initial cluster of nodes is created by the dynamic sensor selection task.
The Network Manager instantiates on each of the nodes within this cluster the
gesture classification task. The system runs as-is until a node fails (i.e. runs
out of power). When the meta classification tasks senses that a node fails to
send data it sends an error message to the Network Manager. The Network
Manager instantiates the dynamic sensor selection task on a device with sufficient
computational power (PDA, mobile phone), and then adapts the configuration
of the nodes as needed. Since the cluster can tolerate the failure of any one of
his nodes and guarantee the desired classification performance, the system can
work continuously even when the dynamic sensor selection task is running. This
relaxes the time constraint on this task and allows relatively complex clustering
algorithms for the dynamic sensor selection task.

The task of the Network Manager for running the presented distributed ges-
ture recognition algorithm is light-weight. To remember the current configuration
of the participating nodes, it has to store just 1 byte for the node ID, 1 byte
for their status (active,failed,not used,meta classifier), and a single byte for the
current cluster size. This amounts to 39 bytes of storage for running the gesture
recognition algorithm on our example of 19 nodes. The processing time is lim-
ited as well, as it just has to generate a small number of configuration messages
at every update of the network. We are thus confident that the algorithm pre-
sented here is able to run on sensor network nodes, with the exception of the
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non-optimized dynamic sensor selection task which runs on a PDA or mobile
phone.

5 Discussion

We have shown that by combining the fusion of classifier outputs operating on
single sensors with a dynamic sensor selection scheme it is possible to extend
the network lifetime while still achieving a minimum desired accuracy.

This technique may be easily used to adjust the number of sensors according
to dynamically changing application constraints. Such change can be adopted as
a consequence of changes in the user context (i.e. change in user location).

Active sensors may also be selected according to other criteria, such as the
performance of a node as a function of the gesture. If we integrate information
from the environment with the data of the sensor network, we may identify
a subset of gestures that are most likely performed at a certain time. Thus
active nodes may be selected among those which promise better classification
performances only on that subset of gestures. However, since any change in
configuration requires a set of messages to be sent among the nodes of the
network, further investigation must validate this choice.

This metaclassifier is highly parallelizable and thus well suited for wireless
sensor networks. Computation is shared among all active sensor nodes and none
of the them is a single point of failure of the whole system. This is very important
as we consider devices prone to fault or operating in environmental conditions
that may severely alter the topology of the network.

Our activity recognition algorithm can find similar application in other fields
of research. For example, sensor selection techniques try to extend network life
by using a subset of nodes able to achieve the minimum desired performances.
Such techniques are mainly used in environment monitoring [28] where dense
networks cover the area of interest and sensors coverage area are overlapped.

Clustering is a fundamental research topic in sensor networks as it makes it
possible to guarantee a basic level of system performance in presence of a large
number of dynamically changing nodes [29]. Clustering algorithms vary depend-
ing on their application, such as guaranteeing certain latency, or balancing the
activity among nodes and reducing power consumption. Energy aware cluster-
ing algorithms typically aim to reduce power consumption of the nodes either by
reducing the messages sent over the wireless link by aggregating redundant data
[30] or by keeping nodes in a low power state when there are other resources
able to provide the same information [31].

Another research area closer to our work is feature selection. Feature selection
includes a variety of techniques that aim to reduce the dimensionality of the input
instances of a classifier. Some of its objectives are: reducing the measurement
and storage requirements, reducing training and utilization times, defying the
curse of dimensionality to improve prediction performance [32]. If we consider
the HMM ouput as features, our approach may also be seen as a feature selection
technique: since we dynamically select only a subset of the available ones.
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Energy scavenging techniques can also take advantages from our approach.
In fact now the nodes can rely on long periods when the application does not
need their contribution. In such period they can collect energy and this relaxes
the constraints on energy consumption due to the limited amount of energy that
can be harvested from the environment. For example we showed an example of
a network whose lifetime was extended by a factor 4 while still achieving 90%
correct classification ratio. Since the average node life is one fourth of the total
network life, each node may rely on three times its average life in order to harvest
energy.

6 Conclusion

Wearable computing seeks to empower users by providing them context-aware
support. Context is determined from miniature sensors integrated into garments
or accessories. In a general setting the sensor network characteristics may change
in unpredictable ways due to sensor degradation, interconnection failures, and jit-
ter in the sensor placement. The use of a dense mesh of sensors distributed on the
body may allow to overcome these challenges through sensor fusion techniques.
Since such systems must remain unobtrusive, the reduction of node dimension
and node interconnection is of high importance. Wireless sensor networks help
achieving this unobtrusiveness since they do not require any wire connection.
However, this implies that each sensor node must be selfpowered. In order to
reduce obtrusiveness, the battery dimension must be kept at minimum, which
results in low power availability.

Energy aware design aims to extend sensor nodes life by using low power
devices and poweraware applications. Poweraware applications typically rely on
duty cycling: they reduce the amount of time when the radio is active, and they
increase the amount of time when the node can be placed in a low power state.
In wearable computing, unpredictable duty cycles are proscribed. We described
a different approach to extend network life while achieving desired accuracy.
We capitalized on the availability of large number of nodes to implement a
dynamic sensor selection scheme together with a metaclassifier that performs
sensor fusion and activity recognition. This technique copes with dynamically
changing number of sensor without need to retrain the system.

The method minimizes the number of nodes necessary to achieve a given
classification ratio. Active nodes recognize locally gestures with hidden Markov
models. The output of active nodes is fused by a naive Bayes metaclassifier. In-
active nodes are kept in a low power state. Once an active node fails the system
activates one or more additional nodes to recover the initial performance. Com-
pared to a system where all sensor nodes are continuously active, our approach
can extend up to 4 times the network life while reaching 90% correct classifica-
tion ratio, and up to 7 times while reaching 80% correct classification ratio. This
method is highly parallelizable and well suited for wireless sensor networks.

We described how this method fits within the Titan framework that we
develop to support context-aware applications in dynamic and heterogeneous
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sensor networks. Titan allows fast network configuration and is well suited for
our technique as it allows to easily exploit network resources dynamically.

We now have demonstrated the advantage of a dynamic sensor selection
scheme for accuracy-power trade-off in activity recognition. The implementation
of this algorithm on wireless sensor nodes is still an open point. With qualita-
tively identical results, alternate classifiers and sensor selection methods that
minimize computational power may be investigated. We also plan to extend the
current method in order to be able to increase the inital number of nodes with
on-line learning. Other future works can explore the use of an heterogeneous
network that include different kind of sensors such as strain sensors or tilt sen-
sors. Finally energy scavenging techniques benefit from our activity recognition
algorithm: more time is available to harvest energy thanks to dynamic sensor
selection. Evaluation of network performance with dynamically changing power
availability needs to be carried out.
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Abstract. We address the problem of designing practical, energy-efficient pro-
tocols for data collection in wireless sensor networks using predictive model-
ing. Prior work has suggested several approaches to capture and exploit the rich
spatio-temporal correlations prevalent in WSNs during data collection. Although
shown to be effective in reducing the data collection cost, those approaches use
simplistic corelation models and further, ignore many idiosyncrasies of WSNs,
in particular the broadcast nature of communication. Our proposed approach is
based on approximating the joint probability distribution over the sensors using
undirected graphical models, ideally suited to exploit both the spatial correlations
and the broadcast nature of communication. We present algorithms for optimally
using such a model for data collection under different communication models,
and for identifying an appropriate model to use for a given sensor network. Ex-
periments over synthetic and real-world datasets show that our approach signifi-
cantly reduces the data collection cost.

1 Introduction

Wireless sensor networks (WSNs), comprising of tiny, radio-enabled sensing devices
open up new opportunities to observe and interact with the physical world, and have
been applied in domains ranging from patient health monitoring through the use of
biomedical sensors to military applications such as battlefield surveillance [1]. In this
paper, we address the problem of designing energy-efficient protocols for collecting all
data observed by the sensor nodes in a wireless sensor network at an Internet-connected
base station at a specified frequency [2,25,22,4]. The key issue in designing such data
collection protocols is modeling and exploiting the strong spatio-temporal correlations
present in most sensor networks (see Figure 1). In most sensor network deployments,
especially in environmental monitoring applications, the data generated by the sensor
nodes is highly correlated both in time (future values are correlated with current val-
ues) and in space (two co-located sensors are strongly correlated). Naive data collection
protocols tend to be significantly suboptimal in the presence of such correlations. These
correlations can usually be captured quite easily by constructing predictive models
using either prior domain knowledge or historical data traces. However, because of the
distributed nature of data generation in sensor networks, and the resource-constrained
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nature of sensor nodes, traditional data compression techniques cannot be easily adapted
to exploit such correlations.

The distributed nature of data generation has been well-studied in the literature under
the name of Distributed Source Coding [26,30,31,27]. In their seminal work, Slepian
and Wolf [26] prove that it is theoretically possible to encode the correlated informa-
tion generated by distributed data sources (in our case, the sensor nodes) at the rate of
their joint entropy even if the data sources do not communicate with each other. How-
ever this result is non-constructive, and constructive techniques are known only for a
few specific distributions [23]. More importantly, these techniques require precise and
perfect knowledge of the correlations. This may not be acceptable in practical sensor
networks where deviations from the modeled correlations must be captured accurately
(we use DSC to provide a lower bound on the data collection cost; see Section 2.2).
Pattem et al. [22] and Chu et al. [4], among others, propose practical data collection
protocols that exploit the spatio-temporal correlations while guaranteeing correctness;
however, these protocols may exploit only a subset of the correlations, and further re-
quire the sensor nodes to communicate with each other (increasing the overall cost).

Sensor networks, especially wireless sensor networks, exhibit other significant pe-
culiarities that make the data collection problem challenging. First, sensor nodes are
typically computationally constrained and have limited memories. Hence, it may not be
feasible to run sophisticated data compression algorithms on them. Second, the com-
munication in wireless sensor networks is typically done in a broadcast manner – when
a node transmits a message, all nodes within the radio range can receive the message.
As we will see later, this enables many optimizations that would not be possible in a
one-to-one communication model.

In this paper, we present an approach to exploit all the spatial correlations in the
data by approximating the joint probability distributions using a subclass of undirected
graphical models called decomposable models. We develop algorithms for perform-
ing data collection using such a model, and for choosing an appropriate decomposable
model for a given sensor network. Our data collection protocols are also naturally able
to exploit the broadcast nature of communication among wireless sensors. Finally, we
present an extensive experimental study over several synthetic and real-world datasets,
and demonstrate that the expressiveness of our data collection model leads to a signifi-
cant reduction in the total transmission cost.

2 Background

We begin with presenting preliminary background on data compression in sensor net-
works, and discuss the prior approaches. We then present an overview of the class of
decomposable models.

2.1 Notation and Preliminaries

We are given a sensor network with n nodes that continuously monitors a set of dis-
tributed attributes X = {X1, · · · , Xn}, and generates a discrete data value vector
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Fig. 1. A plot of several traces from the In-
tel Lab Dataset [18] shows the strong spatio-
temporal correlations in the data
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Fig. 2. Two extremes in the spectrum of communi-
cation model and data encoding options

xt = {xt
1, · · · , xt

n} at every time instance t1. Each attribute, Xi, may be an environ-
mental property being sensed by the node (e.g., temperature), or it may be the result of
an operation on the sensed values (e.g., in an anomaly-detection application, the sensor
node may continuously evaluate a filter such as “temperature > 100” on the observed
values). If the sensed attributes are continuous, we assume that an error threshold ε is
provided and the readings are binned into intervals of size 2ε to discretize them. In this
paper, we focus on optimal exploitation of spatial correlations at any given time t and
drop the superscript in the rest of the paper; however we note that our ideas can be
easily generalized to handle temporal correlations as well.

Predictive modeling-based approaches to data compression begin by building a pre-
dictive model over the sensor network attributes that is used to obtain a joint probability
distribution (pdf) over the attributes. We denote this pdf by p(X1, ..., Xn).

We denote the communication graph of the sensor network by GC = (X , E), where
E consists of the pairs of vertices that are within communication radius of each other.
We denote by d(X, Y ) the minimum distance between X and Y in terms of number of
hops. For simplicity, we assume all communication links to be perfect and identical2,
and consider two alternatives for computing communication costs:

(1) bit-hop metric: The total cost of sending a message containing n bits from X
to Y is given by n∗d(X, Y ). In practice, this can be approximated reasonably
well by batching multiple messages together (at the cost of increasing latency).

(2) num-messages metric: The total cost of sending a message (that can contain at
most 32 bytes) from X to Y is given simply by d(X, Y ). In other words, we
only count the number of messages that are transmitted.

In many practical sensor network deployments, the cost of receiving a message at
the sensor node can be quite high (sometimes as high as the transmission cost). For

1 The time instances at which data is acquired depends on the application-specified frequency
of data collection.

2 Both these assumptions can be relaxed by assigning appropriate weights to the communication
links and adjusting the cost metric formulas accordingly.
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simplicity, in our analysis and algorithm descriptions, we assume that the cost of re-
ceiving a message at a sensor node is zero; we however present several experiments
where we account for receiving cost as well.

The choice of cost metric is closely tied with how the data is encoded during data
collection. We consider two extremes in the spectrum of possibilities:

Joint Entropy-Based Data Collection (bit-hop metric): Assuming that it is possible
to compress the data optimally according to the joint pdf (e.g. using Huffman coding),
the number of bits that need to be transmitted from a sensor node X (also called source)
to the base station (called sink) is given by the information entropy of the distribution:

Hp(X) = Σx − p(x) log(p(x))

where p(X) denotes the probability distribution (pdf) over the attribute X .
If an approximation, q(X), is used instead to compress, the number of bits transmit-

ted is given by H(p) + D(p||q), where D(p||q), called relative entropy, is given by:
D(p||q) = Σ − p(x) log(p(x)/q(x)).

Suppression-Based Data Collection (num-messages metric): Full-scale data com-
pression may not be feasible in a sensor network; hence prior work in this area has
typically considered a suppression-based approach [21,25,4], where the base station
uses the pdf to predict a value for the attribute X . The sensor node, which has access to
the same distribution, also predicts the same value and only sends a message if the pre-
dicted value is different from the actual observed value. We denote the expected number
of messages by Mp(), and note that:

Mp(X) = 1−maxx p(x)
Note that we assume here that only a single message is needed to update the base station
with the correct values.

Figure 2 illustrates these two approaches for an example distribution. Our algorithms
are invariant to the approach used for compression. However, we assume the ability to
compute an analogous function to Hp() or Mp() for any distribution p. We use the
former metric when analyzing the problem and for experiments on synthetic datasets,
but use the latter, more practical, metric for our experiments on real datasets.

2.2 Predictive Modeling-Based Data Compression in Sensor Networks

Given a joint pdf over the sensor network attributes, the key problem in using it for data
compression is the distributed nature of data generation. The natural way to use the joint
pdf, p(X1, . . . , Xn), would be to gather the sensed values at a central sensor node, and
compress the data there. The data gathering cost, however, would typically dwarf any
advantages gained by doing joint compression.

The prior research in this area has suggested several approaches that utilize a sub-
set of correlations instead. One approach, called Independent (IND), is to ignore the
spatial correlations and to compress the data from each sensor node independently of
the others (Figure 3 (i)). In other words, an approximate distribution q1(X1, ..., Xn) =
p(X1)p(X2)...p(Xn) is used for compression (where p(Xi) denotes the marginal prob-
ability distribution of Xi, computed by summing over the remaining variables in X ).
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The second approach, that we call Clustering (CLSTR) [22,4], is to group the sensor
nodes into clusters, and to compress the data from the nodes in each cluster jointly.
Figure 3 (ii) shows an example of this using three clusters {X1}, {X2, X5}, {X3, X4},
which corresponds to using the distribution q2(X1, ..., X5) = p(X1)p(X2, X5)p(X3,
X4). In this approach, the intra-cluster spatial correlations are exploited during com-
pression; however, the correlations across clusters are not utilized.

Several other approaches based on routing driven compression [22,24,6] have also
been suggested. However, these approaches typically require joint compression and
decompression of large numbers of data sources inside the network, and hence are not
suited for resource-constrained sensor networks. We leave a detailed comparison of
these approaches with our proposed approach to future work.

Distributed source coding (DSC), although not feasible in this setting for the reasons
discussed earlier, can be used to obtain a lower bound on total communication cost
as follows [7,6,27]. Let the sensor nodes be numbered in the increasing order of their
distances from the base station (i.e., for all i, d(Xi, sink) < d(Xi+1, sink)). Then, the
optimal scheme for using DSC is as follows: X1 is compressed according to p(X1),
and transmitted directly to the sink (incurring a total cost of d(X1, sink) × H(X1)).
X2 is compressed according to p(X2|X1) (since the sink already has the value of X1,
it is able to decode according this distribution). Note that, according to the distributed
source coding theorem [26], sensor node X2 does not need to know the actual value of
X1. Similarly, Xi is compressed according to p(Xi|X1 . . . Xi−1) and so on. The total
communication cost incurred by this scheme is given by:

DSC(p) = Σn
i=1d(Xi, sink)×Hp(Xi|X1, . . . , Xi−1)

Figure 3 (iii) shows this for our running example (note that X5 is closer to sink than X3

or X4).
As we can see in Figure 3, if the spatial correlation is high, both IND and CLSTR

would incur much higher communication costs than DSC. As an example, if H(Xi) =
h, ∀i, and if H(Xi|Xj) ≈ 0, ∀i, j (ie., if the spatial correlations are almost perfect), the
total communication costs of IND, CLSTR(as shown in the figure), and DSC would be
8h, 6h, and h respectively.

2.3 Discussion: Factors Affecting Data Compression Quality

The difference between the data compression ratios achieved by DSC and other tech-
niques can be attributed to two factors.

Approximation Loss: If a data collection scheme only uses a subset of the correlations,
then even if the scheme was optimal (ie., was able to compress as well as DSC), more
bits would have to be communicated than minimally needed. For the example setup
in Figure 3, since IND assumes independence between the sensor nodes, the node X2

must transmit H(X2) bits to the sink compared to H(X2|X1) that DSC transmits; in
fact, the difference between IND and DSC (8h− h = 7h), can be attributed entirely to
Approximation Loss. Although CLSTR is able to exploit some of the spatial correla-
tions, it does not exploit inter-cluster correlations. Since the clusters are typically small
(for reasons discussed below), the Approximation Loss can be quite high for CLSTR as
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Fig. 3. Illustration of three prior approaches to data commpression for a 5-node network (CLSTR
uses 3 clusters {X1}, {X2, X5}, {X3, X4}). If spatial correlations are perfect, total communi-
cation costs (using the bit-hop metric) for IND and CLSTR can be very high compared to the
theoretical optimal DSC.

well. Of the 5h difference between CLSTR and DSC in Figure 3, 3h can be attributed
to Approximation Loss.

Formally, let p denote the joint pdf that captures all spatial correlations in the net-
work, and let q denote an approximation to p that captures a subset of those correlations.
Let DSC(p) denote the cost incurred by DSC when compressing according to the pdf
p. Then the Approximation Loss for a data collection scheme that only exploits the
correlations in q is given by: DSC(q)−DSC(p).

Intra-source Communication: If two or more nodes are compressed jointly to exploit
the spatial correlation, then the data from these nodes must be gathered at a single loca-
tion. For the example shown in Figure 3, CLSTR communicates X4 to X3 to compress
them jointly. We call this Intra-source Communication cost (the remaining 2h difference
between CLSTR and DSC in Figure 3 can be attributed to intra-source communication).

By increasing the expressive power of the model used and thus capturing larger sub-
sets of spatial correlations (for example, by increasing the cluster sizes), we can reduce
the Approximation Loss, but the increase in the Intra-source Communication cost will
typically outweigh the benefits (e.g. in Ken [4], the optimal cluster sizes were found to
be < 4).

2.4 Decomposable Models and Junction Trees

In this paper, we propose using a subclass of undirected probabilistic graphical
models [10], called decomposable models [8], to capture the spatial correlations and
to perform data compression in a sensor network. Decomposable models capture and
exploit the conditional independences in the data to compactly represent joint pdfs over
a large number of variables. Two random variables X1 and X2 are conditionally inde-
pendent of each other given X3 iff:

p(X1, X2|X3) = p(X1|X3)p(X2|X3)
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Even though any two sensor nodes in a sensor network may be highly correlated with
each other in isolation, given the values of other nodes in the network, many of these
correlations almost entirely disappear. For instance, in an environmental monitoring ap-
plication, a sensor node is typically independent of its non-neighbors given the values
of its neighbors. Hence, by using an appropriate decomposable model to approximate
the joint pdf, we can exploit most of the spatial correlations in a typical sensor net-
work while keeping the Intra-source Communication cost low. As we will see in the
next section, these models can also naturally utilize the broadcast nature of communi-
cation to further reduce the Intra-source Communication cost. Next, we provide a brief
introduction to the class of decomposable models.

Given a set of variables, X , a decomposable model, denotedM, uses a graph, GM,
over X to encode the conditional independences among the variables. More precisely,
a decomposable model satisfies the global Markov property with respect to GM [28]:

If two node sets A and B are separated by a third node set C, i.e., if removing the
nodes in C and all the edges attached to the nodes in C results in the node sets A
and B getting disconnected, then A and B are conditionally independent given C.

Further, the graph GM must be decomposable (also called chordal or triangulated):
every cycle of length greater than 3 must posses a chord – an edge joining two non-
consecutive vertices of the cycle. Figure 4 shows two examples of decomposable graphs
over 5 nodes. In the first graph, removing X1 will separate the remaining vertices from
each other; thus, we can say that X2, X3, X4, X5 are all conditionally independent of
each other given X1. In the second graph, if the edge (X1, X5) were missing, then it
would not be chordal (since the 4-cycle (X1, X2, X5, X4, X1) would have no chord).

X4

X2

X1

X3

X5

Base Station

X4

X2

X1

X3

X5

Base Station X1X2

X1

X1X3

X1

X1X4

X1

X1X5

X1X2X5

X1

X1X3

X1 X5

X1X4X5(i) (ii)

(iv)

(iii)

Fig. 4. (i, ii) Two example decomposable graphs superimposed on the communication network.
Solid lines are network edges; dashed lines are model edges. (iii, iv) Junction trees for the two
models rooted at cliques X1X2 and X1X2X5, respectively.

A compact and particularly useful representation of decomposable graphs is pro-
vided by junction trees (also known as clique trees) [3,16]. Briefly, given a decompos-
able graph GM, a rooted junction tree JC(GM) is a tree whose vertex set consists of the
maximal cliques of GM, and whose root is the clique C. The edges in a junction tree
are required to satisfy the following clique-intersection property:
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For every pair Ci and Cj of cliques in GM, the set Ci ∩ Cj is contained in every
clique on the path connecting Ci and Cj in J(GM).

We denote by C the set of all maximal cliques of GM. Without loss of generality, we
will assume that C1 denotes the root of the junction tree. For a clique C, let parent(C)
denote the parent of the C, and let SC = C ∩ parent(C) be the separator between the
node and its parent (it is easy to see that SC separates the vertex sets parent(C) \ SC

and C \ SC .). We denote by S the set of all separators. Although junction trees are not
unique, all junction trees of a decomposable graph have the same set of separators.

Figure 4 shows one junction tree each for the two example decomposable graphs.

Approximating a Joint PDF Using a Decomposable Model: A decomposable graph,
GM, can be used to approximate a joint probability distribution, p(X1, . . . , Xn), as
follows. For a set of variables, C ⊂ X , let p(C) denote the the marginal probability
distribution over the variables in C (computed by summing over the remaining vari-
ables in X ). Let qGM(X1, . . . , Xn) be the probability distribution computed using the
decomposable graph as follows:

qGM(X1, . . . , Xn) =
ΠC∈Cp(C)
ΠS∈Sp(S)

= ΠC∈Cp((C − SC)|SC) (Equation(1))

For example, for the junction tree shown in Figure 4 (iii), we get that:

q1(X1, . . . , X5) = p(X1X2)p(X3|X1)p(X4|X1)p(X5|X1) (Equation(2))

We note that existence of such a closed form expression is perhaps the biggest advantage
of using a decomposable graph over an arbitrary graph. Further, for any clique C ∈ C,
it is easy to see that q satisfies the following property: qGM(C) = p(C). In other words,
qGM and p agree on the marginal distributions over the maximal cliques of GM.

If the approximation quality was the sole concern, we would like to use a
decomposable model that minimizes the relative entropy between qGM and p, given by:
D(p||qGM) = (ΣC∈CH(C) −ΣS∈SH(S)) −H(X ). This is also the commonly used
metric in probabilistic modeling [8], and further will result in low Approximation Loss.
However, as we will see in next section, when using such a model for data compression,
we also need to be cognizant of the communication topology.

3 Using Decomposable Models for Data Collection in WSNs

A decomposable model typically captures a subset of the correlations present in the sen-
sor network. In this section, we first consider the problem of designing data collection
protocols for optimally exploiting those correlations for a given decomposable model.
We then address the problem of choosing a decomposable model for a given sensor
network.

3.1 Data Collection Using a Decomposable Model

Example. We begin with the example decomposable model shown in Figure 4 (i) and
the corresponding junction tree (Figure 4 (iii)). For this model, Equation (2) provides
us with the way to fully exploit the captured correlations as follows:
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– For each of the cliques in the model, {X1, X2}, {X1, X3}, {X1, X4}, {X1, X5},
gather the values of the attributes in the clique at some sensor node (this can be
different for each clique).

– Use the marginal probability distribution p(X1X2) to jointly compress X1 and X2

(the clique at the root), and send them to the sink.
– Let the observed value of X1 be x1. Use the distribution p(X3|X1 = x1) to com-

press and transmit the observed value of X3. Since X1 = x1 is already known to
the sink, it can decompress using the appropriate distribution.

– Similarly, use the distributions p(X4|X1 = x1) and p(X5|X1 = x1) to transmit
the values of X4 and X5 respectively.

The total number of bits received by the sink can be shown to be exactly:

H(p) + D(p||q1) = H(X1X2) + H(X3|X1) + H(X4|X1) + H(X5|X1)
However, to be able to compute the total communication cost incurred during this pro-
tocol, we need to “place” the cliques at the sensor nodes (ie., decide which sensor nodes

H(X2|X1)
H(X1)

H(X 1
)

H(X1)

H(X
1 )

X4

X2

X1

X3

X5

Base Station

H(X4|X1))

X4

X2

X1

X3

X5

Base Station

H(X
5 |X

1 ))

H(X3|X1)

H(X
1 )

Cost = H(X1)   +                     H(X2|X1) + 2 * H(X3|X1) + 3 * H(X4|X1) + 2 * H(X5|X1)

        = h           +                     0 + 2 * 0 + 3 * 0 + 2 * 0 = h

Fig. 5. Data compression using the example decomposable
model from Figure 4 (i)

to collect the data for each
clique at). Figure 5 shows
an example placement that
optimally exploits the broad-
cast nature of the commu-
nication. In this case, we
place the clique (XaX1) at
the sensor node Xa for a ∈
{2...5}. With one broadcast
from node X1 (at a cost of
H(X1)), the value of X1 =
x1 will be known to each
of the remaining nodes (in-
cluding the sink).

The total communication cost in the second step after this broadcast is given by:

H(X2|X1) + 2H(X3|X1) + 2H(X4|X1) + 2H(X5|X1)

For the case of perfect correlations considered in Figure 3, the total cost for this model
can be seen to be h as well (same as DSC). However, the cost would be higher if the
receiving costs were non-zero (whereas the cost for DSC would remain h).

Given an arbitrary decomposable modelM and a rooted junction tree for it, the data
collection is done as follows:

– Place the cliques ofM on to the sensor network nodes (Section 3.2).
– For each node Xi, let DXi denote the sensor nodes which have been assigned a

clique that contains Xi.
– Find a broadcast tree to communicate Xi to the nodes in DXi (we use a breadth-

first search algorithm for this in our implementation).
– At the sensor node that has been assigned a clique C, compress the values of the

sensor nodes in (C − SC) according to the distribution p((C − SC)|SC).
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3.2 Clique Placement Algorithms

We first present an optimal algorithm for the case when the decomposable model graph
(GM ) is a subgraph of the communication graph (GC ). We then consider the more gen-
eral case, and show that it is NP-Hard. We then present an efficient heuristic that we use
in our experimental study.

CASE: GM is a subgraph of GC . In most sensor networks, geographically co-located
sensors tend to exhibit stronger spatial correlations than sensors that are far away from
each other. As a result, in many cases, the decomposable model graph may only contain
the edges between neighboring sensor nodes. We present an optimal algorithm to solve
this case below.

Consider a clique Ci in M. Since we must gather together all sensor nodes in Ci

at one location, we can either (1) transmit some |Ci| − 1 of these nodes to the remain-
ing node, or (2) transmit all of them to another node not in Ci (combined |Ci| + 1
alternatives). However, all the nodes in Ci are within communication radius of each
other (since the decomposable model graph is a subgraph of the communication graph).
Hence, each of the sensor nodes whose value needs to transmitted only needs to broad-
cast its value once. In other words, multi-hop transmissions are not needed to get the
values in Ci together at one location. Thus, we only need to make binary decisions
for each node (whether to broadcast, or not)3. Given these decisions, the placement of
cliques follows (assuming sufficient nodes broadcast their values).

Our dynamic programming-based algorithm uses the following observation: once
the broadcast decisions for the nodes in a separator Si are made, the decisions for
the nodes in the subtree below Si can be made independently of the decisions for
the remaining nodes in the graph. Algorithm 1 shows the pseudo-code for the main
recursive procedure. Briefly, the algorithm starts at the root of the junction tree C1

(ComputeOptimalCost(C1, φ)), and tries each of the |C1|+ 1 alternatives, recursing
down the junction tree for each of the alternatives. It is easy to see that the algorithm
runs in time O(n3).

If the receiving costs are non-zero, then the number of different possible decisions
for a separator Si is O(|Si|2|Si|) (since we not only have to decide which of the nodes
in Si will broadcast, but we also must decide which of the nodes in Si will receive
those values). Overall the complexity of the algorithm increases to O(n32s), where s
denotes the maximum separator size. Although it is exponential in the worst case, in
practice, we expect the value of s to be quite small (< 3), and hence this algorithm is
quite feasible even in that case.

CASE: GM is not a subgraph of GC

Theorem 3.1. The general case of the clique placement problem is NP-Hard.

Proof Sketch: We reduce a variant of the minimum connected dominating set problem
to the clique placement problem. Given a graph G = (V, E) and a set of nodes S ⊂ V ,
we construct a clique placement problem as follows. The communication graph over

3 Note that we assume here that only the transmission costs are counted, and that the cost of
receiving a message is zero.
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Algorithm 1. Procedure ComputeOptimalCost(Ci, bc)
Input: Ci: A clique in M; bc[Xj ] = true if Xj ∈ SCi is broadcast
Let key = (Ci, bc);
if key exists in cache return cached cost;
Let D1, . . . , Dk denote the children of Ci;
if there exists X ∈ SCi such that bc[X] = false then

/* All nodes in Ci − Si must be broadcast */
c = ΣY ∈Ci−SiH(Y ) + H(Ci|Si) × d(X, sink);
for j = 1, . . . , k do

Construct a bit-vector bcj of size |SDj | and set all entries to true;
if X ∈ Dj then set bcj [X] = false;
c = c + ComputeOptimalCost(Dj, bcj);

end
Insert 〈key, cost〉 into cache;
return c;

else
/* We must try all possible placements for Ci. */
for X ∈ Ci − SCi do

Let cX denote the total cost assuming all nodes in Ci except X are broadcast;
Compute cX as above;

end
Compute call = the cost assuming all nodes in Ci are broadcast (Ci may be placed at a
node /∈ Ci);
Insert 〈key,min(minX(cX), call)〉 into cache;
return cmin

end

the sensor network is set to be G. For a node X /∈ S, we set H(X) = 0. For X ∈ S,
we set H(X) = c for some constant c, and for each pair (X, Y ), X ∈ S, Y ∈ S, we
set H(X |Y ) = 0. In other words, all nodes in S are perfectly correlated with each
other. Further, we choose a node A ∈ S, and use a decomposable model with cliques
(A, X), X �= A, X ∈ S, and further choose an arbitrary junction tree for this model. It
is easy to see that, for any junction tree, the optimal solution involves broadcasting A to
all the other nodes in S. The problem of constructing the broadcast tree is identical to
the problem of computing the Steiner connected dominating set for S, a problem that is
known to be NP-Hard [11]. 	

We next present an efficient greedy heuristic that we use for solving the clique place-
ment problem (Algorithm 2). Intuitively, Algorithm 2 starts off by placing all cliques as
close to the sink as possible. Then, starting with the node closest to the sink, it makes lo-
cal, cost-based decisions about whether to broadcast the value of each node away from
the sink, into the sensor network (in effect, moving the cliques away from the sink).

Example. In our running example (Figure 4 (i) and (iii)), the four cliques {X1, X2},
{X1, X3}, {X1, X4}, {X1, X5} would initially be placed at node X1. The algorithm
then checks if it would be beneficial to broadcast X1 instead, which would result in
placement of cliques as shown in Figure 5. After making the decision for X1 (which
is not changed afterwards), the algorithm then checks to see if X2 should be set to
broadcast and so on.
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Algorithm 2. Heuristic Clique Placement Algorithm
Input: A decomposable model M; a rooted junction tree of M
Output: An assignment of cliques to the nodes in GC

Let bc denote current broadcast decisions (bc[X] = true =⇒ X is broadcast);
Initialize bc[X] = unknown for all nodes;
for C ∈ M do

if ∃X ∈ C such that bc[X] �= true then
Let Xr ∈ C be the node closest to the sink such that bc[Xr] �= true;

else
Let Xr ∈ C be the node farthest away from sink;

Place C at Xr;
end
Let c denote the cost of the above clique placement;
Let Xi be the ith closest node to the sink;
for i = 1, . . . , n do

Set bc[Xi] = true and re-assign each clique currently placed at Xi as above;
Let ci be the new total cost;
if ci < c then set c = ci; else set bc[Xi] = false;

end

3.3 Choosing a Decomposable Model

The problem of finding an optimal decomposable model for a given data sample to
minimize an error metric such as Chi-squared error, is known to be intractable [10], and
heuristic algorithms are typically used for this purpose [8]. Although our metric (which
accounts for the communication topology) is quite different from the Chi-squared error
metric, we adapt a similar heuristic search procedure in our system. More specifically,
we use a forward stepwise selection [8] algorithm to find an appropriate decomposable
model. The algorithm starts with an empty decomposable model, i.e., a model with no
edges. It then incrementally adds eligible edges in the order of their benefits until there
is no improvement in the total expected communication cost. (An edge is said to be
eligible if the model remains decomposable after adding it.) Algorithm 2 is used as
a subroutine for evaluating the total expected communication cost of the model after
adding a candidate edge in the incremental step.

To make the search problem tractable, we observe that disconnected components of
the decomposable model do not influence the placement or junction tree decisions of
each other. Hence, when a new edge is added, only the costs of the connected com-
ponents that are affected by the addition need to be re-evaluated using Algorithm 2;
a connected component is affected if the new candidate edge is incident on a vertex
(or two vertices) in the component. We also memoize (cache) the total costs of all
connected components encountered during search, as computed by Algorithm 2. Em-
ploying these two optimizations results in significantly reduced total execution time for
the selection process. Due to space constraints, we omit a more detailed description of
the algorithm.
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4 Experiments

We conducted a comprehensive experimental study over several synthetic and real-
world sensor network datasets. In this section, we present the results of that study.

Data Sets: Our first synthetic dataset (SYNTH-1, a 30-node network) is generated us-
ing a multivariate Gaussian distribution; each variable follows the standard normal dis-
tribution (with variance 1), and the covariance between attributes Xi and Xj is set to
be a function of the distance between them, cd(Xi,Xj) (where c (0 ≤ c ≤ 1) denotes
the correlation strength). The sensor nodes are placed randomly in a 20x20 square and
have an average hop count of 8.5 to the sink (placed at (0, 0)).

For the second and third synthetic data sets (SYNTH-2 and SYNTH-3 , two 72-node
networks), we use an analytical expression for computing the entropy for a precipita-
tion data model (presented and used by Pattem et al. [22] in their study). The network
topologies are generated by placing the nodes randomly within a 66x66 square and a
3x24 rectangle respectively, with average hop counts of 6.5 and 13.5 to the sink.

The first real-world data set, Lab [18], contains traces from 49 sensors deployed in
the Intel Research Lab at Berkeley. The data contains roughly 23 days of recordings
on light, humidity, temperature and voltage. We use the temperature readings between
9pm to 3am for our experiments. The data from first 15 days is used for training (for
constructing the model and the pdfs), and the data from next 8 days is used for testing.
Our second real-world data set, Precipitation, contains precipitation data in the states of
Washington and Oregon collected during 1949-1994 [29]. Fifty stations are randomly
selected from the deployment. We discretize the observed values into three categories:
light rain, medium rain, and heavy rain. The initial two thirds of the data is selected as
the training set, and the remaining data is used for testing.

Comparison Systems:
We compare the following data collection methods.

– NAIVE: No compression is done while collecting the data.
– IND (Section 2.2): Each node compresses its data independently of the others.
– CLSTR (Section 2.2): The clusters are chosen using the greedy algorithm presented

in Chu et al. [4].
– KEN [4]: This is similar to above, except that no compression is performed while

collecting the data for each cluster at the cluster-head (this will always perform
worse than CLSTR).

– DECOMP: An appropriate decomposable model is chosen using the algorithms
presented in Section 3, and is used for data collection.

– DSC: Where applicable, the theoretical lower bound is plotted (Section 2.2).

Methodology: We investigate the performance under different data and network char-
acteristics including correlation, error threshold ε (for SYNTH-1 and Lab), network
topology, and the sensor receiving costs. Unless otherwise mentioned, we set ε = 0.5.
To avoid model over-fitting, we limit the clique/cluster size S ≤ 3 for DECOMP, KEN,
and CLSTR. For the synthetic datasets, we restrict the models learned by DECOMP to
be subgraphs of the communication network since the spatial correlations are strongest
for neighboring nodes. We remove this restriction for the real-world data sets. For the
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Fig. 6. Total data collection costs for (i) SYNTH-1, (ii) SYNTH-2, and (iii) SYNTH-3

synthetic datasets, we use the joint-entropy based data collection – for SYNTH-1, we
estimate the entropy using the training dataset, whereas for SYNTH-2 and SYNTH-3,
we use the analytical expressions presented in Pattem et al. [22]. For real-world datasets,
we use suppression-based data collection.

Results: Synthetic Datasets. Figure 6 compares the effectiveness of the different
schemes at reducing the total transmission cost on the three synthetic datasets for vary-
ing correlation characteristics. We also plot an estimate of the cost of DSC; for SYNTH-
1, we can only compute an upper bound since accurate estimation of entropy over large
sets of variables is not feasible. For SYNTH-1, we plot two graphs for DECOMP, one
where we use the optimal clique placement algorithm and the other using the heuristic
algorithm (Section 3.2). There is however almost no difference in the total transmission
cost, and the two graphs overlap entirely. We use the heuristic algorithm in the rest of
the section as it is much more efficient than the optimal algorithm.

Several facts become clear from these figures. At low correlations, the techniques
perform fairly similarly; the intra-source communication cost outweighs the benefits
of joint compression, and hence all techniques degenerate to IND. As the correlation
strength increases, the total costs of the techniques that exploit the correlations decrease
rapidly, with DECOMP performing much better than CLSTR or KEN. In fact, the total
cost for DECOMP is very close to that of DSC; not only is the Approximation Loss
of DECOMP very low, but, because it exploits broadcast communication, the Intra-
source communication cost of DECOMP is also very low. We again note that, if the
receiving costs are factored in, the performance of DECOMP is noticeably worse than
DSC, although it is still much superior to CLSTR or KEN (see below).

Another interesting aspect is how network topologies affect the qualitative behaviors
of the schemes. Comparing Figure 6(iii) with Figure 6(ii), we see that it is more ex-
pensive to transmit data in the deep network (Figure 6(iii)) since the average hop count
is larger. Forming spatial cliques for doing in-network compressions becomes more at-
tractive in such a network; if correlations are ignored, the Approximation Loss in such
networks can be very high.

Figure 7(i) presents the effects of varying the user-defined error threshold ε (for the
SYNTH-1 dataset, with correlation c = 0.9). As expected, the total cost decreases when
ε is increased for all techniques. We note that the performance of DECOMP remains
close to the upper bound on DSC for a wide range of error thresholds.
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Fig. 7. (i) Effects of ε on the total cost for SYNTH-1, (ii) Impact of receiving cost for SYNTH-1,
(iii) Total message-based transmission cost for SYNTH-1
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Fig. 8. The total communication costs for: (i) Lab dataset (over ≈ 1300 runs), (ii) Lab dataset
including receiving costs, (iii) Precipitation dataset (over 5600 runs)

We next present the results from an experiment where the receiving cost was set to
be the same as the transmission cost (as is common in many deployments). Figure 7(ii)
shows the total communication cost with the receiving cost included for SYNTH-1.
Similarly to Figure 6(i), both DECOMP and the clustering based methods stay at their
upper bound, IND, till c = 0.754. As we can see, the relative performance of DE-
COMP, IND and CLSTR remains essentially unchanged; however, the relative cost
of DECOMP increases slightly compared to DSC. This is because DECOMP exploits
broadcast communication, which gets penalized when receiving costs are non-zero.

Finally, Figure 7(iii) presents the total cost in terms of the message-based metric
for 500 test tuples in SYNTH-1. Messages, instead of bits, are used to quantify the
communication costs. We note that the graph shows similar trends as the entropy-based
metric (Figure 6(i)), with DECOMP resulting in much fewer total messages transmitted
than the alternatives.

Results: Real-World Datasets. Figure 8(i) present the results for Lab’s test traces
when receiving costs are not considered. The results are for ε = 0.5 and ε = 1.5.
DECOMP achieves the best performance in both cases. A small value of ε (i.e. ε = 0.5)
results in higher entropy and the total cost of all techniques increases. The increase in ε

4 Although c = 0.75 might seem large, we note that the 30-node network resides in a 20 × 20
square, resulting in large pairwise node distances.
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results in sharp drops in communication costs: DECOMP achieves a 41% drop in total
cost, CLSTR has a 29% drop, and KEN has a 25% drop. More subtle, a small value of ε
introduces higher variances in the quantized data, and hence the correlations across sen-
sors are weaker. As a result, the relative performance of all modeling-based techniques,
relative to IND, is slightly worse for small values of ε.

Introducing receiving costs (Figure 8(ii)) results in a higher total communication cost
for all schemes. DECOMP continues to outperform the other methods, and the amount
of performance differences for all modeling-based methods with respect to NAIVE
stays relatively unchanged.

Finally, Figure 8(iii) plots the results of exact data collection for the precipitation data
(i.e. ε = 0). The spatial correlations in this data are not high, but as Figure 8(iii) shows,
the modeling-based approaches significantly outperform Naive, and DECOMP achieves
the lowest total communication cost among all four modeling-based approaches.

5 Related Work

Wireless sensor networks have been a very active area of research in recent years
(see [1] for a survey). Due to space constraints, we only discuss some of the most
closely related work on data collection in sensor networks here. Directed diffusion [15],
Cougar [32], TAG [19], TinyDB [20], LEACH [14] are few of the general purpose data
collection mechanisms that have been proposed in the literature. The focus of that work
has been on designing protocols and/or declarative interfaces to collect data, and not
on optimizing continuous data collection. Aside from the work by Pattem et al. [22]
and Chu et al. [4], the BBQ system [9] also uses a predictive modeling-based approach
to collect data from a sensor network. However, the BBQ system only provides prob-
abilistic, approximates answers to queries, without any guarantees on the correctness.
Scaglione and Servetto [24] also consider the interdependence of routing and data com-
pression, but the problem they focus on (getting all data to all nodes) is different from
the problem we address. Cristescu et al. [6] consider the problem of finding a near-
optimal tree-based communication structure to minimize the total transmission cost;
their approach is similar to routing driven compression (RDC) [24,22] and may require
repeated compression and decompression over large numbers of data sources at the sen-
sor nodes, which may make it unsuitable for resource-constrained sensor networks. In
a seminal work, Gupta and Kumar [13] proved that the transport capacity of a random
wireless network scales only as O(

√
n), where n is the number of sensor nodes. Al-

though this seriously limits the scalability of sensor networks in some domains, in the
kinds of applications we are looking at, the bandwidth or the rate is rarely the limiting
factor; to be able to last a long time, the sensor nodes are typically almost always in
sleep mode.

Several approaches not based on predictive modeling have also been proposed for
data collection in sensor networks or distributed environments. Kotidis [17] and Gupta
et al. [12] consider approaches based on using a representative set of sensor nodes
to approximate the data distribution over the entire network. Constraint chaining [25]
is a suppression-based exact data collection approach that monitors a minimal set of
node and edge constraints to ensure correct recovery of the values at the base station.
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More recently, Cormode et al. [5] have proposed a similar approach of using replicated
predictive models to solve the problem of maintaining accurate quantile summaries over
distributed data sources.

6 Conclusions

In this paper, we presented an approach that uses a subclass of undirected graphical
models called decomposable models for continuous sensor data collection with ac-
curacy guarantees. Compared to previous predictive modeling-based approaches, our
approach is more effective at exploiting the spatial correlations in the data, and thus
reducing the total communication cost incurred during the process. Our proposed ap-
proach also naturally exploits the broadcast nature of communication in sensor net-
works. An extensive experimental study using both synthetic and real-world data sets
demonstrates the effectiveness of our approach.

There are several directions of future work that we are planning to pursue. We are
developing more efficient algorithms that can scale to very large sensor networks, and
that can efficiently exploit both spatial and temporal correlations. So far we have as-
sumed that the sensor nodes do not fail; extending our protocols to function correctly
in presence of such faults remains a challenge. Finally, although our approach performs
very well compared to the lower bound provided by DSC, understanding the fundamen-
tal reasons behind the gap between the two and how we can bridge that gap remains an
open question.
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Abstract. A localization algorithm using radio interferometric mea-
surements is presented. A probabilistic model is constructed that
accounts for general noise models and lends itself to distributed computa-
tion. A message passing algorithm is derived that exploits the geometry
of radio interferometric measurements and can support sparse network
topologies and noisy measurements. Simulations on real and simulated
data show promising performance for 2D and 3D deployments.

1 Introduction

Self-localization is a fundamental, yet not completely solved, problem in the
design and deployment of sensor networks. It is fundamental because sensor
networks are envisioned to provide visibility and monitoring with inexpensive
devices in GPS denied areas. Despite many localization algorithms and improve-
ments in device hardware, one can argue that the problem is not completely
solved since no single method has been widely adopted for such a fundamen-
tal problem. Most notably, there is a need for a localization system capable of
handling the multipath effects encountered indoors and in dense urban areas.
The main impediment to the creation of such a system is an effective means of
obtaining range measurements in a multipath environment and the development
of localization algorithms that can account for these effects.

Various technologies such as ultrasound/RF TDOA ranging [1], acoustic TOA
(e.g. [2]), and received radio signal strength (e.g. [3]), have been proposed and
demonstrated for acquiring pairwise distance estimates. Broadly speaking and
despite the ingenuity of these approaches, these methods are plagued by short
range, poor precision, or the requirement of an ancillary system devoted just to
ranging. Given these limitations, researchers have proposed methods for network
localization that do not rely on ranging at all. These so-called range free methods,
see for example [4,5,6], use either a camera system or in the case of [5] a steerable
laser to localize the nodes. Again, these solutions require additional hardware
and calibration to solve the problem.

A recent breakthrough has changed the localization landscape considerably.
Researchers at Vanderbilt University have proposed and demonstrated a surpris-
ingly simple, yet powerful, method for ranging using only the radio that produces
centimeter ranging accuracy at ranges up to 160 meters [7,8]. This technique,
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c© Springer-Verlag Berlin Heidelberg 2008
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known as radio interferometric ranging, exploits electromagnetic interference to
obtain an observable that is a function of the locations of four nodes sensors
(known here as a quad) involved in the measurement. As such, it does not di-
rectly produce pairwise distance measurements, but rather a linear combination
of four of the possible six pairwise distances. This fact renders localization algo-
rithms that rely on pairwise distances unable to capitalize on this new technique.
Perhaps the most remarkable feature of this technique is that it can be imple-
mented with coarse time synchronization on inexpensive radios found on widely
available sensor network devices.

In this paper, we propose a distributed algorithm for network localization
using radio interferometric ranging. We derive and exploit the geometry under-
lying the ranging technique that enables the algorithm. In the next section we
show how the location of a node is constrained conditional on the location of
the three other nodes involved in the ranging measurement. We show that, in
the two dimensional case, knowing the location of three nodes constrains the
fourth to a branch of a hyperbola. By taking two independent measurements
on those four nodes, one can obtain another distinct hyperbola thus further
constraining the nodes location to lie on the intersection of these conics. Given
that the knowledge of three nodes and two independent interferometric range
measurements (RIMs) reduces the uncertainty of the fourth node to just one
or two intersection points, it seems plausible that a multilateration procedure
can be derived akin to trilateration in systems with pairwise measurements. In-
deed, assuming a 2D deployment with four anchor nodes1 and a sensor within
RIM’s range of the four anchors, the unknown node can participate in up to
three separate independent quads [8]. Further assuming that for each quad two
independent measurements are obtained, a set of intersections points can be
computed for the unknown sensor and this set of points could then potentially
be used to determine the location of the unknown node.

In contrast, we adopt a probabilistic approach. Given the nonlinear relation-
ships defined by the ranging procedure, their resulting uncertainty and our ul-
timate goal of developing a robust means of network localization in multi-path
environments, a nonparametric probabilistic approach is preferred. We embed
the underlying geometry in a flexible probabilistic model that lends itself to
distributed computation. With the appropriate definition of the model, the dis-
tributed inference algorithm, known as belief propagation, in a sense, “comes for
free.” In this regard, our approach is very much in the spirit of Ihler et al. [9],
but adapted to the subtleties of dealing with radio interferometric ranging.

2 Conditional Geometry of Radio Interferometric
Measurements

The functional form of the radio interferometric range measurement presents a
unique challenge in designing a distributed localization algorithm. On a set of
1 Three anchors will not suffice, since, in the general case, the uncertainty of the

unlocalized node can only be reduced to two distinct intersection points.
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Fig. 1. Radio interferometric measurement

four sensors labeled T, U, V, and W, after post processing the RIM is given
by [7,8]

dTUV W := ||T −W || − ||U −W ||+ ||U − V || − ||T − V ||+ η (1)

where η represents an additive noise term. However, if three of the four nodes
involved in the measurement are known, say for example, {T, V, W}, the mea-
surement reduces to a quadratic equation in the coordinates of the unknown
node,

dTUV W = − ||U −W ||+ ||U − V ||+ k′ + η (2)

where k′ is the constant given by ||T −W || − ||T − V || . As is evident, in two
dimensions the locus of points satisfying this equation is a conic section. Specif-
ically, by setting dTUV W = k∗ and neglecting the noise term for a moment, the
equation

k = k∗ − k′ = − ||U −W ||+ ||U − V || (3)

describes the location of node U conditional on the measurement and the loca-
tions of the nodes {T, V, W} .

Equation 3 defines one branch of a hyperbola with foci at the points {V, W} .
There are two independent RIMs on four nodes [8] corresponding to two dis-
tinct hyperbolae, thus the uncertainty of the unknown sensor location can be
further reduced by taking an additional measurement. For example, the measure-
ment dTV UW := ||T −W || − ||V −W ||+ ||U − V || − ||T − U || defines a second
hyperbola with the unknown node location at the intersection points of the hy-
perbolae defined by the measurements {dTUV W , dTV UW } . Figure 2 depicts the
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Fig. 2. Intersection points of hyperbolae defined by two independent RIMs

scenario with the unknown sensor cycling through all four possibilities with the
two measurements fixed. From the figure we can get a feel for the sensitivity
of the intersections to the input data. For example, the figure in the upper
left quadrant (where T is the unknown node location) we see that not only two
intersection points exist but also the hyperbolae almost coincide on the arc where
T lies. Clearly this geometry is very susceptible to noise in the input data and
hints to the difficulty in crafting a localization algorithm for ad-hoc networks
with interferometric ranging. A favorable geometry is depicted in the lower left
quadrant, where the hyperbolae intersect in a unique isolated point V .

Computing the intersection points of two conics, in general, requires solving a
quartic equation that does not admit a convenient closed form solution. However,
if the hyperbolae share a common focus, as is the case for the measurement set
{dTUV W , dTV UW }, this system reduces to a quadratic equation and the intersec-
tion points can be computed exactly and efficiently. For example, the location of
sensor V is a common focus of the hyperbolae defined by dTUV W and dTV UW ,
if sensor U is the unknown node.

Since a literature survey did not uncover the procedure for computing in-
tersection points of conics sharing a focus, a derivation is presented here. If a
translation and rotation are applied to bring the common focus to the origin
and the other focus of one of the hyperbolae to the x-axis, then the equation in
polar coordinates of the hyperbola with both foci on the x-axis is

r1(θ) =
m1

e1 cos(θ)− 1
, (4)

where

m1 = ||f1|| e
2
1 − 1
2e1

, (5)
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e1 is the eccentricity of the hyperbola and ||f1|| is the distance between the two
foci. If the angle of elevation of the semimajor axis of the second hyperbola is φ,
then the equation of that hyperbola is

r2(θ) =
m2

e2 cos(θ − φ)− 1
, (6)

where

m2 = ||f2|| e
2
2 − 1
2e2

, (7)

e2 is the eccentricity and ||f2|| is the distance between the foci. These expressions
describe both branches of the hyperbolae. Once we find the intersections, we will
eliminate those involving the extraneous branches. With the common focus at the
origin, there is a range of values within arctan(

√
e2 − 1) of the positive direction

of the semimajor axis (i.e., θ = 0 for the first hyperbola, θ = φ for the second)
for which there are two points of the hyperbola – one corresponding to a positive
value of ri and lying on one branch of the hyperbola, and one corresponding to
a negative value of ri for θ halfway around the circle on the other branch. In
order to find all intersections of the hyperbolae, we need to set r1(θ) = r2(θ)
to find intersections of portions of each hyperbola with the same sign of ri and
−r1(θ + π) = r2(θ) to find intersections of the negative part of one hyperbola
with the positive part of the other.

These equalities each yield a quadratic expression in cos(θ) whose standard
form coefficients are:

a1 =
(

e1

m1
− e2

m2

)2

+ 2
e1e2

m1m2
(1− cos (φ)) (8)

b1 = 2
(

e1

m1
− e2

m2
cos (φ)

) (
1

m2
− 1

m1

)

(9)

c1 =
(

1
m2
− 1

m1

)2

−
(

e2

m2

)2 (
1− cos2 (φ)

)
(10)

for the first equality and

a2 =
(

e1

m1
− e2

m2

)2

+ 2
e1e2

m1m2
(1− cos (φ)) (11)

b2 = 2
(

e1

m1
− e2

m2
cos (φ)

) (
1

m1
+

1
m2

)

(12)

c2 =
(

1
m1

+
1

m2

)2

−
(

e2

m2

)2 (
1− cos2 (φ)

)
(13)

for the second. If the discriminant di = b2
i − 4aici is negative, zero, or posi-

tive, that equality has no solutions, one solution, or two solutions, respectively.
Therefore, the total number of intersections of the hyperbolae can be anywhere
between zero and four. If there are solutions, they are given by:

cos(θi) =
−bi ±

√
di

2ai
(14)
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for i = 1 or 2 indicating which hyperbolic intersection equality we are evaluating.
In order to solve for θi, we must calculate sin(θi) as well to ensure we determine
the correct quadrant.

sin(θ1) =
cos(θ1)(e1m2 − e2m1 cos(φ)) −m2 + m1

e2m1 sin(φ)
(15)

sin(θ2) =
cos(θ2)(e1m2 − e2m1 cos(φ)) + m1 + m2

e2m1 sin(φ)
(16)

The solutions for θi then can be calculated by taking the arctangent of the
quotient of the sine and cosine, maintaining the correct quadrant. We eliminate
those values that are outside the range of values for the branch of each hyperbola
that correspond to the measurement constraint. After doing so we will have zero,
one, or two values of θi remaining. Although for the most part we will have a
nonzero number of intersections remaining since the nodes are embedded in the
space and the measurements are derived from their positions, noise in the mea-
surements can occasionally cause a situation where no intersections are possible.
This indicates that the positions of at least one of the three foci is inconsistent
with the measurements. When intersections remain, plugging their values back
into Eq. (6) and rotating and translating back to the original coordinate system
gives us the possible locations of the unknown sensor node.

The radio interferometric technique is not restricted to two dimensions. More-
over, the geometry associated with the measurements generalizes as well. In the
3D case, the conditional uncertainty of a node given the location of the three oth-
ers is a hyperboloid. Two RIMs reduce the uncertainty to the intersection curve
of the hyperboloids. Again if two hyperboloids share a common focus, solving
a simple quadratic equation leads to an analytic parameterization of the inter-
section curve [10]. It turns out that this intersection curve is a hyperbola or an
ellipse. Examples of the geometry of 3D RIMs is depicted in Figure 3 where a to-
tal of four measurements are taken, two generating a hyperbolic intersection and

Fig. 3. Intersection curves of hyperboloids defined by RIMs in 3D
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the other two generating an elliptical intersection. The location of the unknown
sensor lies on the intersection of these two curves as depicted in the figure.

3 Problem Formulation

In the preceding section, the geometric intuition behind the proposed algorithm
was outlined. These considerations, even in the 2D case, do not suffice to design a
robust, scalable localization algorithm. Our approach embeds the multilateration
primitive into a probabilistic model that allows for soft assignments of the sensor
locations that are iteratively refined over time.

In addition to the nonlinearity introduced by the form of the interferometric
measurement, noise and errors from a variety of sources affect the measurement
value [7]. These sources of error, such as multipath effects, carrier frequency inac-
curacy, time synchronization error and signal processing errors, are modeled by a
noise distribution in our algorithm. These errors manifest in the post processing
of the interferometric measurements as a possible error that is a multiple of the
wavelength of the carrier frequency. This distribution can therefore be modeled
as a small Gaussian mixture with components centered at integer multiples of
the wavelength of the carrier frequency. It has been shown that iterative filter-
ing techniques can be applied to the radio interferometric ranging procedure to
produce high precision range estimates in a mild multipath environment that
effectively remove the non-Gaussian nature of the errors [8]. Though it has not
been explicitly demonstrated, an RSSI technique such as radio interferometry
will likely suffer performance degradation in a high multi-path environment such
as indoors or in a dense urban area. Our approach attempts to explicitly handle
the effects of ranging error by associating a random variable to each sensor loca-
tion and defining the joint distribution of the sensor locations that incorporates
the intrinsic geometry of the radio interferometry technique.

The formalism used to capture the uncertainty and the measurement model
is a probabilistic graphical model. Let X = {x1, x2 . . . xn} be a collection of
random variables. A graphical model is a factored representation of the joint
distribution over X defined by a set of potential functions ψ(·) that encode the
coupling among the variables and an undirected graph that represents the notion
of conditional independence among sets of random variables. Given a graph and
set of potential functions, the joint distribution can be written as

p(x1, x2, . . . , xn) ∝
∏

c∈C
ψc(xc) (17)

where C is the set of fully connected subsets or cliques of the graph and xc = {xu :
xu ∈ c}. Graphical models are often employed for problems where the cliques
can be restricted to pairs of nodes and the joint distribution given measurements
is given by

p(x1, x2, . . . , xn|D) ∝
∏

(u,v)∈E
ψuv(xu, xv, duv)

∏

u

ψu(xu, du) (18)
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where E is the set of edges in the graph and D denotes the entire set of mea-
surements , duv, du ∈ D and ψ(xu, du) is a local potential function that is used
to capture any a priori knowledge for a node or to model a local measurement.

The graphical representation of the joint distribution has inspired many infer-
ence algorithms that exploit this graphical structure to achieve greater efficiency.
An iterative message passing algorithm known as belief propagation is one of the
best known of these methods for computing marginal distributions due to its
simplicity and excellent empirical results on high dimensional problems. For
problems involving spatial data in ad-hoc sensor networks, one can exploit the
analogy of a communications graph, where an edge signifies a communication
channel between sensors, and identify these two graphical representations to de-
velop a probabilistic model for fusing measurement data that includes a simple
message passing algorithm for performing inference on that model.

For continuous systems with pairwise couplings, the belief propagation update
equations are given by an expression for computing a message from node u to
node v , denoted muv(xv) , and an expression for computing the belief at a node,
βv , which is an estimate of the marginal distribution of the random variable xv .
At iteration n, the message update is given by

mn
uv(xv) ∝

∫

ψ(xu, xv)ψ(xu)
∏

(w,u)∈E\(v,u)

mn−1
wu (xu) dxu (19)

Note that the message sent from node xv in the previous iteration is excluded
from the message product for consistency of the marginalization procedure.

Roughly speaking, Eq. (19) represents node u’s belief about the marginal
of node v given its measurements and the messages from its neighbors in the
graph from the previous iteration. Fusion of these messages to approximate its
marginal is achieved by simply taking the product of received messages and the
local potential function,

βn(xv) ∝ ψ(xv)
∏

(w,v)∈E
mn

wv(xv) (20)

In the context of sensor networks, the attraction of belief propagation in a graph-
ical model is evident since it is a simple way to perform global inference using
local communications and distributed computation. However, the correctness of
belief propagation is not guaranteed unless one restricts the graphical structure
to a tree. Fortunately, the so called loopy version of belief propagation, where
one carries out the message and fusion updates of Eqs. (19) and (20) without
regard to the existence of loops in the graph, has shown excellent empirical per-
formance in a variety of settings. There has been some progress in understanding
the convergence of loopy belief propagation. The most useful characterization for
this discussion is that if the loopy algorithm converges, it will converge to fixed
points of the so called Bethe free energy [11]. Alternatively, one may always ag-
gregate random variables into a junction tree and conduct message passing on
that tree to perform inference exactly; however, the complexity of the algorithm
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is exponential in a graphical property of the junction tree known as the tree
width.

As may be intuitively obvious, a graphical model formulation of the network
localization problem with interferometric ranging will not have pairwise cou-
plings since the variables are coupled by the measurement that involves four
nodes to obtain one observable. The joint distribution factors according to this
coupling and is given by

p(x1, . . . xn|D) ∝
∏

t

ψ(xt)
∏

(tuvw)∈Q
ψ(xt, xu, xv, xw, dTUV W ) (21)

where Q is the set of quads in the graph.
There are a number of ways to define higher order belief propagation. One

method, as mentioned above, is to aggregate variables into a junction tree. This
technique has been extended for distributed inference problems in sensor net-
works with lossy communications in [12]. In this work, we follow a derivation
obtained by minimizing the Bethe free energy in a manner analogous to the case
with pairwise potential functions [13].

Let Tw be the set of index triples that share an interferometric range mea-
surement with node xw. Formally, if (tuv) ∈ Tw, we can express the message
from the set {xt, xu, xv} to node xw , denoted mn

tuvw(xw) , as

mn
tuvw(xw) ∝

∫

ψ(xt)ψ(xu)ψ(xv)ψ(xt, xu, xv, xw)
∏

(qrs)∈Tv\(tuw)

mn−1
qrsv(xv)

∏

(qrs)∈Tu\(tvw)

mn−1
qrsu(xu)

∏

(qrs)∈Tt\(uvw)

mn−1
qrst (xt) dxtdxudxv (22)

Analogous to the pairwise case, the estimate of the marginal is simply the prod-
uct of the incoming messages with the local potential function

βn(xw) ∝ ψ(xw)
∏

(tuv)∈Tw

mn
tuvw(xw) (23)

While being functionally simple, the expression defining the messages suffers
from two serious drawbacks. First, the integral is clearly intractable for densely
connected networks of resource constrained devices such as sensor networks. We
defer the discussion of this important consideration until the next section where
a suitable approximation technique is presented. The second drawback of such
an expression, which is clearly exacerbated in the case of four node couplings, is
the complexity and coordination required among the sensors to implement the
message passing. While being decentralized, a direct implementation of an algo-
rithm utilizing (22) would be a poor distributed algorithm due to the complexity
of the message passing. For example, as depicted in Figure 4, to pass a message
from the triple (ijk) ∈ Tl to xl , the sending triple would have to elect a leader
node to recieve the individual nodes’ contributions and perform the product and
integral in (22). Following the approach suggested in [14,9,15], we can simplify
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Fig. 4. Higher-order belief propagation message passing

the message passing to broadcast communications at the cost of local memory.
To see this, note that the beliefs (23) contain much of the information required
to form the message (22), except for the four variable potential function and the
correction required for consistency. Thus, given the measurements, each node
can reconstruct the incoming messages from the collection of beliefs broadcast
by nodes who share measurements with it by forming,

mn
tuvw(xw) ∝

∫

ψ(xt, xu, xv, xw)
βn−1(xt)βn−1(xu)βn−1(xv)

mn−1
uvwt(xt)mn−1

tvwu(xu)mn−1
tuwv(xv)

dxtdxudxv .

(24)
In this formulation, a node updating its belief reconstructs the incoming mes-
sages by using neighboring nodes’ beliefs and forming (24). These messages are
then used in the node’s belief update. It then calculates messages it would send
to each of its neighbors using (22) and stores them locally to use in (24) in the
next iteration while broadcasting its newly calculated belief instead of sending
{muvwt(xt) , mtvwu(xu) , mtuwv(xv)}.

4 Nonparametric Belief Propagation

In the previous section, formal expressions were presented for performing dis-
tributed inference over continuously valued random variables. A continuous
model is favored over a discrete model, arising from a discretization of the sensor
field, for a variety of reasons. First, the resolution of the localization solution
is dictated by the size of the grid and thus the state space of the random vari-
able grows quadratically with the precision of the solution. This would force
an intractable summation in the discrete analogue of the BP equation (22).
A discrete model also implies a priori knowledge of the size of the field which
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cannot be guaranteed for ad-hoc deployments. A Gaussian model is inappro-
priate as well, since radio interferometric measurements exhibit non-Gaussian
errors and, as shown previously, two measurements on four nodes restrict the
localization solution to one or two intersection points of hyperbolae in the two
dimensional case, which is a non-linear coupling of the random variables. There-
fore a non-Gaussian, non-linear approach is preferred. Despite the advantages
of the non-Gaussian continuous model, at this point we have only exchanged
an intractable summation with an intractable integral. The key innovation of
nonparameric belief propagation [16,17] that enables the integration of these
methods to sensor networks is an efficient technique to stochastically approxi-
mate the message products and integral appearing in (22, 23) by sampling based
methods.

To this end, we pursue a nonparametric approximation of the beliefs and
messages as mixtures of Gaussians,

mtuvw(xw) =
N∑

i

αi
wN (xw, μi

w, Λ) (25)

where N (x, μ, Λ) is a Gaussian random variable centered at the sample μ and
covariance Λ, αi

w is the weight of the ith Gaussian component of the mixture, and
N is the number samples. Since the product of Gaussian mixtures is a Gaussian
mixture and further assuming that the potential function can be modeled as a
Gaussian mixture, the products appearing in (22, 23) are well defined and again
Gaussian mixtures, albeit with O(N q) components for products of q messages.
If N is large enough to represent the distribution and for q > 2 messages, exact
sampling of (22, 23) would be intractable. Several techniques for approximate
sampling from Gaussian mixtures were presented in [18]. In our simulations we
used an approach from [18] known as mixture importance sampling, though other
methods performed similarly. Covariances are determined by the so-called rule
of thumb, which is simply an estimated weighted variance of the samples.

5 Description of the Algorithm

Given the machinery of nonparametric belief propagation and analytic expres-
sions for the intersection sets resulting from the underlying geometry, the
distributed algorithm is relatively straightforward to define. To do so, we must
define the probabilistic model specified by the graph and its single and four node
potential functions. The graph describing the coupling of the random variables
is given by the ad-hoc deployment of the sensor nodes and the radio interfer-
ometric measurements collected in the field. Thus for each measurement, we
define a clique on the four participating nodes. In this work, we also assume
that this graph is contained in the communications graph so that there is a com-
munications link between all nodes sharing a measurement. In practice this may
not be the case as it has been demonstrated that interferometric measurements
can be obtained with relatively weak signals that are not of sufficient fidelity
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to support communications [8]. In this case, the probabilistic graphical model
and the communications graph would not coincide. In our simulations we did
not explicitly model the communication channel and therefore do not make this
distinction here.

Figure 5 graphically depicts the belief update process for a single sample from
a single quad. To update node W , the nodes {T, U, V, W} perform the inter-
ferometric procedure to obtain the measurement set {dTUV W , dTV UW }. These
measurements are perturbed by a sample from the noise distribution and with
a sample from the belief of nodes T, U, and V the intersection set is formed to
obtain one sample estimate of W ’s location. The sampling procedure is repeated
for all samples. As described above, the mechanics of belief propagation general-
ize this process for fusing the contributions from multiple quads to further refine
the belief estimate and mitigate the impact of noise and multi-modality.

In the localization algorithm, the single node potentials, ψ(xu) , serve as a
way of incorporating a node’s prior location information into the probabilistic
model. As in most network localization algorithms, we ground the problem by
employing anchor nodes which know their precise location. This information is
given by some other procedure outside of the algorithm; for example, these nodes
are localized using GPS. Thus for a d−dimensional anchor node the potential is
given by

ψ(xanchor) = N (
[xgt

1 , . . . , xgt
d ], Λanchor

)
(26)

where xgt
i denotes ground truth and Λanchor is a diagonal covariance matrix en-

coding the uncertainty in the anchor’s position. In our simulations we assume
that the anchors have perfect knowledge of their location, thereby effectively
assigning a delta function to the position covariance, though this assumption
can be easily relaxed. Also, in our implementation, anchor nodes do not up-
date their beliefs. Whereas the anchors have perfect location information, the
non-anchor nodes have total ignorance. This can be modeled by specifying the
single node potential as a uniform random variable over the entire sensor field.
In addition to implying some a priori information about the size of the field, in
our experiments we found that estimates were adversely affected by sampling



64 D. Lucarelli et al.

error of this uniform distribution. Therefore, we instantiate the single node po-
tentials for non anchors as empty. Since the single node potentials serve as prior
information, empty single node potentials achieve the desired uncertainty but
this choice affects initialization and the scheduling of the message updates. We
address this issue in the following section.

The four node potential functions define the coupling given by the interfero-
metric measurement. Given a model of the noise distribution, pη we can formally
write the potential function as

ψ(xt, xu, xv, xw) = pη1 · pη2 where (27)
pη1 = pη (dTUV W − (||xt − xw|| − ||xv − xw ||+ ||xu − xv|| − ||xt − xv||)) (28)
pη2 = pη (dTV UW − (||xt − xw|| − ||xu − xw ||+ ||xu − xv|| − ||xt − xu||)) (29)

Thus given an instantiation of the random variables and the potential functions
defined as above, the joint distribution (21) expresses its likelihood. In our al-
gorithm, these formal expressions are instantiated by the analytic expressions
obtained by solving for the intersection set of the hyperbolae as described in the
following.

The algorithm is initialized by performing the radio interferometric ranging
procedure. Currently the coordination and estimation is executed at a base sta-
tion [7,8,19]. Frequency and phase estimation is performed at the node level and
from that information an estimate of the measurement dTUV W can be computed.
In this paper, we assume a situation where the range estimates can be obtained
in the network and so that with the following algorithm, the entire localiza-
tion procedure is distributed and performed in the network. In this scenario,
local messages are sent so that all nodes involved in a measurement receive the
range estimate. Also, as described previously, we only consider quads where two
independent interferometric measurements have been taken. For simplicity, we
assume that these are of the form dTUV W and dTV UW .

The expression defining the four node potential function is now made more
concrete. The messages appearing in (24) are reconstructed at a node according
to the following. Upon receiving a collection of weighted samples

{βn(xt), βn(xu), βn(xv)} =
{
(xi

t, α
i
t), (xi

u, αi
u), (xi

v , αi
v)

}N

i=1
(30)

representing a current set of beliefs for which measurements exist, node xw

propagates these samples through the potential function to construct the mes-
sage mtuvw . The basic idea is to use the measurements and the three sample
points to form the intersection set. To this end, the updating node xw uses the
ordering of the measurement to determine the common focus of the two hyper-
bolae (hyperboloids). For example, for the measurements dTUV W and dTV UW

the common focus is xt since we have

dTUV W =
∣
∣
∣
∣xi

t − xi
w

∣
∣
∣
∣− ∣

∣
∣
∣xi

u − xi
w

∣
∣
∣
∣ +

∣
∣
∣
∣xi

u − xi
v

∣
∣
∣
∣− ∣

∣
∣
∣xi

t − xi
v

∣
∣
∣
∣ (31)

=
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∣
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∣xi
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w
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∣
∣
∣xi
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w
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∣
∣
∣ + kTUV W (32)



Distributed Inference for Network Localization 65

and

dTV UW =
∣
∣
∣
∣xi

t − xi
w

∣
∣
∣
∣− ∣

∣
∣
∣xi

v − xi
w
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∣
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∣ +
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∣ (33)

=
∣
∣
∣
∣xi

t − xi
w

∣
∣
∣
∣− ∣

∣
∣
∣xi

v − xi
w

∣
∣
∣
∣ + kTV UW (34)

since using the i-th sample from current beliefs sets {xi
t, x

i
u, xi

v} , the last two
terms in each expression evaluate to constants. Note that the ordering of the
measurement matters. In the interferometric ranging procedure this ordering is
determined by which nodes are transmitters and which are receivers and there-
fore easily obtained and stored in memory. The sample set is translated and
rotated so that the common focus is at the origin and another focus lies on the x
axis. Now for each measurement a sample is drawn from the noise model ηj ∼ pη

and the constants defining the hyperbolae (hyperboloids) are perturbed by this
sample. Thus we have the quadratic equations defining our constraints on the
location of the updating node as

dTUV W − kTUV W + η1 =
∣
∣
∣
∣xi

t − xi
w

∣
∣
∣
∣− ∣

∣
∣
∣xi

u − xi
w

∣
∣
∣
∣ (35)

and
dTV UW − kTV UW + η2 =

∣
∣
∣
∣xi

t − xi
w

∣
∣
∣
∣− ∣

∣
∣
∣xi

v − xi
w

∣
∣
∣
∣ . (36)

From the left hand sides of these equations and the samples defining the foci,
the intersection set of the hyperbolae (hyperboloids) can be computed. In the 2D
case, it is possible that the intersection set is a single point, however in general
the intersection set itself must be sampled to produce the message sample mi

tuvw .
Note that this point must now be transformed back to the original coordinates
system of the input data. Recall that the notation mtuvw denotes the message
“sent” from {xt, xu, xv} to xw .

Finally the samples from the intersection set are weighted to complete a faith-
ful approximation to (24).

αi
tuvw =

αi
tα

i
uαi

vR(mi
tuvw)

muvwt(xt)mvwtu(xu)mwtuv(xv)
. (37)

In the expression defining the weight for the message sample mi
tuvw we have in-

troduced the function R(·) . This function serves to weight samples based on the
notion of range. Because the intersection sets are sensitive to noise in the defining
data, it can be the case that some samples are placed far outside the sensor field.
This function limits the impact of these outliers by taking the max distance of the
new sample from the incoming beliefs samples and evaluates an exponentially de-
creasing function on that distance. In the 3D case, the notion of maximum range
also defines intervals to sample the unbounded hyperbola intersection curves so
that only a segment of that hyperbola is ever used in the message update. This
procedure is performed for all samples to construct a sample based estimate of
the message mtuvw ≈

{
mi

tuvw, αi
tuvw

}N

i=1
. When all messages have been sim-

ilarly constructed, samples are drawn from the message product (23) to form
the estimate of the marginal β(xw) as described in the previous section. Finally,
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now that node xw has an updated belief, it broadcasts its belief to neighbors and
the messages appearing in the denominator of the weighting expression (37) are
computed and stored in memory for use in the next iteration of belief updating.
This completes one iteration of belief propagation for a single node.

6 Broadcast Scheduling

After the interferometric ranges have been computed, the message passing al-
gorithm is initiated by localized nodes broadcasting their beliefs to neighbors
(neighbors with respect to the graph defining the probabilistic model). Since
non-anchor nodes are initialized with an empty prior distribution, they are silent
until updating their beliefs. Clearly, since anchors are the only nodes initialized
with their location, they initiate the message passing. Since in general, a singe
quad measurement does not suffice to localize an unknown node, it is likely
that the first nodes receiving messages from the anchors will not be uniquely
localized. In any case, these nodes broadcast their (perhaps multi-modal) belief.
In this way, the belief updating grows out from the anchor nodes as shown in
Figure 6. In the figure, the anchor nodes are depicted by diamonds and labeled
as 1, 2, and 3. The complete graph on four nodes denotes the first quad and
therefore the first belief update. Subsequent nodes in range can use utilize the
computed beliefs or the locations of the anchors to update their own belief. This
process continues until covering the entire graph and repeats with the next it-
eration, however now that all nodes have a nonempty belief there will likely be
more quads available to refine their belief estimates. Note that we also assume
that at least 3 anchors are involved in at least one quad measurement, other-
wise the process would not initiate. This assumption will be relaxed in future
implementations by giving all nodes some prior distribution, however it is not
currently implemented and it is expected that many iterations of belief prop-
agation will be required to localize the node sufficiently. Even with 3 anchors
sharing a measurement with a non-anchor node, it is reasonable to ask under
what conditions the algorithm will grow out to cover the entire network. For a
partial answer we quote a result derived for localization with trilateration with
pairwise range estimates. In [20], necessary and sufficient conditions were de-
rived for network localizability using trilateration. Using a random geometric
graphs model of the ad-hoc configuration of sensor nodes and the existence of
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Fig. 6. Graph growing out from the anchors
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pairwise range measurements between nodes, asymptotic results were obtained
for determining the existence of a so-called trilaterative ordering of the vertices
in a graph. A trilaterative ordering in dimension d for a graph is an ordering of
the vertices 1, . . . , d + 1, . . . n such that 1 . . . d + 1 are fully connected and from
every vertex j > d+1 , there are least d+1 edges to vertices in the ordering. By
appealing to graph rigidity theory, the authors show that the existence of trilat-
erative ordering is a necessary and sufficient condition for unique localizability
of the network. Moreover, they establish an asymptotic result that for a network
of n nodes with measurement range r , if limn→∞ nr2

log n > 8 , then there exists a
trilaterive ordering with high probability. In our case, this is a necessary condi-
tion for the broadcast schedule to cover the entire graph in the first iteration of
belief propagation. Given the underlying geometry of the ranging procedure and
the uncertainty in the measurements, additional iterations of message passing
are needed for sufficient localization. However, this result which is satisfied by
dense (measurement) graphs yields a theoretical assurance that our algorithm
will terminate with all nodes being involved.

7 Simulation Results

To assess the performance of the algorithm we performed simulations with real
and simulated data. We implemented the algorithm as described in the previous
sections in MATLAB. This centralized version of the algorithm retains all the
components necessary for a distributed implementation, but the simplicity of
a centralized algorithm allowed for the focus to be on the algorithm and not
on technical (albeit important) issues regarding wireless communications and
limited computational power. We used the KDE Toolbox [21], a MATLAB tool-
box with optimized data structures and sampling procedures, for the Gaussian
mixture product sampling.

For a point of comparison, the real data used in our experiments was the
“football field” data provided by Vanderbilt University [19]. This data set con-
tains over 7000 RIM’s for a network of 16 nodes placed in an approximate grid.
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This data set benefits from the filtering technique proposed in [8] to refine the
range estimates resulting in an error distribution that is nearly Gaussian with
variance approximately .007, depicted by the solid (blue) curve in Figure 8.
Excellent localization results with this data set were obtained in [8] using a
centralized genetic algorithm executed at a base station. The genetic algorithm
of [8] does not exploit the geometric structure of the problem, but rather does
something akin to exhaustive search to find a minimum of the associated op-
timization problem. To obtain the centimeter localization accuracy reported in
[8], this 7000 element data set was used.

From this data set we generated a random nearest neighbor graph simu-
lating measurements in our simulation. This graph represents just 53 quads
or equivalently 106 interferometric measurements. Three central nodes, labeled
{6680, 6838, 6957} were chosen as anchors. Figure 7 shows the quad graph con-
structed from the football field data set and the marginals from the first iteration
of belief propagation. As in all our simulations, the final localization results is
taken as the maximum of the marginal distribution. Note that in the results plot,
node 6435 has a multimodal marginal distribution. It turns out that node 6435 is
the first updating node and with only 3 anchors, there is only one measurement
with which to update its belief resulting in the bimodal distribution. Samples
approximating this distribution are broadcast to neighbors for their updates. Its
important to note that even with the bimodality, neighboring nodes are able to
refine their estimates fairly well in the first iteration. Note also that nodes on
the boundary are localized but with some uncertainty as shown in the close-up.
In this particular simulation, successive iterations of the message passing drove
down the mean error to less than 15 centimeters.

The approach is sensitive to noisy messages. Taking the product of messages
in equations (22, 23) is effectively equivalent to performing an AND operation
on the messages and looking mostly at the intersection region of all messages.
A single noisy message has a heavy hand in altering this region. The result is a
smaller region of support from the message product that leads to samples that



Distributed Inference for Network Localization 69

are closely clustered, possibly lending misplaced confidence in their locations.
Additionally, these locations can be removed from the true location of the node,
leading to a situation where a node is confidently localized to the wrong location.
Setting the bandwidths to capture the spread of the incoming messages may help
to aleviate this situation.

From a Bayesian point of view, our algorithm relies on two sources of prior
knowledge: the noise distribution and the maximum measurement range. Since
these quantities can be estimated but never known with certainty before de-
ployment, it is interesting to investigate the impact of our certainty of these
quantities on the localization results. To test this, we performed 5 iterations of
the belief propagation over 10 trials to get average localization results for various
noise distributions. The results of this experiment are shown in Figure 8. The
true noise distribution calculated from ground truth information from the entire
data set is depicted by the solid (blue) curve in the left panel of Figure 8. The
solid (blue) curve in the right panel shows the mean error per iteration in me-
ters when the true noise distribution is used in the algorithm. Recall that we use
our knowledge of the noise distribution by perturbing the measurements before
solving for the intersection set (Eqs. (35) and (36)). Similarly, if we assume a
priori that the noise distribution is given by the dashed (red and green) curves in
the right panel , the corresponding localization estimates suffer somewhat. Not
surprisingly, perfect knowledge of the noise distribution sharpens the localiza-
tion results. However, in these experiments, even though our noise distribution
assumptions are qualitatively different from the true distribution, the results are
not affected too severely. A similar analysis with respect to our prior knowledge
regarding the maximum range showed similar robustness.

In an effort to understand the impact of the grid layout of the football field
data set, we created simulated data sets with ad-hoc deployments by placing
nodes according to a uniform distribution over the field. A grid layout supports
favorable geometries of the quads and limits the adverse situations depicted in
Figure 2. These experiments exposed the dependence on the message schedule – if
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in the first iteration of belief propagation most nodes update with only one quad
measurement, it can cause instability in the updates of nodes not involved in
measurements with anchors. Thus, merely satisfying the necessary condition
stated in Section 6, may result in poor estimates. This is especially true with
noisy measurements and “unfavorable” geometries as depicted in the first quad-
rant of Figure 2. However, we found empirically that if in the first iteration of
belief propagation most nodes had at least 2 quad measurements, results were
comparable to the football field data set simulations. As an example, Figure 9
depicts a scenario where most nodes updated with almost 3 quads in the first
iteration with an mean of 7.4 quads for subsequent iterations.

As a final simulation, we investigated the performance of the algorithm on
a three dimensional network. Initial results show success as a proof of concept,
however more work is needed for the algorithm to be a viable method for three
dimensional localization. However, given that there is no physical limitation to
precise interferometric ranging in 3D and the scarcity of non-planar localization
techniques, we find these initial simulations promising. As a test set we created
a 3D lattice of 27 nodes and designated nodes 1 through 5 as anchors. Ideally,
four non-planar anchors should suffice, however in our initial simulations with
4 anchors a fraction of the nodes could not localize with less than 2 units of
error. This test set contained only 66 quads (for a total of 112 measurements).
Results from 2 iterations of belief propagation are shown in figure 10. We also
experimented with irregular configurations as well, with similar performance,
however it was difficult to avoid nearly co-planar quads that adversely affected
some nodes localization. Figure 11 is an output from the simulation showing 3
messages contributing to the belief update of node 12. Though perhaps difficult
to see, there are 3 hyperbola segments contributing the belief pictured in the left
panel of the figure. Two of these are messages constructed from triples consisting
entirely of anchors, hence the thin curve representing the message. One message
is constructed from messages from non-anchor nodes that have updated previ-
ously in the iteration of belief propagation. This message is clearly corrupted by
noise and the location uncertainty of the sending nodes.
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A significant drawback in the 3D case is the number of samples required
for sufficient approximation of the messages. In our simulations we used 2000
samples. Associated with this high number of samples would be a significant
communication cost that would likely limit the algorithm’s effectiveness in a
sensor network deployment. It would be interesting, though not considered here,
to apply a message compression technique as in [22] to limit the number of
samples transmitted.

8 Conclusion

The localization problem in sensor networks generally involves two separate
tasks: ranging and the localization algorithm itself. Ranging is a fundamen-
tally physical problem limited by power constraints, process noise and device
characteristics. Radio interferometry is a significant advance that does not pro-
duce pairwise ranges, but rather a distance measurement that is a function of
the locations of four nodes. This technique can produce very precise measure-
ments at relatively long ranges. In this paper, we have contributed to the other
half of the localization problem. Namely, we have proposed an algorithm that
exploits the radio interferometry technique and we have shown centimeter lo-
calization accuracy on real and simulated data sets. We have defined a flexible
probabilistic model that can account for non-Gaussian noise models and lends
itself to distributed computation. Aside from the advantages of a distributed
implementation, we have shown that the performance of our method compares
favorably with the current centralized algorithm while using far fewer interferom-
etry measurements. We have proposed nonparametric belief propagation as the
machinery that enables an efficient solution. Nonparametric belief propagation
is an approximation based on Monte Carlo sampling whose trade-off between
efficiency and accuracy is dependent on the number of samples being used. As
technological improvements continue to make faster computation cheaper and
smaller, distributed sensor systems will increasingly be able to perform the nec-
essary calculations associated with nonparametric belief propagation to satisfy
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approximation error requirements. As for future work, it would be interesting
to investigate additional interferometry data sets exhibiting non-Gaussian errors
to assess the possibility of using the technique in a multipath environment and
explore designs that can be implemented on the current generation of sensor
network devices.

Acknowledgments. The authors thank Andreas Terzis and Dan Wilt for help-
ful discussions. This work was supported by Independent Research and Devel-
opment funding.

References

1. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The cricket location-support
system. In: Proceedings of the 6th ACM MOBICOM Conference (2000)

2. Girod, L., Estrin, D.: Robust range estimation using acoustic and multimodal sens-
ing. In: IEEE International Conference on Intelligent Robots and Systems (2001)

3. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and
tracking system. In: Proceedings of INFOCOM 2000, pp. 775–784 (March 2000)

4. Barton-Sweeney, A., Lymberopoulos, D., Savvides, A.: Sensor Localization and
Camera Calibration in Distributed Camera Sensor Networks. In: Proceedings of
IEEE BaseNets (October 2006)

5. Stoleru, R., He, T., Stankovic, J.A., Luebke, D.: A high-accuracy, low-cost local-
ization system for wireless sensor networks. In: SenSys 2005. Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems, pp. 13–26.
ACM Press, New York (2005)

6. Farrell, R., Garcia, R., Lucarelli, D., Terzis, A., Wang, I.-J.: Localization in multi-
modal sensor networks. In: Third International Conference on Intelligent Sensors,
Sensor Networks, and Information Processing, December 2007 (to appear)
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Abstract. Precise localization of mobile objects is a common problem in
WSN research for which various approaches exist. However, apart from technical
aspects and the location estimation itself, speed, reliability and energy efficiency
are central but barely addressed aspects within such systems.

We will point out, that the applied wireless communication affects these
aspects significantly before comparing some well-known and commonly used
radio protocols to the self-organizing HashSlot approach which was optimized
for efficiency in wireless information aggregation. Besides some theoretical con-
siderations, this paper presents practical results from a real-world testbed based
on the ultrasound localization system SNOW BAT.

1 Introduction

Efficient wireless data aggregation is a frequent problem in WSN research. In this pa-
per we compare the HashSlot communication protocol introduced by Baunach et al.
in [1] to some other approaches for data transmission and centralization between sev-
eral sources and a common destination under real-world conditions. HashSlot allows
extremely fast, reliable, selective and energy saving wireless information aggregation
without prior active coordination of the senders, acknowledgments or clear channel as-
sessments.

For our examinations we selected the field of WSN based localization systems, as we
found out, that wireless communication within such systems is a central factor concern-
ing energy consumption of the nodes, reliability of the estimated position, speed and
localization frequency respectively. In fact, most systems like Active Bat [2], AHLoS
[3], Cricket [4] [5], Dolphin [6] and SNOW BAT [7] focus on hardware and algorithms
for position estimation or even tracking of mobile objects but hardly discuss wireless
communication regarding the effects just mentioned.

Yet, a frequent scenario in such systems is to quickly transmit measured spatial in-
formation from sensor nodes within the environment or infrastructure to the node that
estimates the position of the mobile object to be localized. For our theoretical considera-
tions we refer to the SNOW BAT localization system as we used a real-world installation
of this system comprising 37 nodes as testbed for our experimental comparisons.

This paper is organized as follows. First, we will give a short overview over the
SNOW BAT localization system and present some considerations about useful fea-
tures for an appropriate wireless communication protocol. Then we’ll review some
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approaches for wireless information transmission in localization systems and explain
the basic concepts of the HashSlot protocol. Finally, we’ll describe the criterions and
the testbed we used for comparison before opposing the results. A conclusion and an
outlook to further work will close this paper.

2 The SNOW BAT Localization System

The SNOW BAT system is optimized for fast and precise 2D/3D localization and
tracking of mobile objects. As it follows a WSN approach, it relies on an infrastruc-
ture of static sensor nodes (called anchors) within the environment to monitor and at
least one mobile sensor node (called client) mounted on each object under surveillance.
SNOW BAT scales very well with the number of anchors and clients and supports si-
multaneous tracking of mobile objects. Furthermore each mobile client may initiate its
localization autonomously just when required.

Basically, several ultrasonic (US) distance measurements between the mobile client
and some anchors together with a progressive position estimation algorithm are em-
ployed for each localization and achieve a precision of up to 4 mm for each dimen-
sion. These distances between the client and the anchors in its US range are always
measured simultaneously. Figure 1 shows a single localization process and designates
SNOW BAT as a decentralized system of four stages: (P1) combined initiation and
node synchronization via radio broadcast (Chirp Allocation Vector, CAV), (P2) dis-
tance computation via TDoA (Time Difference of Arrival) measurement between radio
(CAV) and ultrasound signal (chirp), (P3) return of measured distances via one-hop ra-
dio transmission (Distance Vector, DV) from the anchors directly back to the client and
(P4) location estimation by the mobile node itself.
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3 Scalability and Communication Protocol

Before we take a closer look to various communication protocols for data centralization,
we will motivate, why this aspect is that important for localization systems.

There are several ways to centralize the distance information from the anchors at a
common node to estimate the mobile object’s position. In case of SNOW BAT, each
mobile node always derives its own position and thus collects the required distance
vectors itself.

We will now analyze how much information must be transferred at least and how
much time is required for this process. Table 1 summarizes the used abbreviations and
symbols and helps to keep an overview.

Table 1. Abbreviations and formula symbols

Total number of sensor nodes in the network m
Number of sending nodes n
Desired number of spatial information (DVs) g
Received number of spatial information (DVs) r ≤ n
Probability for a sufficient number of received DVs P (r ≥ g)

Time in radio TX / RX mode tT X , tRX

Time for single CCA tCCA

The US coverage zone Z
Ultrasound beam angle ϕ
Distance of mobile node from anchor plane h, hmin, hmax

Radius of US coverage zone Z r, rmin, rmax

Grid constant L

Radio TX speed sradio

Packet length of a DV / CAV LDV , LCAV

Transimssion time for a sigle distance vector tDV

Processing time of a single distance vector tDV processing

Slot time for a single distance vector tSLOT = tDV + tDV processing

Minimal duration of the reply stage P3 Φ(g) = g · tSLOT

Duration of the reply stage P3 tP3 ≥ Φ(g)
Timeout for the reply stage P3 tT O ≥ Φ(g)
Duration of the localization process (static / mobile) tlocS, tlocM

Proportion of P3 on the total localization process p(g)

3.1 Infrastructure Deployment, Reliability and Traffic Volume

In general, many WSN applications consist of a more or less huge number of m sensor
nodes. From time to time, a rather small but variable subset of n ≤ m nodes wants
to transmit information to a common destination via radio nearly isochronously. In the
case of localization systems, where the precision of the position estimation highly de-
pends on the amount and up-to-dateness of acquired spatial measurements (distances,
angles, etc.), it is important to guarantee the availability of a certain minimum of in-
formation. Yet, too much information is equally unwanted as this won’t improve the
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estimation significantly but the resulting traffic volume will jam the radio channel and
wastes time and energy for transmission and processing.

For most distance dependent position estimation algorithms in a dim-dimensional
space, at least g ≥ dim+1 distances respectively anchors are required. Overestimating
this system to a certain degree commonly yields increased precision and fault tolerance
with each additionally measured distance and is also supported by SNOW BAT. Yet
in most cases, n � g nodes will start to transmit information. Thus, it would be most
suitable to collect information progressively just until a sufficient precision or a certain
timeout is reached. This however requires a progressive position estimation algorithm
with the ability to iteratively improve the estimation with each new information. More-
over, limiting the amount of measurements and information in advance would allow
a trade-off between the current requirements (localization speed/frequency, precision)
and available resources (time, energy) individually for each localization. Obviously,
both methods would lead to a significant speedup and energy saving which is of partic-
ular importance in WSNs.

Within an US localization system like SNOW BAT, exactly the n ≤ m anchors that
obtained a distance information (i.e. the ones that received a CAV and the subsequent
US chirp) will try to return a DV back to the mobile node. Obviously, n depends on the
coverage zone Z of the US transmitter and the density of the static anchors within the
environment. In turn, the density of the anchors depends on the movement space of the
mobile clients. This effect can be seen clearly in figures 2a,c. Figure 2c shows a SNOW
BAT helicopter landing platform with the anchors deployed on the ground. They are
settled more densely towards the central landing point as a function of the helicopter’s
minimal height according to its entry lane.
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Fig. 2. Environmental observations for ensuring a sufficient number of DV transmissions

In [1], Baunach et al. suggest a special 2D grid alignment of the anchor nodes to
guarantee that at least four anchors are always within a mobile node’s US coverage
zone Z independent from its position within the monitored environment (→ fig. 2a).
This grid – the so called anchor plane – can either be installed on the ceiling or on the
floor of the environment depending on the application scenario. Their approach bases on
calculating an upper bound Lmax for the grid constant L depending on the ultrasound
transmitter’s beam angle ϕ and the minimal distance hmin of the mobile node from the
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anchor plane, as these values define the minimal radius rmin of the US coverage zone
Z (→ fig. 2b):

L ≤ 1.2 ·hmin · tan(ϕ)√
2

=
1.2 · rmin√

2
= Lmax

By using Lmax as grid constant, a sufficient number of distance measurements is en-
sured in whatever distance h ≥ hmin from the anchor plane the mobile client is lo-
cated. Of course, the US coverage zone expands with increasing distance h (hmin ≤
h ≤ hmax) of the mobile node from the anchor plane and then contains more and more
anchors (→ fig. 2b).

This arouses the problem, how to select an adequate subset of the anchors within
the US coverage zone Z for distance measurement. Allowing the mobile client to select
anchors explicitly via radio prior to the localization is impossible as it does not yet know
its current position and which anchors might be considered at all.

The naive method is to simply receive the distance informations greedily from all
anchors in Z and discard some of them during position estimation. However, this does
not only mean heavy radio traffic causing increased packet loss probability and energy
consumption but also blocks the anchors from serving other mobile clients. Another
possibility is to allow the anchors to arrange themselves via some distributed algorithm
and to choose adequate anchors for distance information transmission. Yet, this requires
communication among the anchors for each localization and even amplifies the disad-
vantages just described.

The HashSlot method allows implicit selection of anchors depending on the current
estimated distance h of the mobile client from the anchor plane or a user definable
quality of service level. It needs no communication between the anchors and uses a
sophisticated technique based on a simple metrics for concentrating the radio transmis-
sions as tight as possible over time to keep the reply stage short (→ section 4.3).

3.2 Localization Speed and Frequency

Let’s assume, we want to use at least g distance informations for position estimation,
so we have to transmit distance vectors from at least g anchors to the mobile node.
Each distance vector contains LDV bytes and will be transmitted with data rate sradio.
Additionally, the receiving node requires some time tDV processing to handle the radio
packet, i.e. read the radio transceiver’s RX buffer, check the data and re-enter RX mode
(→ fig. 1). During this time tDV processing , the radio transceiver can’t receive further
packets. Thus, the transmission of a single DV requires at least the time tSLOT :

tSLOT = tDV + tDV processing =
LDV

sradio
+ tDV processing

Finally, the reply stage P3 for the g desired DVs requires at least the time

tP3 ≥ Φ(g) = g · tSLOT

for transmission if all packets are received in direct succession (which is rather unlikely
for most communication protocols). This arouses three questions:
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1. Can the theoretical optimum Φ(g) for P3 really be achieved?
2. If not, which timeout tTO ≥ Φ(g) should be chosen to limit the duration of the

reply stage P3?
3. How many DVs must really be transmitted to guarantee the successful arrival of at

least g DVs at the mobile client when considering a certain packet loss rate of some
radio protocols?

Just to get an idea: In case of SNOW BAT the information returned within a DV
takes LDV = 64 B. The radio transceiver operates at sradio = 250 kbit/s and the DV
processing time on the receiving SNOW5 sensor node is tDV processing = 2 ms. Thus,
tSLOT = 4 ms and Φ(g) = g · 4 ms for g desired DVs.

We will now show, that the time a node spends in the reply stage P3 contributes
significantly to the maximal localization frequency and differs between static and mo-
bile nodes. As the engagement of each static node S ends with its DV transmission, its
reply stage P3′ is no longer than P3 of the mobile node. A mobile node involved in
localization is occupied for tlocM , a static node for tlocS (→ fig. 1):

tlocM = tSY NC + tMEASUREMENT + tP3 + tEST (tEST ≥ 0, tP3 ≥ Φ(g))
tlocS = tSY NC + tMEASUREMENT + tP3′ (tP3′ ≤ tP3)

The resulting maximal localization frequencies fM , fS are

fM =
1

tlocM
≤ 1

tlocS
= fS.

It is obvious, that k mobile nodes that share a static one may each still achieve a
localization frequency fM if fS ≥ k · fM or if a certain number of other static nodes
is available to guarantee a sufficient number of distance measurements for location
estimation of each client. Yet, deploying a rather large amount of sensor nodes means
high costs, maintenance effort, energy consumption and may cause much more impact
on the environment than necessary. Thus, there are two further questions:

4. How many nodes are really required to ensure an area wide service coverage?
5. How can tlocM and tlocS be kept short?

Question 4 was already addressed in [1] and briefly reviewed in section 3.1. We will now
address question 5 by analyzing the four stages P1 to P4 of the localization process (→
fig. 1) regarding their complexity, minimal duration and proportion of the total time.

P1. tP1 = tSY NC = tCAV + tINIT and mainly depends on the transmission time of
the chirp allocation vector and the activation time of the ultrasound hardware.

P2. tP2 = tMEASUREMENT = tTOF,max + tCALC mainly depends on the physical
properties of ultrasound, i.e. its maximal time of flight, which, in turn, depends on
the maximal distance hmax of the clients from the anchors and the surrounding
temperature. tCALC is the time required by the anchors to calculate the distance
corresponding to the delay between CAV and chirp reception.

P3. tP3 = tREPLY is subject of this paper as it is the duration of the most critical
stage. It occupies each static node until it has transmitted its distance informa-
tion, requires energy for wireless communication and causes traffic on the radio
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channel. Furthermore, a certain percentage of successfully delivered distance in-
formations must be guaranteed to allow precise location estimation.

P4. tP4 = tEST also offers great optimization potential and depends on the amount
of information to be processed and the type of used algorithm. Yet, as position
estimation is done by the clients only, it does not affect the anchors at all and thus
does not block them for another localization process. Furthermore, it is hardly
energy critical, as plain CPU operation without any further communication is suf-
ficient.

It is obvious, that the stages P1 and P2 are independent from g but are quite fixed in
time due to physical constraints of electronics, radio and sound. In case of SNOW BAT,
which uses a preemptive multitasking operating system and a fast position estimation
algorithm, omitting P4 in our calculations is acceptable as this stage can entirely be
executed in parallel to the stages P1 to P3 of the next localization process. Stage P3 is
addressed now. Again, we’ll take SNOW BAT as reference and evaluate some timings
according to figure 1:

tP1 = tCAV + tINIT =
LCAV

sradio
+ tINIT =

512bit

250kbps
+ 3ms = 5ms

tP2 = tTOF,max + tCALC =
hmax

vsound
+ tCALC =

8m

343m
s

+ 1ms ≈ 24.3ms

tP3 ≥ g · tSLOT = g · 4ms

The proportion p(g) of the reply stage on the total time without position estimation is
bounded by the number of desired packets g and the given timeout tTO as follows:

g · tSLOT

tP1 + tP2 + g · tSLOT
≤ p(g) ≤ tTO

tP1 + tP2 + tTO

As we will see in section 5.2, it is impossible for most radio protocols to achieve
the optimal return time due to e.g. radio collisions. Thus, allowing some extra time
for DV transmission by specifying a timeout is useful but even worsens the results. In
the following we’ll use tTO = 2 ·Φ(g) = 2 · g · tSLOT . The blue graphs (■ / �) in
figure 3 show strikingly, that returning just 4 DVs back to the anchor for 3D position
estimation already consumes between 35% and 52% of the whole localization time for
the maximal distance hmax = 8 m of the clients from the anchors. If hmax = 2 m as in
the red graphs (▲ / �), this worsens p(g) to be between 57% and 73% as tP2 is reduced
due to a shorter maximal time of flight tTOF of the US chirp. If some fault tolerance is
desired and we want to receive e.g. three additional DVs, the transmission will already
take up between 49% and 66% (hmax = 8 m) or between 70% and 83% (hmax = 2 m) of
the total time. Finally, the green graphs (•/◦) show the highest achievable localization
frequency fM,max for the clients.

As we have seen in this section, the reply stage in WSN based localization sys-
tems like SNOW BAT has significant influence on the maximum localization frequency
of anchors and clients. Especially for fine grained node tracking in movement control
systems fM is of particular relevance. Furthermore, the concurrent support for several
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estimation in relation to the number of returned DVs

mobile nodes highly depends on fS . Thus we will now review and compare the Hash-
Slot and some other well-known communication protocols regarding speed, reliability
and energy efficiency.

4 Radio Protocols for Data Aggregation

We will now discuss HashSlot and five other MAC protocols for data aggregation during
the reply stage P3. Three of them use fixed time slots for transmission, three depend on
the time when the US chirp was detected. As described, n anchors try to send whereas
the client desires g DVs.

For each method we’ll give a lower and an upper bound for the time tRX the client
and each of the n sending anchors will stay in radio RX mode. As this time depends
on the timeout for the reply stage P3, we’ll also present tTO we used for comparison
within our testbed (→ section 5.2). The time each node stays in radio TX mode is fixed
as each distance vector will be sent exactly once and neither acknowledgments nor
retransmissions are used. Thus, during P3, tTX = tDV for anchors and tTX = 0s for
clients. The minimal time required for performing a clear channel assessment (CCA) is
tCCA. Recall, that the reply stage in SNOW BAT always uses a dedicated radio channel
for each mobile node. Thus, no interference with any other radio communication is to
be expected.

4.1 Non-slotted Methods

As non-slotted protocols don’t need to synchronize to any clock, transmission might
start in general as soon as the information is available. In case of SNOW BAT this is
between tTOF,min(h) = h

vsound
and tTOF,max(h) = h

cos ϕ · vsound
after chirp emission.

With the specifications from the SNOW BAT system (hmax = 6.9 m, ϕ = 30◦) and
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vsound = 343 m/s, this time difference Δt(h) = tTOF,max(h) − tTOF,min(h) ≤
3.2 ms. Additional delay may occur due to back-off strategies for collision avoid-
ance, etc.

CSMA/CA: In CSMA mode, each anchor starts transmission as soon as the distance
measurement has completed and the radio channel is free. Therefore, each node per-
forms a clear channel assessment before entering TX mode. If the radio channel is busy,
it defers the transmission by a randomly chosen time and retries. Another possibility is
to remain in CCA mode until the channel is free and then start transmission additionally
delayed by a random time to avoid collisions with other waiting nodes. In fact, this pro-
tocol is fairly easy to implement but unfortunately it involves several serious problems.
Despite of the CCA, collisions can’t be avoided entirely as the transition from CCA to
TX mode takes a small but notable time of a few µs in which the channel could get
occupied. This effect is more likely the more of the n anchors will start transmission
roughly at the same point in time. Using acknowledgments to safeguard the transmis-
sion would not only slow down the whole process but also result in even more traffic,
collisions and energy consumption. Another point to consider is, that packets might
arrive in quick succession at the client, especially before the last one was completely
processed and RX mode was re-entered. This also causes packet loss and eliminates the
usage of progressive position estimation algorithms as described in section 3.1.

Timeout: tTO = g · tSLOT

Anchor: tRX,min = tCCA tRX,max = Δt(h) + tTO

Client: tRX,min = g · tDV tRX,max = Δt(h) + tTO

Brute Force: In brute force mode, each anchor starts transmission as soon as the
distance measurement has completed without performing any CCA. As the US chirp
reaches the anchors slightly delayed in time, it might be possible that this Δt(h) allows
a successful transmission of the distance information. In fact, this keeps TTO short,
but when taking a closer look at this approach, it turns out as unreliable. Since we have
seen, that Δt(h) ≤ 3.2 ms is almost equal to tSLOT = 4 ms (→ section 3.2) this would
inevitably cause radio collisions and no information would finally arrive at the client.

Timeout: tTO = tDV

Anchor: tRX,min = tRX,max = 0
Client: tRX,min = tRX,max = Δt(h) + tTO

Random Start + CSMA: For this approach, the mobile node sends the number of
desired DVs g along with the CAV to the anchors. Each anchor selects a random trans-
mission delay dDV ∈ [0; (γ · g − 1) · tSLOT ]. The sender will perform a CCA at tDV

after chirp reception and start transmission as soon as the channel is free. γ ∈ N\{0}
can be used to reduce the chance of collisions but also stretches the reply stage P3.

Timeout: tTO = γ · g · tSLOT

Anchor: tRX,min = tCCA tRX,max = Δt(h) + tTO

Client: tRX,min = g · tDV tRX,max = Δt(h) + tTO
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The approaches so far used no uniform transmission slots and can not guarantee the
successful transmission of the g desired DVs. Thus, the mobile node must stay in RX
mode during the whole reply stage, i.e. until the desired amount of information was
received or the timeout was reached.

4.2 Slotted Methods

In contrast to non-slotted protocols, the slotted ones need to synchronize to defined slot
boundaries and thus require a precise time management and at least one synchronization
point. In SNOW BAT, the sync point TCAV is already given by the CAV radio packet
which is also used for distance measurement via TDoA (→ fig. 1). The first return slot
starts at time TRET = TCAV + tINIT + tTOF,max + tCALC which is in fact a fixed
time after CAV reception.

An important advantage of slotted methods is the possibility to allow progressive
position estimation by selecting a sufficient slot length. Additionally, the slotted ap-
proaches allow the receiver to enter radio RX mode only for a short time at the begin-
ning of each slot to save energy. Remains the question, how many slots must be reserved
for a reliable DV transmission and how many of these slots will really be used.

Random Slot: Again, the mobile node sends the number of desired DVs g along with
the CAV to the anchors. Each anchor S selects a random slot bS ∈ [0; γ · g − 1] for DV
transmission and sends the DV at time tDV = tRET +bS · tSLOT . Like in random start,
γ ∈ N\{0} is used to provide more slots for reducing the chance of collisions.

Timeout: tTO = γ · g · tSLOT

Anchor: tRX,min = 0 tRX,max = 0
Client: tRX,min = g · tDV tRX,max = γ · g · tDV

NodeID: As node IDs in WSNs are expected to be unique, each anchor selects a unique
and thus collision free return slot for the DV by using its NodeID as slot number. This
way, the DV return time computes as tDV = tRET + nodeID · tSLOT . Though this
method is definitely collision free, it might take up to nodeIDmax slots and should be
avoided despite of its reliability.

Timeout: tTO = nodeIDmax · tSLOT

Anchor: tRX,min = 0 tRX,max = 0
Client: tRX,min = g · tDV tRX,max = nodeIDmax · tDV

4.3 The HashSlot Protocol

It is quite common in sensor networks, that information emerges (locally) at various
sensor nodes almost simultaneously (e.g. in seismic surveillance, weather observation,
etc.) and must be sent to a common processing unit as quick as possible. Obviously,
this leads to several transmission problems like radio collisions and real-time aspects.
We have employed and analyzed HashSlot for DV transmission from anchors to a client
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in the reply stage P3 of the SNOW BAT system as the distance information emerges
almost at the same time (i.e. when the chirp is detected by the anchors) and must arrive
at the client very quickly to allow precise localization in real-time.

The HashSlot radio communication protocol was designed for extremely reliable,
fast, deterministic, energy efficient and selective data aggregation in WSNs and allows
collision-free one-hop transmission from multiple sources to a common destination
within a constant and predictable time. As it uses time slots, it is particularly suitable
for progressive processing of the transmitted information at the receiver.

HashSlot is a self-organizing approach and thus allows to limit the amount of desired
information with respect to the requirements of the receiver dynamically at runtime.
Therefore each receiver may send its individual demands to the data sources when re-
quired and allows all involved nodes to calculate the exact total transmission time of
all requested radio packets as well as the corresponding energy requirement in advance.
Note, that this QoS request might also be used for synchronizing the senders to the
transmission slots. However, at no time HashSlot needs active coordination between
the senders as each node calculates its individual transmission slot autonomously. Yet,
it demands each sender to adhere to the slot boundaries.

The basic idea is to use some sender S specific information aS ∈ A as input for a
hash function H : A 
→ B ⊂ N0. As the resulting hash value bS ∈ B is used as slot
number for S it is desirable to receive tightly packed values starting from 0. Depending
on the application, H must be constructed to always produce pairwise different hash
values bS, bS′ ∈ B for any two nodes S, S′ which need to transmit concurrently, i.e. at
the same time and radio frequency.

In case of our localization system we selected a special grid alignment for our an-
chors to guarantee at least four distance measurements for each position estimation (→
section 3.1). Thus we also know the (unique) geometric position of each anchor S and
the corresponding cell coordinate (CSx|CSy) within the grid.

In [1] it was proved, that if the grid constant L of the anchor grid and the maximal
radius rmax of the US coverage zone Z over the grid is known, the minimal square
around Z contains exactly nmax = Γ 2 =

(⌊
2 · rmax

L

⌋
+ 1

)2
senders. Thus, at most

nmax slots must be reserved for transmission and each sender S can calculate its indi-
vidual transmission slot bS ∈ B depending on its cell coordinate (CSx|CSy) and Γ :

bS = H(CSx, CSy) = (CSy mod Γ ) ·Γ + (CSx mod Γ )

Some further characteristics of HashSlot were also proved:

1. Two or more senders with the same slot number can never interfere with each other
as they would never reside within the same US coverage area.

2. For nmax reserved slots, the slot numbers are always in range [0; nmax− 1]. Thus,
a tighter packing is never possible and the time required for the nmax transmissions
is tn,max = nmax · tSLOT .

However it is not always useful to reserve nmax slots. When moving orthogonal
to the anchor grid, the US coverage zone becomes smaller with decreasing distance
from the anchor plane and thus contains less potential senders. Therefore, the grid
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module Γ is temporarily adjusted to Γad (1 ≤ Γad ≤ Γ ) and limits the number of
senders to nad = Γ 2

ad ≤ nmax with g ≤ nad. With increasing distance from the anchor
plane there might be much more senders within the US coverage zone than required for
successful position estimation. Therefore, a QoS level q (1 ≤ q ≤ Γ ) can be specified
to limit the number of senders to nq = q2 ≤ nmax with g ≤ nq.

By using an estimation for the distance from the anchor plane based on the last
localization, the HashSlot protocol allows automatic calculation of a useful QoS level q
and Γad value to limit the number of senders to any value g ≤ nmax. If g is no square
number, n =

⌈√
g
⌉2 ≤ nmax slots are reserved.

This way, precision and speed of the localization can be adjusted. Furthermore, an-
chors can detect very early if they are not demanded for localization and omit the dis-
tance measurement entirely to save energy and to be available for other mobile nodes.
Hence, HashSlot scales with g and is entirely independent from n.

Timeout: tTO =
⌈√

g
⌉2 · tSLOT

Anchor: tRX,min = tRX,max = 0
Client: tRX,min = tRX,max =

⌈√
g
⌉2 · tDV

In this section we discussed several radio protocols regarding their efficiency for DV
aggregation and showed, that HashSlot scales with g whereas all other protocols scale
with g and n or even with nodeIDmax. Table 2 summarizes these protocols.

Table 2. Comparison of various radio protocols for data aggregation in stage P3

HashSlot NodeID Random
Slot

Random
Start+CSMA

Brute Force CSMA/CA

slotted yes yes yes no no no
deterministic yes yes no no no no
colission free yes yes no no no no
CS necessary no no no yes no yes
anchor needs
radio RX

no no no yes no yes

client need no no no no no no
radio TX
supports
progressive
position
estimation

yes yes yes no no no

requires anchor posi-
tion

unique
NodeID

randomizer randomizer,
CCA

- CCA

scalability
depends on

g nodeIDmax g, n g, n g, n g, n

#replying
nodes

�√
g
�2

n n n n n
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5 Real World Implementation

5.1 The Sensor Node Platform

The SNOW BAT hardware is based on the SNOW5 wireless sensor node [8] which
employs a TI MSP430 MCU [9]. The radio transceiver TI CC1100 [10] is configured
to operate at 915 MHz, allows data rates up to 500 kbit/s and automatic clear chan-
nel assessment. The operating system SMARTOS [11] offers preemptive multitasking
and real-time operation. The time management and automatic timestamping of external
events with a resolution of 1 µs and a precision of 0.6 µs contributes significantly to the
node synchronization and calculation/preservation of the distance vector transmission
slots. Fig. 4 shows a SNOW5 sensor node with stacked ultrasound extension.

Fig. 4. SNOW5 sensor board with stacked ul-
trasound extension and receiver capsule

PRX 53.06 mW

PT X 152.39 mW

Fig. 5. Power consumption for SNOW5 ra-
dio RX/TX (excluding the node itself)

5.2 Testbed and Results

For comparison of the communication protocols from section 4 regarding speed, reli-
ability and power consumption under real world conditions, we set up a SNOW BAT

testbed comprising n ∈ {4, 9, 16, 25, 36} anchors and one client. For each combina-
tion of protocol and anchor count we executed 400 localization processes (without ac-
knowledgments or retransmissions) and accomplished the following measurements at
the client:

a) Average packet loss rate Λ(n) for n sending nodes
b) Average sufficiency rate Σ(g) = P (r ≥ g) for g = n
c) Average reply stage duration tP3 for g = n
d) Average RX mode duration tRX for the client and g = n

Λ(n) is the average percentage of n packets from all n anchors, that did not arrive at the
client. Σ(g) is the percentage of localizations for which we received at least the desired
number of g DVs. tP3 was determined with a resolution of 1 µs by using the SMARTOS
timing functionality. The same holds for tRX which is the total time the radio RX mode
was active per localization. Figure 6a-d visualizes the results.

We focused on the client, since the energy supply for the anchors within the infras-
tructure is most commonly less critical compared to the e.g. battery powered mobile
nodes. Additionally we were particularly interested in the maximum temporal resolu-
tion we could achieve for tracking the mobile node.



Speed, Reliability and Energy Efficiency of HashSlot Communication 87

0

10

20

30

40

50

60

70

80

90

100

4 9 16 25 36

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

HashSlot NodeID

Random Slot

Random Start

CSMA

Brute Force

n

Ë(n) [%]

a) Average packet loss rate

0

10

20

30

40

50

60

70

80

90

100

4 9 16 25 36

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

Ó(g) [%]

g

b) Average sufficiency rate

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

0

50

100

150

200

250

300

4 9 16 25 36

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

c) Average reply stage duration
tP3(g) [ms]

g
0

50

100

150

200

250

4 9 16 25 36

HashSlot

NodeID

Random Slot

Random Start

CSMA

Brute Force

HashSlot

NodeID

Random SlotRandom Start

CSMA

Brute Force

d) Average RX time of the client

g

tRX(g) [ms]

Fig. 6. Measurement results from the real world testbed

First, it becomes obvious, that the Brute Force method indeed performs as bad as
expected, since the short reserved time for P3 leads to many collisions and an aver-
age packet loss rate of nearly 100%. In contrast, the NodeID and HashSlot approaches
achieved the expected packet loss rate of about 0%, since they use collision free slots.
Yet the first is extremely slow and comsumes a lot of energy due to many reserved slots
(nodeIDmax was 69 in our testbed) whereas HashSlot dynamically adjusts the length
of P3 to the number of desired DVs g. Apart, it reaches a much better sufficiency rate
than Random Slot or CSMA which are sometimes subject to radio collisions but rank
close to HashSlot when regarding tP3 and tRX .

These measurements together with the power consumption values from the SNOW5

specifications (→ fig. 5) allowed us to calculate some more interesting values which are
visible in figure 7e-h. This time, we also considered the energy required for transmitting
the initial CAV in stage P1 but explicitly omitted the energy required by the MCU or
the ultrasonic hardware:

e) Achievable localization frequency: floc =
1

tP1 + tP2 + tP3
·Σ(g)

f) Radio energy consumption per localization attempt: Wloc = tRX ·PRX +tTX ·PTX

g) Radio energy consumption per received DV: WDV =
Wloc

n · (1− Λ(n))
h) Radio energy wasting per localization: Wloc,waste = Wloc · (1−Σ(g))
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Fig. 7. Metrics derived from real world measurement results

floc is the achievable number of localizations per second for which at least the desired
amount g of information would be available. Wloc is the required radio energy for each
localization attempt regardless of success or failure due to an insufficient number of
DVs. WDV shows, how much radio energy is necessary in average to gain a single DV.
Finally, Wloc,waste is the wasted energy when assuming that the reception of less than
the desired g DVs are insufficient for the intended operation. In this case, all effort is
lost and the whole process must start over again.

Now it becomes visible, that HashSlot was the most reliable transmission protocol
under test and consequently allowed the highest frequency of successful localizations.
Though it requires nearly the same amount of energy per localization than Random
Slot it significantly wastes less energy by virtue of canceled localizations due to an
insufficient number of received DVs. In our opinion, the most remarkable result is,
that HashSlot is independent from the total number of anchors n and the number of
desired DVs g when regarding the average packet loss rate, sufficiency rate, energy
consumption per DV and energy wasting. Just the localization time and consequently
the frequency and total energy requirement is not constant but depends on the g. Finally,
we can state, that the theoretically expected characteristics of HashSlot were indeed
verifiable within our real world testbed.

6 Conclusion and Outlook

In this paper we addressed the impact of wireless communication on speed, reliability
and energy consumption in WSN based localization systems by using SNOW BAT as
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an example. We pointed out, that information aggregation consumes a significant part of
the total localization time and also widely influences localization frequency and system
scalability regarding the number of mobile nodes. Real world experiments with various
communication protocols showed, that an adequate adaption to the current requirements
(speed, precision) of the mobile client node yields the best results. As the position of
anchor nodes within localization systems is most commonly known anyway, it is no
problem to compute collision-free transmission slots by using the HashSlot approach.

Further research in the general field of information aggregation aims on finding ap-
propriate hash functions for collision free radio communication within arbitrary appli-
cations. In the specific field of WSN based localization, we are currently extending
our testbed to comprise 70 anchors and various mobile nodes for real world results in
multi-node localization and tracking.
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8. Baunach, M., Kolla, R., Mühlberger, C.: SNoW5: a modular platform for sophisticated real-
time wireless sensor networking. Technical Report 399, Institut für Informatik, Universität
Würzburg (January 2007)

9. Texas Instruments Inc., Dallas (USA): MSP430x1xx Family User’s Guide, 2006.
10. Texas Instruments Inc., Dallas (USA): CC1100 Single Chip Low Cost Low Power RF

Transceiver, 2006
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Aachen, July 16–17, 2007, pp. 1–4. RWTH Aachen University (2007)



Spatiotemporal Anomaly Detection
in Gas Monitoring Sensor Networks

X. Rosalind Wang1,�, Joseph T. Lizier1,2, Oliver Obst1,
Mikhail Prokopenko1, and Peter Wang1

1 CSIRO ICT Centre, Locked Bag 17, North Ryde, NSW 1670, Australia
Rosalind.Wang@csiro.au

2 School of Information Technologies, The University of Sydney, NSW 2006, Australia

Abstract. In this paper1, we use Bayesian Networks as a means for unsupervised
learning and anomaly (event) detection in gas monitoring sensor networks for un-
derground coal mines. We show that the Bayesian Network model can learn cycli-
cal baselines for gas concentrations, thus reducing false alarms usually caused by
flatline thresholds. Further, we show that the system can learn dependencies be-
tween changes of concentration in different gases and at multiple locations. We
define and identify new types of events that can occur in a sensor network. In
particular, we analyse joint events in a group of sensors based on learning the
Bayesian model of the system, contrasting these events with merely aggregating
single events. We demonstrate that anomalous events in individual gas data might
be explained if considered jointly with the changes in other gases. Vice versa, a
network-wide spatiotemporal anomaly may be detected even if individual sensor
readings were within their thresholds. The presented Bayesian approach to spa-
tiotemporal anomaly detection is applicable to a wide range of sensor networks.

1 Introduction

Since the 1980s, electronic gas monitoring sensor networks have been introduced in the
underground coal mining industry. However, no current system can provide site spe-
cific anomaly detection. This means monitoring systems often give false alarms, which
can be costly to the mining operation. The periodic variation in the gas concentration
also increases the number of false alarms in these flat line threshold based systems.
Further, current systems ignore the spatial relations between data gathered at different
sensor network nodes. These spatial relationships between data could identify anoma-
lies missed by individual sensors. Conversely, the spatial relationships could explain
away the anomalies identified by the individual gas sensors, thus avoiding false alarms.

Currently, the existing system integrates and interprets incoming data in accordance
with a pre-determined set of rules, produces a risk profile, and autonomously initiates
a response to a breach of these rules. A problem with this approach is that no clear-cut
definitions of abnormal situations with respect to the concentration of different gases
exist, so that it is difficult to produce a good set of rules.
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The underground coal mining industry has been struggling with the issues of site-
based moving threshold levels for critical gases since the introduction of electronic gas
monitoring systems in the 1980s. No satisfactory, scientifically validated methodology
is in existence that can provide a mine with its own specific moving threshold levels.
Best guess estimates, universal rules-of-thumb and experience-based trigger points are
the industry norm [1]. In this paper, we used Bayesian Networks as a means for unsu-
pervised learning of temporal and spatiotemporal patterns in underground coal mining
gas data, and applied the approach to spatiotemporal anomaly detection.

Section 2 presents the problem of anomaly detection in general sensor networks. In
Sec. 3, we define the problem specifically for underground coal mining sensor networks.
Section 4 describes the approach we took to learn and analyse the data. The results of
identified anomalies are shown in Sec. 5. Finally, Sec. 6 presents the conclusions and
future work.

2 Background

In order to be successful, sensor networks must detect, evaluate and diagnose patterns in
diverse situations, forecast likely future scenarios, make decisions, initiate actions based
on these decisions, and adapt to change. Adaptive anomaly detection in spatiotemporal
sensor network data is, thus, one of the main challenges in this field. Conventional
control theory and SCADA (Supervision Control And Data Acquisition) systems are
employed for anomaly detection in these sensor networks, however, they are inadequate
to deal with scenarios which require flexible acquisition and distribution of information.

For our particular application, each node in the sensor network monitors several dif-
ferent kinds of gases in order to ensure safety and productivity in a coal mine. We
consider an existing system which takes measurements and interprets incoming data.
The single nodes in the sensor networks cover wide areas. Since they are used for the
prevention of hazards, rather than for recovery after a hazard, the position of each node
is fixed and known. Our scenario also allows for the use of non-wireless communi-
cation between single nodes, whereas for applications in hazard recovery, cable-based
communication could possibly be disrupted by collapsed roofs or explosions.

The application of sensor networks in coal mines seems to be natural, because several
different kinds of data have to be collected for safety reasons. For example, in [2], a
sensor network is used to detect leakages of gas, dust or water, and to monitor the
density of oxygen in different areas. For this particular application, data from different
nodes is used to create a qualitative overview, describing for example the extent of water
leakages or areas with a high density of oxygen. For our application, monitoring gases
at each node separately from each other is not sufficient to detect anomalies: densities of
single gases at one location might appear normal, but the simultaneous measurement of
densities of other gases at other locations could in fact indicate a potentially dangerous
situation. Other properties of the scenario make the detection of abnormal situations
more difficult: as mentioned above, there is no good definition of an abnormal situation,
and one of the reasons for this is the rarity of abnormal events in the available data.
Moreover, not only does the spatial distribution of gases have to be considered, but so
too does the development of gas distributions over time.
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Fig. 1. Gas concentration data from a sensor node in an Australian coal mine. Data gathered for
oxygen is in units of percentage of air, the other gases are in of parts per million. The horizontal
axis indicates the time (mm/dd) the data was taken.

For the research presented in this paper, we are using data gathered from deployed
sensor networks in existing Australian coal mines for testing the algorithms. Each sen-
sor node measures gas concentration, e.g. at 30 second intervals, of a number of gases,
e.g. methane (CH4), carbon dioxide (CO2), carbon monoxide (CO) and oxygen (O2).
Figure 1 shows the data from a sensor node in the first mine for three weeks in July 2006.

Intuitively, anomalies in our data are irregular patterns in multiple time series, e.g. a
combination of CH4 − CO2 − CO−O2. In general, the problem is to detect an abnor-
mal event distributed over different sensors, although it is not clear what exactly “abnor-
mal” means a priori. In our particular coal mine sensor network, all data is passed on to
a central node, so that currently the problem of a distributed computation of abnormal
situations is not pressing. Nevertheless, we pursue a method that has the potential to be
distributively computed if required.

Methods to identify previously unseen, i.e. abnormal situations in data have previ-
ously been investigated [3,4]. The method in [3] uses self-organising maps (SOM) to
describe normal system behavior, and to detect abnormal behavior. In order to use SOM,
the authors present a new measurement to find out if a dataset and a map are matching
based on a k-nearest neighbor approach.

The method introduced in [4] detects abnormal events in signals using Support Vec-
tor Machines (SVM). The method can be used online, i.e. without using a fixed training
set: the last n observed input vectors are used for training. In the first of the proposed
algorithms, a special kind of distance measure is used to compare the distance of a
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new vector to a region created by the last n input vectors. A distance greater than a
given threshold is considered as abnormal. The second algorithm is similar, but delays
the output by a small number of measurements N . Then, the set of N new vectors is
tested for abnormality in a similar way to the first algorithm, leading to a more robust
approach.

Both approaches expect all the data to be present in a single node, i.e. they could
be used in the centralised fashion that coal mine sensor network deals with the data
currently. We have, however, chosen to use a method based on Bayesian networks,
because it would support inference in both distributed and centralised settings (see also
[5]). In addition, our approach directly computes a likelihood measure for new data,
thus allowing unsupervised learning for anomaly detection.

3 Problem Definition

One of the major road blocks we face in anomaly detection inside underground coal
mines is complete lack of ground truth. This is because every mine is unique, so what
is considered to be an anomaly in one mine may not be an anomaly in another. Mining
experts do not have general purpose rules for anomaly detection that are applicable to
every site. Therefore, our purpose is to devise an adaptive system that learns from the
data specific to a mine, and identifies anomalies that are specific to the mine.

3.1 Temporal Anomalies in a Single Gas

Many current automatic detection systems use a flat baseline or threshold for anomaly
detection. However, gas concentration in mines have a moving baseline depending on
factors such as atmospheric pressure. That is, the mine “breathes” through the day,
and the concentration of the various gases increases and decreases periodically. A flat
baseline system does not capture this characteristic of the data, thus giving many false
alarms and false negatives.

We consider an anomalous event or simply event in the time series data as a data
point that results in a low likelihood given a model we have constructed of the time
series. That is, the resulting likelihood value of the data point is an outlier from the
general distribution of likelihood values of the other data. We will define likelihood,
outliers and consequently the term ‘event’ formally after presenting the approach to the
problem in Sec. 4.

This problem can be easily seen in the CO data in Fig. 1. For example, the data
from July 16th to July 20th show a cyclical pattern in the concentration. A flat baseline
system might assume the peak around July 18th is an anomaly, while we can see it’s
just a part of the moving cycle. Figure 4 also illustrates cyclical patterns.

3.2 Joint Temporal Anomalies in Multiple Gases

When several single events occur at the same time, they indicate a higher importance
event. The current literatures identifies these as composite events and group events.
A composite event, as defined by Kumar et al. [6] is a combination of two or more
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single events. Jiao et al. [7] used the term “group level event” in similar fashion to the
composite event, that is the aggregation of multiple local events. Informally, a group
event occurs when in a group of sensors, each sensor identifies an event.

While the aggregation of single events might be adequate for the situations described
in the papers above, we need to define other types of events for our data. In Fig. 1 for
example, we can see around July 7th, the concentrations of CO, CO2 both dropped,
however, at the same time the concentration of O2 increased. These single events, as a
combination, is considered safe by mining experts. Conversely, while no events may be
identified by isolated analysis of single gases, as a combination, they may be consid-
ered an event. We define three new terms in event detection for sensor networks: joint,
explained and implicit events. Below we describe each event informally, they will be
defined mathematically in Sec. 4.4.

A joint event is a combination of data from sensors that results in a low likelihood
given the model for the combination of single sensors. Consequently, we define ex-
plained and implicit events where there is a difference of opinion in joint event and
single events.

An explained event is where there are detected anomalies in single gases, but the
combination of time series do not result in a joint event. The CO-CO2-O2 event situation
described above would be classified as an explained event. The opposite to an explained
event is an implicit event. This is when isolated analysis of single gases do not cause
any alarms, however, as a joint event, these measurements are significant enough to
trigger an alarm.

3.3 Network-Wide Spatiotemporal Anomalies

The events described above relate to gases at a single spatial location, however, they
also apply to data of different sensor nodes in the network. In situations involving dif-
ferent sensor nodes in the network, a composite event would involve two or more single
events at different nodes, and a group event is one where every sensor node in the group
identified an event [7,6].

A network-wide “explained” event is when a truck passes through the mine. The
exhaustion gases may trigger alarms in individual gases as concentration will increase
suddenly. However, this event should not be considered a network-wide anomaly in
the data, as other nodes jointly explain it away. An example of an “implicit event” in
the network is an increase of methane at one location of the mine, accompanied by an
increase in oxygen at another location. Thus no joint event is identified at each sensor
node, but a network-wide joint event could be identified for the combination of the
sensor nodes.

4 Approach to the Problem

Our approach to the problem of anomaly detection is to use Bayesian Networks (BNs).
The networks are constructed via a learning process from some training data. When new
observations are made, we can use inference on the network to find a likelihood value
of the network given the new observations. An anomaly is identified if the likelihood
value is low.
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4.1 Bayesian Networks

A Bayesian Network is a graphical model that takes a statistical approach to learning.
Statistical learning uses probability distributions to model variables that represent the
gathered data, thus taking into account the stochastic nature of real data. Graphical
models expose the underlying relationship between probabilistic variables in a simple
and clear form.

Specifically, Bayesian Networks are a form of acyclic directed graph (ADG) [8] in
that if one variable of the network is dependent on another, then the reverse cannot be
true. This relationship between two variables is represented in BNs by the direction of
an arrow connecting the two. The variables of a BN are called nodes of a BN. The node
with an arrow pointing to it is dependent on the node with the same arrow pointing away
from it. The nodes connected by an arrow have a parent/child relationship, where the
child node is dependent on its parent node. (See Fig. 2 for one of the network structures
used in this paper.)

In a Bayesian network, each random variable is independent of its non-descendants
in the graph given the state of its parents. This independence can be exploited to reduce
the number of parameters needed to characterise the network. Thus it is possible to
efficiently compute posterior probabilities given some evidence or observations. One
set of probability parameters are encoded for each variable, in the form of the local
conditional distribution given the variable’s parent. Using the independence statements
encoded in the network, the joint probability distribution is uniquely determined by
these local conditional distributions [9,10]. We present the general form of this joint
probability distribution in the following paragraphs.

We use capital letters such as X, Y for names of random variables, and lower cases
x, y for values taken by these variables. A set of variables such as {X1, X2, X3} are
written as X, likewise, a set of values such as {x1, x2, x3} are written as x. Thus, x are
values taken by X.

Let P (U) be a joint probability distribution over U = {X1, . . . , Xk}, where Xi is
a random variable expressed by a node of the network. A Bayesian Network for U is a
pair B = 〈G, Θ〉. The first component, G, represents the graph structure of the network.
G is an ADG whose nodes correspond to the random variables X1, . . . , Xk, and whose
edges represent direct dependencies between the variables. The second component, Θ,
represents the set of conditional probabilities that quantify the nodes of the network. It
contains a set of parameters θXi|ΠXi

= PB(Xi|ΠXi) for each node Xi, where ΠXi

denotes the set of parents of Xi in G. A Bayesian Network B defines a unique joint
probability distribution over U given by

PB(U) =
k∏

i=1

PB(Xi|ΠXi) =
k∏

i=1

θXi|ΠXi
. (1)

In a Bayesian Network the learning process is to estimate the parameter set Θ as
well as to find the structure of the network, G. The objective in the learning is to find a
B = 〈G, Θ〉 that “best describes” the probability distribution over the training data [11].
In this paper, however, we will not be learning the structure of the networks.
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4.2 Network Structures for the Problem

Let a single variable time series be X = {x1, x2, . . . , xN}, where N is the total number
of data points in the series. We can embed this data in a d-dimensional phase space as
follows [12]:

yt =
(
xt, xt−τ , . . . , xt−(d−1)τ

)
, (2)

where τ is the time delay, d is the embedding dimension, and t = d, d + 1, . . . , N .
Henceforth, we set τ = 1, thus Eqn. 2 becomes:

yt = (xt, xt−1, . . . , xt−d+1) , (3)

Fig. 2. Bayesian Network model used for learning and inference data in embedded phase space

Figure 2 shows the model used to learn this data. The network is constructed from
the underlying dependencies in a time series, that is the data at time t is dependent on
the data at time t− 1, . . . , t− d + 1.2 The joint distribution of the model is:

P (U) = P (Xt|Xt−1, . . . , Xt−d+1)P (Xt−d+1)
d−2∏

k=1

P (Xt−k|Xt−(k+1)) (4)

where U = {Xt−1, . . . , Xt−d+1}. All the nodes are modelled as one dimensional
Gaussians. For example, a BN model of Fig. 2 with d = 3 has the dependencies as
Xt−2 → Xt−1 → Xt as well as Xt−2 → Xt. The joint distribution of the model
will be P (U) = P (Xt|Xt−1, Xt−2)P (Xt−1|Xt−2)P (Xt−2), where each P (·) is a
Gaussian or a conditional Gaussian distribution.

Figure 3 shows a model that may be used to learn and inference the combination of
three sensors in the system. In this case, the network is composed of three ‘subnets’,
that is the sets of nodes {At, At−1, . . . , At−m}, etc. Each subnet has the same network
configuration as that of the network in Fig. 2. The value for m, that is, the length of the
subnet, is not necessarily the value of d, which is the number of nodes for the network
in Fig. 2. Since {Bt−1, . . . , Bt−m} is independent of Ai, and {Ct−1, . . . , Ct−m} is
independent of At or Bt, we can write the joint distribution of the model as:

P (U) ∝ P (A)P (B)P (C)P (Bt|At)P (Ct|At)P (Ct|Bt), (5)

where P (A) is the joint distribution of {At, At−1, . . . , At−m}, and similarly for P (B)
and P (C).

2 The network in Fig. 2 is simply a d − 1-th order Markov model presented in the Bayesian
Network representation.
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Fig. 3. Bayesian Network model used for learning the combined data from three sensors

Figure 3 describes a network for anomaly detection in the combination of gases at
one spatial location, however, it can be easily adapted for detection across different spa-
tial locations. For example, with the same network, At could be gas 1 from location 1,
while Bt and Ct are gases 2 and 3 from location 2.

4.3 Learning and Inference

Since the structure of the network is known, only the parameter set Θ needs to be
learnt. The Maximum Likelihood [13,14] algorithm is thus used to estimate Θ. In the
ML estimator, the likelihood function, p(x|θ), is treated as a function of θ for fixed
x, where xt

j is the j-th data sample for the node Xt in the Bayesian Network. This
likelihood function can be used to evaluate the choices of θ. The ML estimator chooses
the value of θ that maximises the probability of the data x:

θ̂ML = argmaxθ p(x|θ). (6)

This learnt network can then be used to do inference on new data. That is, given the
observed values of some of the nodes in the network, compute the probability distribu-
tion of the other nodes. Inference allows us to perform three types of analyses on the
data:

1. Prediction, where the probability distribution of the child node can be computed
given the values of the parents. In our case, the prediction of values in Xt in Figure 2
given the values of {Xt−1, . . . , Xt−d+1}.

2. Diagnosis, where we can find the probability distribution of the parent node given
the value of the child. In Figure 3 for example, given the values of Bt and Ct, we
can find the values of At.

3. Anomaly detection using the likelihood values, which is actually a byproduct of
inference operation. The likelihood value measures how well the observations fit
the Bayesian Network model. Anomalies would result in a low likelihood value,
while data that fit the model well will result in high likelihood values.

4.4 Anomaly Definitions

We will now define anomalies and the various events described in Sec. 3 formally. For
all definitions below, the null hypothesis, H0 is the hypothesis that the evidence is true,
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and the p-value is the probability of how well the evidence supports the H0 hypothesis
(smaller p-values favour the rejection of H0). The significance value, α is set such that
if p < α, then the null hypothesis is rejected.

Let Lyt = L(yt|θBy ) be the log likelihood of the Bayesian Network given data
point yt in a d-dimensional phase space (as shown in Figure 2), and PLY (θLY ) be the
distribution of Lyt overall. Then

Definition 1. yt is an event iff the following H0 is rejected:

H0 : Lyt ∼ PLY (θLY )

For the spatiotemporal events, let ut = {y1
t ,y

2
t , . . . ,y

n
t } be the set of n data points in

the d-dimensional phase space at time t. For example, with three gases A, B, and C,
ut = {at,bt, ct}, where at = {at, at−1, . . . , at−(d−1)}, etc.

Definition 2. ut is a composite event when two or more of {y1
t ,y

2
t , . . . ,y

n
t } is an

event.

Definition 3. ut is a group event iff yi
t is an event, ∀yi

t ∈ ut.

In Definitions 1–3, we use log likelihood of the BN for data from a single sensor. Now
we utilise the log likelihood of the BN for combined sensors. Let Lut = L(ut|θBu)
be the log likelihood of the Bayesian Network for ut (e.g. as shown in Figure 3), and
PLU(θLU) be the distribution of LUt .

Definition 4. ut is a joint event iff the following H0 is rejected:

H0 : Lut ∼ PLU(θLU)

Definition 5. ut is an explained event iff ut is not a joint event but any one of
{y1

t ,y
2
t , . . . ,y

n
t } is an event.

Definition 6. ut is an implicit event iff ut is a joint event but none of {y1
t ,y

2
t , . . . ,y

n
t }

is an event.

The possibility of explained and implicit events is due to the fact that in general, Lut

and
∑n

i=1 Lyi
t

may differ significantly.

5 Results and Discussion

To learn the Bayesian Network using the phase space representation of Eqn. 2 we used
d = 20 and τ = 1. The process of finding d is described in detail in Appendix A.
Fraser and Swinney suggested to use the mutual information method to find τ [15].
However, we found through experiments, that τ = 1 gives much better inference results.
We trained the networks using the first half of the data as presented in Fig. 1, and run
inference on the second half of the data. Table 1 shows the normalised root mean square
error (NRMSE) of the inference. NRMSE gives a useful scale-independent measure of
error between data sets of different ranges.

Figure 4 illustrates a cyclical baseline for a 7 day period of CH4 sensor data from a
second mine in Australia, contrasting actual and predicted data. A cyclical baseline can
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Table 1. Prediction errors (NRMSE) for the data using the Bayesian Network in Fig. 2

Methane Carbon dioxide Carbon monoxide Oxygen
0.0404 0.0210 0.0468 0.0302

03/25 04/01
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raw data
cyclical baseline

Fig. 4. Cyclical prediction of CH4 for a 7 day period. Data are from a second mine in Australia.

be used to set moving thresholds around it, so that the fluctuating sensor data are within
the thresholds. This in general will reduce false alarms.

Figure 5 shows the results of likelihood computation for the four gases in the data. For
each sub-figure, we plot the actual data (bottom plot, left scale) with the logarithm of the
likelihood (top plot, right scale). The Kolmogorov-Smirnov (KS) hypothesis test [16]
was used to determine the anomalies from the likelihood values. The KS test is used
because it can compare the test sample against any distribution, and it can be seen from
Fig. 5 the log likelihoods do not fit a normal distribution, which is assumed by t-test or
z-test. We applied the KS test using the extreme value distribution, which is a distribution
skewed to the left as fitting for the likelihood results. The parameters of the distribution
are set to be the mean and standard deviation of the likelihood values in each set of results.

It should be pointed out that in reality, there are no anomalies of real concern in
this data set. That is because in an actual mining operation, events that are significant
enough to raise an alarm and evacuate the mine are very rare. In most cases, any signif-
icant change in data would result in an immediate investigation of the situation and so
the potential anomaly event would be avoided in the real data. To demonstrate the al-
gorithm, we ran the KS test using α = 0.012, that is the null hypothesis H0 is rejected
if p < 0.012. Normally, α = 0.01 would be the first choice for anomaly detection
through hypothesis tests [5,17], however with our data set, at α = 0.01 no events were
identified. The value we’ve chosen, α = 0.012 allow us to demonstrate the flexibility
of the method. The resulting events detected by the KS test are plotted as red dots in
Fig. 5 above the likelihood values.
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Fig. 5. Results of anomaly detection for single gases: (a) CO2, (b) CO, (c) O2, and (d) CH4. For
each plot, the bottom curve shows the data collected from the gas sensor, the top curve shows the
log likelihood found given the data, and the dots at the top show the anomalies as determined by
the algorithm.

Figure 5(a) shows there are three distinctive candidate anomaly events in the CO2

data for this time period. Note the second anomaly identified by the system around July
23rd. This corresponds to a sudden jump in gas concentration during an interval where
the gas concentration is decreasing. This highlights the advantage of using a system
that has learnt from past events. This type of anomaly cannot be detected with a flat
baseline benchmark, as at this particular time the gas concentration is lower than the
two nearby peaks. Another interesting feature is that the large drop in gas concentration
around July 21st was not identified as an anomaly, while a threshold system may do
otherwise. Figure 1 showed that a similar event happened two weeks earlier around
July 7th. However, the peak in gas concentration just before this dip was identified as
an anomaly as this was an unusual event in the history of the data set.

Results of anomaly detections in CO, O2 and CH4 in Fig. 5(b)–(d) show similar
anomalous and normal events as those of CO2 results. Of particular interest is the last
anomaly identified in the CO data, since at the scale presented, it is difficult to see
why this particular region was identified as an anomaly with such a low log likelihood.
However, upon closer inspection, we found that this is caused by a difference of 1.7
ppm between two consecutive data points. That is, in 30 seconds, the CO concentration
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Fig. 6. Results of anomaly detection for the joint event of the gases, by using KS test setting (a)
α = 0.012; (b) α ≈ 0.011. The top curves show the log likelihood and the dots above show the
anomalies determined by the algorithm.

jumped by 1.7 ppm, while the average difference is 0.035 ppm. This is roughly a 5000%
increase in growth rate of CO, which is clearly anomalous.

For investigating joint events, we use the network structure shown in Fig. 3 with A
as the data from CO2, B as data from CO and C as the data from O2. Figure 6(a) shows
the inference results for the joint event of CO2-CO-O2 using this network. We used a
history of 5 data points, that is, m = 5 in Fig. 3. We have conducted experiments with
different m values from m = 2 to m = d = 20, finding that the inference results do
not vary much. The anomalies were again identified by employing the KS test using
extreme value distribution with α = 0.012.
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The results show many interesting features, which we list below in order of dates:

1. 14th July: No joint event was detected on this date, while Fig. 5(b) showed one
event identified in the CO data on this date. Thus, while the jump in CO concen-
tration at this time would be enough to trigger an alarm for the single gas system,
it was not significant enough within the context of the combined gases. This is an
example of an “explained” event.

2. 18th July: Three distinctive joint events were identified around this date. However,
Fig. 5 (a)-(c) showed that no anomalies were detected in the CO2 and O2 data, and
only one event was identified in the CO data. The second and third events would
exemplify as “implicit” events.

3. 21st July: Four events closely following one another were identified around this
date. In the individual gases, only one event is identified in each gas.

4. 22nd July: The first event is similar to that of the situation on 18th July, where only
CO data were anomalous. The second event is where CO concentration dropped,
CO2 increased, both causing an anomaly (while at the same time O2 dropped slightly
but not enough to cause an anomaly). This is an example of “explained” event.

5. 24th July: This is an example of the “group” event where all gases had an anomaly
detected and the joint event was observed as well.

We noted previously that there are no anomalies of real concern in this data set. To
demonstrate the flexibility of the method, we set α for the KS test at 0.012, which is
a large value for anomaly detection in this context. In [17] for example, the authors
needed to set α = 0.00001 to decrease the false alarm rate. Figure 6(b) shows the
anomalies found using α ≈ 0.011 in order to demonstrate this value can be adjusted by
operators at a mine site to identify anomalies specific to a mine.

The results shown above are that of “joint temporal anomaly” detection as discussed
in Sec. 3.2, in which where the different gas sensor data are from the same location.
It is more important for a sensor network to detect anomalies on a network level, such
as the problem described in Sec. 3.3. Unfortunately, we do not have data taken at the
neighbouring sensor nodes. However, in practice, the two spatiotemporal problems are
almost identical. That is, the data from CO2 can be from location 1, while data from CO
and O2 are from location 2. Then, the learning, inference and likelihood calculation are
exactly the same. Therefore, the method we presented can be easily ported to groups of
sensor nodes at different locations.

6 Conclusion and Future Work

In this paper, we used a combination of dimensionality analysis and a Bayesian Net-
work to learn models for gas data from underground coal mine’s sensor networks. We
identified and defined new types of events for a sensor network. We showed that the
anomalies in the data can be identified through inference of the Bayesian Network.
Further, we showed that our model is able to identify events in a combination of sensor
data that cannot be identified through simple aggregation. For example, it was demon-
strated that anomalous events in individual gas data might be explained if considered
jointly with the changes in other gases. Vice versa, a network-wide spatiotemporal
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anomaly may be detected even if individual sensor readings were within their thresh-
olds. The application of this approach leads to a reduction in the number of false alarms
without compromising the safety of monitored mines.

Let us briefly outline possible spatiotemporal extensions of the approach. First of all,
a Bayesian Network corresponding to a physical location (for example, shown in Fig. 3
with three subnets A, B, C) can be extended with extra subnets for each new sensor at
the same physical location, e.g. D and E. In this case, dependencies between existing
and new subnets can be revealed by methods such as transfer entropy.

Transfer entropy [18] identifies a possible relationship between time series, say A
and D, denoted TA→D, by estimating the amount of information that a source At pro-
vides about the next state of a destination Dt+1 that was not contained in the k past
states of the destination Dt−k, . . . , Dt. In other words, transfer entropy provides a mea-
sure of the predictive influence of one element over another — hence, it may help in
finding dependencies between sensor data. The active information storage, a measure
of the amount of information in the past of a process that is used in determining its next
state [19] may be used in addition to transfer entropy.

Secondly, a Bayesian Network can include subnets corresponding to different physi-
cal locations, for example, A(1) and B(1) for location 1, and B(2) and C(2) for location
2, where A, B, C are different gases. In such a case, there may be a temporal de-
pendency between A and B relevant to location 1, a temporal dependency between B
and C relevant to location 2, and a spatial dependency between B(1) and B(2). Our
approach easily handles situations like this, provided that spatial and temporal depen-
dencies are identified by methods such as transfer entropy. The challenge, however, is in
preventing long chains of dependencies spanning the whole sensor network. To address
this challenge, an information threshold T̄ can be used to distinguish between differ-
ent transfer entropies. For example, transfer entropy TB(1)→B(2) ≥ T̄ would indicate
a need to include spatial dependency between B(1) and B(2), while TC(2)→C(3) < T̄
would indicate that there is no need to include a dependency between C(2) and C(3) —
thus, breaking a potential chain.

Constructing Bayesian Networks that correspond to dominant information flows in
a sensor network is a subject of future research.
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A Dimensionality Analysis

Grassberger and Procaccia [20] showed that the correlation integral of a time series,
Cd(r) can be estimated as:

Cd(N, r) =
1

(N − 1)N

N∑

j=1

N∑

i=1
i�=j

Φ(r − ‖yi − yj‖). (7)

Here Φ is the Heaviside function (equal to 0 for negative arguments and 1 otherwise).
The vectors yi and yj contain elements of the observed time series {xt} with the dy-
namical information in one-dimensional data converted or reconstructed to spatial in-
formation in the d-dimensional embedding space y [21] as presented in Equation 2. The
norm ‖yi − yj‖ is the distance between the vectors in the d-dimensional space, e.g.,
the maximum norm [22]:

‖yi − yj‖ =
d−1
max
τ=0

(xi+τ − xj+τ ) (8)

Put simply, Cd(r) computes the fraction of pairs of vectors in the d-dimensional
embedding space that are separated by a distance less than or equal to r. In order to
eliminate auto-correlation effects, the vectors in Equation 7 should be chosen to satisfy
|i− j| > L, for some positive L, and at the very least i �= j [23].

The correlation dimension ν is found by:

ν = lim
r→0

lim
N→0

ln Cd(N, r)
ln r

(9)

That is, within certain ranges of r and d, the correlation integral Cd(r) may be propor-
tional to some power of r, Cd(r) ∼ rν [20]. If the dynamical process is unfolded by
choosing a sufficiently large d > dν , a typical slope of the plot ln Cd(r) versus ln r
becomes independent of d. Thus the common numerical practice of finding the embed-
ding dimension d of the data set is to compute the slope from a linear region of the
Cd(N, r) plot. For d ≤ �ν�, where �ν� denotes the largest integer less than or equal to
ν, the slope is equal to d. For d > �ν�, the slop saturates at a constant value which is
usually taken to be the estimated value of ν [24].

The data is from telemetric sensors, the time difference between two data point is 30
seconds, thus between 3rd July 0100 and 25th July 0556, we have 68194 data samples.
To find the embedding dimensions, we divide the data into 1 day periods, this gives
us 2880 data points per period. Kugiumtzis et al.[25] showed that this is a reasonable
number for calculating embedding dimensions. We found the embedding dimension to
be d = 20.
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Abstract. Today it is possible to deploy sensor networks in the real world and
collect large amounts of raw sensory data. However, it remains a major chal-
lenge to make sense of sensor data, i.e., to extract high-level knowledge from the
raw data. In this paper we present a novel in-network knowledge discovery tech-
nique, where high-level information is inferred from raw sensor data directly on
the sensor nodes. In particular, our approach supports the discovery of frequent
distributed event patterns, which characterize the spatial and temporal correla-
tions between events observed by sensor nodes in a confined network neighbor-
hood. One of the key challenges in realizing such a system are the constrained
resources of sensor nodes. To this end, our solution offers a declarative query
language that allows to trade off detail and scope of the sought patterns for re-
source consumption. We implement our proposal on real hardware and evaluate
the trade-off between scope of the query and resource consumption.

1 Introduction

Systems research in sensor networks has reached a point where we can build and deploy
medium-sized sensor networks and collect large amounts of raw or preprocessed sensor
data during months of unattended operation. However, it remains a major challenge to
make sense of the collected data, i.e., to extract the relevant knowledge from the raw
data. Most existing techniques for knowledge discovery from sensor data are centralized
and require the extraction of raw sensor data from the network. However, this can be
very costly due to the large data volume and does not scale to large networks.

In a previous position paper [20] we sketched an in-network knowledge extraction
technique that supports the discovery of frequent distributed event patterns. In this pa-
per, we turn this idea into a complete system, implement it on sensor nodes and study
important performance metrics. The key advantage of our in-network approach is that
the extracted knowledge is directly available to the sensor nodes and can be used to
control the behavior of the sensor nodes (e.g., to prioritize processing of event patterns
that occur infrequently). Also, the extracted knowledge is often much more compact
than raw sensor data and can therefore be more efficiently extracted from the sensor
network than raw sensor data.

Our approach is based on events, that is, each sensor node locally analyzes the out-
put of its sensors to find relevant real world occurrences. In many applications it is
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important to put such events into a spatial and temporal context, i.e., to consider the
correlation of an event observed by a sensor node with events observed by surrounding
sensor nodes in the recent past. In an equipment monitoring application (e.g., [1]), for
example, one is interested in understanding if abnormal vibration signatures are cor-
related with nearby abnormal temperature readings. In a bird monitoring application
(e.g., [21]), one is interested in understanding if certain events in the neighborhood of a
nesting burrow (e.g., noise, motion) are correlated with birds leaving their nests.

Our approach supports this type of application by providing a framework to analyze
the correlation of a certain type of event on a sensor node with context events observed
by nodes in a confined neighborhood of this node in the recent past. For example, we
might find that in 30% of the cases where a bird left its nest, motion has been detected
by at least one sensor located within 10 meters of the nest no more than 3 minutes in
the past. We call such a correlation of events a distributed event pattern. Our technique
discovers such distributed event patterns that occur with a frequency not less than a user-
specified minimum. Besides a minimum frequency, a user has to specify local events of
interest and certain temporal and spatial constraints using a declarative query language.

The discovered set of frequent event patterns can be considered as a compact char-
acterization of the “common behavior” observed by a set of sensor nodes over long
periods of time. Likewise, an event pattern that is not frequent can be considered as
an exceptional occurrence. Frequent event patterns can be used in two primary ways:
Firstly, by a user to learn about the common behavior, or to be notified of exceptional
behavior or of significant changes to the common behavior. Secondly, as the event pat-
terns are computed on the sensor nodes, the latter can use this information to control
or adapt their behavior, for example, to allocate more resources for the processing and
communication of rare event patterns than for more common ones.

In this paper we focus on how frequent event patterns can be efficiently computed
on resource-constrained sensor nodes. Although sensor nodes are becoming more pow-
erful over time, constrained node resources are the primary challenge in designing and
implementing our in-network knowledge extraction technique. Our approach to deal
with this challenge lies in the query language, which allows the user to define the detail
(e.g., granularity of temporal and spatial relationships between local events) and scope
(e.g., minimum pattern frequency, involved local events, maximal temporal or spatial
distance between local events) of sought patterns: the more detailed or the larger the
scope of sought patterns, the more expensive is pattern discovery. Thus, we offer the
user a turning knob to trade off detail and scope for resource consumption.

Note that the above discovery of frequent events patterns is different from detection
of event patterns. For the latter, the user needs to specify in advance and exactly which
event patterns the system should detect. With our approach, the system itself identifies
event patterns that occur frequently given certain constraints on the sought event pat-
terns. As such, our approach can be considered as a relaxation of detection of event
patterns.

We begin with an overview of the system in Sect. 2 and introduce patterns and queries
in Sect. 3, before presenting the core algorithms in Sect. 4. Important implementation
aspects are discussed in Sect. 5. We evaluate our proposal in Sect. 6.
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2 System Overview

The overall architecture of the proposed system is as follows. A user can pose a query
to the system using a declarative language. Such a query defines the local events of
interest and additional constraints on the sought frequent distributed event patterns, see
Sect. 3 for details. A query is compiled into executable code (containing both the query
parameters and the pattern discovery algorithm) at the gateway of the sensor network
and the resulting executable is distributed to each node in the sensor network using a
code distribution protocol.

Using the query parameters, the pattern discovery algorithm executing at a sensor
node continuously collects event notifications from nodes in a confined network neigh-
borhood and computes the set of frequent distributed events patterns as detailed in
Sect. 4. This set can now be used in a number of different ways as discussed in Sect. 1.

Depending on the application scenario, the pattern discovery algorithm may be exe-
cuting at some sensor nodes (e.g., only on nest nodes in the bird monitoring example in
Sect. 1) or on every node of the sensor network.

3 Patterns and Queries

We will illustrate the notion of distributed event patterns using the bird monitoring
example given in Sect. 1. Here, sensor nodes are deployed in and around the nest and
can detect two types of events: motion (of creatures) and a bird leaving its nest. We
are interested in understanding how leave events are correlated with motion events in
the vicinity of the nest. Here, our system might find a frequent distributed event pattern
such as

(motion, <10m, <3min, >=1) : leave [30%]

This pattern has to be read as follows: In 30% of the cases where a bird left its nest,
motion has been detected by at least 1 sensor located within 10 meters of the nest sensor
no more than 2 minutes in the past.

In general, a pattern consists of a local event (right of the pattern’s column) and a
term that summarizes occurrences of context events (left of the pattern’s column) in
a spatial and temporal neighborhood of the above event. The frequency or support of
a pattern equals the number of occurrences of the local event for which the left-hand
term of the pattern also applies, divided by the number of occurrences of the local event
(regardless if the left-hand side of the pattern applies or not). A frequent pattern is a
pattern whose support is greater than or equal to a given minimum support.

In order to discover such patterns, a user has to specify a query. The query defines
events and context events of interest and a number of constraints on the sought pat-
terns. These constraints are needed to cut down the otherwise huge search space for
possible patterns to allow an implementation of the pattern discovery algorithm on
resource-constrained sensor nodes. Fig. 1 shows a possible query for our bird moni-
toring example.

In our system, time is divided into epochs of fixed length. Nodes are synchronized
such that epochs begin and end at approximately the same real-time instants at all nodes
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across the network. Since typical epoch durations are in the order of seconds or tens of
seconds, required synchronization is rather loose and easily achieved with existing syn-
chronization protocols. In our example query, epoch length is 60 seconds as specified
in line 2. Epochs are identified by monotonically increasing integer numbers starting
with zero.

In each epoch, a sensor node
1 // epoch length
2 epoch = 60 // [seconds]
3 // event definitions
4 event motion { max:accel[0] > threshold }
5 event leave { max:pir [0] == 0 &&
6 max:pir [1] == 1}
7 // events and context events
8 levents {leave}
9 cevents {motion}

10 // temporal and spatial scope
11 neighborhood = 1 // [hop]
12 history = 6 // epochs
13 // minimum support and error bound
14 minsupport = 30 // [%]
15 error = 5 // [%]
16 // distance partitions [meters]
17 distance { near =(0,10], far =(10,20] }
18 // time interval partitions [epochs]
19 time { now=0, recent =[1,3], old =[4,6] }
20 // frequency partitions [number]
21 frequency { none=0, some=[1,infty ] }

Fig. 1. An example query

can generate at most one in-
stance of each possible event
type. In our sample query,
two event types motion and
leave are defined in lines 4
to 6, respectively. A motion
event (i.e., ground is vibrat-
ing) is generated in an epoch if
the maximum output value of
the accelerometer sensor in that
epoch is greater than a thresh-
old (i.e., max:accel[0] >
threshold is true, where the
“0” in square brackets refers to
the current epoch). A leave
event is generated in the current
epoch if the passive infrared
sensor (PIR) detected presence of a bird in the previous epoch (i.e., max:pir[1]
== 1 is true, where the “1” in square brackets refers to the previous epoch), but not in
the current epoch (i.e., max:pir[0] == 0 is true). We assume that PIR is a binary
sensor that outputs either zero or one. The set of all events given in a query will be
denoted by E.

The builtin event definition language only supports simple predicates over aggre-
gated sensor values in the current and past epochs. In every epoch, sensor values are
aggregated in predefined ways (e.g., minimum, maximum, average). For more complex
and realistic events, the query language supports external events whose detection is im-
plemented outside of our system (e.g., using more elaborate sensor signal processing
techniques).

Lines 8 and 9 in our sample query define leave as a local event and motion as a
context event, respectively. Note that an arbitrary numbers of local events and context
events can be specified and event types may be declared as both local events and context
events. The set of all context and local events defined in a query will be denoted by Ec

and El, respectively.
Lines 11 and 12 define the spatial and temporal scope that should be considered

for the correlation analysis. The spatial scope, denoted by SSCOPE, is given as a
maximum hop count, such that only correlations between events generated by nodes at
most SSCOPE hops apart are considered. The temporal scope, denoted by TSCOPE
is given as a number of epochs, such that only correlations between events that occurred
within a time window of TSCOPE epochs are considered. In the example, if the node
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in the nest executing the pattern discovery algorithm observes a local event during a
given epoch, only context events generated no more than 6 epochs in the past by nodes
no more than one hop away (including the nest node itself) will be considered for the
correlation analysis.

Recall that our system will only discover patterns that occurred with a given mini-
mum support, which is given in line 14 of the sample query. Further, we allow a certain
error (given in line 15 of the sample query), such that a pattern may be reported as being
frequent by our system if its true support is greater than or equal to minimum support
minus error bound. We will denote minimum support and error bound as MS and MSe,
respectively.

Finally, the query contains a quantization of Euclidean distances between nodes,
time intervals (between event occurrences, where time is measured in epochs), and fre-
quency of event occurrences into a set of discrete partitions. Each partition is an interval
that is either open (parenthesis) or closed (bracket). Note that the set of distance (time,
frequency) partitions does not need to cover the whole domain of distances (time, fre-
quency). By this, a user can constrain the search space for patterns to certain distances
and time intervals between events as well as to certain frequencies of events. We as-
sume the existence of an implicit, possibly non-continuous or empty partition ⊥ that
covers the part of the domain that is not covered by partitions that have been explicitly
defined. The sets of all distance, time, and frequency intervals defined in a query will be
denoted by DP , TP , and FP , respectively. We assume the existence of mapping func-
tions mapd, mapt, and mapf , which map a given distance, time interval, and frequency
to elements of DP ∪ {⊥}, TP ∪ {⊥}, and FP ∪ {⊥}, respectively.

We can now specify the general form of a pattern in terms of the query parameters
as follows: ∧

i=1..N

(ec
i , dpi, tpi, fpi) :

∧

j=1..M

el
j [s] (1)

Here, ec
i ∈ Ec is a context event, dpi ∈ DP is a distance partition, tpi ∈ TP is a

time partition, and fpi ∈ FP is a frequency partition. el
j ∈ El is a local event and s is

the support of the pattern. Note that the above pattern is equivalent to M patterns with
only one local event and identical terms on the left-hand sides, but with possibly differ-
ent support values. The pattern is frequent if s ≥MS. One example pattern would be:

(motion, near, recent, some) AND
(motion, near, now, some) : leave [30%]

Note that while the above discussion is based on the notion of events (defined as a
state change), patterns can also be used to reason about correlations between different
states as well as between states and events. In our bird monitoring example, we could
define an event present as follows: event present { max:pir[0] == 1 }.
This event would fire in every epoch as long as a bird is in the nest, thus implementing
the state “a bird is in the nest”.

4 Discovery of Frequent Patterns

The pattern discovery algorithm executing at a sensor node consists of several com-
ponents which will be discussed in this section. Firstly, a sensor node collects event
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occurrences from a confined network neighborhood and transforms this information
into a pattern for each epoch (Sect. 4.1). These patterns are represented as sets of small
integers, so-called itemsets (Sect. 4.2). From the resulting stream of itemsets, frequent
itemsets are discovered (Sects. 4.3 and 4.4).

4.1 Data Collection and Pattern Generation

The pattern discovery algorithm is executing at one or more sensor nodes (as specified
by the user using mechanisms outside of the scope of this paper) to discover frequent
event patterns. We will denote such sensor nodes as discovery nodes. Sensor nodes that
are within the spatial scope SSCOPE of a discovery node are called client nodes. Note
that a single sensor node may both act as a discovery node and as a client node to one or
more other discovery nodes. Also note that the set of client nodes may change over time
due to fluctuation of wireless links and due to nodes dying or being added. Throughout
this section we consider a single discovery node.

The pattern discovery algorithm executing on the discovery node proceeds as fol-
lows. After each epoch t, the algorithm checks if any local events occurred locally
during t. If so, a pattern is constructed for epoch t. Otherwise, nothing needs to be
done.

To construct the pattern, a request message is sent to all client nodes containing the
identity and location of the discovery node and epoch t. Client nodes reply a message
containing the event occurrences during TSCOPE. Essentially, a reply message from
node i contains values freqi(e, dp, dt) for each context event e, distance partition dp,
and time partition dt that have been defined in the query. This value equals 1 iff event e
occurred on node i in the distance partition dp during time partition dt with respect to
the requesting discovery node and is zero otherwise. The discovery node computes the
sums freq(e, dp, dt) =

∑
i freqi(e, dp, dt) over all client nodes to obtain the follow-

ing pattern for epoch t:
∧

∀e∈Ec,dp∈DP,tp∈TP

(e, dp, tp, mapf(freq(e, dp, tp))) :
∧

El(t) (2)

where El(t) refers to the set of local events that occurred at the discovery node during
epoch t.

If SSCOPE = 1 (i.e., a spatial scope of one hop), then the request is implemented
by a broadcast message from the discovery node to all child nodes and the replies
are implemented by unicast messages from the child nodes to the discovery node. If
SSCOPE > 1, then networking abstractions such as Abstract Regions [23] may be
used which support the above communication pattern also for multi-hop neighborhoods.
Also, in-network aggregation [18] may be used to compute the sums freq(e, dp, tp) in
the network rather than at the discovery node.

4.2 Pattern Representation

Patterns are represented by so-called itemsets, i.e., a set of items. Conversion of pat-
terns to itemsets and vice versa is accomplished as follows. Each term on the left-
hand side of a pattern is mapped to an item by concatenating the event identifier,
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distance partition identifier, time partition identifier, and frequency partition identi-
fier. Each local event is mapped to an item consisting of the respective event identi-
fier. The reserve mapping is analogous. In the remainder of the paper, we will use the
terms pattern and itemset synonymously. For example, the pattern (motion, near,
recent, some) AND (motion, near, now, some) : leavemaps to the item-
set {motion.near.recent.some, motion.near.now.some, leave}. It is easy to see that the
maximum size of an itemset is

|Ec| × |DP | × |TP | × |FP |+ |El| (3)

Hence, itemsets can be implemented as sets of small integers by mapping each pos-
sible item to an integer between 1 and the above maximum size. In our system, itemsets
are implemented as bitvectors.

4.3 Frequent Patterns

The procedure described in Sect. 4.1 produces a stream of patterns (one for each epoch
where a local event occurs), each of which is represented as an itemset as described in
Sect. 4.2. We now need to find itemsets which are frequent with respect to this stream
S of itemsets.

We will constrain our search to frequent itemsets is which contain only one local
event e ∈ El. The support of such an itemset is defined as the number of itemsets in
S of which is is a subset, divided by the number of itemsets in S which contain e as a
local event. An itemset is frequent if its support is greater than or equal to the minimum
support MS given in the query. Note that frequent itemsets are not necessarily elements
of S, but they are subsets of one or more elements of S. Also note that every subset of
a frequent itemset is also frequent and its support is greater than or equal to the support
of the superset.

Several algorithms have been proposed to discover frequent itemsets from a stream
of itemsets (e.g., [7,10,15]). The difficulty of this problem lies in the fact that only one
pass over S is possible as S grows without bounds over time and hence cannot be stored
completely on resource-constrained devices. Much better algorithms exist if multiple
passes over S are possible. Typical single-pass algorithms therefore use a so-called
synopsis data structure, which is essentially a compressed version of the data stream.
Frequent itemsets can then be computed from the synopsis data structure which can
be randomly accessed. However, synopsis data structures used by the above algorithms
are still too large to fit into the constrained memory of a sensor node. Also, as we are
ultimately interested in frequent itemsets (and not in the synopsis), memory is needed
for both the synopsis data structure and frequent itemsets.

We therefore developed an algorithm that directly generates frequent itemsets with-
out using a separate synopsis data structure. The algorithm basically splits S into small
blocks B of fixed size which fit into main memory. An efficient multi-pass algorithm is
used to discover frequent itemsets FIBi in each block Bi. Each itemset is ∈ FIBi is
associated with a counter is.c that holds the number of itemsets in Bi of which is is a
subset. That is, the support of is in B equals is.c × 100%/|B|. The frequent itemsets
in all blocks are then merged in an incremental fashion to obtain the frequent itemsets
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FIS of S. Initially, FIS is empty. To merge FIBi into FIS, we merge each frequent
itemset is ∈ FIBi into FIS by either inserting is into FIS if is �∈ FIS, or by adding
is.c to the counter value of the existing itemset in FIS. The support of an itemset
is ∈ FIS then equals is.c× 100%/|S|.

For the ease of exposition we assume that the query contains only a single local
event, i.e., |El| = 1. If more than one local event has been defined, the data stream will
be split into |El| data streams each of which contains only patterns with a single type
of local event. These streams will then be processed separately as described above, but
the resulting frequent itemsets will all be merged into a single instance of FIS.

Although simple, it is not clear that

0%

MS

100%

N blocks

k bad blocks N - k full blocks

C

Fig. 2. Stream of itemsets that maximizes s − s.
Grey bars indicate the support s in a block on a
scale from 0 to 100%.

the above approach obtains the correct
result, as an itemset that is frequent in
S may not be frequent in some blocks
Bi, such that the support of an itemset
in S is not computed correctly. To fix
this problem, we will use a smaller sup-
port value MS < MS when discover-
ing frequent itemsets in a block. We will
select MS such that we meet the error
bound MSe given in the query. That is,
the support s we compute for an itemset
with respect to S will be not less than
the true support s of that itemset minus
MSe. Due to this, all itemsets in FIS
with s ≥MS−MSe will be considered frequent. This set of itemsets includes all true
frequent itemsets (i.e., for which s ≥ MS) plus additional ones that are actually not
frequent with bounded error s− s ≤MSe.

How do we compute MS given MS and MSe? For this, let us assume we have
chosen some value MS < MS. Let us consider an itemset is which is frequent in the
stream S with support s. Our algorithm will output a value s ≤ s for the frequency
of is. We are interested in computing an upper bound for the error s − s. For this, let
us assume for now that S is split into N equal-sized blocks. We will see later that the
actual length of the stream is irrelevant. Let us further consider a worst-case stream
S that maximizes s − s, i.e., which minimizes s. Note that our algorithm only makes
an error if the support of is in a block is smaller than MS. In this case, is will not
be considered a frequent itemset in this block and its support in this block will not be
considered when computing s. That is, to maximize the error, there should be as many
blocks as possible where the support of is is just below MS. To maximize the number
of such “bad” blocks, is must have a support of 100% in the remaining blocks (“full”
blocks), such that the global support of is for the whole stream is s. It follows that the
(fractional) number k of bad blocks in the worst-case stream must satisfy the constraint
k ×MS + (N − k)× 100% = N × s, which can be solved for k to obtain

k = N
100%− s

100%−MS
(4)
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It follows that the worst-case configuration includes �k	 bad blocks, N − 
k� full
blocks, and optionally one block with support C = (k−�k	)×MS+(
k�−k)×100%
with MS < C < 100% unless k is an integer. If k is an integer then that block doesn’t
exist and C = 0. The worst-case configuration of S is illustrated in Fig. 2. Note that the
order of the blocks in the stream is irrelevant.

We can now express the error s− s as follows:

s− s = s− (N − 
k�)× 100% + C

N
= s− (N − k)× 100% + (k − �k	)×MS

N

≤ s− (N − k)× 100%
N

(5)

The “≤” holds because (k − �k	) ×MS ≥ 0. Inserting Eq. 4 into Eq. 5 and rear-
ranging terms we obtain

s− s ≤ s− (s−MS)
100%

100%−MS
(6)

Note that N has been eliminated, that is, the derived error bound is independent
of the actual length of the stream. It can be easily verified that the right-hand side of
Eq. 6 is monotonically decreasing in s for all MS > 0. That is, we obtain the largest
error s− s for the smallest possible value of s, which is MS. s cannot be smaller than
MS, since itemset is would then not be frequent in contradiction to our assumption.
Replacing s by MS and rearranging terms we obtain

s− s ≤MS − MS −MS

100%−MS
100% (7)

To ensure that s − s ≤ MSe, we require that the right hand side of Eq. 7 equals
MSe. Solving for MS we obtain

MS =
MSe × 100%

100% + MSe −MS
(8)

Using Eq. 8, we can compute the minimum support MS to be used for discovering
frequent itemsets in a block, such that the resulting error s−s is never greater than MSe.

4.4 Closed Patterns

Since there may be a large number of frequent itemsets, we will consider so-called
closed itemsets instead [22,24]. A closed itemset is a frequent itemset which has only
proper supersets with smaller support than itself. In can the shown that the set of closed
itemsets of S contains the same information as the set of frequent itemsets of S. In
practice, the number of closed itemsets can be orders of magnitude smaller than the
number of frequent itemsets. In our algorithm, FIB and FIS will be sets of closed
itemsets.

The algorithm for discovering closed itemsets of S proceeds as follows. It collects
itemsets (generated as described in Sect. 4.1) into a block B until a complete block of
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size BN has been filled. Then, the block is compressed by removing duplicate itemsets
B[i] = B[j] (equality does not consider the counter values B[ ].c): we set B[i].c ←
B[i].c + B[j].c and remove B[j].

We can now implement a function isfreq(is) as depicted in Fig. 3 that computes
the support of an itemset is for B and checks whether or not that itemset is frequent in
B by iterating over the compressed block and computing the number of itemsets in B
of which is is a subset (lines 7 and 8). The function terminates early (lines 9 and 10) if
the number of unprocessed itemsets in B is too small to make is frequent.

To find closed itemsets in block B that

1 bool isfreq ( itemset &is) {
2 int rest←BN ;
3 int minc←BN ×MS/100%
4 is.c← 0;
5 foreach bis ∈ B {
6 rest← rest− bis.c;
7 if (is ⊂ bis)
8 is.c← is.c + bis.c;
9 else if (is.c + rest < minc)

10 return false ;
11 }
12 return true ;
13 }

Fig. 3. Algorithm to compute the support of
itemset is in the current block

contain local event el, function block() is
used as depicted in Fig. 4 (left). After execu-
tion, FIB will hold all closed itemsets. With
the help of traverse() (also given in Fig.
4), block() basically enumerates all possible
itemsets which contain local event el, com-
putes their support and stores closed item-
sets in FIB. However, two properties of
closed itemsets are exploited to prune the
huge search space significantly. Firstly, if
itemset is is not frequent, no superset of is
is frequent. Secondly, if adding an item i to
itemset is does not change the support of is,
then is cannot be a closed itemset. Exploit-
ing these properties for pruning is a standard
technique [5]. Additional techniques exist, but these require significant amounts of
memory [24] or do not have a large impact on runtime according to our experience.

In more detail, block() creates the itemsets is which contain only local event el in
line 27, computes the support of this itemset in line 28, and invokes traverse(is, tail)
in line 29, which recursively enumerates supersets of is by incrementally moving items
from tail to is. Initially, tail contains all possible items except items that represent local
events (line 25). The first loop in traverse() implements pruning by moving all items
from tail to is that do not change the support of s (lines 5 - 8), exploiting the second
of the properties mentioned above. Also, if adding an item from tail to is makes is
infrequent, then that item is removed from tail (line 10). The second loop (line 12)
implements the recursion step for all items remaining in tail. Finally, is is added to
FIB if the latter doesn’t contain an itemset which is a superset of is and has same
support (lines 19-21). If such a superset exists in FIB, then is cannot be a closed
itemset. Note that traverse() implements a depth-first search of the itemset space, that
is, before is is considered for insertion into FIB, all supersets of is are considered first.

Next, function merge() as depicted in Fig. 4 (right) is used to merge the closed
itemsets in FIB for the current block into FIS. The latter set of itemsets holds closed
itemsets of the stream S seen so far.

Basically, merging is implemented by considering each possible intersection of item-
sets from FIS and FIB (is in line 35). If is �∈ FIS, then the support of is with respect
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1 void traverse ( itemset is, tail) {
2 foreach item i ∈ tail {
3 itemset nis← is ∪ {i};
4 if ( isfreq (nis)) {
5 if (nis.c = is.c) {
6 is← nis;
7 tail← tail \ {i};
8 }
9 } else

10 tail← tail \ {i};
11 }
12 foreach item i ∈ tail {
13 itemset nis← is ∪ {i};
14 tail← tail \ {i};
15

16 if ( isfreq (nis))
17 traverse (nis, tail);
18 }
19 if ( � ∃fib ∈ FIB : is ⊂ fib
20 ∧is.c = fib.c)
21 FIB← FIB ∪ {is};
22 }
23

24 void block ( event el) {
25 // � = complete itemset
26 itemset tail← � \ El;
27 FIB←∅;
28 itemset is←{el};
29 isfreq (is);
30 traverse (is, tail);
31 }

32 void merge () {
33 foreach itemset fis ∈ FIS {
34 foreach itemset fib ∈ FIB {
35 itemset is = fis ∩ fib;
36 if (is ∩ El �= ∅) {
37 if (is �∈ FIS) {
38 is.c← fis.c;
39 is.c2← 0;
40 FIS← FIS ∪ {is};
41 }
42 if (FIS[is].c < fis.c)
43 FIS[is].c← fis.c;
44 if (FIS[is].c2 < fib.c)
45 FIS[is].c2← fib.c;
46 } } }
47

48 foreach fib ∈ FIB {
49 if (fib �∈ FIS) {
50 fib.c2← fib.c;
51 fib.c← 0;
52 FIS← FIS ∪ {fib};
53 } else
54 FIS[fib].c2← fib.c;
55 }
56

57 foreach fis ∈ FIS {
58 FIS[fis].c← FIS[fis].c
59 + FIS[fis].c2;
60 FIS[fis].c2← 0;
61 }
62 }

Fig. 4. Algorithm to discover closed itemsets

to FIS equals the support of the superset sis ⊃ is with maximum support among all
supersets sis ∈ FIS. The analog applies for the support of is with respect to FIB. The
support of each intersection is is incrementally computed in lines 37-45 and stored in
the fields is.c (support with respect to FIS) and is.c2 (support with respect to FIB).
An separate loop in lines 48-55 is used to add all itemsets fib ∈ FIB to FIS. To
compute the support values fib.c and fib.c2, we can assume that either fib ∈ FIS, or
fib has support 0 in FIS. If fib has nonzero support in FIS and is not contained in
FIS, then a superset of fib must be contained in FIS. However, in this case fib has
already been added previously as an intersection, because the intersection of fib with a
superset of itself equals fib.

Finally, the new support values of all itemsets in FIS are computed in lines 57-61
by adding the support in FIS (counter c) and the support in FIB (counter c2). All
itemsets is ∈ FIS that satisfy is.c ≥ (MS−MSe)×|S|/100% afterwards are output
as closed itemsets of the stream S seen so far.

4.5 Maximal Patterns

In some cases it is sufficient to know whether or not an itemset is frequent, that is,
the exact support does not matter. In these cases, we can compute the set of maximal
itemsets [11,14] given the set of closed itemsets computed as described in the previous
section. A frequent itemset is is maximal if there are no supersets of is which are
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frequent. Note that an itemset is frequent if and only if it is a subset of a maximal
itemset. Hence, knowing the set of maximal itemsets a user knows all frequent itemsets
and he could send inquiries to the sensor network to learn the frequencies of specific
frequent itemsets.

The number of maximal itemsets is often orders of magnitude smaller than the
number of closed itemsets. Maximal itemsets are typically an extremely compact and
human-readable summary of the “common behavior” observed by a sensor network,
see Sect. 6 for an example.

5 Implementation Aspects

We have developed two implementations of the proposed system. The first implemen-
tation is based on the BTnode [25] sensor node platform and supports a spatial scope of
one hop. We chose the BTnode platform mainly because it provides 256 kB of RAM.
Otherwise, the BTnode is similar to a MICA2: the microcontroller is an Atmel AT Mega
128L and the radio is a ChipCon CC1000.

The second implementation uses pre-recorded logs of sensor values instead of real
sensors. The log contains sensor data also from neighbor nodes, such that communi-
cation between nodes is not required. This implementation runs both on BTnodes and
on PCs and is mainly used for evaluation. Apart from these differences, the two im-
plementations are identical. We will refer to these implementations as DistributedImpl
and SimulatorImpl. Below we discuss some important implementation aspects that are
shared by both programs.

5.1 Data Structures

The performance of our system significantly depends on an efficient implementation of
itemsets and sets of itemsets (i.e., FIB and FIS), as operations on these data structures
are frequently performed in the inner loops of algorithms for discovering and merging
closed itemsets.

Itemsets are represented as bitvectors, which are implemented as an array of bytes.
The size of the array is a compile-time parameter, such that the compiler can apply
loop-unrolling to optimize itemset operations. Most operations on itemsets (such as
union, intersection, subset tests) operate on bytes (i.e., 8 items at a time) rather than
on individual bits and are thus efficient. Note that itemsets in S are densely populated.
Eq. 2 implies that a fraction of about 1/|FP | of the bits are non-zero. That is, bitvectors
are also a space-efficient representation.

Sets of itemsets (i.e., FIB and FIS) only need to support insertion, lookup, deletion
of all elements, but not deletion of individual elements. Since FIS dominates the
memory footprint of our system, it is also important that per-element memory overhead
of these data structures is minimized. For example, many typical data structures (linked
lists, trees) require one or more pointers per element. Since a typical itemset is rather
small in the context of our work (typically < 10 bytes), this would represent a significant
overhead. We therefore decided for hash tables that are implemented with a fixed-size
array, which requires no per-element memory overhead. The hash function for FIS is
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based on the bitvector contents of the itemset, while the hash function for FIB is based
on the support value of the itemset to support search for supersets (line 19 in Fig. 4).

5.2 Query Compilation

The query compiler reads a query as given in Fig. 1 and generates C code. The
output consists of functions to generate events from sensor output according to
the definitions given in the query (i.e., lines 4 to 6 in Fig. 1), mapping functions
mapd(), mapt(), mapf () that map distances, time intervals and event frequencies to
partitions, as well several constant definitions (e.g., for minimum support, temporal
and spatial scopes, epoch length). Among the latter is also the size of the bitvectors of
itemsets, which is computed using Eq. 3.

6 Evaluation

We study code size, runtime, memory footprint, and the output of the pattern discovery
algorithm for a typical query using sensor data logs [26]. In particular, we investigate
the trade-off between the scope of the query (i.e., minimum support and number of local
events) and resource consumption (i.e., runtime and memory footprint).

6.1 Code Size

We report the size of the code and data segments of DistributedImpl in Bytes. The pro-
gram consists of two main parts. The first part includes algorithms and data structures
for discovering frequent itemsets. The second part contains code for reading out sensors
and generating events, the protocol for data collection from a one-hop neighborhood,
as well as time synchronization. The latter simply uses the request messages of the data
collection protocol which are broadcast by the discovery node to synchronize all nodes
in the one-hop neighborhood to the time of the discovery node. Code has been compiled
by avr-gcc 3.4.5 using optimization flags -O3 -funroll-loops.

Function Code Data
pattern discovery 10628 260
data collection, sensors, time sync 5498 707
total 16126 967

6.2 Runtime and Memory Footprint

To evaluate runtime and memory footprint of the pattern discovery algorithm, we use
SimulatorImpl executing on a BTnode, using sensor data collected during one month
from 54 sensor nodes in the Intel Research Lab Berkeley [26]. This dataset was col-
lected with an epoch duration of about 30 seconds (resulting in a total of about 65000
epochs) and contains, among others, temperature and light readings. Using this dataset,
we investigate how two key query parameters, namely minimum support and the num-
ber of local and context events, affect the resource consumption of our system in terms
of runtime and memory footprint.
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Fig. 5 shows the relevant query parameters. We consider two types of events: warm
and light events. Each sensor node with a temperature reading > 23 degrees Celsius
in an epoch emits a warm event in this epoch. Every sensor node with a light reading
> 300 Lux emits a light event. Note that with these event definitions we are actually
investigating correlations between states “it is light” and “it is warm” as discussed in
Sect. 3. Both events are declared as both context and local events, which means that
we are interested in how light on a node correlates with light and temperature in its
neighborhood and how temperature on a node correlated with light and temperature in
its neighborhood.

For our experiment, we se-
1 epoch = 30
2 event warm { temp[0] > 23 }
3 event light { light [0] > 300 }
4 cevents {warm, light}
5 levents {warm, light}
6 history = 10
7 distance { near =(0,5), far =[5,10] }
8 time { now=0, recent =[1,4], old=[5,10] }
9 frequency { none=0, some=[1, infty ] }

Fig. 5. Query used for evaluation

lected the node with ID 1 as
the discovery node executing
the pattern discovery algorithm.
We obtained very similar results
when selecting other nodes as
the discovery node. With the
above settings, mote 1 gener-
ates a warm event in about 23%
of all epochs and a light event in
about 14% of all epochs.

To evaluate runtime and memory footprint of the pattern discovery algorithm, we
compiled a preprocessed version of the sensor data for the first 30254 epochs into the
text segment of the SimulatorImpl executable that is running on a BTnode (more data
didn’t fit into the program flash). We then repeatedly ran the pattern discovery algo-
rithm on this data set with different values for MS and MSe, measuring execution
time, the number of itemsets in FIS, the number of closed itemsets among the item-
sets in FIS, as well as the number of maximal itemsets among the itemsets in FIS.
We also studied how the size of FIS grows over time as more and more blocks are
processed. Fig. 6 shows the results. The runtime is given as the ratio between execu-
tion time of the algorithm and total time of data collection (i.e., 30254 epochs × 30
seconds). In all cases, the resulting CPU duty cycle is very small (subfigure (a)). The
number of itemsets in FIS strongly depends both on minimum support MS and on
error bound MSe (subfigure (b)). Interestingly, the number of closed itemsets in FIS
is also strongly dependent on MS, but less so on MSe (subfigure (c)). This indicates
that reducing MSe results in the generation of additional itemsets that are frequent in
some blocks, but not frequent for the whole data stream. Also note that the number of
closed itemsets does also depend on structure of frequent itemsets, such that increas-
ing the error bound MSe may actually result in more closed itemsets as it is the case
in subfigure (c). Also note that only about half of the itemsets in FIS are actually
frequent. Again, this indicates that there are many itemsets which are frequent in in-
dividual blocks, but not for the whole data stream. The number of maximal itemsets
is at most 10 in all experiments (diagram not shown). That is, a very small number
of maximal itemsets is sufficient to characterize the “common behavior” observed by
the sensor network.
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Fig. 6. Results for pattern discovery: (a) runtime (b) size of FIS (c) closed itemsets in FIS
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Fig. 7. Results for pattern discovery with simplified query: (a) runtime (b) size of FIS (c) closed
itemsets in FIS

The size of an itemset for the experiment query is 8 bytes (4 bytes for the bit vector,
2 bytes each for the counters c and c2). With this, the total RAM required for itemsets
in FIS was at most 30 kB in the course of our experiments.

Fig. 7 shows the same diagrams for a simplified query, which considers only light
as a context event and warm as a local event, but is otherwise identical to the query in
Fig. 5. We observe a qualitatively similar behavior as in Fig. 6, but at much lower abso-
lute values. This illustrates the capability of our system to trade off scope for resource
consumption by constraining the search to fewer local events.

To understand the reason for the above quantitative differences, let us estimate how
the number of discovered itemsets (i.e., patterns) increases when adding additional con-
text or local events to a query. For this, let us define Q(Ec, El) as the number of patterns
discovered for a query with context events Ec and local events El. Since our algorithm
only considers patterns with a single local event, adding a new local event results in an
additive increase of patterns:

Q({e1}, {e2, e3}) = Q({e1}, {e2}) + Q({e1}, {e3}) (9)

However, when adding an additional context event, we obtain a multiplicative in-
crease in patterns in the worst case:

Q({e1, e2}, {e3}) ≤ Q({e1}, {e3})×Q({e2}, {e3}) (10)

The reason for this is that potentially every frequent pattern that contains only e1 as
a context event could be combined with every frequent pattern that contains only e2 as
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a context event to obtain a frequent pattern which contains both e1 and e2 as context
events. However, in practice this number is often significantly smaller as event patterns
with e2 and events patterns with e1 have to occur during the same epochs in the data
stream – otherwise the combined event pattern may not be frequent.

6.3 Communication Overhead

During the experiment duration of 30254 epochs, only in 8000 epochs a local event
occurred on the discovery node (i.e., mote 1). Recall that only when a local event
occurs, then the discovery node requests event occurrences during the last TSCOPE
epochs (i.e., 10 epochs for our experiment) from client nodes. In our experiment,
event occurrences for 12418 epochs have been requested by the discovery node. As
each event is represented by a single bit, every client node would have to transmit
24836 bits (since there are two context events defined in the query) or about 3 kB.
Assuming that every sensor reading requires one byte, the raw sensor data generated
by each node during the experiment would be about 60 kB. Also note that with our
approach communication among nodes is constrained to small neighborhoods, whereas
traditional data gathering applications require to transmit raw sensor readings through
the whole network to the sink.

6.4 Discovered Maximal Patterns

We would expect a strong correlation of the occurrence of light and warm events on
the discovery node with light and warm events on client nodes. The discovered pat-
terns confirm this expectation. For MS = 90%, for example, we obtain two maximal
itemsets that map to the following patterns:

(W,now,far,some) AND (W,recent,*,some) AND
(W,old,*,some) : L [96%]

(W,*,far,some) AND (L,now,far,some) AND
(L,{old,recent},*,some) : L [92%]

Here, “W” and “L” refer to warm and light events as defined above. The notations
“{... , ...}” and “*” mean that the enclosing term is valid for the set of given partition
identifiers or for all possible partition identifiers, respectively.

Packet loss is an issue in most multi-hop data collection sensor networks [9]. In par-
ticular, the dataset used for the experiments also had missing entries. In the context
of our work, packet loss may affect the correctness of discovered frequent patterns. In
particular, three cases can be distinguished. Firstly, a wrong frequency may be reported
for a frequent pattern. Secondly, an infrequent pattern may be reported as being fre-
quent. Thirdly, a frequent pattern may not be reported as being frequent. The latter two
problems apply predominantly to patterns with a frequency close to MS, where “close
to” is a function of the amount of packet loss. Hence, the likelihood of missing fre-
quent patterns due to packet loss can be decreased by reducing MS to a lower value. A
quantitative study of this aspect is the subject of future work.
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7 Related Work

While data stream mining techniques have been used for other purposes in sensor net-
works, we are not aware of similar in-network approaches to discover frequent dis-
tributed event patterns. There are systems that support detection of given distributed
event patterns (e.g., [2,16]), but this is a fundamentally different problem as mentioned
in Sect. 1.

The authors of [17] apply itemset mining to find sensors that show the same value
concurrently for significant portions of time, which can be considered as a very specific
instance of distributed event patterns. However, their approach is centralized. Resource
requirements of their solution are too high to allow an implementation on sensor nodes.

In a more general context, data stream mining techniques have also been applied
to outlier detection [4] or to in-network reduction of sensor data streams [3] such that
certain properties of the original data stream are preserved. However, these are funda-
mentally different problems. Also, while the authors claim that their algorithms can be
implemented on resource-constrained sensor nodes, they resort to simulations.

Another approach that is loosely related to our work is distributed regression [12],
where sensor nodes cooperate locally to fit a global function to their measurements.
Implicitly, such a global function represents the correlation between sensor data of dif-
ferent nodes. However, this work is based on continuous sensor time series and makes
the fundamental assumption that sensor data is strongly correlated both spatially and
temporally. In contrast, our approach is based on discrete events and we make no as-
sumptions about the correlation of sensor data – instead, we want to find out whether
and how events on different sensor nodes are correlated.

There is a large amount of work regarding discovery of frequent itemsets from a data
stream. Many approaches are based on sliding windows (e.g., [6,8]), where frequent
itemsets are discovered from a small, moving fraction of the data stream. However, we
are interested in discovering patterns from the whole data stream. Several proposals ex-
ist for this problem (e.g., [7,10,15,13,19]). However, these approaches use synopsis data
structure in addition to the sought frequent itemsets, resulting in a memory footprint that
led us to develop an approach that fits the specific constraints of sensor nodes. For dis-
covery of closed itemsets from a small block of itemsets, we borrowed techniques from
existing multi-pass algorithms, most notably [5].

8 Conclusions

We presented a novel in-network knowledge discovery technique that supports the dis-
covery of frequent distributed event patterns in sensor networks, where event patterns
characterize the spatial and temporal correlations between events observed by sensor
nodes in a confined network neighborhood. To deal with the constrained resources of
sensor nodes, our system offers a declarative query language to specify the level of de-
tail and the scope of sought patterns, thus offering a turning knob to trade off detail and
scope for resource consumption. We implemented our proposal on the BTnode plat-
form and and showed that the resources of this platform are sufficient to handle typical
problem instances. We also showed that by reducing the scope of the query we could
decrease resource consumption.
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Abstract. We examine the problem of tracking dynamic boundaries oc-
curring in natural phenomena using range sensors. Two main challenges
of the boundary tracking problem are energy-efficient boundary estima-
tions from noisy observations and continuous tracking of the boundary.
We propose a novel approach which uses a regression-based spatial es-
timation technique to determine discrete points on the boundary and
estimates a confidence band around the entire boundary. In addition, a
Kalman Filter-based temporal estimation technique is used to selectively
refresh the estimated boundary to meet the accuracy requirements. Our
algorithm for dynamic boundary tracking (DBTR) combines temporal es-
timation with an aperiodically updated spatial estimation and provides a
low overhead solution to track boundaries without requiring prior knowl-
edge about the dynamics of the boundary. Experimental results demon-
strate the effectiveness of our algorithm and estimated confidence bands
achieve loss of coverage of less than 2 − 5% for a variety of boundaries
with different spatial characteristics.

1 Introduction

Large scale sensor networks are being deployed for real-time monitoring applica-
tions, such as detecting leakage of hazardous material, tracking forest fires and
environmental phenomena. Consider a poisonous gas or plume monitoring ap-
plication [1], tracking a spreading plume requires continuous updates regarding
extent of the plume, its direction and its distance from habitats. The plume can
be considered to be delineated by a boundary such that tracking the movement
of the plume involves estimating a dynamically changing boundary. Strategically
deployed range sensors can coordinate to track boundaries associated with such
natural phenomena.

The solution space for boundary estimation using a sensor network can be ex-
amined along four orthogonal dimensions: (i) the characteristic of sensors - static
[2], [3] or mobile [4]; (ii) sensing capabilities - in-situ sensing or range/remote sens-
ing; (iii) the accuracy of estimation; and (iv) the nature of the boundary - static or
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Fig. 1. Issues related to tracking dynamic boundaries. (Solid boxes indicate problems
addressed in this paper).

dynamic. In this paper, we address the problem of estimating dynamic boundaries
using static sensors with range/remote sensing capabilities. Previous techniques
to estimate boundaries have employed in-situ [2] static or mobile sensors. In appli-
cations like tracking a plume, or predicting trajectory of weather parameters [5],
in-situ sensing is not feasible due to difficulty in remote access or requirement of a
large-scale deployment of sensors. In such situations, techniques based on range or
remote sensing using radar or laser pulses are better suited. The basic difference
between in-situ and range sensing is that, in the former approach a sensormeasures
the value of the field at its current location whereas in the latter approach a sensor
finds approximate distance to a remote location where the field value equals some
specific threshold. Radars used in [5] scan an angular area by swiping upto 360
degrees and gather reflectivity and wind velocity information. Lidars (LIght De-
tection and Ranging) are being used for detecting forest fires [6], [7] in the last few
years. Lidars detect fire by analysing the energy back-scattered from smoke parti-
cles resulting from fire and measure the distance between lidar sensor and a point
on the target(smoke) using simple principle of light. While today lidars are not ca-
pable of wireless communication, we envision in near future low power, inexpensive
sensors with radar/lidar distance sensing and wireless/optical communication ca-
pability will be available. In the rest of the paper, we assume such sensors are used
to detect boundaries occurring in natural phenomena.

Figure 1 is a pictorial representation of the issues involved in tracking a dy-
namic boundary. The two main issues are estimating the boundary and updating
the estimates as the boundary moves. There are two broad techniques to estimate
boundaries, (i) Functional estimation and (ii) Point-wise estimation. Unlike a
functional estimation technique, a point-wise estimation technique assumes that
boundaries consist of discrete points and individual points are estimated with-
out reference to any specific functional form. The effectiveness of this technique
depends on the number and locations of boundary estimation points. Our pro-
posed point-wise technique exploits spatial variations to determine locations of
estimation points and minimizes the number of estimation points.
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Error in range estimation due to inherent inaccuracy of sensors introduces
error in estimating points on the boundary. The challenge is to estimate an
accurate boundary in the presence of noisy observations. In this paper, we use a
kernel smoothing technique that exploits spatial correlation between proximate
sensors so as to reduce the effect of range sensing errors. Further, a centralized
technique for estimating boundaries suffers from high communication overheads.
We explore a decentralized solution that utilizes local computation capability and
performs in-network aggregation at sensors within the network to significantly
reduce the communication overhead for boundary estimation.

In order to track a dynamic boundary, the boundary estimates need to be up-
dated periodically. The ability to use the temporal characteristics of the bound-
ary to update its estimate only when required is another challenge we address
in this paper. The instances when a boundary estimate is updated depend on
the dynamics of the boundary. But, unless there is clairvoyance, optimal choice
of periodicity at each point is not possible in real-time tracking scenarios. Our
approach uses a Kalman Filter based mechanism to predict the movement of the
boundary and updates estimates only when error in the current estimate exceeds
a pre-defined threshold.

We address the problem of accurate dynamic boundary estimation with ob-
servations from range sensors incurring low communication overhead. By way of
contributions,

– We propose DBTR, a novel technique that intelligently combines both spatial
and temporal estimation techniques for accurate dynamic boundary estima-
tion. Our spatial estimation scheme is designed such that it lends itself to
in-network aggregation.

– We demonstrate the effectiveness of DBTR for tracking a dynamic bound-
ary without prior knowledge about the dynamics of the boundary. The per-
formance of DBTR in terms of communication overheads and accuracy is
comparable with the best optimal periodic update scheme.

– We experimentally show that the estimated confidence band around a bound-
ary has loss of coverage (defined in Section 2) less than 2−5% for a spectrum
of boundaries with different spatial characteristics.

2 System Model and Problem Formulation

We assume n sensor nodes distributed randomly over a two dimensional field
measuring a phenomenon (e.g., viscosity or reflectivity). Further, each sensor
has directional range sensing capability to estimate the closest point whose field
value matches the definition of a boundary. An observation (xi, yi) of the ith

sensor represents the location of a boundary point. We assume that sensors can
align their sensing antennas at any angle to locate a point on the boundary.
Further, all sensors are located on one side of the boundary tracking the front of
a phenomenon. Figure 2(a) shows a typical scenario of sensors detecting various
points on the boundary. A sensor at location (xs, ys) positions its beam at an
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(a) Range sensing scenario (b) Estimated confidence band

Fig. 2. Tracking dynamic boundary using range sensing observations

angle θ 1 w.r.t. the y axis and detects a point (xi, yi) on the boundary with error
αi along the sensing direction.

Given n observations {(xi, yi)}ni=1} with errors, we address the problem of
estimating a confidence band of a specific width δ (the distance between the es-
timated boundary and limit of the band) as shown in Figure 2(b). The confidence
band should cover the dynamic boundary at all times and with high probability.
We measure the accuracy of coverage in terms of loss of coverage (LOC), the
probability of the band not covering the actual boundary. If (xi, d(xi)) is a point
on the actual boundary, LOC over a set of n sensors is defined as:

LOC(δ) =
1
n

n∑

i=1

I(|d̂(xi)− d(xi)| > δ) (1)

where I(a) is an indicator function, i.e., I(a) = 1 if a is true, I(a) = 0 otherwise
and d(xi) is the actual distance from estimation point xi and d̂(x) is its estimate.
Minimizing LOC helps maximize accuracy of coverage.

Our model assumes that sensor nodes are equipped with wireless radios. Fur-
ther, these nodes use clustering for aggregation and multi-hop routing techniques
for communication with a base station. Finally, since sensors are energy-limited,
we aim to minimize the communication overhead at nodes to increase lifetime
of sensor networks.

3 DBTR: Dynamic Boundary Tracking Algorithm

A dynamic boundary has mainly two types of variations: spatial and temporal.
Effective tracking of dynamic boundaries requires handling both of these vari-
ations. In this section, we describe DBTR, a point-wise algorithm for dynamic
boundary tracking which combines a spatial estimation technique and a temporal
estimation technique to effectively track a dynamic boundary.
1 In this paper, we assume the antennas are aligned to the y axis i.e., θ = 0. Please

refer to [8] for a discussion on using non-zero sensing angles.
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The first step of DBTR is to estimate the boundary at a location xpj using
a spatial estimation technique. It uses spatial correlations among observations
at a given time by sensors within a small neighborhood of xpj . Cluster heads
perform aggregation operations on sensor observations to estimate a number of
boundary points. Partial information of the boundary from cluster heads is then
sent to the base station where the final estimates are computed. A confidence
band is estimated from multiple boundary points around the entire boundary
using an interpolation scheme.

The second component of DBTR is a temporal estimation technique which
ensures that the estimates are updated whenever due to changes in the boundary
the confidence band does not cover the boundary with a desired accuracy. DBTR
uses a Kalman Filter based technique to predict future boundary locations based
on its model of the boundary dynamics. Once the boundary has moved by more
than a certain threshold, DBTR invokes the spatial estimation technique to
get an accurate estimate of the boundary. As a result, boundary estimates are
updated based on only the local dynamics of the boundary and partial estimates
track changes in sections of the boundary. Both of these lead to reduction in
communication overhead for accurate boundary estimation.

3.1 Regression-Based Spatial Estimation Technique

This section briefly sketches the non-parametric regression method used by the
spatial estimation technique as discussed in [9].

For each sensor observation (xi, yi), the independent variable xi and the de-
pendent variable yi can be modeled as a non-parametric regression relation. For
n observations at the n sensors, the regression relation is stated as,

yi = d(xi) + αi, i = 1, . . . , n (2)

where d is the regression relation between xi and yi, and αi the observation
error. If the error distribution has mean zero, then the expected value of the
distance to the boundary at xi is d(xi). We assume the error distribution to
be normal N(0, σ2), where σ2 is the observation error variance. Note that in
reality, observations from range sensors may not satisfy this assumption but in
experiments with real sensors [9], we verify that the mathematical technique is
applicable even when the assumption does not hold.

For a point on the boundary estimated at location xpj , d(xpj) is the actual
distance of boundary from xpj and d̂(xpj) is the estimated distance. Assuming
a smooth boundary, it is possible to use a local average of the observations near
xpj to construct an estimate for d(xpj). The kernel smoothing [10] technique that
uses observations in the neighborhood of xpj is applied to estimate d̂(xpj). Thus
d̂(xpj) is,

d̂(xpj) =
1
n

n∑

i=1

Wi(xpj)yi (3)

where {Wi(xpj)}ni=1 denotes a sequence of weights defined using a kernel func-
tion. The weight for xpj is non-zero in the neighborhood from (xpj − h) to
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(xpj + h), referred to as the h-neighborhood of xpj . Using the observations in
the h-neighborhood of xpj , the variance of the y-component of the observations
is also estimated. This variance σ̂2(xpj) captures the spatial variations of the
boundary and is an estimate of the actual observation error variance σ2.

σ̂2(xpj) =

(
1
n

n∑

i=1

Wi(xpj)y2
i

)

− d̂2(xpj) (4)

A crucial step in estimating the boundary is choosing the parameter h that
controls how much of the neighborhood around xpj has to be considered. An
iterative plug-in approach (refer [11] for details) is used to estimate the opti-
mal value of h that minimizes the error in estimation. Evaluation of optimal
h involves estimation of the boundary for all x values of the sensors. This is
the reason we recommend a centralized approach for evaluating the optimal h
initially.

Since both expressions, Equation (3) and Equation (4), are summations, they
are amenable to distributed evaluation. All observations contributing to the esti-
mation of d̂(xpj) and σ̂2(xpj) may not be available at a single cluster head. Each
cluster head computes partial expressions for d̂(xpj) and σ̂2(xpj), referred to as
partial aggregates. Whenever possible, partial aggregates from multiple cluster
heads for a specific xpj are combined at intermediate nodes and forwarded to the
base station. The base station collects all partial aggregates and estimates d̂(xpj)
and σ̂2(xpj) for all estimation points xpj . Using the above technique, k distinct
points xpj , j = 1, . . . , k along a boundary are estimated. These k points on the
boundary are used as input to an interpolation scheme that estimates the con-
fidence band at δ distance around the entire boundary. DBTR uses smoothing
spline [10] interpolation to estimate the boundary.

3.2 Model-Based Temporal Estimation Technique

The temporal estimation technique uses a model for the dynamics built using
a time sequence of observations of the distances to the boundary. Typically the
model is dependent on the exact application scenario. But the distinction in
our approach is that here the sensors are not performing in situ measurements.
Specifically, we are interested in modeling the velocity of the boundary which may
be affected by factors such as the prevailing weather conditions, surrounding
topography etc. If the combined effect of these factors can be modeled as a
Gaussian error, and the actual physical process has a linear dynamics, then
traditional tracking models like Kalman Filter can be used. A sensor maintains
a state representation of distances to the boundary that is updated at each time
step. Assuming that the boundary at a discrete point changes in a linear fashion
with time, we use Kalman Filters to predict future boundary locations.

Process state s(xpj , ti) consists of the actual distance d(xpj , ti) to the bound-
ary at xpj and the velocity of the boundary along the y axis at time instant ti.

s(xpj , ti) =
[
d(xpj , ti)
ḋ(xpj , ti)

]
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ḋ(xpj , ti) denotes the change in d(xpj , ti) with respect to time. Irrespective of
the actual movement of the boundary, we are interested in knowing only the
change in d(xpj , ti), i.e., the y component of the velocity of the boundary at xpj .
The principle of remote or range sensing helps in reducing the dimensionality of
the problem because a range sensor can always find the distance to a moving
boundary irrespective of its own location. For simplicity, here we assume that
the boundary moves with a constant mean velocity having a mean zero random
acceleration. Then the state space equation becomes:

s(xpj , ti) = F × s(xpj , ti−1) + G× αp(xpj , ti−1) (5)

where αp(xpj , ti−1) is a Gaussian error with distribution N [0, σ2
p]. The matrix F

relates the state at time ti to the state at time ti−1. The term G× αp(xpj , ti−1)
represents the noise component in the process model and matrices F and G can
be obtained using simple laws of motion:

F =
[
1 ts
0 1

]

and G =

[
t2s
2
ts

]

where ts is the duration between time instant ti and ti−1. In this case, it can
be same as the sampling period of sensors. Assuming that the model accurately
represents the dynamics of the boundary, σ2

p can be taken as a small quantity as
compared to the observation error variance σ2. If α(xpj , ti) is the error in sensor
observations as given in Equation (2), the observation y(ti) at xpj is linearly
related to the state using the observation matrix as:

y(ti) = H × s(xpj , ti) + α(xpj , ti) (6)

where H = [1 0] is the observation matrix. This relationship is helpful to de-
rive the distance d(xpj , ti) information from the current state. The observation
error covariance for the Kalman Filter at estimation point xpj is obtained from
observation error variance σ2(xpj) estimated in Equation (4).

While the boundary can be estimated at any k points using the spatial esti-
mation technique irrespective of whether sensors are located at those points, the
temporal estimation has to be associated with a specific sensor and its obser-
vations. Assuming that the boundary has similar temporal variation within the
h-neighborhood of a location, any sensor having observations within h distance
from xpj can perform the temporal estimation for xpj . Moreover, by applying
distinct Kalman Filter-based estimates for each of the k points, it is possible to
track a boundary that has different sections moving at different velocities.

3.3 DBTR – Combining Spatial and Temporal Estimations

The proposed algorithm combines both spatial estimation as well as Kalman
Filter-based temporal estimation and is illustrated in Figure 3 for a specific
estimation point xpj (xpj is omitted from all terms for clarity). In this block
diagram, two stages of Kalman Filter, state prediction and state update, are
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Fig. 3. Details of combining the Spatial and Temporal Estimation Techniques

shown separately. The prediction stage is used to predict the s−(ti) from the
state s+(ti−1) at previous time instant ti−1. The output from the prediction
stage and the new sensor observation are used to obtain the updated output
s+(ti). Both the prediction and update stages are needed for maintaining the
current distance information. From the state information, the distance to the
boundary as predicted by the Kalman Filter is obtained using H×s+(ti). This is
compared with d̂(tLast), the last updated estimate obtained using the regression
technique. Then, the difference Δd is estimated as:

Δd = H × s+(ti)− d̂(tLast) (7)

If the difference is more than c × δ (where c is a constant and δ is the user
specified width of the confidence band), it implies the boundary at xpj has
moved a distance larger than c × δ. Then the boundary is updated with the
latest observations from all sensors in the h-neighborhood of xpj . The estimate
from the spatial technique is taken as the latest best estimate of the distance
to the boundary at xpj and is used by future temporal estimations for more
accurate prediction. In Figure 3, d̂(ti), the output from spatial estimation is used
to update the distance information in state s+(ti). The intelligent combination of
spatial and temporal estimation techniques not only minimizes wasted boundary
updates but also avoids updates to sections of the boundary that have not moved
significantly.

4 Minimizing Number of Estimation Points

Our technique uses an interpolation scheme over a finite set of boundary points
to estimate a confidence band around the boundary. The interpolation error of
the confidence band reduces as the number of estimation points is increased.
However, this will lead to an increased communication overhead. Our goal is
two fold: (i) to estimate boundary at a minimal number of points, and (ii) to
ensure that the interpolated band as mentioned in Section 2 covers the actual
boundary with high confidence. We use k to denote the number of estimation
points.
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Fig. 4. Confidence band with different number of estimation points

Since the variance σ̂2(x) captures the local spatial changes within the
h-neighborhood, a higher value of the variance indicates a larger spatial vari-
ation of the boundary. We hypothesize that the sections of the boundary with
higher variance contribute primarily to a higher LOC. Thus adding more esti-
mation points in the high variance sections of the boundary is likely to reduce
the LOC.

Our algorithm initially estimates the boundary at a small number of equidis-
tant points. We can set k = �Xrange/2h� such that the boundary is estimated at
every 2h interval, where Xrange is the range of x values over which the bound-
ary is being observed. Next, the sections of the boundary are sorted according
to decreasing order of spatial variation and estimation points are incrementally
added in that order. As more boundary points are estimated, the interpolation
error reduces and LOC, the probability of the band not covering the boundary, is
lower. This iterative process converges when additional boundary points do not
lead to a further reduction in LOC. In absence of knowledge of the actual LOC,
the heuristic uses another metric, prediction error, to decide the termination
criterion for additional estimation points.

The prediction error at a specific location is the absolute difference between
the observation and the estimated boundary at that location. When estimated
over a set of n sensors, the probability of the prediction error being greater than δ
can be used as a representative of LOC. This probability is evaluated as follows:

predition error(δ) =
1
n

n∑

i=1

I(|d̂(xi)− yi| > δ) (8)

Figure 4 illustrates the main aspect of our algorithm. It shows that with 5
points some sections of the boundary is outside the confidence band but with
two additional points in sections of high variance, portions of the boundary
outside the band reduces. We experimentally find that the trend of prediction
error is similar to the LOC of boundaries (see Section 5.4 for details).

5 Experimental Evaluation of DBTR

In this section, we evaluate the performance of DBTR and its sensitivity to
various parameters. The goals of our experimental evaluation are as follows:
(i) to verify the effectiveness of DBTR as a combination of both spatial and
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Fig. 5. Boundaries used to evaluate DBTR

temporal estimation techniques, (ii) to test its sensitivity to parameters such
as specified width of band, number of estimation points and dynamics of the
boundary, and (iii) to verify the effect of the adaptive update policy of DBTR
on communication overheads.

5.1 Experimental Setup

Extensive simulation-based experiments are used to evaluate DBTR. DBTR al-
gorithm is implemented in a MATLAB-based simulator. In addition, the spatial
estimation technique is verified in a TOSSIM [12] based simulator and the re-
sults from these two simulators are similar. Sensors are randomly deployed in
a two-dimensional field with dimension 100 units × 50 units. The communica-
tion range of sensors is 10–12 units. The maximum number of hops from the
base station to sensors in a multi-hop network varies between 7–12 for different
networks. We assume each sensor message contains a single observation and a
single partial aggregate (explained in Section 3.1). Transmission of messages is
assumed to be error-free. The error in sensor observations is assumed to be a
Gaussian distribution N(0, σ2), where σ2 is the error variance.

The performance of DBTR is evaluated with several boundaries generated
using mathematical functions and real data traces from sensors. The boundaries
in Figure 5 having different spatial variations are used as a representative set
to evaluate DBTR. For example, the boundaries in Figure 5(a) and 5(b) are
smooth while that in 5(c) is non-smooth. In addition, we also use a boundary
(Figure 5(d)) obtained based on a real oil-slick2. The boundary Smooth 1 is used
as the default boundary in all experiments unless specified otherwise. Dynamic
boundaries are generated using a constant mean velocity model. Assuming a
continuous boundary consists of several discrete points, at every time instant,
each of the boundary points is displaced by a finite distance based on the model.
We consider two scenarios: (i) all points on the boundary move with the same
velocity and (ii) different points move with different velocities.

5.2 Evaluation Metrics

DBTR is evaluated using two metrics: (i) communication overhead and (ii) ac-
curacy of estimated boundary. The overall communication overhead is the cu-
mulative number of transmissions required for the spatial estimation technique
2 Data for Lake Maracaibo http://modis.marine.usf.edu/index.html
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Fig. 6. Effect of the width of band and the number of estimation points on LOC

and the temporal estimation technique. This reflects the energy expenditure of
our solution. Accuracy of the estimated boundary is measured in terms of LOC
that is defined in Section 2. LOC reported is the mean value over at least 100
sets of observations.

5.3 Comparison of Boundary Estimation Techniques

In this section, we compare the performance of DBTR with both temporal and
spatial estimation techniques. In the temporal only and spatial only scenarios,
the confidence intervals around the boundary are updated at time instants when
the boundary is expected to move by greater than 0.5 × δ, as predicted by the
temporal estimation. Figure 6(a) plots the LOC with varying δ, the width of
the confidence band (LOC for this experiment is the mean over 20 estimated
boundary points). Total duration of the experiment is 100 seconds. The velocity
of boundary is 1 unit/sec and sampling interval for the sensors is 0.5 sec. We
observe that for δ = 1 − 1.2, DBTR performs better than both Temporal and
Spatial techniques by a factor 2.8−2.5. For δ < 1.2, DBTR as well as spatial es-
timation provide better performance as compared to temporal estimation. This
is because the error in sensor observations is reduced due to aggregation from
multiple sensors. For δ > 1.2, the temporal technique provides better perfor-
mance than the spatial technique. This is due to the fact that the accuracy of
the temporal estimation improves if the boundary changes by 0.5 × δ less fre-
quently. However, we observe that DBTR performs best for all values of δ. This
is attributed to the feedback from the spatial estimation to the temporal estima-
tion, due to which DBTR predicts the future boundary changes most accurately.
This experiment demonstrates the effectiveness of combining the temporal and
spatial estimation techniques in DBTR.

5.4 Impact of Estimation Points on Prediction Error and LOC

This experiment verifies correctness of the heuristic-based algorithm used to select
k, the number of estimation points. The goal is to ensure that the prediction error
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Fig. 7. Sensitivity of communication overhead to DBTR parameters

can accurately capture the trend in LOC. Figure 6(b) plots the prediction error
function and the LOC for boundaries Smooth 1 and Smooth 2. We observe that
with increase in k, the prediction error function (see Section 4) and LOC both re-
duce and finally stabilize for k > 14. Initially LOC decreases much more sharply
(85%) as compared to prediction error (29%), but for k > 14, both the prediction
error and LOC reduces by a small amount (0.5 − 0.2). The value of k for which
prediction error stabilizes can be used as a good choice for the number of estima-
tion points. Since prediction error stabilizes earlier, a few more boundary points
can be further added in order to achieve the minimized LOC. This experiment
shows that the prediction error function represents LOC with high fidelity.

5.5 Communication Overhead of DBTR

The communication overhead of DBTR has two components: the number of
messages required by the spatial estimation technique and the number of updates
as indicated by the temporal estimation technique.

Overhead due to Spatial Estimation Technique. The result of this exper-
iment is included from [9] to show the communication overhead of the spatial
estimation component of DBTR. This overhead is compared with a solution
where all the observations are sent to a central server for the estimation of the
confidence band. Figure 7(a) plots the total number of messages for different sizes
of the network. For 20 estimation points, the communication overhead for DBTR
is lower than that of the centralized solution by a factor 3.3− 2.6. The commu-
nication overhead for the spatial estimation depends on the h-neighborhood and
with increase in network size, the value of h reduces. Thus, the distributed solu-
tion of DBTR is easily scalable to larger networks. However, the communication
overhead of DBTR increases in proportion with the number of estimation points
which justifies reducing the number of estimation points to minimize communi-
cation overheads.

Overhead Due to Boundary Dynamics. In this experiment, we observe
how the communication overhead of DBTR varies with different velocities of the
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boundary. The communication overhead depends on how frequently the estima-
tion is updated. The number of updates depend mainly on two factors: (i) the
width of the estimated band and (ii) velocity of the boundary along the y axis.
Figure 7(b) depicts the number of updates required for two different velocities
in an interval of 100 seconds as δ is varied. All the boundary points are assumed
to be changing at the same velocity. The boundary is updated only when it is
expected to have changed by more than 0.5× δ. We observe that the number of
updates reduce by a factor of half as δ doubles, allowing for the boundary to be
updated less frequently. As expected, a faster moving boundary requires more
updates and as velocity changes from 0.5 to 1 unit/s, the number of updates
increase by a factor more than 1.35. The experiment is also conducted with dif-
ferent portions of the boundary changing at different velocities and it shows that
DBTR is able to capture boundary dynamics for adaptive updates.

5.6 Effect of Update Policies on Accuracy
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The goal of this experiment is to compare
the adaptive estimation technique of DBTR
with a technique that periodically estimates
the boundary. In such a scheme, the esti-
mation based on regression is performed pe-
riodically rather than being based on the
continuously predicted changes in the bound-
ary (DBTR). The experiment is conducted for
three scenarios– boundaries changing at veloc-
ities of 0.8, 1.0, 1.2 units/s. Figure 8(b) plots
LOC versus periodicity of boundary updates
for schemes with different periods. The period
of updates is stated in terms of the number of
sensor sampling intervals. We observe that for
a certain velocity, there is an optimal period

that should be used to obtain a LOC of 1% or less. For example, when velocity=
1.0 unit/s, LOC is 1.06% for a period of 4 sampling intervals. For each of the
boundaries, the performance of DBTR is also shown. The period of DBTR is
obtained by dividing the total duration with the number of times DBTR up-
dates the boundary. The LOC is different in all three scenarios. For velocity
of 1.0 unit/s, on an average DBTR updates the boundary at every 3.42 sam-
pling intervals and achieves LOC of 0.86%. We note that DBTR may require
lower communication overhead as it uses aperiodic updates without sacrificing
accuracy obtained in a periodic scheme. Thus, the performance of DBTR is
comparable with a periodic update scheme while not requiring prior knowledge
about the dynamics of the boundary.

5.7 Summary of Results

Experimental evaluation of DBTR reveals the following important results: (i)
DBTR consistently estimates boundaries more accurately than the Spatial-only
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and the Temporal-only estimation techniques. (ii) The distributed in-network es-
timation strategy significantly reduces the communication overhead as compared
to the centralized solution by a factor about 2.6 to 3.3. (iii) The accuracy and
communication overhead of DBTR are similar to the optimal periodic update
scheme. (iv) The heuristic for simultaneously minimizing LOC and the number
estimation points achieves a LOC of less than 2% for smooth boundaries.

Additional results from a more comprehensive experimental evaluation re-
ported in [8] are: (i) A good choice of threshold for amount of change in the
boundary (in Figure 3) is 0.5 × δ. It implies that for low LOC, the boundary
should be updated before the temporal estimation technique indicates that the
boundary is changed by 0.5×δ. (ii) While non-smooth boundaries require higher
number of estimation points, the efficacy of DBTR is demonstrated for smooth
as well as non-smooth boundaries. (iii) Initial evaluation suggests that DBTR is
applicable for non-zero sensing angles provided sensors detect an adequate set
of points on the boundary.

6 Related Work

DBTR uses the spatial-temporal correlations among sensor readings to estimate
the boundary efficiently. An alternative to non-parametric regression based tech-
nique is to use parametric regression as in [13] where sensor network data is
modeled in terms of basis functions. The non-parametric approach reduces the
effect of observation errors by aggregation. In the parametric case, the observa-
tions are taken to be the actual values of the sensed quantity and the coefficients
of basis functions are computed to obtain an estimation with minimized mean
square error (MSE). The system BBQ [14] exploits correlation among sensor at-
tributes and a probabilistic model to answer queries. While our approach works
for a boundary of arbitrary shape, the multivariate gaussian distribution used
by BBQ may not be applicable.

An alternative to the model-based approach using Kalman Filter is simple
state space models [15]. If the individual boundary points follow non-linear dy-
namics or have non-Gaussian errors more advanced techniques like particle fil-
ter [16] can be used. Switching Kalman Filters can be used to monitor boundaries
with non-stationary dynamics (e.g., a storm) as discussed in [17].

There is a large amount of work dealing with contour extraction [18] using
sensor networks. While a boundary detection technique is useful in detecting the
presence of a phenomenon (either plume or fire), a contour extraction technique
can provide more detailed information about the phenomenon. DBTR is most
similar to the boundary estimation technique proposed by Nowak et al. [2]. The
main difference is that DBTR tracks a dynamic boundary without incurring sig-
nificant communication overhead, but there is no easy way for extending their
technique to track dynamics apart from periodically recomputing the boundary.
While DBTR provides a non-parametric estimation of the boundary, their tech-
nique provides a staircase-like approximation of the boundary. DBTR’s adaptive
selection of estimation points is also similar to the adaptive sampling method [19]
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which consists of two phases- a preview phase of collecting observations followed
by a refinement phase in regions containing the boundary. DBTR attempts to
minimize the locations for estimation points whereas their approach achieves a
minimax bound on MSE.

DBTR makes use of sensors with range/remote capabilities for detecting a
moving boundary. Another application using remote sensing is CASA [5], where
a network of radars is used for meteorological monitoring to detect tornadoes.

7 Conclusion

We have developed a technique for dynamic boundary estimation in sensor net-
works where observations from range sensors are aggregated and a confidence
band around the true boundary is obtained from estimates at a few selected
locations. In addition, the temporal correlation among observations at certain
points is utilized to develop a Kalman Filter based technique for estimating
the changes in the boundary. This strategy updates the estimates before the
boundary is expected to move out of the confidence band. Thus, our solution
provides confidence band with high accuracy around the actual boundary at all
times with low communication overheads that a suitable periodic scheme cannot
achieve without prior knowledge about the dynamics of the boundary.

As part of future work, we propose to study the parametric regression tech-
nique for estimating boundaries in sensor networks. We propose to explore the
impact of non-zero sensing angles on the accuracy of estimation. We also plan to
extend our strategy to include in-situ measurements for detecting a boundary.
Another way to extend our work is to consider more complex models for the
dynamics of the boundary.

Acknowledgment. We would like to thank Parmesh Ramanathan of University
of Wisconsin, Madison for his valuable suggestions.

References

[1] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Elsevier Journal of Computer Networks 38, 393–422 (2002)

[2] Nowak, R., Mitra, U.: Boundary Estimation in Sensor Networks: Theory and
Methods. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, Springer,
Heidelberg (2003)

[3] Ding, M., Chen, D., Xing, K., Cheng, X.: Localized Fault-Tolerant Event Bound-
ary Detection in Sensor Networks. IEEE INFOCOM 2, 902–913 (2005)

[4] Hsieh, C.H., Jin, Z., et al.: Experimental validation of an algorithm for cooperative
boundary tracking. In: Proc. of American Control Conference (2005)

[5] Zink, M., Westbook, D., Abdallah, S., Horling, B.: Meteorological command and
control: An end-to-end architecture for a hazardous weather detection sensor net-
work. In: EESR. Workshop on End-to-End, Sense-and-Respond Systems, Appli-
cations, and Services (2005)



140 S. Duttagupta et al.

[6] Utkin, A.B., Lavrov, A.V., Costa, L., Simoes, F., Vilar, R.: Detection of Small
Forest Fires by Lidar. Applied Physics B 74, 77–83 (2002)

[7] Lavrov, A., Vilar, R.: Application of lidar at 1.54 μm for forest fire detection. In:
Remote sensing for earth science, ocean, and sea ice applications, vol. 3868, pp.
473–477 (1999)

[8] Duttagupta, S., Ramamritham, K., Kulkarni, P.: Tracking dynamic boundaries
using sensor networks. In: IIT Bombay, CSE department Technical Report TR-
CSE-2007-7 (2007)

[9] Duttagupta, S., Ramamritham, K., Ramanathan, P.: Distributed Boundary Es-
timation using Sensor Networks. In: The 3rd IEEE Conf. on Mobile Ad-hoc and
Sensor Systems (2006)
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Abstract. In Wireless Sensor Networks large number of nodes and lim-
ited energy available per node calls for designing efficient transmission
protocols. Cooperative transmission is one of the protocols which helps
wireless nodes to achieve spatial diversity, which translates into reduc-
tion in transmission power or increase in coverage area. Cooperative pro-
tocol can be realized with or without (called conventional afterward)
network coding; and the network-coding-based (respectively the conven-
tional) protocol can be operated in either static or adaptive manner. For
an efficient operation of cooperative protocols, good quality inter-source
channels are required, which in turn depend on relative location of nodes
within a network. In this work, a three-node cooperative network consist-
ing of source, relay, and destination nodes is considered. At high signal-
to-noise ratio values, we first approximate the outage probability result
when the network-coding-based adaptive protocol is implemented. Then,
based on the approximate probability result, a diversity-multiplexing
tradeoff is studied; the result shows that this protocol performs simi-
lar to an amplify-and-forward protocol. Next, for the various protocols,
the coverage area and relative location of the relay that minimizes the
outage are studied; for that the exact outage probability results are used.
Over wider geographic area, network-coding-based static and adaptive
protocols perform better than their conventional counterparts, and this
happens when the relaying node is positioned closer to the destination
than the source. The conventional protocols perform better when the
relay is positioned closer to the source. In Wireless Sensor Networks,
assuming that relay nodes which are closer to both the source and desti-
nation exist, these results help as a guide in selecting with which node to
cooperate (relay selection) when one cooperative scheme is implemented.

1 Introduction

Wireless Sensor Networks (WSNs) consist of large number of spatially dis-
tributed and low-power nodes, which are envisioned for a wide range of appli-
cations [1]. In WSN, wireless channel impairments added with limited available
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energy demands designing efficient transmission schemes and protocols [25]. Co-
operation among nodes can be exploited in WSN so as to save transmission en-
ergy, increasing network life, or extend nodes’ coverage area. Various cooperative
transmission protocols have been proposed and studied in the literature, mainly
taking outage probability, channel capacity, diversity-multiplexing tradeoff, and
coverage area as performance measures [7, 8, 10, 19].

In a three-nodes cooperative transmission, two nodes which we call as source
and relay and both with messages of their own, assist by relaying each other’s
message cyclically while transmitting to a common destination.1 In cooperative
protocol the total transmission consists of two phases: in a first phase both the
source and relay nodes broadcast their messages (using orthogonal channels) and
simultaneously receive each other’s transmission. In a second phase, both nodes
forward the messages received in the first phase.

Amplify-and-forward and decode-and-forward are two of the widely used re-
laying strategies. In the amplify-and-forward, the relay receives a noisy version of
the source’s message, amplifies and re-transmits it to the destination [10]. In the
decode-and-forward scheme, the relay decodes the source’s message, re-encodes
and relays it to the destination; the relayed message could be in the form of
incremental redundancy (transmitting additional information), repetition cod-
ing (repeating the same message), or network coding (mixing the source’s and
relay’s messages using a modulo-2 summation). Based on their level of adaptive-
ness to decoding error, the decode-and-forward protocols are further categorized
either as static or adaptive [19]. In the static protocol, the relay always forwards
the source’s message without checking errors; in the adaptive protocol, the re-
lay decides whether to forward or not, depending on its success of decoding the
source’s message. If decoding fails, then the relay has the options to switch to the
amplify-and-forward, transmit its own message, or even to remain silent [7]. In
this work, we consider protocols based on network coding and repetition coding
(called conventional protocol hereafter); both protocols are further subdivided
into static and adaptive, therefore there are four protocols under consideration.

Diversity-multiplexing tradeoff is one performance measure used to study
multiple-input, multiple-output (MIMO) and cooperative systems. It illustrates
the relationship between reliability of data transmission in terms of diversity
gain, and spectral efficiency in terms of multiplexing gain [10, 24]. In this work,
the diversity-multiplexing tradeoff of the adaptive network-coding-based proto-
col is derived; this is done by approximating the exact outage probability result
in [18] at high signal-to-noise ratio (SNR) values. From the result, this network-
coding-based and the amplify-and-forward protocols perform the same [10].

Cooperation between the source and relay nodes requires the presence of good
quality source-relay (or inter-user) channels, which in tern depend on relative
location of the nodes [19]. The conventional and network-coding-based protocols
perform differently when the source and relay nodes are closer to each other

1 In this definition of cooperative transmission, the terms ‘source’ and ‘relay’ are
loosely used as the two nodes alternate each other in the relaying role. Our sub-
sequent discussions are based on transmission of the source’s message only.
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than the destination, and vice versa. Hence, relative location of nodes and cov-
erage area extension are other performance measures, which are also used in
this work to compare the protocols under consideration. Similar comparisons
have been made in previous literature. The decode-and-forward and a compress-
and-forward protocols were compared in [15]. The results show that the former
scheme works better when the relay is closer to the source, and the later is
preferred when the relay is closer to the destination. Similarly, in [16] proto-
cols were compared with additive white Gaussian noise (AWGN) channel and
various channel state information assumptions. In [12], coded cooperation and
point-to-point transmission were compared using user cooperation gain, which
is the ratio of frame error rates of the two schemes. Range of channel conditions
for which the coded cooperation performs better than the point-to-point trans-
mission were found. Similar approaches were used in [5] for a Gaussian relay
channel, and in [23] for a cooperative scheme with HARQ.

In this work, we study the coverage area and location of the relay where
outage is minimized; the exact outage probability results in [19] are used. In
relation to these coverage and relay deployment issues, we address the following
questions. For the given network topology (i.e. location of the source, relay, and
destination nodes), which cooperative protocol to use? In which geographic re-
gion is the network-coding-based protocol performs better than the conventional
one? Within the network-coding-based (respectively the conventional) protocol,
how do the static and adaptive protocols perform? The following approach is
used: the channel coefficient is split into pathloss and fading coefficients. Then
in all channels, the fading coefficient is assumed to have unity mean power, but
the pathloss varies as it depends on nodes location. The source-destination sep-
aration and the transmit power at both the source and relay nodes are fixed.
The relay’s location is varied, such that the source-relay and relay-destination
links quality vary because of the pathloss. When the relay is deployed closer to
the source a transmitter cluster is formed, and when deployed closer to the
destination a receiver cluster is formed. Let us define the following two terms.

Definition 1. Coverage area: is defined as the region or area in which the relay
can be placed, such that for a given resources allocation (i.e transmission power,
bandwidth, and end-to-end spectral efficiency) the outage probability (or ratio of
outage probabilities) is less than or equal to some threshold value.

Definition 2. Intra-cooperation gain: is the ratio of outage probabilities of two
protocols; a gain of unity demarcates the region into two, where one protocol
performs better than the other.

The contributions of this work are summarized as follow. By approximating
the outage probability result of the network-coding-based protocol at high SNR
values, we study the diversity-multiplexing tradeoff. The study is then extend
into the coverage area and relay deployment issues. Also, by comparing the
network coding protocol and point-to-point transmission, we show that an energy
saving can be achieved by using the network coding; this shows that sensor
networks can benefit from the network coding.
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This is how the remainder of the paper is organized. Section 2 briefly describes
the system and channel models used in this work; the outage analysis at high
SNR values of the adaptive protocol with network coding is given in Sect. 3. In
Sect. 4 results are presented, and conclusions are drawn in Sect. 5.

2 System Description

2.1 System Model

Consider the network model shown in Fig. 1, where ‘s’,‘r’, and ‘d’ are the source,
relay, and destination nodes, respectively. The source’s and relay’s messages are
expressed as Xs and Xr, respectively. The network coding is implemented by
the modulo-2 summation of Xs and Xr as in Xs ⊕Xr. The motivation behind
the network coding is Xs can be recovered from either the source’s direct trans-
mission in the first phase or by further combining the relay’s and network-coded
message, i.e. Xr ⊕ (Xs ⊕Xr) = Xs, provided both are correctly received.

s

d

r

rs XX ⊕ 

Xs

Xs

Fig. 1. Network-coding-based cooperative transmission scheme, where Xs, Xr, and
Xs ⊕ Xr are the source’s, relay’s, and network-coded messages, respectively. In the
conventional cooperation scheme, the transmission by the relay should have been Xs.
Solid (dashed) lines show the transmission by the source (relay).

The information rate and energy per symbol in the cooperative and point-
to-point transmission are related as follows. If R (bits/s/Hz) is the rate in the
point-to-point transmission, then the rate in each phase of the conventional pro-
tocols is 2R. This is also true in the network-coding-based protocols, provided
the network coding is done before the channel coding [19]. The total energy can
also be shared in the two phases. Let Es be the radiated energy per symbol in
the point-to-point transmission. In the cooperative protocols, if β is the fraction
of the total energy allocated in the first phase, then 2βEs and 2(1 − β)Es are
the energy per symbol in phases one and two, respectively. These rate and en-
ergy per symbol relationships of the point-to-point transmission and cooperative
protocols are used in the next section to compute outage probability.

2.2 Channel Model and Outage Probability

The channels used in the system are assumed to be spatially independent, flat-
fading, with additive white Gaussian noise (AWGN) and modeled as

yi,j = hi,jxi,j + ni,j (1)
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where xi,j and yi,j are the inputs and outputs of the channels, respectively.
The sources i ∈ {s, r}; destinations j ∈ {s, r, d} with i �= j; hi,j = pi,jqi,j is
the channel coefficient containing the fading term pi,j , which is random, and the
distance dependent pathloss coefficient qi,j ; ni,j is the AWGN component which

is distributed as N(0, N0). The pathloss is modeled as q2
i,j =

(
do

di,j

)α

, where
2 < α < 5 is the pathloss exponent, di,j is the distance between nodes i and
j, and do is the reference distance. In this work, |hi,j | is assumed to be block

fading and Rayleigh distributed such that |hi,j |2 is exponentially distributed.
For a unity mean power pi,j , the average power of hi,j is dictated by the average
power of qi,j , which in turn depends on node’s location in the network.

Consider the point-to-point transmission of messages from the source to the
destination. When the instantaneous SNR of the channel given as γs,d = |hs,d|2 Pt

No

is less than some threshold value, where Pt

No
is the transmit SNR, then the

destination wrongly decodes messages and an outage is said to occur. For |hs,d|2
exponentially distributed, the outage probability Pout,s is given as [8]

Pout,s = P
(
γs,d < 2R − 1

)
= 1− exp

(

−2R − 1
Γs,d

)

(2)

where Γs,d is the average SNR of the channel. In cooperative scheme, R will
be replaced by 2R and Γs,d will be replaced by either 2βΓs,d or 2(1 − β)Γs,d

depending on the transmission phase.

2.3 Diversity and Multiplexing Gains

In the point-to-point transmission with the source’s rate R (bits/second/Hz),
the multiplexing gain m is defined as [24]

m := lim
SNR→∞

R(SNR)
log2(SNR)

(3)

and the diversity gain d as

d := − lim
SNR→∞

log2 Pout,s(SNR)
log2(SNR)

. (4)

The diversity-multiplexing tradeoff illuminates the relationship between the re-
liability of data transmissions in terms of the diversity gain and the spectral
efficiency in terms of the multiplexing gain. This relationship can be character-
ized by mapping d as a function of m. As will be explained in Section 3, at large
values of Γs,d if we approximate (2) by Pout,s ≈ 2R

Γs,d
, then we get

d := − lim
SNR→∞

log2 Pout,s(SNR)
log2(SNR)

≈ 1−m. (5)
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3 Performance Analysis of Network-Coding-Based
Protocol

In this section, the network-coding-based adaptive protocol’s outage probability
result is approximated at high SNR values. In this protocol, the adaptiveness
is implemented by letting the source and relay remain silent if they fail to de-
code each other’s transmission. The diversity-multiplexing tradeoff, based on the
approximate outage probability result, is computed next. For the analysis, the
same four-cases classification as in [18] is used.

Table 1. The four cases and the corresponding transmissions

Case s → r r→s s → d r → d
Phase 1 Phase 2 Phase 1 Phase 2

1 works works Xs Xs ⊕ Xr Xr Xs ⊕ Xr

2 fails fails Xs Xr

3 works fails Xs Xr Xs ⊕ Xr

4 fails works Xs Xs ⊕ Xr Xr

As shown in (2), the outage probability is the function of the rate and average
SNR. In the cooperative transmission, there are four spatially-separated channels
(two uplink and two inter-source channels), which makes the outage computation
involved. So, let us assume symmetrical inter-user (i.e. Γs,r = Γr,s) and identical
uplink channels (i.e. Γs,d = Γr,d).2 Hence, in the following we use only Γs,r

and Γs,d. The transmitted messages in the two phases and in the four cases are
summarized in Table 1.

Case 1: Both the source and relay succeed in correctly decoding each other’s
message. For this to happen, the source-relay channel instantaneous SNR given
as γs,r, should be greater than a threshold value. This success probability is
obtained by subtracting the outage probability from unity; the outage probability
is computed from (2) by replacing Γs,d and R by 2βΓs,r and 2R, respectively.
At high Γs,r values this success probability is given as

P
{
2βγs,r > 22R − 1

}
= P {βγs,r > g(R)}

= exp
(

− g(R)
βΓs,r

)

≈ 1− g(R)
βΓs,r

(6)

where g(R) = 1
2

(
22R − 1

)
is the threshold value; the equation next to the in-

equality in (6) results by using the approximation exp−x ≈ 1−x for small x. As
mentioned in Sect. 2.1, at the destination Xs can be recovered from either the
source’s first-phase transmission or by combining Xr and Xs ⊕Xr. The outage
probabilities of the messages Xs and Xr are equal and given as

P {βγs,d < g(R)} ≈ g(R)
βΓs,d

. (7)

2 Note that the instantaneous SNRs of the channels are not necessarily the same.
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Referring Table 1, at the destination the message Xs⊕Xr is received twice from
the source and relay; if Maximum-Ratio combining is used to combine these two
messages, the outage probability of Xs ⊕ Xr is given by the second equation
in [18, equation (30)] as

P {(1 − β)(γs,d + γr,d) < g(R)} = 1−
(

1 +
1

Γs,d

g(R)
(1 − β)

)

exp
(

− 1
Γs,d

g(R)
(1− β)

)

≈
(

g(R)
(1− β)Γs,d

)2

. (8)

The source’s message outage occurs, for the given inter-source channels condi-
tion, when Xs and at least one of Xr and Xs ⊕Xr are in outage. Using logical
operations, the outage event is expressed as Xs ∧ [Xr ∨Xs ⊕Xr], where the bar
(indicates the outage), ∧, and ∨ are logical ‘NOT’, ‘AND’, and ‘OR’ operations,
respectively. The probability that this event occurs is then

P (Xs)[P (Xr) + P (Xs ⊕Xr)(1 − P (Xr))]. (9)

The probabilities P (Xs) and P (Xr) are given by (7) and P (Xs ⊕Xr) by (8).
The overall outage probability under case one, denoted as Pout,s1, is the product
of outage probability (9) and the probability that the source and relay decode
each other correctly (or the probability that case one occurs) given by (6).

Pout,s1 ≈
(

1− g(R)
βΓs,r

)2
g(R)
βΓs,d

[
g(R)
βΓs,d

+
(

g(R)
(1− β)Γs,d

)2 (

1− g(R)
βΓs,d

)]

=
(

1− g(R)
βΓs,r

)2 (
g(R)
βΓs,d

)2 [

1 +
β

(1− β)2
g(R)
Γs,d

(

1− g(R)
βΓs,d

)]

. (10)

The terms
[
1− g(R)

βΓs,r

]
and

[
1− g(R)

βΓs,d

]
approach 1 for high Γs,r and Γs,d values,

and (10) reduces to

Pout,s1 ≈
(

g(R)
βΓs,d

)2 [

1 +
β

(1− β)2
g(R)
Γs,d

]

≈
(

g(R)
βΓs,d

)2

. (11)

When the source-relay channels are reliable, the outage-probability decay is pro-
portional to the square of Γs,d; hence a diversity order of two is achievable with
network-coding-based cooperative scheme.

Case 2: Neither the source nor the relay decodes each other’s message correctly.
If nodes remain silent during decoding failure, then the outage probability is
determined from the first-phase transmission only. The outage probability Pout,s2

is obtained from (6) and (7) as

Pout,s2 ≈
(

g(R)
βΓs,r

)2
g(R)
βΓs,d

. (12)
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Case 3: The relay correctly decodes the source’s message, but the source cannot
decode the relay’s message correctly. In this case, Xs ⊕Xr is received from the
relay only, and the outage probability is then

Pout,s3 ≈
(

1− g(R)
βΓs,r

)
g(R)
βΓs,r

g(R)
βΓs,d

[
g(R)
βΓs,d

+
g(R)

(1− β)Γs,d

(

1− g(R)
βΓs,d

)]

=
(

1− g(R)
βΓs,r

)
g(R)
βΓs,r

(
g(R)
βΓs,d

)2 [

1 +
β

(1 − β)

(

1− g(R)
βΓs,d

)]

≈ g(R)
βΓs,r

(
g(R)
βΓs,d

)2 1
(1 − β)

. (13)

Case 4: The source correctly decodes the relay’s message, but the relay cannot
decode the source’s message correctly. From outage probability point of view,
this is the same as Case 3 above as Γs,d = Γr,d assumed. (Refer Table 1.)

The total outage probability is the sum of the outage probabilities under
Cases 1–4 and given as

Pout,s ≈
(

g(R)
βΓs,d

)2

+
(

g(R)
βΓs,r

)2
g(R)
βΓs,d

+
g(R)
βΓs,r

(
g(R)
βΓs,d

)2 2
(1− β)

. (14)

If we further assume that Γs,r = Γs,d, then (14) becomes

Pout,s =
(

g(R)
βΓs,d

)2 [

1 +
g(R)
βΓs,d

+
g(R)
βΓs,d

2
(1− β)

]

≈
(

g(R)
βΓs,d

)2

. (15)

So, we can see from (15) that the outage probability decays proportional to the
square of the source-destination SNR, hence the diversity order of two can be
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achieved. Plotted in Fig. 2 are the exact and the approximate outage results
based on (15).

Substituting (15) into (4) and using (3), we can extend the analysis into the
diversity-multiplexing tradeoff such that

d :=− lim
Γs,d→∞

log2 Pout,s(Γs,d)
log2(Γs,d)

=− lim
Γs,d→∞

2
[
log2(g(R))− log2(β)− log2(Γs,d)

log2(Γs,d)

]

≈ 2(1− 2m) (16)

were m and d are the multiplexing and diversity gains defined in (3) and (4),
respectively. To get (16), g(R) = 1

2 (22R − 1) is substituted and the high SNR
approximation used. For the point-to-point transmission, it was shown in (5)
that d ≈ 1−m. Figure 3 shows the tradeoff curves.

One way to compare the energy saving by using the network coding instead of
point-to-point transmission is to calculate the required received SNRs in the two
schemes such that, for the same rate R, the resulting outage probabilities are
the equal. Let Γ n

s,d and Γ p
s,d be the source-destination SNRs when the network

coding and point-to-point transmissions are used, respectively. Similarly we have
the outage probabilities Pn

out,s and P p
out,s. The point-to-point outage probability

is calculated from (2) as P p
out,s = 2g(R/2)

Γ p
s,d

, and Pn
out,s is given by (15). If we take

the ratio of these outage probabilities, we get

P p
out,s

Pn
out,s

= 2β2 g(R/2)
g2(R)

(Γ n
s,d)

2

Γ p
s,d

. (17)

If we require the two outage probabilities to be equal, and additionally assume
the energy allocation term β = 0.5, then (17) results3

3 β = 0.5 means the total energy is equally split in the two phases, and hence identical
energy per symbol as in the conventional cooperative systems.
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Γ p
s,d

Γ n
s,d

= 2β2 g(R/2)
g2(R)

Γ n
s,d =

2R − 1
(22R − 1)2
︸ ︷︷ ︸

<1

Γ n
s,d > 1. (18)

This indicates that for large Γ n
s,d, the right side of (18) is greater than one

and hence Γ p
s,d > Γ n

s,d. This means, to achieve the same outage probability, the
average SNR required in the point-to-point transmission is large than in the
network-coding-based cooperative system.

This energy saving can be traded with transmission distance. For the same
transmit energy in the two schemes (i.e. if the energy budget is fixed), the re-
ceived SNR is a function of nodes separation as Γi,j ∝ 1

dα
i,j

, where α and di,j are
pathloss coefficient and distance between nodes i and j, respectively. If we keep
the same energy budget and equal outage probabilities in the two schemes, then
we can communicate over longer distance by using one scheme than the other.
This relationship is obtained by substituting the pathloss into (18), and we get

(
dn

s,d

dp
s,d

)α

> 1 (19)

where dn
s,d and dp

s,d are the distances covered using the network coding and point-
to-point transmission, respectively. This shows that dn

s,d > dp
s,d, hence we can

transmit further by using the network-coding-based cooperative system than the
point-to-point transmission. Identical comparison can also be done from the rate
point of view. The above discussions illustrate the tradeoff between energy sav-
ing, reliability of data transmission (in outage probability), coverage extension
(transmission distance), and transmission rate (through R). In the next section,
based on the exact outage probability formulas in [19], we study the coverage
area and relay node deployment when various protocols are implemented.

4 Results and Discussion

In this section, the results based on the discussion done in the previous section
are presented. Results are based on rate R = 1/2 bit/s/Hz, energy allocations
β = 1/2, pathloss coefficient α = 4, and symmetrical source-relay channels, i.e.
Γs,r = Γr,s.

Figure 2 shows the outage probability curves based on the exact and approx-
imate formulas. Here, all the uplink and source-relay channels have identical
average SNR values, i.e. Γs,r = Γs,d = Γr,d. One can see that at higher Γs,d val-
ues, the approximation captures the exact result, and the approximation error is
in the order of 1 dB. Moreover, at these SNR values, the curves for the network-
coding-based protocol decay faster than the point-to-point transmission curves;
hence diversity order of two is achieved using the former scheme. Figure 3 shows
the diversity-multiplexing curves of the point-to-point and cooperative scheme
with network coding.
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Fig. 4. Outage probability contours of static protocols: conventional (dashed lines)
and with network coding (solid lines). The source and the destination are placed at the
coordinates (0, 0) and (0, 1), respectively.

The outage probability and intra-cooperation gain contours of the conven-
tional and network-coding-based static and adaptive protocols are discussed
next. The transmit SNR at the source and relay is set to 20 dB; the fading
coefficient is assumed to unity mean power, but the pathloss is varied by chang-
ing the relay’s position (the uplink channels become asymmetric). The contours
show the locations of the relay in which the outage probability (respectively
the intra-cooperation gain) is the same. As defined in Sect. 1, the area enclosed
by a contour forms the coverage area. Taking the source-destination distance
as a reference, i.e. ds,d = 1, the other channels’ pathloss coefficients become

q2
i,j =

(
1

di,j

)α

, where i, j ∈ {s, r, d}. Questions that will be addressed next
are: for a fixed outage probability (or intra-cooperation gain) value, what is the
improvement in coverage area when the network-coding-based protocol is used
instead of the conventional one? What is the relative location of the relay that
minimizes the outage probability? In which geographic region is network-coding-
based protocol perform better than the conventional protocol, the adaptive pro-
tocol is better than the static protocol?

Figure 4 depicts the outage probability contours of the conventional (dashed
lines) and network-coding-based (solid lines) static protocols. For a given outage
probability value, e.g. 0.001, the area span by the protocol with network coding
is larger than the conventional protocol. As long as the relay is confined to these
areas, we are guaranteed that the outage probability does not exceed 0.001.
The probability contours of the network-coding-based and conventional static
protocol are approximately concentric to the coordinates (0, 0.7) and (0, 0.45),
respectively. The coordinates (0, 0.7) and (0, 0.45) can also be seen as the outage
contours where the outage probability approaches 0. Hence, the network-coding-
based static protocol is more appropriate when a node closer to the destination
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is selected as the relay; and at such locations the quality of the source-relay
channels is poor and the uplink channels are more asymmetrical. In the conven-
tional protocol, a node closer to the source (or in the center) should be selected
as the relay.

Shown in Fig. 5 is the intra-cooperation gain contours of the static protocols
(solid lines) and adaptive protocols (dashed lines). The gain is computed by
dividing the outage probability of the network-coding-based and conventional
protocols, when both are either in static or adaptive manner. These contours
help to answer the question, given the location of the relay, is it better to use the
conventional or network-coding-based protocol. When the gain is greater than
1 (outside the unity-gain contour), the conventional protocol performs better;
when it is less than 1 (inside the unity-gain contour), the protocol with network
coding performs better. From the figure, we note that the region in which the
gain is greater than 1 (or the conventional protocols perform better) is located
closer to the source, and the region in which the gain is less than 1 is located
closer to the destination. Moreover, the gain is less than one for sufficiently large
geographic area.

Finally shown in Fig. 6 is the intra-cooperative gain contours, where the com-
parison is performed within the conventional and network-coding-based proto-
cols, i.e. by dividing the outage probability of the conventional (respectively
with network coding) adaptive protocol by the the conventional (respectively
with network coding) static protocol. These contours help to illustrate the ad-
vantage, within either the conventional or network-coding-based protocol, when
we switch from static to adaptive. We see that as we go from the bigger to the
smaller contours, the intra-cooperation gain approaches unity. This means that
over such large area, adaptive protocols are more suited than the static protocols.
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We conclude that, in general adaptive protocols outperform their static counter-
parts over wider geographic area.

5 Conclusion and Remarks

Throughout this paper, we have presented the approximate outage probability
analysis of the network-coding-based cooperative protocol, and discussions were
made from the diversity-multiplexing, coverage area, and relay location perspec-
tives. The results show that the network-coding-based protocol can achieve the
same diversity-multiplexing gain as the amplify-and-forward protocol. Coverage
area extension can be obtained using network coding, and the protocols with net-
work coding are more suited when the relay is located closer to the destination
than the source. Comparing static vs. adaptive, adaptive protocols outperform
their static counterparts both in conventional and network-coding-based realiza-
tions. Based on the presented results, sensor networks will definitely benefit from
cooperation and network coding by saving transmission energy and/or extending
the coverage area. To exploit the dense number of potential cooperative nodes in
sensor networks, extending the current work into multi-source and multi-relay
cases would be an area to explore in the near future.
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Abstract. Storing and disseminating coded information instead of the original
data can bring significant performance improvements to sensor network proto-
cols. Such methods reduce the risk of having some data replicated at many nodes,
whereas other data is very scarce. This is of particular importance for data per-
sistence in sensor networks. While coding is generally beneficial, coding over
all available packets can be detrimental to performance, since coded information
might not be decodable after a network failure. In this paper we investigate the
suitability of different codeword degree distributions with respect to the dynamics
of the underlying wireless network and design a corresponding data management
algorithm. We further propose a simple buffer management scheme for continu-
ous data gathering. The performance of the protocols is demonstrated by means
of simulation, as well as experiments with an implementation on MICAz motes.

1 Introduction

Data collection is the primary task of a wireless sensor network. To this end, the sensed
data has to be transported to the sink node(s) or should be stored within the network
in case no sink node is currently available. Due to the power and memory constraints
of the sensor nodes, this has to be done as efficiently as possible. Network coding [1]
was shown to provide significant benefits in such networks. Several papers have an-
alyzed the benefits of random network coding [2] for information dissemination and
data persistence [3] (the amount of information that can be decoded at any give time).
These methods reduce the risk of having some data replicated at many nodes, whereas
other data is very scarce (in analogy to the coupon collector’s problem [4]). The ro-
bustness that can be achieved through the diversity of available information by coding
at intermediate nodes can be crucial in sensor networks, where node failures may be
common.

While coding is generally beneficial, coding over all available packets might leave
coded information undecodable after a network failure, thus reducing data persistence.
Algorithms such as Growth Codes (GC) [5], a variant of LT codes [6], address this is-
sue by using low complexity coding algorithms together with a code degree distribution
that maximizes data persistence. These concepts are generalized in [7], considering cod-
ing over multiple snapshots of data and more general random mixed coding schemes.
Growth Codes are designed for networks where the information available at neigh-
boring nodes is uncorrelated, i.e., very sparse networks with a topology that changes
significantly from one transmission to the next.

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 156–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this paper we investigate the suitability of different codeword degree distributions
with respect to the dynamics of the underlying wireless network. In particular, we also
investigate more static settings than those analyzed in previous research and discuss
their implications on the optimum degree distribution. We then design a corresponding
data dissemination algorithm that works well over a wide range of different network
scenarios. To allow autonomous operation over an extended period of time in the face
of a small amount of available RAM, nodes usually use their on-board flash memory.
Since writing to (and to a lesser degree also reading from) the flash is very energy
consuming, the coding algorithm has to make sure that the data required for encoding
and decoding is available in RAM, and only data that is unlikely to be used again in the
near future is written to the flash. We propose a simple buffer management scheme that
allows for continuous data gathering, without using an excessive amount of writes to
the flash memory.

The protocol is implemented on the MICAz mote platform. We perform a range of
experiments to demonstrate its performance and compare it to previously proposed so-
lutions. We further use simulation to investigate the scalability of the proposed approach
in larger networks.

The paper is structured as follows. In Section 2 we review related work. Section 3
gives a brief overview of network coding. In Section 4 we present our novel algorithm
based on network coding, analyzing suitable degree distributions for coding. Section 5
provides detailed simulation and experimental results on real sensor nodes for the dif-
ferent coding algorithms and degree distributions. In Section 6 we present a buffer
management scheme to handle multiple temporal generations of data and Section 7
concludes the paper.

2 Related Work

The usefulness of network coding for data storage was investigated in [3], where the
authors showed that a simple distribution scheme using network coding and only based
on local information can perform almost as well as the case where there is complete
coordination among nodes. Similar considerations also apply to sensor networks.

Growth Codes [5] were specifically designed to enhance data persistence, i.e., to
maximize the amount of information that can be decoded at any time instant. Sensor
nodes send out codewords that can be coded over multiple original information units.
Nodes exchange codewords with their neighbors and combine received codewords with
the existing local information, such that the stored information is coded over more and
more information units over time.

The number of original information units a stored codeword is coded over is referred
to as codeword degree. The authors in [5] propose to gradually increase the codeword
degree with the amount of received information, hence the name “Growth Codes”. This
codeword degree distribution optimizes sensor network data persistence in the presence
of node failures, as it allows to decode the joint information of any subset of nodes with
high probability. Intuitively, a high degree increases the probability that transmissions
are innovative in that they bring new information to neighbors, while a low degree in-
creases the probability that the information can be decoded immediately upon reception,
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thus decreasing the likelihood that nodes will be left with undecodable information in
case parts of the sensor network fail. As mentioned in the introduction, Growth Codes
work well in case the information available at neighboring nodes is uncorrelated. As
shown in [8], performance degrades in less dynamic situations, which are more likely
to be found in sensor networks scenarios.

An extension of the Growth Codes work is described in [7], where the problem of
collecting multi-snapshots spatial data in a resource constrained sensor network is ad-
dressed. Starting from [5], which provides an example of single snapshot data collec-
tion, the authors of [7] combine coding and scheduling to maximize the system’s utility.
They implement two algorithms, with and without mixing the snapshots, where only in
the latter case a schedule is needed to improve the total utility gain. The scheduling
problem is modeled through the Multi-Armed Bandit theory and solved optimally us-
ing Gittins Indices. They also demonstrate that there exists an optimal degree for the
snapshots-mixed coding, which achieves maximum utility gain and data persistence.

We observe that without coding, data collection becomes equivalent to a coupon col-
lector problem [9] which takes O(N log N) coupons (symbols) for recovering the N
original symbols. Existing coding techniques help avoiding the related heavy tail collec-
tor effect. However, channel codes such as LT Codes [6] and Reed-Solomon Codes [10]
start decoding only after accumulating a large number of received packets, which is not
suitable for resource constrained sensor nodes (due to, e.g., limited memory) and for
data persistence. Persistence and reliability of cached data can be improved through
Fountain Codes, as shown in [11]. The authors use Belief Propagation (BP) for a low
decoding complexity. Random walks are used to disseminate coded data in a scalable
way. The paper is related to our work, addressing the problem of data persistence when
sinks are not available, but it uses the Robust Soliton degree distribution, which limits
the range of applicable scenarios. Close to this work, [12] proposes a decentralized im-
plementation of fountain codes. Erasure codes lead to reduced communication, storage
and computational cost over random linear coding. One main drawback is to consider
only one data packet stored in each node, and then multiplied in loco with incoming new
symbols, which wastes the capability of the sensor nodes and increases rapidly code-
word degrees without taking into account the network topology. Another drawback is
the data dissemination process via pre-routing, in particular geographic routing, which
requires each node to know its own location. Pre-routing is the process by which each
node, before the data collection can take place, routes its data packet to d randomly se-
lected nodes, which will be XORing what they receive. In [13], the authors extend this
approach by showing that if these conditions are slightly relaxed, a constant pre-routing
degree suffices.

The main difference of our work with respect to previous research is that we specif-
ically analyze codeword degree distributions providing a high degree of resilience to
node/network failures for a much wider range of scenarios (than, e.g., in [5]). In ad-
dition, we present a thorough discussion on the degree distributions that work well,
designing a full data dissemination algorithm, which we complete with a buffer man-
agement scheme. Finally, we provide a performance analysis through experiments with
a real-world implementation of the algorithm on sensor motes.
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3 Network Coding

With network coding, nodes transmit packets coded over multiple original packets, in-
stead of uncoded data. Coded packets can contain information from many different data
sources. For coding, sets of s consecutive bits of a packet are treated as a symbol over
the Galois field GF (q), with q = 2s, and an L bits long packet consists of L/s symbols.
Note that coded packets have the same length as uncoded data packets. Due to its sim-
plicity, usually linear network coding is used, where packets are linear combinations of
the original packets.

For random linear network coding, a packet Y coded over the original packets
X1, ..., Xn is generated by multiplying each with a random coding coefficient gi to
obtain Y =

∑n
i=1 giX

i. This is done individually for each symbol in the data packet. It
is not necessary to first decode received data in order to create new coded packets, but
the same operations can be applied recursively to already coded data.

Decoding requires knowledge of the coding coefficients. For simplicity, assume that
a packet contains both the coefficients g = (g1, ..., gn) and the encoded data [14]. As-
sume a node has received (g1, Y 1), ..., (gm, Y m). Decoding requires solving the system
of equations {Y j =

∑n
i=1 gj

i X
i} to retrieve the original X i. In case m ≥ n and n of

the equations are linearly independent, all data can be recovered.
The special case GF (2) with a field size of 2 is very appealing for sensor networks

since it only requires addition over a finite field (which corresponds to a simple xor)
and no multiplication. Also the coding coefficients are only a single bit which reduces
overhead and decoding complexity. Different algorithms are suitable for decoding. Net-
work coding schemes often use Gaussian elimination to invert the matrix of coding
coefficients, but also methods with lower computational complexity (e.g., message pass-
ing [6]) can be effectively used in some cases.

To cope with the limited node memory, it is necessary to limit n, the number of pack-
ets that can be coded over at the same time. Packets are grouped into generations [14],
and only packets from the same generation can be combined in the encoding process.

4 Coding Degree Distributions for Static and Mobile Networks

4.1 Description of the Algorithm

In this section we present a novel network coding (NC) algorithm, called adaptive net-
work coding (ANC). In contrast to previous schemes ANC uses specific degree distri-
butions (specified in detail later) in order to adapt its behavior to the type of mobility in
the network. Each node has a buffer of limited and known size, which should be how-
ever larger than the size of the current generation (i.e., of the number of packets that
are to be processed together and eventually distributed to all nodes). This buffer may
contain encoded as well as original information packets, which may be combined to
produce additional encoded packets through random linear coding. Whenever a trans-
mission opportunity occurs, NC schemes usually (see, e.g., [15]) code over all packets
in the buffer. We however advocate that coding over all available linearly independent
packets (maximum degree encoding) at all times is not always optimal in terms of per-
formance. This was observed in [5], where the authors showed that depending on the
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number of decoded or recovered packets r at a specific node there exists an optimal
number of packets to combine to get close to optimal performance in terms of number
of decodable packets at each instant in time. The optimum degree distribution however
depends on the dynamics of the underlying network and in [8] the authors show the
deficiencies of Growth Codes in scenarios other than the very specific one they were
designed for.

In this section, we design suitable network coding algorithms based on our findings
on the impact of network dynamics such as node mobility and channel conditions. We
use the following definitions. The packet degree is the number of original information
packets which are combined together to form a packet. The degree distribution gives
the degree that a packet to be sent should have to give maximum performance under
certain network conditions: if r is the number of packets recovered at a given node, the
degree distribution returnsD(r), i.e., the degree of the next output packet.1

We further say that a transmission opportunity for a node occurs when this node is
selected for transmitting a new encoded packet. The actual transmission schedule is not
specified in detail here and could be, e.g., either TDMA based or event based. In the for-
mer case, a distributed or centralized TDMA schedule is assumed, whereas in the latter
a new encoded packet is usually sent as the node receives innovative information from
its neighbors (see [15]). An example of a fully distributed approach for the selection of
transmission schedules can be found in [16], where the authors propose Proactive Net-
work Coding (ProNC). According to this strategy, every node infers transmission times
as well as the data rate to use, based on incoming innovative information and on mes-
sages it receives from its neighbors. This scheme has been proven to perform very close
to a mechanism exploiting partially centralized and optimal transmission schedules.

ANC works as follows. When a transmission opportunity occurs, the node randomly
combines a number of packets in its buffer, so that the resulting packet has a degree that
is as high as possible while being less than or equal to D(r). If this degree can not be
obtained, the algorithm combines all packets in the buffer, obtaining a degree strictly
lower than D(r). It is easy to determine the degree of a packet from the number of
non-zero entries in the corresponding coding vector. At the first transmission, the buffer
is empty and the node generates and transmits a packet containing only the node’s
own information. Upon receiving a new packet, a node first checks whether this packet
increases the rank of the decoding matrix (which is formed by the packets in the node’s
buffer). If this is the case, this packet is stored in the first empty position of the buffer.
Otherwise, the packet is discarded as it is useless for data recovery purposes. In the
decoding process, early decoding of some information packets may occur before all
packets have been recovered, thereby increasing r, the number of packets recovered by a
given node so far. This often happens in practice due to the manner in which information
propagates and is gradually coded over more and more other information (i.e., there
is a codeword degree distribution inherently given by the information dissemination
process).

1 The name degree distribution is used to recall the stochastic nature of the encoding process
by which D(r) packets are randomly and uniformly picked among those in the node’s buffer.
There is, however, an abuse of notation here. In fact, differently from [6] the number of packets
to encode D(r) is deterministic once we know r.
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Fig. 1. Average number of packets recovered per node vs. number of packets received for a net-
work of size N = 100, static (left) and moderate mobility (right) scenario

The use of a topology-dependent degree distribution is the main difference between
the present algorithm and previous schemes. This modification has a significant impact
and the improvements in terms of dissemination time and total number of decoded pack-
ets sent are substantial, as can be seen from the experiments later on. In the next section
we discuss the properties that a good degree distribution should have as a function of
the network dynamics.

4.2 Discussion on Degree Distributions

We use the network coding scheme presented in the previous section for our analysis
of the degree distribution’s impact on the performance of the dissemination algorithms.
For the analysis, we first consider a static grid topology (referred to as STATIC in the
experimental results of Section 5). Subsequently, we study the effects of node mobility
in a moderate random mobility scenario and a so called random encounter mobility
scenario (RE in Section 5). In the former, nodes move according to a random way point
mobility model with speeds uniformly distributed in the interval [2, 4] m/s, whereas in
the latter they move in a completely uncorrelated fashion such that the neighbors of a
given node at any time instant are independent of the neighbors of the same node at
any other instant. This latter case corresponds to the scenario analytically investigated
in [5]. It is somewhat unrealistic in practice, except for extremely sparse and highly
mobile networks with very sporadic data exchange.

We start our investigation with the static network case. We consider N = 100 nodes
in a grid, where every node has exactly 8 neighbors. For the degree distribution we
keep the encoding degree D(r) at a fixed value, independent of r, during the entire
dissemination process. Hence, we run simulations by varying the encoding degree from
1 to N in steps of one unit.2 The simulation results for this case are shown in Fig. 1, on
the left side, where we only plot results for a few selected degrees for the sake of clarity.
In particular, this figure shows the average number of packets recovered per node, r, as
a function of the number of packets received. This plot, as well as the plots that remain
to discuss in this section, were obtained through a large number of simulations, so as
to get sufficiently tight confidence intervals (within ±3% of the plotted values). These

2 A customized C++ simulator was written to this end.
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intervals, for the sake of readability, are not shown inside the figures. Fig. 1 clearly
emphasizes that the actual degree in use does matter. Very large degrees (e.g., N = 100)
tend to have good performance, in that they allow full recovery very early on. However,
they typically present a step behavior, i.e., very little can be decoded up to a certain
point, and then the recovery rate suddenly jumps to 100%. By contrast, smaller degrees
give a smoother recovery curve. Due to the static nature of the network and the fixed
node density, there is little difference for very high degrees (around 50 and above).
The early recovery of useful information through a lower degree coding is preferable in
some cases. In particular, in case of a network failure or partition before full recovery,
nodes with such heavily coded information cannot make any use of what they retrieved
so far.

In the right side plot of Fig. 1, we show similar results for the moderate mobility
scenario (again with an average node density of 8 neighbors per node). From the figures
we can see that mobility helps to disseminate information more quickly, in the same
way as a higher degree distribution does. For example, the curve for degree 6 in the
static scenario coincides with the curve for degree 4 in the mobile one. In particular,
the performance of low coding degrees is improved through mobility. Finally, in Fig. 2
we report the same results for the random encounter case. Here, the trend is even more
pronounced, and very low degrees of 1, 2, and 3 perform extremely well, compared to
their performance in the static case.

In all of these graphs, the curves intersect at specific points. Using these crossing
points it is therefore possible to define an “optimal” degree distribution by moving along
the x-axis of each graph and selecting the curve (i.e., the degree) which maximizes the
number of packets recovered, r. Such a distribution is plotted in Fig. 3 for all of the
three scenarios considered here.

Note that the “optimal” distributions we obtain in this way only approximate the true
optimal curves. Our distributions were obtained offline through the analysis of the sim-
ulation results we obtained for fixed degrees and, in turn, we neglected the dynamics in-
volved in varying the codeword degree during the dissemination process. Nevertheless,
we observe that the distribution for the random encounter scenario very closely matches
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the true optimal distribution in this case, see [5,7]. This provides evidence about the va-
lidity of our approach. An exact analysis for the static and moderate mobility cases is
still missing in the literature and is one of the objectives of our future research.

Notably, these optimal distributions increaseD(r) slowly for small r. However, their
degreeD(r) increases sharply as r approaches N . This makes sense as when the number
of recovered packets becomes sufficiently large, it is convenient to code over packets
with large degree (largeD(r)) in order to maximize the probability that the few missing
packets are included with high probability in the new encoded packets. Moreover, in
the random encounter case, this sudden increase of the encoding degree D(r) occurs
for higher values of r. This is mainly due to the fact that mobility contributes to the
redistribution of data in the network. Such a redistribution is however absent in the
static case and should be compensated for by the dissemination protocol through a
more aggressive encoding (i.e., a largerD(r)). Moreover, we verified that the seemingly
small difference, for small values of r, between the distributions in the static and in the
moderate mobility scenarios is however very important in terms of performance. For
the moderate mobility case which, in terms of mobility, lies between the static and
the random encounter scenario, we observe a further interesting fact. In particular, its
distribution is very close to that of the random encounter case up to a certain value of
r (r ≈ 70 in Fig. 3), while it approaches the optimum distribution of the static case for
larger r. The mobility in this scenario provides a sufficient mixing of the information
in the initial delivery phase, whereas this is insufficient to ensure a prompt complete
recovery when there is only a small number of packets left to recover.

Finally, given the importance of picking the right distribution as a function of the
type of mobility, we may think of a distributed algorithm to monitor the dynamics in
the set of neighbors in order to select, and possibly change, the degree distribution in
use. This scheme is also part of our future research.

5 Experimental Results

In this section we discuss and present our experimental results on real sensor nodes.
Our tests are run on MICAz XBow motes with a CC2420 radio chip (working at 2.4
GHz) [17] and an MPR2400CA processor based on the Atmel ATmega128L. The trans-
mission range of these sensor nodes for indoor transmission is about 25 meters. As we
obtained our experimental results in a laboratory or 36 square meters, we had to scale
down the transmission power so as to get a proper multi-hop environment. Because of
the limited number of sensors available, TOSSIM simulations were run to analyze our
protocol in networks with a larger number of nodes, e.g., N = 100 (see below for a
short description of the TOSSIM simulator). Hence, we measure the average number of
recovered information packets as a function of the number of packets received per node
for grid (with four neighbors per node), line and random topologies. For each scenario
we obtain the performance of our algorithm, ANC. For comparison, we also plot results
for the scheme proposed in [5], referred to here as growth codes based dissemination
GC and the pure network coding based scheme in [15], referred to here as network cod-
ing. ANC is then evaluated considering the optimal distributions discussed above for
the random encounter (ANC-RE) and the static scenario (ANC-STATIC). Note again
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that network coding encodes data through the linear combination of all packets (of a
given generation) in the node’s buffer. Growth codes based dissemination uses the RE
distribution, i.e., the optimal distribution in the random encounter scenario. However,
in this scheme only one packet, which must contain the node’s own information packet,
can be used to increase the encoding degree at any given time (if allowed by the RE
distribution). Hence, even though the distribution in use is the same as in ANC-RE, the
time instants in which the encoding degree is increased differ. Hence, the distribution
for Growth Codes almost always returns lower degree packets than what the optimal
encoding policy would do, even for the random encounter scenario. This, as we show
shortly, leads to substantial differences in terms of performance. These schemes, as well
as the different distributions we consider for ANC, are selected to isolate the impact of
the adopted degree distribution and of the coding strategy in use, respectively.

In our experiments, interference due to the channel access mechanism, temporal and
spatial modifications of the transmitting/receiving radio range, energy consumption due
to transmissions and memory usage are all accounted for. Also, for each setting of the
involved parameters we repeated a number of experiments so as to get sufficiently tight
confidence intervals about our performance measures. In particular, the confidence in-
tervals for the subsequent plots are all within±10% of the values we show in the graphs.
Once again, these intervals are not shown in the graphs for improved readability. In this
section, we show results for the case where each sensor generates a single information
packet. Hence, we focus on the network-wide dissemination of a single generation of
data. Algorithms for more complex scenarios, where nodes generate multiple informa-
tion packets, are given later in Section 6, where we discuss schemes for generation and
buffer management.

Before proceeding with the description of the obtained results, we give a short intro-
duction to the TOSSIM TinyOS simulator, which we used to validate our experimental
findings and to obtain results for large networks. TOSSIM is the simulator that is dis-
tributed with TinyOS. It is used to run TinyOS software thereby emulating the behavior
of actual sensor nodes, their timers, the wireless channel, etc. It can be used to test the
code to be eventually run on actual sensors, as well as to simulate the behavior of a given
protocol in large networks. Packets are transmitted according to a standard CSMA chan-
nel access scheme, channel errors can be emulated through any (user defined) channel
model and the correctness of received packets is assessed through a CRC check. Errors
on acknowledgments, missed start symbols, noise, etc., are also accounted for [18].

5.1 Small Scale Experiments

In this section we consider a small network of 9 sensor nodes, showing results for grid,
line and random topologies. The transmission power is set to the same value for all
sensor nodes. In the experiments each node broadcasts either uncoded or coded packets
to its neighbors, where coding is executed by means of one of the above algorithms.
To access the channel, we use a standard CSMA scheme. At the end of each exper-
iment, all sensors communicate the collected statistics transmitting a trace file to the
sink node. Trace files contain information about received/transmitted packets as well as
their degrees.
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Fig. 4. Average number of packets recovered, r, for 9 sensor nodes placed on line (left) and grid
topologies (right). Results are obtained for GC [5], network coding [15] and the proposed ANC
encoding schemes.

9 Sensor Nodes, Line and Grid Topologies: Positioning the nodes so as to exactly
obtain line or grid topologies is difficult in practice, due to the dynamics of the wireless
channel. MICAz motes are in fact quite sensitive to antenna positioning and interfer-
ence. Transmitting and receiving radio ranges change significantly in space and time,
see [19]. Given these facts, the actual connectivity graph we get in our experiments
does not perfectly match the corresponding graph we would obtain in a simulation with
a deterministic channel model. To smooth out part of these variations, we average the
results over a sufficient number of experiments.

In Fig. 4 we show the results for line (left plot) and grid (right plot) topologies. For
the grid case we considered four neighbors per node. Notably, GC gives unsatisfactory
performance in both cases. In particular, the fact that the degree can only be increased
adding the node’s own information packet to the received packets is insufficient for a
proper mixing of the information in static networks. This problem was not observed
in [5] as in this paper the authors only focused on extremely dynamic topologies, where
the growth codes encoding strategy performs well. Network coding performs well and
very close to ANC-STATIC. For this reason, only one curve is plotted for both mecha-
nisms. ANC-RE does not perform equally well due to the conservative degree distribu-
tion, but it clearly outperforms Growth Codes with the same distribution. Performance
in the simulations is slightly higher than in real networks for all algorithms, due to the
“more well-behaved” channel mode, but overall TOSSIM simulation data points are
reasonably close to the outcomes of our experiments (as seen in the left plot of Fig. 4).
A similar agreement between TOSSIM and experiments was found for the results in
Fig. 4, plot on the right (and thus they were omitted for the sake of readability). When
comparing the two curves, one can see that the less connected the topology is, the more
important the high node degree becomes (as done by pure network coding [15]). In the
line scenario, pure network coding outperforms all other algorithms. The increase in the
number of neighbors in the grid topology helps information dissemination and allows
ANC to perform as well as network coding. Growth Codes have worse performance
here.
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simulations with N = 100 nodes on a grid.

9 Sensor Nodes, Static Random Topology: Next, we present our experimental results
for a simple random topology. This topology is somewhere in between the grid and
and the line network and is set up so as to obtain a connected graph. The results for
this scenario are given in Fig. 5. A comparison with TOSSIM is not shown due to
the difficulties in reproducing the exact random scenario in the simulator. Once again,
ANC (ANC-STATIC) performs very close to network coding. We can also observe the
gap between ANC-STATIC and ANC-RE: the performance of the latter suffers as its
degree distribution is not optimal in a static scenario. Finally, GC still gives the worst
performance among the considered schemes.

At this point, one might observe that there is little reason for using ANC, as standard
network coding (i.e., encoding over all available packets) performs very well. However,
note that this comes from the fact that nodes gradually accumulate information, and
even with full network coding will send out lower degree packets in the beginning, due
to the unavailability of further information. This is not the case for larger networks, as
we show below.

5.2 Large Scale Experiments

In this section we show results for a network with N = 100 nodes. Simulation points
are obtained with TOSSIM, the TinyOS simulator. In this simulator, the training se-
quence (start symbols) of every packet is transmitted at 10 Kbps, whereas the payload
is transmitted at the higher rate of 40 Kbps. Hence, sending a packet of, say, 128 bytes
will take about 25.6 ms. Assuming that nodes take turns to transmit, an ideal TDMA
would require 2.56 s to schedule the transmission of all nodes. Since we use a ran-
dom access protocol, we let nodes pick a random transmission time within an interval
of [0, 10] s for each transmission slot. In detail, when a node receives an information
packet, it stores such packet in its buffer. Hence, before sending a new packet, it waits
for the next transmission slot. Transmissions are finally triggered by picking a random
transmission time within each time slot. This results in a reasonably low collision rate.
We used these settings in all our TOSSIM simulations. The results for 100 nodes are
shown in Fig. 6 where we report the performance of ANC, network coding and GC. It
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shall be observed that in this case network coding presents the same step-like behavior
we discussed previously. This is however detrimental to the performance in terms of
data persistence as discussed in [5]. In fact, assume that some nodes (or even the whole
network) stop working after the dissemination of, e.g., 80 packets so that the network
becomes fragmented. In this case, network coding would give a recovery rate close to
zero. ANC-STATIC, instead, would provide a delivery rate of about 33% (i.e., one third
of the packets to be delivered). The same applies if the network generates data faster
than it can be transported to the sink nodes. In this case, coding over all packets will
prevent the sink node from decoding since it cannot gather enough data for each gener-
ation. Also in settings where requests for aggregate information occur at random times
and at random nodes in the sensor network, always being able to decode most of the
received data is beneficial. Otherwise, the request could only be served after all data has
been decoded. Thus, in practical settings a smooth recovery is advisable. Moreover, en-
coding over some packets, as we do in ANC, leads to sparse decoding matrices. These
can be inverted with a lower complexity through, e.g., heuristic algorithms, thus leading
to lower energy consumption. In addition, with sparse matrices early decoding occurs
with higher probability (which is the actual reason for the smooth recovery of ANC).

As a further remark, we note that there is a substantial difference between ANC-
STATIC and ANC-RE for a static network with N = 100 nodes. This is a further
indication of the importance of the selected degree distribution, especially for large net-
works. Finally, we observe that GC still gives unacceptable performance. Once again,
the selected encoding strategy matters and its importance becomes apparent with in-
creasing network size.

6 Handling Multiple Generations Via Buffer Management

In this section we consider a more general scenario, where nodes generate a large num-
ber of observations, at different time instants. We use the concept of generations as
introduced in Section 3. How packets are subdivided into generations can be decided
for example based on spatial or temporal criteria. With the term spatial generation we
refer to the data generated within the same cluster of nodes, i.e., within a well character-
ized geographical region (over a certain period of time). With temporal generation we
refer to the data generated within the same time interval by all the nodes in the network:
for the sake of simplicity we consider that the first readings of all sensor nodes belong
to the first generation, the second readings to the second generation and so on. Here, we
present a simple buffer management scheme based on temporal generations. This buffer
management scheme is included in the real-world implementation used in the previous
section.

MICAz nodes have very limited RAM capabilities. Sensor nodes may only be able
to hold a single generation in their memory at a time. This is especially true when
the number of nodes in the network, N , is large. Moreover, energy consumption is an
important consideration in wireless sensor networks and we thus need to devise energy
efficient solutions to handle multiple generations with the given memory constraints. In
case multiple generations can be stored in the RAM, the following discussion still holds
with minimal modifications.
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Let N be the number of nodes in the network, which we consider to be connected.
Our ANC protocol is used to select the degree distribution for encoding. Moreover,
assume that our nodes are processing the first generation of data. As per our ANC algo-
rithm, as nodes receive new codewords (i.e., new packets), these are stored in the main
buffer in RAM (one codeword, one row in the buffer). When a transmission opportu-
nity occurs, the rows in the buffer are randomly combined as dictated by the degree
distribution in use, following the procedure we described in the previous sections.

For the sake of explanation, consider now the instant in which a given node recovers
the first generation. Note that any further packet this node may receive for this genera-
tion will be discarded since the packet can not be innovative. Also, the packets currently
stored in the buffer (i.e., the recovered generation) can be safely copied to the flash
memory as the decoding process is complete for this generation at this specific node.
However, these packets are not deleted right away from the buffer, but are rather kept
there to further assist the node’s neighbors that have not yet recovered the generation.

Upon the complete decoding of the old data, the node can start processing a new gen-
eration (i.e., encoding new readings) but the neighbors of this node that are still using
the old generation might need additional packets to be able to decode. In order to help
these nodes, we propose a novel algorithm referred to here as cooperative distribution
management. According to this scheme, the node successively overwrites the old data
in the RAM, with data from the new generation, from the top row of the buffer to the
bottom one. When information belonging to the new generation is received, the node in
question stores it in the first row of its buffer. The old packet that previously occupied
this position in the buffer is not deleted, but it is rather combined with the packet in the
last position of the buffer, as shown in Fig. 7, figure on the left. Upon the reception of
subsequent packets belonging to the new generation, the node sequentially stores them
in the second, third, etc. position of the buffer, by combining the old packets in these
positions with the old packets that are still in the buffer. This combination is done in
such a way that the degrees of the old packets that are retained in the buffer resemble,
as close as possible, the power of two sequence 1, 2, 4, 8, . . . , see Fig. 7, figure in the
middle. This specific sequence allows a sufficient variety of degrees among the retained
old packets to be able to send out packets of different degrees if necessary. As long as
neighbors require packets from the old generation, the node may alternately send out
packets from the new and the old generation.
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Fig. 7. Example of buffer management. Generation i is fully recovered, the new generation i + 1
is being processed. Packets belonging to generation i are still retained, through their linear com-
bination, upon the reception of packets pertaining to the new generation.
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We now consider the nodes which may receive packets belonging to the new gen-
eration without, however, having switched to it yet. These nodes may just store these
packets in an extra buffer of small size for later use (in case such additional storage
space is available). This allows a prompt switch to the new generation, as soon as the
recovery of the old generation is complete.

We observe that the above mechanism extensively uses the RAM memory, whereas
the flash memory is written only upon the complete recovery of a given generation of
data. Limiting the access to the flash is an important consideration as it is characterized
by rather long writing times as well as substantial energy consumption (compared to
writing to the RAM).

We intend to investigate further buffer management schemes in future work. In par-
ticular, we believe that a more flexible scheme that is able to handle multiple generations
simultaneously, while adhering to the same memory constraints, may improve the per-
formance. Writing coded data to the flash is undesirable since it needs to be rewritten
once it has be decoded. However, it is not necessary to only write full generations to the
flash in a single pass. As partial data is recovered, it can be written to the flash in case
it is not needed very often for the decoding of further packets for a given generation.
Note that reading from the flash is substantially less expensive than writing to it. We
also intend to explore spatial generations, coded over the packets of a specific region.

7 Conclusions

In this paper we proposed a novel network coding-based algorithm with adaptive degree
distribution, with the aim of achieving a high degree of data persistence in static and mo-
bile networks. We believe this is an important first step towards a practical self-adaptive
coding algorithm for sensor networks. We provide insights into the relationship between
degree distributions and network mobility. We also characterized the performance of
different encoding schemes and related degree distributions through simulations and
experiments on real nodes.

A more thorough analysis on how to adapt the degree distribution to the specific
dynamics of the network (and how to “measure” these dynamics) is still necessary and
kept under study. Moreover, buffer management is another important avenue for future
research, which we briefly introduced here and which needs to be addressed further to
successfully distribute multiple snapshots of data in large networks.
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Abstract. Future mobile sensing systems are being designed using 802.15.4
low-power short-range radios for a diverse set of devices from embedded mobile
motes to sensor-enabled cellphones in support, for example, of people-centric
sensing applications. However, there is little known about the use of 802.15.4 in
mobile sensor settings nor its impact on the performance of future communication
architectures. We present a set of initial results from a simple yet systematic set
of benchmark experiments that offer a number of important insights into the radio
characteristics of mobile 802.15.4 person-to-person communication. Our results
show that the body factor - that is to say, the human body and where sensors are
located on the body (e.g., on the chest, foot, in the pocket) - has a significant effect
on the performance of the communications system. While this phenomenon has
been discussed in the context of other radios (e.g., cellular, WiFi, UWB) its im-
pact on 802.15.4 based mobile sensor networks is not understood. Other findings
that also serve to limit the communication performance include the effective con-
tact times between mobile nodes, and, what we term the zero bandwidth crossing,
which is a product of mobility and the body factor. This paper presents a set of
initial findings and insights on this topic, and importantly, we consider the impact
of these findings on the design of future communication architectures for mobile
sensing.

1 Introduction

Wireless sensor networks have gained remarkable interest among researchers and ap-
plication developers in the past ten years. Several studies have been conducted in order
to best understand and characterize the radio environment of cheap low-power wire-
less sensor nodes and their impact on communication protocols such as the media
access, routing, and transport. Early sensing platforms [1] presented a number of chal-
lenging radio issues. In [2] [3] the authors studied the performance of low-power ra-
dio transceivers found in sensor networks where nodes were static, closely situated,
and presented obstacle-free communications in the same neighborhood. These stud-
ies demonstrated the existence of grey areas and strong asymmetric links among other
findings which have had considerable impact on the design of robust MAC and routing
protocols for static sensor networks. While these findings have had an important impact
for the design of static sensor networks there has been no equivalent study in the case
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of mobile sensor networks, particularly, for a class of emerging people-centric, mobile
sensor networks [4] [5] [6] [7] [8] that are built on low-power short-range radio such
as 802.15.4 [9]. Many of these applications use mobile-to-mobile and mobile-to-static
communications using a variety of devices including sensor-enabled cellphones and
embedded sensors.

In this paper, we study the impact of 802.15.4 radio characteristics on the commu-
nication performance of mobile sensor networks. We aim to answer two questions in
this study: what are the dominant factors that impact the overall communication perfor-
mance of mobile-to-mobile, and mobile-to-static people-centric sensor networks? And,
what is the impact on the design of future communication architectures based on these
findings? We take a systematic approach and analyze inter-node communications when
people are mobile (e.g., at walking speed of 1.5-2 meters/sec) in different radio envi-
ronments such as indoors (i.e., walking along the hallway in an office building), in an
unimpeded outdoor space (i.e., a soccer field), and walking in an outdoor urban envi-
ronment (i.e., along a sidewalk). We consider a number of positions on the body that
a sensor could be placed including around the neck and in the pocket. We character-
ize the performance of the radio link based on a number of known metrics including
throughput between devices, received signal quality and signal strength for mobile-
to-mobile and mobile-to-static communications under the different radio environments
discussed above. For all experiments we use Tmote Invent nodes, based on the Telos
platform [21], and their 802.15.4 radio as representative of a class of 802.15.4 devices
that could be used in cellphones [11] and embedded sensor devices. Note, in our project
we integrated the Tmote Mini [10] into the Nokia N800 and have recently acquired In-
tel/Motorola PSI [24] 802.15.4 linux phones. We plan to further extend our study to
these devices as part of future work. To the best of our knowledge this is the first paper
to present a set of detailed benchmark experiments to characterize 802.15.4 in a mobile
people-centric setting and its impact on communications.

Our results show that the body factor - that is to say, the human body and where
sensors are located on the body (e.g., on the chest, foot, in the pocket) - has a significant
effect on performance of the communications system particularly in outdoor experi-
ments where it effectively halves the transmission range of a device. While the body
factor has been discussed in the context of other radios its impact on 802.15.4 based
mobile sensor networks is not understood. Other findings that also serve to limit the
communication performance include the effective contact time between mobile nodes,
and, what we term the zero bandwidth crossing, which is a product of mobility and the
body factor. In summary, the contribution of this paper is as follows:

– We present the first detailed set of empirical 802.15.4 benchmark experiments for
mobile sensor networks where the nodes are carried by people;

– We present experimental results showing that the body factor, mobile-to-mobile
contact times, and zero bandwidth crossing are dominant in mobile, people-centric
sensor networks; and

– We discuss a set of architectural considerations to be taken into account when de-
signing protocols, applications, and radio models for mobile sensor networks, when
the nodes are carried by people.

The data traces collected during our study are publicly available at [36].
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The paper is structured as follows. In Section 2 we present the related work followed
by a detailed description of our experiments and results in Section 3. We present a
short discussion on the impact of our findings on the design of future communication
architecture for mobile sensor networks in Section 4 and finish with some concluding
remarks and future work in Section 5.

2 Related Work

A number of studies have discussed interference caused by the human body and differ-
ing environments on radio communications. In [14] the authors model the influence of
the human body for cellular radio as a function of the terminal-person distance. How-
ever, the model only holds for the cellular devices discussed and the cellular frequencies
used. In other studies, models of human body shadowing for indoor radio environments
that apply to humans crossing the line of sight (LoS) links between a transmitter and
receiver for transmissions in the 10 GHz [15], 900 MHz, and 60 GHz [16] have been de-
veloped. The specifics of the devices, cellular radio, operating frequencies and models
differ from what we study in this paper.

A number of papers discuss issues more closely related to our work. In [17] the
authors show the effect of people crossing a link between a transmitter and a receiver
operating at 2.4 GHz. However, they use a customized RF transmitter that generates sig-
nals with a power of 20 dB, which is very different from the low power devices (i.e., 2.4
GHz based Tmote Invents [21]) that we consider in this study. The authors found that
a person’s body causes signal attenuation at the receiver. The shadowing effect caused
by a person’s body has also been discussed in [18] for the 802.11 radio. Even in this
case the experiments consist of having a person crossing the transmitter-receiver link.
It is shown that the body creates severe attenuation and that the transmitter-receiver
orientation matters. Our work differs from both [17] and [18] in that we present re-
sults for a different class of devices, low power, short-range radio 802.15.4 nodes, in a
broader set of environments (outdoor open space, outdoor urban environment, indoor)
adopting realistic mobility patterns to characterize the radio behaviour as a function of
the transmitter-receiver distance, and considering different position of the nodes on the
body. In [28] the degradation of the radio signal when passing through the human body
is described.

A large body of work discusses the impact of the surroundings and interference on
the same radio bands as 802.11, 802.15.4, and Bluetooth technologies proposing in
some cases radio models for these environments. In these studies only the impact of ob-
stacles such as buildings, trees, foliage, walls, etc., in outdoor and indoor environments
is presented. The authors of [25] analyze an indoor home deployment of six 802.11a
and 802.11b nodes. The study highlights the predominance of asymmetric links, the
effect of obstacles being more severe than distance between nodes, the impact of the
node orientation, and the interference caused by microwaves radio sources. The result
of an investigation to characterize Bluetooth propagation in an indoor environment is
presented in [27] showing the impact of the receiver’s speed on the bit error rate.

The work in [19] [20] [21] [26] discuss the indoors and outdoors evaluation of
802.15.4 radio for static sensing platforms through a characterization of the Radio Signal
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Strength Indicator (RSSI) and Link Quality Indicator (LQI) for different transmitter-
receiver distances. RSSI and LQI are both parameters retrievable from the 802.15.4
hardware upon the reception of a radio packet [21] [20]. In [26] [25], the authors state
that the antenna orientation greatly impacts the RSSI and the incidence of the asymmet-
ric links. In [26] [30] the authors show that multipath fading is another important cause
of indoor performance degradation. Impact of 802.11 on the Zigbee radio is analyzed
in [29]. In [2] [3] the authors present a detailed study of communication limitations for
static sensor networks including findings associated with grey areas and link asymme-
try. In [23] the authors also discuss the radio irregularities in wireless sensor networks
and show that the battery level of a node impacts the signal strength at the receiver.

Within the context of pocket-switched networks [12] [22] work has been done to
analyze Bluetooth traces in order to understand people’s mobility patterns, the distri-
butions of the rendezvous times between mobile nodes, and the inter-contact time (i.e.,
the time interval between two consecutive rendezvous). Our work provides similar re-
sults associated with contact times but for 802.15.4, and includes a broader study of the
mobile-to-mobile and mobile-to-static nodes rendezvous showing detailed RSSI, LQI,
and throughput maps as a function of nodes distance for different experimental scenar-
ios, as discussed in Section 3. We also record the contact time and effective contact
time measurements during the mobile-to-mobile and mobile-to-static interactions, and
consider the body factor and the position of sensors on the body.

3 Experiments: Methodology and Results

In this section, we discuss the methodology we follow for experimentation and the re-
sults derived from the measurements. For all experiments we use two Tmote Invents
operating in the 2.4 GHz band, one acting as a transmitter and the other as a receiver.
A different two are chosen for each experiment from a large pool of Invents to avoid
biases specific to a particular Invent’s hardware. The transmitter is programmed to send
packets at the maximum transmission power (0 dBm) and transmission rate. We inves-
tigate the same metrics, (viz. RSSI, LQI, and throughput) as previous work targeting
studies to characterize the radio environment in wireless sensor networks [2] [3] [19]
[21] [26] [20]. We also measure the effective contact time, i.e., the time window during
which nodes are in radio contact with each other and have enough available bandwidth
between them to support data transfer (this is somewhat application specific and it will
be defined in Section 3.2). Here we extend the results discussed in [12] [22] where
contact time is simply defined as the time interval in which nodes are in radio contact,
saying nothing about communication potential between nodes. The contact time is an
important parameter to consider in mobile sensor networks because it is the time in-
terval when nodes can exchange data. The contact time is obviously a function of the
speed the nodes are moving at, i.e., it decreases as the speed increases and viceversa.
Throughout our evaluation, however, we notice that when nodes move at walking speed
(i.e., relatively low speeds of 1.5-2 meters/sec) the 802.15.4 radio and link performance
in terms of signal quality and throughput is similar to static nodes communicating. This
is because of the relatively low speed people move at. So, in our evaluation speed is not
considered as a factor that impacts the RSSI, LQI, and throughput.
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We carry out our experiments according to three benchmarks: i) outdoor experiments
in a soccer field away from obstacles and radio interference in the 802.15.4 radio band,
ii) outdoor experiments along a sidewalk which is an example of urban environment,
and, iii) indoors experiments in a 55 meter hallway in an office building. In all the
cases people were moving at walking speed. We repeat the experiments positioning the
transmitter and receiver nodes at different places on the body, (i.e., on the chest front
hanging on from a necklace, inside a pocket). This choice is motivated by the fact that
we are also interested in quantifying the impact of the position on the body where the
nodes are more likely to be carried. A third position, i.e., where the node is clipped
onto a belt on the side of the body, is evaluated. Given the similarity of the results with
the node carried in the pocket (due to the side position on the body in both cases), we
omit results of the belt experiment due to space limitations. We run each experiment
five times and calculate the 95% confidence interval (represented by the error bars in
the plots presented in this paper). In what follows, we describe the experimental setup
for each of the scenarios discussed above.

Outdoor open space benchmark. We perform this benchmark experiment in a soccer
field out of town in a rural setting away from obstacles and radio activity to minimize
any external source of interference and perturbation on the measurements. We imple-
ment a TinyOS [13] application to make the transmitter send 18 byte long packets (note,
this size is selected for experimental reasons) as fast as possible and the receiver retrieve
and store the RSSI and LQI from each packet received from the sender. We also record
the throughput of the sender measured at the receiver. We draw concentric circles with
different radii on the ground, the center being the position of the sender node during the
measurements. The radii are: {5, 10, 20, 30, 40, 50, 60} meters. Along the circumfer-
ence of each circle we place equally spaced markers that identify the distance walked
along the circles. The experiment consists of a stationary person standing in the center
of the circles wearing a necklace mote (transmitter) and facing a fixed direction while
the other person walks along each circle wearing a necklace mote (receiver). Each time
the person carrying the receiver passes a marker the user button on the receiver mote is
clicked and a counter, which represents an abstraction of the distance walked along the
circle, is incremented. Every RSSI and LQI sample is stamped with the latest marker
value which means that the RSSI, LQI, and throughput values are stored in bin struc-
tures identified by the number of markers minus one. The RSSI, LQI, and throughput
values for a position denoted by i in the circle are an average of the RSSI, LQI, and
throughput values between position i and i+1 (assuming the receiver moves according
to the i to i+1 direction). This way we are able to produce 360 degree RSSI, LQI, and
throughput maps around the transmitter. To have a set of comparison points we also
perform LoS measurements between the transmitter and the receiver where the trans-
mitter is placed in the center of the circles in such a way so there are no obstacles in
the proximity, and the transmitter and receiver are lifted 1.5 meters above the ground.
The receiver is slowly moved along the concentric circles keeping the LoS condition
with the transmitter. This way we obtain 360 degree LoS maps around the transmitter
for throughput, LQI, and RSSI measured at the receiver.

Outdoor urban environment benchmark. The second benchmark experiment aims
to show the radio behaviour during a mobile-to-mobile communication rendezvous in
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the common case of people carrying short-range radio nodes and passing each other in a
typical urban environment: a sidewalk. In this case, we record RSSI, LQI, and through-
put values measured at the receiver as a function of the transmitter and receiver distance.
The experiments consists of having two people respectively carrying a transmitting and
a receiving mote walking toward each other from a long distance and eventually pass-
ing each other. The sidewalk runs along a street which is about 15 meters away from
buildings on both sides making this environment distinct from the open soccer field
experiments. Since the measurements are reported as a function of the distance be-
tween the sender and the receiver we mark a 160 meter portion of the sidewalk. Each
marker is 2 meters apart and every measurement starts with the two people located at
a distance of 160 meters (in order to start the experiment by having them out of radio
contact). Every time each person encounters a marker, the user button of the mote is
clicked and a counter, which again represents an abstraction of the distance walked,
is incremented. Every RSSI and LQI sample is stamped with the latest marker value
which means that the RSSI and LQI values fall into bins identified by the number of
markers minus one. The RSSI, LQI, and throughput values at the receiver at position
i with the transmitter at position j are calculated as the average of the RSSI, LQI, and
throughput values collected by the receiver between position i and i+1 (assuming the
receiver moves according to the i to i+1 direction). By knowing the starting location of
the nodes it is possible to determine the relative sender-receiver distance and an RSSI,
LQI, and throughput map for each distance.

Indoor long hallway benchmark. We carry out this benchmark experiment in a build-
ing hallway of an office building. The hallway represents one of the common indoor
scenarios where people approach each other from a long distance, get in radio contact
and pass each other. Because we are interested in evaluating scenarios when nodes ren-
dezvous, the hallway allows us to repeatably control and record this situation. Even in
this case we take RSSI, LQI, and throughput measurements at the receiver as a function
of the transmitter-receiver distance. To investigate the mobile-to-mobile interaction in
this environment the experiment setup is the same manner as the sidewalk setup, with
the 55 meter hallway marked by equally spaced markers and starting the experiments
with the people at the far edges of the hallway. Furthermore, we perform some experi-
ments having a static transmitter hanging from the ceiling while the receiver is mobile
and carried by a person. The aim of these experiments is to analyze the mobile-to-static
interaction in the case where a short-range mobile node performs rendezvous with a
static gateway placed in an indoor environment for either data upload or tasking pur-
poses [4] [8]. Before we start each experiment we measure the noise floor in the 2.4 GHz
band. In order to do this we modify the TinyOS source code (CC2420ControlM.nc and
CC2420RadioC.nc files).We observe the noise floor values oscillating between -98.79
dBm and -100.28 dBm.

3.1 Body Factor and Zero Bandwidth Crossing

In Figure 1, the results of the measurements for the soccer field LoS experiment and
nodes carried by people experiment are shown. In both cases the transmitter is located
at (x,y) = (70 meters, 70 meters). Given the limited size of the soccer field we do not
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Fig. 1. 360 degree LQI, RSSI, and throughput maps for the soccer field benchmark in the LoS
and people presence cases

show the maximum outdoor transmission coverage, which is almost 70 meters for a
Telos platform with a transmission power of 0 dBm [21]. Instead, we are interested
in the RSSI, LQI, and throughput map around the transmitter given the impact of the
body factor. For this reason a maximum radius of 60 meters around the transmitter
fulfills our needs. Thus, the plots in Figure 1 do not show the boundary of the radio
cell of the transmitter, but just a portion of it, namely within a 60 meter radius. Figures
1(a), 1(b), and 1(c) confirm the non-uniform nature of radio signal LoS propagation
and symmetric regions around the transmitter present very different radio patters, as
also discussed in [3] [23]. It is of more interest when we compare these data to the
case when the transmitter and the receiver are worn by people as a mote necklace.
The person wearing the transmitter is standing at (x,y) = (70, 70) facing the right hand
side of the circle (e.g., watching the point of coordinates (x,y) = (130,70)). The person
wearing the receiver node moves along each circle in a counter-clock wise fashion. The
dotted boundary circle delimits the area where the measurements are taken. The results
are shown in Figures 1(d), 1(e), and 1(f). From the plots the impact of the body factor
on the radio signal is evident. The white color in almost the entire left hand side of
each map of Figures 1(d), 1(e), and 1(f) indicates no data reception in that area. This is
due to the fact that the transmitting node’s signal is blocked by the person wearing the
node so that when the receiver is carried to the back of the transmitter (i.e., from the
upper left side to the lower left side of the circle) no radio signal is actually received.
This phenomenon occurs independent of the distance between the transmitter and the
receiver. The interesting result is that the body factor, that is mainly caused by the fact
that radio frequencies in the 2.4 GHz band are strongly attenuated by water which is the
main constituent of the human body, significantly limits the radio performance when
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Fig. 2. Sidewalk urban environment: LQI, RSSI, throughput, and throughput Complementary
CDF measured at the receiver as a function of the transmitter-receiver distance

the nodes are carried by people. In fact, the radio contact opportunity is significantly
reduced given the radio coverage asymmetry shown in Figures 1(d), 1(e), and 1(f). We
define the zero bandwidth crossing point as the relative position(s) between a transmitter
and a receiver beyond which the throughput drops to zero because of the body factor. In
Figure 1(d) the zero bandwidth crossing points for the receiver moving counter-clock
wise are encountered on average along the radius of coordinates (x1,y1)=(70,70) and
(x2,y2)=(80,130).

The implications of the zero bandwidth crossing point are more evident when an-
alyzing the case of nodes performing a rendezvous along a straight path. This is the
case where people are walking along a sidewalk according to the experimental setup
described earlier. The LQI, RSSI, and throughput measurements as a function of the
transmitter-receiver distance are shown in Figure 2. The coordinate x=0 on the x-axis
in Figures 2(a), 2(b), and 2(c) denotes the point where the two people cross along the
sidewalk.

If we first analyze the mote necklace case we can see from Figures 2(a), 2(b), and
2(c) that the RSSI, LQI, and throughput increase as the transmitter and receiver move
to the crossing point at x=0. Right after the crossing point the receiver stops receiving
data (note the absence of data for the mote necklace case on the right of x=0). The x=0
coordinate represents the zero bandwidth crossing point for the sidewalk experiment.
This result confirms the trend shown in the soccer field (Figure 1) where no signal is
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Fig. 3. Indoor (hallway): LQI, RSSI, throughput, and throughput Complementary CDF measured
at the receiver as a function of the transmitter-receiver distance

received by the receiver node when the body of the person carrying the transmitter is
between the transmitter and the receiver.

When the nodes are carried in the pant/trouser pocket (akin to a sensor-enabled
cellphone) the results are different. Being in a pocket, which implies a node position
slightly to the side of the person’s body, the performance degradation particularly at
large transmitter-receiver distances is larger. In Figures 2(a), 2(b), and 2(c) it is shown
that when the nodes are in the pocket the LQI and throughput increase slower than the
necklace case when the distance decreases reducing the time window in which nodes
experience high throughput. The complementary CDF of the throughput is also shown
in Figure 2(d). Having the node more towards the side of the body translates into a
positive effect as well, i.e., the nodes have the opportunity to remain in radio contact
beyond the crossing point at x=0. This occurs because the position of the nodes, which
now experience some degree of LoS contact being on the side of the body, allows some
radio signal to be received even when the nodes pass each other extending the zero
bandwidth crossing point by 10 meters beyond x=0 (this can be seen in Figures 2(a),
2(b), and 2(c) for the pocket related curves).

The zero bandwidth crossing point is pushed even further in indoor scenarios. This
is shown in Figures 3(a), 3(b), and 3(c) where the x-coordinate x=0 represents the
point where the people carrying the nodes cross in the hallway. Note the asymmetry in
Figures 3(a), 3(b), and 3(c) for LQI, RSSI, and throughput signatures respectively as
the mobile nodes pass each other at x=0. This is again due to the bodies of the two
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Fig. 4. Indoor (hallway): LQI, RSSI, and throughput measured at the receiver as a function of the
transmitter-receiver distance. The transmitter is static and positioned at one edge of the hallway.

people between the transmitter and the receiver. The interesting aspect is that the zero
bandwidth crossing point is extended for more that 50 meters (up to the end of the hall-
way) beyond the physical crossing point. Even when the people’s bodies attenuate the
LoS component of the signal propagation, we believe that radio signal reflections off
walls and other obstacles provide a non-LoS propagation path to the receiver. For this
scenario, again the necklace case produces LQI, RSSI, and throughput patterns slightly
better than the pocket case when the people approach each other from a long distance.

Modeling the Body Factor. In order to quantify the impact of the body of the person
carrying the node we perform the following experiment: we position the transmitter
node at one edge of the hallway, hanging from the ceiling and in LoS contact with the
rest of the hallway. The receiver node is carried starting under the transmitter to the other
end of the hallway as a mote necklace at first and then as a pocket mote. As a term of
comparison, we also carry out LoS measurements along the whole hallway having the
receiver lifted 50 cm above the ground. The LQI, RSSI, and throughput measurements
for the LoS and body factor experiments are reported in Figures 4(a), 4(b), and 4(c)
respectively.

We can see that the LQI degrades almost linearly with the distance for both the mote
necklace and pocket mote cases. The throughput, which in general mirrors the LQI
pattern [21], also degrades with the transmitter-receiver distance and in the necklace
case it almost follows a linear decay. The RSSI for both the necklace and pocket cases
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Fig. 5. Indoor (hallway): LQI, RSSI, and throughput measured at the receiver when the receiver is
carried by two different people as a function of the transmitter-receiver distance. The transmitter
is static and positioned at one edge of the hallway.

remains on average 15 dBm below the nominal value measured in the LoS case and
presents an exponential decay [21]. Given these findings we believe that it is possible
to model the impact of the body factor over distance. The results suggest that probably
linear interpolation for LQI and throughput and exponential interpolation with a known
offset for the RSSI might be used in order to design models that consider the impact of
the body factor for indoor scenarios. At the moment this is out of the scope of this work
but we are planning to continue our research to consolidate our findings and present
radio models that take such insights into account.

Body factor for different people. We conduct experiments to quantify the body factor
caused by different people with different body sizes. We design an experiment where
the transmitter is positioned at one edge of the hallway, hanging from the ceiling in
LoS contact with the rest of the hallway. The receiver node is carried, starting under
the transmitter node, to the other end of the hallway by two people with different body
sizes. Person A’s weight and height are 55 kg and 1.65 meters respectively, whereas
Person B’s weight and height are 78 kg and 1.79 meters, respectively. We measured LQI,
RSSI, and throughput on the receiver node carried as a mote necklace and the results are
reported in Figures 5(a), 5(b), and 5(c). From the plots no substantial difference exists
between Person A and Person B in terms of LQI, RSSI, and throughput patterns. As for
this result, we conjecture that for a broad class of people’s figure, at least falling in the
same category as the people we have experimented with, the body factor does not vary
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significantly with individuals. Clearly, a more comprehensive set of experiments might
highlight such differences. We leave this for future work.

3.2 Mobility Issues: Contact Time and Effective Contact Time

An important parameter to take into consideration in mobile sensor networks is the time
interval nodes are in radio contact with each other. It is during this time that the ren-
dezvous takes place and data exchange can occur. For the sidewalk and hallway experi-
ments, which again are representative of the class of scenarios where short-range radio
devices carried people could operate a rendezvous, we also measure the contact time
(CT) which is the time between the first and last packet received. Average contact times
distribution is presented in [12] for several nodes being carried in a conference setting
for few days. In our study we take a different approach, i.e., we want to investigate the
detailed performance of atomic rendezvous between nodes to provide deeper insights
for protocol and applications designers. For this reason we also define the effective con-
tact time (ECT) as the time interval within which nodes experience a throughput larger
than the median between the lowest and largest throughput across the experiment. We
introduce the ECT to be able to compute normalized time interval measurements par-
ticularly useful indoors where the nodes’ contact time mainly depends on the building’s
floorplan. Knowing the CT and ECT is helpful to determine the amount of bytes of
data that can actually be exchanged when mobile nodes start a rendezvous during com-
mon walking patterns, like in a sidewalk or hallway. The average CT and ECT values
measured in the sidewalk along with their confidence intervals are reported in Table 1.

Table 1. Contact Time and Effective Contact Time measured on the sidewalk

Scenario CT (sec) ECT (sec) CT Conf. Interv. (sec) ECT Conf. Interv. (sec)

Necklace 59.42 33.64 10.65 8.08
Pocket 31.14 17.21 10.29 2.73

What is interesting about this result is that the amount of time during which two
mobile nodes performing a rendezvous can exchange data is limited to few tens of
seconds consequently limiting the overall amount of data that can be exchanged. This
has to be taken into consideration when designing applications that require peering
interaction and data exchange between mobile nodes with short-range radios, as can be
found in delay tolerant networks [12] for example. The short contact time also impacts
the performance of the mobile-to-static node rendezvous that occurs when mobile nodes
interact with static gateways to upload data or receive tasks [8] [4]. The average CT and
ECT values along with their confidence intervals for the mobile-to-mobile rendezvous
in the hallway are reported in Table 2.

Although the CT becomes less important in an indoor scenario because it depends
on the topology of the environment which impacts the maximum physical distance the
nodes can be placed at, the ECT is still meaningful. In fact, no matter how big the
indoor space is, when two mobile nodes approach each other we would always observe
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Table 2. Contact Time and Effective Contact Time measured in the straight part of the hallway

Scenario CT (sec) ECT (sec) CT Conf. Interv. (sec) ECT Conf. Interv. (sec)

Necklace 39.14 27.21 2.63 2.09
Pocket 37.24 27.64 1.46 1.67

the following performance: the throughput, first increasing and then decreasing. By
applying the median throughput thresholding technique as part of the ECT definition,
the ECT provides a normalized measure of the time interval when the throughput is
above a certain threshold (in our case the median value between the highest and lowest
throughput during the measurement). In Table 2 it is shown that even for the indoor case
the ECT is in the order of less than 30 seconds. Clearly, different definitions of ECT
could be determined. We plan to study this issue as part of future work.

Impact of obstacles on the contact time. So far results are related to the case when the
nodes are moving along a straight path from one end to the other end of the hallway. We
conduct an experiment to analyze the effect of obstructions, in particular the L-shape
corners at each end of the hallway when a person turns them. The transmitter node is
positioned in the middle of the hallway hanging from the ceiling and the receiver is
carried as a mote necklace and pocket mote. The results are shown in Figures 6(a),
6(b), and 6(c) for LQI, RSSI, and throughput, respectively. The corners are turned at
coordinates x=20 meters and x=70 meters.

Table 3. Contact Time and Effective Contact Time measured in the hallway turning corners

Scenario CT (sec) ECT (sec) CT Conf. Interv. (sec) ECT Conf. Interv. (sec)

Necklace 43.66 36.59 0.82 1.86
Pocket 42.55 35.40 0.73 1.87

It is shown that the receiver stops receiving the transmitter’s packets almost imme-
diately as the corners are turned. If we look at Table 3 the CT and ECT are below 45
seconds and 37 seconds, respectively. Given the short amount of time nodes are in con-
tact with each other, data exchange or task download could be challenging. Even in this
case the CT depends on the length of the hallway whereas the ECT assumes a more
general validity.

As shown in Figure 6(b), the RSSI measured at the receiver approaching the trans-
mitter increases (from 15 to 42 meters), whereas it decreases when the receiver moves
away from the transmitter (from 42 to 72 meters). Although the RSSI signature might
not present a monotonic pattern (note the necklace case RSSI at 25 meters) when either
approaching or moving away from a node, it might still be used as an input to rang-
ing algorithms to coarsely determine the distance between two nodes or at least their
relative position variation. In fact, it may be possible to filter the local maximum at 25
meters in Figure 6(b) by applying an exponentially weighted moving average over the
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Fig. 6. Indoor (hallway): LQI, RSSI, and throughput measured at the receiver as a function of the
transmitter-receiver distance turning around corners. The transmitter is static, hanging from the
ceiling in the middle of the hallway.

RSSI samples. Then, by looking at the increasing RSSI gradient the receiver could in-
fer that it is approaching the transmitter. At the same time, as the receiver moves away
from the transmitter at its back, the decreasing RSSI gradient could make the receiver
infer that it is leaving the radio coverage of the transmitter. From our experiments the
RSSI and LQI signatures have similar patterns if the receiver is static (in the middle of
the hallway) and the transmitter mobile (i.e., the RSSI measured at the static receiver
increases as the transmitter approaches the receiver while it decreases as the transmitter
moves away from the receiver). For this reason we do not show the results for the lat-
ter scenario but we can draw the same conclusion as the static transmitter and mobile
receiver case.

4 Architectural Considerations

All the experiments discussed so far lead us to assert that characterizing short-range low
power radio performance in mobile sensor networking scenarios is complicated. This
is particularly true when considering arbitrary static and mobile node positions across
the experimental field because of the dependence on the surrounding environment, the
background noise in the same radio band, neighboring obstacles, etc. However, we take
a systematic approach to experimentally investigate and quantify the effect of a person’s
body and mobility on short-range radio transmissions by designing a number of simple
benchmark tests.
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We believe that the findings of this work could be considered as an important step
towards understanding the complex radio behaviour of mobile 802.15.4 devices carried
by people. In particular, the results discussed in Section 3 could drive application and
protocol design for mobile people-centric sensor networks [4] and delay tolerant net-
works [12]. In what follows, we discuss some of the implications of our results on the
communication protocol stack for short-range radio mobile node architectures.

Application layer. The data exchanged between nodes is limited by the short mobile-
to-mobile and mobile-to-static rendezvous times, i.e., the CT and ECT metrics dis-
cussed in Section 3. The former includes scenarios such as a peering application or the
result of delay-tolerant data exchange [12]. The latter includes the case when mobile
nodes engage in a rendezvous with static nodes for uploading data to the Internet or
receiving tasks [8] [4].

In our experiments, at most 96 kBytes and 73 kBytes can be exchanged in the side-
walk and hallway scenarios, respectively, given the average throughput achieved dur-
ing the nodes interaction and the measured contact time at normal walking speed. For
this reason, an application should minimize the number of data bytes to be exchanged.
This could be achieved by implementing fusion and filtering algorithms directly on the
nodes to minimize the amount of data produced (and/or locally stored) by the on-board
sensors.

Transport layer. Any communication protocol should minimize the signaling over-
head to maximize the data transmission opportunities during the rendezvous time. A
transport protocol must act quickly and a NACK-ing or cumulative acknowledgment
solution would be preferred over a per-packet ACK-ing scheme. The transport protocol
should be opportunistic in the sense that it should be able to rely, for example in the
mobile-to-static case, on multiple static nodes to accomplish the job. The mobile-to-
static interaction in fact is most likely associated with data upload or task download
sessions [8] [4], where the static node acts as a gateway between the static and mobile
infrastructure.

If the mobile node goes out of the radio range of a static node, then the data upload
or tasking session must be able to recover/complete when the next static node in the
neighborhood is encountered. For example, this could be done by having a static node
involved in a mobile uploading or tasking session propagate the state of the ongoing
session to its neighboring nodes (e.g., to the static nodes in the same building or on the
same street). As the mobile node enters the radio cell of one of the notified static nodes
the uploading/tasking session would eventually complete.

Network layer. Any routing protocol must be reactive enough to the strong asymme-
try on the radio signature caused by the body factor (Section 3). In particular, given this
asymmetry, maintaining multi-hop paths between nodes is challenging. This is because
when a link is established between two mobile nodes approaching each other, this link
could suddenly disappear as the nodes pass each other (as we have seen in Section 3)
causing a sudden disruption of the path. There is a need then for proactive routing pro-
tocols that, by monitoring the radio channel conditions (for example the RSSI gradient
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as the nodes approach each other) and maintaining alternative paths if possible, can
quickly recover from any sudden links loss due to the body factor.

MAC layer. The body factor could make the hidden terminal problem more severe in
mobile people-centric sensor networks than in the static LoS grid topology. Imagine
node A approaching node B (having the two nodes facing each other), and imagine
node A passing node B and eventually stopping behind B. Assume that B is static and it
is willing to start communicating with a node C approaching node B from the front. As
we have seen in Section 3, given this configuration node A will not be able to overhear
B’s transmission to C. Assuming a CSMA access scheme, A hears a clear channel and
assumes it can start transmitting packets to a node D in the neighborhood. This means
that even if nodes A and B are physically close to each other, by not being able to sense
the respective radio activity their radio transmissions will possibly interfere with each
other. We plan to experimentally investigate the impact of the body factor on the MAC
layer design in future work.

Physical layer. Our findings can be leveraged to develop more accurate radio
models for the short-range, low power 802.15.4 radio networks when the nodes are
carried by people. These models could have applications in: i) improving network sim-
ulators widely used in the research community (e.g., NS-2 [31], Omnet++ [32], and
Tossim [33]) to include radio models that take into account the body factor and the zero
bandwidth crossing point; ii) in the domain of opportunistic communications; there
have been studies to characterize mobility and radio contact patterns between peo-
ple [34] [35] where nodes are assumed to be in radio contact if they are in the same
venue at the same time [34]; delay tolerant routing protocols using routing functions
based on nodes distance have been proposed [35]. However, we show that given the
body factor nodes that are almost co-located and near each other are not guaranteed to
have radio contact. Our work could be used to enhance the radio models for opportunis-
tic communication networks.

5 Conclusion

In this paper, we have studied the impact of the human body on 802.15.4 radio commu-
nication under a variety of experimental conditions (mounting positions, indoor/outdoor
environments, body size, etc.). We show how the body factor, and particularly the
zero bandwidth crossing point phenomenon, combined with mobility, makes people-
centric sensor networking based on low-power 802.15.4 radios challenging. Our work
underscores the importance of taking the body factor into consideration when design-
ing applications, networking protocols, and radio models in the people-centric sensing
domain [4]. Our experimental data are publicly available in the CRAWDAD reposi-
tory [36].

As part of future work we plan to investigate the body factor in the context of more
sophisticated scenarios, for example, in multihop, multi-node environment with simul-
taneous transmissions. Additionally, we hope to demonstrate the extent of the body
factor in other short- to mid-range radio networks (e.g., Bluetooth and 802.11abg).
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Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 326–341. Springer, Heidel-
berg (2006)

27. Madhavapeddy, A., Tse, A.: A Study of Bluetooth Propagation Using Accurate Indoor Lo-
cation Mapping. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005.
LNCS, vol. 3660, pp. 105–122. Springer, Heidelberg (2005)

28. Ruiz, J.A., Xu, J., Shimamoto, S.: Propagation Characteristics of Intra-body Communica-
tions for Body Area Networks. In: Proc. of CCNC 2006, Las Vegas, USA (January 2006)

29. Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance Study of IEEE 802.15.4
Using Measurements and Simulations. In: Proc. of WCNC 2006, Las Vegas, USA (2006)

30. Werb, J., Newman, M., Berry, V., Lamb, S., Sexton, D., Lapinski, M.: Improved Quality
of Service in IEEE 802.15.4 Mesh Networks. In: Proc. of the International Workshop on
Wireless and Industrial Automation, San Francisco, California, USA (March 2005)

31. Network Simulator – 2, http://www.isi.edu/nsnam/ns
32. Omnet++, http://www.omnetpp.org/
33. Tossim, http://www.cs.berkeley.edu/∼pal/research/tossim.html
34. Srinivasan, V., Motani, M., Ooi, W.T.: Analysis and Implications of Students Contact Patterns

Derived from Campus Schedules. In: Proc. of MobiCom 2006 (September 23–29, 2006)
35. Leguay, J., Friedman, T., Conan, V.: Evaluating Mobility Pattern Space Routing for DTNs.

In: IEEE Infocom 2006, Barcelona, Spain (April 2006)
36. Crawdad, http://crawdad.cs.dartmouth.edu/dartmouth/zigbee radio

http://www.isi.edu/nsnam/ns
http://www.omnetpp.org/
http://www.cs.berkeley.edu/~pal/research/tossim.html
http://crawdad.cs.dartmouth.edu/dartmouth/zigbee_radio


Analysis of Audio Streaming Capability
of Zigbee Networks

Davide Brunelli1, Massimo Maggiorotti2, Luca Benini1, and Fabio Luigi Bellifemine2

1 Dept. of Electronics, Computer Science and Systems, University of Bologna, Italy
{davide.brunelli,luca.benini}@unibo.it

2 Telecom Italia Lab, Italy
{massimo.maggiorotti,fabioluigi.bellifemine}@telecomitalia.it

Abstract. Although formerly conceived for industrial sensing and control over
Wireless Sensor Networks, LR-WPANs are registering an increasing interest in
experimenting multimedia applications, with particular emphasis on evaluating
the streaming capability of Zigbee networks. Due to their limited throughput
they are not expected to provide high QoS, nevertheless there are several ap-
plication scenarios such as distributed surveillance, emergency and rescue where
audio and video streaming over low cost Zigbee networks is highly desirable. In
this paper we first investigate the feasibility of Zigbee-like networks for low-rate
voice streaming applications. We analyze important streaming metrics such as
throughput, packet loss and jitter in multi-hop topologies. We propose some im-
provements in the stack implementation and show the performance in order to
determine the streaming capacity limits of LR-WPAN networks.

1 Introduction and Contribution

The past few years have seen an explosion of research studies on Wireless Sensor Net-
works (WSN) and in particular on low-rate wireless personal area network (LR-WPAN)
conforming to the IEEE 802.15.4 standard. WSNs have been confirmed as an important
embedded computing platform and in the next future it is expected that LR-WPANs
will be used in a wide variety of embedded applications, including home automation,
industrial sensing and control and environmental monitoring. In this paper we focus
on Zigbee [1], which is one of the most promising standards for LR-WPAN. It relies
on IEEE 802.15.4 and it is specifically designed to address the need of low cost, low
power solutions and flexible network routing and management. Although most of the
past and the current applications for WSN focus on simple sensing and reporting ac-
tivities , there is a growing demand to make WSNs really ubiquitous and in particular
there is the need to support multimedia streaming for audio, voice and low-rate video.
A wireless sensor network is a collection of low-cost sensor nodes that can be deployed
very quickly in the environment and can communicate with each other via radio inter-
face. To allow large networks some nodes act usually as routers for multi-hop connec-
tions without relying on any pre-existing infrastructure. For all these features together
with low-power consumption, WSNs are very attractive for many applications such as
conferences, intra-building communications as well as surveillance and emergency sce-
narios (e.g. law enforcement, rescue activities ...) and voice streaming communication
is an attractive feature for many of these network scenarios.

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 189–204, 2008.
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Since so far much attention has been paid to low duty-cycle applications, to the
best of our knowledge, streaming capabilities have not been yet extensively studied for
multi-hop LR-WPAN. Moreover, if we consider that multimedia streaming is very dif-
ferent from data communication, assuring effective audio communication over
LR-WPAN is an important new challenge in the sensor network arena. In particular
our case study is an emergency scenario where a rescue team must go inside hostile and
unknown environments (e.g. collapsed or blazing buildings, caves, long tunnels ...) and
where classic long distance wireless communications might be hampered by the nature
of the environment. The idea is therefore to disseminate small wireless sensor nodes
while the rescuers advance and explore the environment in order to build dynamically
a network for on-site data transmission and voice streaming between the place of the
disaster and the base station. Of course the network will not be stable and long-term
operating, but low-power characteristics of LR-WPAN are essential to guarantee the
maximum life-time during the rescue activity, and the low cost of the Zigbee devices
makes the loss or the destruction of some nodes affordable.

There are several limits for achieving an effective streaming capability over Zigbee-
like networks. Wireless streaming is generally an expensive operation for the limited
energy budget of the nodes and it is often infeasible replacing batteries of the de-
vices. The energy reservoir problem seems will be solved by recent studies on hard-
ware/software power harvesting techniques which attempt to realize perpetual powered
systems [2,3]. Another well-known restriction in wireless networks is the high probabil-
ity of transmission errors due mainly to multi-path fading or electromagnetic interferen-
ce and its intrinsic location-dependency, which make wireless communication links to
have fluctuating quality levels and time-varying characteristics. Finally time constraints
are also very important, because audio/video streaming applications are delay-sensitive.
Usually a late arriving packet is not useful to the end node, and it is better to drop such
data rather than sending it several times.

The overall goal of this paper is to describe the audio streaming capability of a
Zigbee-like network over the IEEE 802.15.4 framework. In particular we examine se-
veral metrics of multi-hop communication such as throughput, jitter, latency and packet
loss, using different paths and routers to deliver the information. All the measurements
are performed through the analysis of a real setup using Zigbee-enabled devices de-
ployed in the environment.

The remainder of the paper is organized as follows. Related works are reviewed in the
next section whereas an overview of the Zigbee protocol is presented in Section 3. We
will also argue about the decision to adopt a free protocol stack for our work. Section 4
describes the experimental hardware we use, followed by Section 5 which illustrates
the results during the analysis of the Zigbee network for streaming activity. The discus-
sion on improvements and tuning of the protocol stack is reported in Section 6, finally
Section 7 concludes the paper.

2 Related Work

Streaming over sensor networks makes power management, bandwidth, memory and
energy supply very challenging especially in a multi-hop domain rather than in a
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direct link. Several studies have been already presented about performance analysis
over IEEE 802.15.4 MAC framework. In [4] the author investigates the performance
and feasibility of IEEE 802.15.4 for low bit-rate audio/video streaming applications.
In particular he focuses on packet loss and latency in order to find a suitable operating
rate value and he proposes a method for an adaptive streaming, based on a link quality
indicator. The main weak point of the article is that the author presents only simulation
results using a network simulator and does not perform real measurements with sensor
nodes deployed in the environment. Formerly, [5,6,7] have presented overviews of the
IEEE 802.15.4 standard showing simulations, experiments or combination of both.

Theoretical research about the real-time streaming capability in a generic multi-hop
WSN is presented in [8]. The author defines the capacity of the network in order to
estimate the amount of data sensor nodes can deliver real-time before packet deadlines.

Practical implementations of multimedia context transmission over WSNs are also
available, but usually the information to deliver is just a still image and streaming issues
are not tackled. An implementation of a sensor node that can deliver multimedia infor-
mation is proposed in [9]. In [10,11] the authors present image transmission over WSN,
but they mainly focuses on the point-to-point transmission and power management in
order to minimize the overall compression-and-transmission energy consumption.

Finally a system for voice streaming over WSN is fully implemented in [12]. The au-
thors do not exploit a Zigbee network but investigate a TDMA-based network schedul-
ing to meet audio timing requirements. They provide 2-way voice communication with
a 24 ms per-hop deterministic latency across 8 hops. The developed hardware has a
dual-radio architecture for data communication and hardware-based global time syn-
chronization.

None of the above references focuses on the streaming capabilities of a real Zigbee
network, analyzing the performance of the stack protocol under different parameters or
proposing changes and improvements to outperform the current characteristics. In this
paper we fill this gap using a free Zigbee-like stack protocol.

3 Stack Overview

Zigbee and IEEE 802.15.4 wireless technology are specifically designed to provide
cost-effective and flexible wireless networks, which supports low power consumption,
interoperability, reliability for control and sensors acquisition with moderate data rates.
The scalable capability is supported in particular by the IEEE 802.15.4 standard, which
defines physical (PHY) specifications to operate into three ISM frequency bands (868
MHz, 915 MHz, 2.4 GHz) and can accommodate up to 27 channels with a maximum
raw data rate of 250 Kbps for the 16 channels allocated in 2.4 GHz band. Clearly this
might be a limiting factor if transferring larger amounts of data is required. Devices
currently available on the market work with a transmission range between 10 and 70 m.

Medium access control (MAC) specifications are also provided by IEEE 802.15.4
standard. The network can operate in two configurations: beacon enabled and beacon-
less mode. Beacon mode defines synchronization and reliability of the transmission
mechanism, whereas beaconless networks adopt a simple lightweight protocol based
on CSMA-CA. Although using no beacons is generally preferred, this mode registers
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more power consuming communications because of the more collisions which make
the node to wait for the retransmission of the frame.

Zigbee protocol relays on the underlying IEEE 802.15.4. It manages routing protocol
in the network layer (NWK), security and name binding in the Application Support Sub-
layer (APS), and defines the Application Framework (AF) for user applications. In our
work we focus on streaming applications which are built over (AF) and are forwarded
using multi-hop path by the network layer. Zigbee specifies three types of nodes, for dif-
ferent activities: the Zigbee End Device (ZED) which provides information to deliver,
the Router (ZR) and the Coordinator (ZC) which is unique in a network. The coordi-
nator has to synchronize the network, maintaining the routing table, has to accept new
nodes in the network and has to manage the disconnections. Usually it is also employed
as data sink.

In streaming communications the maximum packet size should be transmitted, be-
cause with the increase of the data unit size the overhead of the headers is reduced.
Unfortunately IEEE 802.15.4/Zigbee protocols do not define large payload in their spe-
cification. For instance, the maximum payload data unit defined by PHY layer is limited
to 127 bytes. Since the MAC header requires a maximum of 23 bytes, and up to 17 ad-
ditional bytes are reserved for NWK, APS, and AF layers, the actual user data unit size
at application level is limited to 89-93 bytes (depending if long or short addressing is
adopted during communication). In this situation an efficient fragmentation mechanism
becomes essential for a streaming application, but again Zigbee does not specifies data
fragmentation and reassembling protocols, and the implementation of fragmentation
and flow control mechanisms at application layer is up to the end-user development.

We tried several commercial solutions ranging from Freescale [13] to Telegesis [14].
So far we have found out that a real integration and interoperability among these sys-
tems is not yet completely fulfilled, since some devices do not provide all the features
of Zigbee 1.0. Since our work is not focused on interoperability and Zigbee profiles
compliance, we decided to adopt for our tests a Zigbee-like protocol stack in order to
evaluate the performances of the streaming capability. In particular it is provided source
free allowing the developers to look deep into the code. This is an interesting feature
because one goal of this work is to investigate and flush inefficiencies, optimize perfor-
mances and point out hardware and software lacks. The stack is developed by MS State
University [15], and although it is not certified as compliant by the Zigbee Alliance, it
does use the NWK, APS, AF frame formats from the Zigbee standard implementing
static trees and routing as specified in the standard, so it actually performs all the main
features that are fundamental for streaming analysis of the Zigbee protocol [1,16].

4 Experimental Setup

As hardware platform, we exploit a solution provided by Texas Instrument [17], using
the system on chip (SoC) CC2430. The system operates at 2.4 GHz band and offers
a raw bit rate of 250 Kbps. The device integrates all operational functions such as
radio transceiver, data processing unit, memory and user-application features on one
single silicon die and this contributes greatly to performance, power consumption and
cost. High performance and reliability at lower power consumption is achieved due to
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the close interaction of dedicated on-chip functions minimizing overhead. In particular
MAC timing operations are handled more effectively by dedicated circuitries, and the
system integrates a significant set of the IEEE 802.15.4 requirements (e.g. CSMA-CA,
preamble generation, synchronization, CRC-16) to off-load the micro-controller.

As we already remarked, audio streaming is very different from data and control
communication due to the inherent delay constraints. If data arrives too late, informa-
tion is no more useful for playing audio and this leads to the consideration that it is
better to drop it at the sender or somewhere in the path. Too late packets could happen
for various reasons, for example, the necessity of the sensor node to react to external
events in a timely manner. To evaluate the audio streaming performances over a Zigbee
network, we off-load the SoC device from audio conversion and compression process-
ing using external dedicated devices. Audio information is sampled at 8 KHz and data
is coded using 8bit A-law conversion, moreover we can dynamically perform additional
compression using an external ADPCM processor and select dynamically the desired
audio rate ranging from 16 Kbps to 64 Kbps. Of course this first step of data process-
ing results in an increase of power consumption due to additional devices but it helps
to separate and identify the cost of the Zigbee stack in power consumption, computa-
tion effort and its reactivity, without any interference of other on-board activities. On
the other hand the power consumption of the CODEC is comparable to the consump-
tion that the SoC CC2430 registers when it performs additional A/D conversions and
processing. For audio processing, we use the PCM codec TLV320AIC1107 from TI
which consumes no more than 20 mW when it performs coding/decoding procedures,
while the DS2165Q ADPCM processor chip from Maxim is exploited for ADPCM
compression at the desired data rate and may require up to 60 mW. To guarantee a com-
plete decoupling between signal processing and streaming procedures, we adopt double
buffers architecture between CODEC modules and the micro-controller as depicted in
Fig. 1. To verify the quality of the voice transmitted over Zigbee we implemented a
simple full-duplex push-to-talk (PTT) application between nodes in the network. The
FSM used in our system is illustrated in Fig. 2.

Depending on the RF environment and on the required output power consumption,
Zigbee compliant wireless devices are expected to transmit in a range of 10-70 m.
The evaluations presented in this paper are selected between several measurements
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performed using distances ranging from 5 m to 35 m between nodes in the network
and exploiting different payload sizes at AF level (varying between 8 and 93 bytes).
We used a beaconless network and direct transfer mode to send messages. In order to
minimize the influence of other ISM transmissions over 2,4GHz, the WPAN is formed
using the channel 15 because it is pretty unaffected by IEEE 802.11 networks in Europe
(as well as channels 16, 21 and 22).

The voice stream is delivered at constant bit-rate (CBR) and its value can be selected
at the startup. For the experiments presented in this paper we vary the bit rate ranging
from 24 Kbps to 128 Kbps. In every measurement session at least 10000 packets were
sent over the network for each experimental test conditions and the results were ave-
raged over a minimum of 20 trials. It is worth to specify that measurements are taken
indoor with no particular attention to serious obstacles for signal propagation in order to
approximate a real scenario of streaming infrastructure for emergency rescue in hostile
environments.

5 Performance Evaluation

In this section, the experimental results are reported. We begin with a baseline analysis
of the timing performance of the used devices, then we discuss throughput measure-
ments, followed by some considerations on the deployment of the network in the envi-
ronment and the problem of the shared channel. Finally further measurements aim to
investigate the latency, the inter-packet delay, the jitter, the packet loss and the power
consumption of a streaming LR-WPAN.

5.1 Time Analysis

In addition to simulation results, another useful way to estimate the best-case stream-
ing performance over Zigbee is to analyze the time the platform needs to deliver the
messages and to receive acknowledgments from the destination node. In this way we
can separate the contribution of the latency between software implementation and hard-
ware components of the protocol stack. As remarked, the module CC2430 executes
several MAC and PHY operations directly on dedicated built-in hardware to guarantee
the maximum efficiency in terms of power consumption and execution time. We inves-
tigate the time necessary to deliver a message in a point-to-point configuration between
nodes and an analogous measurement has been done for a router device. The results
are depicted in Fig. 3. The time necessary for synchronization, preamble generation,
accessing to the medium using CSMA protocol, sending and receiving is around 4,5 ms
per link. Since routers forward incoming messages this hardware delay contribution is
twofold. Crossing the stack from the upper layers requires less time because of the ac-
tivities of NWK, APS, AF are generally simpler and our work does not consider any
operations concerning security and cryptography of the messages. This time informa-
tion is obtained measuring the interval between the activation of GPIO signals triggered
in particular moments. We intercept for instance when the user calls the AF layer for
message delivery, when the software part of the stack writes to the FIFO TXFIFO of
the SoC letting the hardware to complete the delivery of the packet, and when the signal



Analysis of Audio Streaming Capability of Zigbee Networks 195

SW

HW

1 
m

s

4,5 ms
PHY layer

AF layer

APS layer

NWK layer

MAC layer

PHY layer

AF layer

APS layer

NWK layer

MAC layer

0,
9 

m
s

SW

HW

4.5 ms

SW

HW

4,5 ms
PHY layer

AF layer

APS layer

NWK layer

MAC layer

0,
8 

m
s

4,5 ms

1 
m

s

a) Point-to-point b) Router

Fig. 3. Time to cross the HW and SW part of the protocol stack

IM_TXDONE of the MCU informs that the transmission has successful completed with
acknowledgment.

Using a point-to-point configuration and exploiting the maximum data unit size of
93 bytes, the delivery of the message to destination takes 6,4 ms in the best case. We
can use this information to find out a practical estimation of the best case data rate in a
ZigBee network. Assuming that:

– We perform a single hop transmission;
– There is no overhead in the node activity;
– There are no lost packets.

we can compute that the highest data rate is expected to be

data rate = maximum payload
time to deliver the message

that is 116,25 Kbps. It means that the effective utilization of the channel for user infor-
mation is limited to the 46,5% of the theoretical raw data rate (250 Kbps) claimed by
the standard.

Under the same assumptions we could also compute the best forward rate of a Zigbee
router in a network. In this case, if we consider a network with precompiled routing
tables, the expected forward rate is

data rate = maximum payload
time to cross the router

that is 68,9 Kbps.

5.2 Throughput

In this work the throughput is defined as the amount of the data units (PDU) correctly
arrived to the destination, divided by the length of the interval of the experiments (i.e.
between the first and the last delivery Tend − Tstart):

Throughput =
∑

i Length(PPDUi)
Tend − Tstart

(1)

The setup used for this experiments is a multi-hop string topology varying the num-
ber of the routers in the path as illustrated in Fig. 4.
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The throughput in a multi-hop path decreases quickly, as shown in Fig. 6. We per-
formed measurements varying both the size of the user data unit (8, 20, 32, 46, 64, 93
bytes) and the number of hops using up to eight routers. In particular the plot shows that
increasing the number of hops the throughput degrades faster for large sized payloads.
This higher degradation is due to higher probability of collisions for large packets du-
ring CSMA, if there are several nodes of the WPAN in the same transmission area. No
optimizations were implemented in the protocol stack during these experiments.

Considering that our scenario is intended the share the network infrastructure for
other kind of data transmission (e.g. status of the rescuers, temperature in the blazing
building ...), we performed experiments also with cross traffic. In particular, as illus-
trated in Fig. 5, other nodes, called injecting nodes, are joined to the same network and
exchange data with the coordinator (ZC). We use different values of cross traffic, rang-
ing the rate from 93 bps to the highest rate achievable by the node, using the maximum
available payload and we change the position of the injecting nodes across the network.
Figure 7 shows the degradation of the throughput when two hops divide the streaming
sender from the receiver and only one injecting node was connected to the router. In the
x-axis the different rates of the cross traffic packets are reported and considering that
in the absence of cross traffic the measured throughput is 61,4 Kbps, the plot shows
that only moderate injecting rate keep the degradation of the stream throughput rea-
sonable low. Considerable reductions of over 40% are registered starting from 930 bps
traffic rate.
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5.3 The Shared Channel Problem

The absence of a dynamic policy for channel switching between nodes belonging to the
same PAN is one of the main shortcomings of the current Zigbee specifications. Once
the coordinator has selected the channel for the personal area network, all the nodes will
join the PAN will work and share the same channel. Of course nodes may join to diffe-
rent networks in the same time using different channels, but at the moment there are no
specifications concerning frequency hopping within the same network. In other words,
because the channel is fixed once the PAN is formed, if nodes are deployed too close
to each other they have to share the same space and channel causing an uncoordinated
access to it. To achieve high network utilization it is necessary maximize the number of
nodes which can transmit concurrently and therefore exploiting spatial reuse becomes
essential. As example we consider the deployments illustrated in Fig. 8. In a) a situation
which does not take in account spatial reuse and can perform only one transmission is
compared with the deployment b) where several nodes can communicate each other in
the same time without interference, due to smart radio range coverage.

6

3

2
1 5

4

1 2 3 4 5 6

a)

b)

Fig. 8. Deployments: a) shared space and channel; b) network which exploits the spatial reuse

We propose algorithm 1 to enable this kind of smart coverage in a Zigbee network.
The algorithm is solely designed for the initialization phase, when the PAN is already
formed by the coordinator and sensor nodes are joining to the network. The main idea
is to keep the transmission range of a sensor node as short as possible, avoiding the
contention of the channel with other nodes of the PAN which are not directly linked to
it. Obviously such a configuration may suffer of instable connections. but this problem
can be solved with a dynamic tuning of the output power level using the Link Quality
Indicator (LQI) of the connection as feedback information from the receiver. One of
these method is presented in [4].

Using the proposed algorithm to build the network and maximizing the number of
concurrent transmission, we repeat the measurements of throughput. The comparison
between the two deployments is shown in Fig. 9. It confirms that adopting an intelligent
distribution of the network may increase the throughput up to 30,5 Kbps. Since this kind
of deployment defines a set of nodes which can transmit concurrently, this pattern can
be repeated in the space with low effects on the throughput. In the figure we can see that
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Algorithm 1. Spatial reuse algorithm
Require: Maintain an ordered set of increasing programmable RF output power level

for the Zigbee node {Pouti : 1 ≤ i ≤ NMAX};
Output: Transmit power level TPL;
Data: Joined node JOINED;
initialize the Zigbee node;
n ⇐ 1;
TPL ⇐ Poutn;
JOINED ⇐ FALSE;
JOINED ⇐ join to network();
while (JOINED = FALSE) do

if TPL = PoutNMAX then
return Join procedure failed;

end
n ⇐ n + 1;
TPL ⇐ Poutn;
JOINED ⇐ join to network();

end
return Join procedure successful;

it becomes almost independent from the number of nodes and the values we measured
could perfectly sustain an audio streaming using a constant bit rate of 24 Kbps.
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All the measurements presented in the following sections, are taken using this kind
of setup which maximizes the number of concurrent transmissions.

5.4 Latency

The latency is also known as delay and it is usually defined as the amount of time re-
quired by a packet to travel from source to destination. Together, latency and throughput
define the speed and capacity of a network. Real time and full-duplex streaming com-
munications must consider this metrics very carefully in a network deployment. For
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example in full-duplex communication roundtrip delay of 300 ms is noticed by the fi-
nal user and the human ear starts to detect delays of 250 ms. If such thresholds are
exceeded the communication becomes annoying. Figure 10 depicts the measurements
performed in order to characterize the end-to-end latency in our Zigbee testbed. Under
ideal conditions and considering the timing analysis described in Section 5.1, we ex-
pected a linear increase of the delay with the number of the hops to the destination. The
measured latencies validate this trend, registering also an additional overhead due to the
not ideal environment. Our experiments is limited to 9 nodes and we covered a distance
between sender and receiver of about 160 m, but considering that a transmission range
of a Zigbee compliant device can arrive up to 70 m, these experiments confirm that a
LR-WPAN could sustain voice transmission in a range of some hundreds of meters and
fulfill the most common WSN multimedia application scenarios.

5.5 Inter-packet Delay

If voice streams are sent at constant bit rate, it is expected that also the receiver registers
in average the same rate for arriving packets. Of course packets may be routed through
different paths in the networks, take different time, and some of them may be lost during
the travel to the destination, but in general it is possible to define an expected deadline
for packet arrivals. For this reason we measure the average of inter-arrival time of the
packets in Fig. 11. In streaming communication also the order of packet arriving is
important, and in Fig. 12 we show the average of the interval time between consecutive
packets.
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The measurements were performed varying the number of the hops in the path and
using different sending rate for voice transmission. Using an audio rate of 32 Kbps and
exploiting the whole payload in the Zigbee messages, it is expected to receive a packet
every 22,7 ms when no messages are lost. Higher values of delays are the consequence
of packet loss, because missing messages at the receiver increase the inter-packet delay.
To test the limits of the network, we perform the measurements also using a sender bit
rate of 119 Kbps, that is the maximum rate we registered in a single hop connection
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(see Fig. 6). In this case the expected average inter-packet delay is only 6,2 ms, but the
plot shows higher measured values in multi-hop configuration that is symptom of a high
packet loss in the network.

5.6 Jitter

The jitter is a typical problem in connectionless networks and in particular in wireless
infrastructure. It is closely connected to inter-packet delay since it is the measure of the
variability over time of the latency across a network. Multimedia streaming has usually
problems due to this effect, which affects the QoS. In a full-duplex voice service the
jitter should be less than 100 ms. One of the solution to mitigate this effect is exploiting
buffers between the network and the multimedia converters. A jitter buffer is basically a
small queue where received messages are stored in order to give the information to the
CODECs with a constant delay. Usually queue size may be dynamically modified and
when it is tool small the packet loss increases. On the contrary a too large jitter buffer
turns out in lower packet loss at the cost of a bigger delay experienced by final users.
Figure 13 shows the maximum measured jitter varying the number of hops in the path
and using different rates at the sender.
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Using the topology described in Fig. 5, we evaluated also the jitter under traffic con-
dition with five routers between sender and receiver. The experiments depicted Fig. 14
show the maximum jitter measured with a variable source rate of the sender and a
second node that injects data in the LR-WPAN with three different data rates. As ex-
pected, the jitter of the stream communication increases in average when cross traffic in
the network grows. The evaluations are done over correctly consecutive arriving mes-
sages, therefore packet loss does not influence the measurement. All the experiments
register a maximum jitter below the threshold of 100 ms for an acceptable QoS even in
case of cross traffic configurations.

5.7 Packet Loss

Packet Loss can be due to several reasons, such as the congestion of the network, full
buffers in some routers in the path and fails in the reception of packets (e.g. CRC fails,
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or channel interferences). Depending on the used audio compression level the loss of
several consecutive packets may lead to a severe reduction of QoS. In fact if we use
an audio rate of 64 Kbps, a single Zigbee packet contains 11 ms of audio stream, the
information interval increases up to 46 ms adopting a more aggressive ADPCM com-
pression of 16 Kbps. However voice is quite predictive and if the packet loss is isolated
the voice can be heard in an optimal way. Moreover an emergency scenario accepts also
low audio quality levels for the service, therefore even more lost packets are allowed if
they do not occur in a burst way.

In this work we consider the packet loss as the number of the user messages that
actually have never arrived to the destination at application level, divided by the total
number of delivered packet:

Packet Loss =
Nsent packet − Nreceived packet

Nsent packet
(2)

First of all in Fig. 15 we evaluated the dependence of the packet loss as a function
of the distance using a direct link between two nodes. Measurements are taken in in-
door environment with an uninterrupted burst of messages from the sender in order
to emulate a critical scenario. For this reason the packet loss starts to grow quickly
beyond 25 m.
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Fig. 16. Packet loss under traffic condition

Using a fairer setup with small distances between nodes and the cross traffic sce-
nario already adopted for jitter experiments, the plot in Fig. 16 shows how the traffic
from other nodes affects the packet loss. We remark that in a voice over WSN appli-
cation, even if the audio stream requires most of the resources in the path, other kind
of data (such as environmental data) may be delivered. This auxiliary information is
characterize by low data rate and this is the reason because of the effect of the traffic
begin to influence the performance with sender rate over 64 Kbps.

In a multi-hop scenario the packet loss increases with the number of hops. As de-
picted in Fig. 17, the maximum source rate (119 Kbps) at the sender results in a dra-
matic packet loss even with only one router, meanwhile with a controlled bit rate of
32 Kbps the effect of losses is mitigated, but it is still important if high QoS is required.
The reason of such a high rate of missing packets is investigated in Section 6.
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5.8 Power Consumption

We analyzed the power consumption of the whole Zigbee transceivers, because the na-
ture of the adopted SoC system does not allow to identify accurately the contribution
of the micro-controller and the RF radio. If no low-power mode is adopted the Zigbee
module operates always in receiving mode, after having joined a network. Figure 18
shows the power trace when the voice streaming module is switched on. It is possible
to recognize, after a short initialization period of 36 ms, the voice node attempting to
find a network and joining to the PAN. The join request lasts 200 ms, but the exploited
hardware repeats the request three times as redundancy. Even in this phase the con-
sumption is around 90 mW. We registered that the current used in receiving mode is
around 28 mA, increasing to 30 mA when the transceiver switches to the TX mode.
Since we supplied the sensor node with 3.3 V, the power consumed by the platform is
92,4 mW in RX, and 99 mW in TX. In our test we did not perform any power optimiza-
tions, neither had we modified the value of the RF transmitted power by setting internal
CC2430 registers.

6 Refinements

In this section we investigate the adopted implementation for the Zigbee stack and we
show how it is possible with small changes in the default parameters to improve the
performance of the system. In particular we investigate the input and output buffer
mechanism, varying the size of the queues in a Zigbee router device.

In Fig. 19 we analyze the causes of the packet loss in a multi-hop configuration. The
main contribution to router losses is given by packet collisions at MAC level, whereas
considering the messages actually received by a router, a small percentage is discarded
by failure in the CRC verification. Finally a relevant amount of packets to forward are
lost because the system buffers are not available to store them after a successful CRC.

The adopted stack implementation reserves memory space for 4 packets size both for
the input and output queue by default. When these buffers are full, any further arriving
packet is discarded. We tried to increase the buffer length and in particular we tested any
combination using 4, 16, 32, 64, 128 packets as queue size. Results about the obtained
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performance are depicted in Fig. 20. In any measurements, we registered the number
of arrived packets and correctly forwarded by the router, counting also the number of
losses because of the full buffer. From the plot we deduce that the size of the input
queue buffer does not really influence loss reduction (even the best size results to be
64) and it depends on the fact that the stack makes immediately a copy of the incoming
message in the NWK space. Increasing the size of the NWK buffer, instead, helps to
reduce the number of lost packets. With the adopted platform we found that a buffer
size of 64 messages is enough to nullify the contribution of the stack to the packet loss.

7 Conclusion

This paper presented an accurate evaluation of streaming performance over LR-WPAN.
All the experiments have been taken using a real Zigbee testbed with large LR-WPAN
network deployed in indoor environment. We also discussed about methodology of net-
work deployment in order to optimize the performance and we evaluated the optimal
size for the input/output queues in a Zigbee router. Our investigation on metrics such
as throughput, packet loss, jitter and power consumption demonstrates that it is pos-
sible to develop voice streaming applications over LR-WPANs network at the cost of
an accurate deployment of the Zigbee network. Under these conditions the maximum
throughput, which results almost unaffected by the number of hops, results to be around
30 Kbps and although it is not enough for high quality audio requirements, it suffices
for the most common voice streaming applications. Main issues for an effective multi-
media streaming over Zigbee are related not only to hardware improvements and smart
deployments, but also to overcome drawbacks of the standard specifications such as an
efficient low-level fragmentation mechanism and providing for larger data unit and for
dynamic channel switching between nodes belonging to the same PAN.
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Abstract. The mass casualty emergency response involves logistic impediments 
like overflowing victims, paper triaging, extended victim wait time and transport. 
We propose a new system based on a location aware wireless sensor network 
(WSN) to overcome these impediments and assists the emergency responders 
(ER) in providing efficient emergency response. We have developed a ZigBee-
ready acceleration sensor node hardware which is energy efficient as shown by its 
current consumption results. ZigBee mesh network is setup and a RSSI-based 
localization solution is analyzed. The main functionality of this WSN is to collect 
real time data – patient/emergency doctor tracking, triage information, patient 
vital signs/activity and communicate it to the ER’s Monitor Station device that 
runs the visualization software. We have implemented this software using the new 
‘Care Zone Count Algorithm’ a dynamic mechanism based on localized events 
and data acquired from the WSN. This algorithm calculates and displays the 
patient count in each care zone, victim flow rate, transport capacity, thereby 
enabling the ER to efficiently estimate the resources required. The analysis of this 
algorithm verifies that the proposed system creates situation awareness to the ER.  

Keywords: Emergency response system, care zone count algorithm, location 
aware WSN, ZigBee. 

1   Introduction 

During a mass casualty disaster, one of the most urgent problems that lead to chaos at 
the disaster site is the large number of patients [3]. Currently existing emergency 
response system mostly involves manual interpretation which is labor intensive, time 
consuming and error prone. A new emergency response system based on wireless 
sensor network (WSN) is proposed by us to solve these problems. The use of WSN 
emergency response system provides flexibility and usability. 



206 A.-K. Chandra-Sekaran et al. 

WSN’s are perceived as dynamic, ad-hoc networks with thousands of sensor nodes 
communicating over radio channels, performing data sensing and collaborative 
processing [2]. Some of the important challenges of WSN are: 

• Self-Sufficient operation: Typically, the sensor nodes are battery powered and left 
unattended at deployment site. 

• Self Organization: The ability of the sensor nodes to spontaneously create an 
impromptu network, configure the network, dynamically adapt to device failure 
and degradation, manage movement of sensor nodes, and react to changes in task 
and network requirements [9].  

• Scalability: A WSN should be able to adapt itself to the insertion of new nodes. 

The new short range, low power, low rate wireless networking ZigBee standard open 
the door for many new applications [2]. 

The organization of the paper is as follows. Section 2 explains the disaster 
management strategy and problems that arise. Section 3 describes about the disaster 
aid network architecture and its functionalities. Section 4 elaborates the ZigBee ready 
sensor node and RSSI based localization solution analysis. Section 5 explains an 
algorithm for efficient resource estimation during emergency response and its results. 

2   Disaster Management Scenario 

The new emergency response system we propose is based on the disaster management 
strategy followed in Germany [11], but it can also be adapted to other disaster 
management strategies.  

Mass Casualty events-“Massenanfall von Verletzten” (MANV) is the widely used 
process for handling disasters in Germany. The on-site organization chief (OOC) 
designates the disaster site into four care zones [12] as shown in Figure 1 and the 
chief emergency doctor plans for triaging the patients.  

 

 

Fig. 1. Patient flow at the disaster site 

Danger Zone (DZ): This is the zone where the actual disaster takes place. The search 
and rescue of the injured patients is carried on here. 
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Injured Deposition Zone (IDZ): The rescued patients are gathered and triaged. 
Triaging is a method to classify the patient according to the severity of their injury 
and prioritize them for evacuation. There are four different classes of triaging: 

• Red: patients who require immediate attention 
• Yellow: patients who require delayed attention 
• Green: patients with light injuries 
• Blue: patients with no hopes of survival 
• Black represents patients who are dead and is not a triage class 

Treatment Zone (TZ): The triaged patients are treated based on the short diagnosis 
in the triage and first aid.  

Transport Zone (TRZ): The ambulances are present here to transport the patients 
from the disaster site to the hospital. The red triaged patients are moved to the 
Transport Zone first, followed by the yellow ones.  

2.1   Field Study 

A disaster simulation drill was conducted by state fire department Bruchsal, Germany 
and the MANV based emergency response for a train-bus collision was simulated. 
The drill comprised of around 60 patients, 35 emergency doctors including the 
paramedics, fire fighters and the Organization group.  

The on-site organization chief (OOC) charted out a plan based on the resources 
available and the victim count. He manually drew a map (see Figure 2) and accounted 
the details of the number of medical responders, transport vehicles, care zones [10]. 

       

                                           

Fig. 2. OOC drawing manual map 

The zones can be nearby or far away and may even overlap one over the other. The 
manual mapping done by the organization chief was time consuming, complex for 
updating real time changes and the resource estimation was hindered.  

Medical responders conduct initial triage and then call their emergency medical 
chief (EMC) using their handheld radios, and verbally report the patient count. The 
officer manually tallies the patient counts on clipboards and verbally reports the 
patient count to transportation coordinators and requests for the necessary number of 
ambulances. After initial triage, patients wait at the scene until their ambulance 
arrives. With a resource limited response team, patients often wait for an extended 
period of time before transport. During this waiting period, patient conditions may 
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deteriorate. Secondary injuries such as hypoxemia, hypotension, and cardiac 
tamponade can become life-threatening if not treated immediately. There is no 
continuous patient vital sign monitoring currently used [4]. The paper based triage is a 
bottle neck and makes the re-triaging difficult [3]. In addition, patients with minor 
injuries often depart the scene without notifying the response team, thus creating an 
organizational headache for EMC/OOC who is responsible for tracking the 
whereabouts of each patient. 

3   Disaster Aid Network (DAN) 

An emergency response system is proposed based on the DAN to solve the following 
main problems (see section 2.1) – no real time patient tracking and vital sign 
monitoring, triaging is a bottleneck, manual resource estimation is time consuming, 
extended patient wait time before transporting. 

 

 

Fig. 3. DAN architecture 

The DAN architecture (see Figure 3) consists of hundreds of nodes distributed in a 
disaster site and wirelessly interconnected through the new low-power ZigBee 
technology to form a mesh network. The DAN ZigBee network uses the 2.4 GHz 
band which operates worldwide, with a maximum data rate of 250 kbps [6]. 

ZigBee is chosen for DAN because it’s a low power, low cost technology for sensor 
networks [6] [17]. ZigBee network can access up to 16 separate 5MHz channels in the 
2.4GHz band, several of which do not overlap with US and European versions of IEEE 
802.11 or Wi-Fi. It incorporates an IEEE 802.15.4 defined CSMA-CA protocol that 
reduces the probability of interfering with other users and automatic retransmission of 
data ensures robustness.  Its self-forming feature enables the mesh network to be 
formed by itself thereby enabling the network to be easily scalable. Its Self-healing 
mesh network architecture permits data to be passed from one node to other node via 
multiple paths. Its security toolbox ensures reliable and secure networks. The MAC 
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layer uses the Advanced Encryption Standard (AES) as its core cryptographic 
algorithm and describes a variety of security suites that use the AES algorithm. These 
suites can protect the confidentiality, integrity, and authenticity of MAC frames.  

There are three logical device types in ZigBee namely- the Coordinators, Routers, 
and End Devices. The Coordinator initializes a network, manages network nodes, and 
stores network node information. The Router node is always active and participates in 
the network by routing messages between paired nodes. The routing is based on the 
simplified Ad-hoc on demand Distance Vector (AODV) method. The End Device is 
the low power consuming node as it is normally in sleep mode most of the time. It can 
take 15 ms (typical) to wake up from sleep mode [17].  

DAN is a heterogeneous network [7] formed with the following type of nodes: 

• ‘Patient bracelet node’ (End Device): Minimized electronic triage tag, localization 
support, ZigBee mote, vital and activity sensors, RFID tag, Localization 

• ‘Emergency Doctor’s (ED) bracelet node’ (End Device): Localization support and 
ZigBee mote 

• ‘Monitor station’ (Coordinator): Collector node running a visualization software 
that displays the disaster site map with location, triage information and used by the 
EMC / OOC 

• ‘Router nodes’: ZigBee motes with known location coordinates that can be 
deployed at the site (ex: attached to  tents, ambulances) 

• ‘Emergency doctors PDA’: For patient monitoring and data recording 

Based on the instantaneous need during the emergency response the concerned nodes 
can form a Mobile Ad-hoc network (MANET) for accomplishing a specific task.  

3.1   DAN Functionalities 

The main functionalities of the Disaster Aid Network are efficient logistics at the 
disaster site (see section 5) and patient monitoring.  

Patient Monitoring 
The implementation of this functionality is not within the scope of this paper. The 
physical and physiological parameters are sensed, collected from the mesh network 
and displayed at the Monitor Station for continuous patient monitoring. If there is a 
change in patient status the EMC is informed at the monitor station and treats the 
corresponding patient swiftly. A passive RFID tag is integrated into the bracelet for 
patient identification.  

In this paper we focus on the efficient logistics functionality. We have implemented a 
ZigBee mesh network for patient tracking. The care zone count algorithm for efficient 
resource estimation is also implemented and its performance is analyzed. 

4   ZigBee Mesh Network 

A ZigBee mesh network is implemented with acceleration sensor nodes acting as 
router or end device and a ZigBee dongle enabled laptop acting as coordinator.  
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4.1   ZigBee-Ready Acceleration Sensor Node 

The Acceleration sensor node consists of a telemetry board connected to a sensor 
board via connector (see Fig 4).  

The telemetry board is a generic platform since it can be connected to a sensor 
board comprising any sensor that supports SPI interface. The telemetry board is 
designed with a power supply, TI (Texas Instruments) CC2431 System on Chip 
(SOC), Arm Processor, chip antenna, High Frequency and low frequency oscillators. 
The CC2431 (see [15], [14]) consists of the location engine, 2.4 GHz IEEE 802.15.4 
compliant RF transceiver, an enhanced 8051 MCU, 8 kB of RAM, 128 kB Flash 
memory. The ARM processor performs sensor data processing and transmits via 
UART to the 8051. The ZigBee stack from TI runs in 8051 microcontroller as object 
code on top of which we have developed the application layer. 

The sensor board is designed with a three dimensional digital acceleration sensor 
LIS3LV from ST Microsystems. Data acquisition takes place at 160 Hz followed by a 
downsampling of 80 Hz. The packets transmitted consist of acceleration data 
collected over a period of 1 sec. 

 

 

Fig. 4. ZigBee-ready Acceleration Sensor Node 

The current consumption of this sensor node during activated and deactivated data 
communication states (see Table 1) are averaged over a period, by measuring the 
voltage across a 1 ohm shunt resistor using the LabView software.  

Table 1. Current consumption of acceleration sensor node 
 

ZigBee Sensor Node 
(supply voltage = 3.3 V) 

Router End Device 

Data communication 
activated 

50.8 mA 32.6mA 

Data communication 
deactivated 

- 22.4 mA 

 
The ZigBee router is always active leading to higher current consumption. During 

inactive data communication, the data acquisition and transmission are stopped and 
the end device is in light sleep mode. In this mode the 8051 core and the oscillators 
are active while the RF transceiver is off. In DAN the nodes may need to have a 
battery lifetime of around 5 hours to one week. The current consumption values show 
that the sensor node can be used as the patient bracelets or doctor’s node or routers 
and last atleast for few days. 
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4.2   Received Signal Strength Indicator (RSSI) Based Localization  

The CC2431 Location Engine hardware from TI (Texas Instruments) implements a 
distributed computation algorithm that uses RSSI values from reference nodes whose 
coordinates are known to calculate the location of the blind nodes whose coordinates 
are to be determined. Performing location calculations at the node level reduces 
network traffic and communication delays otherwise present in centralized 
computation approach.  

Functionality 
The basis of this radio-based positioning solution is the relation between the distance 
from the transmitter and the received signal strength (see equation 1) considering the 
assumption that the propagation of the signal is approximately isotropic [16].  

 

               ( ) .log10 10 AdnRSSI +−=                                             (1) 
 

The parameters A and N determine the exactness of the blind node location. A is an 
empirical parameter determined by measuring the absolute RSSI value in dBm of an 
omni-directional signal at a distance of one meter from the transmitting unit. The 
Value of A ranges from 30 to 50 with resolution of 0.5.  

The parameter N is defined as the path loss exponent and describes the rate at 
which the signal strength decreases with increasing distance from the transmitter. The 
value of N depend on the environment conditions and ranges from 1 to 8 [16].  

In the open air and large absence of reflections the signal strength decreases almost 
squarely with the distance, while in closed areas deviations can occur due to increased 
absorption by obstacles or reflections. Thus the measured values clearly deviate from 
the ideal values particularly with individual measurements. For this reason, the 
positioning of blind node is done by averaging at least three and a maximum of eight 
references nodes.  

Localization takes place in two steps, which are repeated in cycles. The cycle 
begins with the Burst-phase, in which the blind node broadcast a sequence of 
packages, requesting the reference nodes for their position and the averaged received 
signal strength of the packets sent to them. In the last phase the eight best received 
references will be sorted according to their signal strength and handed over to the 
localization hardware along with the parameters A and N values [16].  

Analysis: Patient tracking using the RSSI based Localization 
A primitive analysis of CC2431 hardware based location solution is undergone to find 
its suitability to the DAN. ZigBee ready acceleration sensor nodes are used as 
reference and blind nodes. The coordinator is a ZigBee hardware dongle enabled 
laptop running Location Graphical User interface (GUI) software to display the 
positions of nodes in the site map.  

A 40 x 20 meters rectangular grid of six reference nodes each separated by 20 
meters is formed at an indoor area (computer laboratory). Larger areas can be covered 
by forming rectangular grids with more number of nodes. The origin (0, 0) is in the 
upper left corner with x axis rightwards and y axis downwards. The value of A is 
measured as 49 and corresponds to an average of the RSSI values on the one meter 
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radius circle from the ZigBee-ready acceleration sensor nodes. The value of N is 
selected as 3.875 from the vendor specification, based on the empirical measurement 
that best fits the environment. The blind node is moved within this grid to 10 different 
positions (centre of grid, corners) at an interval of 20 seconds and the corresponding 
position coordinates are measured via Location GUI.  

The actual location and the measured location of the blind node are compared. The 
average deviation of the measured values from the actual values, for 10 different 
readings is calculated and shows an accuracy of 2 meters. The computation time for 
every blind node location with reliable location value is measured as 2 seconds. 

Only the fundamental applicability of the localization solution is analyzed in this 
paper. The map of the disaster site can be obtained form external sources (example 
Google Earth) and the Global Positioning system (GPS) receivers equipped in the 
ambulances and emergency surgeon PDA’s can configure the position of the 
reference nodes. ZigBee-ready acceleration sensor nodes are worn as bracelets by 
victims. In MANV, let’s consider a scenario of 50 victim count/hour flowing into the 
treatment zone of area 40x50 meter [15]. In such a scenario, the accuracy (2 meters) 
and computation time (2 seconds) values obtained in this analysis indicate that the 
localization solution is suitable for victim tracking. 

Since blind nodes can also serve as reference nodes for other blind nodes, 
measuring errors can reproduce within the system and affect the overall result. The 
converging time of the position estimations of the blind nodes can be a concern, if 
only a small number of nodes in one section are equipped with absolute reference 
coordinates and another section contains large nodes that are constantly mobile. These 
concerns will be examined under adverse RF conditions as part of future works.  

5   Efficient Logistics at the Disaster Site 

The visualization software implements the Care zone algorithm. It consists of a 
display and summary panel. The display panel shows a map of the disaster site with 
patient/ emergency doctor location and triage color, zones. The summary panel 
provides count of patients in each zone, transport vehicle count and overall count of 
patients/doctors.  

5.1   Care Zone Algorithm 

The care zone algorithm is a dynamically responding mechanism based on localized 
events [5]. The functionalities of this algorithm are – to estimate the overall count of 
patients/doctors in the disaster site, count of the un-triaged and different triage 
classes, to determine the operational areas and victim count of the disaster site zones. 
The algorithm is implemented in Python using NumPy (Numerical Python) for matrix 
processing and wxWidgets/wxPython for the graphical user interface.  

The inputs to this algorithm are 

• The location coordinates of patient/doctor bracelets, tent nodes and sign boards 
nodes.  

• Events that commence during the emergency response: nodes coming online| 
storage of triage data| node entering transport| location update. 

• Type of the node: doctor | ambulance | tent. 
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The outputs from the algorithm are: 

• Overall count of patients 
• Overall count of doctors 
• IDZ count 
• TTZ count 
• Count of patient taken to the transport vehicle count 
• Estimated geometric dimension, form and orientation of  IDZ,TTZ,TZ 
 

It is assumed that the victim’s initial location is either in the DZ or IDZ, depending on 
where the network node is attached. The patient locations then follow one of the 
following sequences: 

• Danger zone (DZ) →  Injured Deposition Zone (IDZ) →  Treatment Zone (TTZ) 
→  Transport Zone (TRZ)  

• DZ →  TTZ →  TRZ 
• DZ →  TRZ  
 

Ideally, only the first flow occurs. However, in reality, it is possible that IDZ, TTZ 
and other elements of the disaster management process are not (yet) established and 
therefore the correlation method must be able to cope with diversions from the 
process. The following conditions hold high probability for the care zone algorithm: 

• When triage data is initially stored, the node location should be inside the IDZ area 
• Doctors who  are near bracelets during triage time should be in the IDZ area and on 

triage duty 
• When red and yellow triage classes are moved from IDZ to a different area with 

high doctor density, then this zone should be TTZ 
• Only Red and yellow triage classes patients are transferred to transport vehicle 
• Area with high density of ambulances should be TRZ 
 

The algorithm has considered the following caveats 

• The zone areas can be re-designated 
• Doctor duties can change or be undefined 
• Some inputs may not be available (ex: tent tags) 
• Some events may enter the network in a delayed fashion (temporary dissociation 

from network and buffering) 
 

The data structures used for the parameters in the algorithm are as follows: 

• Location: (x, y) 
• Event: Node Online | Storage of Triage Data | Node Enters Transport| Location 

update 
• Type: (Doctor Tag | Patient Tag | Object Tag) 
• Patient bracelet: Un-triaged | Red | Yellow | Green | Blue  

5.2   Care Zone Algorithm-Method 

The functional block diagram of care zone algorithm is as shown in figure 4. 
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Fig. 5. Functional block diagram of care zone algorithm 

Probability Mapper 
The locations of nodes, events and type of nodes are given as input to the prob- 
ability mapper. For every location coordinate received, depending on the events and 
type of node the probability mapper calculates the probability distribution of the 
node to belong to the zone (IDZ, TTZ, TRZ). Thereby an Event Probability vector 

( )yxPev , is formed. 
 

( ) ( ) ( ) ( )( ) .,,,,,, yxpyxpyxpyxP TRZTTZIDZev =                        (2) 
 

Where, ( )yx, :  Location coordinates 

            ( )yxpIDZ , : Probability that the location belongs to IDZ 

            ( )yxpTTZ , : Probability that the location belongs to TTZ 

            ( )yxpTRZ , : Probability that the location belongs to TRZ  
 

For example let’s say the algorithm gets the location of a node in IDZ, as input. The 

probability mapper identifies with the ( )yxPev ,  ‘Storage of Triage Data’ event that 

this node has high probability to belong to the IDZ and thus the ( )yxPev ,  will be as 

shown in figure 6. 
 

 ( ) ( )3.0,1.0,9.0, =yxPev                                                   (3) 

                            
                                                              ( )yxPev ,  

Fig. 6. Event Probability vector ( )yxPev ,  on a ‘Storage of Triage Data’ event 

IDZ TTZ TRZ 
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The probability values will be assigned to ( ) ( ) ( )xpyxpyxp trzttzidz ,,,,  in an 

empirical way based on experimentations. 
 
Grid Block 
The Grid block generates a three dimensional ( )tyxp ,,

r
 vector as output for every 

location coordinate given as input and stores this value in the grid. The value of 

( )tyxp ,,
r

 in the grid is calculated by adding the output of probability mapper to the 

decayed previous grid value at that location (see equation 4). The values of the grid 
are instantaneously calculated and updated at each time step for all location 
coordinate inputs. The grid block functionality is mathematically shown below. 

This is a representation of the grid: 

∑ −⋅
ev

evev ttdecayyxptyxp )(),(),,( a
                            

(4)
 

For efficient implementation, a decreasing exponential function is used. 

10,)( <<= aaxdecay x                                                        (5) 

By substituting the decay function in ),,( tyxp  and expanding the summation, we 

get 
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Extraction of a summands between 1 and n-1 yields 
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By substitution of  )1,,( −tyxp  for events from 1 o n-1, we get 
 

nev

n

tt

ev ayxptyxpatyxp
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(8)

 
 

When
nevtt = , this is further simplified to  

 

),()1,,(),,( yxptyxpatyxp
nev+−⋅a

                                 
(9)

 
 

The above equation is a convenient and efficient form for implementation. 
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Estimator 
This block maps the grid values to zone types. Generally, this is a function from 
three-dimensional probability vectors to zone types. A naive implementation just 
selects the zone with the highest probability in the vector. 

 
Display 
Zones are then displayed by assigning a color to each location of the output of the 
estimator. The resulting color of each output is calculated by multiplying the assigned 
color with the probability value of the estimated zone. 

 

Counter  
In each time step, the last known locations of all known patient nodes are mapped to a 
zone by using the estimator output and are subsequently counted per zone. Counting 
of the other node types is not done per zone and is trivial. 

5.3   Simulation  

In a real scenario the data (location, type and events) are generated by the disaster aid 
network but due to lack of large number of nodes at the time of this analysis, the data 
is provided through an event log (text file) to the algorithm (see Figure 7). The 
structure of the event log is as follows: Each line describes an event specifying its 
attributes separated by spaces. The first column contains the time of the event, 
followed by the originating node's identification, type and event parameters. 

 

 
Fig. 7. Simulation model for care zone algorithm 

Consider a disaster site of area 100 by 100 meters containing 50 nodes of types- 
patient, doctor, ambulance and transport. The time sequence starts at t=0 and stops at t 
= 500 seconds. One time step is equal to ten seconds. The display panel map origin 
(0, 0) is in the upper left corner with x axis rightwards and y axis downwards. The 
map grid size is 500 by 500 units of 0.2m. An event log with 116 events is generated 
for the above assumption with the following general flow: 

1. At first, few injured patients are found. The first patient is directly taken to the first 
transport as an exception to the normal process. 

2. Six more injured people are found. The EMC orders the patients to be triaged 
because there are not enough resources for individual treatment. IDZ, TTZ and 
TRZ are designated. 

3. Injured people are moved to the IDZ. Two emergency doctors arrive and start 
triaging. 

4. Two patients, triaged red and yellow respectively, are moved to the TTZ. 
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The output of the algorithm for the above generated event log is seen in the 
visualization software from t = 0 to 500 seconds. In order to describe the situation 
awareness that the visualization software can create for the OOC/EMC, the output of 
algorithm at time step t= 9, t= 31 and t = 40 are explained below. 

Between t=0 and t=9 (90 seconds), patient nodes 1 to 4 have reported locations as 
well as an ambulance. The ambulance, coming in via the southwest access road, has 
parked in free space at (128,297). Patient 4 has been moved near to it (151,302). 
Figure 8 shows the output at t=9 (90 seconds). 

 

 

Fig. 8. Visualization software screenshot when t = 90s 

At t=31 (310 seconds), two emergency doctors have arrived on the scene and 
triaged one patient as red and another as yellow. Also, a treatment zone sign with a 
radio tag has been placed which regularly sends location update events. Figure 9 
shows how the input from these new events has superseded the former estimation for 
the transport zone. This display shows that more paramedics should be sent to the 
danger zone to shift patients to the IDZ for triaging. Thus the EMC can manage his 
paramedics efficiently. 

 

 

Fig. 9. Visualization software screenshot when t = 310s 



218 A.-K. Chandra-Sekaran et al. 

By looking at the monitor station at simulation time t=400 seconds (see Figure 10), 
the EMC can quickly see that all currently available ambulances will soon be 
occupied because there are already two patients in red and yellow triage classes in the 
treatment zone and another triaged red patient in the Injured deposition zone. This 
means he will need at least one more ambulance, which he can immediately request 
from the ERC. He will probably also require at least one more emergency doctor in a 
timely manner, since there are still seven un-triaged patients and there are patients 
waiting for treatment in the treatment zone. 

 

 

Fig. 10. Visualization software screenshot when t = 400s 

Results 
We generated events that provided a realistic set of data and gave as input to the 
algorithm which gave accurate counts that match the actual scenario. The simulation 
consumed 22.69 seconds of CPU time (19.02s user, 3.67s system) on a Mac Book Pro 
Core2Duo for 116 input events. No optimization of the code after the initial working 
prototype had to be performed, since the processing power of more than five events 
per second was good enough for this simulator.  

6   Related Work  

The Advanced Health and Disaster Aid Network (AID-N) from Johns Hopkins 
University, Applied Physics Laboratory develops technology-based solutions for time 
critical patient monitoring, ambulance tracking, web portals for patient information 
flow etc. AID-N mainly focuses on critical patient monitoring [4] at disaster site. But 
in the DAN based emergency response system for the disaster management strategy 
followed in Germany, we have focused mainly on issues that arise related to logistics 
at a disaster site.  

TRZ 
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7   Conclusion 

A new emergency response system based on the location aware DAN is proposed for 
assisting the mass casualty response providers in the disaster site. The ZigBee-ready 
acceleration sensor node current consumption results indicate that they can last longer 
lifetime as patient bracelet or doctor bracelet or routers in DAN. The primitive 
analysis of RSSI based localization solution shows its suitability to DAN even though 
intensive analysis is yet to be done. The result of the care zone algorithm analysis 
shows its effectiveness in providing situation awareness to the EMC/OOC enabling 
them to efficiently estimate and distribute resource. The patients can therefore be 
quickly evacuated from the disaster site. Thus the DAN based system is capable of 
solving the problems of the existing emergency response methods. 
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Abstract. Clustering is an important mechanism in large multi-hop
wireless sensor networks for obtaining scalability, reducing energy con-
sumption and achieving better network performance. Most of the re-
search in this area has focused on energy-efficient solutions, but has not
thoroughly analyzed the network performance, e.g. in terms of data col-
lection rate and time.

The main objective of this paper is to provide a useful fully-distributed
inference algorithm for clustering, based on belief propagation. The algo-
rithm selects cluster heads, based on a unique set of global and local pa-
rameters, which finally achieves, under the energy constraints, improved
network performance. Evaluation of the algorithm implementation shows
an increase in throughput in more than 40% compared to HEED scheme.
This advantage is expressed in terms of network reliability, data collec-
tion quality and transmission cost.

Keywords: Wireless sensor networks, clustering, belief propagation.

1 Introduction

Organization of large multi-hop wireless networks into clusters is essential for
achieving basic network performance. In wireless sensor networks (WSN), the
clustering is primarily characterized by data aggregation by each cluster head,
which significantly reduces the traffic cost. The hierarchial model requires two
main methods: (1) periodic selection of cluster heads (CHs); and (2) assignment
of each node to one or multiple clusters.

Optimal clusters’ selection is equivalent to the minimum dominating set prob-
lem which is an NP-complete problem. The literature is extremely rich with many
approximation algorithms based on several heuristics. The reader is referred to
[1] and [2] for a review of previous work.

While most efforts thus far have focused on an energy-efficient clustering
scheme, the attention to the performance of the multi-hop network was quite
limited. An energy-efficiency algorithm may select a few CHs for energy-saving,
� Danny Bickson has been partially supported by EVERGROW, IP 1935 of the EU

Sixth Framework.

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 221–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



222 T. Anker et al.

but if these CHs do not have good connectivity or if they are not stable, the
retransmission and the dropped packets may significantly degrade the network
performance and the total energy wasted may end up to be higher. Therefore,
taking reliable communication into account is essential for any clustering algo-
rithm which aims to reduce the energy consumption in a network.

Moreover, the network lifetime should be measured not only by the time that
the first or the last node dies, but also by the period of time that the network is
available for providing services and operating appropriately. Since the network is
usually dense and many nodes are redundant, the death of a few nodes does not
affect the network. Thus, network lifetime is tightly coupled with the network
performance.

The work presented in this paper uniquely addresses the clustering problem
in multi-hop networks with a special focus on network performance, using the
belief propagation (BP) algorithm. BP is an iterative algorithm for computing
marginal probabilities on trees, by local message passing [3]. Mostly, it is used
for efficiently solving inference problems. BP is a popular method for distributed
inference because of its properties, such as fast convergence, accurate results, and
good performance in asynchronous environment etc.

The main advantage of this method over existing algorithms for clustering is
that BP considers not only local properties of a node, such as residual energy or
degree, but also takes into account joint characteristics of a group of nodes, such
as link quality and topology information. Utilization all available data, while
maintaining small constant message and time overhead, leads to considerable
increase in network performance and balanced power consumption among the
nodes.

The contribution of the paper is two-fold. First, it introduces a new algo-
rithm for efficient clustering that considers not only the power balancing among
the nodes, but also the total transmission power aggregated in the multi-hop
routing. The algorithm is fully decentralized and asynchronous, have fixed small
convergence time and scales to large networks. Extensive simulation of the algo-
rithm in environment of interferences, packet loss and node failures, which covers
other synchronization issues, such as active node’s duty cycle, demonstrates its
robustness as well. In contrast to many algorithms in this area, our algorithm
makes no a priori assumptions regarding the network size and distribution of
nodes, link symmetry or topology.

Moreover, the paper presents a scalable and practical implementation of BP in
WSN for inference goals. We propose a new broadcast variation that is tailored
to fit Min-Sum algorithm, efficient implementation in hardware and effective
network transmission. The message passing routine is highly energy-aware and
provides distinctive combination of energy-efficient features. Our novel approach
of using a broadcast communication paradigm and the use of only integer calcu-
lations, without any scheduling or message ordering, considerably decrease the
general overhead relative to other BP frameworks that are used for WSN ([4],
[5], and [6]).
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The rest of the paper is organized as follows. Section 2 briefly presents rele-
vant previous work. Section 3 describes the network model and formalizes the
clustering problem. Efficient clustering, using belief propagation, is described in
Section 4. Section 5 analyzes the algorithm using simulation. Section 6 concludes
the paper with a discussion and directions for future work.

2 Related Work

Many research projects in the last few years have explored clustering in WSN
from different perspectives. LEACH [7], is the first clustering algorithm that
was proposed for reducing power consumption. In LEACH, the clustering task
is rotated among the nodes, based on duration. Direct communication is used
by each CH to forward the data to the base station (BS).

HEED [8] extends the basic scheme of LEACH by using residual energy
and node degree or density as a metric for cluster selection to achieve power-
balancing. It operates in multi-hop networks, using an adaptive transmission
power in the inter-clustering communication.

Both schemes are fully-distributed, terminate in constant number of iterations
and incur low message overhead. However, the cluster selection deals with only
a subset of parameters, which can possibly impose constraints on the system.
These methods are suitable for prolonging the network lifetime rather than for
the entire needs of WSN.

VCA [9] is a voting-based clustering algorithm that enhances the criteria
for cluster selection and combines load balancing consideration together with
topology and energy information. VCA addresses inefficient cluster formation
using a voting scheme, which enables the nodes to exchange information about
their local network view. This method assumes a synchronization among the
nodes. Similar to WCA [10], the time required for the nodes to gather information
about all other nodes depends on the network size and is not constant.

In EEUC [11], the hot-spot problem in multi-hop networks is solved using
clusters with unequal size. CHs that are closed to the BS tend to die faster,
because they relay much more traffic than remote nodes. Setting smaller cluster
sizes to the close CHs preserves their energy. Additional improvement for multi-
hop networks is presented in [12], using a separation between the data gathering
and aggregation task and the forwarding task.

All these algorithms try to prolong the network lifetime and to balance the
load among the nodes, using some metrics for cluster selection and maintenance.
Network performance of a multi-hop network is beyond the scope of these papers.
A broader perspective is presented in [13], where three fundamental character-
istics of multi-hop networks are clarified: power consumption distribution, the
effect of the distribution on data collection rate, and data collection time. This
work examines the network performance of direct communication, LEACH and
HEED. It provides new metrics for measuring the quality of a clustering algo-
rithm in multi-hop WSN. These metrics are used for evaluation of our algorithm
as well.
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3 System Modeling and Problem Formulation

We model the sensor network as a directed graph G = (V, E), where V is a
set of nodes, where each one is assigned a local unique identifier. E is a set of
wireless links connecting two adjacent nodes. Nodes are defined as adjacent if
and only if they are within each other’s transmission range. The links may be
asymmetric. A special node, v0, is defined to be the base station (BS). The BS
is distinguished from other nodes by its unlimited energy supply. The network is
multi-hop, where nodes closer to the BS relay traffic of other remote nodes and
probably consumes much more energy [11]. There are no assumptions about the
distribution of the nodes, their homogeneity, location information etc.

The challenge of a clustering scheme is to efficiently form and maintain a
connected disjointed groups of nodes in a local and distributed manner. Each
group contains a single leader and several ordinary nodes.

The connectivity requirement may be achieved using one of two basic method-
ologies: either by an adaptive transmit power, where the CH increases its trans-
mission power to reach the next CH or by the assignment of a set of nodes,
covered by several CHs, to be gateway nodes. In this work, the second approach
is used. This approach is more general because it does not assume any distribu-
tion of the nodes and it also takes into consideration interferences in the area.

An efficient scheme is used to select CHs that: (1) minimize the total trans-
mission power aggregated over all nodes in the selected path; (2) balance the
load among the nodes to prolong the network lifetime. These two requirements
may contradict; e.g. a long path that consumes more energy than a short path
may be selected in order to avoid battery depletion at some nodes. The network
performance itself is obtained, in part, by the first requirement, where minimiz-
ing the total transmission cost results in a decrease of retransmissions as well as
the data transmission time.

In order to achieve a scalable and feasible framework, the overhead of the
scheme should have a constant message and time complexity per node, with
low maintenance cost. Additionally, it should work well under constraints as
topology changes, asynchronous environment, failures and duty cycle.

4 Efficient Clustering Using Belief Propagation

The idea of using BP for clustering was recently introduced in [14]. The affinity
propagation method was set in that paper in a very general context and not in
a practical manner for WSN. In this section we construct a novel BP framework
for WSN and describe the algorithm for clustering.

4.1 Belief Propagation

In a probabilistic graphical model, an undirected graph G = (V, E) is a set of
nodes V and arcs E which represent dependencies among random variables. We
denote by xi the variable representing the set of possible states of a node i. ψi(xi)
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corresponds to a local (prior) distribution function of node i and ψij(xi, xj) refers
to a joint function of two connected nodes i and j. These functions are also called
potential functions.

In the BP method [15], [16], the inference is carried out in a local and dis-
tributed manner by each node, using a message passing technique. mij(xj) is
a message from node i to node j about the state that node j should be. Node
i calculates the massage using previous messages it receives from its adjacent
neighbors N(i). The message update rule performed by a node i in round t is:

mij(xj)t =
∑

xi

ψi(xi)ψij(xi, xj)
∏

k∈N(i)\j
mki(xi)t−1.

The update rule refereing to state xj of node j is a sum over all the possible
states xi of node i. On each state, three elements are incorporated together:
the local prior information ψi(xi), the joint function ψij(xi, xj) and the direct
neighbors information mki(xi)t−1.

Upon termination, after round t̄, the belief at a node i (the marginal of the
variable) is the product of the local evidence together with all the incoming
messages and a normalization constant α:

bi(xi) = αψi(xi)
∏

k∈N(i)

mki(xi)t̄.

The BP algorithm for trees is an exact inference algorithm, which means that
the belief converges to the correct marginal values in a finite number of iterations
equals to the diameter of the tree.

Min-Sum Algorithm. For energy efficiency, a variation of the original BP
algorithm, known also as the Min-Sum (MS) [17], is used. This algorithm uses
only addition and subtraction operations, so it works well with integer values
and saves the overhead of floating-point calculations. Additionally, the algorithm
uses broadcast messages [18], in order to preserve communication resources.

The MS algorithm computes inference in the negative log domain, which can
be equivalently viewed from the physics point of view as an energy, or cost
minimization. Considering that, the goal of the MS algorithm is to minimize the
overall cost over all the nodes in the network, based on the local cost functions
and the constraints between the nodes. The algorithm is intuitive. Each node
transmits to its neighbors a message with its local and joint costs. Each neighbor
that receives the message updates its own belief accordingly and transmits the
new belief, so gradually the information is propagated through the network until
the nodes converge to a common belief. This convergence point minimizes the
overall cost in the network. The algorithm, in its broadcast form has three basic
steps:

1. Message Passing
Each node i transmits its local evidence on the initial round, and its belief,
based on incoming messages, on the successive rounds. Every broadcast mes-
sage mi∗ from node i includes a combined information for all its neighbors,
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replacing multiple unicast messages. The receivers extract the information
intended for them.

mi∗(xi)0 = ψi(xi),

mi∗(xi)t = ψi(xi) +
∑

k∈N(i)

mki(xi)t−1.

2. Message Update Rule
Upon a reception of message mj∗(xj)t from node j ∈ N(i), node i updates its
local belief by extracting the unicast information from the broadcast message
of node j, using the following calculation:

mji(xi)t = min
xj

{ψij(xi, xj) + mj∗(xj)t −mij(xj)t−1}.

The value of every message at round t < 0 is 0.

3. Belief Calculation
At the end of round t̄, where t̄ can be chosen to be the network diameter or
any other predefined limit, node i determines its final state xi to be the one
which minimizes the total cost.

b(xi) = arg min
xi

{ψi(xi) +
∑

k∈N(i)

mki(xi)t̄}.

4.2 Cost Metrics

Basic metrics for energy-efficient and reliable communication are formulated in
[19] for minimum energy path and maximum lifetime. Their analysis shows that
an incorporation of the link error rates is required for reliable packet delivery,
in both constant-power and variable-power scenarios. Using a similar method,
two cost functions are defined. These cost functions consider residual energy,
degree, topology and link quality, distance from BS (in terms of hops) and overall
transmission cost, as the following.

A self cost of a potential CH is denoted by Ci = Ei

Bi
, which is basically

defined by the expected energy consumption in a period Ei and it’s residual
battery power Bi. The expected energy consumption is an estimation of the
power used in the routing if that node becomes a CH. The estimation is based on
the network topology: the degree of the node determines the expected reception
and transmission; the distance from the BS in terms of hop count estimates the
further transmission cost to the BS.

Transmission cost among two nodes or along a path is a function of the radio
power level and the number of transmitted bits. Previous work [20], [21] has
shown that the overall transmission cost cannot be estimated by the distance
between the nodes, e.g. because of interferences, nor can be estimated by the re-
ceived signal strength indicator (RSSI), due to in-correlation between low RSSI
and reception rate. Link quality can evaluate the expected number of transmis-
sions along the path. Each node estimates the quality of the links by observing
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packet success and loss events. Accordingly, the transmission cost between two
neighbors Cij = Eij

Bi
is defined as a function of the energy consumption over the

link Eij and the remaining battery power of the transmitting node Bi.

4.3 Algorithm Description

Let xi be a CH candidate of node i, i.e. xi = i or xi ∈ N(i) and xi has a valid
route to the BS and appropriate link quality.

We define ψi(xi) to be a local cost function of connecting node i to CH xi.

ψi(xi) =
{

Ci for xi = i
Cij for each xi = j ∈ Ni.

ψij(xi, xj) represents the constraints between two neighbors i and j to elimi-
nate improper assignment of CH association. The constraints are: (1) two neigh-
bors cannot be both CHs; (2) a node can select another node to be its CH only
if that node announces that it is a CH.

ψij(xi, xj) =
{∞ one of the constraints is applied

0 otherwise.

Cluster selection is possible at each node after a period of initialization, when
a route to the BS is constructed. The process is asynchronously triggered by
two events: (1) when a regular node does not find a CH among its neighbors,
e.g. because of topology changes; and (2) periodically, by a CH, to balance the
power among the nodes in a local area. The second event also ensures that the
number of CHs will not be too large, by preventing a CH from assuming that
role if it is not re-selected.

The message passing algorithm is performed on a tree structure, which is a
sufficient condition for convergence. The algorithm is executed in a restricted
region of a 1-hop neighborhood, and as a result, it requires a constant number of
messages. It stabilizes when the entire network is not affected by local changes
anymore. The tree is a subtree of the general routing tree that is used in the
network. In the first event, once a node triggers a clustering process because of
no CH, it announces itself as a temporary CH and its 1-hop neighbors, which get
its message and find it as an appropriate CH, selects it as a parent and performs
the message passing on the resulting 1-hop tree. In the second event, the node is
already a CH, so the message passing tree is already constructed, where all the
children of that node participate in the message passing.

Each node i starts the process by broadcasting the message mi∗(xi)0. This
message contains its cost for being a CH (infinite if it is not a valid CH) and
the cost to connect other CH candidates among its neighbors. These costs are
transmitted as 16-bit integer numbers together with 16-bits of identification.

The rest of the packet processing is performed according to the MS algorithm
described above, where unordered messages are stored in a buffer until compu-
tation. The timer between the rounds is large enough to support asynchronous
operation, but not too large, for not to adversely impact effective operation.
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Topology changes during the message passing are taken into consideration as
follows: (1) Cost of new neighbors is not added in the middle of the message
passing operation; (2) Node who loses its parent during the message passing
cannot converge with its new parent, so all its messages are ignored. The node
should wait until the end of the process to find out a new CH; (3) Link breaks
are marked by updating the joint cost to be infinite. A node determines which of
its neighbors are in its routing subtree by inspection the messages of its parent
and its descendants. A node discards cost information of nodes that are not in
its subtree, because it does not have complete information about them. Messages
with errors or those which are not synchronized with the messages of the node,
are discarded as well.

One round before termination, a node calculates the belief about its final state
- a CH or an ordinary node, and attaches the appropriate announcement to the
message. After the last round a node operates according to its announcement;
If it has previously announced itself as a CH it becomes a CH. Otherwise, it
joins the cluster that minimizes the overall cost, according to the information it
holds. In case of errors or convergence problem, it is possible that no node would
declare itself as a CH. In such a scenario, nodes that do not have any alternative
CH in their area start the clustering process again.

In contrast to the cost messages, which are propagated over the routing tree
to avoid loops, the decision of a selected cluster is made by the information
spread in the entire 1-hop neighborhoods, i.e. a node can select a CH that does
not appear in its current subtree. Each node updates its clusters map according
to all the broadcast messages it gets.

Once the clustering process is done, the routing tree is changed, where CHs
operate as parents of the nodes who join them. Using the gateway approach to
connect two clusters, a CH may choose a regular node to be its parent, if it does
not have any CH that could operate as its parent. The hop metric is used to
detect and avoid cycles, so after the process there is a new routing tree.

Convergence Time. BP has a fast convergence property, but when too many
errors are involved, it is likely that the convergence will be more slow and into
a wrong value. WSN are exposed to a large amount of communication and node
failures, so the convergence to a correct state is not guaranteed. Therefore, in
order to avoid impact of the physical and the MAC layers as well as other envi-
ronment factors, we limit by design the number of rounds until termination to
be a predefined small fixed value. On ideal environment, the convergence of the
algorithm to a common belief, not including the CH announcement, is 2 rounds,
equal to the diameter of the 1-hop vicinity graph. Actually, the predefined round
number was set to 5. This value is robust against some synchronization and
packet loss and it is sufficient in most of the cases to reach a convergence via
three steps: detection of the nodes in the routing tree for correct cost calcula-
tions, computation of the belief based on cost functions and publication of the
CH announcement. This number of rounds is very small in compared to other
schemes and is not affected by the network size, therefore providing a scalable
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Main

(1) If CH and timer expires or if ordinary node with no CH
(1.1) Start clustering process with propagation limit of 1;

(2) Upon reception a first-round BP message from parent or from CH candidate
and when the propagation limit is 1
(2.1) Update your parent to be the sender node for the message passing;
(2.2) Start clustering process with propagation limit of 0;

Clustering Process

(1) Compute local cost function and joint cost function of all the neighbors;
(2) Run the MS algorithm with the following rules:

(2.1) Unordered messages will be stored in a buffer until computation;
(2.2) Upon topology changes update the cost;
(2.3) Messages with errors or synchronization problems are discarded;

(3) One round before termination attach the belief about final state to the message;
(4) Ending steps:

(4.1) Set the power level according to the final state and update timers;
(4.2) Select a parent: if ordinary node, select CH that minimizes the cost;

if CH, select other CH if possible, otherwise choose an ordinary node
as a gateway.

Fig. 1. Sketch of the Algorithm

solution in large networks. Moreover, the limitation on the number of messages
means low delay and small message overhead.

5 Performance Evaluation

To evaluate the performance of clustering using BP, it has been compared with
the clustering process of HEED [8], in a network model that uses gateway nodes
to connect between the clusters, when two CHs cannot communicate directly.

In HEED, a node initially sets its probability to become the CH according
to its residual energy. During each iteration, a node arbitrates among the CHs
announcements it has received to select the lowest cost CH. If it has not received
any announcements, it elects itself to become a CH with probability it has.
If successful, it sends an announcement indicating its willingness to become
CH. The node then doubles its probability, waits for a short iteration interval,
and begins the next iteration. A node stops this process one iteration after its
probability reaches the value of 1. Simulation results have shown that HEED
is effective in prolonging the network lifetime and in supporting scalable data
aggregation.
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5.1 Simulation Model

TOSSIM, TinyOS simulator [22], was used for the analysis of the clustering algo-
rithm. Link Estimation and Parent Selection (LEPS) [21] was used as the routing
protocol in the multi-hop network. In this method, each node monitors all traffic
received within the single hop range, including route updates from neighbors.
Using shortest path heuristic, it manages the nearest available neighbors and de-
cides the next hop. The Surge application was used for data aggregation, where
every nodes periodically takes light sensor readings and sends them over the
network to the BS. The simulator provides an environment which includes real-
istic properties of a network, like interferences and collisions, asymmetric links,
changes in the link quality, nodes death and failure etc.

Evaluation of the communication cost, as well as the estimation of the remain-
ing energy, were done based on the power information about Berkeley Mica2
mote [23] and using the credit point system, proposed by [24]. In this system,
every node is assigned some number of points that reflect its residual energy.
Each packet reception or transmission reduces points from the node, based on
the packet size and the transmission power level.

Every plot was taken as an average of 27 different runs. In all the experiments,
250 nodes including a single BS were run. The simulated time was 20000 seconds,
to observe the network in a stable state until it collapses when the major of the
nodes die.

Every node starts with a random residual energy, ranges from 250 to 500
thousand points. The power level of a regular node was -20 dBm and the power
level of a CH was -13 dBm. A timer of 540 seconds was set for periodic cluster
selection triggered by each CH or by each node in BP and HEED, accordingly,
and a timer of 11 seconds was used between the rounds of the message passing.
Both the power levels and the timers are the default parameters used by HEED
in TinyOS. We adapted the transmission rate and the aggregation rate to the
network size, so the transmission rate by the application was increased to 6144
milliseconds. Every CHs that receives the packets aggregates them and transmit
them every 3 minutes. The other parameters are taken to be the defaults defined
in TOSSIM.

5.2 Network Performance

We first study the network performance of the two algorithms, in terms of data
packets received by the BS. Each node constantly transmits data points to its CH
which aggregates all the points into a single packet and forwards them toward
the BS.

As one can see in Figure 2, clustering with BP achieves more than 40% higher
throughput than HEED, where the data points received by the BS are signifi-
cantly greater. This higher throughput is expressed by both data collection rate
and time.

The trend of the data rate during the network lifetime is shown in Figure 3.
In Figure 3(a), there is an increase in the data rate over time, both because the
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Fig. 2. Data collection time
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(a) Data collection rate
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(b) Deterioration of data collection rate

Fig. 3. Data collection rate during the network lifetime

network becomes more stable and also because nodes start to die, so the network
experiences less interferences. The number of live nodes in the system decreases
to about 150 nodes at time 10000, but the network is still well connected and
only the nodes’ redundancy is removed. From this time, the nodes die quickly,
so the connectivity of the network and its coverage rapidly decrease. Since the
data rate of BP is larger than HEED, the deterioration is steeper.

The advantage of BP can be explained by several network parameters, which
are all a result of the fact that BP selects CH better. The non-optimized routing
of HEED can be shown by the average hop count of HEED, as presented in
Figure 4 which is larger than BP. This means that the number of transmissions
in the network may increase, so the number of interferences and the dropped
packets increase as well.

Better deployment and network stability may be another reason for the ad-
vantage of BP over HEED. The estimated number of CHs in the system during
each period of time is presented in Figure 5. Each period is about 540 seconds,
with a single periodic clustering process. The figure shows the network state
from the beginning with 250 nodes, until about 150 nodes are left, at which
point (in periods 11-13) nodes start to die. At the beginning, BP has less CHs
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Time (s) HEED BP

2000 5.11 3.04
4000 4.11 2.83
6000 3.61 2.73
8000 3.93 2.67
10000 3.88 2.55
12000 3.39 2.51
14000 3.81 2.44
16000 3.58 2.42
18000 3.46 2.38
20000 3.51 2.36

Fig. 4. Average hop count
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Fig. 5. Estimated number of CHs
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Fig. 6. Triggered clustering processes
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Fig. 7. Dropped packets

in the system which implies better aggregation, less transmission cost and in-
terferences. Once nodes start to die, the number of CHs selected by BP in the
system increases proportionally to the number of nodes that are alive and to the
number of CHs which are selected by HEED. The intersection of BP and HEED
in periods 11 and 12 is a result of the decrease in the number of CHs in HEED
and the increased number of CHs, in proportion to the number of alive nodes, by
BP. The increased number of CHs achieves better coverage and deployment and
improves the network connectivity. The network with BP performs better even
under conditions of topology changes, so as a result, less clustering processes are
performed and less route failures exist, as it shown in Figure 6 and Figure 7.

The number of clustering processes that are triggered in HEED increases
somewhat in period 11, which can be explained by the fact that nodes start to
die, and consequently some of the nodes lose their CHs. Nonetheless, with the
exception of that increase, during most of the duration, the number of clustering
processes that are triggered is quite similar, even during the periods when there
are much fewer nodes alive. This means that the network has proportionally more
clustering processes and that it is not in a stable state. On the other hand, the
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Fig. 8. Clustering process overhead

0 4000 8000 12000 16000 20000
0

50

100

150

200

250

Time in Seconds

N
u

m
b

er
 o

f 
N

o
d

es
 A

liv
e

HEED
BP

Fig. 9. Network lifetime

number of clustering processes that are triggered in the BP scheme decreases
over time, which shows better stability even when nodes die. The number of
packets that are dropped because of no route, correlates to number of clustering
processes that are triggered because of no CHs, and presents the same trend.

It is important to note that no retransmission is done in the simulation. When
retransmission is performed, HEED is expected to perform much worse than BP,
since retransmission means more interferences and more energy consumption.

5.3 Clustering Overhead

Although BP and HEED have both a constant and consistent number of rounds
in the clustering process, BP suffers from more overhead during the clustering
process. This is because the messages of BP are larger than HEED. BP messages,
at the extreme, might reach up to 74 Bytes (17 cost entries with identification of
total 4 Bytes plus header of about 6 Bytes), while HEED message have size of 29
Bytes at most. In fact, BP messages are usually not that long, and do not reach
that limit, but still the messages are longer than HEED, so the transmission cost
is higher.

Figure 8 shows that at the start of the simulation, the overhead of BP is about
double the HEED overhead. Later, when the network becomes more stable, BP
performs less re-clustering than HEED. HEED performs more because nodes
die, so this difference significantly decreases.

5.4 Energy Characteristics

Network Lifetime. BP achieves better network performance and reduces the
transmission cost as well. However, the network lifetime, measured by the num-
ber of alive nodes of BP and HEED are quite similar, with a marginally (very
small) advantage of HEED, as presented in Figure 9. This results from the fact
that the total number of packets that are forwarded in the network is signifi-
cantly greater in BP than HEED. This implies a higher total transmission cost.
BP pays for transmission of a single packet much less than HEED pays, as a
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Avg. Avg. number Avg. initial Avg. lifetime
hop count of nodes energy (points) (seconds)

1 13 374933.48 11673.37
1.5 14 394017.97 12727.69
2 57 388017.87 13047.62

2.5 81 388938.62 12546.50
3 76 335469.51 9587.23

3.5 8 292071.86 7800.46

Fig. 10. Energy information about the nodes in BP

result of the CHs’ selection but over the network lifetime the overall transmission
cost is similar.

When measuring the network lifetime as the time that the network is available
for providing services, we can see in Figure 3(b) that BP succeeds in achieving
better performance than HEED, until very close to the end. Only from time
18000, HEED has a slight advantage in the throughput, but this has no real
meaning because there are about 20 nodes in the network and anyway the net-
work does not operate appropriately. Therefore, from service availability point
of view, BP has better overall network connectivity than HEED and thus better
network lifetime.

Power and Load Balancing. In multi-hop communication, the nodes closest
to the BS usually tend to be burdened with a heavy relay traffic load and to die
first. This is the hot-spot problem and many clustering algorithms suffer from
it. To verify that this problem does not occur in BP, we analyze the energy
characteristics of the nodes based on their distance from the BS.

A node with some physical distance from the BS can have different hop dis-
tances over time. For example, a node with distance 1.5 from the BS, can some-
times be connected directly to the BS and sometimes connected via a CH. The
different hop count is mostly a result of link quality, which is affected by many
network parameters.

We explore on the general concepts that arise from Figure 10 and not from
the specific values, since the nodes start with a random initial energy, which
definitely affects the network lifetime, even when power balancing takes place.

As shown, both, nodes that are very close to the BS, with distance 1-1.5
and more remote nodes, with distance 2-2.5 (that start with comparable ini-
tial energy) have similar lifetime. This means that the BP method succeeds in
achieving power-balancing in the core of the network and it does not suffer from
the hot-spot problem.

It is interesting to see that more remote nodes (distance 3-3.5) not only start
with significantly less residual energy, but their lifetime is shorter. The reason for
the initial low energy is that nodes with low residual energy usually would not
be selected as CH, and this means that their average distance is larger because
they are constantly connected to a CH one hop farther. The explanation for the
short lifetime of those nodes, in general, is that they are located at the edge
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of the network. Nodes at the edge, usually have less neighbors and less chance
for having CHs around, so they experience more topology changes and usually
perform further frequent clustering processes, which result in more overhead as
well. This overhead have a considerable effect on the nodes’ lifetime.

6 Conclusions and Future Work

This paper presents a novel distributed inference scheme, based on BP, for ef-
ficient clustering in multi-hop WSN. This inference scheme selects CHs that
minimize the overall transmission cost and at the same time balance the power
among the nodes, for a longer network lifetime. Utilization of all available in-
formation, is more optimal than current solutions, and leads to a significant
improvement in the network performance.

Using simulations, we show that the BP algorithm succeeds in improving the
data transmission time and rate, so at the same network lifetime as the HEED
scheme, the overall throughput of BP is increased by more than 40%. Moreover,
clustering using BP mitigates the hot-spot problem by providing power and load
balancing among the nodes.

The BP framework that has been proposed is a feasible and realistic inference
scheme, and can be effective for many other applications. The special attention
to energy constrains and the fact that no assumptions were made regarding the
network topology or size, differs this framework from other schemes for WSN
that are based on BP, and makes it more practical and scalable to large networks
with their dynamics.

Comparing the BP algorithm with an optimal clustering algorithm and ap-
plying methods in distributed inference to reduce the communication load, may
be a useful area for future work.
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Abstract. We consider the problem of determining the transmission
power assignment that maximizes the lifetime of a data-gathering wire-
less sensor network with stationary nodes and static transmission power
levels. We present a simple and efficient distributed algorithm for this
task that works by establishing the minimum power level at which the
network stays connected. The algorithm is based on a binary search over
the range of feasible transmission power levels and does not require prior
knowledge of network topology. We study the performance of the result-
ing BSpan protocol by network simulations and compare the number
of control messages required by BSpan to two other recently proposed
methods, the Distributed Min-Max Tree (DMMT) and Maximum Life-
time Spanner (MLS) algorithms. We find that BSpan outperforms both
DMMT and MLS significantly.

1 Introduction

Consider a group of sensors newly deployed in an environment. In many applica-
tions, it is desirable to have the network to self-configure, i.e. to have the nodes
after wakeup contact their neighbors in order to decide where to forward the
collected data, at what intervals, transmission power levels etc. One important
goal of this self-configuration process is to determine data gathering and trans-
mission protocols so that the operational time of the network, for given initial
battery levels, is maximized [1, 2].

We address this lifetime maximization problem in the setting where it is the
task for a network of stationary nodes to provide a roughly uniform, low-intensity
stream of data to a designated sink node. Possible application scenarios include
monitoring some environmental parameters (temperature, humidity, chemical
concentrations) in a given region or, say, a forest-fire alarm network, where most
of the data traffic consists of regular “status ok” messages.

More specifically, we consider the problem of determining transmission power
levels for the nodes so that, under the assumption of uniform traffic load per
node, all the nodes maintain connectivity to the sink for a maximum amount of
time. In this paper we only consider the case of static power assignments, i.e. we
assume that once the transmission power levels have been set, they stay the same
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throughout the operating life of the network. We also assume that transmission
costs have a dominant effect on the lifetime on the nodes, which may operate a
sleep-scheduling scheme [3].

Under these assumptions of stationary nodes, uniform traffic load and static
power assignments, the goal of maximizing the lifetime of a network is in fact
equivalent to finding the lowest possible transmission power levels for the nodes
that suffice to make all of the network connected to the sink. This version of the
problem was considered by Lloyd et al. [4] who presented a simple and efficient
binary search based solution to it, assuming that the full internode transmission
power threshold matrix of the network is centrally available.

Our Binary Search for Minmax Power Spanner (BSpan) algorithm presented
below is basically a distributed implementation of the “binary search over trans-
mission power levels” idea of Lloyd et al. [4]. However, getting this natural
approach to work in a fully distributed environment, starting in an initial state
where the nodes upon wakeup know nothing about their neighbors, let alone the
global topology of the network, is a somewhat nontrivial task. Nevertheless, we
have implemented this approach down to the level of a protocol agent in the
ns2 [5] simulator, and it shows quite competitive performance in comparison
with other recently proposed approaches to the same task. In graph-theoretic
terms the algorithm finds a spanning tree with maximum edge cost at most ε
greater than the minimum maximum edge cost possible, where ε is a parameter
of the algorithm. Thus we obtain a power assignment that, to arbitrary accuracy,
maximizes the time for which we can keep the network connected.

The rest of the paper is organized as follows. The following section overviews
some of the related work on lifetime maximization, and Section 3 gives a precise
formulation of the version of the problem we consider. Section 4 describes our
distributed method for finding a spanning tree of a given network with minimum
maximum transmission cost. In Section 5 we evaluate our proposed BSpan al-
gorithm in terms of the number of required control messages, and compare it to
the performance of the Distributed Min-Max Tree algorithm proposed in [6] and
the Maximum Lifetime Spanner (MLS) algorithm proposed in [7]. For our ex-
perimental comparison we use the ns2 network simulator. Section 6 summarizes
the paper.

2 Related Work

The problem of minimizing the maximum transmission power required to estab-
lish connectivity has been considered previously in the literature several times.
One of the earliest papers on the topic is the work of Ramanathan and Rosales-
Hain [8], which addresses the problem in the setting of maximizing the lifetime of
a single-session broadcast. Ramanathan and Rosales-Hain propose a centralized
algorithm for finding the minimum maximum (minmax) transmission power level
that maintains network connectivity, as well as two simple distributed heuris-
tics that aim at achieving the same. Their distributed heuristics, however, are
suboptimal and do not necessarily guarantee connectivity in all cases.
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Kang and Poovendran [9] discuss several problems related to dynamic lifetime
maximization, such as the issue of non-uniform energy levels. They also empha-
size the importance of considering the minmax energy metric rather than the
more often addressed minimum total energy metric for the purpose of maximiz-
ing network lifetime. For a distributed implementation, Kang and Poovendran
rely on distributed methods for constructing minimum spanning trees, such as
the algorithm of Gallager, Humblet and Spira [10]. These techniques are, how-
ever, rather involved, and we complement this work by suggesting an efficient
and much simpler method for computing the minmax edge cost required for
connectivity. For a discussion of the two different objectives, minimizing total
transmission power and minimizing maximum transmission power, see e.g. [4,9].

The problem of minimizing the total, as opposed to minmax, network trans-
mission power required for connectivity has been studied extensively (cf. e.g. [4]
and the references therein). Rodoplu and Meng [11] present a distributed algo-
rithm for this problem that is based on the concept of relay regions : each node
is aware of its own geographic location and the location of its neighbors. Based
on a path-loss model, nodes can locally determine which neighbor they should
forward the message to in order to minimize the total energy consumption. The
algorithm proposed in [11] is optimal but requires extensive assumptions, such
as the availability of location information and a specific path-loss model.

In a recent work, Guo, Yang, and Leung [6] proposed a distributed algorithm
DMMT (Distributed Min-Max Tree) for the construction of multicast trees with
minimum maximum transmission cost, following Prim’s algorithm for construct-
ing minimum spanning trees. Since their technique can easily be adapted also
for the purpose of sensor network lifetime maximization, and seems to be the
proposal in the literature closest to our BSpan approach, we conducted an ex-
perimental comparison of the runtime behavior of the algorithms DMMT, the
recently proposed Maximum Lifetime Spanner (MLS) algorithm [7] and our
proposed BSpan algorithm.

3 The Lifetime Maximization Problem

We consider a wireless sensor network composed of stationary nodes with distinct
identifiers, operating in a data-gathering scenario. Each node is able to vary its
transmission power, either using a possibly large set of discrete power levels, or
by choosing the power from a continuous range of possible values. We further
assume that each node has a finite energy budget that is consumed during the
operation of the network and whose value is initially the same for all nodes.
We consider a scenario where the energy consumed by wireless transmission
dominates over energy consumed by computation or sensing. We further assume
that traffic is generated uniformly over the nodes and that data aggregation
techniques can possibly be applied, thereby yielding a close to uniform load
within the network.
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In order to maintain connectivity to a neighbor u, each node v has to spend
some energy that depends on v’s transmission power level. Each node has the
same maximum transmission power pmax that must not be exceeded. We assume
that the link costs are symmetric, so that if v can reach u at a certain power,
then u can also reach v at the same power; this is the case for example if the
costs represent signal attenuation resulting from a deterministic path-loss model
that only depends on the pairwise distance of nodes. We consider the notion of
lifetime that regards all nodes as equally important, so that the objective is to
maximize the time span after which the first node runs out of energy [12].

The transmission structure of the network is modelled as a graph G = (V, E)
with an associated edge cost function δ : E �→ R

+. Here δ is scaled so that v
can reach u as long as τ(v) ≥ δ(v, u) pmax. A transmission power assignment
τ : V �→ R

+ induces a graph G(τ) = (V, E(τ)) whose edges represent the radio
links that are supported by the given assignment τ : an edge (v, u) is an element
of E(τ) if and only if τ(v) ≥ δ(v, u) pmax, i.e. if and only if node v transmits at a
power that is sufficient for u to correctly receive messages from v. For simplicity,
we assume that G(τmax) with τmax(v) = pmax for all v is a connected graph.

We consider the problem of finding a static transmission power assignment
τ : V �→ [0, pmax], such that the lifetime of the network is maximized while
the network remains connected. Within the context of this problem, any power
assignment τ that connects the network induces a spanning subgraph with some
maximum edge cost α = max(v,u)∈E(τ) δ(v, u); we aim to find a power assignment
that minimizes α. Although this condition generally does not uniquely determine
τ , choosing τ(v) = α pmax for all nodes v does not decrease the lifetime. The
power assignment τ is considered to be fixed after it has been once determined
during the initial network setup. Note that this problem is considerably different
from the case of computing a dynamic assignment of power levels, which is a
computationally more complex problem [13].

Definition 1. Given a set of nodes V , and an edge cost function δ : V × V �→
R

+, a graph G = (V, E) is an α-spanner if G is connected and δ(v, u) ≤ α for
each edge (v, u) ∈ E.

In other words, an α-spanner is a connected spanning graph for the nodes in V
where the no edge has cost greater than α. Note that since we normalize the
edge costs for any network a 1-spanner exists exactly when the network can be
connected by the nodes sending at full power.

Definition 2. For given V and δ, an α-spanner is ε-optimal, if α′ ≥ α − ε for
all α′-spanners.

A 0-optimal α-spanner has a maximum edge cost α, but there are no span-
ners with only edges of cost less than α; thus, we also call such spanner a
minmax cost spanner. Network lifetime can now be maximized by determin-
ing the minmax cost spanner (V, E) and choosing the power assignment τ(v) =
pmax max(v,u)∈E δ(v, u).
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4 Binary Search for a Minmax Power Spanner

We propose a distributed algorithm for determining an ε-optimal α-spanner,
given a graph with edge costs and the accuracy parameter ε. The algorithm
determines transmission power levels that maximize the time until the first node
runs out of energy.

The resulting protocol BSpan consists of three stages. All stages are initiated
by a designated reference node which also detects their termination (except for
the final stage that only requires local termination), but otherwise the computa-
tions proceed without central coordination. The protocol thus admits an efficient
implementation in a distributed setting such as a wireless sensor network.

In the first stage, nodes collect neighborhood information and estimate link
costs by transmitting and receiving beacon messages. The reference node also ob-
tains a count of the number of nodes in the network, assuming the transmission
graph G(τmax) is connected. The second stage of the protocol performs a binary
search over the range of possible transmission power levels. The final stage con-
sists of a network broadcast in which the reference node notifies all other nodes
of the global termination of the algorithm and the resulting minmax power level.
The three stages of the BSpan protocol are executed in the order indicated in
Fig. 1. We now discuss the three stages of the protocol in more detail.
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Fig. 1. Overview of the different stages of the BSpan protocol

4.1 Setup Stage

The setup stage as described in Algorithm 1 first finds a spanning tree of the
transmission graph by a process of beaconing at maximum transmission power
pmax. Each node, once it has joined the spanning tree under construction, starts
sending a sequence of beacon messages using random delays between consecu-
tive messages. These beacons enable nodes to discover their neighbors, estimate
the cost of their incident edges in the transmission graph and determine whether
they are leaf nodes in the spanning tree. When the beaconing sequence has termi-
nated, a reply message is transmitted along the attained spanning tree edges to
the reference node, starting at the leaf nodes. This reply message contains a count
of the number of child nodes of each node, so that the reference node eventually
obtains a count of the total number of nodes in the network. More specifically,
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in a beacon message beacon(v, f) the parameter v denotes the identity of the
beaconing node and f is its parent in the spanning tree being constructed; in a
reply message reply(v, count) the parameter v is again the identity of the sender,
and count represents the number of nodes in the subtree rooted at v.

The setup stage is initiated as if the reference node had received a beacon
message. Upon receiving a beacon message from a node u for the first time, each
node v sends the message beacon(v, u) and schedules a number of retransmissions
using random delays. After transmitting the beacon for the first time, v starts
listening for messages from neighboring nodes and records their presence in a
neighbor list together with a flag indicating whether the neighbor is a child node
in the spanning tree. Note that the neighbor u is a child of v, if u includes the
information that it previously received the beacon from v in the message. For
each received beacon, v also estimates a lower bound on the transmission power
that is required to reach the neighboring node.

More specifically, we consider a message that a node v receives from node u,
received with power precv, arrived successfully if precv ≥ pthresh, where pthresh is
the threshold power required for a successful transmission (disregarding interfer-
ence). In our simulations, the power precv is computed by the propagation model
under consideration. Assuming that the received power depends linearly on the
sending power, precv = Xu,v psend, and the receiver knows the sending power
used, the receiver v can estimate the attenuation coefficient Xu,v = precv/psend.
Assuming that Xv,u = Xu,v, node v can estimate the minimum transmission
power pmin it needs to use to transmit to u by solving pthresh = Xv,u pmin.
Combining these, we have

pmin =
pthresh psend

precv
,

where psend is the power that was used by u for sending. If the assumption
does not hold or if the measured transmission power shows random variations,
then beacon messages with varying transmission power can be used for the same
purpose, similar to the techniques proposed in [14]. Recall that the link costs
δ(v, u) are normalized so that the minimum power required for v to send to u
is pmin = δ(v, u) pmax; due to the normalization the link costs lie in the interval
[0, 1], and v can estimate the link cost as δ(v, u) = pmin/pmax, or if the maximum
power was used for sending, psend = pmax and δ(v, u) = pthresh/precv.

When v has sent a certain number of beacon messages, it decides that the
setup phase has locally terminated. In the case that v discovers itself to be a
leaf node of the constructed spanning tree, it sends a reply message to its father
reporting a node count of one. If v is not a leaf node it waits until it receives
replies from all its children before it sends a reply to its father that contains its
child counts incremented by one, indicating the termination within the subtree
rooted at v. When the reference node has received replies from all its child nodes
the setup stage has terminated.

For measuring the strength of arriving radio signals, one can utilize for exam-
ple Received Signal Strength Indication (RSSI) for a system with IEEE 802.11
network interfaces or, alternatively, methods similar to the ones proposed in [14].
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Algorithm 1. Setup stage

node v with variables beacon count, beacon delay, expecting reply from, father,
neighbor list, node count, rand, timer;

at start
node count ← 0; expecting reply from ← ∅;
enter state IDLE;

in state IDLE // wait for incoming beacon messages
if beacon(u, f ′) is received with power precv then

father ← u; δ ← pthresh/precv; // estimate link cost
neighbor list ← neighbor list ∪ (u, δ);
broadcast beacon(v, father) at power pmax;
timer ← new beacon event after rand(0,beacon delay);
enter state BEACON;

end

in state BEACON // send beacon repetitions many beacons with random delay
if beacon(u, f ′) is received with power precv then

δ ← pthresh/precv; // estimate link cost
neighbor list ← neighbor list ∪ (u, δ);
if f ′ = v then expecting reply from ← expecting reply from ∪ {u};

end
if reply(u, count) is received with power precv then

expecting reply from ← expecting reply from \ {u};
if expecting reply from = ∅ and beacon count = beacon repetitions then

unicast reply(v, node count + count + 1) at power pmax to father;
enter state SETUP FINISHED; // starts the next stage

else
node count ← node count + count;

end

end
if timer triggers new beacon event then

broadcast beacon(v, father) at power pmax;
if beacon count < beacon repetitions then

beacon count ← beacon count + 1;
timer ← new beacon event after rand(0,beacon delay);

else if expecting reply from = ∅ then
unicast reply(v, node count + 1) at power pmax to father;
enter state SETUP FINISHED; // starts the next stage

end

end

To obtain the correct neighborhood information for all the nodes, in most cases
the number of retransmissions for the beacon messages can be fairly small. In the
absence of interference and resulting collisions, it would be even sufficient that
each node beacons exactly once. Thus, the message complexity of the beaconing
stage is O(N), where N is the number of nodes in the network.
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4.2 Search Stage

After the global termination of the setup stage, each node has information of
all other nodes in its maximum transmission range and the costs of the incident
edges. The reference node also knows the total number of nodes within the
network. In the second stage Algorithm 2 performs a binary search over the
range of possible transmission power levels, coordinated at the reference node.
At each iteration of the algorithm, the reference node initiates the computation
of a rooted tree spanning the nodes that can be reached from the reference
node using paths with maximum edge cost at most α. The reference node then
checks whether this tree spans all nodes in the network. After the search has
terminated, the reference node informs all other nodes about the termination
and the minimum edge cost necessary to connect all nodes. This cost can then
be used to locally determine the transmission power level required at each node.

Each iteration of the binary search algorithm consists of two steps: The first
step is initiated by the reference node and consists of a flooding of request mes-
sages over edges with cost at most α. The second step consists of a convergecast
of reply messages back to the reference node in order to count the nodes in the
tree computed in the first step. This count is then compared by the reference
node to the total number of nodes in the network.

The request messages are of the form (v, α, f) where v is the identity of the
sending node, α is the maximum allowable link cost in this iteration, and f is
the parent of node v. In the first step, each node v, upon receiving a request
from a neighbor u, broadcasts a request message at most(!) once by broadcasting
it to all neighboring nodes. We assume that all messages are sent at maximum
power, although that assumption is not critical to the algorithm: choosing a
power corresponding to α would be possible as well. Node v decides that sending
the message is required under the following conditions. Firstly, v must not have
broadcast a request earlier in this iteration. If so, and the cost of the link (u, v)
is less or equal to α, the current edge cost under consideration, u becomes the
father of v. Note that the edge costs are assumed to be symmetric. Secondly,
there must still be adjacent nodes w different from u such that the link (v, w)
has cost less than or equal to α.

After sending the request (v, α, u), v waits for a request from any w that meets
the condition above. In the case that v receives a request (w, α, v′) from w, it
will mark w as child if v′ = v, and as processed otherwise. A neighbor marked
child corresponds to w being v’s child in the tree of the current iteration, and
the label processed corresponds at this step to w being in the tree already with
a different father node v′.

In the case that v has no child nodes, either because there are no adjacent
nodes with low enough edge costs or if they all have different father nodes, it can
determine that it is a leaf node in the current tree. Subsequently, it originates a
reply message that contains its id and a node count of one, which it sends to its
father node u. If v has at least one child w, v waits for replies from all its child
nodes before sending a reply. After receiving a reply from w, node v marks w as
processed.
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Algorithm 2. Search stage

node v with variables α, αmax = 1, ε, expecting msg from, father, lower,
is reference node, N(v), node count, status, upper ;

at start
if is reference node then

α ← αmax/2; lower ← 0; upper ← αmax;
for u ∈ N(v) do status[u] ← processed;
enter state RESET;

in state RESET
father ← none; node count ← 0;
if is reference node then

if ε < upper − lower then enter state SEND REQUEST;
else enter state SEARCH FINISHED;

else enter state IDLE;

in state IDLE // wait for incoming requests
if request(u,α′, f ′) with α′ ≤ δ(u, v) is received then

α ← α′; father ← u;
enter state SEND REQUEST;

end

in state SEND REQUEST // broadcast a request to neighboring nodes
expecting msg from ← {w ∈ N(v) \ {father} | δ(v, w) ≤ α};
for w ∈ expecting msg from do status[w] ← wait;
if expecting msg from �= ∅ then

broadcast request(v, α, father);
enter state PROCESSING;

in state PROCESSING // process requests, wait for replies
if request(u,α′, f ′) is received then

if f ′ = v then // u has acknowledged v as its father
status[u] ← child;

else // u has father f ′ different from v
status[u] ← processed;

end
if reply(u,nodes) is received then

status[u] ← processed; node count ← node count + nodes;
if status[w] = processed for all w ∈ N(v) \ {father} then // end of iteration

if is reference node then
if total nodes = node count then upper ← α;
else lower ← α;
α ← (upper + lower)/2;

else
unicast reply(v, node count + 1) to father; // report node count

enter state RESET;
end

When v receives the last outstanding reply (all neighbors except its father
are marked processed in v’s neighbor table), v updates the last reply to contain
the sum of all node counts received from its child nodes incremented by one and
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(a) Spanning Tree

1: transmit request(1, 0.75,−),
2: mark 1 as parent,
2: transmit request(2, 0.75, 1),
4: drop request from 2,
1: mark 2 as child,
3: mark 2 as parent,
3: transmit request(3, 0.75, 2),
2: mark 3 as child,
4, 5: mark 3 as parent,
5: transmit request(5, 0.75, 3),
4: transmit request(4, 0.75, 3),
4: drop request from 5,
5: drop request from 4
(b) Spanning Tree Construction

4 → 3: reply(4, 1),
5 → 3: reply(5, 1),
3 → 2: reply(3, 3),
2 → 1: reply(2, 4)

(c) Node Counting

Fig. 2. Simple example of a single iteration of the search stage as described in Algo-
rithm 2, initiated by reference node with id 1. (a) shows the spanning tree that results
from the parent record at each node at the end of the iteration; edges that are not
contained in the tree are shown dashed. (b) shows the request messages and the re-
sulting actions of the nodes during the construction of the tree. (c) shows the replies
that are sent along the attained spanning tree edges and the node counting operation.
Note that requests reach all neighboring nodes (broadcast), while replies are sent from
a child to its parent (unicast).

then forwards the reply to its father. Thus, the reference node can determine the
number of nodes in the network reachable by edges with cost at most the current
candidate edge cost α. By comparing this count with the count obtained during
the setup stage, the reference node is able to determine whether α is an upper
or lower bound of the minmax transmission cost and update α correspondingly.
See Algorithm 2 for details and Fig. 2 for a toy example of a single iteration of
the search stage.

In each iteration each node that has been reached by a request, except the
reference node and nodes that have no adjacent neighbors that they could reach
with cost at most α, sends exactly two messages, one request and one reply.
The reference node sends a request but no reply. Therefore, the total number
of messages sent in a single iteration is at most 2(N − 1) + 1, where N is the
number of nodes in the network. The binary search over intervals of size ε of the
range [0, 1] requires �log(1/ε)� iterations, where the logarithm is taken in base
2. Thus, the search stage has message complexity O(N log(1/ε)).

Note that in a realistic setting the different costs resulting from the available
transmission power levels are not necessarily equidistant. Instead, the possible
power levels would be represented by an ordered set PL of real numbers. In
this case, instead of using the range [0, 1] to represent the edge costs, one would
perform a search on the set of available power levels using their rank, rather
than their cost value. The number of iterations required by the algorithm would
then be �log(|PL|)�, where |PL| is the number of distinct power levels.
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4.3 Notification Stage

The notification stage consists of a simple network-wide broadcast by which the
reference node informs all other nodes about the termination of the algorithm
and the final edge cost value α (the upper bound in Algorithm 2). Notification
messages are sent at power α and nodes keep track from which node they first
receive a notification message. In this way, similar to the previous stages, the
notification stage constructs a spanning tree of the transmission graph that is
an ε-optimal α-spanner. From the adjacency list and by listening to notification
messages all nodes can infer locally their power level assignment.

The number of messages that are required for the notification stage is at most
N . However, the search stage clearly dominates the message complexity of the
protocol. We therefore conclude that the complete BSpan protocol has message
complexity O(N log(1/ε)).

5 Experimental Evaluation

We experimentally evaluated the algorithm described in the previous section us-
ing the ns2 [5] network simulator and compared it to two previously proposed
algorithms, Distributed Min-Max Tree (DMMT) [6] and Maximum Lifetime
Spanner (MLS) [7]. To measure the performance of the algorithms, we consid-
ered both the number of control messages and the time it takes for the algorithms
to finish. The network topologies were generated by scattering nodes randomly
in a square, whose dimensions were chosen such that the expected node den-
sity was constant for all number of nodes. We used the TwoRayGround model
as the propagation model, for it perfectly meets the conditions as outlined in
Section 4.1. Instances for which the placement does not yield a connected net-
work were discarded from the simulations. We also disregard simulation runs
that result in an incorrect node count due to beacon collisions during the setup
stage of BSpan, as this event possibly invalidates results obtained during the
later stages. During the experiments this event occurred in at most 0.5% of runs
for any network size. Refer to Table 1 for the list of simulation parameters.

Table 1. Simulation parameters; the input graphs were generated by random place-
ment of nodes within the area, while disconnected graphs and graphs for which the
beaconing did not yield the correct node count were discarded

ns2 version 2.31 Node density 1 node per 130 m×130 m
Transmission range 250 m Number of nodes 50-500
Number of nodes 50-500 Propagation model TwoRayGround
Max jitter (BSpan) 0.5 s BSpan iterations 7
Message timeout 2.1 s ε 2−7

Beacon delay (max) 1.5 s Beacon repetitions 3
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5.1 Distributed Min-Max Tree Algorithm

The DMMT algorithm proposed in [6] determines for a given set M of nodes
(the multicast group) a spanning tree with minmax edge cost. Choosing M = V ,
DMMT can be readily applied to solve the lifetime maximization problem as
formulated in Section 2. In this paper, we focus on the version of the algorithm
that was proposed for omnidirectional antennas.

The DMMT algorithm borrows ideas from the well-known Prim’s algorithm
for constructing minimum spanning trees. Prim’s algorithm grows a subtree of
the original graph starting from an initial node, such that in each step the
minimum cost edge is added that connects one node belonging to the tree and
another node not yet in the tree. After all nodes have been added, the algorithm
terminates and the resulting tree forms a minimum spanning tree.

The DMMT algorithm finds a minimum power spanner by adding an addi-
tional step to each iteration, the so-called growth phase: After the attempt of
finding the minimum outgoing-edge-cost has terminated, this cost is propagated
to all tree nodes in a join request message. Each tree node u then forwards this
message to each neighbor v that u believes is not yet in the tree if the cost of the
edge (u, v) is less or equal to the minimum outgoing edge-cost. This operation
corresponds to growing the tree along edges with cost less or equal to the current
threshold cost. After a non-tree node has been added via an edge adjacent to
the tree node, the tree node becomes the parent node of the newly added node
which becomes a child node of its parent.

However, the DMMT algorithm does not necessarily always find an outgoing
edge in the search phase of the algorithm, as is the case for an iteration of Prim’s
algorithm. This is due to the fact that nodes only learn about their neighbors
being in the tree when these forward request messages to them and can result
in costly non-progress iterations of the algorithm.

The formulation in [6] employs timers at each node in order to let the nodes
distributively estimate the termination of the growth phase. In our evaluation we
considered a more synchronized method initiated by the reference node to notify
the nodes to switch from the growth to the search phase. This modification was
considered necessary, in order to make DMMT more resilient against network
failures, such as packet drops at the MAC level. Additional control messages
were not taken into account for the comparisons described below.

5.2 Maximum Lifetime Spanner Algorithm

The Maximum Lifetime Spanner (MLS) algorithm proposed in [7] uses a breadth-
first search approach to construct paths with minmax edge cost, which are com-
bined to form a minmax power spanner of the transmission graph. Starting from
the reference node, messages containing the lowest edge cost known so far are
propagated in the network. Upon receiving a request for the first time from a
neighbor v containing the maximum edge cost α on the path the request has taken
from the reference node to v, each node u keeps track of its father and forwards
the message to its neighbors. When u forwards the message received from v, u
updates α to be the maximum of α and the cost of the edge (v, u).
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If a node learns about a better route during the execution of the algorithm, it
informs the old father by sending a NAK message (negative acknowledgement)
to its father. Then the node changes the father to the node it learns the better
route from. As soon as it has received replies form each of its neighbors, the
node sends an ACK message (positive acknowledgement) to its father.

These ACK and NAK messages serve two purposes. Firstly, they allow each
node to be aware about both, its father and its children, and secondly, they
guarantee the termination of the algorithm. As soon as the reference node has
received acknowledgements, either positive or negative, from all its neighbors,
the algorithm terminates. At termination each node u knows about which of its
neighbors it is responsible for. Thus, it can decide which power level it has to
choose to assure connectivity.

5.3 Network Simulations

We implemented the aforementioned algorithms, BSpan, DMMT and MLS,
as protocol agents in ns2. All three protocols are initiated by the designated
reference node. DMMT and MLS require topology information in the form
of neighbor lists and edge costs that are loaded into the nodes prior to the
execution of the algorithms. For BSpan, the reference node starts the protocol
by initiating the setup stage to obtain the weighted neighbor lists and a count
of the nodes in the network. The total message counts of BSpan, DMMT and
MLS are depicted in Fig. 3(a). Both DMMT and MLS require prior topology
information in the form of neighbor lists. However, as opposed to BSpan the
number of messages required for obtaining this information are not included in
the total message counts of DMMT and MLS. Despite this handicap, BSpan
outperforms MLS by a factor of 3 for 50 nodes and 5 for 200 nodes. DMMT
even requires between 8 and more than 40 times more messages than BSpan
and therefore does not scale well with the size of the network. One should note
that BSpan also benefits from the broadcast advantage of wireless networks.

Recall that BSpan is guaranteed to find an ε-optimal spanner. For a fixed ε
the number of messages required by BSpan is linear in the number of nodes,
whereas for a fixed number of nodes the message count for BSpan is linear in
log 1/ε. Figure 3(b) illustrates the effect of different values for ε. As opposed to
DMMT and MLS, BSpan scales well with the number of nodes. For our further
observations we fixed ε at 2−7 which corresponds to a difference of less than one
percent compared to the optimal value.

When evaluating running time, one has to consider the effect of timers on
the performance of the different protocols. Assuming a collision free network,
BSpan would only require a timer in the setup stage of the protocol. However,
as this assumption is not necessarily realistic, one has to introduce a retransmis-
sion timer into the search stage of the protocol in order to avoid the following
erroneous state: When a request that was sent by a node v is not received cor-
rectly at node u due to a collision at node u, or the later request sent by u is
not received due to a collision at v, the node v will end up in a deadlock. This
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Fig. 3. Number of messages required by BSpan, DMMT and MLS for networks of
increasing size. Errorbars represent standard deviations over 1000 repetitions. The
number of messages for BSpan includes the messages in the setup and search stages;
the notification stage was excluded from the results, as it is not part of the DMMT
and MLS algorithms, although required for global termination of the algorithms. The
choice for ε in (a) is 2−7. Note the different scale in (a) and (b).

is due to the fact that v waits for u to broadcast a request, possibly indicating
v to be its parent, or unicast a reply message if u is in fact a leaf node.

To avoid the situation above, a retransmission timer ensures that v sends a
copy of the last request by unicast every 2.1 s until the node receives any message
from the particular neighbor, whose reply is outstanding. Unicast communication
is sufficient as possibly not all neighbors of v are required to react. A node u
that receives a retransmitted request from node v will either unicast its last
transmitted request back to v in order to signal v that v is not u’s parent in the
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Fig. 4. Total simulated running time (in seconds). Errorbars represent standard de-
viations over 1000 repetitions; note that the total running times are plotted on a
logarithmic scale. The duration of the notification stage of BSpan was excluded from
the results, as it is not part of the DMMT and MLS algorithms, although required for
global termination of the algorithms.
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current iteration, or process it as usual, if it has not processed any request in
the iteration previously.

The second timer involved is used in the setup stage to allow a leaf node to
wait some time before it starts to reply, in order to discover neighbors. This
timer triggers after Δ = (Number of Beacons)× (Maximum Jitter) = 1.5 s after
the node has broadcasted the request for the last time, since, unless all beacon
messages were dropped, a potential neighbor sends its last broadcast message
after Δ s at the latest. In a collision free network this timer could be set to
Δ = 2× (Maximum Propagation Delay), for in the ideal case no jitter would be
needed, and the only delay is due to radio propagation.

The DMMT protocol makes extensive use of timers, whose values naturally
have a strong impact on the running time. Figure 4 shows that BSpan is slightly
slower than MLS, which - one could argue - is partly due to the absence of timers
in MLS and that BSpan significantly outperforms DMMT.

6 Conclusions

We have presented an efficient distributed algorithm for the problem of life-
time maximization in a wireless sensor network with stationary nodes and static
transmission power assignments. Unlike many previously proposed algorithms
for related problems, our algorithm does not rely on prior knowledge of the net-
work, such as network size or neighbor lists. The algorithm is based on a binary
search for the minimum maximum edge cost that is required to connect the
network, where connectivity is determined in each iteration of the algorithm by
counting the nodes reachable from the reference node.

The algorithm has been formulated as a network protocol BSpan and im-
plemented using the ns2 network simulator. In our experiments comparing the
runtime behavior of BSpan to the DMMT algorithm for constructing minmax
trees and the previously proposed MLS protocol, BSpan systematically outper-
forms both other algorithms in terms of number of control messages generated,
and it also performs clearly better than DMMT in terms of execution times.

A natural extension of the present work would be to consider the task of
lifetime maximization under dynamic transmission power assignments. This is,
however, a computationally much more challenging problem than the static one
considered here [13]. One possible (suboptimal) heuristic would be to build a dy-
namic schedule iteratively from solutions to appropriately scaled static problems,
using the BSpan protocol as an auxiliary routine.
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Abstract. In a Wireless Sensor Network, sensor nodes may fail for sev-
eral reasons and the network may split into two or more disconnected
partitions. This may deteriorate or even nullify the usefulness and effec-
tiveness of the network. Therefore, repairing partitions is a priority. In
this paper we present a method to repair network partitions by using
mobile nodes. By reasoning upon the degree of connectivity with neigh-
bours, a mobile node finds the proper position where to stop in order
to re-establish connectivity. Factors influencing the method performance
are singled out and criteria for their selection are discussed. Simulations
show that the proposed method is effective and efficient notwithstanding
packet loss.

1 Introduction

Networked Embedded Systems play an increasingly important role and affect
many aspects of our lives. New applications are being developed in areas such
as health-care, industrial automation, smart building and rescue operations.
The European Integrated Project “Reconfigurable Ubiquitous Networked Em-
bedded Systems” (RUNES) [1] brought together 21 industrial and academic
partners with the aim of enabling the creation of large scale, distributed, het-
erogeneous networked embedded systems that inter-operate and adapt to their
environments.

To illustrate the potential of the networked embedded systems, the project
selected a disaster relief scenario, in which a fire occurs within a tunnel, much
as happened in the Mont Blanc tunnel in 1999 [5]. The RUNES work in general
and the disaster relief scenario in particular offer a number of interesting and
challenging problems. In the rest of the paper we focus on the following.

A set of nodes with wireless communication capabilities are deployed inside
the tunnel for monitoring purposes. As soon as an emergency situation occurs,
for example an accident involving many cars, the nodes need to transmit data
regarding the tunnel conditions to a base station responsible for tunnel control.
In such a scenario, accurate and comprehensive information must be provided
to the base station so that correct counter measures can be taken. It is of fun-
damental importance that the network would maintain connectivity, so that the
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flow of critical data to the base station is guaranteed. However, the network
could be partitioned because of a malfunction of the nodes, caused by a fire, or
because the presence of obstacles that deteriorate or even nullifies metrics of the
Quality of Service. In such a critical situation, restoring network connectivity is
a priority.

The problem of network partitioning in WSN is not entirely new even though
so far has received limited attention [16]. Chong and Kumar raise the problem
of partitions with a security focus [7]. So do Wood and Stankovic with respect to
denial of service [17]. In [6], Cerpa and Estrin propose methods to self-configuring
WSNs topologies. Although they mention the problem of network partitions as
an important one, however, they leave such methods to future work. Finally,
Shrivastava et al. propose a low overhead scheme to detect network partitioning,
“cuts” in their parlance, but they do not propose any method to repair them [16].

With respect to Shrivastava et al.’s work, in this paper we focus on the com-
plementary problem of restoring network connectivity. With reference to the
tunnel scenario, we propose a method that uses autonomous mobile nodes. Once
the base station determines the network partitioning, one or more mobile nodes
are sent inside the tunnel. A mobile node is equipped with a radio transmitter-
receiver so that it can communicate with the sensor nodes. Furthermore, it main-
tains connectivity with the base station through the wireless sensor network.
By reasoning upon the degree of connectivity with neighbours, a mobile node
navigates inside the tunnel until it reaches the optimal position to re-establish
connectivity.

The paper is organized as follows. In Section 2 we state the system model.
In Section 3 we define the problem. In Section 4 we present the algorithm the
mobile nodes locally perform to restore the connectivity and we single out the
main factors affecting the algorithm. In Section 5 we present a performance
analysis based on simulations. Finally, in Section 6 we draw final conclusions.

2 System Model

According to the tunnel-disaster-scenario, the wireless sensor network is com-
posed of a powerful base station and a set of low-end sensor nodes. Base station
and sensor nodes have wireless capabilities and communicate through a wire-
less, multi-hop, ad-hoc network. We assume the resulting wireless network runs
a routing algorithm that is able to cope with the failure of a “small” number of
nodes by finding alternative routes [10,14,15]. However, in the case of a disaster,
the number of failed nodes is “too large” and the network breaks into two or
more disconnected partitions.

We assume the existence of a Partition Detection System (PDS), running
on the base station and able to both detect the presence of network partitions
and provide a rough estimation of their positions. More precisely, we assume
the Shrivastava et al.’s partition detection system [16] that works as follows.
The base station knows the position of a small subset of sensor nodes that are
called the sentinels . Each sentinel communicates with the base station at regular
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Fig. 1. The tunnel disaster-relief scenario. Double-circled nodes represent sentinels.

time intervals. Intuitively, the failure of the base station to communicate with a
given sentinel is the proof that a partition containing that sentinel has formed
(Figure 1). Furthermore, the sentinel position provides a rough estimation of the
partition position.

Notice that even in structured environments such as a tunnel, the base station
could not be able to define where exactly the failure occurs. Let us suppose that
the base station knows the location of each node. So, the base station could
broadcast a discovery message and then define the partition border on the basis
of the not-responding nodes. Nevertheless, this solution is not suitable because
too expensive in terms of time and communication overhead.

Our system includes mobile nodes (robots), that are used for repairing the
network partitions. Upon detecting the presence of a partition and roughly es-
timating its position, the base station sends a mobile node to that position.
The mobile node navigates inside the tunnel until it reaches the target position.
Each mobile node is equipped with the same communication capabilities as sen-
sor nodes so that it can communicate with sensor nodes in its neighbourhood
and with the base station through the wireless sensor network. In this way, mo-
bile nodes can reach positions that are far from the base station despite their
limited radio range. We assume that the speed of a mobile node is such that its
neighbourhood remains practically constant during a network round-trip time.

3 Problem Definition

Let us assume that the WSN splits in two partitions: a safe partition, containing
the base station, and an isolated partition. The two partitions are separated by a
gap of failed nodes (Figure 1). For brevity, we call safe nodes the nodes belonging
to the safe partition and isolated nodes those belonging to the isolated one.

The PDS detects the network partitioning and knows that the inter-partition
gap intersects the path leading to the not-responding sentinel, but the PDS is
not able to exactly determine where the intersection actually occurs and how
wide the inter-partition gap is. Hence, the mobile node has to determine itself the
proper place where to stop according to the following conditions: 1) the mobile
node is in contact with both the safe and the isolated partition; or, 2) the mobile
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node is in contact with the safe partition and any further movement makes the
mobile node lose connectivity with that partition.

Condition 1 occurs when the safe and the isolated partition are so close to
each other that a single mobile node is sufficient to reconnect them despite its
limited communication range.

Condition 2 occurs when the inter-partition gap is too wide and a single mobile
node is not sufficient to reconnect them. In this case the mobile node has to get
as close as possible to the isolated partition while remaining always connected
to the safe partition. This means the mobile node has to realise when it is about
to lose connectivity with the safe partition and, consequently, stop before this
event takes place.

4 Algorithm for Repairing Network Partitioning

As soon as the PDS has detected the network partitioning, the base station
broadcasts a fresh number, called epoch, to identify the partitions. Safe nodes,
that are connected with the base station, can receive the new epoch. In contrast,
isolated nodes keep holding the old epoch. Notice that in real environments
communication channels are not stable because of several factors including the
distance between nodes, environment conditions, noise, and interference. So, a
safe node could not be able to receive the new epoch.

As soon as the base station has distinguished the safe partition from the
isolated one by broadcasting the epoch, it sends the mobile nodes towards the iso-
lated partition. While navigating, each mobile node detects the partition bound-
ary by monitoring its connectivity degree with the safe partition, i.e., the number
of safe nodes it can communicate with. In fact, when the number of neighbours
is below a certain threshold, it is likely that the mobile node is close to the par-
tition boundary (Figure 2). However, a simple threshold-based approach may
not be sufficient because of communication instability. In our model, we have a
good communication link between a mobile node and a fixed node only if the
probability for the former to receive a message is greater than a certain threshold

Fig. 2. Number of neighbour nodes vs. mobile node position



An Algorithm for Reconnecting Wireless Sensor Network Partitions 257

Pg. So, the mobile node considers a fixed node as its neighbour if they have a
good communication link.

During this phase, referred to as Monitoring Phase, the mobile node broad-
casts an Hello message. If a fixed node replies with a Reply message containing
the current epoch, the mobile node assumes that the fixed node certainly belongs
to the safe partition. The mobile node counts how many Replys it receives from
safe neighbours. As long as the mobile node is in the safe partition, the number
of Replys it receives for each Hello does not suffer strong variations. So, if
the mobile node detects a decrease in the number of received Reply messages,
it could be about to lose connection with the safe partition.

It is worthwhile to notice that the mobile node may receive a Reply message
carrying an old epoch even from a safe node. In fact, a safe node could fail to
receive the new epoch because of packet loss. So, if the mobile node has not
detected any decrease in its neighbourhood during the Monitoring Phase, it can
ignore the message containing the old epoch.

If the mobile node detects a decrease in its neighbourhood during the Mon-
itoring Phase, it enters into the Verification Phase. In this phase, the mobile
node verifies whether it is about to lose connection with the safe partition by
broadcasting a burst of Hello messages. If this is not the case, the mobile node
returns into the Monitoring Phase. Otherwise, it verifies whether it has received
a Reply message containing the old epoch. If it is the case, the mobile node
assumes that it has reached an isolated node so that the partitions have been
bridged. Otherwise, the mobile node assumes that the gap is too wide and any
further movement makes him lose the connectivity with the safe partition.

When the mobile node reaches the position to bridge the partitions or, at least,
reduce the partition gap, it may stop and behave as an ordinary, fixed sensor
node, so participating to routing and sensing, if it has sensing capabilities, and
cooperating with other mobile nodes for network repairing. Alternatively, the
mobile node may carry fixed sensor nodes and deploy one of them in the final
position. These alternative choices influence the mobile node complexity from
an electro-mechanical standpoint.

The mobile nodes could be equipped with an hardware device for the self-
localization. In case of inter-partition gap too wide, the mobile node could
broadcast its own position to the other mobile nodes so that they can use this
information to adjust their final position. Nevertheless, each mobile node has to
perform the algorithm to verify its connectivity degree with the safe partition.

Furthermore, repairing the network is not the only form of cooperation re-
quired to mobile nodes. Mobile nodes have also to cooperate to avoid crashing
into one another or into obstacles. Of course, this influences the actual path
of the mobile node to reach the final position. It should be noted that the ac-
tual path the node takes is independent of the problem addressed in this paper,
namely finding the proper positions where to place nodes (mobile or not) to
repair network partitions. For this reason we shall not consider these issues any
further. Interested readers can refer to [2,4].
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4.1 Algorithm for Finding the Proper Position

The Monitoring and the Verification Phase are implemented by the Monitor and
Verify functions, respectively.

1: function Monitor(epoch)
2: begin
3: ΔTH = 0; replySet = ∅; round=random number ;
4: repeat/* round */
5: wait(ΔTH);
6: broadcast(〈HELLO, epoch, round〉);
7: setTimeOut(ΔTR);
8: repeat
9: reply = receive();

10: if (getRound(reply) == round) then
11: replySet = replySet ∪ reply;
12: end if
13: until timeout strikes
14: nR = size(replySet);
15: round++;
16: ΔTH = newInterval(nR);
17: until nR > NPS

18: end

Fig. 3. The Monitor function

A conceptual implementation of the Monitor function is in Figure 3. The Moni-

tor function is organized as a sequence of rounds that starts every ΔTH seconds.
The sequence terminates when the mobile node is in the gap and about to lose
connection with the safe partition. In every round, the Monitor function broad-
casts an Hello packet (line 6) and receives the corresponding Reply packets
for ΔTR seconds from fixed nodes (lines 7-9,13). An Hello packet has two fields:
(i) an epoch field that specifies the epoch known to the mobile node; and (ii) a
round field that specifies the round (of that epoch) in which the mobile node
has transmitted the packet. A Reply packet has three fields: (i) an identifier
field that specify the fixed node identifier; (ii) an epoch field that specifies the
epoch known by the fixed node; (iii) a round field that specifies the round of the
Hello packet to which the Reply packet replies. We say that a Reply packet
is a valid reply for a given Hello packet if the former carries the same round
and the same epoch as the latter.

The Monitor function counts the number nR of valid Reply packets coming
from safe nodes (line 14). If nR is greater than a given threshold NPS , Monitor

assumes that the mobile node is still in the safe partition and calculates the new
value for the interval ΔTH on the basis of the nR itself (line 16). Notice that such
a computation does not take into account ΔTR, that is usually negligible with
respect to ΔTH . On the contrary, if nR < NPS , the Monitor function assumes
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that it is about to lose connectivity with the safe partition. So, the function ends
and the mobile node calls the Verify function to ascertain whether it is actually
in the gap between partitions.

1: function Verify(epoch) → [FalseAlarm, IsolatedNodeFound, InTheGap ]
2: begin
3: replySet = ∅; round = random number ; neighbours = 0
4: while ((round < B)) do
5: broadcast(〈HELLO, epoch, round〉))
6: setTimeOut(ΔTR);
7: repeat
8: reply = receive();
9: if ((getEpoch(reply)==epoch) and (getRound (reply)==round)) then

10: replySet = replySet ∪ reply;
11: end if
12: if (size(select(replySet,getId(reply)))==Bmin) then
13: neighbours++;
14: end if
15: until timeout strikes
16: if (neighbours ≥ NC) then
17: return FalseAlarm;
18: end if
19: round++;
20: end while
21: for reply in replySet do
22: if (getEpoch( reply ) �= epoch) then
23: return IsolatedNodeFound;
24: end if
25: end for
26: return InTheGap;
27: end

Fig. 4. The Verify function

The conceptual implementation of the Verify function is in Figure 4. The func-
tion estimates the connectivity degree of the mobile node with the safe partition,
i.e. how many good links the mobile node has with safe nodes. The Verify func-
tion evaluates the neighbourhood by broadcasting a burst of B Hello messages
(lines 4–20). If a fixed safe node replies with at least Bmin valid messages, it
is considered a neighbour (lines 9–14). If the number of neighbours exceeds a
given threshold NC , the mobile node has still enough neighbours. So, the func-
tion returns FalseAlarm (lines 16–17) and the mobile node returns to the Monitor

function.
If the number of neighbours is less than NC , the function verifies whether it has

received a Reply message from an isolated node. So, if it has received a Reply
packet containing the old epoch, the function returns the value IsolatedNodeFound
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(lines 21–25). Otherwise, the function assumes that the mobile node is about to
disconnect from the safe partition and returns the InTheGap value (lines 26).

4.2 Algorithm Parameters

In order the algorithm performs as expected, the following parameters should
be properly chosen: the Connectivity threshold NC , the Phase-Switch threshold
NPS , the Signalling interval ΔTH , the Response interval ΔTR, and the Burst
parameters B and Bmin.

Let us define Rg the maximum distance covered by good links. We assume
most of neighbouring nodes lie into a circle with radius Rg, whereas nodes placed
outside suffer link instability. Given the radio communication range R, the pa-
rameter Rg could be defined as Rg = Pg × R, or calculated via experiments.
Furthermore, let us define Nneigh the expected number of neighbours when the
mobile node is in the safe partition. Given the initial node distribution δ0, Nneigh

can be defined as Nneigh =
⌊
δ0πR2

g

⌋
or via experiments. Note that the nodes

are subjected to failure and the network density could get not uniform. More in
detail, in some areas the density could be less than the initial value δ0.

The Connectivity Threshold NC

The Connectivity threshold NC is the minimum number of neighbours in the
safe partition the mobile node has to be in contact with during the Verification
Phase.

(a) (b)

Fig. 5. A small NC may result in disconnections

The Connectivity threshold NC influences the algorithm performance because
a too small value may cause disconnections from the safe partition. Let us con-
sider the scenario depicted in Figure 5 where the mobile node is in contact with
two neighbours. If NC = 1 the mobile node keeps moving and loses the connec-
tivity with the safe partition. Actually, the next time it checks for connections,
it has already left the partition. For this reason, NC ≥ 2 is in general preferable.
Nevertheless, a high NC value could cause a premature stopping of the mobile
node in the safe partition. So, NC has to be below Nneigh/2 that is the expected
number of neighbours when the mobile node is crossing the border.
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The Phase-Switch Threshold NPS

The Phase-Switch threshold NPS is the expected number of Replys the mo-
bile node receives as it enters the gap between partitions. So, if the number of
replies is lower than NPS , the mobile node switches from the Monitoring Phase
to the Verification phase. A high value of NPS implies frequent switchings to
the Verification Phase: many bursts are sent in order to verify the mobile node’s
connectivity, thus causing an excessive amount of messages. On the contrary,
choosing a too low threshold reduces phase switchings and may cause discon-
nections from the safe partition if the Verification Phase is executed when the
node has already crossed the border of the safe partition.

The mobile node uses this parameter to perform a first, rough detection of
the partition boundary. When the mobile node crosses the border, half of the
communication range lies outside the safe partition. Hence a reasonable value is
NPS = Nneigh/2. Furthermore, during the Monitoring Phase, the mobile node
could receive messages from poor link nodes. In order to avoid disconnections
from the safe partition, the Phase-Switch threshold has to be greater than the
Connectivity one. That is, NPS > NC .

The Signalling Interval ΔTH

The Signalling interval ΔTH is the time between two consecutive Hello mes-
sages broadcast during the Monitoring Phase. It affects both the probability
of disconnecting from the safe partition and the total number of messages ex-
changed during the repairing process. In order to stop in time, a mobile node
needs to sample the number of its neighbours with a high frequency. Hence,
a short ΔTH is required. However, using a small interval implies an excessive
amount of messages. For this reason, we opted for an adaptive calculation of
ΔTH in order to use shorter intervals only in the most critical region (i.e., when
the mobile node is entering the gap between partitions).

As the mobile node gets near the safe partition boundary, the number of fixed
nodes around it decreases because only a portion of its communication range lies
within the safe partition. The signalling interval is calculated taking into account
the worst case, when the partition border is perpendicular to the direction v̂ of
the mobile node (Figure 6).

Fig. 6. Area containing neighbours
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Let ncur(d) be the number of nodes within the Rg range when the mobile
node is at a distance d from the safe partition border. A negative distance from
the border means that the mobile node is still in the safe partition and has not
crossed the border. With reference to Figure 6, ncur(d) is given by the Equation 1.

Since the number of neighbours assumes only discrete values in the range
[0, Nneigh], the mobile node can construct a translation table containing the
pairs 〈n, d̃(n)〉, where n is the number of neighbours and d̃(n) is the maximum
value so that ncur(d̃(n)) = n. By using the translation table, the mobile node can
estimate the maximum distance that can be covered without losing connectivity
with the safe partition. More in detail, given the number of Replys nR, the
mobile node estimates its current distance from the border, d̃(nR). Note that
the mobile node could receive more Reply messages than Nneigh because the
communication radius R is greater than Rg. In this case, the distance from the
partition border is approximated with d̃(Nneigh) = −Rg.

The next position is defined on the basis of how many nodes it has to be
connected with. The mobile node has to be connected with almost NC nodes,
thus it has to stop at distance d̃(NC) from the border. Hence, the mobile node
has to cover a distance D̃ so that D̃ ≤ |d̃(nR)− d̃(NC)|.

Table 1. Translation table (Nneigh = 7)

n 2 3 4 5 6 7

d̃(n)
Rg

0.42 0.14 −0.11 −0.34 −0.56 −1

For example, with reference to Table 1, if the mobile node receives nR = 4
replies and NC = 2, the estimated distance that has to be covered is D̃ ≤
|d̃(4)− d̃(2)| = | − 0.11− 0.42|Rg = 0.53Rg.

Given the current position xcur and the direction v̂, the mobile node can cal-
culate the next position xnxt = xcur + v̂D̃. So, the Signalling interval ΔTH is the
time that the mobile node needs to reach the next position xnxt starting from
xcur. It depends on the motion algorithm, i.e., obstacle advoidance algorithm,
collision advoidance algorithm and so on. Let us suppose that the mobile node
moves in a straight line at constant speed V . In this case, the Signalling interval
is ΔTH = ‖xnxt−xcur‖

V = D̃
V .

The Response Interval ΔTR

The Response time ΔTR is the time the mobile node waits for the Reply mes-
sages. Since Nneigh is the expected number of replies when the node is in the
safe partition, ΔTR has to include at least Nneigh packet transmission intervals.
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Furthermore, ΔTR has to take into account the probability of collisions resulting
from concurrent broadcasting. Usually, the MAC protocols use Random Backoff
Scheme in order to reduce collisions. Each broadcast is delayed by a time pe-
riod, called backoff time period. The protocols define how to select appropriately
this backoff time. We define ΔTBO(Nneigh) the expected backoff time period in
presence of Nneigh nodes. So, the Response interval ΔTR is defined as follows:

ΔTR = NneighΔT1 + ΔTBO(Nneigh)

where ΔT1 is the time for transmitting a packet. Usually the Response interval
ΔTR is negligible with respect to the Signalling interval ΔTH . In fact, the in-
terval ΔTR is a communication time, whereas ΔTH is the time the mobile node
needs to cover a given distance.

The Burst Parameters B and Bmin

The parameter B is the number of Hello messages the mobile node broadcasts
during the Verification Phase. This burst of messages is used to find how many
neighbours in the safe partition the mobile node is in contact with. The param-
eter Bmin is the minimum number of Reply messages the mobile node has to
receive from a specific node in order to consider it as a neighbour.

As already specified, two nodes are neighbours if the probability of receiving
a Reply in response of a Hello message is greater than or equal to a given Pg.
In order to evaluate this probability, a mobile node sends B Hello messages
and records how many Replys it receives from each fixed node. Let us suppose
that rj is the number of replies broadcast by the node j. This counter gives us
a rough estimation of the reception probability: if the rj/B ratio is greater than
Pg, we assume to have a good link.

The parameter B could be defined via experiments on the basis of Nneigh.
That is, B is the minimum burst size so that the expected number of replying
nodes is Nneigh. Furthermore, given B and Pg, the parameter Bmin is chosen so
that Bmin ≥ PgB.

5 Simulation Results

We implemented our algorithm over TinyOS [13] using the nesC programming
language [9] and carried out performance analysis through simulation using
TOSSIM simulator [11,12]. The simulated environment is a wireless sensor net-
work where nodes are uniformly distributed to form a grid. Grid spacing is 8
feet and the radio communication range is 12 feet. Furthermore, we suppose that
every safe node holds the current epoch. The mobile node moves in a straight
line with a constant speed V =2 feet/s.

We used TOSSIM’s empirical radio model, which defines packet loss rates
based on measurements made by Woo et al. on RFM radio [8]. For our experi-
ments, we defined the reception probability for discriminating between good and
poor links to Pg = 0.8. Before testing the algorithm, we performed the prelimi-
nary calibration of parameters Nneigh, Rg, and B. The mobile nodes broadcasts
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Fig. 7. Pdsc and Ocom vs. static and dynamic ΔTH (sec)

a burst of Hello messages when it is within the safe partition. On the basis of
the replying nodes and their position, the mobile node sets the parameters as
follows: Nneigh = 10, Rg = 10 feet, and B=10. Thus, given Pg =0.8 we have
Bmin=8.

We evaluate the algorithm performance in terms of communication overhead
Ocom and disconnection probability Pdsc. More in detail, the communication
overhead Ocom is the average number of Hello messages that the mobile node
broadcasts. The average is computed over ten repetitions of the experiment.
For each repetition, the starting point of the mobile node is randomly selected.
The disconnection probability Pdsc is defined as the ratio between the number
of simulations resulted in a connection loss (no good links between the mobile
node and the safe partition) and the total number of runs.

First, we examined the algorithm behaviour both whether the signalling in-
terval ΔTH is statically chosen and is adaptively calculated. In the case of a
static predefined ΔTH , the disconnection probability increases as the signalling
interval exceeds a certain value. However, a short interval means a higher com-
munication overhead. In fact, as shown in Figure 7, a static ΔTH in the [0.5, 2]
range limits the disconnection probability in the [0, 0.3] range. Nevertheless, in
this case the communication overhead ranges from 9.9 to 25.2. On the other
hand, the adaptive calculation of ΔTH limits the disconnection probability to
0.1 and the communication overhead to 5.2. It is important to observe that an
adaptive selection of ΔTH is particularly effective when the safe partition is
much larger than the communication range because the mobile node strongly
reduces the amount of communication overhead it produces while traversing the
safe partition.

Furthermore, we evaluated how the Phase-Switch threshold NPS influences
both the disconnection probability and the communication overhead. Figure 8(b)
shows how small NPS values reduce the communication overhead. In particular,
they reduce the chance of false alarms, and thus unneeded bursts. Nevertheless,
small NPS values may cause an higher probability of disconnection from the safe
partition (Figure 8(a)).

Our third experiment concerns how the connectivity threshold NC affects the
final position reached by the mobile node. We ran simulations with different
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values of NC and measured the average distance df from the mobile node to
the safe partition boundary. A negative value of df means that the mobile node
is still in the safe partition and has not crossed the border. Results are shown
in Figure 9. We notice that lower thresholds lead to higher distances (the node
advances into the gap between partitions). On the other hand, higher thresholds
make the mobile node stop early. For example, in case of NC = 3, the mobile
node does not cross the partition border (df = −0.8ft).

6 Conclusions

With reference to a WSN, we have presented a method for repairing network
partitions based on mobile nodes. The paper has the following merits. First of
all, it treats an important problem that, so far, has received limited attention.
Furthermore, the paper suggests a method that is based on a few mobile nodes
that move through the network reducing the communication overhead. The paper
presents the main factors influencing the algorithm behaviour and performance
and discusses their selection criteria. By simulation, the paper shows that the
proposed method is effective in terms of disconnection probability and efficient
in terms of communication overhead. Future steps consist in deploying an early
prototype on the multi-agent platform we have been developing [3].
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16. Shrivastava, N., Suri, S., Tóth, C.D.: Detecting cuts in sensor networks. In: IPSN,
pp. 210–217. IEEE, Los Alamitos (2005)

17. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. IEEE Com-
puter (2002)



Typhoon: A Reliable Data Dissemination

Protocol for Wireless Sensor Networks
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Abstract. We present Typhoon, a protocol designed to reliably deliver
large objects to all the nodes of a wireless sensor network (WSN). Ty-
phoon uses a combination of spatially-tuned timers, prompt retransmis-
sions, and frequency diversity to reduce contention and promote spatial
re-use. We evaluate the performance benefits these techniques provide
through extensive simulations and experiments in an indoor testbed.
Our results show that Typhoon is able to reduce dissemination time and
energy consumption by up to three times compared to Deluge. These
improvements are most prominent in sparse and lossy networks that
represent real-life WSN deployments.

1 Introduction

One of the main end-user requirements for WSNs is the ability to reprogram the
network after it has been deployed. In turn, the requirement to reprogram the
network generates the need to reliably disseminate large objects (∼50–100 KB)
to every node in the network. This combination of large object sizes, 100% reli-
ability, and network-wide distribution is not addressed by other WSN protocols
and thus requires a custom protocol. This need has been identified by numerous
researchers in the past (e.g., [3,4,5,13,16] among others).

In this paper we present Typhoon, a reliable data dissemination protocol that
represents a different set of choices in the design space. Our choices are moti-
vated by the observation that idle listening is the major consumer of energy
during dissemination. Thereby, all protocol decisions should be geared towards
minimizing the time that nodes are not transmitting or receiving data packets
(i.e. competing to request or waiting for the retransmission of a lost packet).

Unlike previous protocols, Typhoon sends data packets via unicast. This ap-
proach allows receivers to acknowledge the receipt of individual packets and
thereby quickly recover lost packets. While data packets are sent via unicast,
interested nodes can still receive them by snooping on the wireless medium.
Through the combination of unicast transfers and snooping, Typhoon achieves
the best of both worlds—prompt retransmissions and data delivery to all the
nodes in a broadcast domain through a single transmission. Dissemination la-
tency is also reduced by exploiting spatial reuse, through which nodes in different
parts of the network can be transmitting at the same time. We enhance spatial
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reuse through the combination of two techniques: setting timers in a way that
encourages nodes further from the origin to propagate the object and the use
of channel switching. Specifically, it has been shown that the minimum node
distance necessary to avoid interference among concurrent transmissions is three
hops [2]. On the other hand, if nodes switch frequency channels1 during data
transfer it is possible to reduce the distance to two hops in many cases. Typhoon
leverages this observation to reduce object dissemination time.

We evaluate the performance of Typhoon through a combination of simula-
tions and experiments on a testbed deployed in an office building. Performance
is measured in terms of the time required and the energy expended to deliver an
object to the whole network. We vary the size, diameter, and density of the net-
work and test Typhoon using different object sizes and loss rates to understand
the effects of these factors on the protocol’s behavior. Moreover, we compare
Typhoon’s performance to that of Deluge—the de facto standard for data dis-
semination in TinyOS [3]. Our results show that Typhoon can be up to three
times faster than Deluge in sparse and lossy networks.

This paper has five sections. We summarize related work in the section that
follows and provide a detailed description of the Typhoon protocol in Section 3.
We evaluate the protocol’s performance and compare it with previous protocols
proposed in the literature in Section 4. Finally, Section 5 outlines future research
directions.

2 Related Work

The problem of designing protocols for reliably disseminating large data objects
has received considerable attention in the past. One can divide existing proto-
cols in two broad categories: randomized protocols in which nodes compete to
acquire and subsequently transmit parts of the object, and protocols that avoid
contention by scheduling node transmissions.

The genealogy of the first protocol family starts with PSFQ [18], a transport
protocol for reliable delivery of objects from a sink to all the nodes in a wireless
sensor network. PSFQ uses TTL-scoped broadcast to propagate messages from
the sink and hop-by-hop retransmissions to recover from lost messages. Unlike
PSFQ, Typhoon uses unicast messages to propagate objects, while leveraging
overhearing to deliver packets to multiple receivers within the same broadcast
domain. Moreover, PSFQ uses negative acknowledgments, whereas Typhoon uses
postive acknowledgments and multiple frequency channels to increase spatial
reuse. MOAP [16] transfers the complete object one hop at a time. After re-
ceiving the whole object a node can become a secondary source, delivering it
to nodes further away from the origin. The design of MOAP is driven by the
desire to trade latency for reliability and simplicity. Unlike MOAP, Typhoon
uses pipelining in which nodes offer to further deliver pages) (i.e., subsets of
the object) as soon as they receive them. This approach dramatically reduces
the network completion time, defined as the time by which all nodes receive the
1 Current 802.15.4 radios can switch between 16 non-overlapping channels.
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full image, thereby reducing energy consumption due to idle listening. MNP [5]
reduces download time by using pipelining and reduces contention in dense net-
works through the use of a sender selection algorithm. Reliability is achieved
through retransmissions, initiated by query messages sent by the packet source
to nodes receiving the transmissions. Unlike MNP, Typhoon implements oppor-
tunistic overhearing for traffic of common interest. Moreover, Typhoon uses fast
acknowledgments transmitted after each packet rather at the end of a page.
Finally, Typhoon uses channel switching to reduce contention in the broadcast
medium, amplifying the benefits of spatial reuse.

Deluge [3] is the de facto standard for data dissemination in TinyOS. It uses
an epidemic protocol that eventually propagates the object to all the nodes in the
network. Deluge relies on randomized Trickle timers [10] to reduce contention
among transmission requests. Objects are transmitted as sequences of fixed-size
pages via broadcast to leverage the broadcast nature of the wireless medium.
NACKs trigger the retransmission of lost messages after a full page has been
transmitted. NACKs also use Trickle timers to minimize the probability that
multiple retransmission requests will collide. While beneficial in reducing the
number of collisions, random timers can prolong the time required to propagate
the image throughout the network. Typhoon also delivers data to multiple re-
ceivers whenever possible. On the other hand, receivers send acknowledgments
after each data message instead of NACKs after each block transmission. This
design choice enables nodes to start offering data to downstream destinations
sooner, thereby minimizing completion time and thus energy costs. This is es-
pecially important in lossy networks in which the number of retransmissions is
expected to be high. Moreover, Typhoon uses channel switching to reduce con-
tention and to allow multiple concurrent transmissions over the same broadcast
domain.

Protocols of the second family initially distribute the object to a subset of the
network’s nodes using a fixed schedule that avoids overlapping transmissions.
The object is then broadcasted to the rest of the network. In order to mini-
mize completion time, the initial set of nodes should be the minimum connected
dominating set (MCDS) of the graph induced by the wireless network [13]. Cal-
culating that set however is an NP-hard problem even for the unit graph connec-
tivity model [1] and therefore approximation algorithms are necessary. Sprinkler
uses a distributed approximation algorithm that computes a connected domi-
nated set that is a multiplicative factor larger than the MCDS [13]. Infuse [4]
follows a similar dissemination strategy and combines it with implicit acknowl-
edgments for reliability. Furthermore, Infuse turns off the radios of nodes not
participating actively in the dissemination thus reducing energy consumption
due to idle listening. GARUDA [14] is a recent protocol that uses an efficient
mechanism for constructing an approximate MCDS during the first packet trans-
fer. Moreover, GARUDA nodes publish bitmaps indicating the packets they have
received correctly. Downstream nodes use these bitmaps to send (re)transmission
requests. Unlike protocols that rely on node coordination to prevent contention,
Typhoon minimizes contention through the use of channel switching and implicit
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synchronization. This approach does not have the overhead of building the
MCDS, is robust to node failures, and simplifies data dissemination to new
nodes in the network.

3 Protocol Description

Typhoon is designed to reliably deliver large objects, such as code binaries, to
all the nodes in a WSN. In this context, large objects are defined as objects
that do not fit in the mote’s main memory and can be as large as 50–100 KB.
Typhoon divides an object to fixed-size pages (1 KB) which are further divided
to fixed-size packets (28 bytes in our implementation) that can be atomically
transmitted over the radio.

Even though protocols like Typhoon are unlikely to be invoked frequently,
their inherent flooding nature and the need for 100% reliability, irrespective of
loss conditions suggest that each invocation of the protocol could be resource
intensive and thus its cost should be minimized. As has been argued before,
idle listening is one of the largest energy consumers [19]. Therefore, the protocol
should make every effort to “push” the object’s pages through the network as
fast as possible. In turn this means that the protocol should attempt to lever-
age spatial re-use, transmitting pages from multiple non-overlapping nodes and
minimize contention that leads to node back-offs and thereby added latency.

We note that an alternative approach would be to use duty cycling, turning
radios off when not in use. In this case network completion time is not as crucial,
because energy consumption due to idle listening is minimized. However, we
argue that duty cycling is not appropriate for reliable dissemination protocols.
First, users want to reduce network downtime due to reprogramming. Second,
duty cycling introduces complexity which should be minimized in protocols that
serve a critical role to network operations.

3.1 Metadata Dissemination

We assume that the object to be disseminated is injected through an out-of-band
mechanism to a single node from which it must propagate to the network. In this
regard, the first necessary step is to notify the network about the existence of
this new object. Typhoon uses separate mechanisms to disseminate data objects
and metadata about these objects. By metadata, we mean information about
the existence of a new object, codified into an object ID, size and version. Nodes
decide whether they should attempt to download an advertised object by com-
paring the new object ID and version with those of previously retrieved objects.
If a node decides to download the new object, the number of pages is determined
by dividing the object’s size by the page size.

The reason for using separate mechanisms stems from the difficulty of design-
ing a single protocol that can efficiently serve both purposes. For example, since
new nodes may join the network at any time, the metadata dissemination pro-
tocol must be always active. This means that, while it should quickly propagate
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Fig. 1. State transition diagram for Typhoon. State transitions are marked using the
condition/action notation in which a transition occurs when a condition is met and
results in an action (or no action in case of ’-’).

updates to the whole network, it must minimize overhead during steady state.
On the other hand, for reasons outlined above, the data dissemination protocol
should disseminate the object as fast as possible and then terminate. Typhoon
uses Trickle [10] to disseminate metadata.

For the remainder of the section we describe what happens once nodes become
aware of the existence of a new object and attempt to retrieve it.

3.2 Data Request Handshake

Figure 1 represents Typhoon’s state transition diagram. Nodes start in the
ACTIVE state and return to this state while they have more pages to download.
While in this state, a node will periodically broadcast PageReq requests that
contain the object’s ID and the number of the requested page. Nodes request
pages sequentially. By doing so, nodes within the same broadcast domain are
more likely to be in the same state, which increases the probability of overhearing
traffic of common interest.

The broadcast period is uniformly chosen from [ta, tb] to avoid collisions among
multiple interested receivers2. Nodes that have copies of the requested page and
receive a PageReq message, each respond with a unicast PageOffer message
after waiting for a random time uniformly selected from [tc, td]. The PageOffer
message includes the object’s ID as well as the number of the page offered. The
random waiting period is used to prevent collisions among multiple potential
offerers. They then transition to the WAIT state and wait for a StreamReq
message. If no StreamReq arrives within Ts seconds the offerers return to the
ACTIVE state3. Otherwise, upon receiving a unicast StreamReq message, one
of the offerers will transition to the PUB state and start the data transfer.
That offerer returns to the ACTIVE state after the page has been successfully
downloaded or after a number (five) of unsuccessful data packet transfers. These
failures are detected because the receiver acknowledges the receipt of individual
data packets (see Section 3.3).

2 We use, [ta, tb] = [400, 500] msec.
3 Ts = 20 msec in our implementation.
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Fig. 2. Pipelining pages through the network

Conversely, a node that receives a PageOffer message matching its request,
transitions to the RCVR state and signals the source of the PageOffer message
to initiate the data download by transmitting a unicast StreamReq message.
The receiver stays in that state while more packets from the requested page
need to be retrieved and returns to the ACTIVE state either when the whole
page has been successfully downloaded or when a timeout occurs. The second
case protects the receiver against failures of the transmitting node.

Nodes that overhear a PageOffer message for a page they are missing, will
transition to the SNOOP state in which they will attempt to receive the data
packets from the offered page. While PageOffer messages are sent via unicast,
interested nodes can still receive them. For example, the CC2420 radio provides
the ability to disable address filtering enabling a node to receive all packets
irrespective of their destination address. Similar to the RCVR state, the node
leaves the SNOOP state when the page transfer has completed or when a timeout
occurs. If a node does not successfully overhear all the packets from a page, it
discards the page.

In addition to the base scheme described above, Typhoon optimizes its use of
timers to enable the pipelining of pages through the network. We describe this
optimization using the example presented in Figure 2. In this scenario, node A
has finished transmitting page n to node B. In response, node B will transition
to the ACTIVE state and transmit a PageReq for page n + 1. Node A receives
this message and starts its timer to transmit the PageOffer message. However,
node C also receives the request and deduces that node B already has page n
(because pages are downloaded sequentially). C then sends its own PageReq for
page n to B. From the perspective of pipelining, C’s request has priority over
B’s original request, since it pushes pages further downstream. To encourage this
behavior, Typhoon sets the timer at B to fire before A’s timer4. Once B’s timer
expires, it transmits a PageOffer for page n. A overhears that offer and cancels
its own PageOffer, implicitly deferring to B’s data transmission.

3.3 Data Transfer

Typhoon achieves reliable transfer in the face of packet loss, through the use
of retransmissions. However, unlike previous protocols that use negative

4 In our implementation, [tc, td] = [15, 25] msec for a node that has just finished
transmitted a page and [0, 10] msec otherwise.
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(a) (b)

Fig. 3. (a) Propagation of consecutive pages on a linear topology when only one fre-
quency channel is used. Notice that node A has to wait until time period 4 to transmit
the second page in order to avoid colliding at B with node C’s transmission of the first
page. (b) When nodes can use different frequency channels to transmit data packets
(indicated by different colors in the figure) the wait time is reduced by one time period.

acknowledgments after all packets in page have been transmitted, Typhoon ac-
knowledges the receipt of individual data packets. If the sender does not receive
an acknowledgment, it retransmits the last data packet thus implementing a
stop-and-wait ARQ protocol.

A node can generate these acknowledgments in two different ways. First, mod-
ern radios offer the ability to automatically generate hardware acknowledgments
[17]. The benefit of this approach is reduced latency because the ACK is generated
as soon as the radio hardware correctly receives the packet. On the other hand,
it is possible for an acknowledged packet to be dropped before it reaches the ap-
plication. In this case, the hardware acknowledgment results in a false positive.
Fortunately, TinyOS2 [8], on which Typhoon is developed, implements a mech-
anism called software ACK that can trigger this acknowledgment at the system
level. It is thus possible to disable the hardware from automatically generating
hardware ACKs and achieve equivalent functionality using software ACKs.

An additional benefit of disabling hardware ACKs is that it enables overhear-
ing of unicast packets. This is because enabling hardware ACKs in the commonly-
used CC2420 radio also enables destination address filtering, in which case the
radio automatically discards all unicast frames not destined to the current node.
With address filtering disabled, nodes in the SNOOP state can still receive data
packets sent to the unicast address of the node that transmitted the StreamReq
message, while the explicit receiver will generate ACKs for those data packets.

3.4 Channel Switching

As we already argued, data dissemination protocols should leverage spatial re-
use to accelerate the propagation of pages through the network. Spatial re-use
is achieved by having nodes retransmit pages as soon as they arrive. However,
as Figure 3(a) demonstrates, in order to avoid collisions due to the hidden ter-
minal problem a node must wait for two additional periods (a period is defined
as the amount of time necessary to transmit a page) before it can transmit the
next page. On the other hand, as Figure 3(b) shows, this bound can be further
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reduced if nodes have the ability to transmit at different frequency channels.
Channel switching provides another benefit in addition to accelerating the
pipelining process. Because nodes exchange PageReq and PageOffermessages on
the default common channel, having data transfers on different frequencies elim-
inates the danger of ongoing data transfers colliding with these control messages.

Considering the advantages of channel switching, Typhoon incorporates it
to the data request handshake described above. Rather than using an explicit
agreement protocol in which nodes are assigned specific frequencies, Typhoon
employs a randomized scheme to select transmission frequencies. Specifically, the
publisher suggests a frequency channel in its PageOffer message by randomly
selecting from one of the possible channels (e.g. 15 in the case of 802.15.4, since
one channel is reserved for broadcast messages). If the receiver accepts the offer
it replies with an acknowledgment (similar to the ACK used for data packets)
and switches to the suggested frequency channel. After receiving the acknowledg-
ment the publisher also tunes to the new channel and the data transfer starts.
Note that the receiver transmits a StreamReq message after switching to the
channel indicated in the PageOffer message. Although the channel is randomly
chosen, it is still possible to have multiple publishers willing to serve the same
receiver on the same channel. Therefore, the StreamReq message serves as an
explicit indication of the receiver’s decision. Although nodes randomly select
data transfer channels, it is possible that more than one ongoing data transfers
with overlapping radio coverage take place on the same channel. In this case,
interference can cause higher packet loss and thus retransmissions and possibly
failure to transmit the page due to the loss of multiple acknowledgments. In the
second case, the sender and/or the receiver will timeout, return to the ACTIVE
state, and retry downloading the original page.

While channel switching provides clear performance benefits, it also introduces
new complications. For example, Typhoon uses Trickle for metadata dissemina-
tion, and both Typhoon and Trickle can be active at the same time. Since Trickle
is not aware of the channel changes it will transmit over the channel selected by
Typhoon. This means that if a node is transferring data on a channel other than
the default one, the node’s neighbors will not be able to receive any metadata
sent via Trickle. Realizing this conflict, we implement two schemes to minimize
its effects. First, upon receiving the initial notification via Trickle, nodes wait for
a random period before they start Typhoon5. This delay allows Trickle to prop-
agate the metadata downstream. Second, nodes switch to the default channel
immediately after each page transfer, thus allowing the continued dissemination
of metadata.

4 Evaluation

4.1 Evaluation Metrics and Methodology

We evaluate the performance of Typhoon using simulations and experiments
performed on a testbed deployed in an office building. The results we report
5 Set to [400, 500] msec in our implementation.
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Fig. 4. Packet reception rate as a function of distance from a packet source. The path-
loss exponent is 4.

are based on an implementation of Typhoon built on top of TinyOS 2 (T2) [8].
Moreover, we use the standard CSMA MAC protocol used in T2.

We use Deluge, the de facto standard for reliable bulk transfer in TinyOS,
as the baseline for our comparisons. Since Deluge provides no guidelines for
setting its parameters under different network conditions we use the default
parameters provided with Deluge under all cases. All simulations were carried
out in TOSSIM, a discrete event based simulator for TinyOS [9]. We lever-
age two of TOSSIM’s features to improve the fidelity of our simulations. First,
TOSSIM allows defining signal attenuation levels on a per link basis. We cal-
culate these attenuations using the log distance path loss model [15]. In this
model the path loss at distance d from the source, measured in dB, is, PL(d) =
PL(d0) + 10n log(d/d0), where n is the path-loss exponent and PL(d0) is an
experimentally measured path loss at reference distance d0. Path loss exponent
n = 2 corresponds to free space propagation, while n = 3, 4 model environ-
ments with reflections and refractions [15]. We use n = 4 for all our simulations.
Figure 4 shows the packet reception rate at various distances from a source node.
Second, we utilize TOSSIM’s ability to emulate bursty noise due to interference.

We quantify the performance of Typhoon through two metrics: (1) Com-
pletion time, which captures the time necessary to disseminate an object.
We measure both the time necessary for individual nodes as well as the net-
work completion time, defined as the longest node completion time. (2) Power
consumption. While completion time quantifies the level of disruption from
executing the object dissemination protocol (assuming the network’s operation
is disrupted during the download), power consumption quantifies the impact of
data dissemination on the network’s lifetime.

Due to the lack of a direct mechanism for measuring power consumption
in TOSSIM, we use the indirect approach of measuring the amount of time
the nodes spend transmitting, in idle listening mode, as well as the number of
packets it receives. Because the Tmote Sky data sheet [12] publishes only the
current drawn in transmit mode (17.4 mA), and in idle listening mode (19.7 mA),
we experimentally measured using a Tmote Sky mote [11] the average current
drawn while receiving one packet to be 21.7 mA. Note that our energy estimates
do not include the costs of reading and writing to flash. The reason is that
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they represent a fixed cost which is orthogonal to the operation of the data
dissemination protocol and therefore it provides no insight into the impact of
different protocol design decisions.

We run each experiment five times and use the two evaluation metrics to
reason about the impact of different factors on the performance of Typhoon.
Specifically, we investigate the impact that network density and size, object size,
and loss rate have on data dissemination. Moreover, we evaluate the incremental
benefits of overhearing and channel switching in Typhoon. Finally we present
the behavior of Typhoon in practice through results from a small testbed.

4.2 Effect of Network Density and Size

Network density is a critical performance factor since it affects the level of con-
tention when requesting and downloading pages. We first discuss the impact of
network density on completion time. Figure 5(a) shows the effect of increasing the
number of nodes per square foot by increasing the size of an N × N node grid,
deployed on a fixed 180 × 180-foot field. Also shown in the same figure is the av-
erage node degree, defined as the set of nodes with PRR > 0, as network density
increases. One can make two observations from this figure. First, the performance
margin between Typhoon and Deluge increases in sparse networks. This is because
Deluge uses timer values that reduce the number of messages sent and increase the
probability of overhearing.However, in sparse networks, these timer values increase
the idle listening time and thus completion time. Second, Typhoon is consistently
faster throughout the density range despite its more aggressive timers. This indi-
cates that channel switching is effective in relieving channel contention.

Both Typhoon and Deluge require nodes to keep their radios on for the dura-
tion of the data dissemination. Considering that the radio consumes considerable
energy in idle listening state, completion time will influence energy consumption.
Figure 5(b) verifies this intuition as it shows that energy consumption follows
closely completion time. We found that for both protocols nodes spend less than
7% of their time transmitting further indicating that energy cost is dominated
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Fig. 7. (a). Network completion time of a 20 KB object, as a function of the diam-
eter changes in 1 × n linear topology. (b). Page acquisition time, including the page
request phase and subsequent data transfer. The vertical lines represent the 5th and
95th quartiles.

by idle listening time. With this result in mind, we present only completion times
for the remainder of the evaluation.

Figure 6 illustrates the propagation time for individual nodes in a dense grid.
As reported in [3], Deluge propagates the data object faster around the edges
than in the middle of the network. The main reason is that nodes in the middle
of the network have more neighbors and thus higher probability of collisions. On
the other hand, Typhoon generates a uniform wavefront pattern from corner to
corner. Although nodes in the middle have more neighbors, the only messages
broadcasted on the default channel are the first two handshake messages. The
probability of collision is thus lower than Deluge.

Unlike the grid topology in which a node might receive data from different
neighbors, the linear topology limits the propagation to only one direction. It
is therefore easier to study the effects of network size on completion time using
linear topologies.

A number of interesting observations can be made from Figure 7(a) that plots
completion time as a function of network diameter in a linear topology. First,
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both Typhoon and Deluge benefit from pipelining, and the completion time does
not increase at the same rate as the number of nodes. Second, Deluge exhibits
faster increase compared to Typhoon. As the network diameter increases, the
number of neighboring nodes for some nodes also increases, and thus the prob-
ability of contention increases. This has a larger influence on Deluge, because
Typhoon sends packets on the common channel only during the page request
phase. Figure 7(b), which shows the average time to request and download a
single page as the network’s diameter increases, verifies this conjecture. From
the similarity between the two graphs, it is easy to see that page acquisition
time dictates completion time. Furthermore, Typhoon has approximately con-
stant page transfer time in all cases, which suggests that the shorter page request
phase underlies the difference in completion time. Finally, Deluge exhibits larger
variability in page acquisition time, due to the varying levels of contention that
different nodes experience.

4.3 Effect of Object Size

Unlike metadata dissemination protocols for which network diameter dominates
completion time, the size of the object transferred affects the completion time of
bulk data dissemination protocols. Figure 8 shows the impact of object size on
completion time in two cases: a sparse linear topology in which nodes can reach
only their immediate neighbors, and a 20× 20 grid topology with 10-feet node
spacing. In both cases, the completion time grows linearly with the object size
with Deluge yielding a steeper slope.

To understand the root cause for this behavior, we briefly present a model
for data dissemination in sparse linear topologies. We assume ideal conditions in
which pages are transferred in perfect synchrony with no collisions. In this case,
the expected completion time for Typhoon is T̂t = 2(n − 1)Pt + d · Pt, where
n is the number of object pages, d is the network diameter, and Pt is the time
to request and receive a page (see Figure 3). Given the description of Typhoon
from Section 4, we can estimate Pt and thus T̂t. A page transfer is preceded by
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the data request handshake. According to TOSSIM, each handshake exchange
of a 21-byte message followed by the ACK requires 1.68 msec to complete. Since
the handshake consists of three messages and two back-off timers with maxi-
mum length of 25 msec each, it should take 55.04 msec. Moreover, according to
TOSSIM, a page transfer requires approximately 428 msec and thus Pt = 483.04
msec. Figure 9 shows the modeled and simulated completion time for Typhoon
with different object sizes. Since the modeled completion time is based on ideal
conditions, it represents the lower bound on Typhoon’s performance. At the
same time, it explains that the lower completion time that Typhoon exhibits is
due to the speedup that channel switching offers.

4.4 Impact of Packet Loss

Since reliability is a requirement for bulk data dissemination protocols com-
pletion time depends on how fast lost packets are recovered. We perform two
experiments to estimate the effect of packet loss on completion time.

First, we increase the spacing between neighboring nodes in a 20 × 20 grid
topology. This increase raises the path loss on the link and therefore decreases the
packet reception rate (PRR). Figure 10 illustrates the completion time for this
experiment. It is easy to see that Deluge performance deteriorates with distance
while Typhoon is able to maintain consistent performance. Specifically, Deluge’s
completion time increases by over twofold when nodes are 35 feet apart from each
other. This is due to the fact that the PRR of the links between neighboring
nodes at this distance falls in the so-called gray region (PRR =∼ 95%, as Fig. 4
indicates). Extending the inter-node distance even further leads to a precipitous
decrease in PRR (∼ 30% at 40 feet), leading to an even worse performance
differential.

Second, we simulate the effect of bursty losses due to interference. To do so,
we use TOSSIM noise traces collected from environments with heavy 802.11
use [6]. As Table 1 shows, Typhoon’s performance degrades by 48% while the
completion time for Deluge increases threefold. Two main reasons underlie this
trend. First, Typhoon requires all data packets to be individually acknowledged,
and it bases the retransmission decision on this acknowledgment instead of a
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Table 1. Completion time under
different loss environments for a
20×20-node grid topology with 10-
feet node distance

Quiet Bursty loss

Typhoon 54.30 73.37
Deluge 80.79 241.43

timer. This allows lost packets to be recovered quickly. Second, compared to
Deluge, Typhoon is more aggressive in sending packets, so the transfer moves at
a faster pace.

4.5 Benefits of Overhearing and Channel Switching

In order to better understand the performance benefits that channel switching
and overhearing offer, we selectively disable them in an experiment on a 5 × 5
grid topology.

Table 2 presents the results of this experiment. Disabling channel switching
creates a larger performance deterioration compared to disabling overhearing.
This degradation while large is expected because Typhoon assumes that data
transfers take place on a channel that is free from interference caused by other
data transfers and request handshakes. As a result, being aggressive hurts per-
formance in this case. On the other hand, overhearing provides only modest
improvement. The reason is that Typhoon performs opportunistic overhearing,
in which nodes can snoop on a page transfer only when they overheard the pre-
ceding PageOffer message. In other words, if a node misses that message, it
loses the opportunity to overhear since the transfer happens at another channel.
Moreover, if a node in the SNOOP misses one or more packets from a page due
to interference it discards the whole page. At the same time, when overhearing
is combined with channel switching, it offers ∼ 30% reduction in completion
time.

Table 2. Completion time as channel-switching and overhearing are disabled in a
5 × 5-node grid topology with 20-feet node spacing for s 3 KB object

Completion time (sec)

Channel-switching and overhearing 6.24
Channel-switching only 8.79
Overhearing only 945.80
None 1016.43
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4.6 Protocol Overhead

The major design goal of Typhoon is to minimize completion time. It achieves
this goal by being aggressive in requesting and transmitting object pages.
Figure 11 illustrates the results of this aggressive behavior by comparing the
per-node packet distributions for disseminating the same object using Typhoon
and Deluge.

We focus on request and data transfer messages because they constitute the
majority of traffic. Typhoon generates approximately three times more traffic
than Deluge for both message types. The reason is that, unlike Deluge, Typhoon
does not have a request suppression mechanism, so nodes broadcast requests
more aggressively. Moreover, we found that 47% of the overhearing attempts
failed (i.e. node had to discard the partially overheard pages). While one can
suggest based on this result that nodes should sleep instead of performing op-
portunistic overhearing, sleep scheduling introduces complexity and overhead to
the protocol. Furthermore, as Section 4.5 shows, overhearing when used in con-
junction with channel switching, leads to ∼ 30% reduction in completion time.

4.7 Testbed Evaluation

We complement the simulation results presented above, with experimental re-
sults from testing Typhoon and Deluge on a small testbed. While simulations
are meant to explore the behavior of the protocols under various conditions, the
testbed is used to compare their performance in a realistic environment. Given
the two different goals, we do not compare results across simulations and the
testbed. Rather, it is the relative performance of Typhoon and Deluge under the
same testing scenarios that is of interest.

We test Typhoon on a testbed that consists of 22 motes deployed in an office
building according to the topology shown in Figure 12. Due to the shape of the
building, the testbed physically resembles a linear topology. Moreover, the center
of the testbed around location 119 tends to have relatively bad connectivity to
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Fig. 12. The testbed floor plan shows the locations of Tmote Connect boxes, which
can have either one or two motes attached
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Fig. 13. PDF of node completion time on the testbed for (a) Typhoon and (b) Deluge.
The green line shows the network average in each case.

the rest of the network. Dissemination starts by injecting a 20 KB object from
location 118 on the right side of the testbed.

The average network completion time was 75.15 seconds using Typhoon and
145.57 seconds with Deluge. To understand how the object propagates through
the network, Figure 13 shows the distribution of node completion times. For
both protocols, the node completion time is divided into two groups, with one
group taking longer to receive the entire object. Analysis of the experiment log
shows that the group of slow nodes is located on the left side of the testbed.
This is due to the the poor link connectivity in the center of the testbed. For
example, in the case of Typhoon, most nodes on the left side of the testbed
download pages from location 112. However, since the link connectivity between
location 112 and nodes on the right side of the testbed was poor, location 112
becomes the bottleneck.

As explained above, Typhoon uses the Dissemination service to publish meta-
data andT2 components for reading/writing to theFlash.The combined code foot-
print of all three components is 14752 bytes of ROM and 413 bytes of RAM. At the
same time, the incremental overhead of adding Typhoon to an application that
uses Dissemination and the Flash is 3806 bytes of ROM and 112 bytes of RAM.

5 Looking Forward

We have shown how Typhoon leverages frequency diversity to reduce network
contention and system-level ACKs to expedite recovery from lost data packets.
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The combination of these two techniques provides significant performance ben-
efits across a wide range of network sizes and conditions.

As we move forward, we plan to explore the benefits that dynamic packet size
adjustment provides. Preliminary results from our testbed show that changing
packet size can affect the packet reception rate by as much as 28%. The intuition
is that the probability of bit errors and thereby corruption accumulates as the
packet size increases. One should then transmit smaller packets in noisy envi-
ronments to reduce the number of retransmissions and larger packets in ’quiet’
environments to reduce packet overhead. However, the noise level is not known
in advance and changes over time. While algorithms exist for dynamically ad-
justing the packet size to maximize throughput, they are unsuitable for WSNs
due to their complexity [7]. We are currently developing algorithms for estimat-
ing the underlying bit error rates and dynamically adjusting the packet size that
can be implemented on current generation motes.
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Abstract. Wireless Sensor Networks (WSNs) are increasingly being proposed
in scenarios whose requirements cannot be fully predicted, or where the system
functionality must adapt to changing conditions. In these scenarios, the ability to
reconfigure portions of the software running on WSN nodes becomes imperative.
At the same time, recent WSN proposals often employ heterogeneous nodes (e.g.,
sensors and actuators), which require the deployment of different code on differ-
ent devices, based on their characteristics. Unfortunately, existing work in the
field largely focuses on simpler scenarios where the same, monolithic program is
distributed to all the nodes in the WSN.

In this paper we present FIGARO, a programming model supported by an
efficient run-time system and distributed protocols, collectively enabling an un-
precedented fine-grained control over what is being reconfigured, and where. Us-
ing FIGARO, the programmer can deal explicitly with component dependencies
and version constraints, as well as select precisely the subset of nodes targeted by
reconfiguration, leaving the others unaltered. We show that our run-time support
imposes a very limited processing and memory overhead, while the communica-
tion overhead lies within 9% of the theoretical optimum.

1 Introduction

The nodes of a wireless sensor network (WSN) are often deployed in large numbers
and inaccessible places, making individual code uploading an impractical solution. This
problem was early recognized in the WSN research field, leading to solutions exploiting
the wireless link for on-the-fly, untethered software reconfiguration [1]. However, these
solutions were designed to suit the needs of early WSN architectures, i.e., application-
specific systems with homogeneous devices.

Problem and Motivation. Today, WSNs are proposed in contexts where their function-
ality changes over time and/or cannot be predicted a priori. For instance, in emergency
response [2] systems the WSN must be reconfigured on-the-fly by mobile operators
which demand customized behavior to carry out their activities. In similar scenarios, an-
ticipating all expected needs, if at all possible, may lead to complex and unreliable code
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cluttered with rarely-used functionality. Therefore, software reconfiguration—even if
representing a rare activity compared to the application operations—becomes a much-
needed feature. For reconfiguration to be fully effective, however, programmers must
retain fine-grained control over what is being reconfigured, by updating selected func-
tionality to minimize energy consumption. However, most platforms allow updates only
of the full application image. In the very few exceptions, programmers sorely miss
proper constructs to deal with dependencies among different functionality, versions,
and other fundamental aspects of reconfiguration [1].

Moreover, modern WSNs are typically heterogeneous, containing a mixture of sens-
ing devices and/or actuators. In building monitoring, for instance, a wide range of sensor
and actuators is deployed, e.g., to implement heating, ventilation, and air conditioning
(HVAC) control [3]. As different nodes are likely to run different application code, soft-
ware reconfiguration may be limited to a specified portion of the WSN. For instance, a
structural engineer inspecting a building may want to load a new piece of functionality
only on seismic sensors deployed in a specific location (e.g., the floor being inspected),
to process the sensed data in a previously unanticipated manner [4]. In this case, fine-
grained control over where the code is deployed, based on application attributes of the
nodes, is largely missing from existing approaches, which instead are designed to dis-
tribute the same code to all the nodes, regardless of their function [1].

Contribution. In this paper we present FIGARO (FIne Grained softwAre RecOnfigu-
ration), a novel approach enabling fine-grained control over what is reconfigured and
where, to a degree unprecedented in WSNs. FIGARO tackles the two problems in an
integrated way, spanning all the aspects from the programming model down to the node-
level run-time support and the protocols for efficient code distribution. Its programming
model, described in Section 2, has two core constituents:

– the component model defines constructs for structuring the code on the single
nodes. Differently from other component models for WSNs (e.g., [5]), ours is de-
signed with reconfiguration in mind, thus providing dedicated constructs to deal
with component dependencies and versions, and to simplify the reconfiguration
process.

– the distribution model defines constructs to restrict component dissemination only
to a given subset of nodes—the reconfiguration target—based on programmer-
specified characteristics of the nodes or their current software configuration.

Our implementation includes a lightweight node-level run-time system, discussed in
Section 3, whose responsibility is to manage the local part of a reconfiguration process,
along with an efficient protocol for code distribution, illustrated in Section 4. Both are
evaluated in Section 5. As for the former, our results show that processing and mem-
ory overhead are almost negligible, while the energy overhead during reconfiguration
is marginal. Similarly, our distributed protocol results in a communication overhead
within 9% of the theoretical optimum, which is instead computed in a centralized man-
ner and with global knowledge of the system topology.

In Section 6 we compare FIGARO against representative state-of-the-art systems.
Finally, in Section 7 we conclude by illustrating directions for future work.
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2 Programming Model

FIGARO is currently built on top of the Contiki [6] operating system, and therefore
relies on the C programming language.

2.1 Specifying What Is Reconfigured

Components, Interfaces, and Dependencies. In FIGARO, a component represents a
single unit of functionality and deployment. The services provided by a component
are described by its interface. For instance, Figure 1 shows the declaration of an in-
terface for data collection. This specifies the signature of two operations to broad-
cast interests and to report the data, respectively. Components must provide the code
for all the operations in the interface declaration, as in the case of Figure 2. The
DECLARE COMPONENT macro is used to specify the name of the component
(tree routing), the interface it implements (data collection if), and the
component version (2).

To accomplish its goal, a component normally interacts with others on the same node.
Interaction occurs through function calls across components using CALL, as shown in
the first operation of the component in Figure 2. However, it is not for granted that a
component provides an (interface containing the) operation required by another, while
the caller component may not be able to continue its execution without a callee compo-
nent implementing the required interface. Therefore, the presence of a CALL statement
determines a dependency between caller and callee.

In FIGARO, dependencies are explicitly declared by the programmer using the
DECLARE DEPENDENCY macro. The first parameter of this macro is a receptacle, the
dual of an interface. An interface specifies a set of operations provided by a compo-
nent to others, while a receptacle specifies the set of interfaces a component requires

DECLARE_INTERFACE(data_collection_if, {
void (* broadcast_interest)(void* data, u8_t len);
void (* report)(uip_ipaddr_t dest, void* data, u8_t len); })

Fig. 1. An example of component interface

DECLARE_COMPONENT(tree_routing, data_collection_if, 2)
DECLARE_DEPENDENCY(radio_receptacle, radio_if, 3, MANDATORY | STATIC)
void broadcast_interest(void* data, u8_t len) {
CALL(radio_receptacle, send(&broadcast_addr, &msg, 64));
// ...

}
void report(uip_ipaddr_t dest, void* data, u8_t len) {
// ...

}
ON_RUNNING({ // ON_SUSPEND, ON_DESTROY are also available
// ...

})

Fig. 2. A component implementing the interface of Figure 1
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from others. In the case of Figure 2 the dependency being declared specifies the name
of the receptacle (radio receptacle), the interface required (radio if), and the
minimum component version allowed for a component (3). Moreover, the programmer
can also specify a bit-masked constant describing the nature of the dependency. In the
example, MANDATORY specifies that the component cannot run without relying on the
needed interface. Otherwise, the dependency is considered optional, and the compo-
nent is expected to work correctly also in absence of the specified interface. Instead,
STATIC indicates that once a callee component is bound to the caller through the re-
ceptacle, the callee component cannot be changed. Otherwise, a reconfiguration can
take place substituting the component with another providing the same interface.

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: DISCONNECTED

interface receptacle

Fig. 3. An example of component configuration

Figure 3 shows an exam-
ple of component configuration.
The Sampling component is
responsible for querying the
sensor, and calling the report
function in TreeRouting,
which transmits the data to a
sink. Note how TreeRouting
satisfies only the MANDATORY
dependency of Sampling,
while the OPTIONAL one is currently not satisfied. This information is reflected in the
receptacle descriptor inside the run-time support, as described in Section 3.

RUNNING

SUSPENDED

DESTROYED

SUSPEND

DESTROY

RESTART

Fig. 4. The life cycle of a FI-
GARO component

Component Life Cycle. The life cycle of a compo-
nent is illustrated in Figure 4. A component becomes
RUNNING when all its dependencies on other compo-
nents are satisfied, i.e., components implementing the
required interfaces are available on the node. Note that
dependencies are inherently recursive, i.e., a compo-
nent may depend on some others, which in turn may
depend on others, and so on. Therefore, the instantia-
tion of a component may trigger the instantiation of an
entire component closure, based on the declared depen-
dencies. In practice, however, WSN applications are
made of a small number of components with short de-
pendency chains. The instantiation of a set of components bound by dependencies oc-
curs atomically, i.e., control returns to the application only when the instantiation of
all components is complete. When a component providing services to others undergoes
a reconfiguration, the components exploiting those services move to the SUSPENDED
state, and revert to the RUNNING state when the reconfiguration completes. Instead, the
DESTROYED state is reached when the component has been replaced by another with
the same interface.

Programmers can intervene at each step of the life cycle by specifying code frag-
ments to be executed when entering a given state, as shown in Figure 2. When starting a
new component, for instance, the body of the ON RUNNING macro is executed. Similar
operations exist for each state. The ability to intercept run-time activities is particularly



290 L. Mottola, G.P. Picco, and A. Amjad Sheikh

important in the case of SUSPEND, to give programmers the ability to release resources
held by the suspended components, and avoid deadlocks and run-time faults.

Component Reconfiguration. In FIGARO, programmers do not need to manage the
reconfiguration manually, e.g., using a dedicated API as in [7]. Instead, the underlying
run-time automatically and transparently manages the reconfiguration process, based
on dependencies and component versions. When components are instantiated at start-
up, the run-time keeps track of their version, the interface they implement, and their
dependencies. Upon receipt of a new component C, reconfiguration unfolds as follows.
Provided C’s MANDATORY dependencies can be satisfied:

1. C is instantiated if there is no running component with the same interface, or
2. C replaces another component Cold implementing the same interface as C if:

(a) C’s version is greater than Cold ’s,
(b) no component currently relying on Cold has a STATIC dependency on it.

If a component cannot be instantiated because of one or more unsatisfied MANDATORY
dependencies, it is buffered in the hope that the necessary components will be received
later on. If this does not happen, the component is discarded after a timeout.

As an example, Figure 5 shows a possible evolution of the configuration shown in
Figure 3. When a Logging component is received, the node-level run-time determines
that it can be used to satisfy the optional dependency of Sampling. However,

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: DISCONNECTED

Logging v.5

flash_writer_if
Min version: 4

Deps: MANDATORY
Status: DISCONNECTED

(a) Logging is received.

Sampling v.1

Tree Routing v.4

data_collection_if
Min version: 3

Deps: MANDATORY
Status: CONNECTED

logging_if
Min version: 5

Deps: OPTIONAL
Status: CONNECTED

Logging v.5
flash_writer_if
Min version: 4

Deps: MANDATORY
Status: CONNECTED

Flash Writer v.4

(b) FlashWriter is received.

Fig. 5. A sample evolution of the component configuration in Figure 3
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Logging has a MANDATORY dependency of its own, which cannot be satisfied. There-
fore, Logging is temporarily buffered and remains disconnected from the other com-
ponents, yielding the configuration in Figure 5(a). In Figure 5(b), a FlashWriter
component satisfying the dependency of Logging is received. The run-time deter-
mines, by recursively travelling the component graph, that all dependencies are now
satisfied, and instantiates the new components in the correct order (i.e., FlashWriter
before Logging), yielding the configuration shown in the figure.

Our automatic reconfiguration mechanism relieves the programmer from checking
the conditions for the reconfiguration to take place, changing the component intercon-
nections, and managing the coordination among the components involved. Although
similar approaches (e.g., [8]) already proved their effectiveness in other contexts, to the
best of our knowledge we are the first to enable this functionality in WSNs.

2.2 Specifying Where Reconfiguration Occurs

FIGARO empowers programmers with the ability to delimit the portion of the
WSN where reconfiguration takes place. This is achieved with dedicated program-
ming constructs that enable programmers to: i) declare the attributes characterizing a
node; ii) specify the reconfiguration target—i.e., the subset of nodes for component
deployment—by using boolean predicates over the nodes’ attributes.

DECLARE_NODE({
Function = SENSOR
Type = TEMPERATURE
Floor = 1
Battery = getBatteryReading()

})

Fig. 6. Declaring node attributes

DECLARE_TARGET({
Function == SENSOR && Battery >= 70 &&
(Type == TEMPERATURE || Type == VIBRATION) &&
RUNNING(TreeRouting) &&
VERSION(TreeRouting) <= 11

})

Fig. 7. Declaring the reconfiguration target

Figure 6 shows an example where we use the DECLARE NODE macro to specify
that a node hosts a temperature sensor and is located on a given floor. Note how, in
principle, attributes can be assigned any legal C expression, including C functions as
in the case of the Battery field. The nodes targeted by the reconfiguration can be
specified declaratively as an (arbitrary) boolean predicate over node attributes using
the macro DECLARE TARGET. In Figure 7, we specify as reconfiguration target the
set of temperature or vibration sensors with at least 70% of battery left, and running a
TreeRouting component with version less than 11. Notably, the latter requirement
leverages off information automatically exported by our run-time layer, which describe
the current component configuration on a node. Specifically, the parametric, built-in
predicate RUNNING takes as input the name of a given component C, and yields true
when evaluated on a node where C is currently in such state. Instead, the built-in func-
tion VERSION returns the version of the component given as parameter.
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3 Node-Level Run-Time Support

FIGARO provides the constructs described in Section 2.1, concerned with node-level
reconfiguration, by making extensive use of C macros, therefore moving at compilation
time most of the added complexity while not requiring any dedicated pre-processing
step. However, dynamic reconfiguration requires specialized run-time support, provided
by library functions we developed, linked against the (unmodified) Contiki kernel.

Our run-time maps FIGARO components to Contiki services [6], and leverages off
Contiki’s dynamic linking facility [9] to install new code. Consequently, the implemen-
tation of the CALL macro uses Contiki look-up functions to find a pointer to the callee
component, and perform the operation requested. Interfaces and receptacles are repre-
sented by descriptors (standard C structs) containing an array of function pointers. In
the case of interfaces, these always point to the corresponding functions in the compo-
nent currently implementing the interface. Instead, the pointers inside receptacles are
assigned the function pointer values of the associated interface, when connected, or
NULL otherwise. In addition, receptacle descriptors contain further fields to keep track
of the nature of dependency, as well as the minimum version required by any component
connected to it, as shown in Figure 5.

Based on the information gathered by our macros during the compilation phase, our
run-time maintains on every node an internal representation of the exported attributes
and current software configuration. This is represented as a graph where vertexes are
components, and edges are labeled to reflect the nature of the dependency at hand,
similarly to Figure 5. When a new component arrives, simple graph traversal algorithms
are used to check the conditions for the installation of a new piece of functionality. If the
new component can indeed be installed, the run-time fires the relevant state transitions
on all involved components, installs the new component by reconfiguring the involved
receptacles, and updates the graph accordingly.

Instead, the constructs concerned with the reconfiguration target, illustrated in
Section 2.2, require a minimal amount of pre-processing. On the user base-station, re-
configuration is triggered using a dedicated executable, whose arguments are two files:
one containing the component binary image and one with the reconfiguration target
(e.g., as in Figure 7). A dedicated pre-processor we developed parses them together,
generates a unique reconfiguration identifier, divides the binary image into smaller
chunks fitting in single physical messages, and starts injecting them into the network.
The details of the routing protocol determining their propagation are described next.

4 A Routing Protocol for Selective Code Distribution

Our dedicated distribution scheme revolves around two base mechanisms:

– While the application is running, we exploit its message traffic to build a mesh
topology interconnecting all nodes with same attribute-value pairs, as in Figure 8,
to identify all possible alternative paths connecting the relevant nodes.

– When a reconfiguration is requested, a subset of the mesh paths are exploited to
build a tree rooted at the target node closest to the injection point, as in Figure 9.
The tree is then used to propagate the component chunks to all target nodes.
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1

3

5

2

4

6

Fig. 8. A mesh connecting all
target nodes

Injection
Point

1

3

5

2

4

6

Fig. 9. A distribution tree ex-
ploiting the mesh

In principle, the
two mechanisms above
could be designed inde-
pendently. Nonetheless,
our solution is ex-
plicitly conceived to
take advantage of their
mutual interplay. As
our objective is to build
shortest paths to the tar-
get nodes, we make all
paths in the mesh itself bi-directional. This allows us to exploit the same shortest paths
regardless of where the code is injected. Moreover, our solution is designed to create a
planar mesh topology, i.e., one in which no two paths with different end-points cross
at any intermediate node, as in Figure 8. Results in graph theory indeed demonstrated
how planar graphs involve fewer routing loops [10]. As a result, the tree topology built
atop the mesh easily identifies near-optimal paths, as we demonstrate in Section 5.

4.1 Building the Mesh Topology

Architecture and Data Structures. As the mesh is built during normal system oper-
ation, we must minimize the impact of the mesh-building protocol on the application
behavior. We obtain this goal by designing a solution that does not generate explicit
control messages. Rather, we leverage off the application traffic by piggybacking the
current value of a node’s attributes on every outgoing message1. This is achieved by
interposing a thin software layer between the application and the underlying network
layers whose interface is the same as the original network stack, making its use trans-
parent to the application.

The information piggybacked is overheard by all nodes in range2, and used to pop-
ulate a simple routing routing table (e.g., as in Figure 10), that describes the paths of
the mesh. Each entry in the table contains a node identifier and the associated attribute-
value pair, the next hop to reach that node along with the corresponding cost in hops,
and a timestamp to discriminate stale information. In addition, the Bridging and Bridge
Cost fields are used to distinguish entries corresponding to bidirectional paths. The
former possibly contains the identifier of another node with same attribute-value pair,
representing the opposite end-point of the path itself, whereas the latter stores the total
path length in hops. Each entry in the table is associated with a lease (not shown) that,
if not refreshed, causes the entry removal.

Protocol Operation. Figure 11 describes an example of mesh construction. The ini-
tial situation, depicted in Figure 11(a), illustrates the physical network topology and
the attributes defined in the node declarations, along with their corresponding values.
Initially, all routing tables contain only entries relative to the local node. For instance,
let us focus on the nodes having attribute A equal to 1 as target. When node 1 first

1 In case a node is silent, we generate dummy messages at a pre-specified rate.
2 A simple hook within the Contiki radio layers allows us to overhear also unicast messages.
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Source Attribute Value Cost Bridging Bridge Cost Next Hop Timestamp

Node 3 B 3 0 null null self 4
Node 4 A 1 1 Node 1 3 Node 4 25
Node 1 A 1 2 Node 4 3 Node 2 72

Fig. 10. Routing table at node 3 in the situation of Figure 11(c)
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5
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6

3

7

4

8

A = 1

B = 3

D = 4

D = 4

B = 3 A = 1

E = 2 E = 2

(a) Initial situation. Arrows describe
the physical topology.

1

5

2

6

3

7

4

8

A = 1

B = 3

A = 1

(b) Node 1, 4, 5 and 8 send applica-
tion messages. Bold arrows describe the
Next Hop field for A = 1.

1

5

2

6

3

7

4

8

bridge 1      4
cost 5

A = 1 A = 1
bridge 1      4

cost 3

(c) Node 3 and node 7 recognize a
chance to build a bidirectional path con-
necting node 1 and node 4.

1

5

2

6

3

7

4

8

no bridgingbridge 1         4
cost 5

A = 1 A = 1
bridge 1      4

cost 3

(d) The path through node 3 is com-
plete. The one through node 7 is pruned
as unnecessary.

Fig. 11. Example of mesh construction (grey circles are target nodes)

sends an application message, we append a subset of node 1’s routing table entries to
it3. The nodes in range parse this information, increments all cost fields by one, and add
these entries to their routing tables provided no other entry with same attribute-value
pair but smaller or equal cost exists. By doing this at every node, node 1’s specification
spreads across multiple hops. For instance, node 5’s piggybacked information also in-
cludes node 1’s initial entry, as it was overheard from node 1’s transmissions. Assuming
node 4 and 8 eventually send some application message as well, the resulting situation
is as depicted in Figure 11(b).

To recognize when a bidirectional path can be established, we look for received en-
tries containing an attribute already stored in the local table, but from a different source
and greater or equal cost. This is the case in Figure 11(c), where node 3 receives from
node 2 an entry for attribute A with value 1 and cost 2. In this situation, a bidirectional
path for the same attribute can be established, with node 1 and node 4 as end-points. To
establish the bidirectional path in both directions, we insert the newly received entry in

3 Entries are selected in round-robin, their number limited by a configuration parameter.
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node 3’s routing table with the Bridging field set to the identifier of the opposite end-
point of the path (e.g., node 4 in case of node 3 in the last entry of Figure 10), and the
Bridge Cost field set to the total cost of the path itself. Similarly, we update any entry
already in the table that refers to the other end-point of the bidirectional path—as it is
the case for the second entry in Figure 10—modifying the Bridging and Bridge Cost
accordingly. Afterwards, entries with non-null Bridging fields are propagated only to-
wards the node reported in the Bridging field itself. Thus, the second entry in Figure 10
is propagated only towards node 1, whereas the last entry spreads only towards node 4.
This is as simple as appending an optional field to all outgoing messages stating what
nodes propagate what entries.

As a side-effect of the above processing, more than a single bidirectional path con-
necting node 1 and node 4 could be established. For instance, a further path is eventually
built through node 5, 6, 7 and 8, with a total cost of 5. This, however, poses unnecessary
communication overhead. To alleviate this undesirable behavior, non-null Bridging en-
tries are propagated only if the node is not aware of other (bidirectional) paths with
smaller cost. In our example, node 7 eventually stops propagating its non-null Bridging
entry after overhearing the last entry at node 3, which contains a smaller cost. This ulti-
mately yields the situation in Figure 11(d). Although this scheme does not completely
prune all redundant paths, it greatly diminishes their number. Pruning all the paths but
the shortest one would indeed require propagating the minimum cost entry multiple
hops away from the shortest path. How far to propagate is hard to determine without
knowledge of the network topology. Also, the additional paths may be used as back-ups
in case of sudden faults. We plan to investigate this in the near future.

1

4

3

2

5

Fig. 12. Node 3 has equal
cost to all target nodes

Dynamic Attributes and Topology Changes. The protocol
operation occurs whenever the application generates network
traffic. Therefore, in the case of time-varying attributes, the
accuracy provided by the mesh topology w.r.t. the current
values of attributes is ultimately dictated by the amount of
application traffic over time. Applications generating more
traffic allow our protocol to build more accurate topologies,
whereas it is difficult to do so if the amount of traffic flowing
in the network is insufficient to keep up with the dynamics
of the varying attribute. As for topology changes, e.g., due
to failing nodes, invalid routes will eventually expire without
being refreshed. As soon as the application generates further
messages, our protocol identifies alternative routes according
to the new topology. Still, the time taken to build the new routes is dependent on the
amount of traffic generated by the application.

Enforcing Planarity. By construction, our scheme does not generate multiple paths
with different end-points crossing at an intermediate node. Indeed, the only way this
can be obtained is to have, in the same routing table, more than one non-null Bridging
entry for the same attribute-value pair with different source. Consider Figure 12: node
3 may try to establish two crossing paths, e.g., connecting node 1 to node 5 and node
2 to node 4. This cannot occur in our protocol, as received entries with cost greater or
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equal to the local table for the same attribute-value pair are ignored, end every non-null
Bridging entry can be used to establish a single bidirectional path. Therefore, node 3 in
Figure 12 will never be able to generate crossing paths.

4.2 Distributing Code

When a reconfiguration takes place, code is distributed along a tree: redundant paths in
the mesh are identified based on the position of the code injection point, using a marker
message. This contains the reconfiguration identifier generated by our pre-processor,
and an encoding of the predicate defining the required reconfiguration target. The for-
mer serves to support multiple concurrent reconfigurations. The latter is used by nodes
to determine, based on their routing table, the next hop for the marker. Upon forward-
ing, target nodes add to the marker the cost accumulated along the last bidirectional
path traversed. This way, the marker eventually reaches all the target nodes, making
them aware of their distance from the injection point. This information is used at each
target node to configure a dedicated distribution tree by selecting as parent the target
node that, along the links of the mesh, is the closest to the injection point. The selection
is communicated to the parent with a message containing the identifiers of the source
target node and of the selected parent. Note how code dissemination can start before
the entire tree is built. When receiving a code chunk, a node that has not yet determined
its children simply defers forwarding and buffers the chunk. Buffering would happen in
any case, since a component cannot be reconstructed until all chunks are received.

The code distribution phase demands reliable communication, e.g., because all code
chunks must be correctly delivered. We employ a simple hop-by-hop reliability mech-
anism, based on implicit acks. Nodes on a tree path buffer every message, waiting for
the downstream node to re-send it. When this occurs, the upstream node overhears the
transmission, and concludes the message was received; otherwise, it is re-sent. Similar
techniques have already been successfully employed in WSNs [11]. However, our im-
plementation decouples this aspect, enabling the use of alternative reliability schemes.

5 Evaluation

To assess the effectiveness of our approach, in this section we separately evaluate the
performance of the node-level run-time support, and of the code distribution protocol.

5.1 Evaluating the Node-Level Run-Time Support

Our objective here is to quantify the overhead imposed by FIGARO w.r.t. plain Contiki.
We consider the following performance figures:

– The memory occupation caused by our component model, w.r.t. both program and
data memory. We evaluated the former by looking at the size of binary images after
compilation. As for the latter, we manually inspected the code managing compo-
nents and their interconnections, looking for any data structure we defined.

– The additional processing time caused by the presence of components. This is af-
fected both by the installation of a new component compared to the native Contiki
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dynamic linker, and by function calls across components using CALL instead of a
direct C call. As for the latter, we placed the call in a loop and repeated the operation
a million times, since the single call is too quick to be measured precisely.

– The energy consumption during reconfiguration, which may increase as a result of
the additional processing required to manage components and dependencies.

We measured processing time and energy consumption using real nodes as opposed
to simulation environments, as similar fine-grained aspects are only partially modeled
in existing simulators. Practically, we measured the processing overhead using a JTAG
programmer attached to the node to measure the time elapsed between the execution
of different instructions. Energy consumption was instead evaluated using an Agilent
54832B oscilloscope and a multimeter hooked to a node, which in our case was a TMote
Sky [12]. We repeated the experiments concerning these metrics 5 times using 3 differ-
ent nodes, and averaged the results. New components have been injected via a USB
cable attached to the node, to avoid any bias due to the radio.

To gather the above metrics, we employed a Blinker component offering a single
interface with two operations to start/stop the blinking of a led. We varied the number
of receptacles within the component itself to evaluate our performance w.r.t. a varying
number of dependencies. The processing within Blinker is the same as in [9], and is
quite simple being described by only 17 lines of C code. This choice was intentional,
as simpler components make the overhead more evident w.r.t. the above metrics.

Results. Figure 13 shows the memory overhead, which turns out to be quite reasonable,
w.r.t. both program and data memory. As for the former, the binary code deployed in ad-
dition to the operating system accounts for less than 2 Kbytes in total. This cost, along
with the overhead due to helper data structures, is paid once and for all, regardless of
the number of components and the number of their interfaces/receptacles. Conversely,

Performance Measure Memory Footprint
Dependency Checks Program 1.1 KB
Helper Functions Program 802 bytes
Helper Data Structures Data 230 bytes

Per-Component Data Data 15 bytes
Per-Interface Data Data 8 bytes
Per-Receptacle Data Data 10 bytes

Fig. 13. Memory overhead

Function Type Time Overhead %
Empty 157.5%
50 integer additions 20.1%
3 x 3 matrix inversion 5.4%
5 x 5 matrix inversion 0.98%
Fourier Transform (100 input values) 0.78%
Fourier Transform (1000 input values) 0.03%

Fig. 14. FIGARO calls across components vs. native C function calls
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Fig. 15. Time and energy to install the Blinker component

the bottom section of Figure 13 reports the memory consumption incurred every time a
component, interface, or receptacle is loaded on a node. In this case as well, the over-
head is fairly limited. Based on these results, we maintain that our approach can scale
to a sizable number of components simultaneously running on the same node, presum-
ably well beyond the current needs of common WSN applications. As for the amount
of code to be deployed, we compared the size of the binary image of the plain-Contiki
Blinker process used in [9] against ours, implemented as a FIGARO component. The
size increases from 1.01 Kbytes to 1.11 Kbytes, yielding an overhead of only 9.98%.
We believe this value is good, given the little complexity of the processing at hand.

The overhead in performing calls across components against direct C function calls
is reported in Figure 14. Interestingly, when the function called does not contain any real
processing the overhead due to using CALL is high. In this case, performing the look-up
of the Contiki service implementing the requested component dominates the processing
time. In contrast, some even simple processing within the function called makes this
metric drop abruptly. For instance, in the case of a Fourier transform (e.g., employed to
perform in-network processing in WSN applications such as [4]) the overhead becomes
less than 1%. Therefore, although our programming model does introduce an overhead,
the performance penalty is expected to be negligible in real applications.

By the same token, the time for installing a new component, and hence the energy con-
sumed during this process, increases only marginally w.r.t. the standard Contiki dynamic
linker, as shown in Figure 15 for a varying number of dependencies in the component
being installed. Note how these values are independent of the size of the component be-
ing deployed, as they represent the overhead imposed by our run-time layer in addition
to the Contiki dynamic linker, which we left unmodified. Also, they scale well with the
number of dependencies, showing only a very small increase. To place Figure 15 in con-
text, consider that the energy overhead in the case with 5 dependencies is equal to only
about 5% of the total energy required to transmit a 32-byte message.

5.2 Evaluating the Code Distribution

In this section we assess the effectiveness of our solution for code distribution by re-
porting about simulations performed using Cooja, the Contiki simulator.



FiGaRo: Fine-Grained Software Reconfiguration for WSNs 299

The evaluation of code distribution protocols for WSNs has hitherto focused on met-
rics such as latency and message overhead [1]. However, these are usually affected
by mechanisms other than the distribution protocol itself. For instance, latency is af-
fected also by the MAC layer protocol, as back-off timers, random transmission delays,
and transmission slots in TDMA schemes are employed to reduce collisions. Similarly,
message overhead is affected by the specific reliability mechanism employed.

However, the above concerns are orthogonal w.r.t. the problem we are tackling and
the essence of the solution we presented, whose performance is determined primarily
by the shape of the tree used during the distribution phase. Indeed, the number of hops
separating the injection point from the target nodes strongly impacts both latency and
message overhead irrespective of the MAC layer and reliability mechanism employed,
which instead affect the individual 1-hop transmissions. Therefore, we chose to evaluate
our protocol by focusing on the number of links employed during the code distribution
phase4, and compared this metric against the optimal distribution tree computed with a
shortest path algorithm and global knowledge of the network topology. We also mea-
sured the convergence speed of our mesh-building algorithm, i.e., how many messages
the application must generate for the routing tables to stabilize. In both cases, we rely
on the standard Contiki MAC layer as implemented in Cooja. Moreover, we used the
reliability mechanism discussed in Section 4, for which simulations confirm a 100%
delivery in all the experiments discussed next.

As for simulation settings, each node exports a single attribute whose value is ran-
domly selected at start-up. Reconfiguration targets are defined by a single equality pred-
icate on this attribute. During the mesh-building phase each node sends an application
message every 5 + D seconds. D is a random delay we introduced to avoid locking
effects among nodes, and to generate executions with varying traffic rates at different
nodes. Application messages are 64 bytes in size, to which we piggyback 24 bytes of
control information corresponding to 4 entries from the local routing table. During the
simulations, the mesh-building phase takes place first. The convergence speed is deter-
mined when routing tables at all nodes do not change for 5 consecutive message sends.
At this point, the mesh is considered stable: a random node is chosen as injection point
and the tree-building phase is started. We discuss results obtained in regular grids and
random topologies. In the former, each node can communicate with 4 neighbors. This
setting models some of the applications we target (e.g., indoor WSN deployments [13]).
In the latter the number of neighbors varies from 3 to 7. For each scenario, we averaged
the results over 20 repetitions with varying distribution scopes and injection points.

Results. Figure 16 shows how the number of links exploited by our solution varies
according to the system size and topology. Remarkably, the performance of our protocol
remains always within 9% of the theoretical optimum, and is almost constant as the
number of nodes increases. By examining the simulation logs, we realized that the
gap is mostly due to cases where it may be more convenient to access the mesh from
more than a single entry point. When this does not hold and the injection point is very
close to a target node (i.e., within 2-3 hops), the average gap w.r.t. the optimal solution
is even lower, around 3%. This confirms that our mesh-building algorithm, thanks to

4 In cases where nodes can forward a message towards n neighbors with a single physical packet
we still count n links, as most reliability mechanisms would send separate messages anyway.
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(b) Random topologies

Fig. 16. FIGARO performance vs. topology and system size (target nodes are 10% of the total)
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Fig. 17. FIGARO performance vs. number of
target nodes (100 nodes arranged in a grid)
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Fig. 18. FIGARO convergence speed (100
nodes arranged in a grid)

its planarity property, yields near-optimal routes in the distribution trees relying on it.
Further, note how Figures 16(a) and 16(b) exhibit similar trends, although the results
on random networks show higher variability due to the irregularity of the topology.

Figure 17 provides a different perspective by analyzing the behavior of our proto-
col w.r.t. the percentage of target nodes. As shown in the chart, our solution is barely
affected by this parameter. The high variability observed with few target nodes is due
to cases where nodes end up aligned w.r.t. the injection point, and the distribution tree
degenerates in a chain. In these configurations, intermediate nodes are reached at es-
sentially no cost. The probability of these configurations decreases as the number of
target nodes grows. We limited our experiments to half of the nodes in the system as
targets. Beyond this point, the scenario starts bearing similarities with traditional code
distribution in homogeneous networks, where all nodes are target. In this case, existing
solutions are better suited, e.g., [14].

Finally, we verified that the convergence speed of the mesh-building phase is not
affected by the system scale. Indeed, the extent to which routing entries are propagated
is not dictated by the overall number of nodes, rather by the amount of redundancy
among attribute-value pairs. This claim is supported by Figure 18, showing the number
of messages required to build the mesh against the number of (distinct) attribute-value
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pairs in the system. When the latter is small the mesh builds quickly, as the bidirectional
paths connecting nodes with the same attribute-value pairs are likely to be short. Instead,
when attribute-value pairs are highly heterogeneous the mesh takes more time, due to
the dual argument. Overall, the values in the chart are good: only 17 messages need
to be sent when 50 different attribute-value pairs are present, i.e., only 2 nodes in the
100-node network of Figure 18 have the same attribute-value pair—a rather unusual
setting. In any case, the values in the chart should represent only a very little fraction of
the overall system lifetime, typically measured over months or even years.

6 Related Work

Single-Node Reconfiguration. Several solutions enable the installation of new code on
individual nodes. At the operating system level, besides Contiki also the SOS operating
system [15] provides dynamic linking, while FlexCup [16] enables this functionality in
TinyOS [17], where this was initially not possible. These solutions concentrate on effi-
cient dynamic linking, and are therefore complementary to our approach. In principle,
our component model can be re-applied in SOS and FlexCup with minimal modifi-
cations, as it is mostly based on standard C macros. We chose Contiki because, unlike
FlexCup, it preserves the application state as it does not require a reboot after code load-
ing and, in comparison to SOS, its service functionality eases the implementation of the
FIGARO component model. Alternative approaches use interpreted languages and vir-
tual machines (e.g., [18,19,20]), with some also allowing for extensible instruction sets,
e.g, [21]. Nonetheless, the trade-offs between interpreting code and executing native bi-
naries, as discussed in [18], suggest the use of the latter for long-running systems where
reconfiguration is a rare event, as in the scenarios we target.

Most importantly, none of the above approaches provides support to the programmer
for managing the interactions among the different functionality on a node during recon-
figuration. Indeed, even though component models for WSN programming have already
been proposed (e.g., [2, 5, 7]), they do not include any dedicated construct for manag-
ing mutable component configurations. Conversely, we made component dependencies
and versions first-class citizens in the FIGARO programming model, and designed the
reconfiguration mechanism by balancing automation and customizability.

Code Distribution. To the best of our knowledge, we are the first to provide efficient
distribution of code to an arbitrary subset of nodes identified by programmer-provided
information. Our distribution model is inspired by Logical Neighborhoods [22], a pro-
gramming abstraction giving developers the ability to define system partitions based on
application information. A message-passing API is then provided to interact with nodes
in a given partition. Although [22] describes a generic communication layer for Logical
Neighborhoods, tackling the issues germane to code distribution required a completely
different routing support, as described in Section 4. In the field of code distribution,
the approach closest to ours is the TinyCubus framework [23], where code can be dis-
tributed to all nodes with a given role, e.g., all cluster-heads. This is far less flexible than
FIGARO’s predicate logic over programmer-defined attributes, and does not encompass
the ability to identify the target nodes based on their current software configuration, e.g.,



302 L. Mottola, G.P. Picco, and A. Amjad Sheikh

as provided by the RUNNING built-in-predicate. At the network level, TinyCubus as-
sumes a priori knowledge of the system topology and of the location of nodes with a
given role, as it requires to specify an upper bound on the number of hops separating
nodes with the same role. In contrast, our solution is fully dynamic and decentralized.

Network-wide distribution of code has been widely investigated, tackling different
facets of the problem. On one hand, solutions have been proposed to reduce the size of
the code to be distributed by employing differential patching and smart linking mech-
anisms, e.g., [24, 25]. Still, similar concerns are orthogonal to the problem we tackle
in this work, and the corresponding solutions may be integrated in our framework for
even better performance, e.g., by injecting a patch instead of the whole binary when the
new component is going to replace an older version. Instead, other approaches focused
on routing. Trickle [14] uses a counter-based technique called “polite gossip”, whose
objective is to suppress redundant transmissions while guaranteeing eventual delivery.
Deluge [26] uses a similar technique, with the addition of a negotiation phase to guar-
antee the proper sequencing of packets. This is also used in MNP [27] to address the
hidden terminal problem before transmitting the actual code. Sprinkler [28] and Fire-
cracker [29] instead leverage off node hierarchies, by first sending code to “core” nodes
up in the hierarchy, which then forward the code to nodes in their vicinity. As the ob-
jective of all the above solutions is to distributed code to all nodes, they can avoid any
background activity under normal operating conditions. For the same reason, however,
these mechanisms are hardly applicable in our case. For instance, it would be fairly
inefficient to add multi-hop negotiation in Deluge to address the case where the target
nodes are multiple hops away.

7 Conclusion and Future Work

In this paper we presented FIGARO, a solution enabling software reconfiguration in
WSNs at an unprecedented level of granularity, both w.r.t. the functionality to recon-
figure on single nodes, and the subset of nodes targeted by the reconfiguration. We
provide a component-based programming model with explicit support for component
dependencies and versions, along with a dedicated component life cycle, and an intu-
itive yet expressive distribution model allowing programmers to identify what part of
the network is affected by the reconfiguration. Our evaluation demonstrated how the
overhead imposed on single nodes is negligible, while the communication overhead
during reconfiguration lies within 9% from the theoretical optimum.

Our research agenda includes distributed mechanisms to provide more guarantees
(e.g., atomicity) w.r.t. the reconfiguration process. For instance, the programmer may
require that either all or none of the nodes in the reconfiguration target install the new
component, to tolerate run-time faults where a node crashes and then reboots.
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Abstract. By using Elliptic Curve Cryptography (ECC), it has been re-
cently shown that Public-Key Cryptography (PKC) is indeed feasible on
resource-constrained nodes. This feasibility, however, does not necessar-
ily mean attractiveness, as the obtained results are still not satisfactory
enough. In this paper, we present results on implementing ECC, as well
as the related emerging field of Pairing-Based Cryptography (PBC), on
two of the most popular sensor nodes. By doing that, we show that PKC
is not only viable, but in fact attractive for WSNs. As far as we know
pairing computations presented in this paper are the most efficient re-
sults on the MICA2 (8-bit/7.3828-MHz ATmega128L) and Tmote Sky
(16-bit/8.192-MHz MSP-430) nodes.

Keywords: Wireless Sensor Networks, Elliptic Curve Cryptography,
pairings, cryptographic primitives, implementation.

1 Introduction

Wireless sensor networks (WSNs) are ad hoc networks comprised mainly of small
sensor nodes with limited resources and one or more base stations (BSs). Usually
a BS is a much more powerful laptop-class node that connects the sensor nodes
to the rest of the world [1,2]. WSN’s are used for monitoring purposes, and
provide information about the area being monitored to the rest of the system.
Application areas range from battlefield reconnaissance and emergency rescue
operations to surveillance and environmental protection.

Like any wireless ad hoc network, WSNs are vulnerable to many different
attacks [3,4]. Besides the well-known vulnerabilities due to wireless communica-
tion and their distributed nature, WSNs face additional problems. Sensor nodes
are usually small, cheap devices that are unlikely to be made tamper-resistant
or tamper-proof and after deployment they are left unattended which makes
them easily accessible to malicious parties. It is therefore crucial to add security
� Supported by CAPES (Brazilian Ministry of Education) grant 4630/06-8 and
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to WSNs, especially in those applications where nodes are distributed in open
environments.

Until recently it used to be thought that Public-Key Cryptography (PKC)
was impractical in resource-constrained nodes and that security primitives must
depend only on symmetric cryptosystems (e.g., RC5 [5] and SkipJack [6]). Al-
though more efficient than PKC, symmetric cryptosystems suffer from some
drawbacks (e.g., the key distribution problem1) which make them not well-suited
for every WSN application.

This fact has motivated work on how to compute PKC efficiently in sensor
nodes (e.g., [7,8,9,10]). The problem is challenging because those tiny devices
have very limited battery life and we cannot afford to spend too much pro-
cessor time on additional computations. By using Elliptic Curve Cryptography
(ECC) [11,12] it has been shown (e.g., [8,9]) that PKC is indeed feasible in
WSNs. This is because ECC demands considerably less resources than more
conventional PKC (e.g. RSA/DSA), for a given security level. This feasibility,
however, does not necessarily mean attractiveness, as the results presented so
far are still too time consuming for some applications.

In this paper, we present updated results on implementing ECC, and PBC,
over two of the most popular WSN platforms. By doing that, we show that
these types of PKC are not only viable, but in fact attractive for resource-
constrained sensor nodes. More specifically, we present results on computing
point multiplication and pairings over MICA2 and Tmote Sky nodes. Our main
contributions are

1. To show that ECC and PBC based PKC is not only viable, but in fact
efficient for resource-constrained nodes;

2. To present the first known implementation of pairings over binary field for
sensor networks.

Our code is based on Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL) [13], which is a publicly available library written in C, and
thus can be easily ported to other devices.

The remainder of this work is organized as follows. In Section 2, we discuss
related work. In Section 3, we introduce some basic ECC and PBC concepts.
Implementation issues and performance results are presented in Sections 4 and 5,
respectively. Finally, we conclude in Section 6.

2 Related Work

WSNs are a subclass of MANETs, and much work (e.g., [14,15]) has been pro-
posed for securing MANETs in general. These studies are not applicable to
WSNs because they assume laptop or palmtop-level resources, which are or-
ders of magnitude larger than those available in WSNs. Conventional public key

1 The key distribution problem is the problem of how to set up secret keys between
communicating nodes.
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based methods are an example of a type of application which, while practical in
a MANET, would be impracticable for a WSN.

Among the studies specifically targeted to resource-constrained WSNs, some
(e.g,[4,3]) have focused on attacks and vulnerabilities. Wood and Stankovic [4]
surveyed a number of denial of service attacks against WSNs, and discussed
some possible countermeasures. Karlof and Wagner [3] focused on routing layer
attacks, and showed how some of the existing WSN protocols are vulnerable to
these attacks.

Many security proposals for WSNs (e.g., [5,16,17,18,19,20,21,22,23,24]) have
focused on efficient key management of symmetric encryption schemes.
Perrig et al. [5] proposed SPINS, a suite of efficient symmetric key based se-
curity building blocks. Eschenauer et al. [16] looked at random key predistribu-
tion schemes, which provoked a large number of follow-on studies [25]. In [17]
Zhu et al. proposed LEAP, a rather efficient scheme based on local distribution
of secret keys among neighboring nodes.

The studies specifically targeted to PKC have tried either to adjust con-
ventional algorithms (e.g. RSA) to sensor nodes, or to employ more efficient
techniques (e.g. ECC) in this resource-constrained environment. All the seminal
papers of Watro et al. [7], Gura et al. [8], and Malan et al. [9] have used the AT-
mega128L microprocessor as the implementation platform. Watro et al. [7] pro-
posed TinyPK. To perform key distribution, TinyPK assigns RSA efficient public
operations to nodes and RSA expensive private operations to better equipped
external parties. Gura et al. [8] reported results for ECC and RSA primitives on
the ATmega128L and demonstrated convincingly that the former outperforms
the latter. Their ECC implementation is based upon arithmetic in the prime
finite field GF (p). In order to speed up integer multiplication in this field they
came up with the idea for the hybrid multiplication. In our work we exploit
improvements to this method to make it even more efficient on both considered
platforms. Malan et al. [9] have presented the first ECC implementation over
binary fields GF (2m) for sensor nodes. They used polynomials basis and pre-
sented results for the ECDH key exchange protocol. More recently, Liu et al.
developed TinyECC [26], an ECC library that provides elliptic curve arithmetic
over prime fields and uses inline assembly code to speed up critical operations on
the ATmega128 processor. Lately, they have also added support for the MSP430
and XScale platforms.

Some of the research in cryptographic implementation has focused specifi-
cally on the MSP430 processor. Guajardo et al. [27] have shown that scalar
point multiplication over prime fields can be achieved efficiently without any
stored/precomputed values. They used the MSP430x33x family of microproces-
sors which is not used in current WSN motes. Wang et al. [28] worked with the
TelosB mote [29], which also features the MSP430 processor. They presented
results for basic ECC operations over prime fields, such as point addition, point
doubling and point multiplication.

In the literature we can find some papers (e.g [30,31,32,33,34,35,10]) that envi-
sion WSNs as a scenario in which to exploit Pairing-based Cryptography (PBC).
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Of those related to pairing implementation on sensor nodes, McCusker et al. [33]
have focused on a hardware solution that both implements primitives for com-
puting the Tate pairing and meets the strict energy constraints of sensor nodes.
Doyle et al. [32] presented simulation results on pairings on the ARM7TDMI [36]
processor. This platform, however, is considerably more powerful than any of the
devices that are used in WSN’s at the moment. In [35] Oliveira et al. focused on
the ATmega128L and described the possibility of implementing the Tate pairing
on this platform. Nevertheless no actual implementation was presented. Finally,
Oliveira et al. [10] recently presented TinyTate and showed that software imple-
mentation of PBC is indeed viable in resource-constrained nodes, even though
its level of security was not adequate for all applications. TinyTate also targets
the ATmega128L and uses TinyECC as the underlying library.

3 Concepts

ECC was independently introduced by Miller [11] and Koblitz [12]. As opposed to
conventional PKC (e.g. RSA/DSA), there is no sub-exponential algorithm known
to solve ECC’s underlying hard problems and ECC can thus offer equivalent
security using smaller parameters [37].

Cryptography using Pairings (PBC), on the other hand, is an emerging field
related to ECC which has been attracting the interest of international cryptog-
raphy community, since it enables the design of original cryptographic schemes
and makes well-known cryptographic protocols more efficient. Pairings, such as
the Weil pairing, were first used in the context of cryptanalysis [38], but their
first use in cryptography is due to the works of Sakai [39] et al. and Joux [40].

In this section we briefly introduce some ECC and PBC concepts. For more
information on this issues please refer to, for instance, López et al. [37] and
Galbraith [41]. In what follows, let E/Fq be an elliptic curve over a finite field
Fq, and E(Fq) be the group of points on this curve, and #E(Fq) be the group
order.

Bilinear Pairing. Let � be a positive integer. Let G1 and G2 be additively-
written groups of order � with identity O, and let GT be a multiplicatively-
written group of order � with identity 1.

A bilinear pairing is a computable, non-degenerate function

e : G1 ×G2 → GT .

The most important property of pairings in cryptographic constructions is the
bilinearity, namely:

∀P ∈ G1, ∀Q ∈ G2 and ∀ a, b ∈ Z
∗, we have

e([a]P, [b]Q) = e(P, [b]Q)a = e([a]P, Q)b = e(P, Q)ab.

In practice, the groups G1 and G2 are implemented using a group of points
on certain special elliptic curves and the group GT is implemented using a mul-
tiplicative subgroup of an extension of the underlying finite field. For certain
families of supersingular elliptic curves we have G1 = G2.
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Discrete Logarithm Problem. Let G = 〈α〉 be multiplicatively-written group
of order n with generator α and let β be an element of G. The Discrete Logarithm
Problem (DLP) is to compute an integer l such that β = αl.

Elliptic Curve Discrete Logarithm Problem. Elliptic Curve Discrete Log-
arithm Problem (ECDLP) is: given a point P of order n and Q ∈ 〈P 〉, compute
l ∈ [0, n− 1] such that Q = lP .

Elliptic Curve Diffie-Hellman Problem. Elliptic Curve Diffie-Hellman
Problem (ECDHP) is: given a point P , [a]P , and [b]P for some a, b ∈ Z

∗, com-
pute [ab]P .

Embedding Degree. A subgroup G of E(Fq) is said to have an embedding
degree k with respect to � if k is the smallest integer such that � | qk − 1.

Bilinear Diffie-Hellman Problem. Most of the pairing applications rely on
the hardness of the following problem for their security [41]: given P , [a]P , [b]P ,
and [c]P for some a, b ∈ Z

∗, compute

e(P, P )abc.

This problem is known as the Bilinear Diffie-Hellman Problem. The hardness
of the Bilinear Diffie-Hellman Problem depends on the hardness of the Diffie-
Hellman problems both on E(Fq) and in Fqk . So, for most pairing applications
the parameters q, �, and k must satisfy the following security requirements:

1. � must be large enough so that solving the ECDLP in an order-� subgroup
of E(Fq) is infeasible (e.g. using Pollard’s rho algorithm);

2. k must be large enough so that solving the DLP in Fqk is infeasible (e.g.,
using the index-calculus method).

The Tate Pairing. Let E(Fq) contain a subgroup of prime order � coprime
with q and with embedding degree k. (In most applications, � is also a large
prime divisor of #E(Fq).) The Tate pairing is the bilinear pairing

ê : E(Fqk)[�]× E(Fqk)/[�]E(Fqk)→ F
∗
qk/(F∗qk)�.

4 Implementation

Our implementation of Elliptic Curve primitives targets two different platforms
the 8-bit Atmel ATmega128L and the 16-bit Texas Instruments MSP430F1611,
as these are most commonly used processors in Wireless Sensor Network nodes
nowadays. Although both microcontrollers have RISC architectures, they differ
in many ways. ATmega128L [42] has a very modern advanced RISC architecture
where most of 133 instructions are executed in a single clock cycle. In contrast,
the MSP430F1611 [43] has a more traditional architecture, offers 27 instructions
in 7 addressing modes and uses mainly memory based operations. The former
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CPU has 32 8-bit registers and three 16-bit pointer registers, the latter provides
16 16-bit registers from which only 12 are available for general purpose use. The
Atmel product operates at 7.3828 MHz, and offers 4KB of RAM memory and
128 KB of program space, whereas MSP430 has 8.192 MHz frequency, 48 KB
ROM and 10 KB RAM. The Texas Instruments microcontroller also embeds a
16× 16 bit hardware multiplier and has an ultra-low power design, which makes
it more efficient in terms of current consumption than the ATmega128L.

We chose two popular WSN motes to test the performance of our ECC based
programs: The MICA2 [44] platform developed by Crossbow Technology and the
Tmote Sky [45] developed by Moteiv corporation. MICA2 mote is build upon the
ATmega128L processor, incorporates a 433 MHz radio and has 512 KB of FLASH
memory to store measurement data. The Tmote Sky uses the MSP430F1611
microcontroller and Chipcon CC2420 wireless transceiver which operates in the
2.4 GHz ISM band and provides transmission speeds up to 250 Kbps. Using
the TinyOS [46] operating system allowed us to run the same programs written
in nesC [47] language on both WSN motes. Porting the code from one device
to another was a lot easier with the use of TinyOS, which enables the use of
features like timers, I/O interfaces, LED’s, etc. in an unified way. This approach
allowed us to hid most of the hardware dependencies for different platforms and
simplified the programming.

Almost all of our code was written in the C/nesC language and can be eas-
ily ported to other 8, 16 or even 32-bit resource constrained platforms. This
approach is a trade-off between size and re-usability of the code. In order to
speed up the execution of particularly time-critical functions we have replaced
standard C code with some assembly language specific for each platform. Even
though we used inline assembly in our programs we made the whole process as
portable as possible. Our assembler routines were generated automatically by
special utility program from user defined macros. In this simple and convenient
way appropriate assembler code can be quickly developed for new platforms and
processors that are not yet supported.

4.1 Basic Primitives Implementation

NanoECC is based on MIRACL [13] (Multiprecision Integer and Rational Arith-
metic C/C++ Library) which provides all the necessary Elliptic Curve primi-
tives and functions to compute Pairings and to implement protocols like ECDH,
ECDSA. MIRACL is a set of tools that supports standard symmetric-key and
public-key cryptography. It handles big numbers arithmetic and offers full sup-
port for Elliptic Curve Cryptography over the prime field GF (p), and the binary
field GF (2m). MIRACL is also a good choice when implementing cryptographic
services in an embedded environment. It has built in features that allows to run
ECC even on very constrained environments and tiny architectures which do not
support a heap. In this case all memory can be allocated exclusively from the
stack. This allows maximum use and re-use of memory, and avoids fragmenta-
tion of precious RAM. We have optimized MIRACL library to achieve the best
ECC performance on our WSN motes.
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Different Elliptic Curve Cryptography implementations for sensor networks
[27], [26], [28], [8] were mainly focused on the prime finite fields. The choice
of the field was dictated by the fact that basic arithmetic operations can be
effectively optimized if pseudo-Mersenne primes are used in GF (p). GF (2m)
fields were not favoured because binary polynomial arithmetic (multiplication in
particular) is insufficiently supported by current CPU’s. This paper compares
results achieved using both types of finite fields and shows that in some cases
in this constrained environments, ECC operations over binary polynomial field
GF (2m) outperforms those in GF (p). On top of that timings for binary field case
would be significantly faster if a ”binary polynomial multiplication” instruction
was available on the considered architectures.

Modular arithmetic routines are fundamental operations in every Elliptic
Curve system. The overall performance of ECC depends greatly on the speed
of those primitives. In GF (p) big integer multiplication and reduction modulo
p of the result are the most time-critical operations and must be performed as
quickly as possible. We have used a variant of the hybrid multiplication method
proposed in [8] to achieve this goal. Our implementation minimizes the number
of operations on memory and uses additional CPU registers for catching and
storing the carry bits. The Hybrid method takes advantage of extra registers to
avoid unnecessary load operations and becomes more efficient with the number
of registers used. On ATmega128L we were able to implement hybrid multipli-
cation with column size d = 4. Due to the small number of general purpose
registers on MSP430F1611 we could only achieve d = 2, using all 12 available
registers. For more details concerning the implementation of our improved hy-
brid method see the paper [48]. For modular reduction a fast algorithm was
implemented that takes advantage of special form of p = 2160 − 2112 + 264 + 1
(a Solinas prime) as the modulus, using a 160-bit Elliptic Curve. Multiplication
and reduction along with squaring, modular addition and modular subtraction
were all implemented in assembly language. All the results for those routines
in instruction cycles, assuming 160-bit integer operands, are listed in Table 1.
Taking into account the 7.3828 MHz clock on the ATmega128L and the 8.192
MHz clock on Tmote Sky, 160-bit numbers multiplication can be performed in
0.36 ms and 0.21 ms respectively.

The field GF (2m) is usually constructed using a polynomial basis represen-
tation. In this case binary polynomials multiplication and reduction modulo

Table 1. Timings in instruction cycles for basic modular arithmetic routines using
160-bit integers on ATmega128L and MSP430F1611

ATmega MSP430

hybrid multiplication 2654 (d=4) 1746 (d=2)

squaring 2193 (d=4) 1373 (d=2)

modular reduction 1228 990

modular addition 340-470 105-235

modular subtraction 340-470 105-235
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an irreducible binary polynomial are the crucial operations. As described in
[49] Karatsuba-Ofman multiplication algorithm were adopted for the polynomial
case. This divide-and-conquer technique allowed us to reduce multiplication com-
plexity by using word size polynomial multiplication and extra additions (which
are very fast in GF (2m)). Throughout our research we observed that assembler
implementation of binary polynomials multiplication did not improve our tim-
ings as much as we had expected. This was due to the fact that binary polynomial
word multiplication and variable length shifts instructions were not available on
our target devices. In the end we decided to implement all binary field primitives
and operations using the standard C language. In order to speed up reduction
routines on both platforms we have developed fast field-specific code for the
reduction modulo the irreducible polynomials x163 +x7 +x6 +x3 +1 (as recom-
mended by NIST) and x271 + x201 + 1. For guidance on the optimal irreducible
polynomials for GF (2m) arithmetic to use in given circumstances please refer
to [50].

4.2 ECC Implementation

One difficulty in using ECC is that of finding a suitable Elliptic Curve. Curve
parameters have to be carefully chosen to allow efficient computations and pro-
vide a reasonable level of security. NIST recommends using at least 160-bit keys
in ECC systems to achieve security level equivalent to that offered by standard
RSA based solutions with 1024-bit keys. In our example programs we decided to
use NIST k163 Koblitz curve over GF (2163) binary field and y2 = x3− 3x+157
curve with p = 2160−2112+264+1 over GF (p). The usage of Koblitz curve gives
a significant speed up when performing a point multiplication, as no expensive
point doublings are required. To satisfy security requirements mentioned in sec-
tion 3 our pairing parameters were chosen as k · � > 1024. In this inequality k
stands for embedding degree and � stands for number of bits in p (in the case
of prime fields GF (p)) or m (in case of binary fields GF (2m)). To satisfy these
conditions we chose the supersingular curve y2 + y = x3 + x2 with k = 4 and
x271 + x201 + 1 as the reduction polynomial for the binary field. For the pair-
ing program in the prime field we used a y2 = x3 + Ax + B curve, k = 4 and
256-bit modulus p. Parameter A was set to −3 in order to reduce the number of
operations for the point doubling routine.

ECC operations are based on arithmetic involving the points of the elliptic
curve and as mentioned before it is essential to optimize basic arithmetic op-
erations in underlying fields. Overall performance of the system is also highly
dependably on efficient implementation of curve operations. Two of those fun-
damental operations are point addition and point doubling. Please see [49] for a
geometrical explanation of those operations. The selection of points coordinate
system has a big influence on the performance of the above mentioned operations.
It has been shown that projective coordinate systems (x, y, z) are more efficient
than affine (x, y) systems. Rules for point addition and point doubling in affine
coordinates requires inversion in underlying field, which is usually much more ex-
pensive than multiplication. The same operations in projective coordinates uses
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greater number of cheaper multiplications and squarings in place of an inversion
and thus makes it more suitable to our target platforms.

A common operation in ECC is the computation of sP , where s is an integer
and P is a point on an elliptic curve. This operation is called point multiplication
and can be decomposed into a sequence of point additions and point doublings.
These operations dominate the overall execution time of elliptic curve crypto-
graphic schemes, and so optimization is important. The ECDH and ECDSA
protocols require multiplication by a scalar of a fixed base point on the selected
curve, and this can be carried out more quickly using precomputation. Our ex-
ample programs therefore implement a fixed point multiplication method using
additional storage to accelerate the calculations. The Comb method for point
multiplication described in [49] was used in this case. Precomputation was per-
formed with window size w = 4 resulting in 16 elliptic curve points stored in
ROM. With this approach point multiplication is a tradeoff between memory
space and computation time.

Pairing based systems have become more and more popular in Public Key
Cryptography schemes. At first it appeared that these operations are far too
complex to be calculated in reasonable amount of time on tiny architectures like
WSN nodes. However our implementation shows that pairings can by computed
quickly and efficiently on small and constrained devices such as MICA2 or Tmote
Sky. The Tate pairing denoted as e(P, Q), on an elliptic curve E(Fqk), evaluates
as an element of an extension field Fqk . This requires implementation of extension
field arithmetic routines. We used k = 4, so special procedures for multiplication,
squaring, exponentiation, inversion and calculation of square roots in quadratic
extension fields (Fp4 and F24m) were developed. More detailed descriptions of
those routines can be found in [51].

There has been a lot of work on efficient implementation of pairings on elliptic
curves. This research shows that some of the best results can be achieved on
supersingular curves over fields of low characteristic. For this reason we chose
the improved Duursma-Lee algorithm to compute the Tate pairing over GF (2m)
based on ηT pairing, which is one of the fastest known. Due to space limitations
please refer to [52] for a detailed description and explanation of this method. The
pairing operation in the prime field on MSP430 was implemented and optimized
as described in [53] and is based on Miller’s algorithm. We used a different
approach on the ATmega128L, where more program space was available. Here
we have implemented the Ate pairing on a non-supersinglar curve over GF (p)
as described in [54] with parameters k = 4, p a 256-bit prime, and a fixed point
P . Knowing P ’s coordinates allowed us to use precomputation, which speeds up
elliptic curve point multiplication. In the next section we will evaluate NanoECC
and show results for computing pairings and point multiplications.

5 Results

Efficient implementation of ECC on such constrained devices as WSN nodes
is not an easy task. Issues like the small amount of memory, limited CPU
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capabilities and scarce battery resources have to be taken into consideration.
Program code needs to be highly optimized to meet all those demands. That
is the reason why there is some confusion in the literature concerning timings
of basic Elliptic Curve operations on those constrained platforms. The results
presented in recent papers vary a lot. In our research we have tested the limits
of ECC in sensor networks and our results give a clear answer to the question of
how long Elliptic Curve Cryptography primitives take on standard WSN motes.

NanoECC is optimized for speed. Memory usage was our secondary concern
as optimizing for code size lowers functionality and portability due to greater
number of assembly routines. A large set of available library functions in Na-
noECC gives a lot of flexibility in writing ECC based programs. Most of the
procedures were developed using standard C which favors speed and allows us
to re-use the code on numerous other WSN platforms.

5.1 Point Multiplication

Our example programs were compiled under TinyOs operating system and run
on the MICA2 and Tmote Sky motes, so all measurements were taken on actual
devices. We decided to measure three most important parameters for sensor
nodes: computation time, memory usage and energy consumption. Both devices
had to be slightly modified to facilitate data acquisition. A precise one ohm
resistor was soldered between the mote and its battery pack to measure the exact
amount of current drained during program execution. Input/Output ports on
MICA2 and Tmote Sky were used to pass trigger signals to the measuring device.
We used National Instruments NI 5112 digitizer card to acquire measurement
data from both nodes. In this way exact timings and precise power consumption
information could be gathered without using the mote’s timers and other features
which increase computation overhead.

All experiments were carried out using LabVIEW software. Figure 1 shows an
example graph of Tmote Sky voltage levels during Elliptic Curve Diffie Helman
(ECDH) program execution. As we can see point multiplication takes a con-
siderable percentage of the total duration of the program. Current drawn from
the battery pack was calculated based on voltage levels. The average value of
current consumption was taken from all the samples within the program execu-
tion period. Both motes were powered with two AA batteries, so a voltage equal
approximately to 3 V was provided (assuming new batteries). Based on this in-
formation total energy consumption was calculated from the formula E = U ·I ·T ,
where T is code running time.

Results for point multiplication operation in binary and prime fields on
MICA2 and Tmote Sky nodes are listed in Table 2. Precomputation was used in
all cases to speed up the point multiplication routine. Point addition and point
doubling operations were not considered independently because their compu-
tation time is insignificant comparing to point multiplication. As we can see
point multiplication is faster on both platforms when using the prime field, but
the difference is not as big as we might have expected. Results in GF (2m) are
comparable to those in GF (p), even though both CPU’s don’t support special
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Fig. 1. Voltage levels on Tmote Sky during example ECDH program execution

Table 2. Performance evaluation of point multiplication on MICA2 and Tmote Sky

MICA2 Tmote Sky
Binary field Prime field Binary field Prime field

Computation time 2.16s 1.27s 1.04s 0.72s

Current draw 7.86mA 7.88mA 3.45mA 3.68mA

Energy consumption 50.93mJ 30.02mJ 10.76mJ 7.95mJ

ROM 32.4KB 46.1KB 32.1KB 31.3KB

RAM 1.7KB 1.8KB 2.8KB 2.9KB

instructions for binary field arithmetic. Achievements in binary field are even
more competitive because no assembly language routines were used in this case.
We used the hardware multiplier on Tmote Sky’s CPU to improve timings for
big numbers multiplication in the prime field. This fact has an influence on av-
erage current consumption, which is slightly higher when the multiplier unit
is turned on. Operations in binary field of course do not require the hardware
multiplier. On the MICA2 the average current drawn is almost the same using
both fields. Total energy consumption in all experiments was lower for the prime
field case, because of the faster execution time of point multiplication. Looking
at the power consumption on both platforms, it is clear that Tmote Sky is far
more efficient using even in some cases 5 times less energy for the same work
carried out.

Program size figures given in Table 2 include only our ECC implementation
without counting additional storage for TinyOs modules. The numbers for the
RAM memory requirement were not taken directly from TinyOs output, because
they did not include stack usage. Simulation environments such as AVR Studio
and IAR Embedded Workbench for MSP430 allowed us to achieve precise infor-
mation about RAM usage and stack size at any given time during our programs
execution. Figures for RAM, presented in Table 2 show the maximum usage
that we have encountered. Average RAM utilization was usually much lower
than that.
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Our results for point multiplication on Tmote Sky compares favourably with
numbers presented in [28]. Their experiments were performed on TelosB mote
which has exactly the same processor as Tmote Sky. In our experiments fixed
point multiplication on 160-bit elliptic curve was performed in 0.72s which is a
nice improvement comparing to 3.13s in [28]. Guajardo et al. [27] also tested
point multiplication performance on tiny architectures and achieved 3.4s at
1MHz on MSP430x33x family of devices. This result cannot be directly compared
with our achievements because they used a 128-bit prime in their implementa-
tion, which is not as secure as the 160-bit prime recommended by NIST. For point
multiplication in the binary field on the MSP430F1611 processor our results are
superior to those achieved in [55]. Their point multiplication in 163-bit finite
field takes 32.5s which is quite a lot comparing to 1.04s in our implementation.

There were several attempts to implement ECC on MICA2 platform. Point
multiplication in prime field was implemented by Gura et al. on ATmega128
[8]. They calculated point multiplication in 0.81s at 8MHz on secp160r1 curve.
In our implementation same operation using a different curve takes 1.27s at
7.3828MHz on MICA2 mote. Malan et al. [9] implemented point multiplication
in the binary field. However the result of 34.16s for this operation on a 163-bit
curve is far from being optimal. In [56] the authors managed to perform fixed
point multiplication in 6.74s on MICA2 but they used GF (2113) arithmetic which
should be much faster to calculate. Computation of the same routine in GF (2163)
in our implementation takes only 2.16s. To our knowledge, point multiplication
results in binary field reported in this paper are the fastest known so far.

5.2 Pairing Evaluation

Table 3 shows all the results for pairing computation achieved on the MICA2 and
Tmote Sky motes. Our timings show that pairing calculation can be performed
in as fast as 5.25s on a resource constrained WSN node. As we can see pairing
programs in binary field are much faster than in prime field on both our research
platforms. The difference is quite significant, as much as 7s. Binary field pairings
are also more efficient in terms of energy consumption and program size. Bigger
code size for pairings in the prime field is due primarily to precomputation data.
It is especially visible for MICA2 where constant precomputed values take 28K of
a total 71.9K of program memory. We couldn’t use that much of precomputation
on Tmote Sky due to the 48KB memory limit. Otherwise the pairing program

Table 3. Results for pairing implementation on MICA2 and Tmote Sky

MICA2 Tmote Sky
Binary field Prime field Binary field Prime field

Computation time 10.96s 17.93s 5.25s 11.82s

Current draw 7.86mA 7.88mA 3.45mA 3.68mA

Energy consumption 258.44mA 423.87mJ 54.34mJ 130.49mA

ROM 53.5KB 71.9KB 30.3KB 47.0KB

RAM 2.8KB 2.5KB 3.7KB 3.0KB
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on this platform would have been a bit faster. On the other hand RAM usage
was a critical issue on ATmega128L. All variables and runtime objects had to
be handled very carefully to fit 4KB of dynamic memory. All of our binary field
pairing programs have a big advantage that they do not need any precomputation
at all.

Although much research has been carried out in PBC, very little attention
has focused on implementing those operations on resource constrained devices.
Apparently pairings were considered as too heavyweight for WSN nodes. The
first pairing implementation in WSN’s was performed by Oliveira et al. [10]. In
that work a k = 2 Tate pairing with a 256-bit prime was implemented over a
supersingular curve y2 = x3 + x. The timing for this operation was estimated as
30.21s on 7.3828MHz MICAz mote (also ATmega128L CPU). Our implementa-
tion of the Tate pairing in the prime field on the MICA2 outperforms that result
with 17.93s and offers a much higher level of security using bigger parameters.
All of our results for pairing implementation show that those operations can be
performed in a reasonable amount of time on small and constrained devices. As
far as we know our pairing programs are at the moment the fastest implemen-
tations on popular WSN motes. Nevertheless we are pretty sure that further
optimizations are possible in terms of memory usage as well as execution time.

6 Conclusion

Recent results in WSN research area show that PKC based on elliptic curves is
indeed feasible in those constrained environments. However the performance of
many ECC implementations is still a disappointment in terms of running time
and resources usage. This fact prevents ECC based security protocols from being
used in certain applications. Our achievements presented in this paper prove
that ECC operations can be performed in a quick and efficient way on popular
sensor network platforms. As our contribution, we present updated results on
computing elliptic curve point multiplication and pairings. We also show that
ECC over prime field is not always the best option as pairings over GF (2m)
seem to be more efficient on this type of architecture. PBC offers a flexible
cryptographic primitive that can be used in many new security protocols. Fast
pairing computation enables Identity Based Encryption and thus opens new ways
for achieving security in sensor networks. Future work will address this issue
and will deal with some problems that need to be solved in order to develop a
complete security protocol.
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Abstract. Sensors networks instrument the physical space using motes
that run network embedded programs thus acquiring, processing, storing
and transmitting sensor data. The motes commercially available today
are large, costly and trade performance for flexibility and ease of pro-
gramming. New generations of motes are promising to deliver significant
improvements in terms of power consumption and price — in particular
motes based on System-on-a-chip. The question is how do we compare
mote performance? How to find out which mote is best suited for a given
application? In this paper, we propose a vector-based methodology for
benchmarking mote performance. Our method is based on the hypothe-
sis that mote performance can be expressed as the scalar product of two
vectors, one representing the mote characteristics, and the other repre-
senting the application characteristics. We implemented our approach in
TinyOS 2.0 and we present the details of our implementation as well as
the result of experiments obtained on commercial motes from Sensin-
ode. We give a quantitative comparison of these motes, and predict the
performance of a data acquisition application.

1 Introduction

Sensor networks-based monitoring applications range from simple data gath-
ering, to complex Internet-based information systems. Either way, the physical
space is instrumented with sensors extended with storage, computation and com-
munication capabilities, the so-called motes. Motes run the network embedded
programs that mainly sleep, and occasionally acquire, communicate, store and
process data. In order to increase reliability and reduce complexity, research pro-
totypes [1,2] as well as commercial systems1 now implement a tiered approach
where motes run simple, standard data acquisition programs while complex ser-
vices are implemented on gateways. These data acquisition programs are either
a black box (Arch Rock), or the straightforward composition of building blocks
such as sample, compress, store, route (Tenet). This approach increases relia-
bility because the generic programs are carefully engineered, and reused across

1 See http://www.archrock.com
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deployments. This approach reduces complexity because a system integrator does
not need to write embedded programs to deploy a sensor network application.

Such programs need to be portable to accommodate different types of motes.
First, a program might need to be ported to successive generations of motes.
Indeed, hardware designers continuously strive to develop new motes that are
cheaper, and more power efficient. Second, a program might need to be ported
simultaneously to different types of motes, as system integrators need various
form factors or performance characteristics.

Handzicki, Polastre et al. [5] address the issue of portability when they de-
signed TinyOS 2.0 Hardware Abstraction Architecture. They defined a general
design principle, that introduces three layers:

1. Mote Hardware: a collection of interconnected hardware components (typi-
cally MCU, flash, sensors, radio).

2. Mote Drivers: Hardware-specific software that exports a hardware indepen-
dent abstraction (e.g., TinyOS 2.0 define such Hardware Independent Layer
for the typical components of a mote).

3. Cross-Platform Programs: the generic data acquisition programs that orga-
nize sampling, storage and communication.

We rely on these three layers to reason about mote performance. Whether
motes are deployed for a limited period of time in the context of a specific
application (e.g., a scientific experiment), or in the context of a permanent in-
frastructure (e.g., within a building), power consumption is the key performance
metric. Motes should support data acquisition programs functionalities within a
limited power budget. We focus on the following questions:

1. What mote hardware to pick for a given program? The problem is to explore
the design space and choose the most appropriate hardware for a given pro-
gram without having to actually benchmark the program on all candidate
platforms.

2. What is a mote hardware good for? The problem is to characterize the type
of program that is well supported by a given mote hardware.

3. Is a driver implemented efficiently on a given hardware? The problem is to
conduct a sanity check to control that a program performs as expected on a
given hardware.

We are facing these questions in the context of the Hogthrob project, where we
design a data acquisition infrastructure. First, because of form factor and cost,
we are considering a System-on-a-Chip (SoC) as mote hardware. Specifically,
we want to investigate whether Sensinode Nano, a mote based on Chipcon’s
CC2430 SoC, would be appropriate for our application. More generally, we want
to find out what a CC2430 mote is good for, i.e., what type of applications it
supports or does not support well. Also, we had to rewrite all drivers to TinyOS
2.0 on CC2430, and we should check that our implementation performs as well
as TinyOS 2.0 core. Finally, we would like to use Sensinode Micro as a proto-
typing platform for our application as its toolchain is easier and cheaper to use
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(see Section 3.2 for details). We would like to run our application on the Micro,
measure performance, and predict the performance we would get with the Nano.

In this paper, we propose a vector-based methodology to study mote perfor-
mance. Our hypothesis is that energy consumption on a mote can be expressed
as the scalar product of two performance vectors, one that characterize the mote
(hardware and drivers), and one that characterize the cross-platform application.
Using this methodology, we can compare motes or applications by comparing
their performance vectors. We can also predict the performance of an applica-
tion on a range of platforms using their performance vectors. This method will
enable sensor network designers answer the questions posed above. Specifically,
our contribution is the following:

1. We adapt the vector-based methodology, initially proposed by Seltzer et al.
[4], to study mote performance in general and TinyOS-based motes in par-
ticular (Section 3).

2. We conduct experiments with two types of motes running TinyOS 2.0:
Sensinode Micro and CC2430. We ported TinyOS to these platforms (see
Section 4).

3. We present the results of our experiments (Section 5). First, we test the
hypothesis underlying our approach. Second, we compare the performance
of the Micro and CC2430 motes using their hardware vectors. Finally, we
predict the performance of generic data acquisition programs from the Micro
to the CC2430.

2 Related Work

Typically, analytical models, simulation or benchmarking are used to study the
performance of a program [3]. In our opinion, simulation is best suited for rea-
soning about the performance and scalability of protocols and algorithms, not to
reason about the performance of an application program on a given mote hard-
ware. Indeed, simulators are best suited when they abstract the details of the
hardware and driver layers. Standard benchmarks fall into two categories: ap-
plication benchmarks (SPEC, TPC), or microbenchmarks (lmbench)2. There is
no such standard benchmark for sensor networks. Micro benchmarks have been
defined for embedded systems (EEMBC), but they focus at the automotive and
consumer electronics markets – they do not tackle wireless networking or sensing
issues.

The vector-based methodology proposed by Setlzer et al. [4] has been used
to characterize the performance of web servers, OS utilities and Java Virtual
Machines. Our paper is the first to propose this methodology in the context of
sensor networks.

Performance estimation is of the essence for real-time embedded systems. The
focus there is on timing analysis, not so much on energy consumption. We share
a same goal of integrating performance estimation into system design [8].
2 See http://www.tpc.org, http://www.spec.org, http://www.bitmover.com/lmbench,

and http://www.eembc.org/ for details about these benchmarks.
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In the context of sensor network, our work follows-up on the work of Jan
Beutel that defined metrics for comparing motes[9]. Instead of using data sheets
for comparing mote performance, we propose to conduct application-specific
benchmarks.

Our work is a first step towards defining a cost model for applications running
on motes. Such cost models are needed in architectures such as Tenet [1] or
SwissQM [2] where a gateway decides how much processing motes are responsible
for. Defining such a cost model is future work.

3 Vector-Based Methodology

The vector-based methodology[4], consists in expressing overall system perfor-
mance as the scalar product of two vectors:

1. A system-characterization vector, which we call mote vector and denote
MV . Each component of this vector represents the performance of one prim-
itive operation exported by the system, and is obtained by running an ap-
propriate microbenchmark.

2. An application-characterization vector, which we call application vector
and denote AV . Each component of this vector represents the application’s
utilization of the corresponding system primitives, and is obtained by instru-
menting the API to the system primitive operations.

Our hypothesis is that we can define those vectors such that mote performance
can be expressed as their scalar product:

Energy = MV ·AV

Our challenge is to devise a methodology adapted to mote performance. The
issues are (i) to define the mote vector components, and the microbenchmarks
used to populate them, and (ii) to define a representative application workload,
to collect a trace from the instrumented system API, and to convert an applica-
tion trace into an application vector.

3.1 Mote Vector

We consider a system composed of the mote hardware together with the mote
drivers. The primitive operations exported by such a system are:

– CPU duty cycling: the network embedded programs that mainly sleep and
process events need to turn the CPU on and off3.

– Peripheral units: controlled through the hardware-independent functions
made available at the drivers interface.

3 Note that we assume that the mote hardware relies on a single CPU to control all
peripheral units. Peripheral units such as digital sensors might include their own
micro-controller. Our assumption simply states that a mote program is run on a
single CPU.
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We choose this system because its interface is platform-independent. This has
two positive consequences. First, we can use mote vectors to compare two differ-
ent motes. Second, the application vector is platform-independent. We can thus
use our vector-based methodology to predict the performance of an application
across motes.

The mote vector components correspond to the CPU (when active or idle),
and the peripheral units (as determined by the driver interfaces). Throughout the
paper, we use an associative array notation to denote the mote (and application)
vector components, e.g., MV [active] corresponds to CPU execution, MV [idle]
corresponds to CPU sleep, MV [PUi], correspond to peripheral units primitives
where PUi is for example ADC sample, flash read, flash write, flash erase, radio
transmit, radio receive.

We need to define a metric for the vector components. The two candidates
are energy and time. We actually need both: (a) energy to compute the scalar
product with the application vector and thus obtain mote performance, and (b)
time to derive the platform-independent characteristics of an application (see
Section 3.2). We thus need to define a microbenchmark for each mote vector
component for which we measure time elapsed and energy spent. We distin-
guish between the energy mote vector, noted MVe, and the time mote vector,
noted MVt.

The microbenchmarks must capture the performance of the system’s primi-
tive operations. The first problem is to represent CPU performance. The most
formidable task for the CPU in a sensor network application is to sleep. This
is why we distinguish sleep mode from executing mode in the mote vector. For
the applications we consider, a single sleep mode is sufficient. Defining a mi-
crobenchmark to define the energy spent in sleep mode is trivial. However, we
wish to use the time mote vector to compare the time spent in sleep mode by
different motes. Intuitively, the time spent in sleep mode is a complement of the
time spent processing. As an approximation, we thus consider that MVt[idle] is
the complement of MVt[active] with respect to an arbitrary time period (fixed
for all mote vectors), and that MVe[CPUsleep] corresponds to the energy spent
in sleep mode during that time.

The second problem is to define an appropriate representation of CPU per-
formance (in executing mode). Unlike peripheral units, for which drivers define
a narrow-interface, the CPU has a rich instruction set. It is non-trivial to es-
timate the CPU resources used by a given application as it depends on the
source code and on the way the compiler leverages the CPU instruction set. We
choose a simple approach where we use a microbenchmark as a yardstick for the
compute-intensive tasks of an application. We thus represent CPU performance
using a single vector component. There is an obvious pitfall with this approach:
we assume that the distribution of instructions used by the microbenchmark is
representative of the instructions used by the application. This is unlikely to be
the case. We use this simple approach, despite its limitation, as a baseline for
our methodology because we do not expect CPU utilization to have a major
impact on energy consumption. Our experiments constitute a first test of this
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assumption. Obviously much more tests are needed, and devising a more precise
estimation of CPU utilization is future work.

The third problem related to the microbenchmarks is that driver interfaces
often provide a wide range of parameters that affect their duration and energy
consumption. Instead of attempting to model the complete range of parameters,
we define microbenchmarks that fix a single set of parameters for each peripheral
unit primitive. Each peripheral unit microbenchmark thus corresponds to calling
a system primitive with a fixed set of parameters, e.g., a microbenchmark for
radio transmit will send a packet of fixed length, and a microbenchmark for ADC
sampling will sample once at a fixed resolution. We believe that this models the
behavior of sensor network application that typically use a fixed radio packet
length or a particular ADC resolution. This method can trivially be expanded
by defining a vector component per parameters (e.g., replacing radio transmit
with two components radio transmit at packet length 1 and radio transmit at
packet length 2 ).

For the sake of illustration, let us consider a simplistic mote with a subset
of the TinyOS 2.0 drivers, that only exports two primitives: ADC sample and
radio transmit (tx). The associated time mote vectors will be of the form:

MVt =

⎡

⎢
⎢
⎣

active
idle
adc
tx

⎤

⎥
⎥
⎦

Where the mote vector components correspond to the time spent by the mote
running the CPU microbenchmark, to the time spent in sleep mode (the comple-
ment of the time spent running the CPU benchmark with respect to an arbitrary
time period that we set to 20 s), to the time spent running the ADC benchmark,
and to the time spent running the transmit benchmark.

In order to express mote performance as the scalar product of the energy
mote vector and the application vector, we need the components of the mote
vectors to be independent. This is an issue here, because CPU is involved when-
ever peripheral units are activated. Our solution is to factor CPU usage in each
peripheral unit component. As a consequence, the mote vector component cor-
responding to CPU performance (active) must be obtained without interference
from the peripheral units. Another consequence is that we need to separate the
CPU utilization associated to peripheral units from the pure computation, when
deriving the platform-independent characteristics of an application. We thus reg-
ister CPU time when benchmarking each peripheral unit primitive. We denote
them as CPU [PUi] for each peripheral unit primitive PUi.

We detail in the next Section, how we use those measurements when deriving
the application vector from a trace.

3.2 Application Vector

Our goal is to characterize how an application utilizes the primitives provided
by the underlying system. The first issue is to define a workload that is
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representative of the application. In the context of sensor networks, workload
characterization is complicated (i) because motes interact with the physical
world and (ii) because the network load on a mote depends on its placement
with respect to the gateway, and (iii) because different motes play different roles
in the sensor network (e.g., in a multihop network a mote located near the gate-
way deals with more network traffic than a mote located at the periphery of the
network).

We consider that a sensor network application can be divided into representa-
tive epochs that are repeated throughout the application lifetime. For example,
the application we consider in the Hogthrob project consists of one data ac-
quisition epoch4, where an accelerometer is sampled at 4 Hz, the samples are
compressed, stored on flash when a page is full, and transmitted to the gateway
when the flash is half-full. While sampling is deterministic, such an epoch is non-
deterministic as compressing, storing or transmitting depends on the data being
collected, and on the transmission conditions. Obviously, tracing an application
throughout several similar epochs will allow us to use statistics to characterize
these non-deterministic variations.

For each epoch, we trace how the application uses the CPU and the periph-
eral units. More precisely the trace records the total time spent by the mote
in each possible mote state, defined by the combination of active mote vector
components (active that represents the compute-intensive operations, idle that
represents the CPU in sleep mode, and PUi that represents a peripheral unit
interface call). We thus represent the trace as a vector, denoted T . T is of di-
mension 2m, where m is the dimension of the mote vector. Some of the mote
states will not be populated because they are mutually exclusive (e.g., active
and idle), or because the driver interfaces prevent a given combination of active
peripheral units.

Let us get back to the simple example we introduced in the previous section.
The trace vector for an epoch will be of the form:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

active
idle
adc
tx
adc & tx

active & adc
active & tx
active & adc & tx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now the problem is to transform, for each epoch, the trace vector into a
platform-independent application vector. The application vector, denoted AV ,
has same dimension m as the mote vector, and each application vector compo-
4 A sensor network deployed for collaborative event detection will typically consist of

two epochs: one where motes are sampling a sensor and looking for a given pattern
in the local signal, and one where motes are communicating once a potential event
has been detected.
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nent corresponds to the utilization of the system resource as modeled in the mote
vector. The application vector components have no unit, they correspond to the
ratio between the total time a system primitive is used in an epoch, by the time
spent by this system primitive in the appropriate microbenchmark (as recorded
in the time mote vector MVt). Note that if the driver primitive is deterministic,
then the ratio between the total time spent calling this primitive in an epoch
and the microbenchmarking time is equal to the number of times this primitive
has been called. However, drivers typically introduce non-determinism,because
the scheduler is involved or because drivers embed control loops with side effects
(e.g., radio transmission control that results in retransmissions).

We use a linear transformation to map the trace vector onto the application
vector. This transformation can be described in three steps:

1. We use an architecture matrix to map the trace into a vector of dimension
m, the raw total time vector, where each component correspond to the
total utilization of the CPU and peripheral units. The architecture matrix
encodes the definition of each state as the combination of active mote vector
components. Note that this combination depends on the architecture of the
mote. For example, a SPI bus might be shared by the radio and the flash. In
this case, the time spent in a state corresponding to radio transmission and
flash write is spent either transmitting packets or writing on the flash (there
is no overlap between these operations). We assume fair resource arbitration
and consider that both components get half the time recorded in the trace.
In case of overlap between operations, both get the total time recorded in
the trace.

In our simplistic example, assuming that a SPI resource is shared between
the radio and the ADC, the architecture matrix will be of the form:

AM =

⎡

⎢
⎢
⎣

1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 0 1 0 1

2 1 0 1
2

0 0 0 1 1
2 0 1 1

2

⎤

⎥
⎥
⎦

2. We use a CPU matrix to factor out of the active component the time spent
by the CPU controlling the peripheral units. The CPU matrix, of dimension
m×m, is diagonal except for the column corresponding to the active compo-
nent. This column is defined as 1 on the diagonal, 0 for the idle component,
and −CPU [k]/MV [k] for all other components. When multiplying the total
time vector with the CPU matrix, we obtain a total time vector where the
active component corresponds solely to the compute-intensive portion of the
application.

Using again our running example, we have a CPU matrix of the form:

CPU =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0

−CPU [adc]
MVt[adc] 0 1 0

−CPU [tx]
MVt[tx] 0 0 1

⎤

⎥
⎥
⎥
⎦
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3. We use the time mote vector to derive the application vector. The basic idea
is to express the application utilization of the system primitive as the ratio
between total time per component, and the time spent running a benchmark.
We define the inverse mote vector, MV −1, as a vector of dimension m where
each component is the inverse of the time mote vector component (this in-
verse is always defined as the time mote vector components are always non
zero). We define the application vector as the Hadamard product of total
time vector with the inverse mote vector.

With our running example, we obtain the equation:
⎡

⎢
⎢
⎣

totalactive/MVt[active]
totalidle/MVt[idle]
totaladc/MVt[adc]
totaltx/MVt[tx]

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

totalactive
totalidle
totaladc
totaltx

⎤

⎥
⎥
⎦ ◦

⎡

⎢
⎢
⎣

1/MVt[active]
1/MVt[idle]
1/MVt[adc]
1/MVt[tx]

⎤

⎥
⎥
⎦

More generally, we derive the application vector from the trace vector using
the following linear transformation:

AV = (CPU × (AM× T )) ◦MV −1

And we obtain the mote performance as the scalar product of the application
vector with the energy mote vector:

E = AV ·MVe.

4 Implementation in TinyOS 2.0

We applied our vector-based methodology to two motes: Sensinode Micro, a
Telos-like mote, and CC2430, which is the basis for a new generation of com-
mercial motes5. We ported TinyOS 2.0 on both platforms.

4.1 CC2430 and Sensinode Micro

As a SoC Chipcon’s CC24306 has a small form factor (7x7 mm) and promises
to be mass-produced at a lower price than complex boards. Motes built around
the CC2430 might constitute an important step towards reducing the price of
sensor networks. The CC2430 is composed of the 8051 MCU with a wide range of
common on-chip peripherals as well as an 802.15.4 radio very similar to the Texas
Instruments CC2420. We run the system at 32 MHz. The CC2430 differs from
the platforms on which TinyOS has been implemented so far in two important
ways: the system architecture and the interconnect to the radio.

The Intel 8051 MCU architecture was designed in the early eighties and many
oddities from the era remain. Not only is it an 8 bit, CISC style processor with a
5 We experimented with a CC2430 development kit. Using commercial systems based

on CC2430, such as Sensinode Nano, is future work.
6 For details, see CC2430 data sheet: http://focus.ti.com/lit/ds/symlink/cc2430.pdf
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Harvard architecture7, but the main memory is further subdivided into separate
address spaces that differ in size, are addressed differently and vary in access
time. Simply put, the 8051 defines a fast memory area limited to 256 bytes,
and a slow memory area of 8 KiB. In addition to variables, the fast access area
contains the program stack. This limits the program stack to less than 256 bytes
depending on the amount of variables in this area. Commonly, activation records
of functions are placed on the stack, thus potentially limiting the call depth
critically. To circumvent this problem, the compiler places stack frames in the
slow data area, which imposes a high cost for storing and retrieving arguments
that do not fit in registers when calling a function. The slow access RAM also
penalizes dynamic memory allocation, and context switches and thus favor an
event-based OS with static memory allocation such as TinyOS.

Because CC2430 is a SoC, there is no bus between the MCU and the radio.
The MCU controls the radio via special function registers (instead of relying on
a SPI bus as it is the case on Telos and Micro motes for example). The other
peripheral units (ADC, UART, timers, flash, and pins) are accessed in the 8051
MCU as in other micro-controllers such as the MSP or Atmega.

The Sensinode Micro is built around the 16 bit, RISC style MSP430 MCU
with combined code and memory spaces (Von Neuman). The platform can run
up to 8 MHz, but we choose 1 MHz in our experiments. Apart from the built
in common peripherals of the MSP, it features the Texas Instruments CC2420
radio which is connected though an SPI bus.

4.2 TinyOS 2.0 on CC2430 and Micro

TinyOS 2 has been designed to facilitate the portability of applications across
platforms. First, it is built using the concept of components that use and pro-
vide interfaces. TinyOS is written in nesC, an extension of C that supports
components and their composition. Second, TinyOS implements the Hardware
Abstraction Architecture[5]. For each hardware resource, a driver is organized
in three layers: the Hardware Presentation Layer (HPL) that directly exposes
the functions of the hardware component as simple function calls, the Hard-
ware Abstraction Layer (HAL) that abstracts the raw hardware interface into
a higher-level but still platform dependent abstraction, and the Hardware In-
dependent Layer (HIL) that exports a narrow, platform-independent interface.
The TinyOS 2.0 core working group has defined HIL for the hardware resources
of typical motes: radio, flash, timer, ADC, general IO pins, and UART.

Porting TinyOS 2.0 on CC2430 consisted in implementing these drivers8. For
the timers, pins, UART and ADC we used the TinyOS HIL interfaces, however
for the Radio and Flash diverge from the common interfaces.

Radio. We export the radio using a straightforward SimpleMac interface. This
interface is well suited for the 802.15.4 packet-based radios of the CC2430.
It allows to send and receive packets, and set various 802.15.4 parameters as

7 Code and data are located in separate memory space.
8 For details, see http://www.tinyos8051wg.net
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well as duty cycling the radio. Note that we depart from the Active Message
abstraction promoted by the TinyOS 2.0 core working group. Our SimpleMac
implementation supports simple packet transmission, but does not provide
routing, or retransmission. Implementing Active Messages is future work.

Flash. We export the flash using the SimpleFlash interface that allows to read
and write an array of bytes, as well as delete a page from flash. Note that this
interface is much simpler than the abstractions promoted by the TinyOS 2.0
core working group (volumes, logging, large and small objects). We adopted
this simple interface because it fits the needs of our data acquisition appli-
cation. Implementing the core abstractions as defined in TEP103 is future
work.

Timer. The timers are exported using the generic TinyOS Timer interfaces
Alarm and Counter. These two interfaces give applications access to hard-
ware counters and allows the use of the TinyOS components to extend the
timer width from 16 bit to 32 bit. Note that on the pre-release CC2430 chips
we used for our experiments, timers do not work properly9.

ADC. The Analog-to-Digital Converter is accessed through the core Read in-
terface that allows to read a single value. In order to read multiple values,
an application must issue multiple read calls or use DMA transfers.

Pins. The General IO pins are exported through the core GeneralIO interface,
that allows to set or clear a pin, make it an input or an output.

UART. The UART is exported using the core SerialByteComm interface (that
sends and receives single bytes from the UART) and StdOut interfaces (that
provides a printf-like abstraction on top of SerialByteComm.

Note that we did not need to change the system components from TinyOS 2.0.
However, supporting a sleep mode on the CC2430 requires implementing a low-
frequency timer. On the pre-release CC2430 chips we used for our experiments,
timers do not work properly. This is work in progress, as a consequence our
experiments are conducted without low-power mode on the CC2430.

The main challenges we faced implementing TinyOS 2.0 drivers on CC2430
were to (i) understand the TEP documents that describe the core interfaces as
we were the first to port TinyOS 2.0 on a platform that was not part of the core,
and (ii) to define an appropriate tool chain. Indeed, the code produced by the
nesC pre-compiler is specific to gcc, which does not support 8051. We had to (a)
choose another C compiler (Keil), and (b) introduce a C-to-C transformation
step to map the C file that nesC outputs into a C file that Keil accepts as
input (e.g., Keil does not support inlining, the definition of interrupt handlers is
different in Keil and gcc, Keil introduces compiler hints that are specific to the
8051 memory model). The details of our toolchain are beyond the scope of this
paper, see [6] for details.

Because the Micro has many similarities with the Telos mote, on which
TinyOS 2.0 was originally developed, porting porting TinyOS 2.0 was a sim-
ple exercise. However, the wiring of the radio does not feature all of the signals
9 The timers miss events once in a while. This error is documented on a ChipCon

errata, which is not publically available.
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available on the Telos mote, meaning that the radio stack could not be reused.
We implemented the simple MAC layer, SimpleMac, and simple flash layer Sim-
pleFlash described above.

4.3 Mote Vectors and Benchmarks

The vector component are chosen by analyzing the components used by the ap-
plications. As a result, we choose the following components for their mote vectors:
active, idle, adc, radio receive, radio transmit, flash read, flash write, and
flash erase. Doing so, we leave some of the peripheral unit primitives out of
the mote vector (e.g., the primitives to set or get the channel on the 802.15.4
radio) and unused peripherals. The time spent executing primitives left out are
factored as CPU execution time, while the unused peripherals are only consid-
ered to contribute the idle power consumption. We also leave timers, UART and
general IO pins out of the mote vector. The time spent in the timers is factored
in the CPU idle component. We leave general IO pins out because we do not use
LEDs, or digital sensors. Similarly, we do not use the UART. Note that we do
not consider a specific sensor connected to the ADC.

The benchmarks we defined for these mote vector components are:

– A compression algorithm to characterize CPU execution. This component
contains a mix of integer arithmetic with many loads and stores and some
function calls. Using this algorithm is a baseline approach.

– Simple function calls with a fixed parameter for each peripheral unit
primitive10. Note that benchmarks, in particular for the radio and flash,
contain some buffer manipulation. These are measured as CPU [PUi] (see
Section 2.1).

4.4 TinyOS API Instrumentation

We need to implement the CPU and peripheral units to collect the traces that are
the basis for the application vectors. We implemented the following mechanisms:

– For the peripheral units, we introduce a platform-independent layer between
the component that provides the driver interface and the component that
uses it. As an example consider reading a value from the ADC using the
TinyOS 2.0 Read interface. This interface starts an ADC conversion with a
Read command and returns with a readDone, We insert a layer that records
the time elapsed between the Read command is called and the readDone
event is received. This is obviously an approximation of the time during
which the ADC is actually turned on.

– For the CPU, we leverage the fact that TinyOS has a simple task scheduler
that puts the CPU into sleep mode when the task queue is empty. The
microprocessor is awoken via interrupts generated from internal or external
peripherals. We record the time elapsed between the CPU enters sleep mode
and the woke-up interrupt handler is executed as idle and the rest of the
time as active.

10 The source code is available through the TinyOS 2 contribution section.
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In order to collect this trace, we encode each state as a combination of bits
(our mote vector is of dimension 8) we thus use 8 bits to encode the states.
Collecting this trace could be done internally on the mote being investigated, but
this introduces a management overhead. Instead we output each bit of the state
as an IO pin, using a second mote, which we call LogRecorder, that records the
state transitions. This mechanism is very similar to the monitoring techniques
devised for deployment-support networks[7].

4.5 Data Acquisition Applications

We use simple data acquisition applications as workload for our experiments. We
build them from building blocks: sample, compress, store, and send. We create
4 applications that increase the parallel behavior of these tasks from isolation to
parallel sample and transmission:

SampleCompressStore is a simple state machine, that runs each step in isola-
tion. As each sample is retrieved, it is then compressed, and once 10 samples
are retrieved they are stored to flash. This cycle is repeated 9 times.

DataAcquisition extends the state machine from SampleCompressStore to re-
trieve the data from flash and transmit it. Again, each step in isolation.

SampleStoreForward is similar to DataAcquisition, except without the com-
pression step.

DataAcquisitionAdv performs the same tasks as DataAcquisition, but inter-
leaves the sample and transmit processes. Store is done in isolation.

For our first experiments, we want a deterministic workload that exhibits re-
producible results. One important source of variance in a sensor network applica-
tions is the environment. We choose a simple network topology and transmission
scheme. Data is transmitted in 384 byte chunks (data and padding). The trans-
mission does not expect acknowledgment that a packet is received, but only wait
for the channel to be cleared (CCA) before sending. Sampling is at 10Hz and for
compression we use the Lz77 algorithm.

5 Experimental Results

5.1 CC2430 and Micro

We ran the benchmarks described in the previous section on both the Micro
and CC2430 motes. The time and energy mote vectors we obtain are shown in
Figure 1 as spider charts. The results are somewhat surprising. CC2430 is much
faster than the Micro when running the benchmarks and transmitting packets.
Slow memory accesses is compensated by the high clock rate and direct access to
the radio speeds up packet transmission. It means that the CC2430 can complete
its tasks quickly, and thus be aggressively duty cycled. In terms of energy, we
observe that:

1. CPU operations are two to three orders of magnitude more expensive on
the CC2430 than on the Micro. This is due to the high clock rate (which
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guarantees fast execution) and to the overhead introduced by the slow access
RAM.

2. Flash operations are much more expensive on the Micro than on the CC2430.
These results led us to check our driver implementation (which is a positive
results in itself). We could not find any bug. We believe that the difference
in performance can be explained by the difference in clock rate between both
platforms (1 MHz for the Micro vs. 32 MHz for the CC2430) and with the fact
that the CC2430 driver is hand coded in assembler and the Micro’s is not.
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Fig. 1. Time and energy mote vectors for CC2430 and Micro

5.2 Performance Prediction

We used our methodology to derive the application vectors for the four data
acquisition applications described in the previous Section. The results are shown
in Figure 2.

The profiles we get for the applications correspond to what we expect. Indeed,
the application vector components for the ADC, flash and radio operations corre-
spond roughly to the number of samples, flash and radio operations issued by the

(a) Micro (b) CC2430

Fig. 2. Application vectors for CC2430 and Micro
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Fig. 3. Energy measurements and estimates

applications. The application vector is designed to be platform-independent. We
thus expect that the application vectors derived from the CC2430 and Micro are
similar. The good news is that they are at the exception of the ADC component.
This is either a measurement error, a software bug in the driver, or a hardware
bug. We focused on this issue and observed that the time it takes to obtain a
sample on CC2430 varies depending on the application. Two different programs
collecting the same data through the same ADC driver experience different sam-
pling times. We observed as much as 50% difference between two programs. We
believe that this is another hardware approximation on the CC2430.

Our initial hypothesis is that the energy spent by an application on a mote can
be estimated using the scalar product of the application vector with the mote
vector. We computed the energy estimate for the DataAcquisitionAdv application
and we compared them to the measurements we conducted directly on the motes
(using an oscilloscope). The results are shown in Figure 3.

The estimations are well into an order of magnitude from the actual energy
consumption. This is rather positive. As expected, the contribution from the
CPU in active mode is insignificant. The poor performance of the CC2430 is
due to the fact that we did not implement sleep mode support on the CC2430.
Much more work is needed to test our methodology. This experiment, however,
shows that we can use our method to prototype a data acquisition application
with the Micro and predict how much energy the CC2430 would have used in
the same conditions.

6 Conclusion

We described a vector-based methodology to characterize the performance of an
application running on a given mote. Our approach is based on the hypothesis
that mote energy consumption can be expressed as the scalar product of two vec-
tors: one that characterize the performance of the core mote primitives, and one
that characterizes the way an application utilizes these primitives. Our experi-
ments show that our methodology can be used for predicting the performance of
data acquisition applications between Sensinode Micro and a mote based on the
CC2430 SoC. Much more experimental work is needed to establish the limits of
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our approach. Future work includes the instrumentation of an application de-
ployed in the field in the context of the Snowths project, and the development
of a cost model that a gateway can use to decide on how much processing should
be pushed to a mote.
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Abstract. Several considerable impediments stand in the way of sensor
network prototype applications that wish to realize sustained deploy-
ments. These are: scale, longevity, data of interest, and infrastructure
integration. We present a tool, Que, which assists those sensor net-
work deployments transitioning from prototypes to early production en-
vironments by addressing these issues. Que is able to simulate realistic
deployments with faithful data, provide fast and iterative feedback on
operations, and compose applications quickly in a platform-independent
manner. We demonstrate Que’s applicability via tests against our new
data center environment-monitoring deployment, DataCenter.NET.

1 Introduction

Sensor networks are notoriously difficult to build, deploy and maintain. Early
sensor network experiences are not without case studies of deployment that have
failed to mature or taken considerably longer to arrive at fruition than originally
anticipated.

For example, several geomorphologists, excited by the new science that sensor
networks might bring to their field, targeted an initial test deployment in a
modest desert cave to collect climatological data. They purchased a packaged
sensor network product from a major sensor networking company. The package
was billed as the most straightforward off-the-shelf solution offered, so their
realistic expectations were that such a system would last several months given
the energy provisions once deployed.

Unfortunately, the experiences were not encouraging. After spending several
days in the field trying to determine why the product failed to deliver results, the
geologists finally established connectivity and collected data for two hours before
the product failed permanently. Disillusioned, these users have since reconsidered
their sensor network efforts. While the brief two hours of data were beneficial,
the costs were very significant [24].

What can we do to remedy this lack of sensor network usability? Let us pur-
sue this question by first examining the development model surrounding sensor

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 337–353, 2008.
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network deployments today. Sensor network deployment efforts typically follow
a 4-step procedure:

1. Goals and requirements specifications
2. Prototype deployment
3. Prototype to production transition
4. Production deployment

Many scenarios are easy to prototype, but have difficulty achieving production
standards. This indicates that there are significant factors in the production
requirements that are unaccounted for in the prototype phase. To address these
disparities effectively, it is often more important to know what is wrong early,
often and approximately rather than late, infrequently and precisely.

We have built Que, a tool which provides a unified scripting and simula-
tion/emulation framework for multi-tier sensor network systems. Que assists the
transition from prototype to production by enabling fast iterations on whole-
system assembly and system input/output testing.

Several important factors influence why this transition is not straight forward,
and where a tool like Que aims to provide assistance:

Scale: In the prototype phase, it is important to get something working quickly.
This often means over-instrumentation with dense arrays of sensors in a lim-
ited area rather than finely-tuned capacity planning. However, scale is driven
upward in the production phase while the cost of ownership prohibits over-
instrumentation. Thus, determining the minimum density of sensors is a neces-
sary yet often unanswered question.

Longevity: In the prototype phase, the sensornet does not have to be long-lived
nor particularly reliable. In production, lifetime and manageability requirements
are dominant concerns. Frequently, longevity issues such as minimum sampling
interval and duty-cycling are deferred until production deployment, an expensive
phase in which to address a fundamental requirement of the sensor system. A
short-lived sensing system is often simply not useful [7].

Data: In the prototype phase, raw data is useful especially for exploration. In
production, distilled decision making information is most important. Thus, data
processing operations which were not present in the prototype must be intro-
duced in production. Furthermore, the operational dynamics are further compli-
cated in the case of online or in-network data processing. Thus, it is important
to test with realistic data input and control logic in the prototype phase.

Integration: Integration with the rest of infrastructure pyramid is not a priority
during prototyping. However, realistic production systems often involve many
elements in addition to the sensornet. Traditional sensornet development lacks
such multi-tier systems integration testing.

The goal of Que is to help answer these question through a combination of two
primary mechanisms. First, Que offers a scripting-based exploration environment
for operator-based system assembly across multiple platform tiers. Quick script-
ing makes it easy for developers to retask their system for new data processing
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either on mote- or microserver-class devices. Second, Que provides a simulation
and emulation environment for an entire multi-platform tiered system, so that
retasking can be quickly tested on the entire system against realistic scenar-
ios. The combination of these two mechanisms lends naturally to rich system
and data exploration, which are important in the transition from prototype to
production.

To validate our approach, we have applied Que to DataCenter.NET, an en-
tirely new deployment at Microsoft Research with significant material impact. A
significant problem in the modern computer data center is the lack of visibility
into power-intensive cooling support systems. DataCenter.NET is a compelling
application that assists data center operators with real-time high-granularity
feedback into operational metrics such as facilities and server temperatures.
As we worked toward a real production deployment with our operations col-
leagues, we realized that DataCenter.NET required addressing all of the key
issues mentioned above: scale, longevity, data and integration; hence, providing
a great testing environment for Que. Our main result here is that Que, posi-
tioned as a general rapid prototyping tool, does indeed provide fast insight into
these system-wide issues, while leaving definitive and highly-refined answers for
special-purpose tools.

The next section describes related work. Section 3 discusses the design prin-
ciples that drive Que. Section 4 introduces the Que environment. Section 5
describes the system architecture. Section 6 and 7 discusses our deployment
DataCenter.NET and our results in using Que to bring this system to produc-
tion. Finally, section 8 presents discussion and conclusions.

2 Related Work

Observing the practical difficulty of deploying sensor networks, a number of
projects provide “out-of-the-box” sensor network solutions [6,9]. Although these
solutions are convenient for data collection tasks, they do not address the inher-
ent customization necessary for many sensor network scenarios. Many proposed
sensornet programming systems have aimed to facilitate customization with new
programming models or APIs. Several have explicitly looked at the benefits to-
ward rapid prototyping [5, 4]. Also, customization may not mean programming
each sensor node directly. They can be expressed in declarative ways, such as
seen in TinyDB [23], Semantics Streams [26], and DSN [8]. Or, they can be
specified via composition languages.

Composition languages, sometimes referred to as “programming by compo-
nent wiring,” is used in many embedded systems programming and designs
[17, 14, 13, 10, 15, 22]. They are particularly useful at the system prototyping
and testing stages, where the users have some ideas of how they system works,
but need more hand tuning. EmStar [13] and Viptos [10] both provide two-
tier simulation environments. However, Emstar does not provide ways to pro-
gram at the sensor mote level. Sensors are primarily used as wireless interfaces
for microservers. Viptos is a visual programming interface where microserver
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components are implemented in Java. Que is similar to Viptos in spirit, but
by using a unified Python programming language at both sensor mote and mi-
croserver levels, users get access to the full capability of Python for experiment
control, data archiving, and visualization purposes. The text based general pur-
pose language gives users powerful and intuitive constructs like loops and con-
ditions when building prototypes. Que also takes advantage of MSRSense to
support web services and integration with web and enterprise applications.

Some of the preceding composition languages additionally provide model-
based semantics in addition to operational semantics [8, 10, 23]. Model-based se-
mantics often permit establishment of program guarantees beyond those available
with purely operational semantics, which may help with ensuring that prototype
and production systems both conform to user requirements. As a pure composi-
tion language, Que itself does not impose any models of computation. It relies on
subsystems like TinyOS and MSRSense [22] to provide execution semantics.

Que’s scripting environment is similar in spirit to those proposed in Mari-
onette [25] and Tinker [11]. Whereas Marionette uses scripting for debugging and
Tinker uses scripting for data exploration, Que employs this approach in whole
system development, as well as data exploration. In fact, Que offers a convenient
bridge to the server-side data manipulation operators offered by Tinker.

3 Design Goals

The Que functional interface is meant to be an extremely simple yet sufficiently
flexible for operator composition and simulation execution.

Simplicity: Que does not provide yet another programming approach to sensor
networks. Rather, Que directly provides the intermediate operator composition
language while other languages (e.g., C) provide operator implementations. It
has been argued that restricted coordination languages fit well for constructing
systems when operator boundaries are well-defined [20]. Indeed, Que users ben-
efit from the safety and simplicity of the language restrictions, yet retain the
ability to create new operators in native systems languages. This programming
paradigm is common in embedded systems [11, 14, 15, 22].

Leverage Existing Libraries: The lack of full node programmability means
that Que relies on others to provide the bulk of operator implementations.
By default, Que interfaces with three such operator libraries: MSRSense [22],
TinyOS [15] and Tinker [11] and additionally offers a general adapter to inte-
grate with other operator libraries.

Flexibility: Que exposes a Python-like shell for convenient interaction. We uti-
lize it as a flexible platform from which to perform operator composition, sensor
network to system integration, and data analysis.

There are some associated limitations with this model as well. Que is
best suited for operator-based programming. This implies establishment of
well-defined operator interfaces and libraries. Development of new device drivers
for example must still be done in native environments.
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1# Crea te t i n y o s o p e r a t o r graph
2 op man = t o s l i b . c r e a t e ( ’ t o s / sys tem/Main ’ )
3 op os c = t o s l i b . c r e a t e ( ’ apps / O s c i l l o s c o p e / Osc i l l o s copeM ’ )
4 op com = t o s l i b . c r e a t e ( ’ t o s / sys tem/UARTComm’ )
5 l i n k ( op man , ’ S tdCont ro l ’ , op osc , ’ S tdCont ro l ’ )
6# . . . (3 i n s t a n t i a t i o n s and 7 l i n k a g e s e l i d e d )
7 l i n k ( op osc , ’ DataMsg ’ , op com , ’ SendMsg [AM OSCOPEMSG] ’ )
8

9# Crea te m i c r o s e r v e r o p e r a t o r graph
10 op tp r = ms l i b . c r e a t e ( ’ ComplexTOSPacketRece iver ’ )
11 op tp r . setparam ( ’ messageType ’ , ’ ArrayOscopeMsg ’ )
12 op d2x = ms l i b . c r e a t e ( ’DataToXml ’ )
13 l i n k ( op tp r , ’ output ’ , op d2x , ’ i n p u t ’ )
14

15# Bind cro s s−p l a t f o rm po r t s
16 op amp = t o s l i b . createAMPort ( )
17 op po r = ms l i b . c r ea teTcpPor t ( )
18 l i n k ( op com , ’ SendMsg ’ , op amp , ’ 10 ’ )
19 l i n k ( op amp , ’ 10 ’ , op por , ’ 9002 ’ )
20 l i n k ( op por , ’ 6001 ’ , op tp r , ’ i n p u t ’ )
21

22# Execute emu l a to r
23 emusrc1 = emu la to r . DataCenterEmulator ( c o nn s t r )
24 net = op en l o c a l ( op amp , op por , emusrc=emusrc1 )
25 r e s u l t s = run ( net , time=60∗10 , appname=’ O s c i l l o s c o p e ’ , do s r cgen=True ,

docompi l e=True , d o s imu l a t e=True )

Listing 1.1. Instantiating and linking operators from operator libraries

4 Example User Session

Main OscM Sens

Timer

Uart

Leds

AM TCP Rec ToXml

TinyOS FooBar

Fig. 1. Operator graph demonstrated in ex-
ample session

Next we illustrate a user’s interaction
with Que via an example session. This
comprehensive example session cre-
ates, executes and postprocesses the
operator graph shown in Figure 1 that
spans both mote and microserver
platforms, while simultaneously em-
phasizing the minimal mechanism
presented to accomplish these objectives. The application corresponds to the
prototypical multi-sensor sampling application. Its function is to periodically
send all sensors’ measurements over the serial port to the microserver for XML
canonicalization.

The user is able to instantiate operators from platform-specific libraries from
the interactive shell. Listing 1.1 begins by showing the instantiation and linking of
several operators from a particular library, the TinyOS platform library (lines 2–4
and lines 5–7 respectively). The two important functions above are the operator
library create call and the link call. The create call instantiates new operators from
the platform-specific operator library toslib . The link call binds the output port of
one operator to the input port of another operator. There is also a function unlink

provided to unlink an object. For example, the Main operator and the OscilloscopeM

operators are linked together through the StdControl interface (line 5). Parameter-
ized interfaces, introduced in TinyOS, are also supported (e.g., line 7).
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Que provides integrated support for both TinyOS and MSRSense. MSRSense
is a .NET-based compenentized sensor network microserver. Lines 10–13 show
the manipulation of MSRSense operators in Que which by intention is the same
as manipulating the TinyOS operator library above. This uniform support for
cross-platform operator composition is one point where Que facilitates system
assembly.

Cross-platform operator composition such as MSRSense operator to TinyOS
operator composition is also easy to accomplish. Lines 16–20 show the binding
of ports between operators of different platforms. In particular, the special op-
erators opamp and oppor for Active Message and TCP ports respectively, serve as
conduits through which communication occurs between the two platforms. Que
identifies and appropriately handles this case, as discussed in Section 5.

In addition to easing system assembly, Que also provides a simulator with
great emphasis on ease of use (lines 23–25. The overall goal is to simulate the
operator graph consisting of heterogeneous elements. We next explain these three
important commands in detail.

First in line 23 of Listing 1.1, the user chooses an appropriate simulator for her
concerns. The emulator.DataCenterEmulator in particular draws ADC values from traces
collected in our new deployment which we describe subsequently in Section 6.
Section 5 describes more about possible emulators.

Second in line 24, the openlocal initializes the network topology with a min-
imum of user intervention. Our ease of use criterion means that the user can
either choose a predefined network or can query a preexisting network for its
parameters1. In addition, openlocal accepts chains of operators and binds these to
the nodes initialized in the network.

Third in line 25, the run simulates the given network, in conjunction with
the particular operator graph and sensor inputs. The heavy lifting underlying
this command will be explained in Section 5. The goal is to provide a very
minimal interface through which the details of the simulation are abstracted,
but the results are not. At the end of run, the results are brought from the
particular platform-specific simulations into the Que environment. The results
are naturally emitted by the endpoint(s) of the directed operator graph. For our
running example, the results are at the MSRSense operator op d2x.

The preceding three commands, and particularly the last one, present simple
interfaces for simplicity of use. Yet these allow full flexibility for exercising a
custom operator graph on a custom network topology with a custom simulation
data source.

By default, simulation results are returned as a sequence of arrays, one for ev-
ery message from the terminal operator in the graph. After some initial operator-
specific data marshalling, the user is able to apply Que’s script-based processing
to achieve very fast turnaround time for getting initial results. For example,
standard utility functions such as plotresults and plotcorrs generate scatter and to-
pographical plots respectively. ewma computes a tunable exponential weighted
moving average that is often useful in real-world data cleaning. In addition, the

1 The latter option is not yet implemented.
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wealth of native Python libraries is often a benefit for our scripting environment;
corrcoef is a built-in Python function that computes correlation coefficients. Addi-
tionally, Que can interface to the Tinker and Matlab-like matplotlib Python tools
in order to apply more standard data operations [11,16]. Section 7 demonstrates
the utility of this rapid data processing.

5 System Architecture

Our architecture, shown in Figure 2, consists of several major components: opera-
tor libraries, network libraries, and the simulator. We next discuss the mechanics
of each.

base environ
(python)

que environ

…
>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net)

opN

tos library

opM

ms library

msrsense
*.dll

ServiceLibraryToMoml

tinyos
*.nc

nc2moml*

(a) Unified operator composition from in-
terfaces of platform-specific operators.

base environ
(python)

que environ

…
>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net) Query network for stats

-- what types of nodes?
-- how many nodes?

Map operators to nodes

op2

op1?

(b) Creation of a network object based
upon a static network configuration or
querying of a live network. The operator
graph is assigned to platform-specific net-
work nodes.

compile

simulate

base environ
(python)

que environ

…

>>> link(op1, “portA”, op2, “portB”)
>>> net = openlocal(op2)
>>> results = run(net)

tinyos
*.nc

nc
config

msr
config

instantiate configs

tossimmsr
sense

results

emulated
inputs

(c) The operator graph is run. This
involves instantiating operators (possi-
bly involving compilation) and invoking
platform-specific simulation environments.
Results are retrieved back into the Que en-
vironment.

base environ
(python)

que environ

…
>>> results = run(net)
>>> stdanalysis(results)
>>> myanalysis(results)

standard analysis output

custom analysis output

(d) The results are fed into standard analy-
sis and visualization tools. In addition, the
user has very flexible options for scripting
her own post-processing.

Fig. 2. The Que Architecture
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5.1 Operator Libraries

Operator libraries permit the creation of operators for manipulation in Que.
There is an operator library per platform which subclasses oplib . Often these
libraries correspond directly to existing software libraries available on the cor-
responding platforms. For example, the TinyOS and MSRSense platforms both
contain a fair number of operators in their distributions. In order to expose these
platform-specific elements as operators in Que, we provide platform-specific in-
terface extractors as illustrated in Figure 2(a). For TinyOS and MSRSense, this
functionality is provided by the tools nc2moml and ServiceLibrary2Moml respectively.
After instantiation from a platform-specific library, all operators behave consis-
tently, resulting in a uniform user experience.

New platforms are straightforward to expose to Que. The only requirements
are to subclass oplib for the platform’s operator library and populate the library
with a platform-specific interface extractor tool.

The goal of a platform-specific interface extractor is to generate operator in-
terface descriptor files which are used by operator library subclasses. We have
adopted a variant of the Ptolemy2 standard MOML interface [19].

The key elements of the interface descriptor interface are the exposition of
named input and output ports and operator parameters. We have found that the
two platforms we tested offer fairly natural mappings to this interface. MSRSense
input and output ports map directly to MOML input and output ports; TinyOS
uses and provides interfaces correspond to input and output ports respectively. In
addition, to support NesC-style interface parameterization, input and output
ports are permitted to be parameterized, such that a single port proxies for a
number of instances of the port determined at compile time.2

5.2 Network Libraries

The network library provides the network abstraction for the user. Subclasses
of netlib define a set of heterogeneous nodes and the interconnecting network.
For example, a subclassed network object may correspond to a predefined static
set of nodes, a set chosen from an asset catalog, or a dynamic set established
from querying an online prototype network. Currently, we provide a subclass
that supports a predefined static set as a default.

Another key function of the network object is to pin operators to nodes. As
illustrated in Figure 2(b), this determines the mapping of what operators each
node runs. Typically this assignment proceeds by associating platform-specific
operators with the nodes on which they are capable of running. At present, ev-
ery operator is targeted for only one platform so the mapping is straightforward.
However, cross-platform operators are also possible (e.g., with operator virtual-
ization or platform-independent operator implementations). These then permit
variable operator placement informed by metrics such as computational speed,

2 Note that MOML parameters are distinct from parameterized ports. MOML param-
eters are more akin to NesC generics [12].
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energy and sensitivity to network loss. Furthermore, they open the possibility of
dynamic operator placement optimization.

5.3 Simulator

The heart of Que is the heterogeneous network simulator. The simulator is ini-
tiated with the run command. As shown in Figure 2(c), the simulator executes
the following sequence of operations:

Operator configuration: The simulator first generates platform-specific configu-
ration files from operator graph specifications given as input. For example, for
TinyOS, the simulator generates NesC component wirings. For MSRSense, the
simulator generates XML operator configuration files.

Binary compilation: The simulator then enacts platform-specific compilation for
the configured system. This possibly involves multiple compilations for multiple
platforms.

Native execution: The simulator next executes the compiled operator graphs in
low-level native platform-specific simulators. The TOSSIM simulator is used for
TinyOS binaries [21]. Since MSRSense microserver is already contained within
the .NET virtual machine, it is natively executed. Also, the simulator draws
data inputs from its user-specified data source for either preset, trace-driven, or
emulated sensor readings. This provides for a customizable degree of fidelity. We
highlight that similar emulator drivers can also be provided for the network.

Channel establishment: A myriad of communication channels are needed for in-
teroperability in a mixed environment of heterogeneous platforms. For instance,
appropriate connection bindings are needed between the MSRSense runtime and
Serial Forwarder, a standard TinyOS communication channel, in order to achieve
heterogeneous network simulation. As another example, data input from the
user-specified data source also needs to be connected with the simulator. The
Que simulator establishes all of these channels and extra plumbing on the user’s
behalf when the run command is invoked.

At the conclusion of this process, the operator graph is transformed into a set
of results over the specified network and data source. These results are populated
back into the Que environment as easy-to-manipulate arrays.

5.4 Analysis Tools

The standard analysis tools provide helpful first-level diagnostics that go to-
ward answering the general prototype to production questions. These tools are:
visualizing the resulting output for each node; calculating and visualizing the
correlation map for the nodes of interest; and performing basic data cleaning
of the resulting data. Examples of there application are shown in Figure 2(d).
These are exposed as additional user scripts callable from Que. Likewise, we are
able to readily adopt Tinker and Matlab-like matplotlib built-in tools [11, 16].
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6 DataCenter.NET Deployment

6.1 The Problem

We focused the use of Que in a particular deployment, DataCenter.NET. The goal
ofDataCenter.NET is to reduce energy costs in the computer data center, a rapidly
rising concern [1,3]. The typical data center is an intense environment consisting of
thousands to tens of thousands of physical compute and storage servers, arranged
in vertical racks. This density of servers creates two compounding problems. First,
the servers require an intense amount of power to run.Hundreds ofwatts per square
foot is not uncommon. Second, the density of machinery places an immense cool-
ing requirement placed on the data center facilities; the Heating, Ventilation and
Air Conditioning (HVAC) energy expenditure is a sizable fraction of the overall
facilities energy expenditure. Therefore, both are significant sources of energy con-
sumption, and hence present significant opportunities for energy reduction.

Unfortunately, data center managers have relatively scarce information on
which to base facilities HVAC decisions. Traditional thermostats are generally
deployed at a very coarse grain, with one thermostat canvassing several thou-
sand servers. This means that HVAC settings are naturally adjusted to local
phenomenon first, and only slowly adapt to global temperature changes. Since
there is often a hard requirement to run all machines under certain machine-
specific temperatures or else risk overheating and hardware failure, facilities
managers are loathe to experiment aggressively with new thermostat settings.
Unfortunately, zeroing in on the right temperature setting is exactly a key factor
in saving data center energy consumption.

Further compounding the problem, data center operators often have little vis-
ibility into future request loads that are being executed by data center clients.
In addition, each rack is configured to contain a mix of varied processing and
storage elements, all of which exhibit different workloads. This leads to unpre-
dictable fluctuations in the space of optimal HVAC settings over time.

6.2 Our Approach

To tackle this problem, we worked with data center managers to develop a wire-
less network for environment sensing. Wireless sensors are a suitable fit for this
scenario for several reasons. First, the wireless sensors can be deployed incremen-
tally and flexibly. This is important for gradual rollout and avoiding high up-
front costs (e.g., of traditional thermostats or of upmarket environment sensing-
enabled server racks). Second, wireless sensors can cover a very fine-grained
spatial setting, and this density can be flexibly chosen and reconfigured.

With detailed temperature heat maps, data facilities managers are able to
make more informed decisions affecting data center operations. First, managers
gain visibility into better ways to design facilities, such as where to optimally
place new racks and improve HVAC distribution systems. Second, managers
and the server’s users can control job scheduling better so as to not only take
into account server load, but also heat displacement effects. With a flexible job
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allocation mechanism such as virtualization, we might even apply optimization
algorithms to job placement.

Fig. 3. The DataCenter.NET lab prototype
server racks consist of 35 wireless sensors
placed on the front and rear of 15 servers
and on the ceiling. The servers compromise
3 racks, two of which are visible in the fore-
ground and background here.

Commissioned with these high level
goals, we proceeded to build a modest
prototype data center before embark-
ing on a live pilot deployment. Our lab
prototype, DataCenter.NET, contains
14 servers arranged in racks of 5, 5
and 4 servers each. They are located
in a 10 ft by 15 ft contained testing
environment. We fully instrumented
each server with a wireless tempera-
ture sensor mote near the front intake
fan, and a mote near the back exhaust
fan. Similarly, we deployed 6 ambient
temperature sensors along the ceiling
in a grid arrangement. Along with a
base station to transmit all the data,
this formed a 35 mote deployment.
Figure 3 shows the components of this
setup.

6.3 Using Que in DataCenter.NET

DataCenter.NET is a fitting scenario in which to test Que. In fact, DataCen-
ter.NET highlights the importance of each of the areas of concern when transi-
tioning from prototype to production which we previously outlined in Section 1:

Scale: Our initial prototype consists of 35 motes deployed on 3 racks. However,
we are facing a massive scale-up to tens of thousand racks and a proportional
increase in the number of wireless sensors.

Longevity: Energy requirements are not initially an issue. However, as we tran-
sition to production, battery replacement becomes an increasingly important
concern. In particular, the number of radio messages sent, an energy intensive
operation, becomes important to monitor.

Data: Our prototype is capable of delivering all of the data to the end users.
However, facilities managers are only interested in faithful temperature trends
as opposed to noisy and lossy raw readings.

Integration: Lastly, a wireless sensing system is but one part of many tools for
facility managers. This must integrate cleanly with their other preexisting tools
and infrastructure.

In the Section 7, we address how Que answers these questions we had about
our deployment. Section 7 also shows how it was often necessary to modify exist-
ing mote and microserver operator graphs because some amount of customization
was necessary. Hence, it was not feasible to use readily available off-the-shelf solu-
tions [9, 2].
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(a) Rack 1 (b) Rack 2 (c) Rack 3

Fig. 4. An entire rack, Rack 2, actuated simultaneously during the day. Notice the
strange decrease in temperature after the initial temperature increase, especially at
Rack 1. Later investigations revealed the involvement of the building thermostat AC,
underscoring the nontrivial dynamics of the seemingly simple test deployment.

Presently, we illustrate some example temperature traces in Figure 4. Three
subfigures 4(a), 4(b) and 4(c), each correspond to a rack of machines. For ex-
ample, Subfigure 4(a) corresponds to five machines Server A, B, C, D and E
whose physical arrangement corresponds to the vertical ordering of their plots.
For each machine, the red plot indicates the exhaust temperature measurements
and the blue plot indicates the intake temperature measurements across time.

In the experiment corresponding to Figure 4, all servers in Rack 2 are turned on
at 1:50 PM. As expected, this causes a universal rise in room temperature which
is seen at all racks. However, slightly after 1:55 PM, Racks 1 and 3 proceed to cool
down(!). Further investigation revealed that as the temperature rose, the building
thermostat sensed the change and actuated the building AC, causing a depression
in temperature. This effect was more heavily felt at Rack 1 then at Rack 3 because
the AC ventilation was much closer to Rack 1. This sort of complex interaction is
common, yet difficult to identify without a rich coverage of sensors.

7 Evaluation

We first built an application that we ran on the nodes in the lab data center
testbed. This application was previously described in Section 4 and shown in
Figure 1. The application simply collects temperature readings periodically, and
send these back to a base station where they are canonicalized into a standard
XML format. We ran this application for approximately eighteen days.

Next we evaluated Que with respect to DataCenter.NET in the four important
areas of concern for sensor networks that we have outlined: scale, longevity, data
and integration. For evaluation purposes, we compare each area to the original
base application of Figure 1; in an actual Que usage scenario, each iteration
would improve upon the former. While rarely providing the final word on any
single topic, we argue that Que delivers on its ability to retask and reevaluate
systems quickly. We cover the results of each area of concern in-depth below,
and illustrate how Que was applied.

7.1 Scale

Scaling up deployments introduces many new issues. Presently, we use Que to
address just one particular issue in this process: what density of spatial coverage
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is necessary in a production deployment? This has previously been formulated
as a theoretical optimization problem [18].

Our test environment, as described in Section 6, embeds motes in a wealth of
locations in the environment: six on the ceiling, and two per server, for an average
of ten motes per rack. While this finely captures transitions in temperature across
space, the number of sensors may be saturating the environment for the utility
of the information provided.

1 net = op en l o c a l ( opgraph , . . . )
2 r e s u l t s = run ( net , . . . )
3 z = myappconverter ( r e s u l t s )
4 cc = c o r r c o e f ( z )
5 p l o t c o r r s ( cc )

Listing 1.2. Que script to compute correlat-
ions between monitoring nodes in the server
room. Some optional parameters have been
omitted.

(a) Clustered sensors (b) Weakly correlated
sensors

Fig. 5. Histogram visualization of node corre-
lations

The task is then to determine
which sensors to retain if one were
to scale to many thousands of racks.
We focus on a primitive to mutual
information criteria used in [18],
the correlation coefficients between
every pair of sensors. We are less
concerned with network costs since
a single-hop base station suffices for
all communication in our scenario.

Listing 1.2 and Figure 5 show
the steps we performed in Que to
drill down on this question, and the
results generated respectively. The
correlations between pairs of nodes
are illustrated in a 3D histogram
where darker intensities correspond
to stronger correlations. For exam-
ple, in Figure 5(a), two clusters
emerge: one which contains the ma-
jority (eight nodes) and another
that contains the minority (two nodes). The larger cluster corresponds to the
front and back of one rack during a period of time when no server in the rack
was active. The smaller cluster corresponds to two nodes associated with another
rackwhich did have servers activatedduring the investigatedperiod. Hence, we can
start to suspect that if the server workload is highly localized to particular racks,
then clusters emerge around nodes of the same rack. In Figure 5(b), we tested a
different workload that varied across racks. Here, no clear clusters immediately
emerge. While more thorough investigation is warranted to determine the optimal
configuration for various server workloads, Que’s ease of data analysis permitted
us to quickly gain valuable ballpark intuition on the scaling issue.

7.2 Data

The data is the key benefit that draws clients to use sensor networks. One pre-
requisite of providing data of interest is extracting first level base data from
noisy sensor measurements. In particular, data cleaning and calibration is often
a mundane but necessary step.
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Fig. 6. Operator graph with MSRSense-
based EWMA

There are two approaches to data
cleaning in Que for the data collec-
tion operator graph of Figure 1. The
first option is the MSRSense operator,
ewma. An operator graph involving ewma

is shown in Figure 6. Alternatively,
Que provides simple ewma as part of
the standard set of data analysis tools, in case MSRSense is not part of the
operator graph. Its use is shown in Listing 1.3.

1 net = op en l o c a l ( opgraph , . . . )
2 r e s u l t s = run ( net , . . . )
3 z = myappconverter ( r e s u l t s )
4# ewma : c l e a n i n g
5 ewmaz = ewma( z )
6 p l o t r e s u l t s ( z , emaz )

Listing 1.3. EWMA applied as data
processing script

We ran the latter data cleaning pro-
cedure and converted initial results
shown in Figure 7(a) to those shown in
Figure 7(b). This offered a significant
improvement in the usable data val-
ues, as evidenced by the reduction in
variance. The procedure involved no
more than a handful of scripting calls
shown in Lemma 1.3. Que is effective
at quickly performing data processing
that, once tuned in the scripting environment, can then be applied in a straight-
forward fashion as a operator on the actual running platform.

7.3 Longevity

(a) Without EWMA (b) With EWMA

Fig. 7. A sample time series of data with
simple EWMA data cleaning applied

Next, we investigate ways to improve
the longevity and reliability of our sys-
tem. While many methods to increase
system longevity and reliability are
possible, we focused on one in particu-
lar: we attempted to increase network
reliability by performing application-
level data reduction and decreasing
cross-traffic. In addition, this reduces
the energy spent transmitting mes-
sages.

Main TrigM Sens

Timer

Uart

Leds

AM TCP Rec ToXml

TinyOS MSRSense

Fig. 8. Operator graph of threshold-
triggered reporting

Our approach here is a moving
threshold reporting scheme: we con-
vert collection from a periodic event
to one in which data is only reported
if the measurements are some thresh-
old beyond the previous report. Our
main changes to the previous opera-
tor graphs was the replacement of the
OscM operator by the TrigM operator. This is shown in Figure 8. The corresponding
Listing 1.4 is also shown.
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1 net = op en l o c a l ( opgraph , . . . )
2 r e s u l t s = run ( net , . . . )
3 z = myappconverter ( r e s u l t s )
4 p l o t r e s u l t s ( z )

Listing 1.4. Event trigger script

When we ran this series of op-
erators, Que immediately produced
odd graphs, shown in Figure 9. In
this case, Que allowed us to quickly
identify an operator that behaved
strangely and produced nonsensical
results before we deployed into the
field.

7.4 Integration

Lastly, we are concerned with the lack of support testing end to end systems
with traditional sensor network prototyping systems. In the case of DataCen-
ter.NET, this means that a system controller should function as part of the
running simulation in an entirely integrated system.

Fig. 9. A bug revealed in trigger program

We explored this area by devel-
oping and deploying an open-loop
controller alongside our sensor net-
work. This controller assigns jobs to
servers in a predetermined fashion,
without input from the environment,
much like existing controllers used in
commercial data centers. At present,
this controller is a separate appli-
cation. As a next step, it is natu-
ral to incorporate the controller as
a MSRSense microserver operator. In
this way, it may be manipulated just
like any other operator in Que.

We have already tested the response of a realistic job load on this controller.
Figure 10(a) is a deployed Internet service workload trace representative of one
day. We scaled it appropriately to fully load our servers at peak requests.

The temperature fluctuations displayed by our controller are shown in
Figure 10. We note several features of this dataset, in particular the high degree

(a) 24-hour work-
load

(b) Rack 1 (c) Rack 2 (d) Rack 3

Fig. 10. Open-loop controller measurement results over day and half period. Results
for part of this time are shown. Notice the large irregularities in local server and rack
temperatures as jobs are scheduled without knowledge of environmental conditions.
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of fluctuation of the exhaust measurements, and also the uneven degree to which
servers are actuated. On several occasions, the fluctuations are on the order of
tens of degrees in several minute’s time, suggesting that the variance is indeed
very great in a very short time span. These results strongly encourage inves-
tigation of more informed closed-loop controllers that incorporate temperature
feedback. Quick and frequent guidance such as this that Que provides has been
very useful for guiding our systems integration rapid prototyping efforts.

8 Conclusion

We have presented Que, an environment in which promising prototypes may be
grown into substantial production deployments with relative ease through a sim-
ple yet flexible operator wiring and general-purpose scripting. We have argued
that a primary ingredient in healthy application maturation is fast diagnoses of
areas of concern as they arrise throughout the prototype process. Four areas of
concern which we focused on were scale, longevity, data and integration. With
Que, users can quickly assess application peformance in these areas. By lever-
aging several Que features such as unified system assembley, iterative data pro-
cessing, and high-level interfacing, we have explored our new DataCenter.NET
deployment, and validated the utility of Que as a general rapid prototyping tool.
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Abstract. To support the increasing number of sensor devices with various 
characteristics and requirements, sensor network operating systems should pro-
vide an appropriate device driver model that can cover a wide range of device 
types. Unfortunately, current sensor network operating systems force the user to 
build complex drivers for even simple devices, provide restricted interfaces, or 
do not provide any mechanisms. We present a device driver model that is flexi-
ble enough to support both simple devices with simple drivers, and complex 
devices with portable and high-performance device drivers. Users can write a 
device driver for simple devices with only a few lines of code using the user-
mode device driver. Devices that need highly efficient code or portability can 
be supported by a single-layer or 2-layer kernel-mode device driver. Moreover, 
shared access and power management can easily be included in the device 
driver using the device manager. We also provide guidelines for choosing a 
proper device driver model with concrete examples of real-world devices and 
support our claims through the evaluation of the device driver model using the 
RETOS kernel. 

Keywords: Multithreaded sensor network operating systems, device driver 
abstraction. 

1   Introduction 

Recent research in wireless sensor networks (WSN) technology has made various 
WSN applications possible, due to advances in sensor hardware and improvements in 
operating systems for WSN. We have developed RETOS [1], a multi-threaded operat-
ing system for WSN. RETOS features a secure operation of the kernel from mal-
formed applications, support for multithreaded applications, and easy development of 
user applications. In order to support this last, RETOS provides various system calls, 
flexible modules, and an error detection service for user applications. However, it is 
still hard to guarantee flexibility in supporting various sensor devices through these 
techniques, and the operating system faces the non-trivial problem of developing 
hardware device drivers. Unlike in the PC environment, a standard interface for ex-
ternal hardware devices does not exist in WSN, and each sensor device has unique 
interfaces tailored to the purpose of the device. Therefore, supporting those sensor 



 Device Driver Abstraction for Multithreaded Sensor Network Operating Systems 355 

devices is complicated for sensor network operating systems. We have focused on 
two aspects of this problem. First, what is a device driver architecture that enables 
users to easily write their own device driver in support of operating systems? Second, 
what is a flexible device driver model that can support the various characteristics and 
needs of sensor devices? Our experience with previous research into RETOS has 
been highly useful in finding an answer to these problems, and the proposed device 
driver model exploits the dual-mode operation—user-mode and kernel-mode—of the 
RETOS kernel. 

The proposed device driver model is designed to be flexible enough to meet the 
various requirements of the sensor hardware and support the diverse characteristics of 
the devices. Our model has three sub-models from which users can choose to write 
the most suitable device driver for their own hardware devices. For simple sensor 
devices that do not require complex operation and high performance, the user-mode 
device driver model can be used for secure operation and for writing a device driver. 
The 2-layer kernel-mode device driver model provides better performance and 
portability, with the separation of hardware-dependent and -independent code. The 
single-layer kernel-mode device driver has the highest performance of the three and is 
intended for devices that require high efficiency in device driver code. In addition, our 
model provides operating system level service for shared access management among 
multithreads and power management through the device manager. 

This paper is structured as follows: In Section 2, we discuss previous research into 
device driver models and the characteristics of the RETOS kernel. The following 
section introduces the details of the proposed device driver model with its three sub-
models, the device manager, and how to choose the proper device abstraction. In 
Section 4, we discuss concrete examples of building a device driver using our archi-
tecture. We evaluate our device driver model using RETOS in Section 5. Finally, we 
conclude the paper in Section 6. 

2   Related Work 

We have analyzed the previously proposed device driver models for several general-
purpose, embedded, and WSN operating systems. Linux [2], NetBSD [3] and Win-
dows Mobile [4] are general-purpose operating systems that have mature device 
driver architectures supporting a wide range of devices. However, their architectures 
are heavy and generalized for the requirements of WSN, due to the nature of their 
general-purpose operating systems. TinyOS [5] is a widely used WSN operating sys-
tem that has a three-tiered device driver architecture [6] for greater portability and 
flexibility. However, it is hard to build a layered device driver for simple sensors, and 
our device driver model addresses this issue. SOS [7] and Contiki [8] do not provide 
any device driver model that enables users to write their own device driver. The de-
vice driver model for MOS [9] follows the POSIX model with its interfaces con-
strained to only four system calls: dev_read(), dev_write(), dev_ioctl(), and 
dev_mode(). This restriction prevents flexibility in the device driver for WSN hard-
ware devices, which have various characteristics and requirements. 
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The proposed device driver model exploits the dual-mode operation of the RETOS 
kernel [1]. Dual-mode operation means that the stack for user threads and the kernel 
are separated so the secure operation of the kernel is guaranteed. Moreover, RETOS is 
a multi-threaded operating system, so several threads can request access to a device 
simultaneously, which can possibly lead to a race condition. To address this problem, 
a device driver model for such operating systems should handle shared access man-
agement. TinyOS 2.x [5] includes a dynamic resource management mechanism [10] 
that arbitrates shared accesses among multiple clients. Because TinyOS is a state-
machine-based, event-driven operating system, unlike RETOS, the resource manage-
ment scheme for TinyOS 2.x is not suitable for multithreaded operating systems. 
However, our intention for handling the possible race condition and providing proper 
power management is similar to their work. 

3   Flexible Device Driver Model for Dual-Mode Kernel 

In our device driver model (Figure 1), there are three different methods for building a 
driver for a hardware device. These are the user-mode driver, the 2-layer kernel-mode 
driver, and the single-layer kernel-mode driver. Each method has unique characteris-
tics in terms of performance, portability, and ease of use. The user-mode device driver 
is simple, easy to build, and provides great portability at the expense of performance. 
The 2-layer kernel-mode driver has better performance than the user-mode device 
driver and good portability. The single-layer kernel-mode driver has the best perform-
ance but worse portability than the 2-layer kernel-mode driver. Therefore, device 
driver programmers can select the method that is best for their device. On the other 
hand, the device manager handles arbitration of shared accesses to specific hardware 
and performs proper power management based on the information regarding current 
peripherals in use. In order to achieve shared access management and power man-
agement, every device driver should obtain and release the right to use a device 
through the device manager before it actually uses the device. 

User Application
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Direct Hardware  
System Calls

User Mode 
Device Driver

Device Manager (Shared Access / Power Management)

Hardware Dependent Layer

Hardware Independent Layer

Single Layer Device Driver

Kernel Mode Device Driver
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HW/SW 
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Fig. 1. The proposed device driver model 
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3.1   User-Mode Device Driver 

The user-mode device driver provides the most stable and easy way to access a user’s 
new hardware. It focuses on the fact that most sensor and actuator devices need a very 
simple interface with the microcontroller of a sensor node. For example, a device 
driver for a light sensor consists of simple access to the A/D converter (ADC) of the 
microcontroller, and possibly a little more code to convert the raw ADC readings into 
physical values. A device driver for the AC power control board controls the general 
purpose digital I/O (GPIO) of the microcontroller. Controlling the GPIO requires just 
one line of firmware code. Therefore, the main purpose of the user-mode device 
driver is to enable a device driver for simple hardware to be easy to design and stable 
by providing direct hardware system calls and abstraction of operating system level 
device management. 

The user-mode device driver executes in user mode. The kernel therefore provides 
a set of primitive system calls, so the user-mode device driver can access the hard-
ware. The primitive system calls are direct hardware system calls, which are a kernel-
mode service, as shown in Figure 1. A device driver programmer can easily write a 
device driver for new hardware using the direct hardware system calls. 

Because the user-mode device driver resides in user mode, it has several advan-
tages over traditional kernel-mode drivers. First, the kernel is safe from a malfunc-
tioning user-mode driver because the execution flows of the user and the kernel are 
separated. Second, a device driver programmer does not need to handle shared access 
and power management for the device. This occurs in kernel mode, and the direct 
hardware system calls already handle these issues. Moreover, writing code for a user-
mode device driver is very simple and easy. Users only need to know how the device 
is connected to the microcontroller and write code to make the proper direct hardware 
system calls. 

However, user-mode device drivers are not suitable for devices that require a com-
plex interface to the microcontroller. Because the user-mode driver’s access to the 
hardware depends on the direct hardware system calls, it cannot control the hardware 
in depth. Moreover, the user-mode driver has performance overhead. Because it exe-
cutes in user mode, every time it requests the direct hardware system calls, ker-
nel/user-mode switching occurs and causes system overhead. 

Direct Hardware System Calls. The user-mode device drivers use direct hardware 
system calls to communicate with hardware devices. This is a set of system calls that 
provide simple access to the peripherals, such as ADC readings or controlling GPIO. 
Using these system calls, the user-mode device driver can read the ADC readings or 
control GPIO and provide device access functions to user applications. 

The direct hardware system calls provide all possible interfaces that can be used by 
the user-mode driver to support a large range of devices. For example, the common 
microcontroller for the sensor node, MSP430F1611 [12], has several I/O interfaces, 
such as an analog to digital converter, a digital to analog converter, a general-purpose 
digital I/O, and a serial communication interface (USART), which can function as an 
asynchronous UART or synchronous SPI or I2C interface. New devices can use any of 
these interfaces, so the direct hardware system calls expose these functionalities to the 
user-mode device driver. 
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In addition, the direct hardware system calls handle the operating system-level 
management of shared access and power. Because shared access and power manage-
ment is tightly coupled with kernel behavior, the user-mode driver cannot communi-
cate with the device management directly. Moreover, the responsibility of managing 
shared access and power is too great a burden for the simple user-mode driver; the 
user-mode driver is not intended for this. Therefore, to write the user-mode device 
driver easily and simply, the direct hardware system calls handle all the operating 
system services and let the user-mode device driver be concerned only with accessing 
its device. 

3.2   Kernel-Mode Device Driver 

Although the user-mode device driver has several advantages, many devices may still 
need the kernel-mode device driver due to performance issues or the complexity of 
the devices. For example, device drivers for radio chips or flash memory that supports 
a file system are complex and need in-depth hardware control and proper interrupt 
handling. The user-mode device driver has several drawbacks, such as kernel/user-
mode switching overhead and limited ability with regard to controlling hardware. 
Therefore, the kernel-mode driver is for devices that cannot be handled by the user-
mode device driver. 

There are two different ways to build the kernel-mode driver to support a wide 
range of devices, as shown in Figure 1. The 2-layer kernel-mode driver consists of a 
hardware-dependent layer and a hardware-independent layer to increase portability, 
whereas the single-layer kernel-mode driver has no separation of hardware-dependent 
code in order to maximize its performance. Both methods have unique goals; hence, a 
device driver programmer can choose the model that is suitable for each device. 

The device driver function table is necessary for communication between the user 
application and the kernel-mode driver because the kernel-mode device driver is writ-
ten as a kernel module so it can be dynamically loaded and unloaded in the kernel. 
Moreover, the kernel-mode drivers should cooperate with the device manager to man-
age shared access and power. The behavior of the device manager is discussed in 
detail in Section 3.3. 

2-Layer Kernel-Mode Device Driver. The 2-layer kernel-mode device driver separates 
the device driver into a hardware-dependent layer (HDL) and a hardware-independent 
layer (HIL) in order to increase portability. The HDL defines a set of primitive 
operations that are hardware dependent, and the HIL is implemented in a hardware-
independent manner, using the interfaces provided by the HDL. Therefore, a device 
driver programmer needs to change the HDL part only when a new device driver for 
different hardware with the same functionality is needed. 

The HDL communicates directly with the hardware and creates some level of ab-
straction to make the HIL part independent of the hardware. For example, the HDL 
part may include direct access to the memory-mapped I/Os or hardware-specific inter-
rupt handlers. The HDL part then implements the details regarding small, meaningful 
units of hardware functions and provides them to the HIL part. The HIL part uses 
interfaces provided by the HDL part, which is an abstraction of the hardware, and 
implements the actual function of the device driver in a hardware-independent 
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manner. For example, to make a timer device driver that supports virtual timers using 
one hardware timer, the HIL part implements the virtual timers using the abstraction 
of the hardware timer provided by the HDL part. 

Single-Layer Kernel-Mode Device Driver. Although most devices can be supported 
by the 2-layer kernel-mode device driver, some devices are highly timing sensitive 
and require the best possible performance. For example, ultrasound device drivers are 
timing sensitive, so even 1 ms of error might be a big problem. Flash memory device 
drivers may need to be implemented in a manner that can reduce their latency as 
much as possible. To support this type of device, the single-layer device driver model 
is introduced. 

The single-layer kernel-mode driver has no API separating hardware-dependent and -
independent code, so it has less code and is more optimized and generally faster than the 
2-layer device driver. The single-layer device driver can access the hardware directly at 
any time to reduce the delay caused by a series of function calls. Moreover, the single-
layer driver usually has a smaller code and memory footprint than the identical 2-layer 
device driver, so it is useful for a resource-constrained sensor node platform. 

However, the single-layer kernel driver loses its portability because hardware-
independent code is mixed with hardware-dependent code. When performance or 
timing is more important than portability, however, a device driver programmer might 
want to write code with better performance. In this case, our device driver model can 
support the programmer. 

3.3   Device Manager 

In sensor network operating systems, several simultaneous requests to a device often 
occur at the same time. For example, one thread is trying to read a certain ADC port 
and waiting for the ADC to finish reading, and another thread can request access to 
the same ADC port. Without proper access management, one of the threads will not 
be able to obtain the result, or both threads might fail to read. Moreover, an even more 
complicated situation can occur. The widely used sensor node, Tmote Sky, has its 
radio chipset and external flash memory on the same port [11]. Simultaneous access 
to the shared port is impossible, and it needs proper shared access management. This 
kind of hardware implementation detail makes the device manager platform-specific. 

Management cannot be handled in each application or each device driver because 
global information on the device access status is required. Therefore, our model has a 
device manager (Figure 2). By having a separate device management service, neither 
the user application nor each device driver needs to handle these issues directly. In-
stead, each device driver should cooperate with the device manager while it directly 
accesses its hardware, and the user applications are completely blind to those man-
agement services. 

Moreover, the device manager can perform proper power management because it 
has global information on the device access status. The device manager can identify 
which peripherals are currently used. Therefore, the device manager can turn periph-
erals on or off properly and change the microcontroller’s low power mode. Details 
regarding each device management scheme are discussed in the following sections. 
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Fig. 2. The device manager 

Shared Access Management. Every component of the kernel that accesses hardware 
devices—the direct hardware system calls and the kernel-mode device driver—
cooperate with the device manager. When they need to use a device, they obtain the 
right to access the device from the device manager. When they have finished using 
the device, they release the right to use the device. This concept can be considered a 
binary semaphore. Each device in a sensor node has its own binary semaphore and the 
shared accesses to the device are managed by requesting and releasing the semaphore. 

Several devices connected to the microcontroller on the same port can be managed 
by the device manager. These devices are accessed when another device on the port is 
not in use so only one device at a time is used by the device drivers. Because the de-
vice manager is aware of the fact that the ports are shared by several devices, each 
request to one of those devices can be properly granted. This is considered sharing 
one binary semaphore among several devices on the shared ports. 

The following function prototypes comprise the interface for shared access man-
agement provided by the device manager. request_device() blocks the device driver 
and waits until the device is available; request_device_immediate() does not block 
and immediately returns with access to the device or error code when the device is not 
available. request_device_timeout() blocks the device driver and waits only for the 
specified timeout period. release_device() is used when the device driver finishes 
accessing the device. 

devreq_t request_device(devid_t device); 
devreq_t request_device_immediate(devid_t device); 
devreq_t request_device_timeout(devid_t device,  
                                       time_t timeout); 
result_t release_device(devreq_t request_id); 

Power Management. Because the device manager is aware of which devices are in 
use through the shared access management, it can determine the best possible low 
power state of the microcontroller. Moreover, in order to support proper power 
management, each device driver should provide device-specific power control 
functions that can be used by the device manager. 
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The microcontrollers used for the sensor node usually have a set of low power 
states with different peripherals available. For example, MSP430F1611 [12], used in 
Tmote Sky [11], has 5 different power modes with different clock sources available in 
each mode. Therefore, switching to the best possible power mode is necessary to 
reduce energy consumption, which is very important in an energy-constrained sensor 
node environment. 

In addition to the power management of the microcontroller, device power man-
agement is important, as external devices usually consume more energy than the mi-
crocontroller. Generally, the devices for small sensor nodes do not have a set of low 
power modes as in the microcontroller, so the power management scheme is rather 
simple: just turn it off when it is not in use. However, determining when to turn the 
devices off or on is not trivial because the operating system should know which de-
vices are currently being used. The device manager in our model tracks the set of 
currently active and inactive devices because every device driver reports its device 
use through the shared access management interface. Therefore, the device manager 
performs power management through the power control interface provided by each 
device driver. 

Below is the data structure used by the device manager for proper power manage-
ment. Each device driver initializes this data structure when the operating system 
boots. The dev_access_ctrl field shows the status of the device usage. The power_on 
and power_off fields are initialized by each device driver to provide power control 
functions for the device manager. 

typedef struct  
{ 
    devid_t device_id; 
    devctrl_t dev_access_ctrl; 
    result_t (*power_on) (void); 
    result_t (*power_off) (void); 
} device_t; 

3.4   Choosing Proper Device Abstraction 

The proposed device driver model has three different sub-models for writing device 
drivers—the user-mode, the 2-layer kernel-mode, and the single-layer kernel-mode 
device driver. Each sub-model has unique characteristics to make our device driver 
model as flexible as possible. Therefore, choosing a proper sub-model becomes im-
portant for exploiting the flexibility of our device driver model. In this section, we 
provide several metrics that can be used to choose a suitable sub-model. 

Complexity. To decide between the user-mode and kernel-mode device drivers, the 
complexity of the device driver should be considered. The user-mode device driver 
has limited ability to access the hardware because it uses simple direct hardware sys-
tem calls. On the other hand, the kernel-mode device drivers can access the hardware 
directly and obtain full control. Therefore, if the device driver is complex and requires 
full hardware control, the kernel-mode device driver should be used. If not, the simple 
and more stable user-mode device driver is sufficient. 
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Performance. The three device driver sub-models have different performance charac-
teristics. The user-mode device driver has the worst performance among the three, 
due to the kernel/user-mode switching overhead and indirect access to the device. The 
single-layer device driver has the best performance among the three because the de-
vice driver can be fully optimized to reduce any delay in the code. The performance 
of the 2-layer device driver is worse than the single-layer but better than the user-
mode device driver because no frequent kernel/user-mode switching occurs. There-
fore, a device driver programmer should carefully consider the performance needs of 
the device and choose the device driver model accordingly. 

Portability. If the device driver needs to be frequently ported to different hardware, a 
device driver programmer should consider using the 2-layer device driver model. The 
single-layer device driver mixes hardware-dependent and -independent code to opti-
mize the code; it is not easy to port it to different hardware. On the other hand, only 
the HDL part needs to be changed if the 2-layer device driver model is used. 

Size. In a resource-constrained sensor node platform, the memory and code size of the 
device driver is an important issue. Usually, the user-mode device driver takes up 
the smallest amount of memory and code because most of the hardware control and 
device management is already implemented in the direct hardware system calls and the 
user-mode device driver simply calls them. The 2-layer device driver model uses 
the most memory and code of the three, due to its separation of HIL and HDL parts. The 
single-layer is usually smaller than the 2-layer but larger than the user-mode device 
driver because it includes code for direct hardware access and management. 

4   Application Examples 

In this section, we provide examples and guidelines for building device drivers for 
various types of devices for a typical WSN platform. By using real-world examples, 
we demonstrate that our device driver model is flexible enough to satisfy the various 
capabilities of sensor devices and support a wide range of hardware platforms. 

4.1   Analog to Digital Converter and Simple Sensors 

The analog to digital converter (ADC) is a common device in a typical sensor node 
platform. From the viewpoint of a user application, its behavior is quite simple. User 
applications just need to obtain a digitally converted analog value and convert it into a 
physical value. This process is completed by requesting a direct hardware system call 
that accesses the ADC of a microcontroller. Therefore, the user-mode device driver 
will be sufficient for this type of device. 

In addition to obtaining the ADC conversion, the user-mode device driver may 
want to configure the various properties of the ADC, such as reference voltage and 
different conversion modes. For example, the MSP430F1611 [12] microcontroller 
provides such capabilities on its ADC12 module. Therefore, the direct hardware sys-
tem calls also provide such an interface with the user-mode device driver. 

Below is an example interface for the direct hardware system calls that can be used 
to implement the user-mode device driver with simple sensors based on the ADC. 
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adc_read() returns a conversion value on the specified ADC channel. adc_read_seq() 
uses a sequence conversion mode that converts the series of the ADC channels. 
adc_set_refv() changes the reference voltage of the specified ADC channel. 

uint16_t adc_read(uint8_t channel); 
result_t adc_read_seq(uint8_t *channels, uint8_t num, 
                           uint16_t *readings); 
result_t adc_set_refv(uint8_t channel,  
                           adc_refv_t refv); 

4.2   General Purpose Digital I/O with Simple Actuators 

Typical microcontrollers for a sensor node platform have many pins that generate a 
digital signal. They are called general purpose digital I/O (GPIO). For example, 
MSP430F1611 [12] has 6 ports with 8 pins on each port, and ATmega128 has 5 ports 
with 8 pins and 1 port with 5 pins, which can function as GPIO. Usually, controlling 
GPIO is quite simple because it just requires setting or clearing a pin signal. There-
fore, the device driver for hardware based on GPIO can be built using the user-mode 
device driver model. 

A common example device of using GPIO is an AC power control board. It con-
sists of several relays that can connect or disconnect the AC power line, and each 
relay is controlled by digital signals from the microcontroller’s GPIO. Therefore, a 
user application can control various AC-powered home appliances by controlling 
GPIO. The device driver for this AC power control board can be implemented with 
the user-mode device driver model using the direct hardware system calls related to 
the GPIO functions. 

An example interface for the direct hardware system calls related to the GPIO is 
shown below. gpio_mode() changes the pin behavior, input or output. gpio_set() 
makes a high signal and gpio_clr() makes a low signal on the specified pin. 
gpio_read() reads the signal on the specified pin. 

result_t gpio_mode(uint8_t port, uint8_t pin, 
                       gpio_mode_t mode); 
result_t gpio_set(uint8_t port, uint8_t pin); 
result_t gpio_clr(uint8_t port, uint8_t pin); 
uint8_t gpio_read(uint8_t port, uint8_t pin); 

4.3   Serial Communications 

Serial communication is a common method for a microcontroller to communicate 
with various external devices. There are many types of serial communication inter-
faces, such as UART, SPI, and I2C. These are standard interfaces defining how the 
microcontroller and the external device should be connected and how they can com-
municate with each other. Then the actual communication protocol is usually to send 
commands to and receive data from the device. However, all devices that use a serial 
interface have their own protocols. Because there is no general communication proto-
col for these serial interfaces, it is hard to generalize them into the direct hardware 
system calls. In addition, a device driver for this type of device should communicate 
with the device frequently to obtain data or configure the device. If the driver is 
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implemented with the user-mode driver model, an excessive amount of kernel/user-
mode switching will occur, which is a lot of overhead. Therefore, the kernel-mode 
device driver is suitable for serial communication devices. Moreover, a simple tem-
perature/humidity sensor does not require high performance and optimization of the 
device driver code, so using a 2-layer model is acceptable to increase portability. 

Let’s look at an example. SHT11 [13] is a temperature/humidity sensor from Sen-
sirion Inc., which communicates with a microcontroller via a 2-line serial interface. 
The actual communication protocol includes sending a command, receiving a meas-
urement, resetting the sensor, and reading and writing the status register. Each com-
munication is initiated by sending a pre-defined code to the serial interface. We can 
define the hardware independent layer (HIL), which is exposed to user applications, 
and the hardware dependent layer (HDL), which contains hardware-specific code, as 
shown below. The HDL contains code for generating a proper clock signal for serial 
communication and sending and receiving a pre-defined code. In addition, converting 
the sensor readings into a physical value is completely dependent on the sensor de-
vice, so it is included in the HDL. The HIL includes functions for a user to obtain 
physical values. The HIL part is implemented using the provided HDL functions in a 
hardware-independent manner. If a new temperature/humidity sensor is introduced, 
only the HDL part needs to be changed. 

//HIL interface 
uint16_t get_temp(); 
uint16_t get_humid(); 
 
//HDL interface 
uint16_t convert_physical_temp(uint16_t reading); 
uint16_t convert_physical_humid(uint16_t reading); 
uint16_t send_temp_read_cmd(); 
uint16_t send_humid_read_cmd(); 
result_t reset_sensor(); 

4.4   External Flash Memory 

It is common for a sensor node platform to have an external flash memory for logging 
sensor readings. To reduce energy consumption, the read/write operation on the ex-
ternal flash memory usually occurs in chunks of bytes. The read/write latency is also 
significant, and the communication of large chunks of bytes on the communication 
interface between a microcontroller and an external flash is timing sensitive. More-
over, longer operation time on those energy-consuming devices means a shorter life-
time for a sensor node platform. Therefore, the device driver code must be optimized 
for high performance and efficiency. Because the energy consumption of the external 
flash device is not negligible, power-down mechanisms are usually provided by the 
hardware. 

The above characteristics of the external flash memory require that the device 
driver be highly optimized. Therefore, the single-layer kernel-mode driver model is 
ideal for such devices. Because the single-layer driver model has no separation of 
hardware-independent and -dependent code, it can be fully optimized to reduce any 
possible latency caused by following a layered architecture. Compared to the user-
mode driver model, it has less kernel/user-mode switching overhead. In addition, 
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having hardware-specific power control functions enables the device manager to 
properly manage the energy consumption. 

For example, M25P80 [14], from STMicroelectronics Inc., is a 1Mb external flash 
memory with a high-speed SPI serial interface. The SPI interface supports a clock rate 
of up to 75MHz so it can operate at very high speed. The read operation occurs in 
chunks of 1 to infinite bytes with a single instruction, and the write operation can occur 
in chunks of 1 to 256 bytes. To support the high-speed SPI serial communication and 
reading and writing chunks of bytes, a fully optimized device driver with high perform-
ance is necessary. Moreover, the M25P80 supports a “deep power-down” mode, which 
typically consumes 1μA current. Therefore, a proper power control interface should be 
provided by the device driver so the device manager can control the power of the flash 
memory. An example of the interface to user applications provided by the M25P80 
single-layer kernel-mode device driver is as follows: 

result_t power_on(); 
result_t power_off(); 
result_t write_enable(); 
result_t write_disable(); 
result_t read_bytes(uint8_t *buf, uint8_t size, 
                        uint32_t addr); 
result_t read_bytes_fast(uint8_t *buf, uint8_t size,  
                              uint32_t addr); 
result_t write_bytes(uint8_t *buf, uint8_t size,  
                          uint32_t addr); 
result_t sector_erase(uint32_t addr); 
result_t bulk_erase(); 

5   Evaluation 

In this section, we evaluate the proposed device driver model using the RETOS oper-
ating system. We focus on two important points. First, we show how the user-mode 
device driver effectively reduces the amount of code to be written. Second, we com-
pare the performance and portability of a single- and 2-layer device driver for the 
same device. The device drivers are implemented on a Tmote Sky [11] platform with 
an MSP430F1611 [12] microcontroller. A user-mode device driver for an acoustic 
sensor that uses ADC is implemented, and the amount of code is compared to the 
ADC device driver of the current RETOS kernel. In addition, two UART device driv-
ers are implemented using the single- and 2-layer device driver models for compari-
son. Table 1 summarizes the devices and the applied model used for the evaluation of 
the proposed device driver model. 

Table 1. The devices chosen for evaluation 

Applied model Device 
User-mode device driver Acoustic sensor 
Single- /2-layer kernel-mode device driver UART 
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The comparison between the driver in the current RETOS kernel and the new de-
vice driver model is as follows. Table 2 shows the code and RAM size comparison for 
the current RETOS kernel and the new kernel with the proposed device driver model. 
The measurements include the actual device driver codes mentioned in Table 1. On 
the MSP430 platform, the new device driver model introduces about 17% of the code 
size and 50% of the RAM size overhead to the current RETOS kernel. The overheads 
seem to be relatively big in terms of ratio but the absolute sizes are still small enough 
for typical sensor node platforms. 

Table 2. Code and RAM size comparison 

 Current RETOS New model Ratio 
Code size 20.7 kB 24.3 kB 1.17 
RAM size 1.13 kB 1.7 kB 1.50 

The following code listing shows the amount of code for the acoustic sensor device 
driver. We see that only a few lines of code are needed for building a device driver for 
an acoustic sensor when the user-mode device driver is used. Without the user-mode 
device driver model, the programmer should know how to control complicated hard-
ware registers to obtain a single ADC reading. However, the direct hardware system 
call makes writing a user-mode device driver simple and easy. 

The current RETOS device driver for ADC 

uint8_t adc_get(uint8_t owner, uint8_t channel) { 
  if (adc_busy == TRUE) return FAIL; 
  adc_busy = TRUE; 
  adc_owner = owner; 
  ADC12CTL0 = ADC12ON | REFON | REF2_5V | SHT0_6; 
  ADC12MCTL0 = channel + SREF_1; 
  ADC12IE = 0x01;  
  ADC12CTL1 = SHP | ADC12SSEL_3;  
  ADC12CTL0 |= ENC | ADC12SC; // start the conversion 
  return SUCCESS; 
} 
 
interrupt(14) __attribute((naked)) adc_intr() { 
  ... 
  uint16_t data = ADC12MEM0; 
  ... 
} 

The user-mode device driver for ADC 

#define MIC_ADC_CHANNEL    2 
 
uint16_t read_mic() { 
  //direct hardware system call 
  return adc_read(MIC_ADC_CHANNEL);  
} 
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Fig. 3. Comparison of the execution times for UART device drivers 

Figure 3 compares the execution time of a single- and 2-layer UART device driver. 
The total execution time for calling the serial_send() system call 1,000 times was meas-
ured. The single layer device driver is approximately 1.75 ms faster than the 2-layer 
device driver. The reason the single-layer device driver is faster is that it does not define 
an API isolating HIL and HDL, so it has less code and fewer function calls. Therefore, 
the single-layer device driver model is suitable for devices that need the best perform-
ance possible in a given hardware. On the other hand, the 2-layer device driver model 
has better portability because only the hardware-independent layer (HIL) needs to be 
changed when, for example, a different UART protocol is needed. A more interesting 
fact in Figure 3 is that the standard deviation of execution time is quite different be-
tween the single- and 2-layer drivers. Clearly, the single-layer device driver has a 
smaller standard deviation than the 2-layer device driver. It seems that the difference is 
caused by the fact that the 2-layer device driver uses an API defined by the HDL, so it 
has more function calls and bottom halves. This means that the 2-layer device driver 
allows more opportunities for interrupt handlings and bottom halves of other kernel 
behavior to be invoked because it has shorter critical sections than the single-layer. This 
indicates that the single-layer device driver should be considered when more stable 
performance of the device driver is required.  

6   Conclusion 

The main contribution of this paper is to present a flexible device driver model that 
can support a wide range of sensor devices that have various characteristics and re-
quirements. Unlike current sensor network device driver models, our solution pro-
vides three different approaches from which users can choose the most suitable driver 
model for their own sensor hardware. Moreover, handling shared access and power 
management has been made easy with the device manager. The analysis in Section 4 
and the evaluation results on a widely used sensor network platform support our de-
vice driver model. The user-mode device driver enables a safe and convenient build-
ing process for device drivers. The 2-layer kernel-mode device driver provides great 
portability in device driver code. Lastly, the single-layer kernel-mode device driver 
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allows the best optimization of device driver code for sensor devices that require high 
performance. 
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Abstract. Component-based architectures are the traditional approach
to reconcile application specific optimization with reusable abstractions
in sensor networks. However, they frequently overwhelm the application
designer with the range of choices in component selection and composi-
tion. We introduce a component framework that reduces this complex-
ity. It provides a well-defined content-based publish/subscribe service,
but allows the application designer to adapt the service by making or-
thogonal choices about: (1) the communication protocol components for
subscription and notification delivery, (2) the supported data attributes
and (3) a set of service extension components. We present TinyCOPS,
our implementation of the framework in TinyOS 2.0, and demonstrate its
advantages by showing experimental results for different application con-
figurations on two sensor node platforms in a large-scale indoor testbed.

1 Introduction

The publish/subscribe interaction scheme is a high-level service abstraction that
is well adjusted to the needs of large-scale distributed applications [1]. The scal-
ability and robustness of the scheme stem from the indirect and asynchronous
type of interaction and make it particularly suitable for creating data-centric sen-
sor network applications. In the content-based publish/subscribe variant, sub-
scribers express their interest in events by injecting subscriptions into the system
that contain constraints on the properties of the events. Publishers that generate
events post notification messages to the system, and when a notification matches
the constraints of a registered subscription, it is delivered to the corresponding
subscriber (Fig. 1).

Any design for sensor networks is subject to tight constraints in terms of
energy, processing power and memory. These constraints frequently drive de-
velopers to pursue vertically integrated solutions that are highly-optimized for
specific scenarios but lack flexibility [2,3]. Breaking up the design into fine, self-
contained and richly interacting components, has proven to be a viable approach
for resolving the tension between the need for reusability and the efficiency costs
of abstractions [4]. The flexibility provided by the component modularization,
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Fig. 1. A content-based publish/subscribe system

however, also carries the risk of overwhelming the application developer with the
range of options for component selection and composition.

Component frameworks can reduce this complexity by imposing structure on
top of the component model in the form of composability restrictions and by of-
fering well-defined, service-specific interfaces to the rest of the system. Designing
a component framework is a fine balancing act of fixing the service interface at
a level of abstraction that will maximize the gains in productivity, while keep-
ing those parts of the architecture with significant impact on the performance
flexible enough to be able to benefit from domain-specific optimization [5].

In this paper we present the design, implementation and evaluation of a
flexible component framework that provides a well-defined content-based pub-
lish/subscribe service, but allows the application designer to adapt the service by
making orthogonal choices about the communication components for subscrip-
tion and notification delivery, the supported data attributes, and a set of service
extension components. The framework uses an attribute-based naming scheme
augmented with metadata containing soft requirements for the publishers and
run-time control information for the service extension components. It supports
different addressing schemes and interaction patterns.

In the next section, Sect. 2, we present the general architecture and design
rationale behind our concept. Section 3 contains a more in-depth discussion of
the implications from the decoupling between the publish/subscribe core and the
communication protocols. We evaluate the generality and flexibility of our design
in Sect. 4, using experimental results from large-scale deployments of TinyCOPS,
the implementation of our framework in TinyOS 2.0, on two sensor node plat-
forms, under scenarios involving different types of applications, network proto-
cols and extension components. In Sect. 5 we discuss the related work and Sect. 6
summarizes and concludes the paper.

2 Architecture

In this section we present the main features of the architecture in a top-down fash-
ion, covering the naming scheme and API as well as the internal decomposition
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and extension facilities of the framework. The discussion on the implications
of the decoupling between the publish/subscribe core and the communication
protocols is deferred to Sect. 3.

2.1 Naming Scheme and API

To represent subscription and notification content, our framework adopts the
attribute-based naming scheme presented in [6]: a subscriber expresses its inter-
est in data through a conjunction of constraints over attribute values. Disjunc-
tive constraints need to be expressed as separate subscriptions. A constraint is
a (attribute, operator, value) tuple and represents a filter on attribute data, for
example (Temperature, ≥, 30 ). Publishers publish data in form of notifications
containing (attribute, value) tuples, for example (Temperature, 32 ). A notifica-
tion matches a subscription if every constraint in the subscription is satisfied by
a (attribute, value) tuple in the notification.

If a subscription consisted only of constraints over attribute values a subscriber
would not be able to explicitly influence the properties of the communication or
sensing process like, for example, the sampling rate. Such control properties are
conceptually different from the data constraints and can usually not be matched
by corresponding (attribute, value) tuples in the notification. We extended the
basic naming scheme by allowing subscribers to include metadata in subscrip-
tions. Metadata is either exchanged between publisher/subscriber components or
plays a key role in controlling service extensions (Sect. 2.3). It represents control
information with soft semantics and is excluded from the matching process.

Metadata is represented by one or more (attribute,value) pairs, for example
(SamplingRate, 10 ). Conceptually, it represents a notification that the subscriber
attaches to the subscription. Metadata is specified per subscription and multiple
active subscriptions may have different values for the same metadata attribute.
Since metadata is non-binding a publisher may apply local optimization tech-
niques: for example, in order to reduce sampling overhead the publisher may
decide to combine two subscriptions that address the same attribute by sam-
pling only once with an average sampling rate when the rates are similar, or
using the maximal sampling rate when not.

The modified naming scheme is supported by two extensions of the basic
publish/subscribe service: a “listener” service and a “matching” service. The
“listener” service can be used to inform the application about newly arrived sub-
scriptions, which it then can inspect to decide whether to start or stop publish-
ing notifications. The “matching” service may be used by the publisher to check
whether a set of attributes disqualifies it from matching a registered subscrip-
tion. If, for example, the first collected attribute violates a constraint, collecting
further data is pointless. When used, these primitives may result in a tighter
coupling between publishers and subscribers than in the traditional model, but
they have the potential to increase the efficiency of the data collection process,
resulting in overall application performance gain. Fig. 2 compares our extended
API with the basic publish/subscribe service.



372 J.-H. Hauer et al.

Basic Publish/Subscribe API Extended Publish/Subscribe API

Subscriber:

Subscribe( C ) Subscribe( C M )
Unsubscribe() Unsubscribe()

Notify( A ) Notify( A M )

Publisher:

Publish( A ) Publish( A M , push)

Listener( C M )

Matching:

Matching( C , A )

Fig. 2. The basic publish/subscribe API and the extended version that is provided by
our framework. A square represents a set of constraints (C), metadata (M) or attribute-
value pairs (A). The extended Publish primitive takes an additional push parameter
which influences the matching point and is explained in Sect. 3.2.

Fig. 3. The high-level decomposition of the framework

2.2 Core Decomposition

Figure 3 shows the decomposition of the framework. The Publish/Subscribe ser-
vice is distributed and the figure represents an instance of the framework on one
sensor node. A publish/subscribe application is divided into a variable number
of Publisher and Subscriber components. A Publisher component can listen for
subscriptions, collect data and publish notifications and Subscriber components
can issue subscriptions and receive matching notifications. The Broker compo-
nent provides the publish/subscribe service to the application, it manages the
subscription table and it can apply the matching algorithm to filter out notifi-
cations that do not match a registered subscription.

The data (“events”) that subscribers can subscribe to and publishers can pub-
lish are encapsulated in Attribute components. In addition to a data collection
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interface, an Attribute component must provide a matching interface that com-
pares two of its data items based on an attribute-specific operator. The mo-
tivation is twofold: first, an Attribute component represents functionality that
Publisher components should be able to reuse and access independent of the spe-
cific attribute properties (data type, metric, etc.). Secondly, matching operators
are usually attribute dependent: for example, when sensor readings are affected
by hardware-related jitter, the operator “=” should not be interpreted as the
exact equality of two values. To increase modularity and keep the core match-
ing algorithm decoupled, this information should be provided by the particular
Attribute component.

Within the network, all attributes and operators are represented by integral
identifiers. Attribute identifiers are globally unique, while operator identifiers are
unique within the scope of a particular attribute. On the edge of the network a
translation between identifiers and attribute semantics is performed using XML
maps.1 The AttributeCollector component structures access to the attributes: it
maps a request based on the attribute/operator identifier to an actual Attribute
component that is registered at compile time (but could even be added at runtime
by dynamic over the air code updates).

2.3 Service Extensions

At the beginning of this section, we introduced the notion of metadata: by in-
cluding metadata in a subscription a subscriber can influence the communication
and sensing process. Often, such control functionality can be isolated in self-
contained components for reuse in different applications. For example, a caching
component could decrease sampling overhead by buffering frequently accessed
attribute data when the considered data attribute has high direct sampling costs
or is computationally intensive, like feature extraction from acoustic signals. We
call such components Service Extension Components (SEC). A SEC represents
reusable functionality that can be plugged into the framework without modifica-
tion of existing code. A SEC can realize an additional service (as in the caching
example) or extend the communication path with additional control informa-
tion (timestamps, message sequence numbers, etc.). A SEC is associated with
one or more dedicated metadata attributes, for example the maximum allowed
caching duration, and made available by the application designer at compile time
(it could even be added at runtime by dynamic over the air code updates). A
SEC can be activated dynamically by a subscriber on a per-subscription basis
by including an appropriate metadata attribute in the subscription.

The framework supports two different types of extension components, Com-
munication SEC (CSEC) and Attribute SEC (ASEC). A CSEC can intercept
incoming packets before (and outbound packets after) they are processed by the
Broker in order to scan the included metadata attributes and, if applicable, per-
form a specific operation. It can, for example, be used to aggregate notification

1 For lack of space we refer the reader to our XML specification made available as
part of our implementation described in Sect. 4.
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messages in order to reduce overall network traffic. Since CSECs can also be used
to add control information (timestamps, etc.) a subscriber can use the CSEC(s)
located on the publisher nodes to (conceptually) assemble its own message header
by adding appropriate metadata attributes. ASECs are used analogous for at-
tribute access: they can intercept the requests for attribute data and instead
return buffered or processed data dependent on the metadata included by the
particular subscriber.

In combination, metadata and SECs realize a soft “control path” in parallel
to the basic publish/subscribe “data path”. Since SECs are self-contained com-
ponents and can usually be designed agnostic to data attribute semantics they
are easily reusable in different applications and on different platforms. However,
when multiple SECs are in use, their ordering must be defined by the application
designer because it may influence their overall semantics.

3 Communication Decoupling

The classical content-based publish/subscribe systems have tightly integrated fil-
tering, routing and forwarding mechanisms [7,2,8] resulting in more optimized,
but less flexible solutions. Our framework departs from this tradition and de-
couples the communication mechanisms from the publish/subscribe core (Fig. 3).
The core broker component has clean interfaces towards the external protocol
components, thus trading some of the optimization potential for increased flexi-
bility in selecting the subscription and notification protocols.

By exposing the choice of the protocols to the application designer, our frame-
work allows the adaptation of the publish/subscribe service to the specific needs
of the application. The type of the communication protocols as well as their en-
ergy consumption are likely to have a huge impact on the overall performance,
and the application designer should be aware of these implications [9] to make an
optimal selection for the particular application. In the following we concentrate
on three important aspects of this decoupling and on the architectural features
of the framework that address them.

3.1 Different Addressing Models

In contrast to the integrated solutions that rely on a pure content-based routing
and forwarding mechanisms, the flexibility of our framework raises the challenge
of interfacing with communication protocols that support different dissemina-
tion patterns like broadcast, multicast, convergecast, point-to-point, etc., using
various addressing models like address-free, id-centric or geographic addressing.

To support this wide range of communication mechanisms we rely on three
architectural features. First, the core of the framework is agnostic to the under-
lying addressing model, and all information relevant for operation of the service
is encapsulated in the form of metadata, subscription filters or notification data.
Secondly, the interfaces towards the subscription and notification delivery com-
ponents are kept address-free. Finally, all the addressing information for the
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communication protocols is provided/consumed by their respective components
or wrappers, while the framework provides hooks that facilitate its encapsula-
tion and tunneling when so required. To illustrate this process, we examine the
handling of the address information on the subscription and notification path
separately.

Subscription Path. On the subscription path, a common delivery pattern is
one-to-all (broadcast): a subscriber wants to receive notifications from any pub-
lisher with matching data in the network. This pattern is naturally supported by
the address-free interface. In the case of one-to-many (multicast), the subscriber
application defines the scope of the subscription delivery expressed as metadata
attribute (hop-count, geographic scope, etc.) inserted in the subscription. The
metadata is transparent to the publish/subscribe core and after registration of
the subscription in the subscription table its content is passed onto the respec-
tive subscription delivery protocol component. The protocol component (or a
thin wrapper) extracts the scoping attributes from the subscription content (via
suitable accessor functions provided by the core) so that they can be used or
translated into corresponding protocol parameters. Depending on the nature of
the scoping parameters, this mechanism might increase the coupling between
the subscriber and the subscription delivery protocol, but the publish/subscribe
core does not require any adaption. An id-centric, point-to-point subscription
delivery, although very atypical communication pattern for a publish/subscribe
application, can also be supported with the this mechanism.

Notification Path. On the notification path, the message delivery patterns
are potentially more diverse. To abstract from address information and decouple
the application from the particular addressing scheme of the notification delivery
protocol, we employ the mechanism visualized in Fig. 4: after a subscription has
been issued by the application (1), the notification delivery protocol component
(on the subscriber node) can use a hook provided by the core to add the local
address of the subscriber as metadata information in the subscription, just before
it is disseminated in the network (2).

The addressing information may be expressed using any naming/addressing
scheme because the metadata value is transparent to the publish/subscribe core.
After the subscription has been disseminated (3) and registered in the subscrip-
tion tables of potential publishers (4), whenever a notification is published (5, 6)
the notification delivery protocol instance on the publisher node can extract the
particular source address of the subscriber and use it as address parameter (7).

Thus, the core provides two hooks to the notification delivery protocol: one
for attaching the local address to a subscription on the subscriber node and one
for reading it out on the publisher node. Both hooks are used optionally – if
the notification delivery is, for example, based on flooding or uses data-centric
addressing, it will neither add nor read any metadata to/from a subscription.
In this way, the Broker, Publisher and Subscriber components remain shielded
from the addressing models used by the communication substrate. Even more,
the addressing on the subscription and the notification path is decoupled so
different addressing models can be used with respect to each other.
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Fig. 4. Enabling different addressing schemes by tunneling address information as
metadata between a subscriber and a publisher. Squares represent constraints (C),
metadata (M) or attribute-value pairs (A).

At the cost of increased coupling between the core and the communication
substrate, the same architecture can even be used to support a “classical” in-
tegrated content-based routing protocol. Through single-hop subscription scop-
ing, the core can relinquish complete control over subscription injection and
forwarding to the underlying integrated protocol, allowing complex schemes like
subscription coverage or merging to be implemented. The resulting duplication
of state (subscription table entries, etc.) can be reduced to a certain degree using
hooks exported by the core facilitating buffer space sharing. The design of this
support is one focus of our future work.

3.2 Control of the Matching Point

The departure from the integrated content-based routing and forwarding ap-
proach, brings to the surface the question of the “matching point” in the net-
work, i.e. the point where the published notifications are matched against the
content filters in the subscriptions. Since the subscription and the notification
messages are delivered by potentially separate protocols that do not explicitly
share common state, a conscious decision has to be made about where in the
network this information would confluence so that it can be passed to the core
for matching.

A misplacement of the matching point with respect to the application require-
ments and the selected communication protocols can result in significant per-
formance penalties as notifications or subscriptions needlessly consume precious
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networking resources. In general, the optimal location of the matching point de-
pends on many factors like network topology, ratio of publisher to subscriber
nodes, frequency of subscription/unsubscription and publication, selectivity and
locality of filters, etc.

Our framework supports two major scenarios by default: the filter matching
is either applied on the publisher or on the subscriber nodes. Our decision is
motivated by several observations. In many sensor network applications, we are
faced with either a “pull” or a “push” interaction pattern, i.e. either a small
set of subscribers is interested in notifications generated by a much larger set
of publishers, or vice-versa, many subscribers are interested in the notifications
from a smaller number of publishers. This means that the optimal approach
involves either a network wide subscription dissemination with filter matching
performed on the publisher nodes or network wide notification dissemination
with matching performed at the subscriber nodes [9].

For the cases in between these two extremes, the framework can be extended
with a CSEC that determines the optimal points using an integrated content-
based routing and forwarding protocol, or from a dedicated “matchmaker” ser-
vice [10]. The broker component provides a hook that CSECs can then use to
execute the matching algorithm, without introducing tight coupling between the
underlying protocols and the publish/subscribe core.

3.3 Protocol Impact on the Service Semantics

The selection of the subscription and notification delivery protocols is also in-
fluenced by the non-functional requirements of the particular application. For
example, the application designer may be faced with a scenario where subscrip-
tions need to be updated frequently and not reaching exactly all of the available
publishers is acceptable. In this case a protocol for probabilistic best-effort sub-
scription dissemination may be sufficient. On the other hand, an application
may require more reliable dissemination of subscriptions and is willing to accept
continuous control traffic in the background. In this case a reliable dissemination
algorithm would be more suitable. If sufficient resources are available, the appli-
cation designer might even choose multiple subscription or notification protocols
in parallel.

Our framework does not impose any limits on the quality of service provided
by the underlying communication protocols, effectively treating them as black
box components. Whenever a subscription is issued or a notification is published,
the framework will eventually convert the subscription/notification content into
payload of the selected protocol component. The choice of protocols therefore
has direct impact on the delivery semantics of the publish/subscribe messages,
and with that on the semantics of the provided service.

The core itself is not influencing the quality guarantees of the underlying
protocols, but SECs can be used to this aim, for example, by periodically re-
transmitting subscription messages, temporarily storing notification messages,
etc. We contrast the performance and the semantic effects of different types of
subscription dissemination protocols in the evaluation Sect. 4.
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4 Evaluation

Assessing the full impact of a component framework is a difficult task. As with
any other software architecture, the most reliable feedback ultimately comes
from surveying users after extended periods of day-to-day use. The development
of a reference implementation and its evaluation, however, can be considered as
an important first step towards this goal. A real prototype demonstrates that
the general design can be implemented under the specific constraints of the
target domain. Furthermore, through careful micro-benchmarking executed in
controlled, yet realistic setting of modern sensor network testbeds, it provides
an opportunity for gaining deeper insight into the specific feature set and the
involved design tradeoffs.

To this end, we have developed a reference implementation of the framework,
called TinyCOPS, using the TinyOS 2.0 [11] execution environment. TinyOS 2.0
is a second-generation component-based operating system for sensor networks
that keeps many of the basic ideas of its predecessor while pushing the design in
key areas like portability, robustness and reliability.

For the evaluation, we have opted against head-to-head comparison of Tiny-
COPS with other monolithic publish/subscribe frameworks because the overall
performance of the frameworks is dominated by the underlying protocols and not
the architectural features, there is currently no TinyOS 2.0 implementation of a
monolithic publish/subscribe framework that would facilitate direct comparison,
and even if such an implementation was available, the comparison results would
be vulnerable to differences in the invested optimization effort.

Instead, the evaluation scenarios in this section are focused on demonstrating
the flexibility and versatility of the design. We present results corroborating our
claims that: (1) the framework exports significant performance tradeoffs to the
application in an easy-to-use fashion, (2) the framework is general and flexible
enough to support different interaction patterns and (3) the code, memory and
execution time overhead is acceptable.

The presented data were obtained using TWIST [12], our multi-platform
testbed for indoor experimentation with wireless sensor networks. TWIST pro-
vides basic services like node configuration, network-wide programming, out-of-
band extraction of debug data and gathering of application data. It also allows
to control the power supply for individual nodes, a feature we use to introduce
node failures in the experiment described in Sect. 4.1. TWIST spans three floors
of our office building and is populated with eyesIFX and Tmote Sky nodes in
an approximate 3m × 3m grid.

Starting with a simple data collection application scenario we present experi-
mental results which show that the choice of dissemination protocols can exhibit
considerable performance tradeoffs (Sect. 4.1). We then gradually increase the
complexity of the application. Section 4.2 describes the integration of a send-on-
delta service extension component and the effects on application performance
and in Sect. 4.3 we show how TinyCOPS is used to extend the application with
an alarm notification service realizing both “pull” and “push” interaction pattern
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at the same time. We then report on the code size requirements and processing
time overhead in a typical TinyCOPS application (Sect. 4.4).

4.1 Tradeoffs in Protocol Selection

To demonstrate the tradeoffs that TinyCOPS exposes to the application de-
signer through protocol selection we contrast two subscription delivery protocols:
a plain flooding protocol (every node that hears a subscription broadcasts it to
all its neighbours once) and an epidemic broadcast protocol. The latter is part
of the TinyOS 2.0 core and based on the Trickle algorithm [13]: it lets nodes
continuously broadcast status information about the subscriptions they have
received. Whenever a node hears an older subscription than its own, it broad-
casts an update to its neighbours. In contrast to the flooding protocol, which
ends its operation after a short time, the epidemic protocol (called “TinyOS 2.0
Dissemination”) remains active.

We created a simple TinyCOPS application with one subscriber and the rest
of the nodes used as publishers. In our first measurement we disseminated the
subscription via plain flooding. In the second, we used the TinyOS 2.0 Dissemi-
nation protocol. The modification is done by changing a single line of the Tiny-
COPS application configuration. For notification delivery in both measurements
we use the TinyOS 2.0 Collection Tree Protocol (CTP) performing best-effort,
multihop delivery of notifications to the sink of the tree (subscriber).

Both measurements lasted 90 minutes and were made with 86 Tmote Sky
nodes, 85 publisher nodes and one subscriber (used as basestation, bridging
to/from a PC). At time t0 a subscription was injected asking for notifications to
be published with a rate of one notification per minute by each publisher. After
30 minutes, at time t1, one third of the publisher nodes (randomly chosen) were
shut down and 30 minutes later, at time t2, they were powered up again. Nodes
that were shut down lost all state including subscription table entries.

Figure 5(a) shows the percentage of active publishers over time. We define
active publisher as a node that has registered a subscription and published at
least one notification. At time t1 the number of active publishers decreases by
about 30% due to our active power management. The difference between the
protocols becomes visible at time t2 when these nodes are powered up again: the
epidemic Dissemination protocol quickly manages to spread the subscription to
the recovered nodes, while the flooding protocol cannot (the subscription was
injected only once at time t0).

Figure 5(b) shows the changes in notification goodput perceived by the sub-
scriber. We define notification goodput as the number of distinct notifications
that arrive at the subscriber in a fixed time window of one minute. The curves
almost match the number of active publishers and indicate a very good delivery
ratio of CTP.

We used the serial backchannel of the testbed to let all nodes periodically
output status information about the number of different messages they had sent
over the wireless channel. This information allowed us to derive the traffic for
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Fig. 5. Tradeoffs in Protocol Selection

subscription delivery as depicted in Fig. 5(c). The figure visualizes the tradeoff
between the protocols: the flooding protocol generates one message for each
node in the network at the time the subscription is injected. The Dissemination
protocol generates more messages, but is able to update the rebooted publishers
at time t2. Finally, our setup allowed us to determine the number of notification
messages sent in the network by all nodes over a time window of one minute
(Fig. 5(d)) – on average 3 messages were sent per notification, however our setup
did not allow us to differentiate between retransmission and forwarded messages.

4.2 Adding a Service Extension Component

To decrease notification traffic and effective energy consumption, we modified
the baseline application described in the previous section to realize a “send-on-
delta” approach: notifications should be published only if the attribute values
deviate by more than Δ from the previously published notification. Δ is defined
by the subscriber and specified as the metadata of the subscription. To make
the functionality resuable we implemented it as a CSEC SendOnDeltaC that
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intercepts outgoing notifications. It maintains a buffer for the last published
notification, calculates the difference between the attribute values and suppresses
the publishing if the difference is smaller than specified in the corresponding
subscription. It is agnostic to attribute semantics and can be used for an attribute
with integral data type.

We performed three measurements with 86 eyesIFX nodes and varying Δ and
observed the effects on notification goodput as perceived by the single subscriber.
The subscription asked for light sensor data to be published with a rate of one
minute by each publisher and Δ was chosen 0, 10 and 20, where 0 means that
all notifications are published and 10 and 20 represent the Δ of luminosity in
absolute values of the raw eyesIFX light sensor reading. Figure 6 shows the effect
on notification goodput: with a higher Δ, more notifications are suppressed by
the CSEC, giving to the subscriber application a powerful runtime control over
the tradeoff between data resolution and communication overhead.

4.3 Creating a Combined Push and Pull Application

Previous work [9] has shown that the interaction pattern between publishers and
subscribers (“pull” vs. “push”) can significantly affect application performance
and should be carefully aligned with the ratio of publishers to subscribers. We
created an application that included two Publisher components, one for peri-
odic temperature data collection and one for generating fire alarm messages.
We wanted the fire alarm event to quickly propagate to all rooms of the office
building, but periodic measurements to be collected only by a single subscriber.
We therefore selected a single node to disseminate a subscription which noti-
fications from the first Publisher component had to match (locally, based on
the “pull” model). Fire alarms, however, were “pushed”: whenever the second
Publisher component detected a fire alarm regardless of any registered subscrip-
tion, it immediately distributed the notification to all nodes in the network. The
first Publisher component was “wiring” the subscription delivery protocol to the
core and using CTP for notification delivery. The second Publisher component
“wired” the flooding protocol for notification delivery.
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Description Component Name PSLOC Flash (B) RAM (B)
Broker BrokerImplP 671 2838 19
Send-On-Delta CSEC SendOnDeltaP 103 1126 12
Publisher StdPublisherP 180 738 70
Subscriber (+ gateway) SubscriberGWImplP 138 554 129
AttributeCollector AttributeCollectorP 87 154 4
CSEC “Glue” CSECDispatcherImplP 115 98 2
Temperature Attribute Msp430InternalTemperatureP 20 2 -

Fig. 8. Code Size and memory footprint of an example TinyCOPS application: one
Publisher, one Subscriber, one CSEC and one Attribute component

Figure 7 shows a trace of the communication rates collected over 20 minutes
on 85 Tmote Sky nodes. It represents the total number of packets sent by all
nodes for a fixed time window of one minute. One subscription for periodic data
collection is issued at the start of the measurement using the TinyOS Dissem-
ination protocol, 10 minutes later we simulate a fire alarm, by sending a serial
packet to one of the publisher nodes (randomly chosen). This node the started a
flood of notification messages. The increase in traffic is visible by a small spike,
however it is almost masked by the high level of CTP “pull” traffic.

4.4 Code Complexity and Execution Time Evaluation

We use the number of “Physical Source Lines Of Code” (PSLOC [21]), as well
as the flash and RAM size, to evaluate the relative complexity of the major
TinyCOPS components. The results in Fig. 8 show that the broker component
is by far the most complex one in terms of code size. However, the framework
allows composing lean applications, like the StdPublisherP component, which is a
generic Publisher component included in TinyCOPS for convenience. It listens
for a subscription and publishes corresponding notifications by querying the
AttributeCollector for attribute data. The Send-On-Delta CSEC was introduced
in Sect. 4.2 and can handle attributes of different integer sizes, a flexibility that
is paid in increased flash consumption.

Building a TinyCOPS application involves making decisions about the At-
tribute as well as service extension components, the number of Publisher /
Subscriber components and the respective communication protocols. As a re-
sult a typical TinyCOPS application configuration (defining the set of compo-
nents that are linked together) can be composed with about 30 PSLOC – for
comparison, the Dissemination protocol wrapper consists of 97 PSLOC.

To get an insight in the processing overhead introduced by TinyCOPS we
measured the code execution time for the subscribe and publish operations on
a Tmote Sky node. We used an application that subscribes to one attribute
and measured the time it takes for a subscription/notification message to pass
through the TinyCOPS core and protocol wrapper components (CTP / Dissem-
ination wrappers). Under this scenario, the main tasks of the core were man-
agement of the subscription table and performing the matching algorithm. With
a CPU operating frequency of 4 MHz, the subscription send-path took 144 μs
and the subscription receive-path 281 μs. For notifications, the execution time
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for the send-path was 127 μs and 88 μs on the receive-path.2 While the re-
sults are dependent on the time spent for matching an attribute-value pair with
a constraint (we used the TinyCOPS Ping attribute), there are no additional
“deferred” costs involved (for example, posting tasks or setting timers for later
execution).

5 Related Work

The problem of providing an effective abstraction representing the sensor net-
work services has been the focus of several prior works. The proposed solutions
have ranged from database-like abstractions [3], application-specific virtual ma-
chines [14] to mobile agent systems [15] and abstract regions [16].

In [17], the SPIN family of protocols is presented, that use metadata-based
negotiation phase to protect the network resources from unnecessary data ex-
changes. The content filtering capability in our framework has the same goal. In
our case, the metadata part of the subscription message is used to convey a set of
“non-binding” requirements from subscribers to publishers while the constraints
express the imperative filtering. In SPIN, the metadata format is considered to
be application dependent. We believe that the attribute-based naming scheme
is flexible enough to support the majority of data-driven applications. Having
a fixed naming scheme helps in optimization of the matching components and
improves the portability of the application code.

Our naming scheme is much closer to the one used in the Directed Diffusion
family of protocols [2], but we make clear distinction between the metadata and
constraint and support attribute-specific operators. Conceptually, however, more
important is the difference in the level of decoupling between the middleware ser-
vice implementation and the communication protocols. Our framework not only
delineates cleanly at this interface, it also allows for individual customization of
the subscription and the notification delivery protocols and provides infrastruc-
ture for address information tunneling and matching point control.

MiLAN [18] is a flexible sensor networks middleware that continually tracks
the application needs and performs run-time optimizations of the network and
sensor stacks to balance the application QoS and the energy efficiency. It is po-
sitioned as a general framework that can also be used with resource rich wireless
technologies like IEEE 802.11 and Bluetooth. Our framework is concentrated
on the class of relatively resource limited sensor network hardware [19], where
compile-time optimization has comparably large impact, and where the run-time
modifications are mostly limited to parameter tuning (like the selection of the
concatenation timeout).

Like TinyCOPS, the Mires middleware [20] provides a publish/subscribe ser-
vice, but uses the component architecture of TinyOS 1.x. It uses a topic-based
naming scheme that lacks the expressiveness of the content-based filtering. While

2 For comparison: the time between posting a task and executing its first line of code
takes 48 µs (assuming an otherwise idle system).
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Mires envisions the possibility of introducing new services (like aggregation) us-
ing extension components, the choice of the communication protocols is fixed.

6 Conclusion

A major design goal of the presented content-based publish/subscribe frame-
work is to separate out those service sub-tasks which are expected to have large
impact on the resource usage. This decomposition strives to give an application
designer a simple and flexible means to select protocol components and data
attributes according to his needs, and to give him more fine-grained control over
the publish/subscribe service through the concept of extension components.

TinyCOPS is the implementation of our component framework aligned with
the design philosophy of TinyOS 2.0. The flexibility of TinyCOPS to support dif-
ferent sensor node platforms, communication protocols and interaction patterns
has been demonstrated experimentally. On the example of a “send-on-delta”
service extension component, we have illustrated how the framework can be
augmented in order to give the application designers additional control knobs
for trading-off different performance objectives. Our experiences with TinyCOPS
suggest that by careful component decomposition and interface design, it is in-
deed possible to achieve a good balance between efficient resource usage and
reusable software design.
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