
A Fine-Grained Approach to Resolving
Unsatisfiable Ontologies∗

Joey Sik Chun Lam, Derek Sleeman, Jeff Z. Pan, and Wamberto Vasconcelos

Department of Computing Science
University of Aberdeen, AB24 3UE, UK

{slam, sleeman, jpan, wvasconc}@csd.abdn.ac.uk

Abstract. The ability to deal with inconsistencies and to evaluate the
impact of possible solutions for resolving inconsistencies are of the ut-
most importance in real world ontology applications. The common ap-
proaches either identify the minimally unsatisfiable sub-ontologies or the
maximally satisfiable sub-ontologies. However there is little work which
addresses the issue of rewriting the ontology; it is not clear which ax-
ioms or which parts of axioms should be repaired, nor how to repair those
axioms. In this paper, we address these limitations by proposing an ap-
proach to resolving unsatisfiable ontologies which is fine-grained in the
sense that it allows parts of axioms to be changed. We revise the axiom
tracing technique first proposed by Baader and Hollunder, so as to track
which parts of the problematic axioms cause the unsatisfiability. More-
over, we have developed a tool to support the ontology user in rewriting
problematic axioms. In order to minimise the impact of changes and
prevent unintended entailment loss, both harmful and helpful changes
are identified and reported to the user. Finally we present an evaluation
of our interactive debugging tool and demonstrate its applicability in
practice.

Keywords: Ontologies, Description Logics reasoning.

1 Introduction

Resolving inconsistencies in ontologies is a challenging task for ontology [25]
modellers. Standard Description Logic (DL) [2] reasoning services can check
if an ontology is unsatisfiable (i.e., if there are any unsatisfiable concepts in an
ontology); however, they do not provide support for resolving the unsatisfiability.
The ability to deal with inconsistencies and to evaluate the impact of the possible
modifications are of the utmost importance in real world ontology applications.

Most existing approaches either identify problematic axioms (by providing the
minimally unsatisfiable sub-ontologies) [22] or weaken the target unsatisfiable
∗ This paper is an extended version of [Joey SC Lam et al., A Fine-grained Approach

to Resolving Unsatisfiable Ontologies, In Proc. of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI-2006)]. We extend our previous work
to handle general concept inclusions and cyclic definitions. This work is supported
by the AKT Project (the EPSRC’s grant number GR/N15764).

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 62–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 63

ontology (by providing the possible maximally satisfiable sub-ontologies) [15].
However practical problems remain: it is not clear which axioms or which parts
of axioms should be repaired, nor how to repair those axioms. Let us use an
example to illustrate these limitations.

Example 1. Let us assume that an ontology O contains the following axioms:

α1: A
.= C � ∀R.B � D

α2: C
.= ∃R.¬B � B

α3: G
.= ∀R.(C � F)

It can be shown that the concept A is unsatisfiable, by using standard DL
TBox reasoning. The existing approaches [22,15] either identify the minimally
unsatisfiable sub-ontologies Omin

1 = {α1, α2} or calculate the maximally satis-
fiable sub-ontologies Omax

1 = {α1, α3}, and Omax
2 = {α2, α3}. In short, either

α1 or α2 should be removed from O. However, it is easy to see that we do not
need to remove either the whole of α1 or α2. In order to minimise the loss of
information from the ontology, we should simply remove parts of axiom α1, i.e.,
(a) A � C, or (b) A � ∀R.B, or part of axiom α2, i.e., (c) C � ∃R.¬B, and
then O becomes satisfiable.

Schlobach et al. [22] and Kalyanpur et al. [12] have proposed approaches, which
determine which parts of the asserted axioms are responsible for the unsatisfi-
ability of concepts. We further discuss their work in Section 7. In this paper,
we extend Meyer et al.’s tableaux algorithm [15]. Our algorithm traces which
parts of the axioms are responsible for the unsatisfiability of a concept (this is
a novel way of achieving the same result as [22,12]). Using this algorithm, we
make the following two further contributions. The first is to calculate the lost
entailments of named concepts due to the removal of axioms. Whenever parts
of an axiom are removed, it frequently happens that indirect or implicit entail-
ments are lost. In order to minimise the impact on the ontology, we analyse the
lost entailments of named concepts which occur due to the removal of parts of
axioms. The second contribution is to identify harmful and helpful changes; this
is where the fine-grained tracing information is useful to facilitate rewriting the
problematic axioms, rather than removing them completely. It should be noted
that inappropriately revising a problematic axiom might not resolve the unsatis-
fiability, and could introduce additional unsatisfiable concepts into the ontology.
For this purpose we define harmful and helpful changes with respect to an unsat-
isfiable named concept. A harmful change cannot resolve the problem, or might
cause additional unsatisfiable concepts in the ontology; a helpful change resolves
the problem without causing additional contradictions, and restores some lost
entailments. We believe tools based on such techniques could help users to re-
solve unsatisfiable ontologies. To evaluate this vision, we have created a plugin
in Protégé 3.21. The result of our usability evaluation demonstrate that our ap-
proach helps non-expert ontology users to resolve unsatisfiable ontologies; the

1 http://protege.stanford.edu/

64 J.S.C. Lam et al.

performance results demonstrate that our algorithms provide acceptable perfor-
mance when used with real world ontologies.

The rest of this paper is organised as follows. Section 2 briefly introduces
ontologies and the Description Logic ALC. Section 3 presents our fine-grained
approach to pinpointing problematic parts of axioms. The impact of removing
axioms is described in Section 4. The methods for identifying harmful and helpful
changes are presented in Section 5. Section 6 presents the evaluation of our im-
plementation. The paper closes with a discussion of related work and conclusion.

2 Ontology and the ALC DL

An ontology formally captures a shared understanding of certain aspects of a
domain: it provides a common vocabulary, including important concepts, prop-
erties and their definitions, and constraints regarding the intended meaning of
the vocabulary, sometimes referred to as background assumptions. Description
Logics (DLs) [1] provide the underpinning of the recent W3C standard Web On-
tology Language OWL DL.2 In this paper, we use the smallest propositionally
closed DL, i.e., the ALC DL [23], to illustrate our approach. The techniques
presented here are general enough to be used as the basis for developing similar
algorithms for more expressive DLs.

An ontology O consists of a set T (TBox) of concepts and role axioms and a
set A (ABox) of individual axioms. As this paper handles satisfiabilities in on-
tologies, we focus on TBox reasoning. As ALC TBox reasoning is not influenced
by ABox reasoning [16,20], without loss of generality, we assume that ontolo-
gies consist only of TBoxes in the rest of the paper. A TBox T consists of a
set of axioms of the form C � D (general concept inclusions, GCIs); C

.= D
(concept equivalence) is an abbreviation of C � D and D � C, where C and
D are (possibly complex) concept descriptions. T is unfoldable iff the left-hand
side of every α ∈ T contains a named concept A, there are no other αs with A
on the left-hand side, and the right-hand side of α contains no direct or indirect
references to A (no cycles). We divide T into an unfoldable part Tu and a general
part Tg, such that Tg = T \ Tu.

An interpretation I = (ΔI , ·I) consists of the domain of the interpretation ΔI

(a non-empty set) and the interpretation function ·I , which maps each concept
name CN ∈ NC to a set CNI ⊆ ΔI and each role name RN ∈ NR to a binary
relation RNI ⊆ ΔI × ΔI . The interpretation function can be extended to give
semantics to concept descriptions (see Table 1). An interpretation I satisfies a
GCI C � D if CI ⊆ DI . An interpretation I satisfies a TBox T if it satisfies
all GCIs in T ; in this case, we say I is an interpretation of T . A TBox T is
consistent if there exists some interpretation that satisfies it. A concept C is
satisfiable w.r.t. T if there exists an interpretation I of T such that CI �= ∅. A
TBox T is satisfiable if all named concepts in T are satisfiable.

2 More precisely, OWL DL is a key language and is a member of the family of the
OWL standard languages, which also include OWL Lite and OWL Full.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 65

Table 1. Semantics of ALC-concepts

Constructor Syntax Semantics

top � ΔI

bottom ⊥ ∅
concept name CN CNI ⊆ ΔI

general negation (C) ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction (U) C � D CI ∪ DI

exists restriction (E) ∃R.C {x ∈ ΔI | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ΔI | ∀y.〈x, y〉 ∈ RI → y ∈ CI}

Note that subsumption can be reduced to satisfiability [1]. If T � C � D,
then in all interpretations I that satisfy T , CI ⊆ DI and so CI ∩ (¬D)I = ∅.
Therefore, T � C � D iff T � ¬(C � ¬D).

3 Approach

In this section, we introduce the extended tableau algorithm from Meyer et
al.[15] (this kind of tracing technique was first proposed by Baader and Hol-
lunder [4]). Instead of removing complete axioms involved in an unsatisfiability,
our algorithm captures the components of axioms responsible for a concept’s
unsatisfiability.

3.1 Extended Tableaux Algorithm

We assume that T = {α1, · · · , αn}, with αi referring to Ci
.= Di or Ci � Di for

i = 1, . . . , n. A tableau-based algorithm decides the satisfiability of a concept Ci

w.r.t. T by trying to construct a representation of a model for it, called a tree
T. The model is an interpretation I in which CI

i is non-empty. Each node x
in the tree is labeled with a set L(x) of concept or role elements. The concept
elements are of the form (a : C, I, a′ : C′), where C and C′ are concepts, a and
a′ are individual names, and I is an index-set. This means that the individual
a belongs to concept C due to an application of an expansion rule on a′ : C′.
The set of axioms, which a : C comes from, is recorded in the index-set I. This
is done by adding i to I, which is a set of integers in the range 1, . . . , n. In an
element of the form (a : C, I, a′ : C′) we frequently refer to C as “the concept”,
and a as “the individual”(i.e., we are referring to the first concept assertion).
When a concept element (a : C, I, a′ : C′) exists in the label of a node x, it
represents an interpretation I that satisfies C, i.e., the individual corresponding
to a is in the interpretation of C. That is, if (a : C, −, −) ∈ L(x), then a ∈ CI ,
where “−” stands for any value, that is, it is a place holder. Role elements are
of the form (R(a, b), I, a : ∃R.D), where R is a binary relationship between indi-
vidual a and b; I is the index-set; the third parameter is to record the existence of

66 J.S.C. Lam et al.

R(a, b) due to an application of an expansion rule on a : ∃R.D. That is, if
(R(a, b), −, −) ∈ L(x), then 〈a, b〉 ∈ RI .

3.2 Applications of Expansion Rules

To determine the satisfiability of a concept A in T , the algorithm initialises a
tree T to contain a single node x, called the root node, with L(x) = {(a : A,
∅, nil)}. The tree is then expanded by repeatedly applying a set of expansion
rules which either extend node labels or add new leaf nodes. Our extended set
of expansion rules for the Description Logic ALC is shown in Table 2, where Ai

is a named concept, C, C1, C2, Ci, Di are concept descriptions, R is a role name,
a and b are individuals, RHS(αi) is the concept at the right hand side of αi,
and the signature Sig(αi) of an axiom αi is the set of concept and role names
occurring in αi.

Table 2. Our extended tableaux expansion rules for ALC

U+.= -rule if Ai
.= Ci ∈ Tu, (a : Ai, I,−) ∈ L(x) and (a : Ci, I ∪ {i}, a : Ai) /∈ L(x)

then L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}
U−.= -rule if Ai

.= Ci ∈ Tu, (a : ¬Ai, I, −) ∈ L(x) and (a : ¬Ci, I ∪ {i}, a : ¬Ai) /∈ L(x),
then L(x) := L(x) ∪ {(a : ¬Ci, I ∪ {i}, a : ¬Ai)}

U�-rule if Ai � Ci ∈ Tu, (a : Ai, I,−) ∈ L(x) and (a : Ci, I ∪ {i}, a : Ai) /∈ L(x),
then L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

�-rule if (a : C1 � C2, I,−) ∈ L(x), and
{(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)} � L(x),
then L(x) := L(x) ∪ {(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)}

�-rule if (a : C1 � C2, I,−) ∈ L(x), and
{(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)} ∩ L(x) = ∅,
then create two �-successor y, z of x with:

L(y) := L(x) ∪ {(a : C1, I, a : C1 � C2)}
L(z) := L(x) ∪ {(a : C2, I, a : C1 � C2)}

∃-rule if (a : ∃R.C, I, −) ∈ L(x), a is not blocked (see Section 3.4),
and {(R(a, b), I, a : ∃R.C), (b : C, I, a : ∃R.C)} � L(x),
where b is an individual name not occurring in L(x)
then L(x) := L(x) ∪ {(R(a, b), I, a : ∃R.C), (b : C, I, a : ∃R.C)}

∀-rule if (a : ∀R.C, I, −) ∈ L(a), and (R(a, b), J, a : ∃R.Di) ∈ L(x)
then L(x) := L(x) ∪ {(b : C, I ∪ J, a : ∀R.C)}

�-rule if (Ci � Di) ∈ Tg, and there exists (− : E, −, −) ∈ L(x), Sig(E) ∪ Sig(Ci) �= ∅,
a is not blocked, and (a : ¬Ci � Di, I ∪ {i}, −) /∈ L(x),
for every individual a in the node
then L(x) := L(x) ∪ {(a : ¬Ci � Di, I ∪ {i}, a : C)}

During the expansion, concept descriptions are assumed to be converted to
negation normal form.3 We now explain the expansion rules. The three rules
(U+.= -rule, U−.= -rule and U�-rule) describe the unfolding procedure. Unfolding

3 A concept description is in negation normal form when negations apply only to
concept names, and not to compound terms.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 67

a concept expression is to replace defined names by their definitions, so that
it does not contain names defined in the terminology. These rules are used for
optimisation (also called lazy unfolding) [5]. That means only unfolding concepts
as required by the progress of the satisfiability testing algorithm. The U+.= -rule
and U−.= -rule reflect the symmetry of the equality relation in the non-primitive
definition A

.= C, which is equivalent to A � C and ¬A � ¬C. The U�-rule
on the other hand reflects the asymmetry of the subsumption relation in the
primitive definition A � C.

Disjunctive concept elements (a : C1 C2, −, −) ∈ L(x) result in
non-deterministic expansion. We deal with this non-determinism by creating
two -successors y, z of x with: L(y) := L(x) ∪ {(a : C1, · · ·)}, and L(z) :=
L(x) ∪ {(a : C2, · · ·)}.

For any existential role restriction concept (a : ∃R.C, I, −) ∈ L(x), the algo-
rithm introduces a new individual b as the role filler, and this individual must
satisfy the constraints expressed by the restriction. Thus, b is an individual of C,
and hence (b : C, I, a : ∃R.C) and (R(a, b), I, a : ∃R.C) are added to the label of
the node. A universal role restriction concept (a : ∀R.D, J, −) ∈ L(x) interacts
with already defined role relationships to impose new constraints on individuals.
That is, if (R(a, b), I, a : ∃R.C) exists in L(x), then b is also an individual of D;
new concept elements (b : D, I ∪ J, a : ∀R.D) and (b : C, I ∪ J, a : ∃R.C) are
added to the label.

If there exists a concept C in the signature of the left-hand side of a GCI
axiom (αi ∈ Tg, αi is Ci � Di), and there is an element (a : C, I, −) ∈ L(x), and
the signature of C has common elements with Sig(Ci) then we apply the �-rule
to αi. The newly added element will be (a : ¬Ci Di, I ∪ {i}, a : C). With this
technique we are able to trace which element in the tree invokes the application
of expansion rules on GCI axioms, therefore we can trace how the GCI axioms
cause the concept’s unsatisfiability.

The algorithm repeatedly expands the tree by applying the rules in Table 2 as
many times as possible until either any one of the fully expanded leaf nodes has
no clash or none of the rules is applicable to any node of the tree. A node is fully
expanded when none of the rules can be applied to it. T is fully expanded when
all of its leaf nodes are fully expanded. A node x contains an obvious clash when,
for some individual b and some concept C, {(b : C, −, −), (b : ¬C, −, −)} ⊆ L(x).

When a clash is found in a node, the classical tableaux algorithm [4] either
backtracks and selects a different leaf node, or reports the clash and terminates,
if no node remains to be expanded. The main difference is that our algorithm
terminates when either (1) any one of the fully expanded leaf nodes is without
a clash or (2) none of the rules is applicable. Since the rules are still applicable
to a node even when a clash is found, there may be more than one clash in
the node, and furthermore this clash may also occur in other nodes (repeated
nodes). As a result, we can obtain all the clashes in the tree and eliminate the
repeated clashes. If the input of the tableaux algorithm is a concept C and a
terminology T , we have the following property: C is unsatisfiable iff each path
from the root to the leaf node in the tree contains at least one clash. This implies

68 J.S.C. Lam et al.

that an unsatisfiable concept becomes satisfiable if all the clashes in any one of
the paths of the tree are resolved (i.e., a complete path from root to leaf). This is
because whenever the non-deterministic -rule is applied, two new -successor
nodes are created; this is the only way to create the leaf nodes. It is sufficient to
resolve all clashes in either of the two branches created.

3.3 Sequences of a Clash

Figure 1 shows how the tableau algorithm is applied to Example 1 (shown in
Section 1) to check for the satisfiability of A. The tree T contains a root node
x whose label contains a clash because {(b : B, {1, 2}, a : ∀R.B), (b : ¬B, {1, 2},
a : ∃R.¬B)} ⊆ L(x). According to Definition 1, we can obtain two sequences,
Seq+ and Seq−(see Figure 2). Note that the union of the index sets of the first
elements in the sequences of the clashes in the tree gives the set of axioms which
cause A to be unsatisfiable. The above two sequences show that axiom α1 and
α2 cause the unsatisfiability of A.

(1) Initialise the root node x with L(x) := {(a : A, ∅, nil)},

(2) Apply the U+.= -rule to (a : A, ∅, nil),
it gives L(x) := L(x) ∪ {(a : C � ∀R.B � D, {1}, a : A)},

(3) Apply the �-rule twice to (a : C � ∀R.B � D, {1}, · · ·),
it gives L(x) := L(x) ∪ {(a : C � ∀R.B, {1}, a : C � ∀R.B � D),
(a : D, {1}, a : C � ∀R.B � D), (a : C, {1}, a : C � ∀R.B),
(a : ∀R.B, {1}, a : C � ∀R.B)}

(4) Apply the U+.= -rule to (a : C, {1}, · · ·), followed by applying the �-rule,
it gives L(x) := L(x) ∪ {(a : ∃R.¬B � B, {1, 2}, a : C),
(a : ∃R.¬B, {1, 2}, a : ∃R.¬B � B), (a : B, {1, 2}, a : ∃R.¬B � B)},

(5) Apply the ∃-rule to (a : ∃R.¬B, {1, 2}, · · ·),
it gives L(x) := L(x) ∪ {(b : ¬B, {1, 2}, a : ∃R.¬B), (R(a, b), {1, 2}, a : ∃R.¬B)}

(6) Apply the ∀-rule to (a : ∀R.B, {1}, · · ·),
it gives L(x) := L(x) ∪ {(b : B, {1, 2}, a : ∀R.B)}

Fig. 1. The application of expansion rules on A in Example 1

Definition 1 (Sequences of a Clash). Given a clash in a tree, the sequences
of a clash, Seq+ and Seq−, contain elements involved in the clash. The sequences
are of the form 〈(a0 : C0, I0, a1 : C1), (a1 : C1, I1, a2 : C2), · · · , (an−1 : Cn−1,
In, an : Cn), (an : Cn, ∅, nil)〉, where Ii−1 ⊆ Ii for each i = 1, · · · , n. The first
elements of Seq+ and Seq− are of the form (a : C, I ′, a′ : C′) and (a : ¬C, I ′′,
a′′ : C′′) respectively. The last element of both sequences is the same.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 69

(1). Remove (a:C, {1},...)

(2). Matches (a:C, {1},…) (3). Matches (2), but exists in Seq-

(4). Matches (2), does not exist in Seq+ or Seq-

Fig. 2. The fully expanded tree for A in Example 1

Now that clashes in the tree have been found, we want to identify the axioms
which could be removed to resolve the unsatisfiability. We can identify these by
looking at the nodes in the tree which contain clashes. The example in Figure 3
(on the left) shows a tree with six clashes (nodes with clashes are shaded). We
now describe how Reiter’s Hitting Set algorithm [19] can be adapted to make
a general procedure for identifying the sets of clashes to be resolved. Firstly,
for each path from the root to a leaf of the tree, we gather the set of each of
the nodes on that path which has a clash. In our example the following sets
are found: {a, b, d}, {a, b}, {a, c, e}, {a, c, f}. Now, using these sets we apply the
Hitting Set algorithm; the Hitting set Tree is shown in Figure 3 on the right-
hand side. Now for each leaf node n we gather the set En of all edge labels on
the path from the root to that node. The sets thus obtained from each leaf node
are gathered into one large set S. This gives a set with 13 elements; some of
these En ∈ S are subsets of each other; we pick out the minimal sets; i.e., the
sets Ei ∈ S for which there is no Ej ∈ S such that Ej ⊂ Ei. In our example
this gives S = {{a}, {b, c}, {b, e, f}, {b, e, d}}, as desired. The axioms involved in
each clash from the above nodes are actually the same as the notion of minimal
unsatisfiability preserving sub-TBoxes (MUPS) in [22], that is there are four sets
of MUPS in the unsatisfiable concept above.

From each MUPS, we know which axioms cause the unsatisfiability. Further-
more, from the sequences of the clashes, we know which concepts within these
axioms cause the unsatisfiability. We can assign a specific number to each MUPS,
and annotate the problematic concepts in these axioms with a specific superscript
number corresponding to the MUPS which it occurs in. Note that a concept com-
ponent may be involved in more than one MUPS, therefore it may be annotated

70 J.S.C. Lam et al.

{a,b,d}
a

b
d

{a,c,e}
a

c
e

{a,c,f}

{a,c,e}

a c f

{a,b} {a,b}

a c e

a b ba

a c f

{a,c,f}

a

b c

e fd

Fig. 3. Left-hand side: a fully expanded tree with six clashes; right-hand side: hitting
set tree

with more than one number. We introduce the notion of arity of a concept C in
an axiom α, denoted by arity(α, C), to count the number of times it appears in
the clashes. This idea is similar to the core of MUPS in [22]. This means that
removing a concept component with arity n can resolve n clashes. In order to
illustrate the benefit of our fine-grained approach, we add the following axioms
to Example 1:

α4: K
.= C � ∀R.(P � F)

α5: P
.= ∀R.F � B

In this case, concept K is also unsatisfiable due to the existence of a clash in
a node of the tree for K. For simplicity, we do not show the sequences in the
clash. We now annotate the concepts in the axioms which are involved in the
two unsatisfiable concepts with superscript numbers as follows:

α1: A1 .= C1 � ∀R1.B1 � D,
α2: C1,2 .= ∃R1,2.(¬B)1,2 � B,
α3: G

.= ∀R.(C � F)
α4: K2 .= C2 � ∀R2.(P 2 � F)
α5: P 2 .= ∀R.F � B2

From the above, we can easily see which concepts in the axioms cause which
concepts to be unsatisfiable. It is obvious that removing the concept ∃R.¬B in
axiom α2 can resolve two unsatisfiable concepts.

3.4 Refined Blocking

To deal with cyclic axioms, it is necessary to add cycle detection (often called
blocking) to the preconditions of some of the expansion rules in order to guar-
antee termination [3,7]. We use a simple example to describe the necessity of
blocking, by using the classical tableau algorithm:

Example 2. Given an ontology containing a single cyclic axiom, α1: A
.= ∃R.A,

then testing the satisfiability of A leads to:

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 71

1. L(x) := {(a0 : A), (a0 : ∃R.A)}
2. L(x1) := L(x) ∪ {R(a0, a1), (a1 : A), (a1 : ∃R.A)}
3. L(x2) := L(x1) ∪ {R(a1, a2), (a2 : A,), (a2 : ∃R.A)} · · ·

The application of the U+.= -rule leads to (a0 : ∃R.A) being added to L(x), and
the application of the ∃-rule leads to the creation of a new individual a1 with new
elements R(a0, a1), (a1 : A) added into L(x1), the same expansion rules would be
applied and the process would continue indefinitely. Since all individuals a1, a2,
· · · receive the same concept assertions as a0, we may say the algorithm has run
into a cycle. Therefore, blocking is necessary to ensure termination. The general
idea is to stop the expansion of a node whenever the same concept assertions
recur in the node. Blocking imposes a condition on the ∃-rule: in the classical
algorithm, an individual a is blocked by an individual b in a node label L(x)
iff {D|(a : D) ∈ L(x)} ⊆ {D′|(b : D′) ∈ L(x)}. In our example, that would
mean a1 in L(x1) is blocked by a0, because {A, ∃R.A} ⊆ {A, ∃R.A} in the
classical version. Intuitively, it can be seen that termination is now guaranteed
because a finite terminology can only produce a finite number of different concept
expressions and therefore a finite number of different labelling sets; all nodes
must therefore eventually be blocked [9].

Our blocking approach is slightly different from the classical one. We define
the refined blocking condition as follows: the application of the ∃-rule to an
individual a is blocked by b iff {(D, I)|(a : D, I, −) ∈ L(x)} = {(D′, I ′)|(b : D′,
I ′, −) ∈ L(x)}. Informally, the justification for this refinement is the following.
If I is not equal to I ′, then we treat (a : C, I, −) and (a : C, I ′, −) as different
elements; this is because the concept C in the two elements has been introduced
from different axioms. Therefore, we still apply the rules to both (a : C, I, −)
and (a : C, I ′, −) to expand the tree. As a result, in our approach, an individual
a is blocked by b iff each of the elements in L(x) with individual a is exactly
matched with one of the elements in L(x) with individual b, and vice versa; i.e.
these matched elements have the same concept and index-set. In contrast, the
classical tableau algorithm does not take the index-set of axioms into account
when blocking is performed; the elements in the labels of nodes only have one
parameter. The elements (a : C, I, −) and (a : C, I ′, −) will be presented as
(a : C) in the classical one, and therefore only one rule is applied to (a : C) once.

Example 3. This example describes how the refined blocking works:
α1: A � ¬C � D � E � F � ∃R.A
α2: D � C
α3: E � ∀R.C
α4: F � ∀R.∀R.C

We use Example 3 to illustrate why our refined blocking is necessary4. For
simplicity, we do not show the third parameter of the elements in the node
label. Figure 4 shows the fully expanded tree. In step 2, after applying the ∃-
rule on (a : ∃R.A, {1}), we can see that, in L(x1) in the classical algorithm,
4 Note that despite the apparent complexity, this example is the simplest possible to

illustrate the need for our refined blocking.

72 J.S.C. Lam et al.

Clash 1

Clash 2

Clash 3(2)

(1)

(3)

Clash 4

Fig. 4. The fully expanded tree of Example 3

the set of concept elements with b is a subset of the set of concept elements
with a, therefore, individual b is blocked by a. The ∃-rule cannot be applied
on (b : ∃R.A, {1}), so the algorithm would terminate. Three clashes are found
in L(x1); axioms α1, α2 and α3 are all involved in the clashes (cf. Clash 1, 2,
3 in Figure 4). However α4 would be missed out by the classical algorithm,
although it also triggers a clash in our tree. The reason is that the set of concept
elements with a is the same as the set of concept elements with b in the classical
algorithm (i.e., {D|(a : D, −) ∈ L(x1)} = {D|(b : D, −) ∈ L(x1)}); (b : C, {1, 3})
is the same as (b : C, {1, 2}) (cf. (1) in Figure 4), and (b : ∀R.C, {1, 4}) is
the same as (b : ∀R.C, {1, 3}) (cf. (2)). In our approach, these elements are
different. Therefore we still apply the ∀-rule to (b : ∀R.C, {1, 4}) and add a new
element (c : C, {1, 4}) into the node label, which is different from the existing
elements (c : C, {1, 2}) and (c : C, {1, 3}) (cf. (3)). The newly added element
from α4 triggers another clash (cf. Clash 4). Next, we keep applying the ∃-rule
to (c : ∃R.A, {1}) and create a new individual d. Finally, each of the elements in
L(x3) with individual d is exactly matched with one of the elements in L(x3) with
individual c, and vice versa; i.e. these matched elements have the same concept

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 73

and index-set. The individual c is blocked by d, and then the application of the
rules is terminated.

3.5 Complexity, Soundness and Completeness

The differences between our algorithm and the classical one are that (1) when
a clash is detected, the classical algorithm either backtracks and selects a dif-
ferent node, or reports the clash and terminates if no more nodes remain to
be expanded, whereas our algorithm will not do so; it only terminates when
the tree is fully expanded or until blocking occurs, in order to find all pos-
sible clashes. Therefore, the complexity of our algorithm is the same as the
classical one in the worst case [23], as both need to fully expand all nodes;
(2) we add two extra parameters in each of the elements of a node label. The
expansion rules do not depend on these two parameters, and hence they add
only a constant amount to each expansion and do not affect the complexity
and correctness of the original algorithm [4]; (3) our refined blocking condi-
tion is: the application of the ∃-rule to an individual a is blocked by b iff
{(D, I)|(a : D, I, −) ∈ L(x)} = {(D′, I ′)|(b : D′, I ′, −) ∈ L(x)}. The num-
ber of elements with different concept descriptions that can be introduced in
each fully expanded leaf node is finite. Also, for each of concept description C,
there can be only a finite number of elements (a : C, I1, −), (a : C, I2, −),· · · ,
(a : C, In, −) with n bounded by the number of axioms in the ontology. The
algorithm is therefore guaranteed to terminate.

3.6 Removing Clashes

Given an unsatisfiable concept A in T , we can obtain a fully expanded tree
containing a node with at least one clash. For each clash, the sequences of the
clash, Seq+ and Seq−, are obtained as in Definition 1. We can derive the following
lemma:

Lemma 2. Let the first elements of the sequences be (a : C, I ′, −) and (a : ¬C,
I ′′, −), and let the last element of the sequences be (b : A, ∅, nil). We know that
the set of axioms I := I ′ ∪ I ′′ causes A to be unsatisfiable. Let D be the set
of all concepts appearing in the elements of the sequences: removing one of the
concepts in D from one of the axioms in I is sufficient to resolve the clash.

Proof. For any concept picked from D, it must occur in the sequences and have
an adjacent element which is before or after. For any two adjacent elements in
a sequence, e1 and e2, there are only two possibilities:

– e1 and e2 are of the form (a : E1, −, a : E2) and (a : E2, −, −) containing
the same individual, this means the concept E1 is a superconcept of E2. If
E1 (or E2) is removed, the subsumption relationship between E2 and E1 is
removed. Therefore, the individual a no longer belongs to E1 (or E2), nor
does it belong to any of the concepts in the elements preceding the occurrence
of e1 in the sequences. That means the concept of the first element in the

74 J.S.C. Lam et al.

sequence is not subsumed by the removed concept either, hence the clash is
resolved.

– e1 and e2 are of the form (a : E1, −, b : E2) and (b : E2, −, −) containing
different individuals, this means the concept E1 participates in a role rela-
tionship with E2. If E1 or E2 is removed, then the role relationship will be
removed, therefore there will be no such individual a participating in the
role, and all the concepts in the elements preceding the occurrence of e1 will
not be related to a, and hence the clash will be resolved. �

4 Impact of Removing Axioms

After the parts of the axioms causing the unsatisfiability of concept(s) are iden-
tified, the next step is to resolve the unsatisfiability. In this section, we discuss,
with examples, the impact of removing axioms on an ontology.

The simplest way to resolve unsatisfiability is to remove parts of the prob-
lematic axioms or the whole axioms. However, in this case, it will be easy for
ontology modellers to accidentally remove indirect or implicit entailments in the
ontology. We use the following mad cow5 example to explain what we mean by
the impact of removing axioms from an ontology:

Example 4. Given an ontology where Mad Cow is unsatisfiable due to axioms
α1, α3, α4, α5, the concepts and roles tagged with a star (*) are responsible for
the unsatisfiability:

α1: Mad Cow∗ .= ∃ eats∗.((∃part of∗.Sheep∗) � Brain) � Cow∗

α2: (∃part of.Plant Plant) � ¬ (∃part of.Animal Animal)
α3: Cow∗ � Vegetarian∗

α4: Vegetarian∗ .= ∀ eats.(¬ Animal) � Animal � ∀eats∗.(¬∃part of∗.Animal∗)
α5: Sheep∗ � ∀ eats.Grass � Animal∗

α6: Grass � Plant
α7: Giraffe � Vegetarian

When an axiom involved in the unsatisfiability of a concept is changed, we
calculate the impact of removal on the ontology in three ways: (1) the named
concepts involved in the unsatisfiability : These concepts might lose entailments
which are not responsible for the unsatisfiability. To resolve Mad Cow, one may
claim that not all cows are vegetarians if there exist mad cows, therefore, α3
is removed. However, the indirect assertion Mad Cow � Animal � ∀eats.(¬ Ani-
mal) and Cow � Animal � ∀eats.(¬ Animal) will be lost, as we know the Animal
� ∀eats.(¬ Animal) in α4 is not responsible for Mad Cow’s unsatisfiability. Sim-
ilarly, if α4 is removed, the indirect assertion Vegetarian � Animal � ∀eats.(¬
Animal) and the above two assertions will be all lost. (2) the satisfiable concepts
irrelevant to the unsatisfiability: Other named concepts irrelevant to the sat-
isfiability might lose entailments introduced by the axiom to be changed. The
entailments we consider in this case are indirectly asserted in the ontology before
5 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/mad cows.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 75

the change. If the user removes the problematic part ∀eats.(¬∃ part of.Animal)
from α4, then all the subconcepts of Vegetarian will be affected. The indirect
assertion all giraffes only eat something which is not part of an animal inherited
from Vegetarian will be lost. Cow, which is involved in the unsatisfiability, is
not considered here, as the assertion all cows only eat something which is not
part of an animal will still make Mad Cow unsatisfiable; (3) the classification of
the named concepts of the ontology: The satisfiable named concepts might lose
implicit subsumption relations due to the change of axioms. We run classifica-
tion on the example, and find that Sheep is subsumed implicitly by Vegetarian
due to axioms α2, α4, α5, α6. The change of α4 might also remove the inferred
subsumption between Sheep and Vegetarian.

We now deal with each of the above three cases.

4.1 Impact on Named Concepts Involved in the Unsatisfiability

We first describe how to calculate the impact of the removal of parts of axioms on
the concepts involved in the unsatisfiability. In the following we use an example
to explain how to find entailments, which are not responsible for the concept
unsatisfiability in the ontology, by analysing the sequences of the clashes of an
unsatisfiable concept.

Our idea is to search for any element which exists in the fully expanded tree
but not in the sequences of the clashes. In Example 1, if C in axiom α1 is going
to be removed, then we have to calculate the lost entailments of A which are not
responsible for A’s unsatisfiability. Figure 2 shows the nodes and the sequences
of the clash in A. We find that (a : C, {1}, a : ∀R.B) exists in Seq− (cf. 1 in
Figure 2). We search for elements in the tree whose second concept assertion is
a : C, but which do not exist in Seq− or Seq+. (a : ∃R.¬B � B, {1, 2}, a : C)
matches a : C but exists in Seq− (cf. 2), so we keep searching for other elements
whose second concept assertion is a : ∃R.¬B � B. The matched elements are
(a : ∃R.¬B, {1, 2}, a : ∃R.¬B �B) which exists in Seq− (cf. 3) and (a : B, {1, 2},
a : ∃R.¬B � B) (cf. 4) which does not exist in Seq− or Seq+, and has the same
individual as (a : A, ∅, nil). This means, B is a superconcept of A, and hence,
the lost entailment is A � B.

Assume that A is an unsatisfiable concept, and αi is involved in its unsat-
isfiability, and there exists a clash in node x in the fully expanded tree. When
a concept C in αi is to be removed, we can calculate the lost entailments of A
with the algorithm shown in Figure 5.

4.2 Impact on Satisfiable Concepts Irrelevant to the Unsatisfiability

We now describe how to calculate the impact on named concepts irrelevant
to the unsatisfiability. Note that when a concept is unsatisfiable, it is trivially a
subconcept of all satisfiable concepts and equivalent to all unsatisfiable concepts.
If an axiom C � D is removed, any named concept in other axioms, which refers
to C, will lose entailments introduced by this axiom. In general we lose X � Y
where X is a subconcept of C and Y is a superconcept of D. Continuing the

76 J.S.C. Lam et al.

Given: an unsatisfiable A, the sequences of Seq+, Seq− of a clash,
the label of node x is L(x), and C is to be removed from αi

1. let a be the individual of the last element of the Seq+;
2. setEle := {}; lostEnt := {};
3. roleSeq := 〈〉;
4. ele := SearchSequence((− : C, −, −), Seq+), where ele = (a′ : C, −, −)

//search for the element in the sequence whose first concept is C
5. if (ele != null) then Seq := Seq+;
6. else ele := SearchSequences ((− : C, −, −), Seq−), where ele = (a′ : C, −, −)
7. Seq := Seq−;
8. S := SearchElement((−, −, a′ : C), L(x), setEle)
9. for each ε ∈ S , where ε = (a1 : D1, −,−)
10. if (a = a1), then lostEnt := lostEnt ∪ {A � D1};
11. else roleSeq := SearchRoleSeq ((a′ : C, −, −), Seq, roleSeq, a1);
12. lostEnt := lostEnt ∪ {createSubsumption (A, roleSeq,D1)};

//createSubsumption creates a subsumption relationship for A,
//e.g., if roleSeq = 〈∀R, ∃R〉, then A � ∀R.(∃R.D1) is created.

13. return lostEnt;

14. subroutine: SearchElement((−, −, a′ : C), L(x), setEle)
15. S := search((−, −, a′ : C), L(x));

//search for elements in L(x) whose second concept is C
16. for each ε ∈ S , where ε = (b : D1, −, a′ : C)
17. if ε exists in Seq+ or Seq−, then
18. setEle := setEle ∪ SearchElement((−, −, b : D1), L(x), setEle)
19. else setEle := setEle ∪ {ε};
20. end for
21. return setEle;

22. subroutine: SearchRoleSeq((a′ : C, −, −), Seq, roleSeq, a1)
23. ε := searchSuccessor ((a′ : C, −, −), Seq), where ε = (a′ : −, −, b : E), a′ �= b

//search for the first element succeeding (a′ : C,-,-)
//in the Seq with different individuals

24. if (ε = null), then
25. ε := searchPredecessor ((a′ : C, −, −), Seq), where ε = (b : E, −, a′ : −), a′ �= b

//search for the first element preceding (a′ : C,-,-)
//in the Seq with different individuals

26. if E of the form ∀R.−, then
27. roleSeq := roleSeq · 〈∀R〉; // · means to append an element to a sequence
28. else roleSeq := roleSeq · 〈∃R〉;
29. if (a1 = b), then return roleSeq;
30. else return SearchRoleSeq ((b : E, −, −), Seq, roleSeq, a1);

Fig. 5. Algorithm for Finding Lost Entailments

mad cow example, when the problematic part ∀ eats.(¬∃ part of.Animal) from α4
is removed, all the subconcepts of Vegetarian which are not responsible for the
unsatisfiability will be affected. It is obvious that the lost entailment of Giraffe
is Giraffe � ∀ eats.(¬∃ part of.Animal).

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 77

For those named concepts which refer to a concept to be removed not just
via subsumption relations, the lost entailments cannot be as easily obtained as
above. For the mad cow example, if α4 is changed to be Vegetarian .= ∀eats.Plant
� Animal � ∀eats.(¬∃part of.⊥), then we cannot say the lost entailment is Veg-
etarian � ∀eats.(¬∃part of.Animal), because the definition of Vegetarian still im-
plies that it only eats part of anything, which includes ¬Animal.

The lost entailment of such concepts can be computed by calculating the
difference between the original and modified concepts. To do this we adapt the
notion of the “difference” operator between concepts which is defined in [24].
The difference between C and C′ (1) contains enough information to yield the
information in C if added to C′, i.e., it contains all information from C which
is missing in C′, and (2) is maximally general, i.e., it does not contain any
additional unnecessary information.

Definition 3 (Difference of Concepts). Let C and C′ be the original and
modified concept expressions, the difference between C and C′, which is a set of
concepts, is defined as

difference(C, C′) =

{
max�{E|E .= C ¬C′} if C � C′,
max�{E|E .= C′ ¬C} if C′ � C

For Example 1, if concept ∃R.¬B in axiom α2 is removed, then the modified
axiom becomes C � B. As α3 refers to C, the lost entailment of G will be
∀R.(∃R.¬B �B �F)¬∀R.(B �F), i.e., ∀R.(∃R.¬B)¬∀R.(B �F). The disad-
vantage of this calculation is that the representation of lost entailments could be
too complicated for human users to understand, the simplification of such repre-
sentations is therefore necessary. Brandt et al. [6] introduced a syntax-oriented
difference operator, but the algorithm only supports the difference between an
ALC- and an ALE-concept description. As ALE does not support disjunction
concepts, their difference operator is not applicable to our approach. In the fu-
ture work, the approaches to updating of DLs [14,8] can be borrowed.

4.3 Impact on the Classification

Besides deciding the satisfiability of concept expressions, description logic rea-
soners are able to compute the classification of an ontology. Classification is the
process of determining the subsumption relationship between any two named
concepts in an ontology; e.g., for A and B, it determines whether A � B and/or
B � A. Recall that reasoners decide subsumption relationships by reducing the
problem to a satisfiability test (i.e., A � ¬B is unsatisfiable if A � B holds).
Whenever an axiom is changed, the classification of the ontology might be af-
fected. In this paper we aim to point out to the user which parts of the clas-
sification will be affected if a certain change is made to the ontology. If the
classification of the entire ontology must be checked after each change, then it
will involve n2 subsumption tests for n named concepts; moreover, each sub-
sumption test (checking for satisfiability in ALC w.r.t general inclusion axioms)

78 J.S.C. Lam et al.

is EXPTIME-complete [23]. It is impractical to run this classification test after
each change made to the ontology. In this section, we will describe how we make
use of the sequences of clashes (satisfiability test) to check if existing subsump-
tion relations will be affected. If it is not affected, the subsumption test can be
skipped.

Due to the monotonicity of the DLs we consider in this paper, removal of (part
of) axioms cannot add new entailments, and will not change any previous non-
subsumption relationships. Therefore, we only need to re-check if the removal
of axioms will invalidate the previously found subsumption relationships. By
building a tree with the application of the expansion rules on A � ¬B, we can
obtain the sequences of the clashes. The elements in the sequences are the cause
of the unsatisfiability, that is the subsumption relationship. With the sequences
of clashes in the tree, we can analyse if a certain removal/change of (part of)
an axiom will affect the current subsumption relation. Therefore, we are able to
predict which subsumption relationships of named concepts will be affected, and
skip the subsumption tests for the unaffected named concepts.

We check if a concept component of an axiom which is going to be removed
will affect the previously found subsumption as follows:

Lemma 4. Given a terminology T such that T � A � B, where A and B are
named concepts, and a fully expanded tree T of A�¬B, the sequences of clashes
in the tree are obtained. Let Iu be the union of the index-set of the first element
in all of the sequences. Assume that a concept component C in αi is going to be
removed, where αi ∈ T , the subsumption A � B is unaffected if either one of
the following conditions hold:

1. i /∈ Iu, αi is not invovled in the unsatisfiability,
2. (− : C, I, −) and (− : C′, I, −) do not exist in any sequences of clashes where

i ∈ I, i ∈ Iu and C′ is a negated form of C

Proof. The sequences of the clashes in T contain the concept components and
sets of axioms which are relevant to the subsumption.

1. If an axiom αi going to be changed does not exist in the index-set of any
sequence of the clashes, i.e., i /∈ Iu, then αi is not involved in the unsatisfi-
ability, any change of αi does not affect the subsumption.

2. If αi is involved in the unsatisfiability (i.e., i ∈ Iu), but (− : C, I, −) and
(− : C′, I, −), where i ∈ I, do not appear in any sequences of clashes,
then they are not responsible for the clashes in the tree, and therefore not
responsible for the subsumption. Since B is negated for the satisfiability test
(A � ¬B), we need to check the negated form of C as well. �

We use the following example to illustrate how we make use of the sequences of
clashes (satisfiability test between two named concepts) to detect if some change
will affect a subsumption.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 79

Clash
to be removed, not exists in Seq- or Seq+

Fig. 6. Subsumption Test on B � A

Example 5. Given a terminology with the following axioms, we check if B � A.

α1: A
.= D

α2: B
.= E � F

α3: E � D

As seen in Figure 6, B � A holds, because a clash exists in the label of the root
node, and so B � ¬A is unsatisfiable. Assume the concept component F in α2 is
to be removed, we know that B � A still holds, because (a : F, {2}, −) does not
exist in either of the sequences of the clash.

5 Harmful and Helpful Changes

In this section we study ways of changing problematic axioms to resolve un-
satisfiability. It should be noted that improperly rewriting a problematic axiom
might not resolve the unsatisfiability, and could introduce additional unsatisfia-
bility. It is important to help ontology modellers to make changes in order not
to introduce unintended contradictions. For this purpose, we define harmful and
helpful changes. Harmful changes either fail to resolve the existing unsatisfiabil-
ity or introduce additional unsatisfiability. Helpful changes resolve the problem
without causing additional contradictions, and restore some lost entailments.

5.1 Harmful Changes

Given an unsatisfiable concept A in T , assume a concept E on the right-hand
side of a problematic axiom αi is chosen to be replaced by some other concept.
We can find the harmful concepts for the replacement of E by analysing the
elements in the sequences of the clashes of concept A.

Definition 5 (Harmful Change). A change which transforms T to T ′ is
harmful with respect to an unsatisfiable concept A in T , if one of the follow-
ing conditions holds:

– T ′ � A � ⊥, where T ′ is the changed ontology;
– if some named concept Ai which is satisfiable in T is not satisfiable in T ′.

That is, T � Ai � ⊥ and T ′ � Ai � ⊥, for some Ai in T .

80 J.S.C. Lam et al.

The following lemma identifies the changes which are harmful due to the fact
that they fail to resolve the existing unsatisfiability. To identify other harmful
changes (which introduce additional unsatisfiability unrelated to the original
problem), the whole ontology may have to be rechecked.

Lemma 6. Assume a concept C on the right-hand of axiom αi is to be rewrit-
ten. Given two sequences of a clash, Seq+ and Seq−, involving C, if one of the
elements, ε, in Seq+, is of the form (a : C, I, −) and i ∈ I, then

1. All the concepts in the elements in Seq+ preceding (a : C, I, −), which contain
the same individual as ε, are harmful for replacing C;

2. The negation of all the concepts in elements in Seq−, which contain the same
individual as ε, are also harmful, because these replacements still keep the
unsatisfiability.

The lemma is analogous for the element ε in Seq−.

Proof. Assume that a concept C in axiom αi is to be rewritten, and two se-
quences of a clash, Seq+ and Seq−, involving C, are obtained from a node of the
tree T. In a sequence, for every two adjacent elements, ε1 and ε2, which are of
the form (a : E1, −, a : E2) and (a : E2, −, −), containing the same individual,
the concept E1 is a superconcept of E2. This extends inductively to all elements
preceding ε1, i.e., they are all superconcepts of E2.

1. If an element ε in Seq+, which is of the form (a : C, I, −) and i ∈ I, then the
concepts in all the elements, which are preceding ε and contain individual a,
are harmful for replacing C. This is because they are superconcepts which
are involved in the clash.

2. The elements in Seq− lead to a negated concept, which results in a contra-
diction. Hence, the negation of all the concepts in elements in Seq−, which
contain the same individual a, are also harmful. �

In Example 1, if C in axiom α1 is going to be replaced, we know that there
exists an element (a : C, {1}, a : C � ∀R.B) in Seq− of the clash, then the
harmful concepts for the replacements will be ∃R.¬B � B, ∃R.¬B, ¬(∀R.B),
¬(C � ∀R.B), ¬(C � ∀R.B � D), and ¬A. The first two items are from Seq−,
the rest are from negated elements in Seq+.

5.2 Helpful Changes

If we know which concepts are harmful to replace a concept in a problematic
axiom, then all the concepts which are not harmful are candidates for replace-
ment. However, there are many possible candidates. Our aim is to find desirable
concepts for replacement in order to minimise the impact of changes. To do this
we introduce helpful changes which cover for the lost entailments due to the
removal. When an axiom A � C in T is changed to be A � C′ (where A is a
named concept), this change is helpful if (1) C′ can compensate for at least one
lost entailment due to the removal of C, (2) the changes are not harmful, that

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 81

means all concepts which are satisfiable in T are also satisfiable in the changed
ontology. Note that we only change concepts in the right-hand side of axioms.
We now formally define a helpful change.

Definition 7 (Helpful Change). A helpful change is defined as the removal
of an axiom followed by an addition. Assume that T is the original ontology
and an axiom α in T involved in the unsatisfiability of concept A is going to be
removed, resulting in intermediate ontology T1. A new axiom is then added to
T1, resulting in the changed ontology T ′. The change is helpful with respect to
A, if the following conditions hold:

1. if Ω is the set of lost entailments in going from T to T1 (i.e., due to the
removal of α), such that ∀γ ∈ Ω, T � γ, then there exists β ∈ Ω, such that
T1 � β and T ′ � β;

2. T ′ � A � ⊥.

Lemma 8. Assume C on the right-hand side of a problematic axiom (involved
in the unsatisfiability of A) is going to be replaced by C′, the change is helpful if
C′ is a superconcept of C and is not involved in the clash of A.

Proof. It is obvious that any concept which is not involved in the clash is not
harmful as a replacement for C. We now prove its superconcepts are helpful.
Given that in an axiom α : E � C in T , concept C is going to be replaced by
its superconcept C′. We divide the change into two steps:

1. Remove C from α, the changed ontology T1 = T \ {E � C};
2. Add C′ to α, the final ontology T ′ = T1 ∪ {E � C′}.

As C′ is a superconcept of C, E � C is removed in T1, so the indirect sub-
sumption relationships of A with C’s superconcepts are also lost, that means
T1 � E � C′, but obviously, T ′ � E � C′. �

Lemma 9. Given two sequences of a clash w.r.t the unsatisfiability of A ob-
tained from a fully expanded tree T, assume a concept C on the right-hand side
of axiom αi is to be rewritten. C′ is helpful as a replacement for C, if the fol-
lowing conditions hold:

1. there exist two elements e and e′ in T, which are (a : C, I, −) and (a :
C′, I ′, −), and no element of the form (a : C′, I ′, −) exists in either of the
two sequences;

2. I ⊂ I ′, the index-set of the element with concept C is a proper subset of that
of the element with concept C′.

Proof. We have to prove that (1) C′ is a superconcept of C, this is a sufficient
condition to ensure that the first requirement for helpfulness is met; and (2) C′

is not involved in the clash.

82 J.S.C. Lam et al.

1. If elements e and e′ in T contain the same individual, then they have a
subsumption relationship (i.e., C is either a subconcept or superconcept of
C′). Additionally, if the index-set of the element e is a proper subset of the
index-set of the element e′, then that means e′ is added to L(x) after the
addition of e (i.e., the addition of e′ is triggered by e). Then we can confirm
that C′ is a superconcept of C.

2. If an element, which is of the form (a : C′, −, −), exists in T, but not in
either of the two sequences, then C′ is not involved in the clash. �

Continuing with Example 1, assume C in axiom α1 is going to be replaced,
there exists an element (a : C, {1}, a : C�∀R.B) in Seq− of the clash (see Figure
2), we find that the two elements (a : D, {1}, · · ·) and (a : B, {1, 2}, · · ·) do not
exist in either of the sequences of the clash. However, the former element does
not fulfill condition (2) in Lemma 9, because the index set of (a : C, {1}, · · ·) is
not a proper subset of (a : D, {1}, · · ·). Hence, the only helpful concept for the
replacement is the concept of the latter element, B, because B is a superconcept
of A, but D is not.

Overall, the helpful changes include the replacements of a concept by its
superconcepts not involved in any clash (see Lemma 9), and the lost entailments
irrelevant to the unsatisfiability of the ontology (see Section 4). These changes
are suggested to the user to add back to the ontology in order to minimise the
impact of changes.

6 Evaluation

To demonstrate the effectiveness of our proposed approach, we have built a
prototype. The implementation extends the Pellet61.3 reasoner to support our
fine-grained approach. In this section we describe a usability evaluation to evalu-
ate the benefits of our approach; the result is compared with existing debugging
tools. Next, we present the performance evaluation of our prototype using a set
of satisfiability tests and comparing it with an existing DL reasoner.

6.1 Usability Evaluation

We created a plugin in Protégé 3.2 for repairing ontologies, called ‘RepairTab’.
Figure 7 shows our plugin displaying the problematic axioms of mad cow, which
is an unsatisfiable concept from the Mad Cow ontology7. As can be seen, the
parts of axioms responsible for the unsatisfiability are highlighted. The parts of
axioms or whole axioms can be removed by striking out (cf. (A) in Figure 7). If
the user decides to remove vegetarian from the axiom cow � vegetarian, the lost
entailments of this removal can be previewed. The harmful and helpful changes
are also listed. The user can choose to add the helpful changes to the ontology
to minimise the impact of the removal (cf. (B)).
6 http://www.mindswap.org/2003/pellet/
7 http://cohse.semanticweb.org/ontologies/people.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 83

A

B
Remove Vegetarian

from axiom (1) Preview Impact
of Removal

Fig. 7. (A) mad cow is unsatisfiable. The problematic parts of the axioms are high-
lighted. (B) The lost entailments of the selected item can be previewed. The helpful
and harmful changes are listed.

For the purpose of evaluation, we decided to compare RepairTab with OWLDe-
bugger8 and SWOOP9. OWLDebugger is another Protégé plugin, which provides
explanations for unsatisfiable concepts. SWOOP is a stand-alone editor. We are
interested in two main functionalities in SWOOP [12]: (1) explanations of unsat-
isfiability – it pinpoints the problematic axioms for unsatisfiable concepts, and is
able to strike out irrelevant parts of axioms that do not contribute to the unsatisfi-
ability; (2) ontology repair service – it displays the impact on ontologies due to the
removal of axioms. When an axiom is removed, it shows the fixed and remaining
unsatisfiable concepts, as well as the lost and retained entailments.

We conducted a usability-study with three ontologies and three groups of
subjects. Fifteen subjects, who were postgraduate students in the Computing
Science Department at the University of Aberdeen, were chosen for the eval-
uation. They had knowledge of OWL ontologies and Description Logics; they
had experience of using both Protégé and SWOOP. None of the subjects had
seen these ontologies before, and they were divided into three groups to debug

8 http://www.co-ode.org/downloads/owldebugger/
9 http://www.mindswap.org/2004/SWOOP/

84 J.S.C. Lam et al.

the same set of ontologies using one of these tools. Ideally, ontologies in our
evaluation would fulfill the following conditions:

1. the expressivity of ontologies is in ALC;
2. they should be interestingly axiomatised, i.e., containing axioms like dis-

jointness, role restrictions, concept definitions, and so on, and should not be
simply taxonomies;

3. the domain of the ontologies can be easily understood by subjects.
4. they are available on the Web and contain unsatisfiable concepts which could

be difficult for non-expert users to debug.

The Mad Cow10, Bad-food.owl11 and University.owl12 ontologies available
on the Web meet the requirements and were chosen for evaluation. Both the
Mad Cow.owl and Bad-food.owl ontologies each contain one unsatisfiable con-
cept. University.owl was simplified into ALC format, and it contains 12 unsatis-
fiable concepts which were sorted based on the number and size of the MUPSs
of the concepts. Our hypotheses for this usability study were:

1. The explanation function of RepairTab, which highlights parts of the axioms
causing the unsatisfiability, helps users resolve the unsatisfiability. This is a
relative advantage of RepairTab when compared with OWLDebugger and
SWOOP.

2. The subjects using RepairTab will take less time to understand the source
of errors and resolve them, compared with OWLDebugger and SWOOP.

3. RepairTab’s list of lost entailments helps subjects decide which change(s)
should be made in order to minimise the impact on the ontologies.

4. RepairTab’s list of helpful changes provides useful (as rated by subjects)
suggestions for subjects to add axioms back to the ontologies in order to
minimise the impact of the changes on the ontologies.

5. RepairTab’s list of harmful changes provides useful (as rated by subjects)
guidance for subjects about which changes should not be made in order to
prevent more unsatisfiable concepts being created.

The usability study was conducted as follows. Each subject was given a tutorial
on the debugger they would use. A detailed walkthrough of the relevant expla-
nation and debugging functions was given using a sample ontology. Groups A,
B and C were assigned to RepairTab, OWLDebugger and SWOOP respectively.
Each group was to resolve all unsatisfiable concepts in the three ontologies using
their respective tools.

The subjects in the three groups were asked to answer a survey. For each task,
they were asked if they understood the cause of the unsatisfiable concepts, which
axioms were changed, and how many changes were made etc. At the end of the
session, they were also asked to rate the usefulness of the tool used on a 5 point
scale where 5 is ‘very useful’ and 1 corresponds to ‘useless’. For Group A, the
10 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/mad cows.owl
11 http://www.mindswap.org/dav/ontologies/commonsense/food/foodswap.owl
12 http://www.mindswap.org/ontologies/debugging/university.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 85

subjects were also asked how useful the lost entailments, helpful and harmful
changes facilities were, and how many helpful changes they had selected to add
back to the three ontologies. For Group C, the subjects were also asked about the
usefulness of the explanation and repairing functionalities provided by SWOOP.
In addition, we also asked the subjects for their comments on the tool used,
and how it could be improved. The time taken by each subject for resolving the
unsatisfiability in each ontology was recorded. The modified ontologies were also
recorded for analysis by the experimenter.

6.2 Analysis of Results

Table 3 shows the results for the three tools used by the subjects. We took the
average of the times for each group to complete the tasks. As some tools do
not provide certain functionalities, those ratings are not included in the table.
As can be seen from the Table 3, firstly, the explanation function (i.e. high-
lighting the problematic parts of axioms) of RepairTab was rated to be more
useful than SWOOP and OWLDebugger in two examples, but less useful on the
Bad-food.owl ontology compared with OWLDebugger. Secondly, the subjects in
Group A took less time to resolve the unsatisfiability than Group B; Group C
had similar performance with Group A. Therefore, we cannot verify the first
and second hypothesis currently. Both the lost entailments and helpful changes
were rated to be useful overall, the ratings were in agreement with the third
and fourth hypotheses. However, the harmful changes are less useful relatively,
therefore the final hypothesis was falsified. We now analyse their performance
for each ontology.

Table 3. Results of Debugging ontologies (A = RepairTab, B = OWLDebugger, C =
SWOOP)

Mad Cow Bad-food University
Group A B C A B C A B C
Average Time Taken (in mins) 5 8.8 6.9 6.4 6.8 6.0 10.2 16.3 11.5
No. of subjects who understood the errors 5/5 4/5 3/5 3/5 2/5 3/5 0/5 0/5 0/5
Rating of Explanation Function 5 4 2.6 3.5 4.5 3.5 5 4 2.6
Rating of Lost & Retained Entailments
(SWOOP)

- - 3 - - 4 - - 5

Rating of Fixed & Remaining Unsat. Concepts
(SWOOP)

- - 3 - - 3 - - 5

Rating of Lost Entailments (RepairTab) 5 - - 4 - - 5 - -
Rating of Helpful Changes (RepairTab) 5 - - 4 - - 4 - -
Rating of Harmful Changes (RepairTab) 4 - - 2.5 - - 2.5 - -

For Mad Cow.owl, more subjects using RepairTab understood the errors in
Mad cow.owl than those using OWLDebugger or SWOOP. It is suggested this is
because the problematic axioms of mad cow were highlighted by RepairTab, and
so the subjects understood the error quickly. However, it is difficult to resolve

86 J.S.C. Lam et al.

the problem correctly. The subjects in Group A usually resolved the error by
removing part of an axiom and then adding the helpful changes suggested by
the plugin; the subjects in Group B had to explore changes to the definitions of
concepts or add extra subconcepts for cow (e.g., to have Normal Cow as a sibling
of mad cow), some also triggered additional unsatisfiable concepts. Two subjects
in Group C failed to understand the cause of unsatisfiable mad cow, because some
irrelevant parts of axioms were not struck out, this led the subjects to think that
the irrelevant parts were responsible for the unsatisfiability.

In the case of Bad-food.owl, we report two issues. Firstly, the times taken
for this ontology were similar in all three tools; the subjects in Group B took
relatively less time to debug this ontology than when they were debugging
Mad Cow.owl. Secondly, the explanation function of OWLDebugger was rated
to be more useful than RepairTab or SWOOP. The following is our explanation
for this observation. OWLDebugger explains the error was due to the disjoint
axiom, when in fact all the axioms referring to this disjoint axiom are also caus-
ing the problem. As a result of OWLDebugger’s recommendation most subjects
immediately chose to remove this axiom without understanding the cause of
the unsatisfiable concept; if they understood the precise reason they could in-
stead have altered one component of an axiom referring to the disjoint axiom.
Our plugin facilitates these fine-grained changes. However, it is not without its
shortcomings: two subjects found it difficult to analyse the problematic axioms
which were presented in the formal DL notation. This problem was pronounced
with Bad-food.owl because the axioms are relatively complicated. Furthermore,
the fine-grained approach was not applicable because all parts of the axioms are
relevant to the unsatisfiability, and hence all were highlighted in red. This ex-
planation given for this example is similar in SWOOP. As a result, the subjects
using RepairTab or SWOOP found it difficult to understand the reason for the
unsatisfiability and to decide which changes should be made.

For the University.owl, we report two issues. Firstly, the rating of useful-
ness of the explanation in RepairTab and OWLDebugger is higher than that of
SWOOP. This is because, for the unsatisfiable concept Person, SWOOP strikes
out the whole right-hand side of a problematic axiom; some subjects thought
that the explanation was confusing. Secondly, the subjects using RepairTab and
SWOOP took less time to complete the task than those using OWLDebugger.
We suggest the following reasons: (1) RepairTab sorted the twelve unsatisfiable
concepts in order of size of problematic axioms. The subjects were guided to
debug the concept with the least problematic axioms first. SWOOP highlights
the root and derived unsatisfiable concepts. When a concept was resolved, most
of its subconcepts were resolved as well. However, the subjects in Group B had
to explore each unsatisfiable concept one by one. (2) RepairTab and SWOOP
provide previews of the impact of removal, but OWLDebugger does not. We no-
ticed that two subjects in Group B removed the disjoint axioms which caused the
problems. This removal causes many lost entailments, but the subjects did not
realise this. On the other hand, the subjects in Group A or C were discouraged
from this type of removal because they previewed the impact of removal. Three

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 87

subjects in Group A also changed their minds after exploring the consequences
of different modifications (i.e., after seeing many lost entailments or more help-
ful changes provided). Helpful changes were usually added back to the ontology.
The subjects in Group C tried to remove some axioms and preview the impact
of the removal on the ontology. Some subjects chose to remove axioms which
caused fewer lost entailments and more retained entailments. However, there is
no functionality to add the lost entailments back to the ontology in SWOOP.
In some cases, the displayed lost entailment is exactly the same as the axiom
just removed by the subjects. Therefore, in comparison, RepairTab is able to
minimise the impact on the ontologies in the case of removing parts of axioms,
by providing helpful changes facility.

Interestingly, we found that some subjects claimed they understood the rea-
sons for the unsatisfiability, but they simply deleted disjoint axioms or subclass-of
relationships, particularly in University.owl. Therefore, we classified these sub-
jects as not understanding the errors. We believe this ontology, which contains
one of the most common OWL modelling errors, is very difficult for the subjects.
In the case of Person in University.owl, none of the subjects realised that FrenchU-
niversity .= ∀ offerCourse.Frenchcourse, the domain of offersCourse is University,
FrenchUniversity is a subclass of University, therefore, University is defined as
equivalent to owl.Thing implicitly, then Person which is disjoint with owl:Thing is
unsatisfiable. Two subjects using SWOOP did not realise that SWOOP displays
the implicit axiom University .= owl:Thing, they removed the domain or disjoint
axiom to resolve the problem. However, when some subjects in Group A were
exploring the removal of FrenchUniversity .= ∀ offerCourse.Frenchcourse, they
discovered that a helpful change FrenchUniversity � ∀ offerCourse.Frenchcourse
could be added back to the ontology, and they decided to make this change.

6.3 Overall Comments and Summary

We learnt some useful lessons based on the results of the study and the comments
given by the subjects.

Group A – RepairTab. The subjects using RepairTab appreciated that the
problematic parts of axioms are highlighted, this helped them to analyse the
cause of errors. For the impact of change, for those subjects who understood the
problems but had no idea what changes should be made, the impact of removal
and suggested changes were rated to be very useful. On the other hand, for those
subjects who already had an idea what changes should be made, the suggestions
of changes were less useful; for example, if a subject wants to make complex
changes, such as changing role restrictions or creating new concepts; our plugin
does not support these changes. Also, the list of harmful changes was rated as 3
on average. This is because the subjects who understood the causes of problems,
already knew what changes should not be made.

The overall comments on our plugin were that it is useful for resolving incon-
sistencies, but that the presentation of problematic axioms could be more user
friendly, such as using natural language. Two subjects thought the presentation

88 J.S.C. Lam et al.

of problematic axioms was too formal;they took longer to analyse the meaning
of those axioms. For example, Protégé presents disjoint concepts in a ‘Disjoints’
table, but a disjoint axiom is presented in our plugin as ‘C � ¬D’.

Group B – OWLDebugger. Most subjects thought the plugin was useful
because it indicated which conditions contradict with each other; the clash in-
formation was also shown in quasi-natural language. Debugging steps were pro-
vided to suggest which concepts should be debugged. For example, subjects were
pointed to debug CS Student when the concept AIStudent was chosen to be de-
bugged. However, sometimes it was not helpful because the explanation of the
unsatisfiable concept was oversimplistic when the cause of the unsatisfiability
was too complex to explain.

Group C – SWOOP. (i) Explanation Function: Two subjects thought the
function was confusing, because in some cases, it does not strike out all of the
irrelevant parts (mad cow in Mad Cow.owl is an example), sometimes, it strikes
out the relevant parts of axioms. Person in University.owl is an example, in which
the whole right-hand side of an axiom was struck out, this misled the subjects
to think that the problematic axiom was not responsible for the unsatisfiability.
This is because the implementation in the latest version of SWOOP 2.3 Beta 3
is incomplete with respect to the published algorithm [12]. Thus, this function
only works in a few cases in our study.
(ii) Repairing Function: Most subjects thought the tool was useful because (1) it
separates the root and derived unsatisfiable concepts, so that they can focus on
only debugging the root ones; (2) it enables the user to try removing differ-
ent axioms and preview the impact of removal before committing the change;
(3) it displays the lost and retained entailments when axioms are removed. Ad-
ditionally, in some cases, the tool provides (Why?) hyperlinks which explain why
entailments are lost and retained. However, there is no explanation for the fixed
and remaining unsatisfiable concepts.

However, two subjects thought that SWOOP’s repair service is limited to
the removal of the whole axioms, rather than changing certain parts of axioms.
Removing whole axioms will unnecessarily cause additional information loss. For
the Mad Cow.owl example, one subject claimed the definition of mad cow was
modelled poorly. If the definition axiom of mad cow is completely removed, then
all information about mad cow will be lost. This is not a desired change for the
subject, though the ontology becomes satisfiable.

6.4 Performance Analysis

The non-determinism in the expansion rule (i.e., -rule) results in poor per-
formance of the tableau algorithm. Existing DL reasoners employ optimisation
techniques. They have demonstrated that even with expressive DLs, highly op-
timised implementations can provide acceptable performance in realistic DL ap-
plications. For example, dependency directed backtracking is used to prune the
search tree [9]. However, in our fine-grained approach, these techniques are no
longer applicable, as we aim to detect all possible clashes by fully expanding

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 89

the tree. This will adversely affect the performance of the algorithm especially if
there is extensive non-determinism in the ontology. Considering that the num-
ber of unsatisfiable concepts is relatively small compared to the total number
of concepts in realistic ontologies, we believe it is practical to first check the
consistency of ontologies using optimised reasoners to find the unsatisfiable con-
cepts, and then run the fine-grained algorithm on those unsatisfiable concepts.
For example, Sweet-JPL.owl13 contains 1537 concepts, and one concept is unsat-
isfiable. Hence, our algorithm is then only applied to the unsatisfiable concept,
instead of the whole ontology.

In this subsection we report an evaluation with a number of realistic ontolo-
gies. RepairTab, a plugin for Protégé, was implemented in Java. The tests were
performed on a PC (Intel Pentium IV with 2.4GHz and 1GB RAM) with Win-
dows XP SP2 as operating system. Benchmarking with real-life ontologies is
obviously a convincing way to evaluate the quality of our approach. However,
there is only a limited number of realistic ontologies that are both represented
in ALC and unsatisfiable. We therefore constructed simplified ALC versions for
a number of ontologies downloaded from the Internet. We then removed, for ex-
ample, numerical constraints, role hierarchies and instance information. As some
ontologies are satisfiable, we randomly changed them such that each change on
its own lead to unsatisfiable concepts. For example, we added disjointness state-
ments among sibling concepts, and introduced some common ontology modelling
errors enumerated by [18]. Figure 8 (left-hand side) shows the average runtime
(in seconds) of the satisfiability test of a set of ontologies. The brackets of the
ontology names indicate the number of unsatisfiable concept tested. The execu-
tion time of our extended algorithm is increased by 15% on average compared
with that of Pellet, because our algorithm aims to detect all possible clashes
given that it requires a fully expanded tableau tree, while many optimisations
are disabled. In the cases of Transportation.owl and Economy.owl, the running
time for checking the satisfiability of 20 and 30 concepts is less than 0.6 second.
The result shows that the performance of our algorithm is feasible in realistic
ontologies which do not contain a large number of unsatisfiable concepts.

We also were interested in the Galen ontology14, which models medical terms
and procedures. It contains over 2700 classes and about 400 GCIs. As its DL
expressivity is SHf, we constructed a simplified ALC version of it. Figure 8 (right-
hand side) shows the average runtime (in seconds) of from 1 to 1000 satisfiability
tests. Note that there is a large number of GCIs in the Galen ontology, the
optimised reasoner is able to eliminate non-determinism by absorbing them into
primitive concept introduction axioms whenever possible (CN � D, where CN
is a named concept, D is a concept description). Although the execution time
of RepairTab dramatically increases with the number of unsatisfiable concepts
with the same reason as the above, absorption is still applicable to our revised
algorithm, because it is algorithm independent. Absorption is used to preprocess
the ontology before the tableau algorithm is applied. For example, given two

13 http://www.mindswap.org/ontologies/debugging/buggy-sweet-jpl.owl
14 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/galen.owl

90 J.S.C. Lam et al.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

No. of Unsat. Concepts (in GALEN)

T
im

e
(i

n
 s

ec
)

Pellet

RepairTab

0

0.1

0.2

0.3

0.4

0.5

0.6

Univ
er

sit
y (

12
)

Bad
-fo

od
 (1

)

Koa
la

(3
)

Swee
t J

PL
(1

)

m
ad

_c
ow

 (1
)

Tra
ns

po
rt

(2
0)

Eco
no

m
y (

30
)

T
im

es
 (

in
 s

ec
)

Pellet

RepairTab

Fig. 8. Performance Test of Pellet and RepairTab

axioms (1) CN � ∀R.¬C � ¬D, (2) ∀R.¬C � ¬ CN D. Axiom (2) will be
absorbed as CN � D ∃R.C, and can then be merged with axiom (1), the
resulting axiom is CN � (∀R.¬C � ¬D) � (D ¬∃R.C). We then apply the fine-
grained algorithm to trace which parts of the axiom cause the unsatisfiability.
However, the algorithm modifies the original axioms; in this example, two axioms
are modified into one axiom, we can only tag the parts of the resulting axioms
(modified by the algorithm) relevant to the unsatisfiability, instead of the original
asserted axioms. In future work, to improve usability, it might be necessary to
explain the correlation between the originally asserted axioms and the axioms
(modified by the tableau algorithm) in a way that is understandable to the user.

7 Related Work

Several methods have been developed in the literature to deal with unsatisfiable
ontologies. In this section, we first review three existing approaches to analysing
unsatisfiable ontologies, and then describe two related fine-grained approaches
used in debugging ontologies. Finally, we discuss the related work on resolving
unsatisfiable concepts in ontologies.

7.1 Analysing Unsatisfiable Ontologies

We now describe three approaches to analysing unsatisfiable ontologies. One
approach is to find maximally satisfiable sub-ontologies by excluding problematic
axioms [4,15]. Another approach is to find minimal unsatisfiable sub-ontologies
by pinpointing possible problematic axioms [22,21,10,13]. Finally there is the
heuristic approach to explaining unsatisfiability [26].

Baader et al. [4] investigate the problem of finding the maximally satisfiable
subsets of ABox assertions. In their approach, each element in the nodes in a tree
is labeled with a propositional formula which indicates the sources of axioms,
whereas Meyer et al. [15] use an index-set associated with every element of the
label of nodes in a tree. The index-set is used to exclude axioms involved in the

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 91

unsatisfiability of concepts, so that maximally concept-satisfiable subontologies
(so called MCSS) can be obtained.

Schlobach et al. [22,21] proposed to pinpoint the so called Minimal Unsatisfi-
ability Preserving Sub-ontologies (MUPSs), which are sets of axioms responsible
for an unsatisfiable concept. This is called axiom pinpointing. Roughly, a MUPS
of a named concept contains only axioms that are necessary to preserve its un-
satisfiability. They further exploit the minimal hitting-set algorithm described
by Reiter [19] to calculate diagnosis sets, i.e minimal subsets of an ontology that
need to be repaired/removed to make the ontology satisfiable.

Overall, the above approaches achieve the same result. A MCSS can be ob-
tained by excluding the axioms in any one of the diagnosis sets. Moreover, they
are only applicable to unfoldable terminologies T ; they simply remove problem-
atic axioms from the ontology, and the support for rewriting the axioms is still
limited.

Kalyanpur et al. [13,10] extended the axiom pinpointing technique (i.e., find-
ing MUPS) to the more expressive description logic SHOIN . They utilise a
glass-box strategy for finding the first MUPS of an unsatisfiable concept. The
description logic tableaux reasoner was modified to keep track the cause for
the unsatisfiability of a concept, so that the minimal set of relevant axioms in
the ontology that support the concept unsatisfiability was obtained. Their tool,
SWOOP, also detects interdependencies between unsatisfiable concepts, in which
root and derived unsatisfiable concepts are identified. The user can differentiate
the root bugs from others which are caused by the root unsatisfiable concepts,
and focus solely on the root concepts. This is a particularly effective approach
to fixing a large set of derived unsatisfiable concepts. Then, they use a black-box
approach, which is reasoner independent, to derive the remaining MUPSs from
the first MUPS. Reiter’s Hitting Set Tree (HST) algorithm [19] was adapted to
find the remaining MUPSs [12]. The advantage of this approach is that it makes
use of the optimisation techniques embedded in the reasoner. The disadvantage
is that the complexity of generating the HST is exponential with the number
of MUPSs. Their results showed the algorithm performed well in practice, be-
cause most of the satisfiability tests exhibited at most three or four MUPSs,
with five to ten axioms each [11]. In comparison, RepairTab detects all MUPSs
of an unsatisfiable concepts by fully expanding the tree. The disadvantage of our
approach is that most optimisations are not applicable, however, its complexity
is independent of the number of MUPSs.

Rector et al. [18] addressed some common problems of ontology users during
the modelling of OWL ontologies. Based on these common errors, the authors
developed a set of heuristic rules and incorporated them into a Protégé-OWL
plugin. Their program is called OWLDebugger; it can detect commonly occurring
error patterns in OWL ontologies. This alleviates the user from troubleshooting
the unsatisfiable concepts. It helps users to track down the reasons for errors
in OWL concepts. Quasi-natural language explanations for unsatisfiable OWL
concepts are also generated. As the heuristic approach and pattern matching
cannot determine the causes of the inconsistency in every case, the authors are

92 J.S.C. Lam et al.

still investigating how to extend and improve the set of heuristic rules. However,
the process of resolving problems is left to the user who has to run the reasoner
frequently to check if consistency has been achieved.

7.2 Fine-Grained Approaches

Schlobach et al. [22] apply syntactic generalisation techniques to highlight the
exact position of a contradiction within the axioms of the TBox. This is called
concept pinpointing. Concepts are diagnosed by successive generalisation of ax-
ioms until the most general form which is still unsatisfiable is achieved. The
main difference with our work is that in [22] the concepts in axioms are gen-
eralised and only these generalised axioms are shown to the user. For example,
α1: A � C � D � E, α2: C � ¬D � F , then the generalised axioms A � C � D,
and C � ¬D are shown. It can be an additional burden on the user to cor-
relate between the generalised axioms and the originally asserted axioms. In
the case of very complicated axioms, the user might find it difficult to know
which generalised axioms correspond to which of the original asserted axioms.
Compared to our approach, we use a tracing technique to pinpoint problematic
parts of axioms, the asserted axioms are directly displayed and faulty parts are
highlighted.

Kalyanpur et al. [12] also propose a fine-grained approach, which determines
which parts of the asserted axioms are responsible for the unsatisfiability of
concepts. Their idea is to rewrite the axioms in an ontology in a normal form
and split up conjunctions in the normalised version, e.g., A � ∃R.(C � D) is
rewritten as A � ∃R.E, E � C, E � D and C � D � E. In comparison, we
achieve the same results as their approach, but we identify the irrelevant parts of
axioms by making use of the tableaux algorithm, instead of splitting the axioms.

7.3 Resolving Unsatisfiable Concepts

Few approaches have been proposed which address the strategies for resolving
unsatisfiable concepts. Plessers et al. [17] propose a set of rules to rewrite ax-
ioms to resolve the detected inconsistencies. They weaken restrictions either by
removing an axiom, replacing it with its superconcepts, or changing its cardi-
nality restriction values.

On the other hand, in SWOOP[13], the rewriting axioms suggestions are pro-
vided, but these suggestions are limited to a small number of common errors
patterns. Moreover, the common error patterns may only apply for those ontolo-
gies built by non-expert users, it is insufficient to cover other applications, such
as ontology merging/integration. The lost information due to their suggestions
for rewriting axioms is also not considered. For example, an intersection concept
C �D is suggested to be changed as C D, the modified concept is more generic,
and hence certain information is lost.

Furthermore, Kalyanpur et al. [13] analyse the impact on an ontology when
a whole axiom is removed. Currently, they only consider the subsumption/
disjointness between two named concepts (i.e., A � B) and an instantiation

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 93

(i.e., B(a)) which will be lost due to axiom removal. The difference with our
work is the following: (1) the lost entailments we consider in Section 4 which are
not responsible for concepts’ unsatisfiability can be added back to the ontology,
whereas this feature is not available in their approach. (2) we calculate the lost
entailments of named concepts when a part of an axiom or a whole axiom is
removed; they only consider the impact when a whole axiom is removed. (3) we
adapt the “difference” operator to calculate the lost entailment of a concept
(see Section 4.2); their lost entailment is limited to subsumption/disjointness
between two named concepts and instantiations. (Continuing our mad cow ex-
ample in Example 4, if α4 is removed, their lost entailment is Cow � Animal.15

See Section 4 to compare with our results).

8 Conclusion

In this paper we have proposed a fine-grained approach to rewriting problematic
axioms in an ontology, by revising the classical tableaux algorithm. Our tech-
nique not only identifies the problematic axioms, but also captures which parts
of the axioms are responsible for the unsatisfiability of concepts. Moreover, we
present methods for finding harmful and helpful changes for concepts which are
going to be replaced. With our approach, users are provided with support to
help them to: (1) understand the reasons for the unsatisfiability of concepts,
and (2) rewrite axioms in order to resolve the problems with minimal impact
on the ontology. The results of our usability evaluation have demonstrated the
applicability of our approach in practice. The plugin which we have developed,
RepairTab, is very useful for ontology users who want to diagnose problematic
axioms at a fine-grained level and achieve satisfiable ontologies. In future work,
we plan to extend our algorithms to support more expressive Description Logics.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Baader, F., Nutt, W.: Basic description logics. The Description Logic Handbook:
Therory, Implementation, and Applications

3. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artif.
Intell. 88(1-2), 195–213 (1996)

4. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

5. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.: An empirical
analysis of optimization techniques for terminological representation systems or
“making KRIS get a move on”. In: International Conference on the Principles
of Knowledge Representation and Reasoning, San Mateo, pp. 270–281. Morgan
Kaufmann, San Francisco (1992)

15 The result is obtained from the latest version of SWOOP 2.3 Beta3.

94 J.S.C. Lam et al.

6. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description
logics. In: KR 2002. Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 203–214. Morgan Kaufmann,
San Francisco (2002)

7. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research 1,
109–138 (1993)

8. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of descrip-
tion logic ontologies at the instance level. In: Proceedings of the 21st National
Conference on Artificial Intelligence, pp. 1271–1276. AAAI Press, Stanford (2006)

9. Horrocks, I.: Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester (1997)

10. Kalyanpur, A., Parsia, B., Grau, B.C., Sirin, E.: Justifications for entailments in
expressive description logics. Technical report, University of Maryland (January
2006)

11. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, Dept. of
Computer Science, University of Maryland (2006)

12. Kalyanpur, A., Parsia, B., Cuenca-Grau, B.: Beyond asserted axioms: Fine-grain
justifications for OWL-DL entailments. In: DL 2006. International Workshop on
Description Logics (June 2006)

13. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing Unsatisfiable Con-
cepts in OWL Ontologies. In: ESWC 2006. Proceedings of the Third European
Semantic Web Conference (June 2006)

14. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In:
KR. Proceedings of International Conference of Principles of Knowledge Represen-
tation and Reasoning, pp. 46–56 (June 2006)

15. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: AAAI 2006. Proceedings of the 21st National
Conference on Artificial Intelligence (July 2006)

16. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Springer,
Heidelberg (1990)

17. Plessers, P., De Troyer, O.: Resolving inconsistencies in evolving ontologies. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 200–214. Springer,
Heidelberg (2006)

18. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL Pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer,
Heidelberg (2004)

19. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

20. Schaerf, A.: Reasoning With Individuals in Concept Languages. Data and Knowl-
edge Engineering 13(2), 141–176 (1994)

21. Schlobach, S., Huang, Z., Cornet, R.: Inconsistent ontology diagnosis: Evaluation.
SEKT Deliverable 3.6.2, University of Karlsruhe (January 2006)

22. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI 2003. 8th International Joint Conference
on Artificial Intelligence, Morgan Kaufmann, San Francisco (2003)

23. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artifical Intelligence 48(1), 1–26 (1991)

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 95

24. Teege, G.: Making the difference: A subtraction operation for description logics. In:
KR 1994. 4th International Conference on Principles of Knowledge Representation
and Reasoning, Morgan Kaufmann, San Francisco (1994)

25. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications.
The Knowledge Engineering Review (1996)

26. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging
OWL-DL Ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer,
Heidelberg (2005)

	A Fine-Grained Approach to Resolving Unsatisfiable Ontologies
	Introduction
	Ontology and the ALC DL
	Approach
	Extended Tableaux Algorithm
	Applications of Expansion Rules
	Sequences of a Clash
	Refined Blocking
	Complexity, Soundness and Completeness
	Removing Clashes

	Impact of Removing Axioms
	Impact on Named Concepts Involved in the Unsatisfiability
	Impact on Satisfiable Concepts Irrelevant to the Unsatisfiability
	Impact on the Classification

	Harmful and Helpful Changes
	Harmful Changes
	Helpful Changes

	Evaluation
	Usability Evaluation
	Analysis of Results
	Overall Comments and Summary
	Performance Analysis

	Related Work
	Analysing Unsatisfiable Ontologies
	Fine-Grained Approaches
	Resolving Unsatisfiable Concepts

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

