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Abstract. We explore flexible querying of RDF data, with the aim of
making it possible to return data satisfying query conditions with varying
degrees of exactness, and also to rank the results of a query depending
on how “closely” they satisfy the query conditions. We make queries
more flexible by logical relaxation of their conditions based on RDFS en-
tailment and RDFS ontologies. We develop a notion of ranking of query
answers, and present a query processing algorithm for incrementally com-
puting the relaxed answer of a query. Our approach has application in
scenarios where there is a lack of understanding of the ontology under-
lying the data, or where the data objects have heterogeneous sets of
properties or irregular structures.

1 Introduction

The conjunctive fragment of most RDF query languages (e.g., see [10,11]) con-
sists of queries of the form H ← B, where the body of the query B is a graph
pattern, that is, an RDF graph over IRIs, literals, blanks, and variables. The
head of the query H is either a graph pattern or a tuple variable (list of vari-
ables). The semantics of these queries is simple. It is based on finding matchings
from the body of the query to the data and then applying the matchings to the
head of the query to obtain the answers.

Recently, the W3C RDF data access group has emphasized the importance
of enhancing RDF query languages to meet the requirements of contexts where
RDF can be used to solve real problems. In particular, it has been stated that
in RDF querying “it must be possible to express a query that does not fail
when some specified part of the query fails to match” [5]. This requirement
has motivated the OPTIONAL clause, presented in the emerging SPARQL W3C
proposal for querying RDF [17] and previously introduced in SeRQL [3]. The
OPTIONAL clause allows the query to find matchings that fail to match some con-
ditions in the body. In contrast to other approaches to flexible querying (e.g.,
[1,14]), the OPTIONAL construct incorporates flexibility from a “logical” stand-
point, via relaxation of the query’s conditions. This idea, however, is exploited
only to a limited extent, since the conditions of a query could be relaxed in ways
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other than simply dropping optional triple patterns, for example by replacing
constants with variables or by using the class and property hierarchies in an
ontology associated with the data (such as that shown in Figure 1).

In this paper, we propose the introduction of a RELAX clause as a generalization
of the OPTIONAL clause for the conjunctive fragment of SPARQL. The idea is to
make queries more flexible by a logical relaxation of some of the conditions that
are enclosed by one or more RELAX clauses inside the body of the query. These
conditions are successively turned more general so that the query is transformed
and processed to successively return more general answers. We define the notion
of “being more general” (or “being more relaxed”) using RDFS entailment and
RDFS ontologies.

1.1 RDFS Ontologies

It is common that users interact with RDF applications in the context of an on-
tology. As an example, OWL-QL [8] allows users to include ontologies as premises
in queries, and SPARQL provides a similar facility by allowing reference to sev-
eral RDF datasets [17] in a query. As we will show later, ontologies provide an
important source of knowledge to support query relaxation.

Before addressing the central ideas of our approach, we give a brief description
of the type of ontologies we will consider. We assume that a query is interpreted
in the context of a single ontology, which is modeled as an RDF graph with inter-
preted RDFS vocabulary. The RDFS vocabulary defines classes and properties
that may be used for describing groups of related resources and relationships
between resources. In this paper we use a fragment of the RDFS vocabulary,
which comprises (in brackets is the shorter name we will use) rdfs:range [range],
rdfs:domain [dom], rdf:type [type], rdfs: subClassOf [sc] and rdfs:subPropertyOf
[sp]1.
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Fig. 1. An RDFS ontology modeling documents and people who contribute to them

1 We omit in this paper vocabulary used to refer to basic classes in RDF/S such as
rdf: Property, rdfs: Class, rdfs:Resource, rdfs:Literal, rdfs:XMLLiteral, rdfs:Datatype,
among others. We also omit vocabulary for lists, collections, and variations on these,
as well as vocabulary used to place comments in RDF/S data.
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As an example, the ontology of Figure 1 is used to model documents along with
properties that model different ways people contribute to them (e.g., as authors,
editors, or being the editor of the proceedings where an article is published).

1.2 The RELAX Clause

We now explain the RELAX as an extension of the OPTIONAL clause. As an exam-
ple, consider the following SPARQL-like query Q2:

?Z, ?Y ← {(?X,name, ?Z), OPTIONAL{(?X, proceedingsEditorOf , ?Y )}}.

The body of this query is a graph pattern comprising two triple patterns. This
query returns names of people along with the IRIs of conference articles whose
proceedings they have edited. Because the second triple pattern in the body
of the query is within the scope of an OPTIONAL clause, the query also returns
names of people for which the second pattern fails to match the data (i.e., people
who have not edited proceedings).

Now, instead of dropping the triple pattern (?X, proceedingsEditorOf , ?Y )
we may relax this triple pattern by using the ontology of Figure 1. As an ex-
ample, though the user may want to retrieve editors of proceedings at first,
she/he might also be interested in knowing about people who have contributed
to publications in other roles, along with the publications themselves. Now af-
ter returning editors of conference proceedings, the user could replace the triple
pattern (?X, proceedingsEditorOf , ?Y ) with (?X, editorOf , ?Y ), yielding a new,
relaxed query that returns editors of publications along with their publica-
tions. Subsequently, this triple pattern can be rewritten to the triple pattern
(?X, contributorOf , ?Y ) to obtain more general answers.

In order to save the user the effort of inspecting the ontology and rewriting
the query to return more relaxed answers for the same original query, the system
could perform this process automatically. This is achieved by the following query
which replaces OPTIONAL with RELAX in Q:

?Z, ?Y ← {(?X,name, ?Z), RELAX{(?X, proceedingsEditorOf , ?Y )}}.

The idea of making queries more flexible by the logical relaxation of their
conditions is not new in database research. Gaasterland et al. [9] proposed a
mechanism to achieve this goal in the context of deductive databases and logic
programming, and called the technique query relaxation.

1.3 Notion of Query Relaxation for RDF

We study the query relaxation problem in the setting of the RDF/S data model
and RDF query languages and show that query relaxation can be naturally
formalized using RDFS entailment. We use an operational semantics for the
notion of RDFS entailment, denoted |=, characterized by the derivation rules

2 SPARQL has SQL-like syntax; for brevity, in this paper we express queries as rules.
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Group A (Subproperty) (1) (a,sp,b) (b,sp,c)
(a,sp,c) (2) (a,sp,b) (x,a,y)

(x,b,y)

Group B (Subclass) (3) (a,sc,b) (b,sc,c)
(a,sc,c) (4) (a,sc,b) (x,type,a)

(x,type,b)

Group C (Typing) (5) (a,dom,c) (x,a,y)
(x,type,c) (6) (a,range,d) (x,a,y)

(y,type,d)

Fig. 2. RDFS Inference Rules

given in Figure 2 (for details, see [10,12]). The rules describe the semantics of
the RDFS vocabulary we use in this paper (i.e., sp, sc, type, dom, and range)3.

Intuitively, as RDFS entailment is characterized by the rules of Figure 2, a
relaxed triple pattern t′ can be obtained from triple t by applying the deriva-
tion rules to t and triples from the ontology. As an example, the triple pattern
(?X, proceedingsEditorOf , ?Y ) can be relaxed to (?X, editorOf , ?Y ), by apply-
ing rule 2 to the former and the triple (proceedingsEditorOf , sp, editorOf ) in
the ontology of Figure 1. The different relaxed versions of an original query are
obtained by combining relaxations of triple patterns that appear inside a RELAX
clause.

The notion of query relaxation we propose naturally subsumes two broad
classes of relaxations. The first class of relaxations includes relaxations entailed
using information from the ontology and are captured by the rules of Figure 2;
these include relaxing type conditions, relaxing properties using domain or range
restrictions and others. The second class of relaxation consists of relaxations that
can be entailed without an ontology, which include dropping triple patterns,
replacing constants with variables, and breaking join dependencies.

1.4 Summary of Contributions

In this paper, we develop a framework for query relaxation for RDF. We intro-
duce a notion of query relaxation based on RDFS entailment, which naturally
incorporates RDFS ontologies and captures necessary information for relaxation
such as the class and property hierarchies.

By formalizing query relaxation in terms of entailment, we obtain a semantic
notion which is by no means limited to RDFS and could also be extended to more
expressive settings such as OWL entailment and OWL ontologies, to capture
further relaxations. Our framework generalizes, for the conjunctive fragment
of SPARQL, the idea of dropping query conditions provided by the OPTIONAL
construct.

An essential aspect of our proposal, which sets it apart from previous work on
query relaxation, is to rank the results of a query based on how “closely” they
3 We omit, for now, the RDFS rule that essentially states that blank nodes (or vari-

ables) behave like existentially quantified variables, and allows constants to be re-
placed with blanks or blanks with other blanks using the notion of a map. This
notion and its use will be covered in Section 6.
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satisfy the query. We present a notion of ranking based on a structure called the
relaxation graph, in which relaxed versions of the original query are ordered from
less to more general from a logical standpoint. Since the relaxation graph is based
on logical subsumption, ranking does not depend on any syntactic condition on
the knowledge used for relaxation (such as rule ordering in logic-programming
approaches [9]). Finally, we give a query processing algorithm to compute the
relaxed answer of a query, and examine its correctness and complexity.

This paper extends our earlier paper [13] in a number of ways. We have
substantially developed, revised and improved the material presented there. We
also make the following new contributions here: we provide proofs for all the
results sketched in [13]; Section 4 includes substantial new contributions relating
to the relationship between relaxations and derivations using new RDFS rules;
we provide a new algorithm for computing relaxations based on the notion of
the “extended reduction” of the ontology used for relaxation; and Section 5, on
computing relaxed query answers, has been extended with two examples that
illustrates our query processing algorithm.

1.5 Outline

The rest of the paper is organized as follows. Section 2 introduces preliminary
notation. We then present our framework in a stepwise manner. Firstly, in sec-
tions 3, 4, and 5, we formalize and study relaxations that do not replace terms
of the original triple pattern with variables and are captured by the rules of Fig-
ure 2; they include relaxing type conditions, relaxing properties using domain
or range restrictions and others. In particular, in Section 3 we formalize the se-
mantics of query relaxation for the aforementioned types of relaxation. Then,
Section 4 discusses the problem of computing relaxations of a triple pattern and
Section 5 studies query processing. In Section 6, we extend the relaxation frame-
work to consider relaxations that replace terms of the original triple pattern
with variables (e.g., replacing a literal or IRI with a variable or a variable with
another variable). In Section 7 we review related work in comparison to our own
work, and we give our concluding remarks in Section 8. Finally, in the appendix
we present the proofs omitted in the main body of the paper.

2 Preliminary Definitions

In this section we present the basic notation and definitions that will be used
subsequently in this paper. Some of these were introduced in [2,10,12,15].

2.1 RDF Graphs and RDFS Ontologies

In this paper we work with RDF graphs which may mention the RDFS vo-
cabulary. We assume there are infinite sets I (IRIs), B (blank nodes), and
L (RDF literals). The elements in I ∪ B ∪ L are called RDF terms. A triple
(v1, v2, v3) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In such a triple,
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v1 is called the subject, v2 the predicate and v3 the object. An RDF graph (just
graph from now on) is a set of RDF triples.

We consider ontologies that use RDFS vocabulary, which we will refer to as
RDFS ontologies. We assume that predicates of triples in O should be in the
set {type, dom, range, sp, sc}. Intuitively, this means that the ontology does not
interfere with the semantics of the RDFS vocabulary.

We say that an ontology is acyclic if the subgraphs defined by sc and sp are
acyclic. Acyclicity is considered good practice in modeling ontologies.

We write that G1 |=rule G2 if G2 can be derived from G1 by iteratively
applying the rules of Figure 2. In this paper, we also use a notion of closure of
an RDF graph G [12], denoted cl(G), which is the closure of G under the rules.
By a result from [12], RDFS entailment (for the fragment of RDFS we use in this
paper) can be characterized as follows: G1 |=RDFS G2 if and only if G2 ⊆ cl(G1).

2.2 Conjunctive Queries for RDF

Consider a set of variables V disjoint from the sets I, B, and L. A triple pattern
is a triple (v1, v2, v3) ∈ (I ∪ V ) × (I ∪ V ) × (I ∪ V ∪ L). A graph pattern is a set
of triple patterns. Given a graph pattern P , we denote by var(P ) the variables
mentioned in P . In our examples, variables are indicated by a leading question
mark, while literals are enclosed in quotes.

A conjunctive query Q is an expression T ← B, where B is a graph pat-
tern, and T = 〈T1, . . . , Tn〉 is a list of variables which belongs to var(B). (The
framework formalized in this paper can be easily extended to queries with graph
patterns as query heads.) We denote T by Head(Q), and B by Body(Q).

We next define the answer of a conjunctive query. In order to do this, we take
into account that a query Q may be formulated over an RDFS ontology O, which
means that Q may mention vocabulary from O and its answer is obtained from
the RDF graph being queried and O. We define a matching to be a function
from variables in Body(Q) to blanks, IRIs and literals. Given a matching Θ,
we denote by Θ(Body(Q)) the graph resulting from Body(Q) by replacing each
variable X by Θ(X). Given an RDF graph G, the answer of Q is the set of
tuples, denoted ans(Q, O, G), defined as follows: for each matching Θ such that
Θ(Body(Q)) ⊆ cl(O∪G), return Θ(Head(Q)). When O is clear from the context,
we omit it, and write ans(Q, G) instead of ans(Q, O, G).

3 Formalizing Query Relaxation

We will present a relaxed semantics for queries in a stepwise manner. In Sec-
tion 3.1, we present the notion of relaxation of triple patterns, and in Section 3.2
we introduce the notion of the relaxation graph of a triple pattern. This is used
in Section 3.3 to define the relaxation graph of a query. In Section 3.4, we ex-
plain different types of relaxations subsumed by our framework. The relaxation
graph is the basis for the notion of the relaxed answer and ranking of a query
we propose in Section 3.5.
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3.1 Triple Pattern Relaxation

In this section, we define the relaxation relation between triple patterns. In-
tuitively, a triple pattern relaxes to another triple pattern if the latter can be
logically derived from the former and a given ontology. Relaxation will be defined
in the context of an ontology that will be denoted by O.

Definition 1 (Triple Pattern Relaxation). Let t1, t2 be triple patterns such
that t1, t2 �∈ cl(O), and var(t2) = var(t1). We say that t1 relaxes to t2 (or t2 is
a relaxation of t1), denoted t1 ≤ t2, if ({t1} ∪ O) |=rule t2.

As stated before, in this section we consider relaxations that maintain the set
of variables in the original triple pattern. This is formalized in the previous
definition by requiring that var(t2) = var(t1). In addition, we require that
t1, t2 �∈ cl(O) in order to avoid relaxing to triple patterns that will be trivially
true for any RDF graph being queried.

As an example, let O be the ontology of Figure 1. Then, we have that

(?X, type,ConferenceArticle) ≤ (?X, type,Article)

and
(JohnRobert ,ContributorOf , ?X) ≤ (?X, type,Document)

among other relaxations. It is not the case, however, that

(?X,ContributorOf , ?Y ) ≤ (?Y, type,Document)

since the sets of variables in the two triple patterns are different.
The following proposition shows that triple pattern relaxation can be charac-

terized in terms of the RDFS closure.

Proposition 1. Let ≤ be defined using an ontology O, and t1, t2 be triple pat-
terns such that t1, t2 �∈ cl(O) and var(t1) = var(t2). Then t1 ≤ t2 if and only if
t2 ∈ cl(O ∪ {t1}).

It is desirable that the relaxation relation should be a partial order. The following
proposition shows the conditions under which this happens.

Proposition 2. Let ≤ be defined using an ontology O. Then ≤ is a partial order
if and only if O is acyclic.

In what follows we assume that O is acyclic. Therefore, from now on we assume
that the relaxation relation is a partial order.

The direct relaxation relation, denoted by ≺, is the reflexive and transitive
reduction of ≤. The direct relaxations of a triple pattern t (i.e., triples t′ such
that t ≺ t′) are important in our framework, since they are the result of the
smallest steps of relaxation. The indirect relaxations of a triple pattern t are the
triples t′ such that t ≤ t′ and t �≺ t′.
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3.2 Relaxation Graph of a Triple Pattern

We are interested in relaxing each of the triple patterns that occurs inside the
RELAX clause of a query, so we next adapt the relaxation relation to use relaxation
“above” a given triple pattern. This yields the notion of relaxation graph of a
triple pattern.

Definition 2 (Relaxation Graph of a Triple Pattern). The relaxation re-
lation (resp., direct relaxation relation) “above” a triple pattern t, denoted by ≤t

(resp., ≺t), is ≤ (resp., ≺) restricted to triple patterns t′ such that t ≤ t′. The
relaxation graph of a triple pattern t is the directed acyclic graph induced by ≺t.

As an example, Figure 3 shows the relaxation graph of (JohnRobert, editorOf ,
?X), assuming that O is the ontology of Figure 1.

(?X,type,Publication) (John Robert,contributorOf,?X)

(?X,type,Document)

(John Robert,editorOf,?X)

Fig. 3. Relaxation graph of the triple pattern (JohnRobert , editorOf , ?X)

3.3 Relaxation Graph of a Query

We now generalize triple pattern relaxation to query relaxation using the notion
of the direct product of partial orders. The direct product of two partial order re-
lations α1, α2, denoted α1⊗α2, is another partial order α such that (a, b) α (c, d)
if and only if a α1 c and b α2 d. The generalization of this definition to more
than two relations is straightforward.

Definition 3 (Relaxation Graph of a Query). Given a query Q, let Body(Q)
= {t1, . . . , tn}. For any triple ti not inside a RELAX clause, we overload the
notation ≤ti and assume that ti relaxes only to ti. Then, the relaxation relation
“above” Q, denoted by ≤Q, is defined as ≤t1 ⊗ ≤t2 . . . ⊗ ≤tn. Direct relaxation,
denoted ≺Q, is the reflexive and transitive reduction of ≤Q. The relaxation graph
of Q is the directed acyclic graph induced by ≺Q.

It is important to remark that a node (t′1, . . . , t′n) in the relaxation graph of Q
denotes the conjunctive query Head(Q) ← t′1, . . . , t′n.

As an example, consider the following query:

?X ← {RELAX{(?X, type,Publication)}, RELAX{(JohnRobert, editorOf , ?X)}.

Figure 4 (A) shows the relaxation graph of each of the triple patterns of the
query (for the sake of space, we consider in this example only a single edge of
the relaxation graph of (JohnRobert, editorOf , ?X)). Figure 4 (B) shows the
direct product of the graphs of Figure 4 (A), which is a simplified version of the
relaxation graph of the query.
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(?X,type,Publication)

(?X,type,Document)

(John Robert,editorOf,?X)

(John Robert,contributorOf,?X) (?X,type,Publication)(John Robert,contributorOf,?X)(?X,type,Document) (John Robert,editorOf,?X)

(John Robert,editorOf,?X)(?X,type,Publication)0

1: 2:

3:(?X,type,Document)(John Robert,contributorOf,?X)

(A) (B)

Fig. 4. (A) The relaxation graph of (?X, type,Publication) and a simplified version
of the relaxation graph of (JohnRobert, editorOf , ?X). (B) The direct product of the
graphs given in (A). Nodes are enumerated from 0 (base query) to 3 (top query).

3.4 Types of Relaxation

The notion of relaxation that we have presented in this section encompasses the
following types of relaxation (the examples given use the ontology of Figure 1):

1. Type relaxation: replacing a triple pattern (a, type, b) with (a, type, c), where
(b, sc, c)∈cl(O).For example, the triplepattern (?X, type,ConferenceArticle)
can be relaxed to (?X, type,Article) and then to (?X, type,Publication).

2. Predicate relaxation: replacing a triple pattern (a, p, b) with (a, q, c), where
(p, sp, q) ∈ cl(O). For example, the triple pattern (?X, proceedingsEditorOf ,
?Y ) can be relaxed to (?X, editorOf , ?Y ) and then to (?X, contributorOf , ?Y ).

3. Predicate to domain relaxation: replacing a triple pattern (a, p, b) with (a,
type, c), where (p, dom, c) ∈ cl(O). There are no domain declarations in
Figure 1.

4. Predicate to range relaxation: replacing a triple pattern (a, p, b) with (b,
type, c), where (p, range, c) ∈ cl(O). For example, the triple pattern
(JohnRobert , editorOf , ?Y ) can be relaxed to (?Y, type,Publication).

5. Additional relaxations induced by additional rules from Figure 2. Combina-
tions of rules yield additional forms of relaxation. For example, the triple
pattern (Article, sc, ?Y ) can be relaxed to (ConferenceArticle , sc, ?Y ).

3.5 Notion of Ranking

An algorithm used to process a query with a RELAX clause should return a list
of tuples. A condition of consistency for the algorithm is that the tuples that
are computed by more specific queries should appear before the ones that are
computed by more general queries. If this happens, we say that the algorithm
returns its answer in ranked order. In this section we formalize this idea.

In order to formalize this idea, we firstly define, for a query Q′ in the relaxation
graph of Q, the set of tuples returned by Q′ and not returned by queries below
Q′. We call such a set the new answer of Q′. Formally,

newAnswer(Q′, G) := ans(Q′, G) − (
⋃

Qi:Qi≤QQ′,Qi �=Q′ ans(Qi, G)).

Definition 4 (Ranking). Consider an algorithm A that, given a query Q and
an RDF graph, returns a list of tuples L = a1, . . . , an. We say that A returns its
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Fig. 5. (A) An ontology O. (B) The reduction red(O) of O. (C) The extended reduction
extRed(O) of O.

tuples in ranked order if (i) the set {a1, . . . , an} is equal to
⋃

Qi:Q≤QQi
ans(Qi, G),

and (ii) for all pairs of queries Qi, Qj such that Qi ≺Q Qj, the new answers of Qi

appear earlier in L than the new answers of Qj.

4 Computing the Relaxation Graph

In this section, we study the problem of computing the relaxation graph of
a triple pattern. In Section 4.1 we present a naive procedure to do so. Then,
in Section 4.2, we show an efficient algorithm to perform this task. Finally, in
Section 4.3, we study the size of the relaxation graph and the complexity of
computing it.

4.1 Computing the Relaxation Graph of a Triple Pattern: Naive
Algorithm

As Proposition 1 shows, it is possible to generate all the relaxations of a triple
pattern t by computing cl(O ∪ {t}) and cl(O). However, recall that the edges
of the relaxation graph are direct relaxations, and therefore the fundamental
problem we need to solve is how to efficiently generate the direct relaxations
of t. One may naively attempt to generate them by applying the derivation rules
of Figure 2 over t and triples from the ontology cl(O). We write t, o � t′ if t′ can
be derived from t and o ∈ cl(O) by the application of a single rule from Figure 2.
We also write t, o �i t′ if rule i was the rule used in the derivation.

As an example, let O be the ontology given in Figure 5 (A). Notice that in
this case O = cl(O). Now, the following instantiation of rule 4

(B, sc, C), (?X, type, B) �4 (?X, type, C),

produces the direct relaxation (?X, type, C) of (?X, type, B). However, the fol-
lowing instantiation of rule 4
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(B, sc, D), (?X, type, B) �4 (?X, type, D),

produces the indirect relaxation (?X, type, D) of (?X, type, B).
The example shows that the application of rules over the closure of the ontol-

ogy and the triple t is not correct for computing direct relaxations of t. However,
the next proposition shows that the procedure is complete for this purpose.

Proposition 3. Let ta, tb be triple patterns not in cl(O) such that var(ta) =
var(tb). If ta ≺ tb then there exists a triple o ∈ cl(O) such that ta, o � tb.

As an aside, Proposition 3 along with the rules of Figure 2 allows us to classify
the direct relaxations that can be obtained from a given triple pattern, which
is done in Figure 6. We refer to triples having type as their predicate as type
triples. We use a similar notation for triples with predicates dom, range, sp, and
sc. A plain triple is a triple whose predicate term is not in the RDFS vocabulary.
As an example, the figure shows that a direct relaxation of a plain triple is either
a plain triple or a type triple. Notice that neither dom triples nor range triples
can be relaxed.

sc

plain

type

sp

range

domain
rule 1

rule 2

rules 5,6

rule 3

rule 4

rule 4

Fig. 6. Diagram of possible direct relaxations

In the remainder of the section, we present a naive algorithm to compute the
relaxation graph of a triple pattern.

Firstly, let us introduce some notation to refer to the procedure just outlined
that uses the RDFS derivation rules to produce relaxations of a triple pattern.
We denote by applyRules(t, O) all the triples generated by instantiating a rule of
Figure 2 with t and a triple from O. Using O from Figure 5 (A) as an example,
applyRules((?X, type, B), O) generates the triple patterns (?X, type, C) and
(?X, type, D). We will frequently abuse notation and consider applyRules(t, O)
simply as a set. Furthermore, since relaxations preserve variables of t, we assume
we filter from applyRules(t, O) triples t′ such that var(t′) �= var(t).

The naive algorithm works as follows. In a first step, it builds a graph that
subsumes the relaxation graph of t. This graph may contain some indirect re-
laxations that need to be deleted in a second step. In the first step, it start by
calling applyRules(t, O), update the graph with new relaxations of t, and adds
them to a list. It then removes a triple pattern t′ from the list, update the graph
with new relaxations applyRules(t′, O) of t′ and adds them to the list. This op-
eration is repeated until the list is emptied. A list of “visited” triple patterns can
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be used in order to avoid calling applyRules more than once for the same triple
pattern. As each applyRules(t′, O) call may generate some indirect relaxations
of t′, in a final step, edges associated with indirect relaxations are deleted using
any standard method to compute the transitive reduction of a dag.

4.2 Computing the Relaxation Graph Incrementally

The naive procedure has a major drawback. In order to delete the indirect re-
laxations generated by applyRules(t, O), we need to call applyRules for all
triples in the relaxation graph of t. This should be done even though the user
is interested in relaxing t only one step further. In this section, we show how to
transform the ontology O into a new ontology O′ such that applyRules(t, O′)
only returns direct relaxations of t.

Now, let us return to the example of the previous subsection, where O is the
ontology of Figure 5 (A). Recall that applyRules((?X, type, B), O) generates
the direct relaxation (?X, type, C) and the indirect relaxation (?X, type, D) of
(?X, type, B). The latter is generated using the triple (B, sc, D) of O. We say
that this is a derivable triple since it can be derived from other two triples in
cl(O). Now, observe that if we delete (B, sc, D) from O, we obtain a reduced
version O′ of O (which is logically equivalent to O) such that applyRules((?X,
type, B), O′) only outputs direct relaxations. This example motivates us to
delete the derivable triples of O since they produce indirect relaxations. The
following proposition shows that this indeed is a good idea.

Proposition 4. Let O be an ontology, o be a derivable triple in cl(O) and t, t′

be triple patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined
using O).

From Proposition 4 we conclude that we should apply applyRules over the
reduction of O instead of O. The reduction of O, denoted red(O), is the minimal
ontology O′ ⊆ O, such that cl(O′) = cl(O). The reduction does not contain
derivable triples and can be computed as follows (applying a rule in reverse
means deleting the triple deduced by the rule): (i) compute cl(O); (ii) apply rule
4 in reverse until no longer applicable; and (iii) apply rules 1 and 3 in reverse
until no longer applicable. In what follows, we assume that red(O) has been
precomputed. Notice that, because every predicate in a triple in the ontology
should be in {type, dom, range, sp, sc}, reverse rules 2, 5, and 6 are not needed
to compute the reduction.

Since red(O) is logically equivalent to O, we obtain the same relaxations using
red(O) and using O. The following proposition follows directly from Proposi-
tion 3.

Proposition 5. Let O be an ontology and t be a triple pattern not in cl(O). Then
all direct relaxations of t (defined using O) are in the set applyRules(t, red(O)).

Unfortunately, applyRules(t, red(O)) may still return indirect relaxations, as
the following example shows. Consider the reduction red(O) shown in Fig-
ure 5 (B), where O is the ontology of Figure 5 (A). Then, with the following
instantiation of rule 5
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(A, dom , C), (?X, A, ?Y ) �5 (?X, type, C)

applyRules((?X, A, ?Y ), red(O)) produces the relaxation (?X, type, C) of (?X,
A, ?Y ). However, this is an indirect relaxation, since we have that (?X, A, ?Y ) ≺
(?X, type, B) ≺ (?X, type, C). Fortunately, the following proposition shows that
it is not difficult to detect the triples in the reduction that cause problems.

Proposition 6. Let O be an ontology, o be a triple in red(O) and t, t′ be triple
patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined using
O) iff o can be derived by applying the rules of Figure 7 starting from cl(O).

(e1) (b,dom,c) (a,sp,b)
(a,dom,c) (e2) (b,range,c) (a,sp,b)

(a,range,c)

(e3) (a,dom,b) (b,sc,c)
(a,dom,c) (e4) (a,range,b) (b,sc,c)

(a,range,c)

Fig. 7. Additional rules used to compute the extended reduction of an RDFS ontology

The proposition shows that we can avoid generating indirect relaxations by fur-
ther reducing the ontology with the rules of Figure 7, which yields an extended
reduction of an ontology O. The extended reduction, denoted extRed(O), is de-
fined as follows: (i) compute cl(O); (ii) apply the rules of Figure 7 in reverse
until no longer applicable; (iii) apply rule 4 in reverse until no longer applicable;
and (iv) apply rules 1 and 3 in reverse until no longer applicable.

As an example, Figure 5 (C) shows the extended reduction of the ontology of
Figure 5 (A).

Now, observe that extRed(O) may not be logically equivalent to O. However,
the previous propositions show that we can still obtain all the direct relaxations
of any triple pattern (defined using O) from extRed(O). We are now ready to
present the main result of this section.

Proposition 7. Let O be an ontology and t be a triple pattern not in cl(O). Then
applyRules(t, extRed(O)) is equal to the set of direct relaxations of t (defined
using O).

Figure 8 shows an algorithm that computes the relaxation graph of a triple
pattern incrementally. We assume that the extended reduction extRed(O) has
been previously computed and stored. The variable Frontier keeps a list of
triple patterns. The variables V and E keep the nodes and edges of the relaxation
graph, respectively. Notice that, because of Proposition 7, the algorithm does
not produce indirect relaxations.

4.3 Complexity

We now give a bound on the size of the relaxation graph.

Proposition 8. Let t be a triple pattern and O be an ontology. The relaxation
graph of t (using the ontology O) has O(|red(O)|2) triples.
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Input: A triple pattern t and the extended reduction extRed(O) of an ontology O.
Output: The relaxation graph of t (using O).

Frontier := 〈t〉
V := {t},E := ∅
While (Frontier is non-empty)

Delete first element u from Frontier
U := applyRules(u, extRed(O))
V := V ∪ U
E := E ∪ {(u, u′) : u′ ∈ U}
Add the triple patterns in U to Frontier

Return (V, E)

Fig. 8. Algorithm that computes the relaxation graph of a triple pattern

From Proposition 9, it follows that the relaxation graph of a query has
O(|red(O)|2n) nodes, where n is the number of triple patterns inside RELAX
clauses in the query.

Proposition 9. Let t be a triple pattern and O be an ontology. (i) Computing
the direct relaxations of t takes O(|red(O)|) steps. (ii) Computing the relaxation
graph of t takes O(|red(O)|3) steps.

5 Computing the Relaxed Answer

In this section, we study the problem of computing the relaxed answer of a query.
We propose an algorithm that incrementally generates matchings from a query
to an RDF graph and also ranks tuples in the answer.

Our query processing algorithm works by adapting the RDQL query process-
ing scheme provided by Jena [21] to the processing of successive relaxations of
a query. We assume the simplest storage scheme provided by Jena, in which the
RDF triples are stored in a single table, called the statement table. The Jena
query processing approach is to convert an RDF query into a pipeline of “find
patterns” connected by join variables. Each triple pattern (find pattern in Jena’s
terminology) can be evaluated by a single SQL select query over the statement
table. We formalize this with an operator called find that receives a triple pat-
tern t and a statement table G and returns all matchings from t to the table.

In Section 5.1 we present our algorithm for efficiently computing the relaxed
answer of a query and we prove its correctness. In Sections 5.2 and 5.3 we
illustrate two examples of the execution of the algorithm. Finally, in Section 5.4,
we study the complexity of the algorithm.

5.1 Algorithm

In what follows, Q is the query whose relaxed answer we intend to compute,
and Q′ is an arbitrary query in the relaxation graph of Q. We have that H =
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Head(Q) = Head(Q′). For the sake of simplicity, we assume that each triple
pattern in the body of Q is inside a RELAX clause. We assume that Body(Q) =
{t1, . . . , tn}, and Body(Q′) = {t′1, . . . , . . . , t′n}. We also fix the statement table G
we are querying. The answer of Q′ can be computed by processing (in a pipelined
fashion) a view, denoted VQ′ , defined by the following expression:

πH(find(t′1, G) �� . . . �� find(t′n, G)),

where π is the standard projection operator and �� is the natural join on vari-
ables shared by triple patterns. The answer of Q can be computed by a naive
algorithm that traverses the relaxation graph of Q upwards, and in each step
of the traversal, builds a view VQ′ , computes it, and returns those tuples which
were not returned in previous steps.

Next, we propose an algorithm that avoids the redundant processing of tuples
that arises with this naive approach. We define deltaFind(t′i, G) as the set
containing triples p ∈ G such that t′i matches p, and no triple pattern directly
below t′i in the relaxation graph of ti, matches p. The set deltaFind(t′i, G)
can be computed similarly to find(t′i, G) by filtering triples from the statement
table. We define a delta view for Q′, denoted ΔQ′ , as the following expression:

πH(deltaFind(t′1, G) �� . . . �� deltaFind(t′n, G)).

The following proposition shows that new answers (Section 3.5) correspond
to delta views.

Proposition 10. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≤QQ′ ΔQi(G), and

(ii) newAnswer(Q′, G) = ΔQ′(G).

The algorithm we propose (Figure 9), called RelaxEval, performs a breadth-first
traversal of the relaxation graph of Q, building and processing each delta view
ΔQ′ in each step of the traversal. The function level returns the level of a triple
pattern t′i in the relaxation graph Ri of ti. Line 3(a) outputs the new answer
of each query at level k. In order to find the queries at level k of the relaxation
graph, the algorithm applies the following property. The queries Q′ (defined by
the join expression in Line 3 (a)) that belong to the level k of the relaxation
graph of Q are those satisfying

∑
i level(t′i, Ri) = k.

We next prove the correctness of RelaxEval.

Proposition 11. The algorithm RelaxEval returns its tuples in ranked order.

5.2 Example

We next illustrate the algorithm with the following query Q (that we also pre-
sented in the example of Section 3.3):

?X ← {RELAX{(?X, type,Publication)}, RELAX{(JohnRobert, editorOf , ?X)}}.
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Algorithm RelaxEval
Input: a query Q (interpreted over an ontology O), where Body(Q) = {t1, . . . , tn}, a
statement table G, and an integer maxLevel .
Output: the set of tuples ansrelax(Q,G,maxLevel ), where new answers are returned
successively at each level of the relaxation graph.

1. k := 0, stillMore := true
2. For each triple pattern ti ∈ Body(Q), compute the relaxation graph Ri of ti up to

level maxLevel .
3. While (k ≤ maxLevel and stillMore) do

(a) For each combination t′
1 ∈ R1, . . . , t

′
n ∈ Rn such that

∑
i level(t′

i, Ri) = k
do output πH(deltaFind(t′

1, G) �� . . . �� deltaFind(t′
n, G))

(b) k := k + 1
(c) stillMore := exist nodes t′

1 ∈ R1, . . . , t
′
n ∈ Rn such that

∑
i level(t′

i, Ri) = k

Fig. 9. Algorithm that computes the relaxed answer of a query

For simplicity, we consider subgraphs of the relaxation graphs of triple patterns
in the query, shown in Figure 4 (A). Figure 4 (B) shows the relaxation graph of
the query, which is obtained by combining the graphs of Figure 4 (A).

We assume the query is interpreted in the context of an ontology O, which
consists of the subgraph with edges sc and type of the ontology of Figure 1. The

Statement table G

Subject Predicate Object
a type Publication
b type WebPage
c type Publication
d type WebPage
JohnRobert editorOf a
JohnRobert editorOf b
JohnRobert authorOf c
JohnRobert authorOf d

Statement table for cl(G, O)
Subject Predicate Object
a type Publication
b type WebPage
c type Publication
d type WebPage
a type Document
b type Document
c type Document
d type Document
JohnRobert editorOf a
JohnRobert editorOf b
JohnRobert authorOf c
JohnRobert authorOf d
JohnRobert contributorOf a
JohnRobert contributorOf b
JohnRobert contributorOf c
JohnRobert contributorOf d

(A) (B)

Fig. 10. (A) Statement Table G. (B) A statement table containing cl(G, O), where O is
the subgraph of the ontology of Figure 1 that includes only the sc and type subgraphs.
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query is interpreted over the statement table G given in Figure 10 (A), whose
closure cl(G, O) is given in Figure 10 (B).

Figure 11 (A) shows the answers of queries in the relaxation graph of Q and
Figure 11 (B) shows the answers of delta views. An answer is a set of tuples;
since the query at hand has a single head variable, each tuple is a single element
in our example. Figure 11 (C) shows the answer returned by RelaxEval at levels
0, 1 and 2.

Notice that Proposition 10 (i) and (ii) hold. For instance, for query Q3, we
have

ans(Q3, G) = ΔQ3 ∪ (ΔQ1 ∪ ΔQ2 ∪ ΔQ0),

and we also have

ΔQ3(G) = ans(Q3, G) − (ans(Q1, G) ∪ ans(Q2, G) ∪ ans(Q0, G)).

We now illustrate how RelaxEval computes the delta view

ΔQ3(G) := π?X(deltaFind((?X, type,Document), G) ��

deltaFind((JohnRobert, contributorOf , ?X), G)).

Here, deltaFind((?X, type,Document), G) finds all matchings μ from (?X,
type, Document) to cl(G, 0) such that μ is not a matching from (?X, type,
Publication) to cl(G, O) (because (?X, type,Publication) is the only triple pat-
tern directly below (?X, type,Document) in the relaxation graph of (?X, type,
Publication)). Therefore, deltaFind((?X, type, Document), G) returns the fol-
lowing table:

?X type Document
b type Document
d type Document

Similarly, deltaFind((JohnRobert , contributorOf , ?X), G) computes the follow-
ing table:

JohnRobert contributorOf ?X
JohnRobert contributorOf c
JohnRobert contributorOf d

Therefore, ΔQ3(G) = {d}.

5.3 A Further Example — Heterogeneous Database Integration

We now discuss how our algorithm for incrementally computing the relaxed
answer of a query might be applied in a heterogeneous data integration setting,
specifically in the integration and querying of multiple heterogeneous proteomic
data resources.
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Answers of Relaxed Queries
Relaxed Query Answer
Q0 {a}
Q1 {a, b}
Q2 {a, c}
Q3 {a, b, c, d}

Answers of Delta Views
Delta view Answer
ΔQ0 {a}
ΔQ1 {b}
ΔQ2 {c}
ΔQ3 {d}

Answers of RelaxEval
Level Answer
0 {a}
1 {b, c}
2 {d}

(A) (B) (C)

Fig. 11. (A) Answers of relaxed queries until level 2. (B) Delta views for the relaxed
queries until level 2. (C) Tuples returned by RelaxEval per level until level 2.

Proteomic data resources are rapidly being developed globally, with the emer-
gence of affordable, reliable methods to study the proteome. The In Silico Pro-
teome Integrated Data Environment Resource (ISPIDER) project4 is developing
an integrated platform of proteome-related resources, using existing standards
from proteomics, bioinformatics and e-Science. The integration of such resources
is beneficial for a number of reasons. First, having access to more data leads
to more reliable analyses; for example, performing protein identifications over
an integrated resource reduces the chances of false negatives. Second, bring-
ing together resources containing different but closely related data increases the
breadth of information the biologist has access to. Third, the integration of these
resources, as opposed to merely providing a common interface for accessing them,
enables data from a range of experiments, tissues, or different cell states to be
brought together in a form which may be analysed by a biologist in spite of the
widely varying coverage and underlying technology of each resource.

In the ISPIDER project, we have developed an architecture which supports
the combined use of Grid data access, Grid distributed querying and data in-
tegration software tools. This architecture allows us to develop an integrated
global schema over heterogeneous resources and to support distributed queries
posed over such a global schema. Reference [22] reports on our initial results
from the integration of three distributed, autonomous proteomics resources, all
of which contain information about protein and peptide identification: gpmDB5,
Pedro6 and PepSeeker7.

As reported in [22], building an integrated global schema over such heteroge-
neous proteomics resources is a lengthy and complex process. Indeed, so far, we
have not performed a full integration of these three databases, but only a limited
integration such that the global schema captures enough information for answer-
ing common proteomics questions. Moreover, some of the resource schemas are
still under development and enhancement, which requires ongoing modification
to our integration mappings and global schema.

An alternative approach, therefore, would be to undertake a “light-weight”
integration of these resources, producing a global ontology that captures the

4 See http://www.ispider.manchester.ac.uk
5 See http://gpmdb.thegpm.org
6 See http://pedrodb.man.ac.uk:8080/pedrodb
7 See http://www.nwsr.manchester.ac.uk/pepseeker
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classes and properties of the individual resources as well as their common con-
cepts (i.e. super-classes and super-properties of the local ontology classes and
properties), and to use our query processing algorithm to incrementally relax
and compute the answers to queries over this global ontology.

For example, in the global ontology, there may be

– classes PedroPeptide and PedroProtein
– and properties

• PedroPeptideSequence, with domain PedroPeptide and range Literal,
• PedroAligns, with domain PedroPeptide and range PedroProtein,
• PedroAccessionNumber, with domain PedroProtein and range Literal,

arising from the Pedro resource, which is based at Manchester (in Mass Spec-
trometry experiments, several Peptides result from the identification process;
each Peptide aligns against a set of Proteins; a Protein is characterized by a
textual description, an accession number, the predicted mass of the protein, the
organism in which it is to be found, etc.).

There may be a similar set of classes and properties arising from the PepSeeker
resource, also at Manchester:

– classes PepPeptide and PepProtein
– and properties

• PepPeptideSequence, with domain PepPeptide and range Literal,
• PepAligns, with domain PepPeptide and range PepProtein,
• PepAccessionNumber, with domain PepProtein and range Literal,

In the global ontology there may be superclasses and superproperties of the
above which collectively represent the information in the Manchester resources:

– superclasses ManchPeptide and ManchProtein
– and superproperties

• ManchPeptideSequence, with domain ManchPeptide and range Lit-
eral,

• ManchAligns, with domain ManchPeptide and range ManchProtein,
• ManchAccessionNumber, with domain ManchProtein and range Lit-

eral,

This fragment of the ontology is shown in Figure 12.
We may also have properties and classes in the global ontology, arising from

the publicly available gpmDB resources:

– classes: gpmPeptide and gpmProtein
– properties: gpmPeptideSequence, gpmAligns and gpmAccessionNumber

Finally, there may be the following classes and properties that are supeclasses
or superproperties of the corresponding Manchester and gpmDB classes or prop-
erties, and that collectively represent the information in all three resources:

– superclasses: Peptide and Protein
– superproperties: PeptideSequence, Aligns and AccessionNumber
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Fig. 12. Part of the Proteomics Resources Ontology

Consider now the following query posed over the global ontology by a user
who is familiar with the Pedro resource:

?Y, ?Z <- {RELAX{(?X,PedroPeptideSequence,"ATLITFLCDR")},
RELAX{(?X,PedroAligns,?Y)},
RELAX{(?Y,PedroAccessionNumber,?Z)}}

In its non-relaxed form, this query will return the identifiers and accession num-
bers of proteins that have been identified within the Pedro resource as a result
of experiments that have yielded the peptide ”ATLITFLCDR”. Such a query
allows a scientist working with a protein sequence to ask if this peptide has been
seen before in other proteomics experiments.

A first level of relaxation of the three literals in this query according to the
sp subgraph, will result in the following relaxed query,

?Y, ?Z <- {RELAX{(?X,ManchPeptideSequence,"ATLITFLCDR")},
RELAX{(?X,ManchAligns,?Y)},
RELAX{(?Y,ManchAccessionNumber,?Z)}}

which will expand out the result set to include results also from the other Manch-
ester resource, Pepseeker, without the Pedro user needing to have detailed knowl-
edge of the schema of that resource.

A further level of relaxation of the three literals in the query according to the
sp subgraph, will result in the following relaxed query,

?Y, ?Z <- {RELAX{(?X,PeptideSequence,"ATLITFLCDR")},
RELAX{(?X,Aligns,?Y)},
RELAX{(?Y,AccessionNumber,?Z)}}
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which will now expand out the result set to include results also from the gpmDB
resource, again without the Pedro user needing to have detailed knowledge of
the schema of that resource.

In contrast therefore to the approach discussed in [22], in which users must
pose queries against an integrated global schema, the light-weight integration
and relaxed querying approach that we have outlined here would allow a more
incremental construction of query results, a more exploratory approach to query
answering, and also less knowledge of the global resources by users.

5.4 Complexity

The complexity of RelaxEval is given by the following proposition.

Proposition 12. Let Q be a query, O be an ontology and G an RDF graph.
Then RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m is the number of
triples in red(O), and n = |Body(Q)|.

The above proposition shows that the algorithm has exponential complexity,
however its complexity is polynomial in the size of the data queried for a fixed
query Q (data complexity). In addition, the answer is generated incrementally
and hence the processing can be halted at any level in the relaxation graph. The
number of triples in red(O) provides an upper bound for k, the number of levels
in the evaluation.

An improvement to the algorithm would be to process several delta views at
the same time in an integrated pipelined fashion. In practice, we can improve
query processing performance by further caching the results of deltaFind(t, G)
for all triple patterns t that occur more than once in the query relaxation graph
(such duplicate occurrences can be detected as the relaxation graphs of the
individual triple patterns in the original query are being constructed).

6 Introducing Simple Relaxations

In this section, we extend the relaxation framework to consider simple relaxations
that is, relaxations that replace terms of the original triple pattern with variables.
In Section 6.1, we formalize simple relaxation and show how the relaxation graph
can be extended with simple relaxations. In Section 6.2, we show the additional
types of relaxation now captured by our framework.

6.1 Notion of Simple Relaxation

An important restriction we place in our framework is to prevent simple relax-
ations replacing variables of the original query. This is because such variables
are needed to export results and join triple patterns in the relaxed queries. It
is important to note, however, that (as we will show in the next section) this
restriction does not limit the ability of our framework to relax join dependencies.
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In the light of the above, we call the variables of the original query fixed
variables, and define the notion of map that preserves such variables, along with
literals and IRIs. A map from a triple pattern t1 = (a, b, c) to a triple pattern
t2 = (d, e, f) is a function μ from terms of t1 to terms of t2, preserving IRIs,
literals, and fixed variables, such that (μ(a), μ(b), μ(c))) = (d, e, f). We say that
two triple patterns t1 and t2 are isomorphic if there are maps from t1 to t2 and
from t2 to t1. Now, we define simple relaxation.

Definition 5 (Simple Relaxation). If t1, t2 are triple patterns, then t1 ≤simple

t2 if there is a map from t2 to t1.

As an example, assuming a unique fixed variable ?X , we have (?X, type, Article)
≤simple (?X, type, ?Z) and (?X, type,Article) ≤simple (?X, ?W,Article), among
other simple relaxations. It is not the case that (?X, type,Article) ≤simple

(?U, type, ?Z), since the fixed variable ?X is replaced.
The following proposition confirms a desired property of the simple relaxation

relation.

Proposition 13. The simple relaxation relation ≤simple is a partial order up to
triple pattern isomorphism.

Similarly to Section 3.2, we can define the notion of relaxation graph of a triple
pattern t. It is enough to define the direct simple relaxation relation ≺simple

(transitive and reflexive reduction of ≤simple up to isomorphism), and the rela-
tion ≺simple,t (simple relaxation “above” t). The simple relaxation graph of t is
the graph induced by ≺simple,t. This graph is unique up to triple pattern isomor-
phism. In order to obtain a clean representation of it, without loss of generality,
we may assume that each non-fixed variable does not appear in more than one
triple pattern.

Also notice that the simple relaxation graph of a triple pattern can be eas-
ily computed: we just need to iteratively replace terms by variables in triple
patterns, taking care not to generate isomorphic triples and indirect relaxations.

The notions of relaxation graph of a triple pattern (and hence of a query)
introduced in Section 3.2 can be naturally generalized to include simple relax-
ations in different ways. Here we sketch one possible, yet simple, extension. We
add on the top of each triple pattern t in the original relaxation graph the simple
relaxation graph of t, and then delete indirect edges.

As an example, consider the ontology O of Figure 1. Figure 13 (B) shows the
relaxation graph of (JohnRobert, editorOf , ?X) (Figure 3) extended with simple
relaxations. The non-fixed variables are ?U1, . . . , ?U10.

Finally, we just remark that the query processing algorithm of Section 5 can
be applied without any modification to the extended version of the relaxation
graph as well.

6.2 Types of Simple Relaxation

The following types of relaxation can be captured by simple relaxation.
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(?X,type,Publication) (John Robert,contributorOf,?X)

(?X,type,Document)

(?X,?U1,Publication) (?X,?U2,Document) (?X,type,?U3)

(?X,?U4,?U5)

(John Robert,?U7,?X)(?U6,contributorOf,?X)

(?U8,?U9,?X)

(John Robert,editorOf,?X)

(?U10,editorOf,?X)

Fig. 13. Relaxation graph of the triple pattern (JohnRobert, editorOf , ?X) considering
simple relaxations. The simple relaxations are shown with solid arrows.

1. Dropping triple patterns. We can model the dropping of triple patterns by
introducing an “empty” triple pattern, which can be regarded as a “true”
condition to which any triple pattern relaxes. In this form, relaxation gen-
eralizes the use of the OPTIONAL clause within the conjunctive fragment of
SPARQL.

2. Constant relaxation: replacing a constant with a variable in a triple pattern.
This can be further classified according to whether the variable replaces a
property or a subject/object constant.

3. Breaking join dependencies: generating new variable names for a variable
that appears in multiple triple patterns. In order to model this type of re-
laxation, we first transform queries by applying variable substitution. If a
variable ?X appears n > 1 times in a query Q we replace each occurrence
with a different variable and add triple patterns (?Xi, equal, ?Xj) for each
pair of new variables ?Xi, ?Xj introduced. The predicate equal represents
equality. Each of the equality clauses in a query can now also be subject to
relaxation.

7 Related Work

Query languages based on regular expressions provide a form of flexible query-
ing. The G+ query language by Cruz et al. [6] proposes graph patterns where
edges are annotated with regular expressions over labels. In this form, each graph
pattern represents a set of more basic graph patterns, and therefore, a query ex-
tracts matchings that relate to its body in a variety of ways. This work considers
queries over directed labeled graphs.

Kanza and Sagiv [14] propose a form of flexible querying based on a notion
of homeomorphism between the query and the graph. Their data model is a
simplified form of the Object Exchange Model (OEM).
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Bernstein and Kiefer [1] incorporate similarity joins into the RDQL query
language. This is done by allowing sets of variables in an RDQL query to be
declared as imprecise. Bindings for these variables are then compared based on
a specified similarity measure, such as edit distance.

Stuckenschmidt and van Harmelen [20] consider conjunctive queries over a
terminological knowledge base that includes class, relation and object definitions.
They also use query containment as a way of viewing query approximations, but
are concerned about evaluating less complex queries first, so that the original
query is evaluated last. They use a query graph to decide which conjuncts from
the original query should be successively added to the approximate query. This
is analogous to SPARQL queries in which every conjunct is optional.

Bulskov et al. [4] consider the language Ontolog which allows compound
concepts to be formed from atomic concepts attributed with semantic relations.
They define a similarity measure between concepts based on subsumption in
a hierarchy of concepts. This gives rise to a fuzzy set of concepts similar to a
given concept. They also introduce specialization/generalization operators into
a query language that allow specializations or generalizations of concepts to be
returned. They admit that combining this with similarity may make answers
confusing.

In a series of papers, e.g. [18,19], Stojanovic and others have studied the
problem of query refinement in information retrieval, where users tend to pose
initial queries that are too short to fulfull their needs. The techniques proposed
use ontologies associated with the information to analyse “amibiguities” in the
user’s queries as well as users’ preferences in order to suggest incremental re-
finements to the user. For example, [19] uses a form of subsumption between
queries which generates a lattice of query refinements. A form of ranking, based
on user modelling and monitoring, is also provided. However, the refinements
considered are, in fact, specialisations of a query, rather than generalisations as
in our case. Generalisation is considered as one form of query refinement in [18].
The ontologies used in all cases, however, are not based on RDF/S.

A recent paper by Dolog et at. considers relaxing over-constrained queries on
RDF [7]. The paper proposes a rewriting technique based on domain knowledge
and user preferences, although these are not encoded using RDFS. The imple-
mentation of rewriting is performed using event-condition-action rules, for which
the authors state that termination of execution still needs to be thoroughly in-
vestigated.

8 Concluding Remarks

Despite being a relatively unexplored technique in the semantic Web, query re-
laxation may have an important role in improving RDF data access. One motiva-
tion for this technique is for querying data where there is a lack of understanding
of the ontology that underlies the data. Another application is the extraction
of objects with heterogeneous sets of properties because the data is incomplete
or has irregular structure. As an example, a relaxed query can retrieve the
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properties that are applicable to each resource among a set of resources having
different properties. Query relaxation can also make it possible to retrieve data
that satisfies the query conditions with different degrees of exactitude. Another
application area where this facility could be useful is the discovery of semantic
web services.

There are several areas for future work. One is the introduction of relaxation
into general SPARQL queries, including disjunctions and optionals. This should
also involve a generalization of the RELAX clause so that it can be applied to entire
graph patterns instead of single triple patterns. Another important issue for
future work is the design, implementation and empirical evaluation of algorithms
for computing relaxed answers. Finally, the graph-like nature of RDF provides
additional richness for a query relaxation framework, which can be exploited in
future work. For example, join dependencies between triple patterns of the query
can be relaxed to connectivity relationships in RDF graphs.
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A Proofs

Proposition 1. Let ≤ be defined using an ontology O, and t1, t2 be triple patterns
such that t1, t2 �∈ cl(O) and var(t1) = var(t2). Then t1 ≤ t2 if and only if
t2 ∈ cl(O ∪ {t1}).

Proof of Proposition 1. Follows directly from the definition of relaxation. �

Proposition 2. Let ≤ be defined using an ontology O. Then ≤ is a partial order
if and only if O is acyclic.

Proof of Proposition 2. (Only If) We prove the contrapositive, that is, if O
is cyclic then ≤ is not a partial order. We prove it for the case where the
subgraph Osc of O induced by sc is cyclic (the proof for a cycle in the sub-
property graph is similar). It is enough to prove that there exist triple pat-
terns ta, tb such that ta ≤ tb and tb ≤ ta. Now consider the following cycle in
Osc: (e1, sc, e2), (e2, sc, e3), . . . , (en−1, sc, e1) and the following triple patterns
ta = (c, type, e1) and tb = (c, type, e2). Because of rules 3 and 4, it can be easily
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verified that there exists a derivation from ta to tb and another derivation from
tb to ta. Hence ta ≤ tb and tb ≤ ta.

(If) Assume that O is acyclic. It can be easily verified that ≤ is transitive and
reflexive. Therefore, it remains to prove that it is antisymmetric. Now, assume
that there exist triple patterns ta, tb, ta �= tb, such that ta ≤ tb and tb ≤ ta.
We will proceed by cases, where each case is a possible form that ta may take
in order to instantiate at least one rule. By U, V, W we denote a IRI, variable
or a literal, and by a, b, c we denote IRIs and literals. Notice that ta cannot
be a dom-triple or range-triple, because in this case, the only rules that can be
instantiated are rules 5 or 6, and they require the existence of a plain triple in
the ontology, which is not allowed. We use the notion of linear derivation from
the proof of Proposition 3.

We prove by cases.

– ta is a type-triple. In this case, rule 4 is the only rule that ta can instantiate,
hence tb is also a type-triple. Let ta = (U, type, b), then the there is a linear
derivation of the form (U, type, a), (a, sc, e1) �4 (U, type, e1), (e1, sc, e2) �4
(U, type, e2), (e2, sc, e3) �4 . . . (U, type, en), (en, sc, b) �4 (U, type, b). That
is tb = (U, type, b). Therefore, there must be a path from a to b in Osc. By
a similar argument, we prove the existence of a path from b to a in Osc,
contradicting that Osc is acyclic.

– ta is an sc-triple. In this case, rules 3 and 4 are the only rules that can
be instantiated by ta. Hence tb is either a type-triple or an sc-triple. If
the former holds, then there is no derivation from tb to ta, a contradiction.
Therefore, tb is a sc-triple. Let ta = (a, sc, b) and let tb = (c, sc, d). In this
case the internal nodes of the derivation graph are sc-triples. It can be easily
verified that a path exists in Osc ∪ {(a, sc, b)} from c to d that contains an
edge (a, sc, b). Similarly, because there is a derivation from tb to ta, there
must exist a path in Osc ∪ {(c, sc, d)} from a to b that contains an edge
(c, sc, d). It can be checked that Osc has at least one cycle, a contradiction.

– ta is an sp-triple. Only rule 1 can apply because plain triples are not allowed
in the ontology. Hence tb is an sp-triple. By a similar argument as the proof
of the previous case we prove the existence of a cycle in Osp, yielding a
contradiction.

– ta is a plain triple. In this case, the only rules in the derivation graph from
ta to tb are rules 2, 4, 5, and 6. These rules only yield dom-triples, range-
triples, type-triples and plain triples. However, among these, a plain triple
can be derived only from a plain-triple. Hence tb is a plain triple, and the
derivation graph has only instances of rule 2. Without loss of generality, let
ta = (a, p, b) and tb = (a, q, b). Using a similar argument than the one used
in the previous cases, we reach the conclusion that there are paths from p
to q and from q to p in Osp, a contradiction. �

Proposition 3. Let ta, tb be triple patterns not in cl(O) such that var(ta) =
var(tb). If ta ≺ tb then there exists a triple o ∈ cl(O) such that ta, o � tb.
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Proof of Proposition 3. We define that a derivation from a graph G (which may
have triple patterns) to a triple pattern bn is a sequence a1, a2 � b3; a4, a5 � b6;
a7, a8 � b9; . . . an−2, an−1 � bn, where each ai, ai+1 � bi+2 is an instantiation of
a rule and ai, ai+1 either belong to G or appear as the consequent bj of some
rule where j < i.

A derivation is said to be linear if each bj = aj+1 and aj+2 belongs to G. This
notion is analogous to the notion of linear proof (e.g., linear proofs in Prolog’s
resolution). The intuition here is that when choosing two triples to combine in
a derivation, always make one be the result of a previous derived triple and the
other a triple from the original graph. A linear derivation from G to bn can be
abbreviated as follows: a1, a2 � b3, a4 � b5, a6 � b7 . . . bn−2, an−1 � bn, where
each ai belongs to G and each bi does not. Since the RDFS rules and triples in
the ontology are horn clauses, from a standard result that states that proofs for
horn-clause knowledge bases are linear (Nerode and Shore Theorem [16]), the
following holds: for a graph G, and a triple pattern t, we have that G |=rule t if
and only if there is a linear derivation from G to t.

Now assume that ta ≺ tb. Then there should exist a linear derivation from
cl(O)∪{ta} to tb. If the derivation has more than one rule instantiation, because
it is linear, we can easily prove that tb is an indirect relaxation of ta, a
contradiction. �

Proposition 4. Let O be an ontology, o be a derivable triple in cl(O) and t, t′ be
triple patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined
using O).

Proof of Proposition 4. Let t, o �s t′, where s is some rule. We denote by δ this
rule instantiation. Now, since o is a derivable triple, there are triples o1, o2 such
that o1, o2 �r o. Because the predicates of the triples in the ontology should be
in the set {type, dom, range, sp, sc}, r ∈ {1, 3, 4}. We will prove that there is a
triple pattern t′′ such that t, o1 � t′′ and t′′, o2 � t′, and hence t′ is an indirect
relaxation of t.

We continue the proof for each of the three cases.

– Case r = 1. Then without loss of generality o1 = (a, sp, b), o2 = (b, sp, c), and
o=(a, sp, c). Moreover, s=1 or s = 2. If s = 1, w.l.g, δ is (d, sp, a), (a, sp, c) �
(d, sp, c). That is, t = (d, sp, a) and t′ = (d, sp, c). Hence, we have: (d, sp, a),
(a, sp, b) �1 (d, sp, b), (b, sp, c) �1 (d, sp, c). Therefore, t′′ is (d, sp, b).

– Case r = 3. Then without loss of generality o1 = (a, sc, b), o2 = (b, sc, c), and
o = (a, sc, c). Moreover, s = 3 or s = 4. If s = 4, without loss of generality
δ is (x, type, a), (a, sc, c) �4 (x, type, c). That is, t = (x, type, a) and t′ =
(x, type, c). Hence, we have that: (x, type, a), (a, sc, b) �4 (x, type, b), (b, sc,
c) �4 (x, type, c). Therefore, t′′ = (x, type, b).

– Case r = 4. Then without loss of generality o1 = (a, sc, b), o2 = (x, type, a),
and o = (x, type, b). Moreover, s = 4 and without loss of generality δ is
(b, sc, c), (x, type, b) �4 (x, type, c). That is t = (b, sc, c) and t′=(x, type, c).
Hence, we have the following linear derivation from t to t′: (b, sc, c), (a, sc, b)
�3 (a, sc, c), (x, type, a) �4 (x, type, c). Consequently, t′′ = (a, sc, c). �
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Proposition 5. Let O be an ontology and t be a triple pattern not in cl(O). Then
all direct relaxations of t (defined using O) are in the set applyRules(t, red(O)).

Proof of Proposition 5. Follows directly from Proposition 4. �

Proposition 6. Let O be an ontology, o be a triple in red(O) and t, t′ be triple
patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined using
O) iff o can be derived by applying the rules of Figure 7 starting from cl(O).

Proof of Proposition 6. (If) It is enough to realize that if o1, o2 �i o, where i is
some rule in Figure 7, then we have that t, o1 � t′′, o2 � t′, and hence t′ is an
indirect relaxation of t.

(Only If) Assume that t′ is an indirect relaxation of t. If this is the case,
we will prove that either o �∈ red(O), which yields a contradiction, or o can be
obtained by applying the rules of Figure 7 to triples of cl(O). We will do it by
cases. Each case represents that t, o � t′ is an instance of a rule i.

– i = 1. Then without loss of generality t = (a, sp, b), o = (b, sp, c) and t′ =
(a, sp, c). Then, w.l.g the derivation δ is of the form (a, sp, b), (b, sp, d1) �1
(a, sp, d1), (d1, sp, d2) �1 (a, sp, d2) . . . (a, sp, dn), (dn, sp, c) �1 (a, sp, c).
Therefore, o �∈ red(O), a contradiction.

– i = 2. Because o is not a plain triple, without loss of generality o = (a, sp, b),
t=(x, a, y) and t′=(x, b, y). Then, w.l.g the derivation δ is (x, a, y), (a, sp, d1)
�2 (x, d1, y), (d1, sp, d2) � (x, d2, y) . . . (x, dn, y), (dn, sp, b) �2 (x, b, y). Then,
o �∈ red(O), a contradiction.

– i = 3. The proof is similar to the case where i = 1.
– i = 4. Then there are two cases: (i) t = (a, sc, b), o = (x, type, a) and t′ =

(x, type, b). Then, w.l.g the derivation δ is (a, sc, b), (d1, sc, a) � (d1, sc, b),
(d2, sc, d1) � (d2, sc, b), . . . � (dn, sc, b), (x, type, dn) � (x, type, b). Hence,
(dn, sc, a), (x, type, dn) � (x, type, a), contradicting that o �∈ red(O). (ii)
o = (a, sc, b), t = (x, type, a) and t′ = (x, type, b). Then w.l.g the deriva-
tion δ is (x, type, a), (a, sc, d1) � (x, type, d1) . . . (x, type, dn), (dn, sc, b) �
(x, type, b), contradicting that o ∈ red(O).

– i = 5. Then without loss of generality t = (x, a, y), o = (a, dom, d) and t′ =
(x, type, d). Then, w.l.g the derivation δ is of the form (x, a, y), (a, sp, b1) �
(x, b1, y), (b1, sp, b2) �2 . . . (x, bn, y), (bn, sp, b) �2 (x, b, y), (b, dom, c) �5
(x, type, c), (c, sc, d1) �4 (x, type, d1)(d1, sc, d2) �4 . . . (x, type, dm), (dm,
sc, d) �4 (x, type, d). Then, we have the following triples in cl(O): (a, sp, b),
(b, dom, c), and (c, sc, d). Then, by rules e1 and e3, (a, dom, c) and (a, dom, d) =
o can be derived.

– i = 6. The proof is similar to the case where i = 5, but now we use rules e2
and e4. �

Proposition 7. Let O be an ontology and t be a triple pattern not in cl(O). Then
applyRules(t, extRed(O)) is equal to the set of direct relaxations of t (defined
using O).
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Proof of Proposition 7. Follows directly from propositions 4 and 6. �

Proposition 8. Let t be a triple pattern and O be an ontology. The relaxation
graph of t (using the ontology O) has O(|red(O)|2) triples.

Proof of Proposition 8. We denote by Mα, where α ∈ {type, dom, range, sp, sc},
the number of α-triples in red(O). We prove the proposition by cases.

– t is a type-triple. Let t = (x, type, a). Notice that all derivations from t
yield triples of the form (x, type, b), for some b mentioned in a sc-triple.
This is because derivations use only rule 4. Therefore, the relaxation graph
of t cannot have more than Msc nodes.

– t is a dom-triple or a range-triple there are no derivations from t.
– t is a sc triple. The relaxation graph of t may only have sc-triples and
type-triples. Assume it only has sc-triples. Then, triples cannot be more
than the number of pairs of classes in red(O), which is at most M2

sc. Now, if
the relaxation graph has also type-triples, then for each type-triple in cl(O)
there are at most Msc type-triples in the relaxation graph. So overall we
have at most M2

sc + MtypeMsc triples in the relaxation graph.
– t is a sp triple. By a similar argument as in the previous case we have that

there are at most M2
sp triples in the relaxation graph.

– t is a plain triple. In this case we have at most Msp + MspMsc triples in the
relaxation graph.

For each triple pattern t′ resulting from an ontology relaxation there are at
most a constant number of simple relaxations above t′, so the generation of
simple relaxation does not asymptotically increase the size of the relaxation
graph. �

Proposition 9. Let t be a triple pattern and O be an ontology. (i) Computing
the direct relaxations of t takes O(|red(O)|) steps. (ii) Computing the relaxation
graph of t takes O(|red(O)|3) steps.

Proof of Proposition 9. Part (i) This is a bound for the cost of evaluating
applyRules(t, extRed(O)). Part (ii) follows directly from Part (i) and Proposi-
tion 8. �

Proposition 10. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≤QQ′ ΔQi(G), and

(ii) newAnswer(Q′, G) = ΔQ′(G).

Proof of Proposition 10. For simplicity, we consider that Q and Q′ have two
triple patterns each, and both triple patterns of Q are within the RELAX clause.
That is Body(Q) = {t1, t2} and Body(Q′) = {t′1, t

′
2}. The generalization of the

proof for more than two triple pattern is direct. Also, we have that Head(Q) =
Head(Q′) = H .
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For a triple pattern t′ in the relaxation graph of t, let St(t′) be the set con-
taining ti such that ti ≤t t′.

(i) We have that ans(Q′, G) = VQ′ = πH(find(t′1) �� find(t′2)).
By the definition of deltaFind, it can be easily verified that

find(t′1) =
⋃

ti∈St(t′
1)
deltaFind(ti).

A similar equality can be obtained for find(t′2).
Therefore, we have

VQ′ = πH((
⋃

ti∈St(t′
1) deltaFind(ti)) �� (

⋃
tj∈St(t′

2)
deltaFind(tj))),

which is equivalent to

VQ′ = πH((
⋃

ti∈St(t′
1),tj∈St(t′

2))
(deltaFind(ti) �� deltaFind(tj))).

which is equivalent to

VQ′ =
⋃

Qi:Qi≤QQ′ ΔQi(G).

(ii) We use (i) to replace newAnswer(Q′, G), obtaining

ΔQ′(G) = (
⋃

Qi:Qi≤QQ′ ΔQi(G)) − (
⋃

Qi:Qi≤QQ′,Qi �=Q′ ans(Qi, G))

But, from (i) it follows that:
⋃

Qi:Qi≤QQ′ ΔQi(G)) =
⋃

Qi:Qi≤QQ′ ans(Qi, G)).

Hence, (ii) is equivalent to ΔQ′(G) = ΔQ′ (G). �

Proposition 11. The algorithm RelaxEval returns its tuples in ranked order.

Proof of Proposition 11. Follows directly from Proposition 10 and the fact that
RelaxEval traverses the relaxation graph of Q in breadth-first fashion, that
is, delta views of less relaxed queries are processed before delta views of more
relaxed queries. �

Proposition 12. Let Q be a query, O be an ontology and G an RDF graph. Then
RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m is the number of triples
in red(O), and n = |Body(Q)|.

Proof of Proposition 12. Follows from the fact that the size of the relaxation
graph is in O(m2n) and the execution of each delta view takes time in O(|G|n).�

Proposition 13. The simple relaxation relation ≤simple is a partial order up to
triple pattern isomorphism.

Proof of Proposition 13. It can be easily verified that ≤simple is reflexive and
transitive, and it is also reflexive and transitive up to isomorphism. So we have
to prove that it is antisymmetric up to isomorphism. If it is not the case, there
are two triples ta, tb, where ta is not isomorphic to tb, such that ta ≤simple tb
and tb ≤simple ta. Hence there are maps ua from ta to tb and ub from tb to ta
and both maps preserve the fixed variables. Therefore, ta is isomorphic to tb, a
contradiction. �
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