

Lecture Notes in Computer Science 4900
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Spaccapietra (Ed.)

Journal on
Data
Semantics X

13

Volume Editor

Stefano Spaccapietra
Database Laboratory, EPFL
School of Computer and Communication Science
Lausanne, Switzerland
E-mail: stefano.spaccapietra@epfl.ch

Library of Congress Control Number: 2007942739

CR Subject Classification (1998): H.2, H.3, I.2, H.4, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-77687-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77687-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12215324 06/3180 5 4 3 2 1 0

The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data exchange facilities. Modern distribution
channels, such as high-speed Internet networks and wireless communication
infrastructure, provide reliable technical support for data distribution and data access,
materializing the new, popular idea that data may be available to anybody, anywhere,
anytime. However, providing huge amounts of data on request often turns into a
counterproductive service, making the data useless because of poor relevance or
inappropriate level of detail. Semantic knowledge is the essential missing piece that
allows the delivery of information that matches user requirements. Semantic
agreement, in particular, is essential to meaningful data exchange.

Semantic issues have long been open issues in data and knowledge management.
However, the boom in semantically poor technologies, such as the Web and XML,
has boosted renewed interest in semantics. Conferences on the Semantic Web, for
instance, attract big crowds of participants, while ontologies on their own have
become a hot and popular topic in the database and artificial intelligence
communities.

Springer's LNCS Journal on Data Semantics aims at providing a highly visible
dissemination channel for most remarkable work that in one way or another addresses
research and development on issues related to the semantics of data. The target
domain ranges from theories supporting the formal definition of semantic content to
innovative domain-specific application of semantic knowledge. This publication
channel should be of the highest interest to researchers and advanced practitioners
working on the Semantic Web, interoperability, mobile information services, data
warehousing, knowledge representation and reasoning, conceptual database modeling,
ontologies, and artificial intelligence.

Topics of relevance to this journal include:

• Semantic interoperability, semantic mediators

• Ontologies

• Ontology, schema and data integration, reconciliation and alignment

• Multiple representations, alternative representations

• Knowledge representation and reasoning

• Conceptualization and representation

• Multi-model and multi-paradigm approaches

• Mappings, transformations, reverse engineering

• Metadata

• Conceptual data modeling

• Integrity description and handling

• Evolution and change

VI Preface

• Web semantics and semi-structured data

• Semantic caching

• Data warehousing and semantic data mining

• Spatial, temporal, multimedia and multimodal semantics

• Semantics in data visualization

• Semantic services for mobile users

• Supporting tools

• Applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.

Contributions submitted to the journal and dealing with semantics of data will be
considered even if they are not from the topics in the list.

While the physical appearance of the journal issues is like the books from the well-
known Springer LNCS series, the mode of operation is that of a journal.
Contributions can be freely submitted by authors and are reviewed by the Editorial
Board. Contributions may also be invited, and nevertheless carefully reviewed, as in
the case for issues that contain extended versions of best papers from major
conferences addressing data semantics issues. Special issues, focusing on a specific
topic, are coordinated by guest editors once the proposal for a special issue is
accepted by the Editorial Board. Finally, it is also possible that a journal issue be
devoted to a single text.

The Editorial Board comprises an Editor-in-Chief (with overall responsibility), a
Co-editor-in-Chief, and several members. The Editor-in-Chief has a four-year
mandate. Members of the board have a three-year mandate. Mandates are renewable
and new members may be elected anytime.

We are happy to welcome you to our readership and authorship, and hope we will
share this privileged contact for a long time.

 Stefano Spaccapietra
 Editor-in-Chief

 http://lbd.epfl.ch/e/Springer/

Previous Issues

JoDS I Special Issue on Extended Papers from 2002 Conferences,
LNCS 2800, December 2003
Co-editors: Sal March and Karl Aberer

JoDS II Special Issue on Extended Papers from 2003 Conferences,
LNCS 3360, December 2004
Co-editors: Roger (Buzz) King, Maria Orlowska, Elisa
 Bertino, Dennis McLeod, Sushil Jajodia, and Leon Strous.

JoDS III Special Issue on Semantic-Based Geographical Information Systems,
LNCS 3534, 2005
Guest editor: Esteban Zimányi

JoDS IV Normal Issue, LNCS 3730, December 2005

JoDS V Special Issue on Extended Papers from 2004 Conferences,
LNCS 3870, 2006
Co-editors: Paolo Atzeni, Wesley W. Chu, Tiziana Catarci, and
 Katia P. Sycara

JoDS VI Special Issue on Emergent Semantics, LNCS 4090, 2006
Guest editors: Karl Aberer and Philippe Cudre-Mauroux

JoDS VII Normal Issue, LNCS 4244, Autumn 2006

JoDS VIII Special Issue on Extended Papers from 2005 Conferences,
LNCS 4830, Winter 2006
Co-editors: Pavel Shvaiko, Mohand-Saïd Hacid, John Mylopoulos,

Barbara Pernici, Juan Trujillo, Paolo Atzeni, Michael Kifer,
François Fages, and Ilya Zaihrayeu

JoDS IX Special Issue on Extended Papers from 2005 Conferences
(continued), LNCS 4601, September 2007
Co-editors: Pavel Shvaiko, Mohand-Saïd Hacid, John Mylopoulos,

Barbara Pernici, Juan Trujillo, Paolo Atzeni, Michael Kifer,
François Fages, and Ilya Zaihrayeu

JoDS Volume X

This JoDS volume results from a rigorous selection among 26 full-paper submissions
received in response to a call for contributions issued in July 2006.

After two rounds of reviews, eight papers spanning a wide variety of topics were
eventually accepted for publication. They are listed in the table of contents.

We would like to thank the authors of all submitted papers as well as all reviewers
who contributed to improving the papers through their detailed comments.

The forthcoming volume XI will contain extended versions of the best papers from
2006 conferences covering semantics aspects. Its publication is expected in early
2008.

We hope you'll enjoy reading this volume.

 Stefano Spaccapietra
 Editor-in-Chief

 http://lbdwww.epfl.ch/e/Springer/

Organization

Reviewers

We are very grateful to the external reviewers listed below who helped the editorial
board in the reviewing task:

Michel Adiba, Grenoble University, France
Bernhard Bauer, University of Augsburg, Germany
Davide Bresolin, University of Udine, Italy
Silvana Castano, University of Milan, Italy
Marco Comerio, University of Milano-Bicocca, Italy
Ying Ding, University of Innsbruck, Austria
Gillian Dobbie, University of Auckland, New Zealand
Guillermo Hess, University of Milan, Italy
Giancarlo Guizzardi, CNR Trento, Italy
Ian Horrocks, University of Manchester, UK
Hanjo Jeong, George Mason University, USA
Aditya Kalyanpur, IBM T.J. Watson Research Center, Hawthorne, USA
Roland Kaschek, Massey University, New Zealand
Stephen Kimani, J. Kenyatta University of Agriculture and Technology, Kenya
Andrei Lopatenko, Free University of Bozen-Bolzano, Italy
Luke McDowell, U.S. Naval Academy, USA
Salvador Mandujano, Intel Corporation, USA
Diego Milano, University of Rome “La Sapienza,” Italy
Michele Missikoff, IASI-CNR, Rome, Italy
Angelo Montanari, University of Udine, Italy
Saravanan Muthaiyah, George Mason University, USA
Matteo Palmonari, University of Milano-Bicocca, Italy
Jeff Pan, The University of Aberdeen, UK
Antonella Poggi, University of Rome “La Sapienza,” Italy
Alex Poulovassilis, University of London, UK
Elaheh Pourabbas, IASI-CNR, Rome, Italy
Pierre-Yves Schobbens, University of Namur, Belgium
Richard Snodgrass, University of Arizona Tucson, USA
Yong Uk Song, Yonsei University, South Korea
Alexei Tretiakov, Massey University, New Zealand
Denny Vrandecic, University of Karlsruhe, Germany

XII Organization

JoDS Editorial Board

Coeditors-in-Chief Lois Delcambre, Portland State University, USA
 Stefano Spaccapietra, EPFL, Switzerland

Members of the Board

Carlo Batini, Università di Milano Bicocca, Italy
Alex Borgida, Rutgers University, USA
Shawn Bowers, University of California Davis, USA
Tiziana Catarci, Università di Roma La Sapienza, Italy
David W. Embley, Brigham Young University, USA
Jerome Euzenat, INRIA Alpes, France
Dieter Fensel, University of Innsbruck, Austria
Nicola Guarino, National Research Council, Italy
Jean-Luc Hainaut, FUNDP Namur, Belgium
Ian Horrocks, University of Manchester, UK
Arantza Illarramendi, Universidad del País Vasco, Spain
Larry Kerschberg, George Mason University, USA
Michael Kifer, State University of New York at Stony Brook, USA
Tok Wang Ling, National University of Singapore, Singapore
Shamkant B. Navathe, Georgia Institute of Technology, USA
Antoni Olivé, Universitat Politècnica de Catalunya, Spain
José Palazzo M. de Oliveira, Universidade Federal do Rio Grande do Sul, Brazil

Christine Parent, Université de Lausanne, Switzerland
John Roddick, Flinders University, Australia
Klaus-Dieter Schewe, Massey University, New Zealand
Heiner Stuckenschmidt, University of Mannheim, Germany
Katsumi Tanaka, University of Kyoto, Japan
Yair Wand, University of British Columbia, Canada
Eric Yu, University of Toronto, Canada
Esteban Zimányi, Université Libre de Bruxelles (ULB), Belgium

Table of Contents

Asymmetric and Context-Dependent Semantic Similarity Among
Ontology Instances . 1

Riccardo Albertoni and Monica De Martino

Query Relaxation in RDF . 31
Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 62
Joey Sik Chun Lam, Derek Sleeman, Jeff Z. Pan, and
Wamberto Vasconcelos

Deploying Semantic Web Services-Based Applications in the
e-Government Domain . 96

Alessio Gugliotta, John Domingue, Liliana Cabral, Vlad Tanasescu,
Stefania Galizia, Rob Davies, Leticia Gutierrez Villarias,
Mary Rowlatt, Marc Richardson, and Sandra Stincic

Linking Data to Ontologies . 133
Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati

Context Representation in Domain Ontologies and Its Use for Semantic
Integration of Data . 174

Guy Pierra

Semantically Processing Parallel Colour Descriptions 212
Shenghui Wang and Jeff Z. Pan

A Cooperative Approach for Composite Ontology Mapping 237
Cássia Trojahn, Márcia Moraes, Paulo Quaresma, and Renata Vieira

Author Index . 265

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 1–30, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Asymmetric and Context-Dependent Semantic Similarity
among Ontology Instances

Riccardo Albertoni and Monica De Martino

CNR-IMATI,
Via De Marini, 6 – Torre di Francia - 16149 Genova, Italy
{albertoni, demartino}@ge.imati.cnr.it

Abstract. In this paper we propose an asymmetric semantic similarity among
instances within an ontology. We aim to define a measurement of semantic
similarity that exploit as much as possible the knowledge stored in the ontology
taking into account different hints hidden in the ontology definition. The
proposed similarity measurement considers different existing similarities, which
we have combined and extended. Moreover, the similarity assessment is
explicitly parameterised according to the criteria induced by the context. The
parameterisation aims to assist the user in the decision making pertaining to
similarity evaluation, as the criteria can be refined according to user needs.
Experiments and an evaluation of the similarity assessment are presented
showing the efficiency of the method.

1 Introduction

Semantic similarity plays an important role in information systems as it supports the
identification of objects that are conceptually close but not identical. Similarity
assessment is particularly significant in different areas of knowledge management
(such as data retrieval, information integration, and data mining) because it facilitates
the comparison of the information resources in different types of domain knowledge
[1,2].

Nowadays domain knowledge is often available in the form of an ontology, which
reflects the understanding of a domain that a community has agreed upon. An
ontology consists of different parts, including a set of concepts and their mutual
relations and instances. In particular, ontologies have recently been imposed as means
of organizing the metadata (called ontology-driven metadata) of complex information
resources. According to Sheth et al. [3] ontology-driven metadata provide syntactic
and semantic information about complex information resources. Syntactic metadata
describe non-contextual information about the content (e.g. language, a bit rate,
format). This offers no insight into the meaning of a document. In contrast, semantic
metadata describe domain specific information about the content and contextual
information, such as which entities take part in the production and usage of the
information resource. The metadata of the resources are encoded as instances in the
ontology. Therefore, the definition of a method for assessing the semantic similarity

2 R. Albertoni and M. De Martino

among ontology instances becomes essential in order to compare all these complex
resources.

The concept of similarity among information resources is not univocal as it is
affected by the human way of thinking as well as by the application domain [4]. Its
evaluation cannot ignore some cognitive properties related to the human way of
perceiving the similarity. In particular, we underline three main aspects. Firstly,
considering that, in the naïve view of the word, similarities defined in terms of a
conceptual distance are frequently asymmetric, the formulation of similarity should
for many applications provide an asymmetric evaluation [5]. Secondly, it should be
flexible and adaptable to different application contexts, which affect the similarity
criteria. Moreover, considering that part of the domain knowledge as it is perceived
by the domain expert is already formalized in the ontology and the ontologies are
artefacts whose definitions require time consuming and costly processes, the
similarity evaluation should be able to exploit as much as possible all the hints that
have already been expressed in the ontology.

So far, most of the research activity pertaining to similarity and ontologies has
been carried out within the field of ontology alignment or in order to assess the
similarity among concepts. Unfortunately, these methods produce results that are
inappropriate for the similarity among instances. On the one hand, similarities for
ontology alignment strongly focus on the comparison of the structural parts of distinct
ontologies, and their application for assessing the similarity among instances might
give misleading results. On the other hand, similarities among concepts mainly deal
with the lexicographic database, ignoring the comparison of the values of the
instances. Apart from these, few methods for assessing similarities among instances
have been proposed. Unfortunately, these methods rarely take into account the
different hints hidden in the ontology, and they do not consider that the ontology
entities concur differently in the similarity assessment according to the application.

To overcome the limitations mentioned above, our ongoing research is aimed at
defining a framework for assessing the semantic similarity among instances. This
paper proposes an asymmetric similarity assessment, where the asymmetry is
explicitly adopted to stress the principle of “containment” between the two sets of
characteristics of two instances representative of two information resources. The
similarity between two instances tends to be greater for instances that have a higher
level of containment.

The measurement of the asymmetric semantic similarity is defined by an
amalgamation function. The amalgamation function combines and extends different
similarities already defined in literature: it takes into account both the structural
comparison between two instances, in terms of the classes that the instances belong
to, and the comparison between the attributes and relations of the instances.
Moreover, the framework provides a parametric evaluation of the similarity with
respect to different applications. The application induces the criteria of similarity,
which are explicitly formalized in the application context. An application context
models the importance of the entities, which concur in the assessment of similarity,
and the operations used to compare the instances. The parametric evaluation allows us
to tailor the similarity assessment to specific application contexts, but also allows us
to obtain different similarity assessments employing the same ontology.

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 3

The main framework contributions are:

• To exploit as much as possible the implicit knowledge stored in the ontology: the
similarity assessment is set up by considering different kinds of hints in the
ontology.

• To tailor the similarity assessment according to the needs arising from the specific
application contexts: different similarity assessments can be defined for the same
ontology, according to the criteria arising from different applications.

• To improve the decision making of the user in the similarity evaluation: as the
similarity assessment is completely parameterized on context criteria, the criteria
can be refined according to user needs.

This paper is an extension of an ongoing research programme whose first result has

been presented previously [6]. Here, we aim to provide more information useful for
exploiting our similarity evaluation: detailed illustrations of the motivations that are
behind the principle of our approach are discussed and some scenarios are illustrated.
In addition, the asymmetric property in the assessment is stressed and argued more
deeply with each equation. The paper is organized as follows. In the first section, we
illustrate the motivation and the scenario that drove us to the similarity definition.
Then, after providing some useful assumptions (section 3), we discuss the main
principle of the approach (section 4). The approach description is characterised by
three main parts: context, ontology, data and knowledge layers according with the
framework proposed by Ehrig et al. [7]. A formalization of the similarity criteria
induced by the context is proposed as context layer (section 5). The ontology layer
(section 6) and data and knowledge layer (section 7) are devoted to the definition of
the similarity functions that characterize our approach, followed by two experiments
and an evaluation of the results (section 8). At the end, we evaluate related works
(section 9), underlining how they have been useful as a starting point for our research
but how, contrary to the proposed framework, they do not fulfil the requirements and
goal we address by our contributions.

2 Motivations and Scenarios

This section discusses the motivations that are behind the design of our approach as
well as the reference scenario that has been developed with respect to this work.

2.1 Motivations

Here we provide the motivations behind our approach underlying the need of a
similarity evaluation among ontology instances that takes into account the hints
hidden in the ontology as well as the dependence on the context. In particular, we aim
to answer the following questions:

• Why define a semantic similarity among ontology instances?
• What is the role of the implicit knowledge expressed by the ontology in setting up

a similarity assessment?
• What is the role of the application context in the similarity evaluation?

4 R. Albertoni and M. De Martino

Why define a semantic similarity among ontology instances?
Defining a semantic similarity among ontology instances represents a challenging
priority in future research as it will pave the way for the next wave of knowledge
intensive methods that will facilitate intelligent browsing as well as information
analysis.

Here we do not refer to similarity as a tool for identifying possible mapping or
alignment among different ontologies. Rather, we address a different problem related
to the comparison of the ontology instances. We realize the importance of solving this
problem from our direct research experience working in the European founded
Network of Excellence AIM@SHAPE [8].

Within the NoE AIM@SHAPE, ontology has been adopted to organize the
metadata of complex information resources. Different ontologies are integrated to
describe 3D / 2D models (i.e. models of mechanical objects, digital terrains or
artefacts from cultural heritage) as well as the tools for processing the models
[9,10,11]. From our experience, we realize that the ontology driven metadata
definition turns out to be outrageously expensive in terms of man-month efforts
needed, especially whenever the domain that is expected to be formalized is complex
and compound. The “standard ontology technology” provides reasoning facilities that
are very useful in supporting querying activity as well as in checking ontology
consistency, but the current technology lacks an effective tool for comparing the
resources (instances). In addition to efforts to formalize the ontology, domain experts
are often quite willing to provide the domain knowledge required to characterize their
resources. However, they are disappointed when their efforts do not result in any
measure of similarity among the resources.

Aware of this shortcoming, we address our research efforts towards investigating
how to better employ the information encoded in the ontology and to provide tools
that exploit as much as possible the result of the aforementioned efforts [6,12].

What is the role of the knowledge expressed by the ontology in setting up a similarity
assessment?
An ontology reflects the understanding of a domain, which a community has agreed
upon. Gruber defines an ontology as “the specification of conceptualizations, used to
help programs and humans share knowledge” [13].
There is a strong dependence between the knowledge provided by the domain expert
in order to define the ontology and his expectation of the results of the semantic
similarity. Actually, the domain expert will perceive a similarity that is based on the
knowledge he has provided.

The main ontology components (concepts, relations, instances) as well as its
structure are representative of the domain knowledge conceptualized in the ontology.
Therefore, they provide the base on which to set up the different hints to define the
similarity. Classes provide knowledge about the set of entities within the domain.
Properties, namely relations and attributes, provide information about the interactions
between classes as well as further knowledge about the characteristics of concepts.
Moreover, the class structure within the ontology is also relevant as the attributes and
relations shared by the classes, as well as their depth in the ontology graph, are
representative of the level of similarity among their instances. In our proposal, the
similarity assessment takes advantage of all of these ontology entities, which are

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 5

usually available in the most popular ontology languages. Other entities could be
considered as long as more specific ontology languages are adopted.

What is the role of the application context in the similarity evaluation?
The definition of a similarity explicitly parameterized according to the context is
essential because the similarity criteria depend on the application context. Two
instances may be more closely related to each other in one context than in another
since humans compare the instances according to their characteristics but the
characteristics adopted vary with the context.

In particular, as a consequence of the explicit parameterization of the similarity
with respect to the application context, it is possible to:

• Use the same ontology for different application contexts. The ontology design
usually ignores the need to tailor the semantic similarity according to specific
application contexts. In that case, to assess the similarity between two different
applications, two distinct ontologies need to be defined instead of simply defining
two contexts.

• Provide a tool for context tuning that supports the decision-making process of the
ontology user. The user often has not clearly defined in his mind the set of
characteristics relevant for the comparison of the instances, or his specification
does not match the result induced by the information system. A parameterization
of the semantic similarity measurement supports a refinement process of the
similarity criteria. The parameterization provides a flexible and adaptable way to
refine the assessment toward the expected results and, therefore, it reduces the gap
between user-expected and system results.

2.2 Framework Scenario

We have identified two main scenarios where the proposed similarity framework is
relevant: scenario 1 refers to a similarity evaluation in different application contexts
exploiting the same ontology; scenario 2 refers to the iterative criteria refinement
process used to properly assess the similarity in accord with the expectations of the
domain expert.

In both scenarios we assume that we have an ontology describing the metadata of
the resources in a complex domain and that the different resources are already
annotated according to this ontology driven metadata.

Two actors play important roles in the two scenarios:

• The user who is the domain expert and who is looking for the semantic similarity.
He has the proper knowledge to formulate the similarity criteria in the domain.

• The ontology engineer who is in charge of defining the similarity assessment on
the basis of the ontology design and the information provided by the domain
expert. He plays the role of communication channel for the requests of the domain
expert, with the system defining the application context to properly parameterize
the similarity assessment.

6 R. Albertoni and M. De Martino

2.2.1 Scenario 1: Two Different Application Contexts
Fig. 1 illustrates the first scenario, which highlights the dependence of the similarity
result on the similarity criteria induced by the application. The domain expert user
formulates different similarity criteria in two different application contexts. The two
sets of criteria are formalized by the ontology engineer according to the system
formalization, and the evaluation is performed. Two different results of the similarity
evaluation are provided by the system and represented by similarity matrices. It is
evident in this scenario how two application contexts induce two different similarity
matrices just by exploiting the same ontology.

Fig. 1. Scenario 1: similarity evaluation according to different application contexts

2.2.2 Scenario 2: Similarity Criteria Refinement
This scenario is characterized by an interactive exchange of information between the
two actors. The domain expert browses the repository looking for similar resources.
He relies on his domain of knowledge to compare the resources, perceives the
similarities among resources (which are not provided directly from the standard
ontology reasoning technology), and provides some informal similarity criteria to be
adopted in the similarity evaluation. The ontology engineer translates the user
requests to the system: he figures out which ontology entities are relevant and how to
use them during the similarity assessment. The ontology engineer runs the similarity
evaluation proposed in this paper and he shows the result to the domain expert.

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 7

Fig. 2. Scenario 2: similarity criteria refinement

Analysing the result, the domain expert might point out some unexpected result to
the ontology engineer. Then the ontology engineer refines the similarity criteria,
interacting with the domain expert, until the results are correct.

We assume that usually the user expert is so familiar with the domain conceptualized
in the ontology that his expectations about similarities are often implicit. Thus, he does
not provide to the ontology engineer a complete set of information concerning the
criteria of similarity to be used. With this assumption the criteria definition process
requires further iterative refinement.

In this scenario the framework supports the iterative criteria refinement process to
precisely adapt the similarity assessments to the user expectations.

3 Preliminary Assumptions

This paper proposes a semantic similarity among instances taking into account the
different hints hidden in the ontology. As the hints that can be considered largely

8 R. Albertoni and M. De Martino

depend on the level of formality of the ontology model adopted, it is important to
state clearly to which ontology model a similarity method is referring. In this paper,
the ontology model with data type defined by Ehrig et al. [7] is considered.

Definition 1: Ontology with data type. An Ontology with data type is a structure

),,,,,,,,,,,,,,(: ARTCARARc llllVIARTCO ≤≤≤= σσ where C,T,R,A,I,V are disjoint sets,

respectively, of classes, data types, binary relations, attributes, instances and data
values, and the relations and functions are defined as follows:

A symmetric normalized similarity is a function]1,0[: →IxIS , which satisfies the
following axioms:

SymmetryxySyxSIyx

MaximalityzySxxSIzyIx

ssPositiveneyxSIyx

),(),(,

),(),(,,,

0),(,

=∈∀
≥∈∀∈∀

≥∈∀

An asymmetric normalized similarity is a function]1,0[: →IxIS that does not

satisfy the symmetric axioms. The preference between symmetric and asymmetric
similarity mainly depends on the application scenario; in general, there is no a-priori
reason to formulate this choice. A complete framework for assessing the semantic
similarity should be provided by both of them.

The preference between symmetric and asymmetric similarity mainly depends on
the application scenario; often the symmetric similarity is preferred because it is
mathematically closer to the inverse of distance measure than the asymmetric one.
However, according to the assumption of Tvesky, often a non-prominent item is more
similar to a prominent item than vice versa [14]. In this paper we chose to propose an
asymmetric similarity because we think it is more informative. This informativeness
is useful for example in application such as the browsing of information resources.

During the browsing, we need to identify similar resources that are representative
of a searched resource and that can be used to replace it. For instance if we consider
as information resources the members of a research staff, and we suppose to search
for a member with a specific scientific expertise, usually a PhD student can be
replaced by his PhD advisor, because the experience of a PhD student is usually
contained in the expertise of his PhD advisor but the vice versa is not true. As a
consequence the similarity between the PhD student and his PhD advisor is greater

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 9

than the similarity between the PhD advisor and his PhD student. The symmetric
similarity is not suitable to support this characteristic of containment.

Then a representative resource is the resource that includes others. A similar
approach has been proposed in [15] for the retrieval of documents. We stress the
relation of containment between the sets of characteristics of two information
resources. The information resources are characterized by ontology driven metadata;
therefore, each resource is assumed to be an instance and the similarity is defined
among pairs of instances.

Definition 2: Containment between two information resources/instances. Given
two information resources x, y (represented as instances in the ontology) and their
sets of characteristics (coded as instance attributes and relation values), x is
contained in y if the set of characteristics of x is contained1 in the set of
characteristics of y.

We assume that instance similarity behaves coherently with the concept of
containment. Given two instances x, y, their similarity is sim(x,y)=1 if and only if the
set of characteristics of x is contained in the set of characteristics of y. On the
contrary, unless y is contained in x, the similarity between y and x is sim(y,x)<1. The
similarity value between x and y tends to decrease as long as the level of containment
of their sets of properties decreases. Of course, the containment has to consider also
the inheritance between the classes: if x belongs to a sub-class of the class of y, the
asymmetric evaluation is performed relying on the idea that humans perceive
similarity between a sub-concept and its super-concept as greater than the similarity
between the super-concept and the sub-concept [16].

4 Semantic Similarity Approach

The proposed approach adopts the schematization of the similarity framework defined
by Ehrig et.al. [7]: the similarity is structured in terms of data, ontology and context
layers plus the domain knowledge layer, which spans all the others. The data layer
measures the similarity of entities by considering the data values of simple or
complex data types such as integers and strings. The ontology layer considers the
similarities induced by the ontology entities and the way they are related to each
other. The context layer assesses the similarity according to how the entities of the
ontology are used in some external contexts. The framework defined by Ehrig et al. is
suitable for supporting the ontology similarity as well as instances similarity.

Our contribution with respect to the framework defined by Ehrig et al. is mainly in
the definition of a context layer including an accurate formalization of the criteria in
order to tailor the similarity with respect to a context and in the definition of an
ontology layer explicitly parameterized according to these criteria. Concerning the
data and domain knowledge layers, this paper adopts a replica of what is illustrated in
[7]. The formalization of the criteria of similarity induced by the context is employed
to parameterize the computation of the similarity in the ontology layer, forcing it to
adhere to the application criteria.

1 The containment is not meant as proper containment. In other words each set A is considered

as an A subset.

10 R. Albertoni and M. De Martino

The overall similarity is defined by the following amalgamation function (Sim),
which aggregates two similarity functions defined in the ontology layer named external
similarity (ExternSim) and extensional similarity (ExtensSim). The external similarity
performs a structural comparison between two instances i1∈lc(c1), i2∈lc(c2) in terms of
the classes c1, c2 that the instances belong to, whereas the extensional similarity
performs a comparison of the instances in terms of their attributes and relations.

ExtensSimExternSim

ExtensSimExternSim

ww

iiExtensSimwiiExternSimw
iiSim

+
+

=
),(*),(*

),(2121
21 (1)

wExternSim and wExtensSim are the weights used to balance the importance of the
functions. By default they are equal to 1/2.

In the section, we have illustrated a full description of the approach. In the next, the
approach is detailed in three sections. In particular our definition of context layer is
described in detail as well as the ontology layer where the two similarities ExternSim

and ExtensSim are designed, while the description of data and knowledge layer is
shortly provided.

5 Context Layer

The context layer, according to Ehrig at al. [7], describes how the ontology entities
concur in different contexts. Here we adopt the same point of view. However, we aim
to formalize the application context in the sense of modelling the criteria of similarity
induced by the context. This design choice does not hamper the eventual definition of
a generic description of context followed by an automatic determination of which
criteria would have been suitable for a given context. Rather, it allows us to calculate
directly the similarity acting on the criteria, especially when it is necessary to refine
them. In the following we underscore the importance of this formalization.

5.1 Motivation Behind the Application Context Formalization

The application context provides the knowledge for formalizing the criteria of
similarity induced by the application. The criteria are context-dependent as the
context influences the choice of classes, attributes and relations that are considered in
the similarity assessment and the operations used to compare them.

We describe the motivation behind the proposed formalization through an example
based on the domain of academic research, considering as resources to be compared
the researchers of a research institution. We chose this domain instead of a more
specific area related to our research experience in the AIM@SHAPE project (such as
solid modelling, 3D model reconstruction, virtual humans, etc.) as it is without doubt
a more familiar field to the readers of this paper. Let us consider a simplified version
of the ontology KA2 that defines concepts from academic research (Fig. 3) and focus
on the two applications “comparison of the members of the research staff according to
their working experience” and “comparison of the members of the research staff with
respect to their research interest”.

2 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 11

Fig. 3. Ontology defining concepts related to academic research

Two distinct application contexts may be induced according the applications:

• “Exp” induced by the comparison of the members of the research staff according
to their working experience. The similarity among the members of the research
staff (instances of the class ResearchStaff 3) is roughly assessed by considering the
member’s age (the attribute age inherited by the class Person) and the number of
projects and publications a researcher has worked on (the number of instances
reachable through the relation publications and the relation workAtProject
inherited by Staff).

• “Int” induced by the comparison of the members of the research staff with respect
to their research interests. The researchers can be compared with respect to their
interests (instances reachable through the relation interest) and, again, their
publications (instances reachable through the relation publications and the relation
workAtProject).

The following points need to be considered when analysing these examples:

1. The similarity between two instances can depend on the comparison of their
related instances: the researchers are compared with respect to the instances of the
class Publication connected through the relation publications.

2. The attributes and relations of the instances can contribute differently to the
evaluation according to the context: the attribute age of the researchers is
functional in the first application but it might not be interesting in the second; the

3 The italics is used to explicit the reference to the entities (attributes, relations, classes) of the

ontology in Fig 1.

12 R. Albertoni and M. De Martino

relations publication and workAtProject are included in both application contexts
but using different operators of comparison—in the first case just the number of
instances is important whereas in the latter case the related instances have to be
compared.

3. The ontology entities can be considered recursively in the similarity evaluation: in
the context “Int” the members’ research topic (instances of ResearchTopic
reachable navigating through the relation ResearchStaff->interest4) are considered
and their related topics (instances of ResearchTopic reachable via ResearchStaff-
>interest->relatedTopic) are recursively compared to assess the similarity of
distinct topics.

4. The classes’ attributes and relations can contribute differently to the evaluation
according to the recursion level of the assessment: in the second application the
attribute topicName and the relation relatedTopic can be considered at the first
level of recursion to assess the similarity between researchTopic. By navigating
the relation relatedTopic it is possible to apply another step of recursion, and here
the similarity criteria can be different from the previous ones. For example, in
order to limit the computational cost and stop the recursion, only the topicName or
the instances identifier could be used to compare the relatedTopic.

As pointed out in the second remark, different operations can be used to compare

the ontology entities:

• Operation based on the “cardinality” of the attributes or relations: the similarity is
assessed according to the number of instances the relations have or the number of
values that an attribute assumes. For example, in the first context “Exp”, two
researchers are similar if they have a similar “number” of publications.

• Operation based on the “intersection” between sets of attributes or relations: the
similarity is assessed according to the number of elements they have in common.
For example, in the context “Int”, the more papers two researchers share, the more
their interests are similar.

Operation based on the “similarity” of attributes and relations: the similarity is
assessed in terms of the similarity of the attribute values and related instances. For
example, in the context “Int”, two researchers are similar if they have “similar”
research topics.

The example shows that an accurate formalism is needed to properly express the
criteria that might arise from different application contexts. The formalization has to
model the attributes and relations as well as the operations to compare their values.
Moreover, as stated in the fourth remark, the level of recursion of the similarity
assessment also has to be considered.

5.2 Application Context Formalization

The formalization provided here represents the restrictions that the application context
must adhere to. An ontology engineer is expected to provide the application context

4 The arrow is used to indicate the navigation through a relation, for example A->B->C means

that starting from the class A we navigate through the relations B and C.

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 13

according to specific application needs. The formalization relies on the concepts of a
“sequence of elements belonging to a set X”, which formalizes generic sequences of
elements, and a “path of recursion of length i” to track the recursion during the
similarity assessment. In particular, a “path of recursion” represents the recursion in
terms of the sequence of relations used to navigate the ontology.

The application context function (AC) is defined inductively according to the
length of the path of recursion. It yields the set of attributes and relations as well as
the operations to be used in the similarity assessment. The operations considered are
those described in the previous section and named, respectively, Count to evaluate the
cardinality, Inter to evaluate the intersection, and Simil to evaluate the similarity.

Definition 3: Sequences of a set X. Given a set X, a sequence s of elements of X with
length n is defined by the function [] +∈→ NnXns ,,..,1: and represented in a simple
way by the list [s(1),..,s(n)].

Let }],1[:|{ XnssS n
X →= be the set of sequences of X having length n.

Let mn
YX

m
Y

n
X SxSS +

∪→⋅ : be the operator “concat” between two sequences.

Table 1 defines the polymorphism functions, which identify specific sets of entities in
the ontology model.

Table 1. List of functions defining specific sets of elements in the ontology model

Definition 4: Path of recursion. A path of recursion p with length i is a sequence
whose first element is a class and whose other elements are relations recursively
reachable from the class:))1(()()(],2[)1(| −∈∧∈∈∀∧∈∈ ∪ jpjpRjpijCpSp r

i
RC δ .

For example, a path of recursion with length longer than three is a path that starts
from a class p(1) and continues to one of its relations as the second element p(2) and
then to one of the relations of the class reachable from p(2) as the third element p(3),
and so on. In general, a path of recursion p represents a path that is followed to assess
the similarity recursively. The recursion expressed in the previous section in the
context “Int” as ResearchStaff->interest->relatedTopic is formalized with the path of
recursion [ResearchStaff, interest, relatedTopic].

14 R. Albertoni and M. De Martino

Let Pi be the set of all paths of recursion with length i and P be the set of all paths
of recursion P= ∪ i∈N Pi.

Definition 5: Application context AC. Given the set P of paths of recursion,
},,{ SimilInterCountL = , the set of operations adopted as an application context is

defined by a partial function AC having the signature)2()2(: LRLAPAC ×× ×→ , yielding
the attributes and relations as well as the operations to perform their comparison.

In particular, each application context AC is characterized by two operators

LA
A PAC ×→ 2: and 2: LR

R PAC ×→ , which yield, respectively, the parts of the context AC

related to the attributes and the relations. Formally),(()(pACpACPp A=∈∀))(pACR

and ACA(p) and ACR(p) are set of pairs {(e1,o1), (e2,o2),…, (ei,oi),…,(en,on)} n ∈N where
ei is, respectively, the attribute or the relation relevant to define the similarity criteria and
oi∈L is the operation to be used in the comparison.

We provide two examples of AC formalization referring to the two application
contexts “Exp” and “Int” mentioned in the previous section.

Example 1. Let us formalize the application context “Exp” with ACExp to assess the
similarity among the members of a research staff according to their experience. We
consider the set of paths of recursion {[ResearchStaff], [Research], [Fellow]} and we
compare them according to age similarity and the numbers of publications and
projects. Thus ACExp is defined by:

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Fellow[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Researcher[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]affResearchSt[

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

ExpAC

ExpAC

ExpAC

(2)

An example of ACR is {(publication,Count),(workAtProject,Count)} while an
example of ACA is {(age,Simil)}.

Note that [Researcher] and [Fellow] belong to the set of paths of recursion
considered in ACExp because their instances are also instances of ResearchStaff. The
application context can be expressed in a more compact way assuming that, whenever
a context is not defined for a class but is defined for its super class, the comparison
criteria defined for a super class are by default inherited by the subclasses. According
to this assumption ACExp can be expressed by:

Count)}}ject,(workAtProCount),ions,{(publicatSimil},{{age,]affResearchSt[⎯⎯⎯ →⎯ ExpAC (3)

Example 2. Let us formalize the application context “Int” to assess the similarity
among the members of a research staff according to their research interest. The
similarity is computed considering the set of paths of recursion
{[ResearchStaff],[ResearchStaff, interest]}. The researchers are compared considering
common publications, common projects or similar interests. A compact formalization
for “Int” is defined by ACInt:

Inter)}}opics,{(relatedTInter},e,{{topicNam]interestaff,ResearchSt[

Simil)}}(interest,Inter),ject,(workAtProInter),ions,{(publicat},{{]affResearchSt[

⎯⎯ →⎯

⎯⎯ →⎯
IntAC

IntAC φ (4)

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 15

In general, the operator Count applied to attributes or relations means that the number
of attribute values or related instances is considered in the similarity assessment. For
example, according to the context formalized in equation 2 (second row), two
researchers, who are represented as instances of Researcher, are similar if they have a
similar numbers of instances of Publication reachable through the relation
publications.

The operator Inter applied to attributes or relations means that common attribute
values or related instances are considered in the similarity assessment. For example,
according to the context formalized in equation 4 (first row) two researchers are
considered as similar if they have common project instances.

When applied to an attribute, the operator Simil determines that the attribute values
of two instances will be compared according to a datatype similarity provided by the
data layer (see the example in equation 2, first row, attribute age). When it is applied
to a relation, it determines a step of recursion, in the sense that the instances related
through the relation have to be considered during the similarity assessment. How
these related instances have to be compared is specified by the value provided by the
context function for the corresponding recursion path. Note that the researchers are
compared recursively in the context expressed by equation 4. In fact the relation
interest is included with the operator Simil in the first row of equation 4. This means
that the instances of ResearchTopic associated with the researcher via interest have to
be accessed and compared recursively when the researchers’ similarity is worked out.
Actually, [ResearchStaff,interest] is the path of recursion to navigating the ontology
from ResearchStaff to ResearchTopic via the relation interest. Once the assessment
has accessed the related instances, it compares them as indicated by the second row of
equation 4. The interests are compared with respect to both their topicName and their
relatedTopic; thus, two ResearchTopics having distinct topicNames but some
relatedTopics in common are not considered completely dissimilar.

The image of an AC function can be further characterized by the following.

1. For a path of recursion p, AC has to yield only the attributes and relations
belonging to the classes reached through p. For example, considering the ontology
in Fig. 3 and the path of recursion [ResearchStaff,interest], it is expected that only
the attributes and relations belonging to the class ResearchTopic reachable via
[ResearchStaff,interest] can be identified by AC([ResearchStaff,interest]).
Attributes or relations (such as age, publications, etc), which do not belong to
ResearchTopic, define an incorrect application context.

2. Given a path of recursion p, an attribute or a relation can appear in the context
image at most one time. In other words, given a path of recursion it is not possible
to associate two distinct operations with the same relation or attribute. For
example, the following application context definition is not correct as interest is
specified twice

Inter)}(interest, Simil),(interest,Inter),ions,{(publicat},{{]affResearchSt[φ⎯→⎯ (5)

6 Ontology Layer

The ontology layer defines the asymmetric similarity functions ExternSim and

ExtensSim that constitute the amalgamation function (equation 1). The “external

16 R. Albertoni and M. De Martino

similarity” ExternSim measures the similarity at the level of the ontology schema
computing a structural comparison of the instances. Given two instances, it compares
the classes they belong to, considering the attributes and relations shared by the
classes and their position within the class hierarchy. The “extensional similarity”
ExtensSim compares the extension of the ontology entities. The similarity is assessed
by computing the comparison of the attributes and relations of the instances.

At the ontology layer additional hypotheses are assumed:

• All classes defined in the ontology have the fake class Thing as a super-class.
• Given i1∈lc(c1), i2∈lc(c2), if c1, c2 do not have any common super-class different

from Thing, their similarity is equal to 0.
• The least upper bound (lub) between c1 and c2, is unique and it is c2 if c1 IS-A c2, or

c1 if c2 IS-A c1, or the immediate super-class of c1 and c2 that subsumes both
classes.

The aim is to force the lub to be a sort of “template class” that can be adopted to
perform the comparison of the instances whenever the instances belong to distinct
classes. Referring to the ontology in Fig. 3, it can be appropriate to compare two
instances belonging, respectively, to AdministratorStaff and ResearchStaff as they are
both a kind of Staff and Staff is their lub. However, it does not make sense to evaluate
the similarity between two instances belonging to Publication and to Staff, because
they are intimately different; in fact, there is not any lub available for them. Whenever
a lub x between two classes exists, the path of recursion [x] is the starting path in the
recursive evaluation of the similarity.

6.1 External Similarity

The external similarity (ExternSim) performs the structural comparison between two
instances i1, i2 in terms of the classes c1, c2 that the instances belong to: more formally

),(),(2121 ccExternSimiiExternSim = where)(),(2211 clicli cc ∈∈ .

In this paper the external similarity function is defined starting from the similarities
proposed by Maedche and Zacharias [17] and Rodriguez and Egenhofer [16]. The
structural comparison is performed by two similarity evaluations:

• Class Matching, which is based on the distance between the classes c1, c2 and
their depth with respect to the hierarchy induced by C≤ .

• Slot Matching, which is based on the number of attributes and relations shared by
the classes c1, c2 and the overall number of their attributes and relations. Then two
classes having many attributes/relations, some of which are in common, are less
similar than two classes having fewer attributes but the same number of common
attributes/relations.

Both similarities are needed to successfully evaluate the similarity with respect to the
ontology structure. For example, let us consider the ontology schema in Fig. 3 and let
us compare an instance of the class ResearchStaff with an instance of the class
AdministrationStaff.

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 17

They are quite similar with respect to Class Matching but less similar with respect
to Slot Matching. In fact, the sets of IS-A relations joining the classes ResearchStaff
and AdministrationStaff to Thing are largely shared. However, from the point of view
of the slots, ResearchStaff and AdministrationStaff share only the attribute inherited
and they differ with respect to the others. Likewise, it would be easy to show an
example of two classes that are similar with respect to Slot Matching and less similar
according to Class Matching.

Definition 6: ExternSim similarity. The similarity between two classes according to
the external comparison is defined by:

⎪⎩

⎪
⎨

⎧

+
+

=
=

Otherwise
ww

ccCMwccSMw

ccif

ccExternSim

CMSM

CMSM),(*),(*

1

),(2121

21

21 (6)

where (SM) is Slots Matching, (CM) is Classes Matching and wSM, wCM are weights
in the range [0,1].

For the purpose of this paper, wSM and wCM are defined as equal to 1/2.

6.1.1 Class Matching
Classes Matching is evaluated in terms of the distance of the classes with respect to the
IS-A hierarchy. The distance is based on the concept of Upwards Cotopy (UC) [17].
We define an asymmetric similarity adapting the symmetric definition of CM in [17] .

Definition 7: Upward Cotopy (UC). The Upward Cotopy of a set of classes C with
the associated partial order C≤ is:

})(|{:)(jijCijiC
ccccCccUC =∨≤∈=≤ (7)

It is the set of classes composing the path that reaches from ci to the furthest super-
class (Thing) of the IS-A hierarchy: for example, considering the class Researcher in
Fig. 3 =≤ r)(Researche

C
UC {Researcher, ResearchStaff, Staff, Person, Thing5}

Definition 8: Asymmetric Class Matching. Given two classes c1, c2 and the Upward
Cotopy)(iC

cUC≤ , the asymmetric Class Matching is defined by:

)(

)()(
:),(

1

21

21
cUC

cUCcUC
ccCM

C

CC

≤

≤≤ ∩
= (8)

CM between two classes depends on the number of classes they have in common
in the hierarchy. Let us note that the Class Matching is asymmetric: for

example, referring to Fig. 3, 4/3)ResearchertionStaff,Administra(=CM but

5/3)tionStaffAdministra,Researcher(=CM . Moreover it is important to note that

5 The class Thing is not explicitly included in the Fig. 3 but it is expected to be the super class

of all the other classes, so it can be seen as superclass of Person, Project, Publication,
ResearchTopic.

18 R. Albertoni and M. De Martino

1)Researcher,Staff(=CM . The rationale behind this choice of design pertains to the

property of containment between instances: the instances of Researcher fit with the
instances of Staff, and they can replace the instances of Staff at the class level.

6.1.2 Slot Matching
Slot Matching is defined by the slots (attributes and relations) shared by the two
classes. We refer to the similarity proposed by Rodriguez and Egenhofer [16], based
on the concept of distinguishing features employed to differentiate subclasses from
their super-class. In their proposal, different kinds of distinguishing features are
considered (i.e. functionalities and parts) but none coincides immediately with the
native entities in our ontology model. Of course it would be possible to manually
annotate the classes, adding the distinguishing features, but we prefer to focus on
what is already available in the adopted ontology model. Therefore only attributes and
relations are mapped as two kinds of distinguishing features.

Definition 9: Slot Matching. Given two classes c1,c2, two kinds of distinguishing
features (attributes and relations), and wa, wr, the weights of the features, the

similarity function SM between c1 and c2 is defined in terms of the weighted sum of

the similarities aS and rS , where aS is the Slot Matching according to the attributes

and rS in the Slot Matching according to the relations.

),(),(),(212121 ccSccSccSM rraa ⋅+⋅= ωω (9)

The sum of the weights is expected to be equal to 1, and by default we assume

wa=wr=1/2. The two Slot Matching similarities aS and rS rely on the definitions of
slot importance as defined in the following.

Definition 10: Function of “slot importance” α. Let c1, c2, be two distinct classes
and d be the class distance d(c1,c2) in terms of the number of edges in an IS-A
hierarchy, then α is the function that evaluates the importance of the difference
between the two classes.

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−

≤
=

)),lub(,()),lub(,(
),(

)),lub(,(
1

)),lub(,()),lub(,(
),(

)),lub(,(

),(

212211
21

211

212211
21

211

21

cccdcccd
ccd

cccd

cccdcccd
ccd

cccd

ccα (10)

where)),lub(,()),lub(,(),(21221121 cccdcccdccd += .

α(c1, c2) is a value in the range [0,0.5]. Referring to the image in Fig. 3,
α(Researcher,ResearchStaff) is equal to zero because the lub between Researcher
and Researcher is Researcher itself, d(ResearchStaff,Researcher)=1 and
d(Researcher,Researcher)=0. Whereas α(Researcher,Fellow) is equal to 0.5 because
the lub is still Researcher, and d(Researcher,Fellow)=2.

Definition 11: Slot Matching according to the kind of distinguishing feature t.
Given two classes c1 (target) and c2 (base) and t, a kind of distinguishing feature (t=a

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 19

for attributes or t=r for relations), let tC1 and tC2 be the sets of distinguishing features

of type t, respectively, of c1 and c2; then Slot Matching),(21 ccS t is defined by:6

tttttt

tt

t
CCccCCccCC

CC
ccS

1221212121

21

21
\),(\)),(1(

),(
αα +−+∩

∩
= (11)

According to the ontology in Fig. 3, considering the classes Researcher and Fellow,
their sets of distinguishing features of type relation are Researcherr ={workAtProject,
cooperateWith, pubblications, interest, supervises} and Fellowr={workAtProject,
cooperateWith, pubblications, interest, supervised} and α(Fellow,Researcher)=0.5;

then)Researcher,Fellow(rS = 4/5. Furthermore, this formulation of Class Matching is

coherent to the containment property: considering the classes Staff and Fellow, their
sets of distinguishing features of type relation are respectively Staffr={workAtProject},
Fellowr={workAtProject, cooperateWith, publications, interest, supervised} and

α(Staff,Fellow)=0, so that)FellowStaff,(rS =1. This means that the instances of

Fellow can replace the instances of Staff because they have some quality more rather
than less similar. The contrary is not true; in fact α(Fellow,Staff)=0 and

)Staff,Fellow(rS =1/5. In general, whenever α=0.5 the differences between features

of both classes are equally important for the matching: for example, this happens when
the classes are sisters, as for Researcher and Fellow. In the case of α=0, only the
features that are in c1 and not in c2 are important for the matching.

6.2 Extensional Similarity

The extension of entities plays a fundamental role in the assessment of the similarity
among the instances: it is needed to perform a comparison of the attribute and relation
values.

The extensional comparison is characterized by two similarities functions: a
function based on the comparison of the attributes of the instances and a function
based on the comparison of the relations of the instances.

Definition 12: Extensional asymmetric similarity Given two instances i1∈lc(c1),
i2∈lc(c2), c=lub(c1,c2) and p=[c], a path of recursion defined in the application

context AC,7 let),(21 iiSim
p
a and),(21 iiSim

p
r be the similarity measurements between

instances considering, respectively, their attributes and their relations. The
extensional similarity with asymmetric property is defined by

⎪⎩

⎪
⎨
⎧ =

=
OtherwiseiiSim

ii
iiExtensSim p

I),(

1
),(

21

21
21 (12)

6 This formulation is slightly different from that provided by Egenhofer and Rodriguez: the

parameters of the similarity have been reversed to be coherent with the relation between
instances containment and the similarity value equal to 1.

7 Note that 0|)(||)(| ≠+ pACpAC RA each time the context AC specifies at least a relevant

attribute or relation for the recursion path p.

20 R. Albertoni and M. De Martino

where),(21 iiSim
p
I is defined by

|)(||)(|

),(),(

),(
)(

21
)(

21

21 pACpAC

iiSimiiSim

iiSim
RA

crr

p
r

caa

p
a

p
I +

∑∑ +
= ∈∈ δδ

(13)

A first principle of the proposed extensional similarity between two instances is to
consider the lub x of their classes as the common base for comparing them when the
instances belong to different classes. Note that the index p, is a kind of stack of
recursion adopted to track the navigation of relations whenever the similarity among
instances is recursively defined in terms of the related instances. [x] is adopted to
initialize p at the beginning of the assessment.

),(21 iiSim
p
a and),(21 iiSim

p
r are defined by a unique equation as follows.

Definition 13: Similarity on attributes and relations. Given two instances i1∈lc(c1),
i2∈lc(c2), c=lub(c1,c2), p=[c] (a path of recursion), X (a placeholder for the “A” or
“R”, RA ∪∈x), then let

• }2)(),()(..),(lv)(i, |V{)(A
V

TAA TlTyatsCyavii =∧=∈∃∈∈= σ , the set of values

assumed by the instance i for the attribute a,
•)}(),(),()(..)(|)({)(rliiccrtsccliccliii RRccR ∈′∧′∈′∃∈∃′∈′= σ , the set of instances

related to the instance i by the relation r,
• AC be the application context defined according to the restrictions defined in

paragraph 0
• }|)2()1(:{ bijectiveandpartialisgiXiiXigFX →= .

The similarity between instances according to their attributes or relations is:

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=∈⋅=

∈∧=
−−

∈∧=−−

∈∩

∈

=∧≠

=

∑

∑

∈∈

∈∈

rsSssppNew

pACSimilrrxif

ii

iiii

iiii

ifiSim

pACSimilaaxif

ii

iiii

iiii

vfvSim

pACInterxif

ii

iiii

pACCountxif
iiii

ii

iiiiif

iiif

ii

R

R

R

RR

RR

iii

pNew
I

Ff

A

A

AA

AA

iiv

a
T

Ff

X

X

XX

X
XX

X

XX

X

p
x

R
R

A
A

)1(,,

)(),()(

))
|)(|

|)(||)(|
,0max(1(*

|))(||,)((|min

))(,(max

)(),()(
))

|)(|

|)(||)(|
,0max(1(*

|))(||,)((|min

))(,(max

)(),(

|)(|

|)()(|

)(),(
|))(||,)(max(|

|)(|

))()((0

sets)empty are)((
1

),(Sim

1

1

21

21

);(

1

21

21

)(

1

21

21

2

21

1

21

1

1

φφ

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 21

These equations are designed to be asymmetric and to respect the properties of
containment among instances: if an instance i2 has at least the same attribute and
relation values as i1, then the extensional similarity between i1 and i2 is equal to one.

The approach computes
p
xSim , selecting one of the above equations according to

the definition of AC:

• In the first case, the similarity is 1 if the set of the property values of the first
instance is empty, because an instance having no characteristics is contained in all
the other instances.

• In the second case, the similarity is 0 if the first instances having at least a
property value are compared with an instance that does not have any value.

• The third expression is adopted if AC yields a relation or attribute associated with
the operation Count.

• The fourth expression is adopted if AC yields a relation or attribute associated
with the operation Inter.

• The fifth expression is adopted if AC yields an attribute with the operation Simil.
• The last expression is adopted if AC yields a relation with the operation Simil. It is

important to note that each time the similarity is assessed in terms of related
instances (whenever (r,Simil) ∈ ACR(p)), the relation r followed to reach the
related instances is added to the path of recursion. Thus, during the recursive
assessment, the AC is always worked out on the most updated path of recursion.

In the last two expressions, the comparison of the attribute values relies on the

function
a
TSim , which defines the similarity for the values of the attribute a having

data type T.
a
TSim is provided by the data layer as suggested by [7] and briefly

discussed in the next paragraph.

Example of extensional similarity according with the definition 12.
We refer to the ontology in Fig. 3. We consider two instances illustrated in Table 2:
AB and RA respectively of the classes Researcher and Fellow and their instances
related to the classes Publication, Project, ResearchTopic. We adopt the application
context ACint (equation 4). We evaluate their similarity applying the equation 13.

Table 2. Example of instances of the academic research ontology

Instance ID Instance class Publication Instance Project Instance ResearchTopic Instance
AB Researcher P2 Pr1, Pr2 T1, T2
RA Fellow P2, P1 Pr1 T3

Table 3. Details of ResearchTopic instances

Instances ID Instance class topicName attribute RelatedTopic instance
T1 ResearchTopic Topic 1
T2 ResearchTopic Topic 2 T4
T3 ResearchTopic Topic 3 T4
T4 ResearchTopic Topic 4

22 R. Albertoni and M. De Martino

Their lub is the class ResearchStaff then p=[ResearchStaff] and according to the
context defined in equation 4 the similarity assessment is performed considering the
relations publication, workAtProject and interest, respectively using the operations
Inter, Inter and Simil. Therefore, the equation 13 is an average among the three
addends calculated with the formula in definition 13:

[]
)RAAB,(

affResearchSt
npublicatioSim =1, []

)RAAB,(
affResearchSt
ectworkAtProjSim =1/2, []

)RAAB,(
affResearchSt

InterestSim =1/4

The first two is calculated applying the fourth expression.
The last is calculated with the sixth expression in definition 13. It requires a more

detailed argumentation.
The set of partial functions in FX in definition 13 is employed to represent the

possible matching among the set of values when the instances have relations or
attributes with multiple values. In the example depicted in Table 2, the instances AB
and RA are respectively related via the relation interest to T1, T2 and T3, then x is
equal to “interest” and)(ABiR ={T1,T2} and)(RAiR ={T3}. When AB and RA are
compared, two possible partial and bijective functions f1 and f2 can be considered
between the instances related to AB and RA: f1:T1 T3 and f2:T2 T3. The max
operator selects the function which provides the matching with the highest
contribution: in the example, it is f2. Thus the sum has only one addend:

))T2(,T2(2fSim
pNew
I

 which leads to the recursive call of the similarity assessment.

The difference in number of attributes values or related instances affects the
similarity evaluation as modelled in the multiplying factors in the fifth and sixth
expression of definition 13:

)
|)(|

|)(||)(|
,0max(1(

1

21

ii

iiii

A

AA −
− and)

|)(|

|)(||)(|
,0max(1(

1

21

ii

iiii

R

RR −
− .

These factors yield 1 if i1 is contained in i2; otherwise they yield the ratio between the
number of properties of i1 and the number of properties of i2. In the example of AB
and RA, looking at the Table 3, T1 and T2 are the instances of ResearchTopic related
to AB, T3 is the instance related to RA. In this case the second factor induces a
multiplying factor equal to 1/2 because half of the instances related to AB are leaved
out from the matching.

The functions))T2(,T2(2fSim
pNew
I

 is applied to assess the similarity between AB

and RA recursively with respect to the class ResearchTopic which are their interest.
During the recursion the sixth expression in definition 13 is applied:
[ResearchStaff,interest] is a new path of recursion and assigned to pNew.

Applying the application context to the new path of recursion, new criteria are
listed. In particular, according to equation 4 the instances of ResearchTopic related to
AB and RA are compared according to the values assumed by their attribute
topicName and relation relatedTopics.

The similarity between T2 and T3 with respect to topicName is equal to 0, whereas
with respect to relatedTopic is 1, then))T2(,T2(2fSim

pNew
I =1/2. It is multiplied for the

aforementioned multiplying factor thus []
)RAAB,(

affResearchSt
InterestSim =1/4.

The overall similarity is),AB(RASim
p
I

= 7/12.

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 23

7 Data Layer and Knowledge Layer

Data layer assesses the similarity of entities by considering the data values of simple
types such as integers and strings or more complex data types such as geographical
reference and shapes descriptors. The knowledge layer represents special shared
ontology domains, which have their own additional vocabulary. As it can be placed at
any level of the ontological complexity, it spans all the other layers.

In this paper, we adopt the data layer proposed by [7]. It relies on the distance
measure proposed in [18] to assess the similarity between misspelled terms (e.g.
Alignment and Allignment). Moreover, in real world data values are often affected by
inconsistencies: for example there are data values that differ in representation of
entity abbreviation (e.g. Genova, GE, GOA are terms referring to the same city, or
IMATI-CNR-GE, IMATI-GE, GE-IMATI are terms referring to the same research
institute). Contrary to the similarity assessment among misspelled terms, the
management of inconsistence of data values requires a full-matching among the terms
in order to obtain a satisfactory evaluation of their similarity. The aspect of different
representations of abbreviation can be addressed relying on both the data layer and the
knowledge layer. The knowledge layer contains explicitly information about the
relation of equivalence among terms used in a specific knowledge domain. The data
layer can exploit such information to evaluate the similarity among terms. The lexical
similarity introduced by [18] is applied only if the terms are defined not equivalent in
the knowledge layer.

8 Experiments and Evaluations

We evaluated our approach for the similarity assessment among the members of the
research staff working at the Institute (CNR-IMATI-GE). An experiment was
performed to demonstrate both the need for the content-dependent similarity and the
importance of defining an asymmetric similarity based on the containment to select
similar resources.

8.1 Experiments

Two experiments were performed considering the contexts “Exp”and “Int” mentioned
in section 4.1. Eighteen members of the research staff were considered. The
information related to their projects, journal publications and research interests was
inserted as instances in the ontology depicted in Fig. 3 according to what was
published at the IMATI web site.8 The ontology was expressed in OWL ensuring that
only the language constructs consistent with the ontology model considered in
definition 1 were adopted. The resulting ontology is available at the web site [19].
Our method was implemented in JAVA and tested on this ontology.

Using the formalization of the two application contexts ACInt and ACExp previously
defined [equations (3), (4)], we have computed the similarity through the proposed
framework. The results are represented by the similarity matrices in Fig. 4: (a) is the

8 http://www.ge.imati.cnr.it, accessed the 12/05/2006.

24 R. Albertoni and M. De Martino

result related to the context “Exp” and (b) is the result related to the context “Int”.
Each column j and each row i of the matrix represents a member of the research staff
(identified by the first three letters of his name). The grey level of the pixel (i,j)
represents the similarity value (Sim(i,j)) between the two members located at row i
and column j: the darker the colour, the more similar are the two researchers.

Analysing the similarity matrices we can make the following statements.

• It is easy to see that they are asymmetric: for example sim(Dag,Bia)=1 while
sim(Bia, Dag)<1. This confirms that the proposed model assesses an asymmetric
similarity. The asymmetry result is particularly useful for comparing researchers
because it behaves according to the property of containment defined in Definition
2. For example, the two results sim(Dag,Bia)=1 and sim(Bia, Dag)<1 in Fig. 4.a
mean that if Bia has at least the experience of Dag, then Dag can replace Bia. The
inverse is not true, and if the domain expert decides to choose Dag instead of Bia,
the similarity value provides a hint about the loss inherent in this choice [for
example, if sim(Bia, Dag)=0.85, then the loss is 15%].

• The comparison of the two matrices shows how they are different; it is evident
that the two contexts induce completely different similarity values. For example,
“Dag” results are very similar to “Bia” with respect to their experience (black
pixel in Fig. 4.a), but they are not similar with respect to their research interests
(white pixel in Fig. 4.b).

• During the test process we realized that the approach provides a sort of tool for
context tuning, supporting us in the decision-making process to formulate the
similarity criteria. From the similarity results we were able to learn and refine our
criteria to obtain the expected results.

(a)

(b)

Fig. 4. (a) Similarity matrix for context “Exp”; (b) Similarity matrix for context “Int”

8.2 Evaluations

Two kinds of evaluations of the results concerning the similarity obtained with
respect to research interests (Fig. 4.b) were performed.

The first evaluation was based on the concept of recall and precision, calculated
considering the same adaptation of recall and precision made by [20]. More precisely,
considering an entity x, the recall and precision were defined, respectively,

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 25

as B)/AA(∩ and B)/BA(∩ , where A is the set of entities expected to be similar to x
and B is the set of similar entities calculated by a model. A critical issue in the
similarity evaluation is to have a ground truth with respect to comparing the results
obtained. We faced this problem in referring to the research staff of our institute when
considering as “similar” two members of the same research group. In fact at IMATI
researchers and fellows are grouped into three main research groups, and one of those
is composed of three further sub-groups. Therefore, we considered the research staff
as split into five groups. For each member i, A is the set of members of his research
group while B is composed of the first n members retrieved by the model. We have
calculated recall and precision for each group considering “n” as the smallest number
of members needed to obtain a recall of 100%, and then we have evaluated the
precision. The average recall was estimated to be equal to 100% with a precision of
95%. These results are quite encouraging: a recall equal to 100% demonstrates that,
for each research group, the similarity is able to rank all the expected members, while
a precision equal to 95% means that the average number of outsiders that need to be
included to rank all group members is equal to 5%.

Fig. 5. The dendrogram obtained through hierarchical gene clustering

We have performed a second evaluation according to the context “Int” using a data
mining application. For each researcher and fellow we have computed his similarity
with respect to the other members applying our method. In this way, we associated
with each research staff member a string of values, which correspond to his relative
distances from the other members. The strings correspond to the rows of the similarity
matrix (Fig. 4.b). Then we have applied a tool to perform hierarchical clustering
among the genetic microarray [21] to the set of strings, considering each string as a
kind of researcher genetic code. The dendrogram obtained is shown in Fig. 5. It
recognizes the five clusters that resemble the research group structure of our institute.

9 Related Work

Semantic similarity is employed differently according to the application domain
where it is adopted. Currently it is relevant in ontology alignment [22,23] and
conceptual retrieval [24] as well as in semantic web service discovery and matching
[25,26]. It is expected to increase in relevance in the framework for metadata analysis
[27]. We discuss here related works according to their purpose and the ontology
model they adopt.

26 R. Albertoni and M. De Martino

Similarities in the ontology alignment. There are many methods for aligning ontology,
as pointed out by Euzenat et al. [23]. Semantic similarity is adopted in this context to
figure out relations among the entities in the ontology schemas. It is used to compare
the names of classes, attributes and relations, determining reasonable mapping
between two distinct ontologies. However, the method proposed in this paper is
specifically designed to assess similarity among instances belonging to the same
ontology. Some similarities adopted for ontology alignment consider quite expressive
ontology language (e.g., reference [22] focuses on a subset of OWL Lite), but they
mainly focus on the comparison of the structural aspects of ontology. Due to the
different purposes of these methods, they turn out to be unsuitable for properly
solving the similarity among instances.

Concept similarity in lexicographic databases. Different approaches to assessing
semantic similarity among concepts represented by words within lexicographic
databases are available. They mainly rely on edge counting-based [28] or information
theory-based methods [29]. The edge counting-based method assigns terms that are
subjects of the similarity assessment as edges of a tree-like taxonomy and defines the
similarity in terms as the distance between the edges [28]. The information theory-
based method defines the similarity of two concepts in terms of the maximum
information content of the concept that subsumes them [30,31]. Recently, new hybrid
approaches have been proposed: Rodriguez and Egenhofer [16] take advantage of the
above methods and add the idea of features matching introduced by Tversky [14].
Schwering [24] proposes a hybrid approach to assess similarity among concepts
belonging to a semantic net. The similarity in this case is assessed by comparing
properties of the concept as features [14] or as geometric space [32]. With respect to
the method presented in this paper, Rada et al. [28], Resnik [30] and Lin [31] work on
lexicographic databases where the instances are not considered. If they are adopted, as
they were originally defined, to evaluate the similarity of the instances, they are
doomed to fail since they ignore important information provided by the instances,
attributes and relations. Moreover, Rodriguez and Egenhofer [16] and Schwering [24]
use the features or even conceptual spaces, information that is not native in the
ontology design and would have to be manually added. Instead our approach aims at
addressing the similarity, as much as possible, by taking advantage of the information
that has already been disseminated in the ontology. Additional information is
considered only to tune the similarity with respect to different application contexts.

Similarities that rely on ontology models with instances. Other works define similarity
relying on ontology models closer to those adopted in the semantic web standards.
D’Amato et al. [33] present a dissimilarity measure for description logics considering
the expressivity of ALC, and comparing concept descriptions and
individuals/instances. Hau et al. [26] identify similar services measuring the similarity
between their descriptions. To define a similarity measure on semantic services
explicitly refers to the ontology model of OWL Lite and defines the similarity among
OWL objects (classes as well as instances) in terms of the number of common RDF
statements that characterize the objects. Maedche and Zacharias [17] adopt a semantic
similarity measure to cluster ontology-based metadata. The ontology model adopted
in this similarity refers also to IS-A hierarchy, attributes, relations and instances. Even

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 27

if these three methods consider ontology models, which are more evolved than the
taxonomy or terminological ontology, their design ignores the need to tailor the
semantic similarity according to specific application contexts. Thus, to assess the
similarity investigated in this paper, two distinct ontologies need to be defined instead
of simply defining two contexts as we do.

Contextual-dependent similarity. Some studies combine the context and the similarity.
Kashyap and Sheth [34] use the concept of semantic proximity and context to achieve
interoperability among different databases. The context represents the information
useful for determining the semantic relationships between entities belonging to
different databases. However they do not define a semantic similarity in the sense we
are addressing, and the similarity is classified as some discrete value (semantic
equivalence, semantic relevance, semantic resemblance, etc). Rodriguez and
Egenhofer [16] integrate the contextual information into the similarity model. They
define as the application domain the set of classes that are subject to the user’s
interest. Janowicz [35] proposes a context-aware similarity theory for concepts
specified in expressive description logics such as ALCNR. As in our proposal, the last
two works aim to make the similarity assessment parametric with respect to the
considered context. Moreover, in contrast with our methods, they formalize the
context ignoring the similarity criteria induced by the context (e.g. they ignore the
need of operations) and they do not directly address the similarity among instances.

This discussion of related works shows that, apart from the different definitions of
semantic similarity proposed by different parties, these definitions are far from
providing a complete framework as intended in our work. They often have different
purposes, they consider a simpler ontology model, or they completely ignore the need
to tailor the similarity assessment with respect to a specific application context. Of
course, some of the works mentioned have been particularly important in the
definition of our proposal. As already mentioned, both Maedche and Zacharias [17]
and Rodriguez and Egenhofer [16] have strongly inspired the part related to structural
similarity. However, to successfully support our purposes, the class slots have been
considered as distinguishing features. Furthermore, the methods proposed by
Maedche and Zacharias [17] for Class Matching define a similarity that is symmetric,
thus we have adapted the original in order to make it asymmetric.

The similarity framework proposed in this paper contributes, along with related
work, toward paving the way to a tool that each ontology engineer can adopt

• to define different similarities among instances on the same ontology according to
different application contexts;

• to refine the similarity criteria as long as new instances are inserted or the
obtained result does not satisfy the user domain expert.

The explicit parameterization of the similarity assessment with respect to the
application contexts yields a precise definition of the hints to be considered in
similarity assessment as well as complete control of the recursive comparison needed
to work out the similarity.

28 R. Albertoni and M. De Martino

10 Conclusions and Future Work

This paper proposes a framework for assessing semantic similarity among instances
within an ontology. It combines and extends different existing similarity methods,
taking into account, as much as possible, the hints encoded in the ontology and
considering the application context. A formalization of the criteria induced by the
application is provided as a means of parameterizing the similarity assessment and to
formulate a measurement more sensitive to the specific application needs.

The framework is expected to bring great benefit in the analysis of the ontology
driven metadata repository. It provides a flexible solution for tailoring the similarity
assessments according to the different applications: the same ontology can be
employed in different similarity assessments simply by defining distinct criteria, and
it is not necessary to build a different ontology for each similarity assessment. The
formalization of the application contexts in terms of explicit similarity criteria paves
the way to an iterative and interactive process where the ontology engineer and the
domain experts can perform fine-tuning of the resulting similarity.

Nevertheless, some research and development issues are still open, such as human
subject testing. Moreover, in the proposed approach the formalization of the
application context affects only the similarity defined by the extensional comparison.
It would be interesting to determine if the context results also in external comparison
similarity. It would also be worthwhile to extend the similarity to ontology models
towards OWL and to test it in more complex use cases.

Acknowledgements

This research started within the EU founded INVISIP project and partially performed
within the Network of Excellence AIM@SHAPE.

References

1. Schwering, A., Raubal, M.: Measuring Semantic Similarity Between Geospatial
Conceptual Regions. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.)
GeoS 2005. LNCS, vol. 3799, pp. 90–106. Springer, Heidelberg (2005)

2. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets.
In: ACM SIGMOD Conference (2002)

3. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing
semantic content for the Web. IEEE Internet Comput. 6(4), 80–87 (2002)

4. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for similarity. Psychological
Review 100, 254–278 (1993)

5. Egenhofer, M.J., Mark, D.M.: Naive Geography. In: Kuhn, W., Frank, A.U. (eds.) COSIT
1995. LNCS, vol. 988, pp. 1–15. Springer, Heidelberg (1995)

6. Albertoni, R., De Martino, M.: Semantic Similarity of Ontology Instances Tailored on the
Application Context. In: Meersman, R., Tari, Z., et al. (eds.) ODBASE-OTM 2006. LNCS,
vol. 4275, pp. 1020–1038. Springer, Heidelberg (2006)

7. Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for Ontologies - A
Comprehensive Framework. In: ECIS 2005, Regensburg, Germany (2005)

 Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances 29

8. AIM@SHAPE IST NoE No 506766, http://www.aimatshape.net
9. Albertoni, R., Papaleo, L., Pitikakis, M., Robbiano, F., Spagnuolo, M., Vasilakis, G.:

Ontology-Based Searching Framework for Digital Shapes. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) SWWS-OTM Workshop 2005. LNCS, vol. 3762, pp. 896–905. Springer,
Heidelberg (2005)

10. Papaleo, L., Albertoni, R., Marini, S., Robbiano, F.: An ontology-based Approach to
Acquisition and Reconstruction. In: Workshop towards Semantic Virtual Environment,
Villars, Switzerland (2005)

11. Falcidieno, B., Spagnuolo, M., Alliez, P., Quak, E., Vavalis, E., Houstis, C.: Towards the
Semantics of Digital Shapes: The AIM@SHAPE Approach. In: Proceedings of the
European Workshop for the Integration of Knowledge, Semantics and Digital Media
Technology, London, U.K. QMUL (2004)

12. Albertoni, R., Camossi, E., De Martino, M., Giannini, F., Monti, M.: Semantic Granularity
for the Semantic Web. In: Meersman, R., Tari, Z., Herrero, P., et al. (eds.) SWWS-OTM
Workshops 2006. LNCS, vol. 4278, pp. 1863–1872. Springer, Heidelberg (2006)

13. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing?
Int. J. Hum.-Comput. Stud. 43, 907–928 (1995)

14. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
15. Yoshida, H., Shida, T., Kindo, T.: Asymmetric similarity with modified overlap coefficient

among documents. IEEE Pacific Rim Conference on Communications, Computers and
signal Processing 1 (2001)

16. Rodriguez, M.A., Egenhofer, M.J.: Comparing geospatial entity classes: an asymmetric
and context-dependent similarity measure. Int. J. Geogr. Inf. Sci. 18(3), 229–256 (2004)

17. Maedche, A., Zacharias, V.: Clustering Ontology Based Metadata in the Semantic Web.
In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431,
pp. 348–360. Springer, Heidelberg (2002)

18. Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A.,
Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer,
Heidelberg (2002)

19. Sicilia, M.A.: Metadata and semantics research. Online Information Review 30(3), 213–
216 (2006)

20. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes
from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

21. Hierarchical Clustering Explorer, 3.0, http://www.cs.umd.edu/hcil/multi-cluster/
22. Euzenat, J., Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. In: ECAI,

Valencia, Spain, pp. 333–337. IOS Press, Amsterdam (2004)
23. Euzenat, J., Le Bach, T., and et al.: State of the Art on Ontology Alignment (2004),

http://www.starlab.vub.ac.be/research/projects/knowledgeweb/kweb-223.pdf
24. Schwering, A.: Hybrid Model for Semantic Similarity Measurement. In: Meersman, R.,

Tari, Z. (eds.) ODBASE-OTM 2005. LNCS, vol. 3761, pp. 1449–1465. Springer,
Heidelberg (2005)

25. Usanavasin, S., Takada, S., Doi, N.: Semantic Web Services Discovery in Multi-ontology
Environment. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762,
pp. 59–68. Springer, Heidelberg (2005)

26. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web
Services. In: Web Service Semantics: Towards Dynamic Business Integration, workshop at
WWW 2005 (2005)

30 R. Albertoni and M. De Martino

27. Albertoni, R., Bertone, A., De Martino, M.: Semantic Analysis of Categorical Metadata to
Search for Geographic Information. In: Proceedings 16th International Workshop on
Database and Expert Systems Applications, pp. 453–457. IEEE, Los Alamitos (2005)

28. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics 19(1), 17–30 (1989)

29. Li, Y., Bandar, Z., McLean, D.: An Approach for Measuring Semantic Similarity between
Words Using Multiple Information Sources. IEEE Trans. Knowl. Data Eng. 15, 871–882
(2003)

30. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In:
Proc. of the Fourteenth Int. Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

31. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. of the Fifteenth Int.
Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

32. Gädenfors, P.: How to make the semantic web more semantic. In: FOIS, pp. 17–34. IOS
Press, Amsterdam (2004)

33. d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for ALC concept
descriptions. In: ACM Symposium of Applied Computing, pp. 1695–1699. ACM, New
York (2006)

34. Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a
context-based approach. VLDB J. 5(4), 276–304 (1996)

35. Janowicz, K.: Sim-DL: Towards a Semantic Similarity Measurement Theory for the
Description Logic ALCNR in Geographic Information Retrieval. In: Meersman, R., Tari,
Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidelberg
(2006)

Query Relaxation in RDF

Carlos A. Hurtado1,�, Alexandra Poulovassilis2, and Peter T. Wood2

1 Universidad de Chile
churtado@dcc.uchile.cl

2 Birkbeck, University of London
{ap,ptw}@dcs.bbk.ac.uk

Abstract. We explore flexible querying of RDF data, with the aim of
making it possible to return data satisfying query conditions with varying
degrees of exactness, and also to rank the results of a query depending
on how “closely” they satisfy the query conditions. We make queries
more flexible by logical relaxation of their conditions based on RDFS en-
tailment and RDFS ontologies. We develop a notion of ranking of query
answers, and present a query processing algorithm for incrementally com-
puting the relaxed answer of a query. Our approach has application in
scenarios where there is a lack of understanding of the ontology under-
lying the data, or where the data objects have heterogeneous sets of
properties or irregular structures.

1 Introduction

The conjunctive fragment of most RDF query languages (e.g., see [10,11]) con-
sists of queries of the form H ← B, where the body of the query B is a graph
pattern, that is, an RDF graph over IRIs, literals, blanks, and variables. The
head of the query H is either a graph pattern or a tuple variable (list of vari-
ables). The semantics of these queries is simple. It is based on finding matchings
from the body of the query to the data and then applying the matchings to the
head of the query to obtain the answers.

Recently, the W3C RDF data access group has emphasized the importance
of enhancing RDF query languages to meet the requirements of contexts where
RDF can be used to solve real problems. In particular, it has been stated that
in RDF querying “it must be possible to express a query that does not fail
when some specified part of the query fails to match” [5]. This requirement
has motivated the OPTIONAL clause, presented in the emerging SPARQL W3C
proposal for querying RDF [17] and previously introduced in SeRQL [3]. The
OPTIONAL clause allows the query to find matchings that fail to match some con-
ditions in the body. In contrast to other approaches to flexible querying (e.g.,
[1,14]), the OPTIONAL construct incorporates flexibility from a “logical” stand-
point, via relaxation of the query’s conditions. This idea, however, is exploited
only to a limited extent, since the conditions of a query could be relaxed in ways
� Carlos A. Hurtado was supported by Millennium Nucleus, Center for Web Research

(P04-067-F), Mideplan, and by project FONDECYT 1030810, Chile.

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 31–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

other than simply dropping optional triple patterns, for example by replacing
constants with variables or by using the class and property hierarchies in an
ontology associated with the data (such as that shown in Figure 1).

In this paper, we propose the introduction of a RELAX clause as a generalization
of the OPTIONAL clause for the conjunctive fragment of SPARQL. The idea is to
make queries more flexible by a logical relaxation of some of the conditions that
are enclosed by one or more RELAX clauses inside the body of the query. These
conditions are successively turned more general so that the query is transformed
and processed to successively return more general answers. We define the notion
of “being more general” (or “being more relaxed”) using RDFS entailment and
RDFS ontologies.

1.1 RDFS Ontologies

It is common that users interact with RDF applications in the context of an on-
tology. As an example, OWL-QL [8] allows users to include ontologies as premises
in queries, and SPARQL provides a similar facility by allowing reference to sev-
eral RDF datasets [17] in a query. As we will show later, ontologies provide an
important source of knowledge to support query relaxation.

Before addressing the central ideas of our approach, we give a brief description
of the type of ontologies we will consider. We assume that a query is interpreted
in the context of a single ontology, which is modeled as an RDF graph with inter-
preted RDFS vocabulary. The RDFS vocabulary defines classes and properties
that may be used for describing groups of related resources and relationships
between resources. In this paper we use a fragment of the RDFS vocabulary,
which comprises (in brackets is the shorter name we will use) rdfs:range [range],
rdfs:domain [dom], rdf:type [type], rdfs: subClassOf [sc] and rdfs:subPropertyOf
[sp]1.

ConferenceArticle

Article

sc

sc

sc

WebPage

sc

contributorOf

editorOf

authorOf

sp

spsp

Publication

range

range

range

range
Document

proceedingsEditorOf

Fig. 1. An RDFS ontology modeling documents and people who contribute to them

1 We omit in this paper vocabulary used to refer to basic classes in RDF/S such as
rdf: Property, rdfs: Class, rdfs:Resource, rdfs:Literal, rdfs:XMLLiteral, rdfs:Datatype,
among others. We also omit vocabulary for lists, collections, and variations on these,
as well as vocabulary used to place comments in RDF/S data.

Query Relaxation in RDF 33

As an example, the ontology of Figure 1 is used to model documents along with
properties that model different ways people contribute to them (e.g., as authors,
editors, or being the editor of the proceedings where an article is published).

1.2 The RELAX Clause

We now explain the RELAX as an extension of the OPTIONAL clause. As an exam-
ple, consider the following SPARQL-like query Q2:

?Z, ?Y ← {(?X, name, ?Z), OPTIONAL{(?X, proceedingsEditorOf , ?Y)}}.

The body of this query is a graph pattern comprising two triple patterns. This
query returns names of people along with the IRIs of conference articles whose
proceedings they have edited. Because the second triple pattern in the body
of the query is within the scope of an OPTIONAL clause, the query also returns
names of people for which the second pattern fails to match the data (i.e., people
who have not edited proceedings).

Now, instead of dropping the triple pattern (?X, proceedingsEditorOf , ?Y)
we may relax this triple pattern by using the ontology of Figure 1. As an ex-
ample, though the user may want to retrieve editors of proceedings at first,
she/he might also be interested in knowing about people who have contributed
to publications in other roles, along with the publications themselves. Now af-
ter returning editors of conference proceedings, the user could replace the triple
pattern (?X, proceedingsEditorOf , ?Y) with (?X, editorOf , ?Y), yielding a new,
relaxed query that returns editors of publications along with their publica-
tions. Subsequently, this triple pattern can be rewritten to the triple pattern
(?X, contributorOf , ?Y) to obtain more general answers.

In order to save the user the effort of inspecting the ontology and rewriting
the query to return more relaxed answers for the same original query, the system
could perform this process automatically. This is achieved by the following query
which replaces OPTIONAL with RELAX in Q:

?Z, ?Y ← {(?X, name, ?Z), RELAX{(?X, proceedingsEditorOf , ?Y)}}.

The idea of making queries more flexible by the logical relaxation of their
conditions is not new in database research. Gaasterland et al. [9] proposed a
mechanism to achieve this goal in the context of deductive databases and logic
programming, and called the technique query relaxation.

1.3 Notion of Query Relaxation for RDF

We study the query relaxation problem in the setting of the RDF/S data model
and RDF query languages and show that query relaxation can be naturally
formalized using RDFS entailment. We use an operational semantics for the
notion of RDFS entailment, denoted |=, characterized by the derivation rules

2 SPARQL has SQL-like syntax; for brevity, in this paper we express queries as rules.

34 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Group A (Subproperty) (1) (a,sp,b) (b,sp,c)
(a,sp,c) (2) (a,sp,b) (x,a,y)

(x,b,y)

Group B (Subclass) (3) (a,sc,b) (b,sc,c)
(a,sc,c) (4) (a,sc,b) (x,type,a)

(x,type,b)

Group C (Typing) (5) (a,dom,c) (x,a,y)
(x,type,c) (6) (a,range,d) (x,a,y)

(y,type,d)

Fig. 2. RDFS Inference Rules

given in Figure 2 (for details, see [10,12]). The rules describe the semantics of
the RDFS vocabulary we use in this paper (i.e., sp, sc, type, dom, and range)3.

Intuitively, as RDFS entailment is characterized by the rules of Figure 2, a
relaxed triple pattern t′ can be obtained from triple t by applying the deriva-
tion rules to t and triples from the ontology. As an example, the triple pattern
(?X, proceedingsEditorOf , ?Y) can be relaxed to (?X, editorOf , ?Y), by apply-
ing rule 2 to the former and the triple (proceedingsEditorOf , sp, editorOf) in
the ontology of Figure 1. The different relaxed versions of an original query are
obtained by combining relaxations of triple patterns that appear inside a RELAX
clause.

The notion of query relaxation we propose naturally subsumes two broad
classes of relaxations. The first class of relaxations includes relaxations entailed
using information from the ontology and are captured by the rules of Figure 2;
these include relaxing type conditions, relaxing properties using domain or range
restrictions and others. The second class of relaxation consists of relaxations that
can be entailed without an ontology, which include dropping triple patterns,
replacing constants with variables, and breaking join dependencies.

1.4 Summary of Contributions

In this paper, we develop a framework for query relaxation for RDF. We intro-
duce a notion of query relaxation based on RDFS entailment, which naturally
incorporates RDFS ontologies and captures necessary information for relaxation
such as the class and property hierarchies.

By formalizing query relaxation in terms of entailment, we obtain a semantic
notion which is by no means limited to RDFS and could also be extended to more
expressive settings such as OWL entailment and OWL ontologies, to capture
further relaxations. Our framework generalizes, for the conjunctive fragment
of SPARQL, the idea of dropping query conditions provided by the OPTIONAL
construct.

An essential aspect of our proposal, which sets it apart from previous work on
query relaxation, is to rank the results of a query based on how “closely” they
3 We omit, for now, the RDFS rule that essentially states that blank nodes (or vari-

ables) behave like existentially quantified variables, and allows constants to be re-
placed with blanks or blanks with other blanks using the notion of a map. This
notion and its use will be covered in Section 6.

Query Relaxation in RDF 35

satisfy the query. We present a notion of ranking based on a structure called the
relaxation graph, in which relaxed versions of the original query are ordered from
less to more general from a logical standpoint. Since the relaxation graph is based
on logical subsumption, ranking does not depend on any syntactic condition on
the knowledge used for relaxation (such as rule ordering in logic-programming
approaches [9]). Finally, we give a query processing algorithm to compute the
relaxed answer of a query, and examine its correctness and complexity.

This paper extends our earlier paper [13] in a number of ways. We have
substantially developed, revised and improved the material presented there. We
also make the following new contributions here: we provide proofs for all the
results sketched in [13]; Section 4 includes substantial new contributions relating
to the relationship between relaxations and derivations using new RDFS rules;
we provide a new algorithm for computing relaxations based on the notion of
the “extended reduction” of the ontology used for relaxation; and Section 5, on
computing relaxed query answers, has been extended with two examples that
illustrates our query processing algorithm.

1.5 Outline

The rest of the paper is organized as follows. Section 2 introduces preliminary
notation. We then present our framework in a stepwise manner. Firstly, in sec-
tions 3, 4, and 5, we formalize and study relaxations that do not replace terms
of the original triple pattern with variables and are captured by the rules of Fig-
ure 2; they include relaxing type conditions, relaxing properties using domain
or range restrictions and others. In particular, in Section 3 we formalize the se-
mantics of query relaxation for the aforementioned types of relaxation. Then,
Section 4 discusses the problem of computing relaxations of a triple pattern and
Section 5 studies query processing. In Section 6, we extend the relaxation frame-
work to consider relaxations that replace terms of the original triple pattern
with variables (e.g., replacing a literal or IRI with a variable or a variable with
another variable). In Section 7 we review related work in comparison to our own
work, and we give our concluding remarks in Section 8. Finally, in the appendix
we present the proofs omitted in the main body of the paper.

2 Preliminary Definitions

In this section we present the basic notation and definitions that will be used
subsequently in this paper. Some of these were introduced in [2,10,12,15].

2.1 RDF Graphs and RDFS Ontologies

In this paper we work with RDF graphs which may mention the RDFS vo-
cabulary. We assume there are infinite sets I (IRIs), B (blank nodes), and
L (RDF literals). The elements in I ∪ B ∪ L are called RDF terms. A triple
(v1, v2, v3) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In such a triple,

36 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

v1 is called the subject, v2 the predicate and v3 the object. An RDF graph (just
graph from now on) is a set of RDF triples.

We consider ontologies that use RDFS vocabulary, which we will refer to as
RDFS ontologies. We assume that predicates of triples in O should be in the
set {type, dom, range, sp, sc}. Intuitively, this means that the ontology does not
interfere with the semantics of the RDFS vocabulary.

We say that an ontology is acyclic if the subgraphs defined by sc and sp are
acyclic. Acyclicity is considered good practice in modeling ontologies.

We write that G1 |=rule G2 if G2 can be derived from G1 by iteratively
applying the rules of Figure 2. In this paper, we also use a notion of closure of
an RDF graph G [12], denoted cl(G), which is the closure of G under the rules.
By a result from [12], RDFS entailment (for the fragment of RDFS we use in this
paper) can be characterized as follows: G1 |=RDFS G2 if and only if G2 ⊆ cl(G1).

2.2 Conjunctive Queries for RDF

Consider a set of variables V disjoint from the sets I, B, and L. A triple pattern
is a triple (v1, v2, v3) ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪ L). A graph pattern is a set
of triple patterns. Given a graph pattern P , we denote by var(P) the variables
mentioned in P . In our examples, variables are indicated by a leading question
mark, while literals are enclosed in quotes.

A conjunctive query Q is an expression T ← B, where B is a graph pat-
tern, and T = 〈T1, . . . , Tn〉 is a list of variables which belongs to var(B). (The
framework formalized in this paper can be easily extended to queries with graph
patterns as query heads.) We denote T by Head(Q), and B by Body(Q).

We next define the answer of a conjunctive query. In order to do this, we take
into account that a query Q may be formulated over an RDFS ontology O, which
means that Q may mention vocabulary from O and its answer is obtained from
the RDF graph being queried and O. We define a matching to be a function
from variables in Body(Q) to blanks, IRIs and literals. Given a matching Θ,
we denote by Θ(Body(Q)) the graph resulting from Body(Q) by replacing each
variable X by Θ(X). Given an RDF graph G, the answer of Q is the set of
tuples, denoted ans(Q, O, G), defined as follows: for each matching Θ such that
Θ(Body(Q)) ⊆ cl(O∪G), return Θ(Head(Q)). When O is clear from the context,
we omit it, and write ans(Q, G) instead of ans(Q, O, G).

3 Formalizing Query Relaxation

We will present a relaxed semantics for queries in a stepwise manner. In Sec-
tion 3.1, we present the notion of relaxation of triple patterns, and in Section 3.2
we introduce the notion of the relaxation graph of a triple pattern. This is used
in Section 3.3 to define the relaxation graph of a query. In Section 3.4, we ex-
plain different types of relaxations subsumed by our framework. The relaxation
graph is the basis for the notion of the relaxed answer and ranking of a query
we propose in Section 3.5.

Query Relaxation in RDF 37

3.1 Triple Pattern Relaxation

In this section, we define the relaxation relation between triple patterns. In-
tuitively, a triple pattern relaxes to another triple pattern if the latter can be
logically derived from the former and a given ontology. Relaxation will be defined
in the context of an ontology that will be denoted by O.

Definition 1 (Triple Pattern Relaxation). Let t1, t2 be triple patterns such
that t1, t2 �∈ cl(O), and var(t2) = var(t1). We say that t1 relaxes to t2 (or t2 is
a relaxation of t1), denoted t1 ≤ t2, if ({t1} ∪ O) |=rule t2.

As stated before, in this section we consider relaxations that maintain the set
of variables in the original triple pattern. This is formalized in the previous
definition by requiring that var(t2) = var(t1). In addition, we require that
t1, t2 �∈ cl(O) in order to avoid relaxing to triple patterns that will be trivially
true for any RDF graph being queried.

As an example, let O be the ontology of Figure 1. Then, we have that

(?X, type, ConferenceArticle) ≤ (?X, type, Article)

and
(JohnRobert , ContributorOf , ?X) ≤ (?X, type, Document)

among other relaxations. It is not the case, however, that

(?X, ContributorOf , ?Y) ≤ (?Y, type, Document)

since the sets of variables in the two triple patterns are different.
The following proposition shows that triple pattern relaxation can be charac-

terized in terms of the RDFS closure.

Proposition 1. Let ≤ be defined using an ontology O, and t1, t2 be triple pat-
terns such that t1, t2 �∈ cl(O) and var(t1) = var(t2). Then t1 ≤ t2 if and only if
t2 ∈ cl(O ∪ {t1}).

It is desirable that the relaxation relation should be a partial order. The following
proposition shows the conditions under which this happens.

Proposition 2. Let ≤ be defined using an ontology O. Then ≤ is a partial order
if and only if O is acyclic.

In what follows we assume that O is acyclic. Therefore, from now on we assume
that the relaxation relation is a partial order.

The direct relaxation relation, denoted by ≺, is the reflexive and transitive
reduction of ≤. The direct relaxations of a triple pattern t (i.e., triples t′ such
that t ≺ t′) are important in our framework, since they are the result of the
smallest steps of relaxation. The indirect relaxations of a triple pattern t are the
triples t′ such that t ≤ t′ and t �≺ t′.

38 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

3.2 Relaxation Graph of a Triple Pattern

We are interested in relaxing each of the triple patterns that occurs inside the
RELAX clause of a query, so we next adapt the relaxation relation to use relaxation
“above” a given triple pattern. This yields the notion of relaxation graph of a
triple pattern.

Definition 2 (Relaxation Graph of a Triple Pattern). The relaxation re-
lation (resp., direct relaxation relation) “above” a triple pattern t, denoted by ≤t

(resp., ≺t), is ≤ (resp., ≺) restricted to triple patterns t′ such that t ≤ t′. The
relaxation graph of a triple pattern t is the directed acyclic graph induced by ≺t.

As an example, Figure 3 shows the relaxation graph of (JohnRobert, editorOf ,
?X), assuming that O is the ontology of Figure 1.

(?X,type,Publication) (John Robert,contributorOf,?X)

(?X,type,Document)

(John Robert,editorOf,?X)

Fig. 3. Relaxation graph of the triple pattern (JohnRobert , editorOf , ?X)

3.3 Relaxation Graph of a Query

We now generalize triple pattern relaxation to query relaxation using the notion
of the direct product of partial orders. The direct product of two partial order re-
lations α1, α2, denoted α1⊗α2, is another partial order α such that (a, b) α (c, d)
if and only if a α1 c and b α2 d. The generalization of this definition to more
than two relations is straightforward.

Definition 3 (Relaxation Graph of a Query). Given a query Q, let Body(Q)
= {t1, . . . , tn}. For any triple ti not inside a RELAX clause, we overload the
notation ≤ti and assume that ti relaxes only to ti. Then, the relaxation relation
“above” Q, denoted by ≤Q, is defined as ≤t1 ⊗ ≤t2 . . . ⊗ ≤tn. Direct relaxation,
denoted ≺Q, is the reflexive and transitive reduction of ≤Q. The relaxation graph
of Q is the directed acyclic graph induced by ≺Q.

It is important to remark that a node (t′1, . . . , t′n) in the relaxation graph of Q
denotes the conjunctive query Head(Q) ← t′1, . . . , t′n.

As an example, consider the following query:

?X ← {RELAX{(?X, type, Publication)}, RELAX{(JohnRobert, editorOf , ?X)}.

Figure 4 (A) shows the relaxation graph of each of the triple patterns of the
query (for the sake of space, we consider in this example only a single edge of
the relaxation graph of (JohnRobert, editorOf , ?X)). Figure 4 (B) shows the
direct product of the graphs of Figure 4 (A), which is a simplified version of the
relaxation graph of the query.

Query Relaxation in RDF 39

(?X,type,Publication)

(?X,type,Document)

(John Robert,editorOf,?X)

(John Robert,contributorOf,?X) (?X,type,Publication)(John Robert,contributorOf,?X)(?X,type,Document) (John Robert,editorOf,?X)

(John Robert,editorOf,?X)(?X,type,Publication)0

1: 2:

3:(?X,type,Document)(John Robert,contributorOf,?X)

(A) (B)

Fig. 4. (A) The relaxation graph of (?X, type,Publication) and a simplified version
of the relaxation graph of (JohnRobert, editorOf , ?X). (B) The direct product of the
graphs given in (A). Nodes are enumerated from 0 (base query) to 3 (top query).

3.4 Types of Relaxation

The notion of relaxation that we have presented in this section encompasses the
following types of relaxation (the examples given use the ontology of Figure 1):

1. Type relaxation: replacing a triple pattern (a, type, b) with (a, type, c), where
(b, sc, c)∈cl(O).For example, the triplepattern (?X, type,ConferenceArticle)
can be relaxed to (?X, type, Article) and then to (?X, type, Publication).

2. Predicate relaxation: replacing a triple pattern (a, p, b) with (a, q, c), where
(p, sp, q) ∈ cl(O). For example, the triple pattern (?X, proceedingsEditorOf ,
?Y) can be relaxed to (?X, editorOf , ?Y) and then to (?X, contributorOf , ?Y).

3. Predicate to domain relaxation: replacing a triple pattern (a, p, b) with (a,
type, c), where (p, dom, c) ∈ cl(O). There are no domain declarations in
Figure 1.

4. Predicate to range relaxation: replacing a triple pattern (a, p, b) with (b,
type, c), where (p, range, c) ∈ cl(O). For example, the triple pattern
(JohnRobert , editorOf , ?Y) can be relaxed to (?Y, type, Publication).

5. Additional relaxations induced by additional rules from Figure 2. Combina-
tions of rules yield additional forms of relaxation. For example, the triple
pattern (Article, sc, ?Y) can be relaxed to (ConferenceArticle , sc, ?Y).

3.5 Notion of Ranking

An algorithm used to process a query with a RELAX clause should return a list
of tuples. A condition of consistency for the algorithm is that the tuples that
are computed by more specific queries should appear before the ones that are
computed by more general queries. If this happens, we say that the algorithm
returns its answer in ranked order. In this section we formalize this idea.

In order to formalize this idea, we firstly define, for a query Q′ in the relaxation
graph of Q, the set of tuples returned by Q′ and not returned by queries below
Q′. We call such a set the new answer of Q′. Formally,

newAnswer(Q′, G) := ans(Q′, G) − (
⋃

Qi:Qi≤QQ′,Qi �=Q′ ans(Qi, G)).

Definition 4 (Ranking). Consider an algorithm A that, given a query Q and
an RDF graph, returns a list of tuples L = a1, . . . , an. We say that A returns its

40 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

A B

C

D

dom

dom
sc

sc

sc

A B

C

D

dom

dom
sc

sc

A B

C

D

sc

sc

dom
(A) (B) (C)

Fig. 5. (A) An ontology O. (B) The reduction red(O) of O. (C) The extended reduction
extRed(O) of O.

tuples in ranked order if (i) the set {a1, . . . , an} is equal to
⋃

Qi:Q≤QQi
ans(Qi, G),

and (ii) for all pairs of queries Qi, Qj such that Qi ≺Q Qj, the new answers of Qi

appear earlier in L than the new answers of Qj.

4 Computing the Relaxation Graph

In this section, we study the problem of computing the relaxation graph of
a triple pattern. In Section 4.1 we present a naive procedure to do so. Then,
in Section 4.2, we show an efficient algorithm to perform this task. Finally, in
Section 4.3, we study the size of the relaxation graph and the complexity of
computing it.

4.1 Computing the Relaxation Graph of a Triple Pattern: Naive
Algorithm

As Proposition 1 shows, it is possible to generate all the relaxations of a triple
pattern t by computing cl(O ∪ {t}) and cl(O). However, recall that the edges
of the relaxation graph are direct relaxations, and therefore the fundamental
problem we need to solve is how to efficiently generate the direct relaxations
of t. One may naively attempt to generate them by applying the derivation rules
of Figure 2 over t and triples from the ontology cl(O). We write t, o � t′ if t′ can
be derived from t and o ∈ cl(O) by the application of a single rule from Figure 2.
We also write t, o �i t′ if rule i was the rule used in the derivation.

As an example, let O be the ontology given in Figure 5 (A). Notice that in
this case O = cl(O). Now, the following instantiation of rule 4

(B, sc, C), (?X, type, B) �4 (?X, type, C),

produces the direct relaxation (?X, type, C) of (?X, type, B). However, the fol-
lowing instantiation of rule 4

Query Relaxation in RDF 41

(B, sc, D), (?X, type, B) �4 (?X, type, D),

produces the indirect relaxation (?X, type, D) of (?X, type, B).
The example shows that the application of rules over the closure of the ontol-

ogy and the triple t is not correct for computing direct relaxations of t. However,
the next proposition shows that the procedure is complete for this purpose.

Proposition 3. Let ta, tb be triple patterns not in cl(O) such that var(ta) =
var(tb). If ta ≺ tb then there exists a triple o ∈ cl(O) such that ta, o � tb.

As an aside, Proposition 3 along with the rules of Figure 2 allows us to classify
the direct relaxations that can be obtained from a given triple pattern, which
is done in Figure 6. We refer to triples having type as their predicate as type
triples. We use a similar notation for triples with predicates dom, range, sp, and
sc. A plain triple is a triple whose predicate term is not in the RDFS vocabulary.
As an example, the figure shows that a direct relaxation of a plain triple is either
a plain triple or a type triple. Notice that neither dom triples nor range triples
can be relaxed.

sc

plain

type

sp

range

domain
rule 1

rule 2

rules 5,6

rule 3

rule 4

rule 4

Fig. 6. Diagram of possible direct relaxations

In the remainder of the section, we present a naive algorithm to compute the
relaxation graph of a triple pattern.

Firstly, let us introduce some notation to refer to the procedure just outlined
that uses the RDFS derivation rules to produce relaxations of a triple pattern.
We denote by applyRules(t, O) all the triples generated by instantiating a rule of
Figure 2 with t and a triple from O. Using O from Figure 5 (A) as an example,
applyRules((?X, type, B), O) generates the triple patterns (?X, type, C) and
(?X, type, D). We will frequently abuse notation and consider applyRules(t, O)
simply as a set. Furthermore, since relaxations preserve variables of t, we assume
we filter from applyRules(t, O) triples t′ such that var(t′) �= var(t).

The naive algorithm works as follows. In a first step, it builds a graph that
subsumes the relaxation graph of t. This graph may contain some indirect re-
laxations that need to be deleted in a second step. In the first step, it start by
calling applyRules(t, O), update the graph with new relaxations of t, and adds
them to a list. It then removes a triple pattern t′ from the list, update the graph
with new relaxations applyRules(t′, O) of t′ and adds them to the list. This op-
eration is repeated until the list is emptied. A list of “visited” triple patterns can

42 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

be used in order to avoid calling applyRules more than once for the same triple
pattern. As each applyRules(t′, O) call may generate some indirect relaxations
of t′, in a final step, edges associated with indirect relaxations are deleted using
any standard method to compute the transitive reduction of a dag.

4.2 Computing the Relaxation Graph Incrementally

The naive procedure has a major drawback. In order to delete the indirect re-
laxations generated by applyRules(t, O), we need to call applyRules for all
triples in the relaxation graph of t. This should be done even though the user
is interested in relaxing t only one step further. In this section, we show how to
transform the ontology O into a new ontology O′ such that applyRules(t, O′)
only returns direct relaxations of t.

Now, let us return to the example of the previous subsection, where O is the
ontology of Figure 5 (A). Recall that applyRules((?X, type, B), O) generates
the direct relaxation (?X, type, C) and the indirect relaxation (?X, type, D) of
(?X, type, B). The latter is generated using the triple (B, sc, D) of O. We say
that this is a derivable triple since it can be derived from other two triples in
cl(O). Now, observe that if we delete (B, sc, D) from O, we obtain a reduced
version O′ of O (which is logically equivalent to O) such that applyRules((?X,
type, B), O′) only outputs direct relaxations. This example motivates us to
delete the derivable triples of O since they produce indirect relaxations. The
following proposition shows that this indeed is a good idea.

Proposition 4. Let O be an ontology, o be a derivable triple in cl(O) and t, t′

be triple patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined
using O).

From Proposition 4 we conclude that we should apply applyRules over the
reduction of O instead of O. The reduction of O, denoted red(O), is the minimal
ontology O′ ⊆ O, such that cl(O′) = cl(O). The reduction does not contain
derivable triples and can be computed as follows (applying a rule in reverse
means deleting the triple deduced by the rule): (i) compute cl(O); (ii) apply rule
4 in reverse until no longer applicable; and (iii) apply rules 1 and 3 in reverse
until no longer applicable. In what follows, we assume that red(O) has been
precomputed. Notice that, because every predicate in a triple in the ontology
should be in {type, dom, range, sp, sc}, reverse rules 2, 5, and 6 are not needed
to compute the reduction.

Since red(O) is logically equivalent to O, we obtain the same relaxations using
red(O) and using O. The following proposition follows directly from Proposi-
tion 3.

Proposition 5. Let O be an ontology and t be a triple pattern not in cl(O). Then
all direct relaxations of t (defined using O) are in the set applyRules(t, red(O)).

Unfortunately, applyRules(t, red(O)) may still return indirect relaxations, as
the following example shows. Consider the reduction red(O) shown in Fig-
ure 5 (B), where O is the ontology of Figure 5 (A). Then, with the following
instantiation of rule 5

Query Relaxation in RDF 43

(A, dom , C), (?X, A, ?Y) �5 (?X, type, C)

applyRules((?X, A, ?Y), red(O)) produces the relaxation (?X, type, C) of (?X,
A, ?Y). However, this is an indirect relaxation, since we have that (?X, A, ?Y) ≺
(?X, type, B) ≺ (?X, type, C). Fortunately, the following proposition shows that
it is not difficult to detect the triples in the reduction that cause problems.

Proposition 6. Let O be an ontology, o be a triple in red(O) and t, t′ be triple
patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined using
O) iff o can be derived by applying the rules of Figure 7 starting from cl(O).

(e1) (b,dom,c) (a,sp,b)
(a,dom,c) (e2) (b,range,c) (a,sp,b)

(a,range,c)

(e3) (a,dom,b) (b,sc,c)
(a,dom,c) (e4) (a,range,b) (b,sc,c)

(a,range,c)

Fig. 7. Additional rules used to compute the extended reduction of an RDFS ontology

The proposition shows that we can avoid generating indirect relaxations by fur-
ther reducing the ontology with the rules of Figure 7, which yields an extended
reduction of an ontology O. The extended reduction, denoted extRed(O), is de-
fined as follows: (i) compute cl(O); (ii) apply the rules of Figure 7 in reverse
until no longer applicable; (iii) apply rule 4 in reverse until no longer applicable;
and (iv) apply rules 1 and 3 in reverse until no longer applicable.

As an example, Figure 5 (C) shows the extended reduction of the ontology of
Figure 5 (A).

Now, observe that extRed(O) may not be logically equivalent to O. However,
the previous propositions show that we can still obtain all the direct relaxations
of any triple pattern (defined using O) from extRed(O). We are now ready to
present the main result of this section.

Proposition 7. Let O be an ontology and t be a triple pattern not in cl(O). Then
applyRules(t, extRed(O)) is equal to the set of direct relaxations of t (defined
using O).

Figure 8 shows an algorithm that computes the relaxation graph of a triple
pattern incrementally. We assume that the extended reduction extRed(O) has
been previously computed and stored. The variable Frontier keeps a list of
triple patterns. The variables V and E keep the nodes and edges of the relaxation
graph, respectively. Notice that, because of Proposition 7, the algorithm does
not produce indirect relaxations.

4.3 Complexity

We now give a bound on the size of the relaxation graph.

Proposition 8. Let t be a triple pattern and O be an ontology. The relaxation
graph of t (using the ontology O) has O(|red(O)|2) triples.

44 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Input: A triple pattern t and the extended reduction extRed(O) of an ontology O.
Output: The relaxation graph of t (using O).

Frontier := 〈t〉
V := {t},E := ∅
While (Frontier is non-empty)

Delete first element u from Frontier
U := applyRules(u, extRed(O))
V := V ∪ U
E := E ∪ {(u, u′) : u′ ∈ U}
Add the triple patterns in U to Frontier

Return (V, E)

Fig. 8. Algorithm that computes the relaxation graph of a triple pattern

From Proposition 9, it follows that the relaxation graph of a query has
O(|red(O)|2n) nodes, where n is the number of triple patterns inside RELAX
clauses in the query.

Proposition 9. Let t be a triple pattern and O be an ontology. (i) Computing
the direct relaxations of t takes O(|red(O)|) steps. (ii) Computing the relaxation
graph of t takes O(|red(O)|3) steps.

5 Computing the Relaxed Answer

In this section, we study the problem of computing the relaxed answer of a query.
We propose an algorithm that incrementally generates matchings from a query
to an RDF graph and also ranks tuples in the answer.

Our query processing algorithm works by adapting the RDQL query process-
ing scheme provided by Jena [21] to the processing of successive relaxations of
a query. We assume the simplest storage scheme provided by Jena, in which the
RDF triples are stored in a single table, called the statement table. The Jena
query processing approach is to convert an RDF query into a pipeline of “find
patterns” connected by join variables. Each triple pattern (find pattern in Jena’s
terminology) can be evaluated by a single SQL select query over the statement
table. We formalize this with an operator called find that receives a triple pat-
tern t and a statement table G and returns all matchings from t to the table.

In Section 5.1 we present our algorithm for efficiently computing the relaxed
answer of a query and we prove its correctness. In Sections 5.2 and 5.3 we
illustrate two examples of the execution of the algorithm. Finally, in Section 5.4,
we study the complexity of the algorithm.

5.1 Algorithm

In what follows, Q is the query whose relaxed answer we intend to compute,
and Q′ is an arbitrary query in the relaxation graph of Q. We have that H =

Query Relaxation in RDF 45

Head(Q) = Head(Q′). For the sake of simplicity, we assume that each triple
pattern in the body of Q is inside a RELAX clause. We assume that Body(Q) =
{t1, . . . , tn}, and Body(Q′) = {t′1, . . . , . . . , t′n}. We also fix the statement table G
we are querying. The answer of Q′ can be computed by processing (in a pipelined
fashion) a view, denoted VQ′ , defined by the following expression:

πH(find(t′1, G) �� . . . �� find(t′n, G)),

where π is the standard projection operator and �� is the natural join on vari-
ables shared by triple patterns. The answer of Q can be computed by a naive
algorithm that traverses the relaxation graph of Q upwards, and in each step
of the traversal, builds a view VQ′ , computes it, and returns those tuples which
were not returned in previous steps.

Next, we propose an algorithm that avoids the redundant processing of tuples
that arises with this naive approach. We define deltaFind(t′i, G) as the set
containing triples p ∈ G such that t′i matches p, and no triple pattern directly
below t′i in the relaxation graph of ti, matches p. The set deltaFind(t′i, G)
can be computed similarly to find(t′i, G) by filtering triples from the statement
table. We define a delta view for Q′, denoted ΔQ′ , as the following expression:

πH(deltaFind(t′1, G) �� . . . �� deltaFind(t′n, G)).

The following proposition shows that new answers (Section 3.5) correspond
to delta views.

Proposition 10. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≤QQ′ ΔQi(G), and

(ii) newAnswer(Q′, G) = ΔQ′(G).

The algorithm we propose (Figure 9), called RelaxEval, performs a breadth-first
traversal of the relaxation graph of Q, building and processing each delta view
ΔQ′ in each step of the traversal. The function level returns the level of a triple
pattern t′i in the relaxation graph Ri of ti. Line 3(a) outputs the new answer
of each query at level k. In order to find the queries at level k of the relaxation
graph, the algorithm applies the following property. The queries Q′ (defined by
the join expression in Line 3 (a)) that belong to the level k of the relaxation
graph of Q are those satisfying

∑
i level(t′i, Ri) = k.

We next prove the correctness of RelaxEval.

Proposition 11. The algorithm RelaxEval returns its tuples in ranked order.

5.2 Example

We next illustrate the algorithm with the following query Q (that we also pre-
sented in the example of Section 3.3):

?X ← {RELAX{(?X, type, Publication)}, RELAX{(JohnRobert, editorOf , ?X)}}.

46 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Algorithm RelaxEval
Input: a query Q (interpreted over an ontology O), where Body(Q) = {t1, . . . , tn}, a
statement table G, and an integer maxLevel .
Output: the set of tuples ansrelax(Q,G,maxLevel), where new answers are returned
successively at each level of the relaxation graph.

1. k := 0, stillMore := true
2. For each triple pattern ti ∈ Body(Q), compute the relaxation graph Ri of ti up to

level maxLevel .
3. While (k ≤ maxLevel and stillMore) do

(a) For each combination t′
1 ∈ R1, . . . , t

′
n ∈ Rn such that

∑
i level(t′

i, Ri) = k
do output πH(deltaFind(t′

1, G) �� . . . �� deltaFind(t′
n, G))

(b) k := k + 1
(c) stillMore := exist nodes t′

1 ∈ R1, . . . , t
′
n ∈ Rn such that

∑
i level(t′

i, Ri) = k

Fig. 9. Algorithm that computes the relaxed answer of a query

For simplicity, we consider subgraphs of the relaxation graphs of triple patterns
in the query, shown in Figure 4 (A). Figure 4 (B) shows the relaxation graph of
the query, which is obtained by combining the graphs of Figure 4 (A).

We assume the query is interpreted in the context of an ontology O, which
consists of the subgraph with edges sc and type of the ontology of Figure 1. The

Statement table G

Subject Predicate Object
a type Publication
b type WebPage
c type Publication
d type WebPage
JohnRobert editorOf a
JohnRobert editorOf b
JohnRobert authorOf c
JohnRobert authorOf d

Statement table for cl(G, O)
Subject Predicate Object
a type Publication
b type WebPage
c type Publication
d type WebPage
a type Document
b type Document
c type Document
d type Document
JohnRobert editorOf a
JohnRobert editorOf b
JohnRobert authorOf c
JohnRobert authorOf d
JohnRobert contributorOf a
JohnRobert contributorOf b
JohnRobert contributorOf c
JohnRobert contributorOf d

(A) (B)

Fig. 10. (A) Statement Table G. (B) A statement table containing cl(G, O), where O is
the subgraph of the ontology of Figure 1 that includes only the sc and type subgraphs.

Query Relaxation in RDF 47

query is interpreted over the statement table G given in Figure 10 (A), whose
closure cl(G, O) is given in Figure 10 (B).

Figure 11 (A) shows the answers of queries in the relaxation graph of Q and
Figure 11 (B) shows the answers of delta views. An answer is a set of tuples;
since the query at hand has a single head variable, each tuple is a single element
in our example. Figure 11 (C) shows the answer returned by RelaxEval at levels
0, 1 and 2.

Notice that Proposition 10 (i) and (ii) hold. For instance, for query Q3, we
have

ans(Q3, G) = ΔQ3 ∪ (ΔQ1 ∪ ΔQ2 ∪ ΔQ0),

and we also have

ΔQ3(G) = ans(Q3, G) − (ans(Q1, G) ∪ ans(Q2, G) ∪ ans(Q0, G)).

We now illustrate how RelaxEval computes the delta view

ΔQ3(G) := π?X(deltaFind((?X, type, Document), G) ��

deltaFind((JohnRobert, contributorOf , ?X), G)).

Here, deltaFind((?X, type, Document), G) finds all matchings μ from (?X,
type, Document) to cl(G, 0) such that μ is not a matching from (?X, type,
Publication) to cl(G, O) (because (?X, type, Publication) is the only triple pat-
tern directly below (?X, type, Document) in the relaxation graph of (?X, type,
Publication)). Therefore, deltaFind((?X, type, Document), G) returns the fol-
lowing table:

?X type Document
b type Document
d type Document

Similarly, deltaFind((JohnRobert , contributorOf , ?X), G) computes the follow-
ing table:

JohnRobert contributorOf ?X
JohnRobert contributorOf c
JohnRobert contributorOf d

Therefore, ΔQ3(G) = {d}.

5.3 A Further Example — Heterogeneous Database Integration

We now discuss how our algorithm for incrementally computing the relaxed
answer of a query might be applied in a heterogeneous data integration setting,
specifically in the integration and querying of multiple heterogeneous proteomic
data resources.

48 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Answers of Relaxed Queries
Relaxed Query Answer
Q0 {a}
Q1 {a, b}
Q2 {a, c}
Q3 {a, b, c, d}

Answers of Delta Views
Delta view Answer
ΔQ0 {a}
ΔQ1 {b}
ΔQ2 {c}
ΔQ3 {d}

Answers of RelaxEval
Level Answer
0 {a}
1 {b, c}
2 {d}

(A) (B) (C)

Fig. 11. (A) Answers of relaxed queries until level 2. (B) Delta views for the relaxed
queries until level 2. (C) Tuples returned by RelaxEval per level until level 2.

Proteomic data resources are rapidly being developed globally, with the emer-
gence of affordable, reliable methods to study the proteome. The In Silico Pro-
teome Integrated Data Environment Resource (ISPIDER) project4 is developing
an integrated platform of proteome-related resources, using existing standards
from proteomics, bioinformatics and e-Science. The integration of such resources
is beneficial for a number of reasons. First, having access to more data leads
to more reliable analyses; for example, performing protein identifications over
an integrated resource reduces the chances of false negatives. Second, bring-
ing together resources containing different but closely related data increases the
breadth of information the biologist has access to. Third, the integration of these
resources, as opposed to merely providing a common interface for accessing them,
enables data from a range of experiments, tissues, or different cell states to be
brought together in a form which may be analysed by a biologist in spite of the
widely varying coverage and underlying technology of each resource.

In the ISPIDER project, we have developed an architecture which supports
the combined use of Grid data access, Grid distributed querying and data in-
tegration software tools. This architecture allows us to develop an integrated
global schema over heterogeneous resources and to support distributed queries
posed over such a global schema. Reference [22] reports on our initial results
from the integration of three distributed, autonomous proteomics resources, all
of which contain information about protein and peptide identification: gpmDB5,
Pedro6 and PepSeeker7.

As reported in [22], building an integrated global schema over such heteroge-
neous proteomics resources is a lengthy and complex process. Indeed, so far, we
have not performed a full integration of these three databases, but only a limited
integration such that the global schema captures enough information for answer-
ing common proteomics questions. Moreover, some of the resource schemas are
still under development and enhancement, which requires ongoing modification
to our integration mappings and global schema.

An alternative approach, therefore, would be to undertake a “light-weight”
integration of these resources, producing a global ontology that captures the

4 See http://www.ispider.manchester.ac.uk
5 See http://gpmdb.thegpm.org
6 See http://pedrodb.man.ac.uk:8080/pedrodb
7 See http://www.nwsr.manchester.ac.uk/pepseeker

Query Relaxation in RDF 49

classes and properties of the individual resources as well as their common con-
cepts (i.e. super-classes and super-properties of the local ontology classes and
properties), and to use our query processing algorithm to incrementally relax
and compute the answers to queries over this global ontology.

For example, in the global ontology, there may be

– classes PedroPeptide and PedroProtein
– and properties

• PedroPeptideSequence, with domain PedroPeptide and range Literal,
• PedroAligns, with domain PedroPeptide and range PedroProtein,
• PedroAccessionNumber, with domain PedroProtein and range Literal,

arising from the Pedro resource, which is based at Manchester (in Mass Spec-
trometry experiments, several Peptides result from the identification process;
each Peptide aligns against a set of Proteins; a Protein is characterized by a
textual description, an accession number, the predicted mass of the protein, the
organism in which it is to be found, etc.).

There may be a similar set of classes and properties arising from the PepSeeker
resource, also at Manchester:

– classes PepPeptide and PepProtein
– and properties

• PepPeptideSequence, with domain PepPeptide and range Literal,
• PepAligns, with domain PepPeptide and range PepProtein,
• PepAccessionNumber, with domain PepProtein and range Literal,

In the global ontology there may be superclasses and superproperties of the
above which collectively represent the information in the Manchester resources:

– superclasses ManchPeptide and ManchProtein
– and superproperties

• ManchPeptideSequence, with domain ManchPeptide and range Lit-
eral,

• ManchAligns, with domain ManchPeptide and range ManchProtein,
• ManchAccessionNumber, with domain ManchProtein and range Lit-

eral,

This fragment of the ontology is shown in Figure 12.
We may also have properties and classes in the global ontology, arising from

the publicly available gpmDB resources:

– classes: gpmPeptide and gpmProtein
– properties: gpmPeptideSequence, gpmAligns and gpmAccessionNumber

Finally, there may be the following classes and properties that are supeclasses
or superproperties of the corresponding Manchester and gpmDB classes or prop-
erties, and that collectively represent the information in all three resources:

– superclasses: Peptide and Protein
– superproperties: PeptideSequence, Aligns and AccessionNumber

50 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

sp

sp sp

sp

PedroAligns

PedroPeptideSequence

range

Literal

range

Literal

PedroAccessionNumber

range

PepPeptide PepProtein

PedroAligns

PepPeptideSequence

domain range

Literal

domain

range

Literal

PepAccessionNumber

domain

range

ManchPeptide ManchProtein

ManchAlignsdomain range

Literal

domain

range

Literal

ManchAccessionNumber

domain

rangesc sc

sp

PedroProtein

domain

sp

PedroPeptide

domain

domain

ManchPeptideSequence

sc sc

Fig. 12. Part of the Proteomics Resources Ontology

Consider now the following query posed over the global ontology by a user
who is familiar with the Pedro resource:

?Y, ?Z <- {RELAX{(?X,PedroPeptideSequence,"ATLITFLCDR")},
RELAX{(?X,PedroAligns,?Y)},
RELAX{(?Y,PedroAccessionNumber,?Z)}}

In its non-relaxed form, this query will return the identifiers and accession num-
bers of proteins that have been identified within the Pedro resource as a result
of experiments that have yielded the peptide ”ATLITFLCDR”. Such a query
allows a scientist working with a protein sequence to ask if this peptide has been
seen before in other proteomics experiments.

A first level of relaxation of the three literals in this query according to the
sp subgraph, will result in the following relaxed query,

?Y, ?Z <- {RELAX{(?X,ManchPeptideSequence,"ATLITFLCDR")},
RELAX{(?X,ManchAligns,?Y)},
RELAX{(?Y,ManchAccessionNumber,?Z)}}

which will expand out the result set to include results also from the other Manch-
ester resource, Pepseeker, without the Pedro user needing to have detailed knowl-
edge of the schema of that resource.

A further level of relaxation of the three literals in the query according to the
sp subgraph, will result in the following relaxed query,

?Y, ?Z <- {RELAX{(?X,PeptideSequence,"ATLITFLCDR")},
RELAX{(?X,Aligns,?Y)},
RELAX{(?Y,AccessionNumber,?Z)}}

Query Relaxation in RDF 51

which will now expand out the result set to include results also from the gpmDB
resource, again without the Pedro user needing to have detailed knowledge of
the schema of that resource.

In contrast therefore to the approach discussed in [22], in which users must
pose queries against an integrated global schema, the light-weight integration
and relaxed querying approach that we have outlined here would allow a more
incremental construction of query results, a more exploratory approach to query
answering, and also less knowledge of the global resources by users.

5.4 Complexity

The complexity of RelaxEval is given by the following proposition.

Proposition 12. Let Q be a query, O be an ontology and G an RDF graph.
Then RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m is the number of
triples in red(O), and n = |Body(Q)|.

The above proposition shows that the algorithm has exponential complexity,
however its complexity is polynomial in the size of the data queried for a fixed
query Q (data complexity). In addition, the answer is generated incrementally
and hence the processing can be halted at any level in the relaxation graph. The
number of triples in red(O) provides an upper bound for k, the number of levels
in the evaluation.

An improvement to the algorithm would be to process several delta views at
the same time in an integrated pipelined fashion. In practice, we can improve
query processing performance by further caching the results of deltaFind(t, G)
for all triple patterns t that occur more than once in the query relaxation graph
(such duplicate occurrences can be detected as the relaxation graphs of the
individual triple patterns in the original query are being constructed).

6 Introducing Simple Relaxations

In this section, we extend the relaxation framework to consider simple relaxations
that is, relaxations that replace terms of the original triple pattern with variables.
In Section 6.1, we formalize simple relaxation and show how the relaxation graph
can be extended with simple relaxations. In Section 6.2, we show the additional
types of relaxation now captured by our framework.

6.1 Notion of Simple Relaxation

An important restriction we place in our framework is to prevent simple relax-
ations replacing variables of the original query. This is because such variables
are needed to export results and join triple patterns in the relaxed queries. It
is important to note, however, that (as we will show in the next section) this
restriction does not limit the ability of our framework to relax join dependencies.

52 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

In the light of the above, we call the variables of the original query fixed
variables, and define the notion of map that preserves such variables, along with
literals and IRIs. A map from a triple pattern t1 = (a, b, c) to a triple pattern
t2 = (d, e, f) is a function μ from terms of t1 to terms of t2, preserving IRIs,
literals, and fixed variables, such that (μ(a), μ(b), μ(c))) = (d, e, f). We say that
two triple patterns t1 and t2 are isomorphic if there are maps from t1 to t2 and
from t2 to t1. Now, we define simple relaxation.

Definition 5 (Simple Relaxation). If t1, t2 are triple patterns, then t1 ≤simple

t2 if there is a map from t2 to t1.

As an example, assuming a unique fixed variable ?X , we have (?X, type, Article)
≤simple (?X, type, ?Z) and (?X, type, Article) ≤simple (?X, ?W, Article), among
other simple relaxations. It is not the case that (?X, type, Article) ≤simple

(?U, type, ?Z), since the fixed variable ?X is replaced.
The following proposition confirms a desired property of the simple relaxation

relation.

Proposition 13. The simple relaxation relation ≤simple is a partial order up to
triple pattern isomorphism.

Similarly to Section 3.2, we can define the notion of relaxation graph of a triple
pattern t. It is enough to define the direct simple relaxation relation ≺simple

(transitive and reflexive reduction of ≤simple up to isomorphism), and the rela-
tion ≺simple,t (simple relaxation “above” t). The simple relaxation graph of t is
the graph induced by ≺simple,t. This graph is unique up to triple pattern isomor-
phism. In order to obtain a clean representation of it, without loss of generality,
we may assume that each non-fixed variable does not appear in more than one
triple pattern.

Also notice that the simple relaxation graph of a triple pattern can be eas-
ily computed: we just need to iteratively replace terms by variables in triple
patterns, taking care not to generate isomorphic triples and indirect relaxations.

The notions of relaxation graph of a triple pattern (and hence of a query)
introduced in Section 3.2 can be naturally generalized to include simple relax-
ations in different ways. Here we sketch one possible, yet simple, extension. We
add on the top of each triple pattern t in the original relaxation graph the simple
relaxation graph of t, and then delete indirect edges.

As an example, consider the ontology O of Figure 1. Figure 13 (B) shows the
relaxation graph of (JohnRobert, editorOf , ?X) (Figure 3) extended with simple
relaxations. The non-fixed variables are ?U1, . . . , ?U10.

Finally, we just remark that the query processing algorithm of Section 5 can
be applied without any modification to the extended version of the relaxation
graph as well.

6.2 Types of Simple Relaxation

The following types of relaxation can be captured by simple relaxation.

Query Relaxation in RDF 53

(?X,type,Publication) (John Robert,contributorOf,?X)

(?X,type,Document)

(?X,?U1,Publication) (?X,?U2,Document) (?X,type,?U3)

(?X,?U4,?U5)

(John Robert,?U7,?X)(?U6,contributorOf,?X)

(?U8,?U9,?X)

(John Robert,editorOf,?X)

(?U10,editorOf,?X)

Fig. 13. Relaxation graph of the triple pattern (JohnRobert, editorOf , ?X) considering
simple relaxations. The simple relaxations are shown with solid arrows.

1. Dropping triple patterns. We can model the dropping of triple patterns by
introducing an “empty” triple pattern, which can be regarded as a “true”
condition to which any triple pattern relaxes. In this form, relaxation gen-
eralizes the use of the OPTIONAL clause within the conjunctive fragment of
SPARQL.

2. Constant relaxation: replacing a constant with a variable in a triple pattern.
This can be further classified according to whether the variable replaces a
property or a subject/object constant.

3. Breaking join dependencies: generating new variable names for a variable
that appears in multiple triple patterns. In order to model this type of re-
laxation, we first transform queries by applying variable substitution. If a
variable ?X appears n > 1 times in a query Q we replace each occurrence
with a different variable and add triple patterns (?Xi, equal, ?Xj) for each
pair of new variables ?Xi, ?Xj introduced. The predicate equal represents
equality. Each of the equality clauses in a query can now also be subject to
relaxation.

7 Related Work

Query languages based on regular expressions provide a form of flexible query-
ing. The G+ query language by Cruz et al. [6] proposes graph patterns where
edges are annotated with regular expressions over labels. In this form, each graph
pattern represents a set of more basic graph patterns, and therefore, a query ex-
tracts matchings that relate to its body in a variety of ways. This work considers
queries over directed labeled graphs.

Kanza and Sagiv [14] propose a form of flexible querying based on a notion
of homeomorphism between the query and the graph. Their data model is a
simplified form of the Object Exchange Model (OEM).

54 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Bernstein and Kiefer [1] incorporate similarity joins into the RDQL query
language. This is done by allowing sets of variables in an RDQL query to be
declared as imprecise. Bindings for these variables are then compared based on
a specified similarity measure, such as edit distance.

Stuckenschmidt and van Harmelen [20] consider conjunctive queries over a
terminological knowledge base that includes class, relation and object definitions.
They also use query containment as a way of viewing query approximations, but
are concerned about evaluating less complex queries first, so that the original
query is evaluated last. They use a query graph to decide which conjuncts from
the original query should be successively added to the approximate query. This
is analogous to SPARQL queries in which every conjunct is optional.

Bulskov et al. [4] consider the language Ontolog which allows compound
concepts to be formed from atomic concepts attributed with semantic relations.
They define a similarity measure between concepts based on subsumption in
a hierarchy of concepts. This gives rise to a fuzzy set of concepts similar to a
given concept. They also introduce specialization/generalization operators into
a query language that allow specializations or generalizations of concepts to be
returned. They admit that combining this with similarity may make answers
confusing.

In a series of papers, e.g. [18,19], Stojanovic and others have studied the
problem of query refinement in information retrieval, where users tend to pose
initial queries that are too short to fulfull their needs. The techniques proposed
use ontologies associated with the information to analyse “amibiguities” in the
user’s queries as well as users’ preferences in order to suggest incremental re-
finements to the user. For example, [19] uses a form of subsumption between
queries which generates a lattice of query refinements. A form of ranking, based
on user modelling and monitoring, is also provided. However, the refinements
considered are, in fact, specialisations of a query, rather than generalisations as
in our case. Generalisation is considered as one form of query refinement in [18].
The ontologies used in all cases, however, are not based on RDF/S.

A recent paper by Dolog et at. considers relaxing over-constrained queries on
RDF [7]. The paper proposes a rewriting technique based on domain knowledge
and user preferences, although these are not encoded using RDFS. The imple-
mentation of rewriting is performed using event-condition-action rules, for which
the authors state that termination of execution still needs to be thoroughly in-
vestigated.

8 Concluding Remarks

Despite being a relatively unexplored technique in the semantic Web, query re-
laxation may have an important role in improving RDF data access. One motiva-
tion for this technique is for querying data where there is a lack of understanding
of the ontology that underlies the data. Another application is the extraction
of objects with heterogeneous sets of properties because the data is incomplete
or has irregular structure. As an example, a relaxed query can retrieve the

Query Relaxation in RDF 55

properties that are applicable to each resource among a set of resources having
different properties. Query relaxation can also make it possible to retrieve data
that satisfies the query conditions with different degrees of exactitude. Another
application area where this facility could be useful is the discovery of semantic
web services.

There are several areas for future work. One is the introduction of relaxation
into general SPARQL queries, including disjunctions and optionals. This should
also involve a generalization of the RELAX clause so that it can be applied to entire
graph patterns instead of single triple patterns. Another important issue for
future work is the design, implementation and empirical evaluation of algorithms
for computing relaxed answers. Finally, the graph-like nature of RDF provides
additional richness for a query relaxation framework, which can be exploited in
future work. For example, join dependencies between triple patterns of the query
can be relaxed to connectivity relationships in RDF graphs.

Acknowledgement

We gratefully acknowledge the contribution of Lucas Zamboulis in the formula-
tion of the example in Section 5.3.

References

1. Bernstein, A., Kiefer, C.: Imprecise RDQL: Towards generic retrieval in ontologies
using similarity joins. In: SAC/SIGAPP. 21th Annual ACM Symposium on Applied
Computing, Dijon, France (2006)

2. Brickley, D., Guha, R.V. (eds.): RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation (February 10, 2004)

3. Broekstra, J.: SeRQL: Sesame RDF query language. In: Ehrig, M., et al. (eds.)
SWAP Deliverable 3.2 Method Design, pp. 55+68 (2003),
http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf

4. Bulskov, H., Knappe, R., Andreasen, T.: On querying ontologies and databases. In:
6th International Conference on Flexible Query Answering Systems, pp. 191–202
(2004)

5. Clark, K.G. (ed.): RDF Data Access Use Cases and Requirements, W3C Working
Draft (March 25, 2005)

6. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting
recursion. In: ACM SIGMOD International Conference on Management of Data,
pp. 323–330 (1987)

7. Dolog, P., Stuckenschmidt, H., Wache, H.: Robust query processing for personal-
ized information access on the semantic web. In: 7th International Conference on
Flexible Query Answering Systems, pp. 343–355 (2006)

8. Fikes, R., Hayes, P.J., Horrocks, I.: OWL-QL - a language for deductive query
answering on the semantic web. J. Web Sem. 2(1), 19–29 (2004)

9. Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative
answering. J. Intell. Inf. Syst. 1(3/4), 293–321 (1992)

10. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web
databases. In: 23rd Symposium on Principles of Database Systems, pp. 95–106
(2004)

http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf

56 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

11. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query lan-
guages. In: International Semantic Web Conference (2004)

12. Hayes, P.: RDF Semantics, W3C Recommendation (February 10, 2004)
13. Hurtado, C., Poulovassilis, A., Wood, P.T.: A relaxed approach to RDF querying.

In: Proceedings of the 5th International Semantic Web Conference, Athens, GA,
USA, pp. 314–328 (2007)

14. Kanza, Y., Sagiv, Y.: Flexible queries over semistructured data. In: 20th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
40–51 (2001)

15. Manola, F., Miller, E. (eds.): RDF Primer, W3C Recommendation (February 10,
2004)

16. Nerode, A., Shore, R.: Logic for Applications. Springer, Netherlands (1998)
17. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF, W3C

Candidate Recommendation (April 6, 2006)
18. Stojanovic, N.: Information-need driven query refinement. In: Proceedings of the

IEEE/WIC International Conference on Web Intelligence, pp. 388–395 (2003)
19. Stojanovic, N., Stojanovic, L.: A logic-based approach for query refinement in

ontology-based information retrieval systems. In: 16th IEEE International Confer-
ence on Tools with Artificial Intelligence, pp. 450–457 (2004)

20. Stuckenschmidt, H., van Harmelen, F.: Approximating terminological queries. In:
5th International Conference on Flexible Query Answering Systems, pp. 329–343
(2002)

21. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and
retrieval in Jena. In: Proceedings of VLDB Workshop on Semantic Web and
Databases (2003)

22. Zamboulis, L., Fan, H., Khalid, B., Siepen, J.A., Jones, A., Martin, N.J., Poulovas-
silis, A., Hubbard, S.J., Embury, S.M., Paton, N.W.: Data access and integration
in the ISPIDER proteomics grid. In: Leser, U., Naumann, F., Eckman, B. (eds.)
DILS 2006. LNCS (LNBI), vol. 4075, pp. 3–18. Springer, Heidelberg (2006)

A Proofs

Proposition 1. Let ≤ be defined using an ontology O, and t1, t2 be triple patterns
such that t1, t2 �∈ cl(O) and var(t1) = var(t2). Then t1 ≤ t2 if and only if
t2 ∈ cl(O ∪ {t1}).

Proof of Proposition 1. Follows directly from the definition of relaxation. �

Proposition 2. Let ≤ be defined using an ontology O. Then ≤ is a partial order
if and only if O is acyclic.

Proof of Proposition 2. (Only If) We prove the contrapositive, that is, if O
is cyclic then ≤ is not a partial order. We prove it for the case where the
subgraph Osc of O induced by sc is cyclic (the proof for a cycle in the sub-
property graph is similar). It is enough to prove that there exist triple pat-
terns ta, tb such that ta ≤ tb and tb ≤ ta. Now consider the following cycle in
Osc: (e1, sc, e2), (e2, sc, e3), . . . , (en−1, sc, e1) and the following triple patterns
ta = (c, type, e1) and tb = (c, type, e2). Because of rules 3 and 4, it can be easily

Query Relaxation in RDF 57

verified that there exists a derivation from ta to tb and another derivation from
tb to ta. Hence ta ≤ tb and tb ≤ ta.

(If) Assume that O is acyclic. It can be easily verified that ≤ is transitive and
reflexive. Therefore, it remains to prove that it is antisymmetric. Now, assume
that there exist triple patterns ta, tb, ta �= tb, such that ta ≤ tb and tb ≤ ta.
We will proceed by cases, where each case is a possible form that ta may take
in order to instantiate at least one rule. By U, V, W we denote a IRI, variable
or a literal, and by a, b, c we denote IRIs and literals. Notice that ta cannot
be a dom-triple or range-triple, because in this case, the only rules that can be
instantiated are rules 5 or 6, and they require the existence of a plain triple in
the ontology, which is not allowed. We use the notion of linear derivation from
the proof of Proposition 3.

We prove by cases.

– ta is a type-triple. In this case, rule 4 is the only rule that ta can instantiate,
hence tb is also a type-triple. Let ta = (U, type, b), then the there is a linear
derivation of the form (U, type, a), (a, sc, e1) �4 (U, type, e1), (e1, sc, e2) �4
(U, type, e2), (e2, sc, e3) �4 . . . (U, type, en), (en, sc, b) �4 (U, type, b). That
is tb = (U, type, b). Therefore, there must be a path from a to b in Osc. By
a similar argument, we prove the existence of a path from b to a in Osc,
contradicting that Osc is acyclic.

– ta is an sc-triple. In this case, rules 3 and 4 are the only rules that can
be instantiated by ta. Hence tb is either a type-triple or an sc-triple. If
the former holds, then there is no derivation from tb to ta, a contradiction.
Therefore, tb is a sc-triple. Let ta = (a, sc, b) and let tb = (c, sc, d). In this
case the internal nodes of the derivation graph are sc-triples. It can be easily
verified that a path exists in Osc ∪ {(a, sc, b)} from c to d that contains an
edge (a, sc, b). Similarly, because there is a derivation from tb to ta, there
must exist a path in Osc ∪ {(c, sc, d)} from a to b that contains an edge
(c, sc, d). It can be checked that Osc has at least one cycle, a contradiction.

– ta is an sp-triple. Only rule 1 can apply because plain triples are not allowed
in the ontology. Hence tb is an sp-triple. By a similar argument as the proof
of the previous case we prove the existence of a cycle in Osp, yielding a
contradiction.

– ta is a plain triple. In this case, the only rules in the derivation graph from
ta to tb are rules 2, 4, 5, and 6. These rules only yield dom-triples, range-
triples, type-triples and plain triples. However, among these, a plain triple
can be derived only from a plain-triple. Hence tb is a plain triple, and the
derivation graph has only instances of rule 2. Without loss of generality, let
ta = (a, p, b) and tb = (a, q, b). Using a similar argument than the one used
in the previous cases, we reach the conclusion that there are paths from p
to q and from q to p in Osp, a contradiction. �

Proposition 3. Let ta, tb be triple patterns not in cl(O) such that var(ta) =
var(tb). If ta ≺ tb then there exists a triple o ∈ cl(O) such that ta, o � tb.

58 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Proof of Proposition 3. We define that a derivation from a graph G (which may
have triple patterns) to a triple pattern bn is a sequence a1, a2 � b3; a4, a5 � b6;
a7, a8 � b9; . . . an−2, an−1 � bn, where each ai, ai+1 � bi+2 is an instantiation of
a rule and ai, ai+1 either belong to G or appear as the consequent bj of some
rule where j < i.

A derivation is said to be linear if each bj = aj+1 and aj+2 belongs to G. This
notion is analogous to the notion of linear proof (e.g., linear proofs in Prolog’s
resolution). The intuition here is that when choosing two triples to combine in
a derivation, always make one be the result of a previous derived triple and the
other a triple from the original graph. A linear derivation from G to bn can be
abbreviated as follows: a1, a2 � b3, a4 � b5, a6 � b7 . . . bn−2, an−1 � bn, where
each ai belongs to G and each bi does not. Since the RDFS rules and triples in
the ontology are horn clauses, from a standard result that states that proofs for
horn-clause knowledge bases are linear (Nerode and Shore Theorem [16]), the
following holds: for a graph G, and a triple pattern t, we have that G |=rule t if
and only if there is a linear derivation from G to t.

Now assume that ta ≺ tb. Then there should exist a linear derivation from
cl(O)∪{ta} to tb. If the derivation has more than one rule instantiation, because
it is linear, we can easily prove that tb is an indirect relaxation of ta, a
contradiction. �

Proposition 4. Let O be an ontology, o be a derivable triple in cl(O) and t, t′ be
triple patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined
using O).

Proof of Proposition 4. Let t, o �s t′, where s is some rule. We denote by δ this
rule instantiation. Now, since o is a derivable triple, there are triples o1, o2 such
that o1, o2 �r o. Because the predicates of the triples in the ontology should be
in the set {type, dom, range, sp, sc}, r ∈ {1, 3, 4}. We will prove that there is a
triple pattern t′′ such that t, o1 � t′′ and t′′, o2 � t′, and hence t′ is an indirect
relaxation of t.

We continue the proof for each of the three cases.

– Case r = 1. Then without loss of generality o1 = (a, sp, b), o2 = (b, sp, c), and
o=(a, sp, c). Moreover, s=1 or s = 2. If s = 1, w.l.g, δ is (d, sp, a), (a, sp, c) �
(d, sp, c). That is, t = (d, sp, a) and t′ = (d, sp, c). Hence, we have: (d, sp, a),
(a, sp, b) �1 (d, sp, b), (b, sp, c) �1 (d, sp, c). Therefore, t′′ is (d, sp, b).

– Case r = 3. Then without loss of generality o1 = (a, sc, b), o2 = (b, sc, c), and
o = (a, sc, c). Moreover, s = 3 or s = 4. If s = 4, without loss of generality
δ is (x, type, a), (a, sc, c) �4 (x, type, c). That is, t = (x, type, a) and t′ =
(x, type, c). Hence, we have that: (x, type, a), (a, sc, b) �4 (x, type, b), (b, sc,
c) �4 (x, type, c). Therefore, t′′ = (x, type, b).

– Case r = 4. Then without loss of generality o1 = (a, sc, b), o2 = (x, type, a),
and o = (x, type, b). Moreover, s = 4 and without loss of generality δ is
(b, sc, c), (x, type, b) �4 (x, type, c). That is t = (b, sc, c) and t′=(x, type, c).
Hence, we have the following linear derivation from t to t′: (b, sc, c), (a, sc, b)
�3 (a, sc, c), (x, type, a) �4 (x, type, c). Consequently, t′′ = (a, sc, c). �

Query Relaxation in RDF 59

Proposition 5. Let O be an ontology and t be a triple pattern not in cl(O). Then
all direct relaxations of t (defined using O) are in the set applyRules(t, red(O)).

Proof of Proposition 5. Follows directly from Proposition 4. �

Proposition 6. Let O be an ontology, o be a triple in red(O) and t, t′ be triple
patterns such that t, o � t′. Then t′ is an indirect relaxation of t (defined using
O) iff o can be derived by applying the rules of Figure 7 starting from cl(O).

Proof of Proposition 6. (If) It is enough to realize that if o1, o2 �i o, where i is
some rule in Figure 7, then we have that t, o1 � t′′, o2 � t′, and hence t′ is an
indirect relaxation of t.

(Only If) Assume that t′ is an indirect relaxation of t. If this is the case,
we will prove that either o �∈ red(O), which yields a contradiction, or o can be
obtained by applying the rules of Figure 7 to triples of cl(O). We will do it by
cases. Each case represents that t, o � t′ is an instance of a rule i.

– i = 1. Then without loss of generality t = (a, sp, b), o = (b, sp, c) and t′ =
(a, sp, c). Then, w.l.g the derivation δ is of the form (a, sp, b), (b, sp, d1) �1
(a, sp, d1), (d1, sp, d2) �1 (a, sp, d2) . . . (a, sp, dn), (dn, sp, c) �1 (a, sp, c).
Therefore, o �∈ red(O), a contradiction.

– i = 2. Because o is not a plain triple, without loss of generality o = (a, sp, b),
t=(x, a, y) and t′=(x, b, y). Then, w.l.g the derivation δ is (x, a, y), (a, sp, d1)
�2 (x, d1, y), (d1, sp, d2) � (x, d2, y) . . . (x, dn, y), (dn, sp, b) �2 (x, b, y). Then,
o �∈ red(O), a contradiction.

– i = 3. The proof is similar to the case where i = 1.
– i = 4. Then there are two cases: (i) t = (a, sc, b), o = (x, type, a) and t′ =

(x, type, b). Then, w.l.g the derivation δ is (a, sc, b), (d1, sc, a) � (d1, sc, b),
(d2, sc, d1) � (d2, sc, b), . . . � (dn, sc, b), (x, type, dn) � (x, type, b). Hence,
(dn, sc, a), (x, type, dn) � (x, type, a), contradicting that o �∈ red(O). (ii)
o = (a, sc, b), t = (x, type, a) and t′ = (x, type, b). Then w.l.g the deriva-
tion δ is (x, type, a), (a, sc, d1) � (x, type, d1) . . . (x, type, dn), (dn, sc, b) �
(x, type, b), contradicting that o ∈ red(O).

– i = 5. Then without loss of generality t = (x, a, y), o = (a, dom, d) and t′ =
(x, type, d). Then, w.l.g the derivation δ is of the form (x, a, y), (a, sp, b1) �
(x, b1, y), (b1, sp, b2) �2 . . . (x, bn, y), (bn, sp, b) �2 (x, b, y), (b, dom, c) �5
(x, type, c), (c, sc, d1) �4 (x, type, d1)(d1, sc, d2) �4 . . . (x, type, dm), (dm,
sc, d) �4 (x, type, d). Then, we have the following triples in cl(O): (a, sp, b),
(b, dom, c), and (c, sc, d). Then, by rules e1 and e3, (a, dom, c) and (a, dom, d) =
o can be derived.

– i = 6. The proof is similar to the case where i = 5, but now we use rules e2
and e4. �

Proposition 7. Let O be an ontology and t be a triple pattern not in cl(O). Then
applyRules(t, extRed(O)) is equal to the set of direct relaxations of t (defined
using O).

60 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

Proof of Proposition 7. Follows directly from propositions 4 and 6. �

Proposition 8. Let t be a triple pattern and O be an ontology. The relaxation
graph of t (using the ontology O) has O(|red(O)|2) triples.

Proof of Proposition 8. We denote by Mα, where α ∈ {type, dom, range, sp, sc},
the number of α-triples in red(O). We prove the proposition by cases.

– t is a type-triple. Let t = (x, type, a). Notice that all derivations from t
yield triples of the form (x, type, b), for some b mentioned in a sc-triple.
This is because derivations use only rule 4. Therefore, the relaxation graph
of t cannot have more than Msc nodes.

– t is a dom-triple or a range-triple there are no derivations from t.
– t is a sc triple. The relaxation graph of t may only have sc-triples and
type-triples. Assume it only has sc-triples. Then, triples cannot be more
than the number of pairs of classes in red(O), which is at most M2

sc. Now, if
the relaxation graph has also type-triples, then for each type-triple in cl(O)
there are at most Msc type-triples in the relaxation graph. So overall we
have at most M2

sc + MtypeMsc triples in the relaxation graph.
– t is a sp triple. By a similar argument as in the previous case we have that

there are at most M2
sp triples in the relaxation graph.

– t is a plain triple. In this case we have at most Msp + MspMsc triples in the
relaxation graph.

For each triple pattern t′ resulting from an ontology relaxation there are at
most a constant number of simple relaxations above t′, so the generation of
simple relaxation does not asymptotically increase the size of the relaxation
graph. �

Proposition 9. Let t be a triple pattern and O be an ontology. (i) Computing
the direct relaxations of t takes O(|red(O)|) steps. (ii) Computing the relaxation
graph of t takes O(|red(O)|3) steps.

Proof of Proposition 9. Part (i) This is a bound for the cost of evaluating
applyRules(t, extRed(O)). Part (ii) follows directly from Part (i) and Proposi-
tion 8. �

Proposition 10. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≤QQ′ ΔQi(G), and

(ii) newAnswer(Q′, G) = ΔQ′(G).

Proof of Proposition 10. For simplicity, we consider that Q and Q′ have two
triple patterns each, and both triple patterns of Q are within the RELAX clause.
That is Body(Q) = {t1, t2} and Body(Q′) = {t′1, t

′
2}. The generalization of the

proof for more than two triple pattern is direct. Also, we have that Head(Q) =
Head(Q′) = H .

Query Relaxation in RDF 61

For a triple pattern t′ in the relaxation graph of t, let St(t′) be the set con-
taining ti such that ti ≤t t′.

(i) We have that ans(Q′, G) = VQ′ = πH(find(t′1) �� find(t′2)).
By the definition of deltaFind, it can be easily verified that

find(t′1) =
⋃

ti∈St(t′
1)
deltaFind(ti).

A similar equality can be obtained for find(t′2).
Therefore, we have

VQ′ = πH((
⋃

ti∈St(t′
1) deltaFind(ti)) �� (

⋃
tj∈St(t′

2)
deltaFind(tj))),

which is equivalent to

VQ′ = πH((
⋃

ti∈St(t′
1),tj∈St(t′

2))
(deltaFind(ti) �� deltaFind(tj))).

which is equivalent to

VQ′ =
⋃

Qi:Qi≤QQ′ ΔQi(G).

(ii) We use (i) to replace newAnswer(Q′, G), obtaining

ΔQ′(G) = (
⋃

Qi:Qi≤QQ′ ΔQi(G)) − (
⋃

Qi:Qi≤QQ′,Qi �=Q′ ans(Qi, G))

But, from (i) it follows that:
⋃

Qi:Qi≤QQ′ ΔQi(G)) =
⋃

Qi:Qi≤QQ′ ans(Qi, G)).

Hence, (ii) is equivalent to ΔQ′(G) = ΔQ′ (G). �

Proposition 11. The algorithm RelaxEval returns its tuples in ranked order.

Proof of Proposition 11. Follows directly from Proposition 10 and the fact that
RelaxEval traverses the relaxation graph of Q in breadth-first fashion, that
is, delta views of less relaxed queries are processed before delta views of more
relaxed queries. �

Proposition 12. Let Q be a query, O be an ontology and G an RDF graph. Then
RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m is the number of triples
in red(O), and n = |Body(Q)|.

Proof of Proposition 12. Follows from the fact that the size of the relaxation
graph is in O(m2n) and the execution of each delta view takes time in O(|G|n).�

Proposition 13. The simple relaxation relation ≤simple is a partial order up to
triple pattern isomorphism.

Proof of Proposition 13. It can be easily verified that ≤simple is reflexive and
transitive, and it is also reflexive and transitive up to isomorphism. So we have
to prove that it is antisymmetric up to isomorphism. If it is not the case, there
are two triples ta, tb, where ta is not isomorphic to tb, such that ta ≤simple tb
and tb ≤simple ta. Hence there are maps ua from ta to tb and ub from tb to ta
and both maps preserve the fixed variables. Therefore, ta is isomorphic to tb, a
contradiction. �

A Fine-Grained Approach to Resolving

Unsatisfiable Ontologies∗

Joey Sik Chun Lam, Derek Sleeman, Jeff Z. Pan, and Wamberto Vasconcelos

Department of Computing Science
University of Aberdeen, AB24 3UE, UK

{slam, sleeman, jpan, wvasconc}@csd.abdn.ac.uk

Abstract. The ability to deal with inconsistencies and to evaluate the
impact of possible solutions for resolving inconsistencies are of the ut-
most importance in real world ontology applications. The common ap-
proaches either identify the minimally unsatisfiable sub-ontologies or the
maximally satisfiable sub-ontologies. However there is little work which
addresses the issue of rewriting the ontology; it is not clear which ax-
ioms or which parts of axioms should be repaired, nor how to repair those
axioms. In this paper, we address these limitations by proposing an ap-
proach to resolving unsatisfiable ontologies which is fine-grained in the
sense that it allows parts of axioms to be changed. We revise the axiom
tracing technique first proposed by Baader and Hollunder, so as to track
which parts of the problematic axioms cause the unsatisfiability. More-
over, we have developed a tool to support the ontology user in rewriting
problematic axioms. In order to minimise the impact of changes and
prevent unintended entailment loss, both harmful and helpful changes
are identified and reported to the user. Finally we present an evaluation
of our interactive debugging tool and demonstrate its applicability in
practice.

Keywords: Ontologies, Description Logics reasoning.

1 Introduction

Resolving inconsistencies in ontologies is a challenging task for ontology [25]
modellers. Standard Description Logic (DL) [2] reasoning services can check
if an ontology is unsatisfiable (i.e., if there are any unsatisfiable concepts in an
ontology); however, they do not provide support for resolving the unsatisfiability.
The ability to deal with inconsistencies and to evaluate the impact of the possible
modifications are of the utmost importance in real world ontology applications.

Most existing approaches either identify problematic axioms (by providing the
minimally unsatisfiable sub-ontologies) [22] or weaken the target unsatisfiable
∗ This paper is an extended version of [Joey SC Lam et al., A Fine-grained Approach

to Resolving Unsatisfiable Ontologies, In Proc. of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence (WI-2006)]. We extend our previous work
to handle general concept inclusions and cyclic definitions. This work is supported
by the AKT Project (the EPSRC’s grant number GR/N15764).

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 62–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 63

ontology (by providing the possible maximally satisfiable sub-ontologies) [15].
However practical problems remain: it is not clear which axioms or which parts
of axioms should be repaired, nor how to repair those axioms. Let us use an
example to illustrate these limitations.

Example 1. Let us assume that an ontology O contains the following axioms:

α1: A
.= C � ∀R.B � D

α2: C
.= ∃R.¬B � B

α3: G
.= ∀R.(C � F)

It can be shown that the concept A is unsatisfiable, by using standard DL
TBox reasoning. The existing approaches [22,15] either identify the minimally
unsatisfiable sub-ontologies Omin

1 = {α1, α2} or calculate the maximally satis-
fiable sub-ontologies Omax

1 = {α1, α3}, and Omax
2 = {α2, α3}. In short, either

α1 or α2 should be removed from O. However, it is easy to see that we do not
need to remove either the whole of α1 or α2. In order to minimise the loss of
information from the ontology, we should simply remove parts of axiom α1, i.e.,
(a) A � C, or (b) A � ∀R.B, or part of axiom α2, i.e., (c) C � ∃R.¬B, and
then O becomes satisfiable.

Schlobach et al. [22] and Kalyanpur et al. [12] have proposed approaches, which
determine which parts of the asserted axioms are responsible for the unsatisfi-
ability of concepts. We further discuss their work in Section 7. In this paper,
we extend Meyer et al.’s tableaux algorithm [15]. Our algorithm traces which
parts of the axioms are responsible for the unsatisfiability of a concept (this is
a novel way of achieving the same result as [22,12]). Using this algorithm, we
make the following two further contributions. The first is to calculate the lost
entailments of named concepts due to the removal of axioms. Whenever parts
of an axiom are removed, it frequently happens that indirect or implicit entail-
ments are lost. In order to minimise the impact on the ontology, we analyse the
lost entailments of named concepts which occur due to the removal of parts of
axioms. The second contribution is to identify harmful and helpful changes; this
is where the fine-grained tracing information is useful to facilitate rewriting the
problematic axioms, rather than removing them completely. It should be noted
that inappropriately revising a problematic axiom might not resolve the unsatis-
fiability, and could introduce additional unsatisfiable concepts into the ontology.
For this purpose we define harmful and helpful changes with respect to an unsat-
isfiable named concept. A harmful change cannot resolve the problem, or might
cause additional unsatisfiable concepts in the ontology; a helpful change resolves
the problem without causing additional contradictions, and restores some lost
entailments. We believe tools based on such techniques could help users to re-
solve unsatisfiable ontologies. To evaluate this vision, we have created a plugin
in Protégé 3.21. The result of our usability evaluation demonstrate that our ap-
proach helps non-expert ontology users to resolve unsatisfiable ontologies; the

1 http://protege.stanford.edu/

64 J.S.C. Lam et al.

performance results demonstrate that our algorithms provide acceptable perfor-
mance when used with real world ontologies.

The rest of this paper is organised as follows. Section 2 briefly introduces
ontologies and the Description Logic ALC. Section 3 presents our fine-grained
approach to pinpointing problematic parts of axioms. The impact of removing
axioms is described in Section 4. The methods for identifying harmful and helpful
changes are presented in Section 5. Section 6 presents the evaluation of our im-
plementation. The paper closes with a discussion of related work and conclusion.

2 Ontology and the ALC DL

An ontology formally captures a shared understanding of certain aspects of a
domain: it provides a common vocabulary, including important concepts, prop-
erties and their definitions, and constraints regarding the intended meaning of
the vocabulary, sometimes referred to as background assumptions. Description
Logics (DLs) [1] provide the underpinning of the recent W3C standard Web On-
tology Language OWL DL.2 In this paper, we use the smallest propositionally
closed DL, i.e., the ALC DL [23], to illustrate our approach. The techniques
presented here are general enough to be used as the basis for developing similar
algorithms for more expressive DLs.

An ontology O consists of a set T (TBox) of concepts and role axioms and a
set A (ABox) of individual axioms. As this paper handles satisfiabilities in on-
tologies, we focus on TBox reasoning. As ALC TBox reasoning is not influenced
by ABox reasoning [16,20], without loss of generality, we assume that ontolo-
gies consist only of TBoxes in the rest of the paper. A TBox T consists of a
set of axioms of the form C � D (general concept inclusions, GCIs); C

.= D
(concept equivalence) is an abbreviation of C � D and D � C, where C and
D are (possibly complex) concept descriptions. T is unfoldable iff the left-hand
side of every α ∈ T contains a named concept A, there are no other αs with A
on the left-hand side, and the right-hand side of α contains no direct or indirect
references to A (no cycles). We divide T into an unfoldable part Tu and a general
part Tg, such that Tg = T \ Tu.

An interpretation I = (ΔI , ·I) consists of the domain of the interpretation ΔI

(a non-empty set) and the interpretation function ·I , which maps each concept
name CN ∈ NC to a set CNI ⊆ ΔI and each role name RN ∈ NR to a binary
relation RNI ⊆ ΔI × ΔI . The interpretation function can be extended to give
semantics to concept descriptions (see Table 1). An interpretation I satisfies a
GCI C � D if CI ⊆ DI . An interpretation I satisfies a TBox T if it satisfies
all GCIs in T ; in this case, we say I is an interpretation of T . A TBox T is
consistent if there exists some interpretation that satisfies it. A concept C is
satisfiable w.r.t. T if there exists an interpretation I of T such that CI �= ∅. A
TBox T is satisfiable if all named concepts in T are satisfiable.

2 More precisely, OWL DL is a key language and is a member of the family of the
OWL standard languages, which also include OWL Lite and OWL Full.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 65

Table 1. Semantics of ALC-concepts

Constructor Syntax Semantics

top � ΔI

bottom ⊥ ∅
concept name CN CNI ⊆ ΔI

general negation (C) ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction (U) C � D CI ∪ DI

exists restriction (E) ∃R.C {x ∈ ΔI | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ΔI | ∀y.〈x, y〉 ∈ RI → y ∈ CI}

Note that subsumption can be reduced to satisfiability [1]. If T � C � D,
then in all interpretations I that satisfy T , CI ⊆ DI and so CI ∩ (¬D)I = ∅.
Therefore, T � C � D iff T � ¬(C � ¬D).

3 Approach

In this section, we introduce the extended tableau algorithm from Meyer et
al.[15] (this kind of tracing technique was first proposed by Baader and Hol-
lunder [4]). Instead of removing complete axioms involved in an unsatisfiability,
our algorithm captures the components of axioms responsible for a concept’s
unsatisfiability.

3.1 Extended Tableaux Algorithm

We assume that T = {α1, · · · , αn}, with αi referring to Ci
.= Di or Ci � Di for

i = 1, . . . , n. A tableau-based algorithm decides the satisfiability of a concept Ci

w.r.t. T by trying to construct a representation of a model for it, called a tree
T. The model is an interpretation I in which CIi is non-empty. Each node x
in the tree is labeled with a set L(x) of concept or role elements. The concept
elements are of the form (a : C, I, a′ : C′), where C and C′ are concepts, a and
a′ are individual names, and I is an index-set. This means that the individual
a belongs to concept C due to an application of an expansion rule on a′ : C′.
The set of axioms, which a : C comes from, is recorded in the index-set I. This
is done by adding i to I, which is a set of integers in the range 1, . . . , n. In an
element of the form (a : C, I, a′ : C′) we frequently refer to C as “the concept”,
and a as “the individual”(i.e., we are referring to the first concept assertion).
When a concept element (a : C, I, a′ : C′) exists in the label of a node x, it
represents an interpretation I that satisfies C, i.e., the individual corresponding
to a is in the interpretation of C. That is, if (a : C, −, −) ∈ L(x), then a ∈ CI ,
where “−” stands for any value, that is, it is a place holder. Role elements are
of the form (R(a, b), I, a : ∃R.D), where R is a binary relationship between indi-
vidual a and b; I is the index-set; the third parameter is to record the existence of

66 J.S.C. Lam et al.

R(a, b) due to an application of an expansion rule on a : ∃R.D. That is, if
(R(a, b), −, −) ∈ L(x), then 〈a, b〉 ∈ RI .

3.2 Applications of Expansion Rules

To determine the satisfiability of a concept A in T , the algorithm initialises a
tree T to contain a single node x, called the root node, with L(x) = {(a : A,
∅, nil)}. The tree is then expanded by repeatedly applying a set of expansion
rules which either extend node labels or add new leaf nodes. Our extended set
of expansion rules for the Description Logic ALC is shown in Table 2, where Ai

is a named concept, C, C1, C2, Ci, Di are concept descriptions, R is a role name,
a and b are individuals, RHS(αi) is the concept at the right hand side of αi,
and the signature Sig(αi) of an axiom αi is the set of concept and role names
occurring in αi.

Table 2. Our extended tableaux expansion rules for ALC

U+.= -rule if Ai
.= Ci ∈ Tu, (a : Ai, I,−) ∈ L(x) and (a : Ci, I ∪ {i}, a : Ai) /∈ L(x)

then L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}
U−.= -rule if Ai

.= Ci ∈ Tu, (a : ¬Ai, I, −) ∈ L(x) and (a : ¬Ci, I ∪ {i}, a : ¬Ai) /∈ L(x),
then L(x) := L(x) ∪ {(a : ¬Ci, I ∪ {i}, a : ¬Ai)}

U�-rule if Ai � Ci ∈ Tu, (a : Ai, I,−) ∈ L(x) and (a : Ci, I ∪ {i}, a : Ai) /∈ L(x),
then L(x) := L(x) ∪ {(a : Ci, I ∪ {i}, a : Ai)}

�-rule if (a : C1 � C2, I,−) ∈ L(x), and
{(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)} � L(x),
then L(x) := L(x) ∪ {(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)}

�-rule if (a : C1 � C2, I,−) ∈ L(x), and
{(a : C1, I, a : C1 � C2), (a : C2, I, a : C1 � C2)} ∩ L(x) = ∅,
then create two �-successor y, z of x with:

L(y) := L(x) ∪ {(a : C1, I, a : C1 � C2)}
L(z) := L(x) ∪ {(a : C2, I, a : C1 � C2)}

∃-rule if (a : ∃R.C, I, −) ∈ L(x), a is not blocked (see Section 3.4),
and {(R(a, b), I, a : ∃R.C), (b : C, I, a : ∃R.C)} � L(x),
where b is an individual name not occurring in L(x)
then L(x) := L(x) ∪ {(R(a, b), I, a : ∃R.C), (b : C, I, a : ∃R.C)}

∀-rule if (a : ∀R.C, I, −) ∈ L(a), and (R(a, b), J, a : ∃R.Di) ∈ L(x)
then L(x) := L(x) ∪ {(b : C, I ∪ J, a : ∀R.C)}

�-rule if (Ci � Di) ∈ Tg, and there exists (− : E, −, −) ∈ L(x), Sig(E) ∪ Sig(Ci) �= ∅,
a is not blocked, and (a : ¬Ci � Di, I ∪ {i}, −) /∈ L(x),
for every individual a in the node
then L(x) := L(x) ∪ {(a : ¬Ci � Di, I ∪ {i}, a : C)}

During the expansion, concept descriptions are assumed to be converted to
negation normal form.3 We now explain the expansion rules. The three rules
(U+.= -rule, U−.= -rule and U�-rule) describe the unfolding procedure. Unfolding

3 A concept description is in negation normal form when negations apply only to
concept names, and not to compound terms.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 67

a concept expression is to replace defined names by their definitions, so that
it does not contain names defined in the terminology. These rules are used for
optimisation (also called lazy unfolding) [5]. That means only unfolding concepts
as required by the progress of the satisfiability testing algorithm. The U+.= -rule
and U−.= -rule reflect the symmetry of the equality relation in the non-primitive
definition A

.= C, which is equivalent to A � C and ¬A � ¬C. The U�-rule
on the other hand reflects the asymmetry of the subsumption relation in the
primitive definition A � C.

Disjunctive concept elements (a : C1 C2, −, −) ∈ L(x) result in
non-deterministic expansion. We deal with this non-determinism by creating
two -successors y, z of x with: L(y) := L(x) ∪ {(a : C1, · · ·)}, and L(z) :=
L(x) ∪ {(a : C2, · · ·)}.

For any existential role restriction concept (a : ∃R.C, I, −) ∈ L(x), the algo-
rithm introduces a new individual b as the role filler, and this individual must
satisfy the constraints expressed by the restriction. Thus, b is an individual of C,
and hence (b : C, I, a : ∃R.C) and (R(a, b), I, a : ∃R.C) are added to the label of
the node. A universal role restriction concept (a : ∀R.D, J, −) ∈ L(x) interacts
with already defined role relationships to impose new constraints on individuals.
That is, if (R(a, b), I, a : ∃R.C) exists in L(x), then b is also an individual of D;
new concept elements (b : D, I ∪ J, a : ∀R.D) and (b : C, I ∪ J, a : ∃R.C) are
added to the label.

If there exists a concept C in the signature of the left-hand side of a GCI
axiom (αi ∈ Tg, αi is Ci � Di), and there is an element (a : C, I, −) ∈ L(x), and
the signature of C has common elements with Sig(Ci) then we apply the �-rule
to αi. The newly added element will be (a : ¬Ci Di, I ∪ {i}, a : C). With this
technique we are able to trace which element in the tree invokes the application
of expansion rules on GCI axioms, therefore we can trace how the GCI axioms
cause the concept’s unsatisfiability.

The algorithm repeatedly expands the tree by applying the rules in Table 2 as
many times as possible until either any one of the fully expanded leaf nodes has
no clash or none of the rules is applicable to any node of the tree. A node is fully
expanded when none of the rules can be applied to it. T is fully expanded when
all of its leaf nodes are fully expanded. A node x contains an obvious clash when,
for some individual b and some concept C, {(b : C, −, −), (b : ¬C, −, −)} ⊆ L(x).

When a clash is found in a node, the classical tableaux algorithm [4] either
backtracks and selects a different leaf node, or reports the clash and terminates,
if no node remains to be expanded. The main difference is that our algorithm
terminates when either (1) any one of the fully expanded leaf nodes is without
a clash or (2) none of the rules is applicable. Since the rules are still applicable
to a node even when a clash is found, there may be more than one clash in
the node, and furthermore this clash may also occur in other nodes (repeated
nodes). As a result, we can obtain all the clashes in the tree and eliminate the
repeated clashes. If the input of the tableaux algorithm is a concept C and a
terminology T , we have the following property: C is unsatisfiable iff each path
from the root to the leaf node in the tree contains at least one clash. This implies

68 J.S.C. Lam et al.

that an unsatisfiable concept becomes satisfiable if all the clashes in any one of
the paths of the tree are resolved (i.e., a complete path from root to leaf). This is
because whenever the non-deterministic -rule is applied, two new -successor
nodes are created; this is the only way to create the leaf nodes. It is sufficient to
resolve all clashes in either of the two branches created.

3.3 Sequences of a Clash

Figure 1 shows how the tableau algorithm is applied to Example 1 (shown in
Section 1) to check for the satisfiability of A. The tree T contains a root node
x whose label contains a clash because {(b : B, {1, 2}, a : ∀R.B), (b : ¬B, {1, 2},
a : ∃R.¬B)} ⊆ L(x). According to Definition 1, we can obtain two sequences,
Seq+ and Seq−(see Figure 2). Note that the union of the index sets of the first
elements in the sequences of the clashes in the tree gives the set of axioms which
cause A to be unsatisfiable. The above two sequences show that axiom α1 and
α2 cause the unsatisfiability of A.

(1) Initialise the root node x with L(x) := {(a : A, ∅, nil)},

(2) Apply the U+.= -rule to (a : A, ∅, nil),
it gives L(x) := L(x) ∪ {(a : C � ∀R.B � D, {1}, a : A)},

(3) Apply the �-rule twice to (a : C � ∀R.B � D, {1}, · · ·),
it gives L(x) := L(x) ∪ {(a : C � ∀R.B, {1}, a : C � ∀R.B � D),
(a : D, {1}, a : C � ∀R.B � D), (a : C, {1}, a : C � ∀R.B),
(a : ∀R.B, {1}, a : C � ∀R.B)}

(4) Apply the U+.= -rule to (a : C, {1}, · · ·), followed by applying the �-rule,
it gives L(x) := L(x) ∪ {(a : ∃R.¬B � B, {1, 2}, a : C),
(a : ∃R.¬B, {1, 2}, a : ∃R.¬B � B), (a : B, {1, 2}, a : ∃R.¬B � B)},

(5) Apply the ∃-rule to (a : ∃R.¬B, {1, 2}, · · ·),
it gives L(x) := L(x) ∪ {(b : ¬B, {1, 2}, a : ∃R.¬B), (R(a, b), {1, 2}, a : ∃R.¬B)}

(6) Apply the ∀-rule to (a : ∀R.B, {1}, · · ·),
it gives L(x) := L(x) ∪ {(b : B, {1, 2}, a : ∀R.B)}

Fig. 1. The application of expansion rules on A in Example 1

Definition 1 (Sequences of a Clash). Given a clash in a tree, the sequences
of a clash, Seq+ and Seq−, contain elements involved in the clash. The sequences
are of the form 〈(a0 : C0, I0, a1 : C1), (a1 : C1, I1, a2 : C2), · · · , (an−1 : Cn−1,
In, an : Cn), (an : Cn, ∅, nil)〉, where Ii−1 ⊆ Ii for each i = 1, · · · , n. The first
elements of Seq+ and Seq− are of the form (a : C, I ′, a′ : C′) and (a : ¬C, I ′′,
a′′ : C′′) respectively. The last element of both sequences is the same.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 69

(1). Remove (a:C, {1},...)

(2). Matches (a:C, {1},…) (3). Matches (2), but exists in Seq-

(4). Matches (2), does not exist in Seq+ or Seq-

Fig. 2. The fully expanded tree for A in Example 1

Now that clashes in the tree have been found, we want to identify the axioms
which could be removed to resolve the unsatisfiability. We can identify these by
looking at the nodes in the tree which contain clashes. The example in Figure 3
(on the left) shows a tree with six clashes (nodes with clashes are shaded). We
now describe how Reiter’s Hitting Set algorithm [19] can be adapted to make
a general procedure for identifying the sets of clashes to be resolved. Firstly,
for each path from the root to a leaf of the tree, we gather the set of each of
the nodes on that path which has a clash. In our example the following sets
are found: {a, b, d}, {a, b}, {a, c, e}, {a, c, f}. Now, using these sets we apply the
Hitting Set algorithm; the Hitting set Tree is shown in Figure 3 on the right-
hand side. Now for each leaf node n we gather the set En of all edge labels on
the path from the root to that node. The sets thus obtained from each leaf node
are gathered into one large set S. This gives a set with 13 elements; some of
these En ∈ S are subsets of each other; we pick out the minimal sets; i.e., the
sets Ei ∈ S for which there is no Ej ∈ S such that Ej ⊂ Ei. In our example
this gives S = {{a}, {b, c}, {b, e, f}, {b, e, d}}, as desired. The axioms involved in
each clash from the above nodes are actually the same as the notion of minimal
unsatisfiability preserving sub-TBoxes (MUPS) in [22], that is there are four sets
of MUPS in the unsatisfiable concept above.

From each MUPS, we know which axioms cause the unsatisfiability. Further-
more, from the sequences of the clashes, we know which concepts within these
axioms cause the unsatisfiability. We can assign a specific number to each MUPS,
and annotate the problematic concepts in these axioms with a specific superscript
number corresponding to the MUPS which it occurs in. Note that a concept com-
ponent may be involved in more than one MUPS, therefore it may be annotated

70 J.S.C. Lam et al.

{a,b,d}
a

b
d

{a,c,e}
a

c
e

{a,c,f}

{a,c,e}

a c f

{a,b} {a,b}

a c e

a b ba

a c f

{a,c,f}

a

b c

e fd

Fig. 3. Left-hand side: a fully expanded tree with six clashes; right-hand side: hitting
set tree

with more than one number. We introduce the notion of arity of a concept C in
an axiom α, denoted by arity(α, C), to count the number of times it appears in
the clashes. This idea is similar to the core of MUPS in [22]. This means that
removing a concept component with arity n can resolve n clashes. In order to
illustrate the benefit of our fine-grained approach, we add the following axioms
to Example 1:

α4: K
.= C � ∀R.(P � F)

α5: P
.= ∀R.F � B

In this case, concept K is also unsatisfiable due to the existence of a clash in
a node of the tree for K. For simplicity, we do not show the sequences in the
clash. We now annotate the concepts in the axioms which are involved in the
two unsatisfiable concepts with superscript numbers as follows:

α1: A1 .= C1 � ∀R1.B1 � D,
α2: C1,2 .= ∃R1,2.(¬B)1,2 � B,
α3: G

.= ∀R.(C � F)
α4: K2 .= C2 � ∀R2.(P 2 � F)
α5: P 2 .= ∀R.F � B2

From the above, we can easily see which concepts in the axioms cause which
concepts to be unsatisfiable. It is obvious that removing the concept ∃R.¬B in
axiom α2 can resolve two unsatisfiable concepts.

3.4 Refined Blocking

To deal with cyclic axioms, it is necessary to add cycle detection (often called
blocking) to the preconditions of some of the expansion rules in order to guar-
antee termination [3,7]. We use a simple example to describe the necessity of
blocking, by using the classical tableau algorithm:

Example 2. Given an ontology containing a single cyclic axiom, α1: A
.= ∃R.A,

then testing the satisfiability of A leads to:

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 71

1. L(x) := {(a0 : A), (a0 : ∃R.A)}
2. L(x1) := L(x) ∪ {R(a0, a1), (a1 : A), (a1 : ∃R.A)}
3. L(x2) := L(x1) ∪ {R(a1, a2), (a2 : A,), (a2 : ∃R.A)} · · ·

The application of the U+.= -rule leads to (a0 : ∃R.A) being added to L(x), and
the application of the ∃-rule leads to the creation of a new individual a1 with new
elements R(a0, a1), (a1 : A) added into L(x1), the same expansion rules would be
applied and the process would continue indefinitely. Since all individuals a1, a2,
· · · receive the same concept assertions as a0, we may say the algorithm has run
into a cycle. Therefore, blocking is necessary to ensure termination. The general
idea is to stop the expansion of a node whenever the same concept assertions
recur in the node. Blocking imposes a condition on the ∃-rule: in the classical
algorithm, an individual a is blocked by an individual b in a node label L(x)
iff {D|(a : D) ∈ L(x)} ⊆ {D′|(b : D′) ∈ L(x)}. In our example, that would
mean a1 in L(x1) is blocked by a0, because {A, ∃R.A} ⊆ {A, ∃R.A} in the
classical version. Intuitively, it can be seen that termination is now guaranteed
because a finite terminology can only produce a finite number of different concept
expressions and therefore a finite number of different labelling sets; all nodes
must therefore eventually be blocked [9].

Our blocking approach is slightly different from the classical one. We define
the refined blocking condition as follows: the application of the ∃-rule to an
individual a is blocked by b iff {(D, I)|(a : D, I, −) ∈ L(x)} = {(D′, I ′)|(b : D′,
I ′, −) ∈ L(x)}. Informally, the justification for this refinement is the following.
If I is not equal to I ′, then we treat (a : C, I, −) and (a : C, I ′, −) as different
elements; this is because the concept C in the two elements has been introduced
from different axioms. Therefore, we still apply the rules to both (a : C, I, −)
and (a : C, I ′, −) to expand the tree. As a result, in our approach, an individual
a is blocked by b iff each of the elements in L(x) with individual a is exactly
matched with one of the elements in L(x) with individual b, and vice versa; i.e.
these matched elements have the same concept and index-set. In contrast, the
classical tableau algorithm does not take the index-set of axioms into account
when blocking is performed; the elements in the labels of nodes only have one
parameter. The elements (a : C, I, −) and (a : C, I ′, −) will be presented as
(a : C) in the classical one, and therefore only one rule is applied to (a : C) once.

Example 3. This example describes how the refined blocking works:
α1: A � ¬C � D � E � F � ∃R.A
α2: D � C
α3: E � ∀R.C
α4: F � ∀R.∀R.C

We use Example 3 to illustrate why our refined blocking is necessary4. For
simplicity, we do not show the third parameter of the elements in the node
label. Figure 4 shows the fully expanded tree. In step 2, after applying the ∃-
rule on (a : ∃R.A, {1}), we can see that, in L(x1) in the classical algorithm,
4 Note that despite the apparent complexity, this example is the simplest possible to

illustrate the need for our refined blocking.

72 J.S.C. Lam et al.

Clash 1

Clash 2

Clash 3(2)

(1)

(3)

Clash 4

Fig. 4. The fully expanded tree of Example 3

the set of concept elements with b is a subset of the set of concept elements
with a, therefore, individual b is blocked by a. The ∃-rule cannot be applied
on (b : ∃R.A, {1}), so the algorithm would terminate. Three clashes are found
in L(x1); axioms α1, α2 and α3 are all involved in the clashes (cf. Clash 1, 2,
3 in Figure 4). However α4 would be missed out by the classical algorithm,
although it also triggers a clash in our tree. The reason is that the set of concept
elements with a is the same as the set of concept elements with b in the classical
algorithm (i.e., {D|(a : D, −) ∈ L(x1)} = {D|(b : D, −) ∈ L(x1)}); (b : C, {1, 3})
is the same as (b : C, {1, 2}) (cf. (1) in Figure 4), and (b : ∀R.C, {1, 4}) is
the same as (b : ∀R.C, {1, 3}) (cf. (2)). In our approach, these elements are
different. Therefore we still apply the ∀-rule to (b : ∀R.C, {1, 4}) and add a new
element (c : C, {1, 4}) into the node label, which is different from the existing
elements (c : C, {1, 2}) and (c : C, {1, 3}) (cf. (3)). The newly added element
from α4 triggers another clash (cf. Clash 4). Next, we keep applying the ∃-rule
to (c : ∃R.A, {1}) and create a new individual d. Finally, each of the elements in
L(x3) with individual d is exactly matched with one of the elements in L(x3) with
individual c, and vice versa; i.e. these matched elements have the same concept

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 73

and index-set. The individual c is blocked by d, and then the application of the
rules is terminated.

3.5 Complexity, Soundness and Completeness

The differences between our algorithm and the classical one are that (1) when
a clash is detected, the classical algorithm either backtracks and selects a dif-
ferent node, or reports the clash and terminates if no more nodes remain to
be expanded, whereas our algorithm will not do so; it only terminates when
the tree is fully expanded or until blocking occurs, in order to find all pos-
sible clashes. Therefore, the complexity of our algorithm is the same as the
classical one in the worst case [23], as both need to fully expand all nodes;
(2) we add two extra parameters in each of the elements of a node label. The
expansion rules do not depend on these two parameters, and hence they add
only a constant amount to each expansion and do not affect the complexity
and correctness of the original algorithm [4]; (3) our refined blocking condi-
tion is: the application of the ∃-rule to an individual a is blocked by b iff
{(D, I)|(a : D, I, −) ∈ L(x)} = {(D′, I ′)|(b : D′, I ′, −) ∈ L(x)}. The num-
ber of elements with different concept descriptions that can be introduced in
each fully expanded leaf node is finite. Also, for each of concept description C,
there can be only a finite number of elements (a : C, I1, −), (a : C, I2, −),· · · ,
(a : C, In, −) with n bounded by the number of axioms in the ontology. The
algorithm is therefore guaranteed to terminate.

3.6 Removing Clashes

Given an unsatisfiable concept A in T , we can obtain a fully expanded tree
containing a node with at least one clash. For each clash, the sequences of the
clash, Seq+ and Seq−, are obtained as in Definition 1. We can derive the following
lemma:

Lemma 2. Let the first elements of the sequences be (a : C, I ′, −) and (a : ¬C,
I ′′, −), and let the last element of the sequences be (b : A, ∅, nil). We know that
the set of axioms I := I ′ ∪ I ′′ causes A to be unsatisfiable. Let D be the set
of all concepts appearing in the elements of the sequences: removing one of the
concepts in D from one of the axioms in I is sufficient to resolve the clash.

Proof. For any concept picked from D, it must occur in the sequences and have
an adjacent element which is before or after. For any two adjacent elements in
a sequence, e1 and e2, there are only two possibilities:

– e1 and e2 are of the form (a : E1, −, a : E2) and (a : E2, −, −) containing
the same individual, this means the concept E1 is a superconcept of E2. If
E1 (or E2) is removed, the subsumption relationship between E2 and E1 is
removed. Therefore, the individual a no longer belongs to E1 (or E2), nor
does it belong to any of the concepts in the elements preceding the occurrence
of e1 in the sequences. That means the concept of the first element in the

74 J.S.C. Lam et al.

sequence is not subsumed by the removed concept either, hence the clash is
resolved.

– e1 and e2 are of the form (a : E1, −, b : E2) and (b : E2, −, −) containing
different individuals, this means the concept E1 participates in a role rela-
tionship with E2. If E1 or E2 is removed, then the role relationship will be
removed, therefore there will be no such individual a participating in the
role, and all the concepts in the elements preceding the occurrence of e1 will
not be related to a, and hence the clash will be resolved. �

4 Impact of Removing Axioms

After the parts of the axioms causing the unsatisfiability of concept(s) are iden-
tified, the next step is to resolve the unsatisfiability. In this section, we discuss,
with examples, the impact of removing axioms on an ontology.

The simplest way to resolve unsatisfiability is to remove parts of the prob-
lematic axioms or the whole axioms. However, in this case, it will be easy for
ontology modellers to accidentally remove indirect or implicit entailments in the
ontology. We use the following mad cow5 example to explain what we mean by
the impact of removing axioms from an ontology:

Example 4. Given an ontology where Mad Cow is unsatisfiable due to axioms
α1, α3, α4, α5, the concepts and roles tagged with a star (*) are responsible for
the unsatisfiability:

α1: Mad Cow∗ .= ∃ eats∗.((∃part of∗.Sheep∗) � Brain) � Cow∗

α2: (∃part of.Plant Plant) � ¬ (∃part of.Animal Animal)
α3: Cow∗ � Vegetarian∗

α4: Vegetarian∗ .= ∀ eats.(¬ Animal) � Animal � ∀eats∗.(¬∃part of∗.Animal∗)
α5: Sheep∗ � ∀ eats.Grass � Animal∗

α6: Grass � Plant
α7: Giraffe � Vegetarian

When an axiom involved in the unsatisfiability of a concept is changed, we
calculate the impact of removal on the ontology in three ways: (1) the named
concepts involved in the unsatisfiability : These concepts might lose entailments
which are not responsible for the unsatisfiability. To resolve Mad Cow, one may
claim that not all cows are vegetarians if there exist mad cows, therefore, α3
is removed. However, the indirect assertion Mad Cow � Animal � ∀eats.(¬ Ani-
mal) and Cow � Animal � ∀eats.(¬ Animal) will be lost, as we know the Animal
� ∀eats.(¬ Animal) in α4 is not responsible for Mad Cow’s unsatisfiability. Sim-
ilarly, if α4 is removed, the indirect assertion Vegetarian � Animal � ∀eats.(¬
Animal) and the above two assertions will be all lost. (2) the satisfiable concepts
irrelevant to the unsatisfiability: Other named concepts irrelevant to the sat-
isfiability might lose entailments introduced by the axiom to be changed. The
entailments we consider in this case are indirectly asserted in the ontology before
5 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/mad cows.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 75

the change. If the user removes the problematic part ∀eats.(¬∃ part of.Animal)
from α4, then all the subconcepts of Vegetarian will be affected. The indirect
assertion all giraffes only eat something which is not part of an animal inherited
from Vegetarian will be lost. Cow, which is involved in the unsatisfiability, is
not considered here, as the assertion all cows only eat something which is not
part of an animal will still make Mad Cow unsatisfiable; (3) the classification of
the named concepts of the ontology: The satisfiable named concepts might lose
implicit subsumption relations due to the change of axioms. We run classifica-
tion on the example, and find that Sheep is subsumed implicitly by Vegetarian
due to axioms α2, α4, α5, α6. The change of α4 might also remove the inferred
subsumption between Sheep and Vegetarian.

We now deal with each of the above three cases.

4.1 Impact on Named Concepts Involved in the Unsatisfiability

We first describe how to calculate the impact of the removal of parts of axioms on
the concepts involved in the unsatisfiability. In the following we use an example
to explain how to find entailments, which are not responsible for the concept
unsatisfiability in the ontology, by analysing the sequences of the clashes of an
unsatisfiable concept.

Our idea is to search for any element which exists in the fully expanded tree
but not in the sequences of the clashes. In Example 1, if C in axiom α1 is going
to be removed, then we have to calculate the lost entailments of A which are not
responsible for A’s unsatisfiability. Figure 2 shows the nodes and the sequences
of the clash in A. We find that (a : C, {1}, a : ∀R.B) exists in Seq− (cf. 1 in
Figure 2). We search for elements in the tree whose second concept assertion is
a : C, but which do not exist in Seq− or Seq+. (a : ∃R.¬B � B, {1, 2}, a : C)
matches a : C but exists in Seq− (cf. 2), so we keep searching for other elements
whose second concept assertion is a : ∃R.¬B � B. The matched elements are
(a : ∃R.¬B, {1, 2}, a : ∃R.¬B �B) which exists in Seq− (cf. 3) and (a : B, {1, 2},
a : ∃R.¬B � B) (cf. 4) which does not exist in Seq− or Seq+, and has the same
individual as (a : A, ∅, nil). This means, B is a superconcept of A, and hence,
the lost entailment is A � B.

Assume that A is an unsatisfiable concept, and αi is involved in its unsat-
isfiability, and there exists a clash in node x in the fully expanded tree. When
a concept C in αi is to be removed, we can calculate the lost entailments of A
with the algorithm shown in Figure 5.

4.2 Impact on Satisfiable Concepts Irrelevant to the Unsatisfiability

We now describe how to calculate the impact on named concepts irrelevant
to the unsatisfiability. Note that when a concept is unsatisfiable, it is trivially a
subconcept of all satisfiable concepts and equivalent to all unsatisfiable concepts.
If an axiom C � D is removed, any named concept in other axioms, which refers
to C, will lose entailments introduced by this axiom. In general we lose X � Y
where X is a subconcept of C and Y is a superconcept of D. Continuing the

76 J.S.C. Lam et al.

Given: an unsatisfiable A, the sequences of Seq+, Seq− of a clash,
the label of node x is L(x), and C is to be removed from αi

1. let a be the individual of the last element of the Seq+;
2. setEle := {}; lostEnt := {};
3. roleSeq := 〈〉;
4. ele := SearchSequence((− : C, −, −), Seq+), where ele = (a′ : C, −, −)

//search for the element in the sequence whose first concept is C
5. if (ele != null) then Seq := Seq+;
6. else ele := SearchSequences ((− : C, −, −), Seq−), where ele = (a′ : C, −, −)
7. Seq := Seq−;
8. S := SearchElement((−, −, a′ : C), L(x), setEle)
9. for each ε ∈ S , where ε = (a1 : D1, −,−)
10. if (a = a1), then lostEnt := lostEnt ∪ {A � D1};
11. else roleSeq := SearchRoleSeq ((a′ : C, −, −), Seq, roleSeq, a1);
12. lostEnt := lostEnt ∪ {createSubsumption (A, roleSeq,D1)};

//createSubsumption creates a subsumption relationship for A,
//e.g., if roleSeq = 〈∀R, ∃R〉, then A � ∀R.(∃R.D1) is created.

13. return lostEnt;

14. subroutine: SearchElement((−, −, a′ : C), L(x), setEle)
15. S := search((−, −, a′ : C), L(x));

//search for elements in L(x) whose second concept is C
16. for each ε ∈ S , where ε = (b : D1, −, a′ : C)
17. if ε exists in Seq+ or Seq−, then
18. setEle := setEle ∪ SearchElement((−, −, b : D1), L(x), setEle)
19. else setEle := setEle ∪ {ε};
20. end for
21. return setEle;

22. subroutine: SearchRoleSeq((a′ : C, −, −), Seq, roleSeq, a1)
23. ε := searchSuccessor ((a′ : C, −, −), Seq), where ε = (a′ : −, −, b : E), a′ �= b

//search for the first element succeeding (a′ : C,-,-)
//in the Seq with different individuals

24. if (ε = null), then
25. ε := searchPredecessor ((a′ : C, −, −), Seq), where ε = (b : E, −, a′ : −), a′ �= b

//search for the first element preceding (a′ : C,-,-)
//in the Seq with different individuals

26. if E of the form ∀R.−, then
27. roleSeq := roleSeq · 〈∀R〉; // · means to append an element to a sequence
28. else roleSeq := roleSeq · 〈∃R〉;
29. if (a1 = b), then return roleSeq;
30. else return SearchRoleSeq ((b : E, −, −), Seq, roleSeq, a1);

Fig. 5. Algorithm for Finding Lost Entailments

mad cow example, when the problematic part ∀ eats.(¬∃ part of.Animal) from α4
is removed, all the subconcepts of Vegetarian which are not responsible for the
unsatisfiability will be affected. It is obvious that the lost entailment of Giraffe
is Giraffe � ∀ eats.(¬∃ part of.Animal).

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 77

For those named concepts which refer to a concept to be removed not just
via subsumption relations, the lost entailments cannot be as easily obtained as
above. For the mad cow example, if α4 is changed to be Vegetarian .= ∀eats.Plant
� Animal � ∀eats.(¬∃part of.⊥), then we cannot say the lost entailment is Veg-
etarian � ∀eats.(¬∃part of.Animal), because the definition of Vegetarian still im-
plies that it only eats part of anything, which includes ¬Animal.

The lost entailment of such concepts can be computed by calculating the
difference between the original and modified concepts. To do this we adapt the
notion of the “difference” operator between concepts which is defined in [24].
The difference between C and C′ (1) contains enough information to yield the
information in C if added to C′, i.e., it contains all information from C which
is missing in C′, and (2) is maximally general, i.e., it does not contain any
additional unnecessary information.

Definition 3 (Difference of Concepts). Let C and C′ be the original and
modified concept expressions, the difference between C and C′, which is a set of
concepts, is defined as

difference(C, C′) =

{
max�{E|E .= C ¬C′} if C � C′,
max�{E|E .= C′ ¬C} if C′ � C

For Example 1, if concept ∃R.¬B in axiom α2 is removed, then the modified
axiom becomes C � B. As α3 refers to C, the lost entailment of G will be
∀R.(∃R.¬B �B �F)¬∀R.(B �F), i.e., ∀R.(∃R.¬B)¬∀R.(B �F). The disad-
vantage of this calculation is that the representation of lost entailments could be
too complicated for human users to understand, the simplification of such repre-
sentations is therefore necessary. Brandt et al. [6] introduced a syntax-oriented
difference operator, but the algorithm only supports the difference between an
ALC- and an ALE-concept description. As ALE does not support disjunction
concepts, their difference operator is not applicable to our approach. In the fu-
ture work, the approaches to updating of DLs [14,8] can be borrowed.

4.3 Impact on the Classification

Besides deciding the satisfiability of concept expressions, description logic rea-
soners are able to compute the classification of an ontology. Classification is the
process of determining the subsumption relationship between any two named
concepts in an ontology; e.g., for A and B, it determines whether A � B and/or
B � A. Recall that reasoners decide subsumption relationships by reducing the
problem to a satisfiability test (i.e., A � ¬B is unsatisfiable if A � B holds).
Whenever an axiom is changed, the classification of the ontology might be af-
fected. In this paper we aim to point out to the user which parts of the clas-
sification will be affected if a certain change is made to the ontology. If the
classification of the entire ontology must be checked after each change, then it
will involve n2 subsumption tests for n named concepts; moreover, each sub-
sumption test (checking for satisfiability in ALC w.r.t general inclusion axioms)

78 J.S.C. Lam et al.

is EXPTIME-complete [23]. It is impractical to run this classification test after
each change made to the ontology. In this section, we will describe how we make
use of the sequences of clashes (satisfiability test) to check if existing subsump-
tion relations will be affected. If it is not affected, the subsumption test can be
skipped.

Due to the monotonicity of the DLs we consider in this paper, removal of (part
of) axioms cannot add new entailments, and will not change any previous non-
subsumption relationships. Therefore, we only need to re-check if the removal
of axioms will invalidate the previously found subsumption relationships. By
building a tree with the application of the expansion rules on A � ¬B, we can
obtain the sequences of the clashes. The elements in the sequences are the cause
of the unsatisfiability, that is the subsumption relationship. With the sequences
of clashes in the tree, we can analyse if a certain removal/change of (part of)
an axiom will affect the current subsumption relation. Therefore, we are able to
predict which subsumption relationships of named concepts will be affected, and
skip the subsumption tests for the unaffected named concepts.

We check if a concept component of an axiom which is going to be removed
will affect the previously found subsumption as follows:

Lemma 4. Given a terminology T such that T � A � B, where A and B are
named concepts, and a fully expanded tree T of A�¬B, the sequences of clashes
in the tree are obtained. Let Iu be the union of the index-set of the first element
in all of the sequences. Assume that a concept component C in αi is going to be
removed, where αi ∈ T , the subsumption A � B is unaffected if either one of
the following conditions hold:

1. i /∈ Iu, αi is not invovled in the unsatisfiability,
2. (− : C, I, −) and (− : C′, I, −) do not exist in any sequences of clashes where

i ∈ I, i ∈ Iu and C′ is a negated form of C

Proof. The sequences of the clashes in T contain the concept components and
sets of axioms which are relevant to the subsumption.

1. If an axiom αi going to be changed does not exist in the index-set of any
sequence of the clashes, i.e., i /∈ Iu, then αi is not involved in the unsatisfi-
ability, any change of αi does not affect the subsumption.

2. If αi is involved in the unsatisfiability (i.e., i ∈ Iu), but (− : C, I, −) and
(− : C′, I, −), where i ∈ I, do not appear in any sequences of clashes,
then they are not responsible for the clashes in the tree, and therefore not
responsible for the subsumption. Since B is negated for the satisfiability test
(A � ¬B), we need to check the negated form of C as well. �

We use the following example to illustrate how we make use of the sequences of
clashes (satisfiability test between two named concepts) to detect if some change
will affect a subsumption.

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 79

Clash
to be removed, not exists in Seq- or Seq+

Fig. 6. Subsumption Test on B � A

Example 5. Given a terminology with the following axioms, we check if B � A.

α1: A
.= D

α2: B
.= E � F

α3: E � D

As seen in Figure 6, B � A holds, because a clash exists in the label of the root
node, and so B � ¬A is unsatisfiable. Assume the concept component F in α2 is
to be removed, we know that B � A still holds, because (a : F, {2}, −) does not
exist in either of the sequences of the clash.

5 Harmful and Helpful Changes

In this section we study ways of changing problematic axioms to resolve un-
satisfiability. It should be noted that improperly rewriting a problematic axiom
might not resolve the unsatisfiability, and could introduce additional unsatisfia-
bility. It is important to help ontology modellers to make changes in order not
to introduce unintended contradictions. For this purpose, we define harmful and
helpful changes. Harmful changes either fail to resolve the existing unsatisfiabil-
ity or introduce additional unsatisfiability. Helpful changes resolve the problem
without causing additional contradictions, and restore some lost entailments.

5.1 Harmful Changes

Given an unsatisfiable concept A in T , assume a concept E on the right-hand
side of a problematic axiom αi is chosen to be replaced by some other concept.
We can find the harmful concepts for the replacement of E by analysing the
elements in the sequences of the clashes of concept A.

Definition 5 (Harmful Change). A change which transforms T to T ′ is
harmful with respect to an unsatisfiable concept A in T , if one of the follow-
ing conditions holds:

– T ′ � A � ⊥, where T ′ is the changed ontology;
– if some named concept Ai which is satisfiable in T is not satisfiable in T ′.

That is, T � Ai � ⊥ and T ′ � Ai � ⊥, for some Ai in T .

80 J.S.C. Lam et al.

The following lemma identifies the changes which are harmful due to the fact
that they fail to resolve the existing unsatisfiability. To identify other harmful
changes (which introduce additional unsatisfiability unrelated to the original
problem), the whole ontology may have to be rechecked.

Lemma 6. Assume a concept C on the right-hand of axiom αi is to be rewrit-
ten. Given two sequences of a clash, Seq+ and Seq−, involving C, if one of the
elements, ε, in Seq+, is of the form (a : C, I, −) and i ∈ I, then

1. All the concepts in the elements in Seq+ preceding (a : C, I, −), which contain
the same individual as ε, are harmful for replacing C;

2. The negation of all the concepts in elements in Seq−, which contain the same
individual as ε, are also harmful, because these replacements still keep the
unsatisfiability.

The lemma is analogous for the element ε in Seq−.

Proof. Assume that a concept C in axiom αi is to be rewritten, and two se-
quences of a clash, Seq+ and Seq−, involving C, are obtained from a node of the
tree T. In a sequence, for every two adjacent elements, ε1 and ε2, which are of
the form (a : E1, −, a : E2) and (a : E2, −, −), containing the same individual,
the concept E1 is a superconcept of E2. This extends inductively to all elements
preceding ε1, i.e., they are all superconcepts of E2.

1. If an element ε in Seq+, which is of the form (a : C, I, −) and i ∈ I, then the
concepts in all the elements, which are preceding ε and contain individual a,
are harmful for replacing C. This is because they are superconcepts which
are involved in the clash.

2. The elements in Seq− lead to a negated concept, which results in a contra-
diction. Hence, the negation of all the concepts in elements in Seq−, which
contain the same individual a, are also harmful. �

In Example 1, if C in axiom α1 is going to be replaced, we know that there
exists an element (a : C, {1}, a : C � ∀R.B) in Seq− of the clash, then the
harmful concepts for the replacements will be ∃R.¬B � B, ∃R.¬B, ¬(∀R.B),
¬(C � ∀R.B), ¬(C � ∀R.B � D), and ¬A. The first two items are from Seq−,
the rest are from negated elements in Seq+.

5.2 Helpful Changes

If we know which concepts are harmful to replace a concept in a problematic
axiom, then all the concepts which are not harmful are candidates for replace-
ment. However, there are many possible candidates. Our aim is to find desirable
concepts for replacement in order to minimise the impact of changes. To do this
we introduce helpful changes which cover for the lost entailments due to the
removal. When an axiom A � C in T is changed to be A � C′ (where A is a
named concept), this change is helpful if (1) C′ can compensate for at least one
lost entailment due to the removal of C, (2) the changes are not harmful, that

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 81

means all concepts which are satisfiable in T are also satisfiable in the changed
ontology. Note that we only change concepts in the right-hand side of axioms.
We now formally define a helpful change.

Definition 7 (Helpful Change). A helpful change is defined as the removal
of an axiom followed by an addition. Assume that T is the original ontology
and an axiom α in T involved in the unsatisfiability of concept A is going to be
removed, resulting in intermediate ontology T1. A new axiom is then added to
T1, resulting in the changed ontology T ′. The change is helpful with respect to
A, if the following conditions hold:

1. if Ω is the set of lost entailments in going from T to T1 (i.e., due to the
removal of α), such that ∀γ ∈ Ω, T � γ, then there exists β ∈ Ω, such that
T1 � β and T ′ � β;

2. T ′ � A � ⊥.

Lemma 8. Assume C on the right-hand side of a problematic axiom (involved
in the unsatisfiability of A) is going to be replaced by C′, the change is helpful if
C′ is a superconcept of C and is not involved in the clash of A.

Proof. It is obvious that any concept which is not involved in the clash is not
harmful as a replacement for C. We now prove its superconcepts are helpful.
Given that in an axiom α : E � C in T , concept C is going to be replaced by
its superconcept C′. We divide the change into two steps:

1. Remove C from α, the changed ontology T1 = T \ {E � C};
2. Add C′ to α, the final ontology T ′ = T1 ∪ {E � C′}.

As C′ is a superconcept of C, E � C is removed in T1, so the indirect sub-
sumption relationships of A with C’s superconcepts are also lost, that means
T1 � E � C′, but obviously, T ′ � E � C′. �

Lemma 9. Given two sequences of a clash w.r.t the unsatisfiability of A ob-
tained from a fully expanded tree T, assume a concept C on the right-hand side
of axiom αi is to be rewritten. C′ is helpful as a replacement for C, if the fol-
lowing conditions hold:

1. there exist two elements e and e′ in T, which are (a : C, I, −) and (a :
C′, I ′, −), and no element of the form (a : C′, I ′, −) exists in either of the
two sequences;

2. I ⊂ I ′, the index-set of the element with concept C is a proper subset of that
of the element with concept C′.

Proof. We have to prove that (1) C′ is a superconcept of C, this is a sufficient
condition to ensure that the first requirement for helpfulness is met; and (2) C′

is not involved in the clash.

82 J.S.C. Lam et al.

1. If elements e and e′ in T contain the same individual, then they have a
subsumption relationship (i.e., C is either a subconcept or superconcept of
C′). Additionally, if the index-set of the element e is a proper subset of the
index-set of the element e′, then that means e′ is added to L(x) after the
addition of e (i.e., the addition of e′ is triggered by e). Then we can confirm
that C′ is a superconcept of C.

2. If an element, which is of the form (a : C′, −, −), exists in T, but not in
either of the two sequences, then C′ is not involved in the clash. �

Continuing with Example 1, assume C in axiom α1 is going to be replaced,
there exists an element (a : C, {1}, a : C�∀R.B) in Seq− of the clash (see Figure
2), we find that the two elements (a : D, {1}, · · ·) and (a : B, {1, 2}, · · ·) do not
exist in either of the sequences of the clash. However, the former element does
not fulfill condition (2) in Lemma 9, because the index set of (a : C, {1}, · · ·) is
not a proper subset of (a : D, {1}, · · ·). Hence, the only helpful concept for the
replacement is the concept of the latter element, B, because B is a superconcept
of A, but D is not.

Overall, the helpful changes include the replacements of a concept by its
superconcepts not involved in any clash (see Lemma 9), and the lost entailments
irrelevant to the unsatisfiability of the ontology (see Section 4). These changes
are suggested to the user to add back to the ontology in order to minimise the
impact of changes.

6 Evaluation

To demonstrate the effectiveness of our proposed approach, we have built a
prototype. The implementation extends the Pellet61.3 reasoner to support our
fine-grained approach. In this section we describe a usability evaluation to evalu-
ate the benefits of our approach; the result is compared with existing debugging
tools. Next, we present the performance evaluation of our prototype using a set
of satisfiability tests and comparing it with an existing DL reasoner.

6.1 Usability Evaluation

We created a plugin in Protégé 3.2 for repairing ontologies, called ‘RepairTab’.
Figure 7 shows our plugin displaying the problematic axioms of mad cow, which
is an unsatisfiable concept from the Mad Cow ontology7. As can be seen, the
parts of axioms responsible for the unsatisfiability are highlighted. The parts of
axioms or whole axioms can be removed by striking out (cf. (A) in Figure 7). If
the user decides to remove vegetarian from the axiom cow � vegetarian, the lost
entailments of this removal can be previewed. The harmful and helpful changes
are also listed. The user can choose to add the helpful changes to the ontology
to minimise the impact of the removal (cf. (B)).
6 http://www.mindswap.org/2003/pellet/
7 http://cohse.semanticweb.org/ontologies/people.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 83

A

B
Remove Vegetarian

from axiom (1) Preview Impact
of Removal

Fig. 7. (A) mad cow is unsatisfiable. The problematic parts of the axioms are high-
lighted. (B) The lost entailments of the selected item can be previewed. The helpful
and harmful changes are listed.

For the purpose of evaluation, we decided to compare RepairTab with OWLDe-
bugger8 and SWOOP9. OWLDebugger is another Protégé plugin, which provides
explanations for unsatisfiable concepts. SWOOP is a stand-alone editor. We are
interested in two main functionalities in SWOOP [12]: (1) explanations of unsat-
isfiability – it pinpoints the problematic axioms for unsatisfiable concepts, and is
able to strike out irrelevant parts of axioms that do not contribute to the unsatisfi-
ability; (2) ontology repair service – it displays the impact on ontologies due to the
removal of axioms. When an axiom is removed, it shows the fixed and remaining
unsatisfiable concepts, as well as the lost and retained entailments.

We conducted a usability-study with three ontologies and three groups of
subjects. Fifteen subjects, who were postgraduate students in the Computing
Science Department at the University of Aberdeen, were chosen for the eval-
uation. They had knowledge of OWL ontologies and Description Logics; they
had experience of using both Protégé and SWOOP. None of the subjects had
seen these ontologies before, and they were divided into three groups to debug

8 http://www.co-ode.org/downloads/owldebugger/
9 http://www.mindswap.org/2004/SWOOP/

84 J.S.C. Lam et al.

the same set of ontologies using one of these tools. Ideally, ontologies in our
evaluation would fulfill the following conditions:

1. the expressivity of ontologies is in ALC;
2. they should be interestingly axiomatised, i.e., containing axioms like dis-

jointness, role restrictions, concept definitions, and so on, and should not be
simply taxonomies;

3. the domain of the ontologies can be easily understood by subjects.
4. they are available on the Web and contain unsatisfiable concepts which could

be difficult for non-expert users to debug.

The Mad Cow10, Bad-food.owl11 and University.owl12 ontologies available
on the Web meet the requirements and were chosen for evaluation. Both the
Mad Cow.owl and Bad-food.owl ontologies each contain one unsatisfiable con-
cept. University.owl was simplified into ALC format, and it contains 12 unsatis-
fiable concepts which were sorted based on the number and size of the MUPSs
of the concepts. Our hypotheses for this usability study were:

1. The explanation function of RepairTab, which highlights parts of the axioms
causing the unsatisfiability, helps users resolve the unsatisfiability. This is a
relative advantage of RepairTab when compared with OWLDebugger and
SWOOP.

2. The subjects using RepairTab will take less time to understand the source
of errors and resolve them, compared with OWLDebugger and SWOOP.

3. RepairTab’s list of lost entailments helps subjects decide which change(s)
should be made in order to minimise the impact on the ontologies.

4. RepairTab’s list of helpful changes provides useful (as rated by subjects)
suggestions for subjects to add axioms back to the ontologies in order to
minimise the impact of the changes on the ontologies.

5. RepairTab’s list of harmful changes provides useful (as rated by subjects)
guidance for subjects about which changes should not be made in order to
prevent more unsatisfiable concepts being created.

The usability study was conducted as follows. Each subject was given a tutorial
on the debugger they would use. A detailed walkthrough of the relevant expla-
nation and debugging functions was given using a sample ontology. Groups A,
B and C were assigned to RepairTab, OWLDebugger and SWOOP respectively.
Each group was to resolve all unsatisfiable concepts in the three ontologies using
their respective tools.

The subjects in the three groups were asked to answer a survey. For each task,
they were asked if they understood the cause of the unsatisfiable concepts, which
axioms were changed, and how many changes were made etc. At the end of the
session, they were also asked to rate the usefulness of the tool used on a 5 point
scale where 5 is ‘very useful’ and 1 corresponds to ‘useless’. For Group A, the
10 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/mad cows.owl
11 http://www.mindswap.org/dav/ontologies/commonsense/food/foodswap.owl
12 http://www.mindswap.org/ontologies/debugging/university.owl

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 85

subjects were also asked how useful the lost entailments, helpful and harmful
changes facilities were, and how many helpful changes they had selected to add
back to the three ontologies. For Group C, the subjects were also asked about the
usefulness of the explanation and repairing functionalities provided by SWOOP.
In addition, we also asked the subjects for their comments on the tool used,
and how it could be improved. The time taken by each subject for resolving the
unsatisfiability in each ontology was recorded. The modified ontologies were also
recorded for analysis by the experimenter.

6.2 Analysis of Results

Table 3 shows the results for the three tools used by the subjects. We took the
average of the times for each group to complete the tasks. As some tools do
not provide certain functionalities, those ratings are not included in the table.
As can be seen from the Table 3, firstly, the explanation function (i.e. high-
lighting the problematic parts of axioms) of RepairTab was rated to be more
useful than SWOOP and OWLDebugger in two examples, but less useful on the
Bad-food.owl ontology compared with OWLDebugger. Secondly, the subjects in
Group A took less time to resolve the unsatisfiability than Group B; Group C
had similar performance with Group A. Therefore, we cannot verify the first
and second hypothesis currently. Both the lost entailments and helpful changes
were rated to be useful overall, the ratings were in agreement with the third
and fourth hypotheses. However, the harmful changes are less useful relatively,
therefore the final hypothesis was falsified. We now analyse their performance
for each ontology.

Table 3. Results of Debugging ontologies (A = RepairTab, B = OWLDebugger, C =
SWOOP)

Mad Cow Bad-food University
Group A B C A B C A B C
Average Time Taken (in mins) 5 8.8 6.9 6.4 6.8 6.0 10.2 16.3 11.5
No. of subjects who understood the errors 5/5 4/5 3/5 3/5 2/5 3/5 0/5 0/5 0/5
Rating of Explanation Function 5 4 2.6 3.5 4.5 3.5 5 4 2.6
Rating of Lost & Retained Entailments
(SWOOP)

- - 3 - - 4 - - 5

Rating of Fixed & Remaining Unsat. Concepts
(SWOOP)

- - 3 - - 3 - - 5

Rating of Lost Entailments (RepairTab) 5 - - 4 - - 5 - -
Rating of Helpful Changes (RepairTab) 5 - - 4 - - 4 - -
Rating of Harmful Changes (RepairTab) 4 - - 2.5 - - 2.5 - -

For Mad Cow.owl, more subjects using RepairTab understood the errors in
Mad cow.owl than those using OWLDebugger or SWOOP. It is suggested this is
because the problematic axioms of mad cow were highlighted by RepairTab, and
so the subjects understood the error quickly. However, it is difficult to resolve

86 J.S.C. Lam et al.

the problem correctly. The subjects in Group A usually resolved the error by
removing part of an axiom and then adding the helpful changes suggested by
the plugin; the subjects in Group B had to explore changes to the definitions of
concepts or add extra subconcepts for cow (e.g., to have Normal Cow as a sibling
of mad cow), some also triggered additional unsatisfiable concepts. Two subjects
in Group C failed to understand the cause of unsatisfiable mad cow, because some
irrelevant parts of axioms were not struck out, this led the subjects to think that
the irrelevant parts were responsible for the unsatisfiability.

In the case of Bad-food.owl, we report two issues. Firstly, the times taken
for this ontology were similar in all three tools; the subjects in Group B took
relatively less time to debug this ontology than when they were debugging
Mad Cow.owl. Secondly, the explanation function of OWLDebugger was rated
to be more useful than RepairTab or SWOOP. The following is our explanation
for this observation. OWLDebugger explains the error was due to the disjoint
axiom, when in fact all the axioms referring to this disjoint axiom are also caus-
ing the problem. As a result of OWLDebugger’s recommendation most subjects
immediately chose to remove this axiom without understanding the cause of
the unsatisfiable concept; if they understood the precise reason they could in-
stead have altered one component of an axiom referring to the disjoint axiom.
Our plugin facilitates these fine-grained changes. However, it is not without its
shortcomings: two subjects found it difficult to analyse the problematic axioms
which were presented in the formal DL notation. This problem was pronounced
with Bad-food.owl because the axioms are relatively complicated. Furthermore,
the fine-grained approach was not applicable because all parts of the axioms are
relevant to the unsatisfiability, and hence all were highlighted in red. This ex-
planation given for this example is similar in SWOOP. As a result, the subjects
using RepairTab or SWOOP found it difficult to understand the reason for the
unsatisfiability and to decide which changes should be made.

For the University.owl, we report two issues. Firstly, the rating of useful-
ness of the explanation in RepairTab and OWLDebugger is higher than that of
SWOOP. This is because, for the unsatisfiable concept Person, SWOOP strikes
out the whole right-hand side of a problematic axiom; some subjects thought
that the explanation was confusing. Secondly, the subjects using RepairTab and
SWOOP took less time to complete the task than those using OWLDebugger.
We suggest the following reasons: (1) RepairTab sorted the twelve unsatisfiable
concepts in order of size of problematic axioms. The subjects were guided to
debug the concept with the least problematic axioms first. SWOOP highlights
the root and derived unsatisfiable concepts. When a concept was resolved, most
of its subconcepts were resolved as well. However, the subjects in Group B had
to explore each unsatisfiable concept one by one. (2) RepairTab and SWOOP
provide previews of the impact of removal, but OWLDebugger does not. We no-
ticed that two subjects in Group B removed the disjoint axioms which caused the
problems. This removal causes many lost entailments, but the subjects did not
realise this. On the other hand, the subjects in Group A or C were discouraged
from this type of removal because they previewed the impact of removal. Three

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 87

subjects in Group A also changed their minds after exploring the consequences
of different modifications (i.e., after seeing many lost entailments or more help-
ful changes provided). Helpful changes were usually added back to the ontology.
The subjects in Group C tried to remove some axioms and preview the impact
of the removal on the ontology. Some subjects chose to remove axioms which
caused fewer lost entailments and more retained entailments. However, there is
no functionality to add the lost entailments back to the ontology in SWOOP.
In some cases, the displayed lost entailment is exactly the same as the axiom
just removed by the subjects. Therefore, in comparison, RepairTab is able to
minimise the impact on the ontologies in the case of removing parts of axioms,
by providing helpful changes facility.

Interestingly, we found that some subjects claimed they understood the rea-
sons for the unsatisfiability, but they simply deleted disjoint axioms or subclass-of
relationships, particularly in University.owl. Therefore, we classified these sub-
jects as not understanding the errors. We believe this ontology, which contains
one of the most common OWL modelling errors, is very difficult for the subjects.
In the case of Person in University.owl, none of the subjects realised that FrenchU-
niversity .= ∀ offerCourse.Frenchcourse, the domain of offersCourse is University,
FrenchUniversity is a subclass of University, therefore, University is defined as
equivalent to owl.Thing implicitly, then Person which is disjoint with owl:Thing is
unsatisfiable. Two subjects using SWOOP did not realise that SWOOP displays
the implicit axiom University .= owl:Thing, they removed the domain or disjoint
axiom to resolve the problem. However, when some subjects in Group A were
exploring the removal of FrenchUniversity .= ∀ offerCourse.Frenchcourse, they
discovered that a helpful change FrenchUniversity � ∀ offerCourse.Frenchcourse
could be added back to the ontology, and they decided to make this change.

6.3 Overall Comments and Summary

We learnt some useful lessons based on the results of the study and the comments
given by the subjects.

Group A – RepairTab. The subjects using RepairTab appreciated that the
problematic parts of axioms are highlighted, this helped them to analyse the
cause of errors. For the impact of change, for those subjects who understood the
problems but had no idea what changes should be made, the impact of removal
and suggested changes were rated to be very useful. On the other hand, for those
subjects who already had an idea what changes should be made, the suggestions
of changes were less useful; for example, if a subject wants to make complex
changes, such as changing role restrictions or creating new concepts; our plugin
does not support these changes. Also, the list of harmful changes was rated as 3
on average. This is because the subjects who understood the causes of problems,
already knew what changes should not be made.

The overall comments on our plugin were that it is useful for resolving incon-
sistencies, but that the presentation of problematic axioms could be more user
friendly, such as using natural language. Two subjects thought the presentation

88 J.S.C. Lam et al.

of problematic axioms was too formal;they took longer to analyse the meaning
of those axioms. For example, Protégé presents disjoint concepts in a ‘Disjoints’
table, but a disjoint axiom is presented in our plugin as ‘C � ¬D’.

Group B – OWLDebugger. Most subjects thought the plugin was useful
because it indicated which conditions contradict with each other; the clash in-
formation was also shown in quasi-natural language. Debugging steps were pro-
vided to suggest which concepts should be debugged. For example, subjects were
pointed to debug CS Student when the concept AIStudent was chosen to be de-
bugged. However, sometimes it was not helpful because the explanation of the
unsatisfiable concept was oversimplistic when the cause of the unsatisfiability
was too complex to explain.

Group C – SWOOP. (i) Explanation Function: Two subjects thought the
function was confusing, because in some cases, it does not strike out all of the
irrelevant parts (mad cow in Mad Cow.owl is an example), sometimes, it strikes
out the relevant parts of axioms. Person in University.owl is an example, in which
the whole right-hand side of an axiom was struck out, this misled the subjects
to think that the problematic axiom was not responsible for the unsatisfiability.
This is because the implementation in the latest version of SWOOP 2.3 Beta 3
is incomplete with respect to the published algorithm [12]. Thus, this function
only works in a few cases in our study.
(ii) Repairing Function: Most subjects thought the tool was useful because (1) it
separates the root and derived unsatisfiable concepts, so that they can focus on
only debugging the root ones; (2) it enables the user to try removing differ-
ent axioms and preview the impact of removal before committing the change;
(3) it displays the lost and retained entailments when axioms are removed. Ad-
ditionally, in some cases, the tool provides (Why?) hyperlinks which explain why
entailments are lost and retained. However, there is no explanation for the fixed
and remaining unsatisfiable concepts.

However, two subjects thought that SWOOP’s repair service is limited to
the removal of the whole axioms, rather than changing certain parts of axioms.
Removing whole axioms will unnecessarily cause additional information loss. For
the Mad Cow.owl example, one subject claimed the definition of mad cow was
modelled poorly. If the definition axiom of mad cow is completely removed, then
all information about mad cow will be lost. This is not a desired change for the
subject, though the ontology becomes satisfiable.

6.4 Performance Analysis

The non-determinism in the expansion rule (i.e., -rule) results in poor per-
formance of the tableau algorithm. Existing DL reasoners employ optimisation
techniques. They have demonstrated that even with expressive DLs, highly op-
timised implementations can provide acceptable performance in realistic DL ap-
plications. For example, dependency directed backtracking is used to prune the
search tree [9]. However, in our fine-grained approach, these techniques are no
longer applicable, as we aim to detect all possible clashes by fully expanding

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 89

the tree. This will adversely affect the performance of the algorithm especially if
there is extensive non-determinism in the ontology. Considering that the num-
ber of unsatisfiable concepts is relatively small compared to the total number
of concepts in realistic ontologies, we believe it is practical to first check the
consistency of ontologies using optimised reasoners to find the unsatisfiable con-
cepts, and then run the fine-grained algorithm on those unsatisfiable concepts.
For example, Sweet-JPL.owl13 contains 1537 concepts, and one concept is unsat-
isfiable. Hence, our algorithm is then only applied to the unsatisfiable concept,
instead of the whole ontology.

In this subsection we report an evaluation with a number of realistic ontolo-
gies. RepairTab, a plugin for Protégé, was implemented in Java. The tests were
performed on a PC (Intel Pentium IV with 2.4GHz and 1GB RAM) with Win-
dows XP SP2 as operating system. Benchmarking with real-life ontologies is
obviously a convincing way to evaluate the quality of our approach. However,
there is only a limited number of realistic ontologies that are both represented
in ALC and unsatisfiable. We therefore constructed simplified ALC versions for
a number of ontologies downloaded from the Internet. We then removed, for ex-
ample, numerical constraints, role hierarchies and instance information. As some
ontologies are satisfiable, we randomly changed them such that each change on
its own lead to unsatisfiable concepts. For example, we added disjointness state-
ments among sibling concepts, and introduced some common ontology modelling
errors enumerated by [18]. Figure 8 (left-hand side) shows the average runtime
(in seconds) of the satisfiability test of a set of ontologies. The brackets of the
ontology names indicate the number of unsatisfiable concept tested. The execu-
tion time of our extended algorithm is increased by 15% on average compared
with that of Pellet, because our algorithm aims to detect all possible clashes
given that it requires a fully expanded tableau tree, while many optimisations
are disabled. In the cases of Transportation.owl and Economy.owl, the running
time for checking the satisfiability of 20 and 30 concepts is less than 0.6 second.
The result shows that the performance of our algorithm is feasible in realistic
ontologies which do not contain a large number of unsatisfiable concepts.

We also were interested in the Galen ontology14, which models medical terms
and procedures. It contains over 2700 classes and about 400 GCIs. As its DL
expressivity is SHf, we constructed a simplified ALC version of it. Figure 8 (right-
hand side) shows the average runtime (in seconds) of from 1 to 1000 satisfiability
tests. Note that there is a large number of GCIs in the Galen ontology, the
optimised reasoner is able to eliminate non-determinism by absorbing them into
primitive concept introduction axioms whenever possible (CN � D, where CN
is a named concept, D is a concept description). Although the execution time
of RepairTab dramatically increases with the number of unsatisfiable concepts
with the same reason as the above, absorption is still applicable to our revised
algorithm, because it is algorithm independent. Absorption is used to preprocess
the ontology before the tableau algorithm is applied. For example, given two

13 http://www.mindswap.org/ontologies/debugging/buggy-sweet-jpl.owl
14 http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/galen.owl

90 J.S.C. Lam et al.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

No. of Unsat. Concepts (in GALEN)

T
im

e
(i

n
 s

ec
)

Pellet

RepairTab

0

0.1

0.2

0.3

0.4

0.5

0.6

Univ
er

sit
y (

12
)

Bad
-fo

od
 (1

)

Koa
la

(3
)

Swee
t J

PL
(1

)

m
ad

_c
ow

 (1
)

Tra
ns

po
rt

(2
0)

Eco
no

m
y (

30
)

T
im

es
 (

in
 s

ec
)

Pellet

RepairTab

Fig. 8. Performance Test of Pellet and RepairTab

axioms (1) CN � ∀R.¬C � ¬D, (2) ∀R.¬C � ¬ CN D. Axiom (2) will be
absorbed as CN � D ∃R.C, and can then be merged with axiom (1), the
resulting axiom is CN � (∀R.¬C � ¬D) � (D ¬∃R.C). We then apply the fine-
grained algorithm to trace which parts of the axiom cause the unsatisfiability.
However, the algorithm modifies the original axioms; in this example, two axioms
are modified into one axiom, we can only tag the parts of the resulting axioms
(modified by the algorithm) relevant to the unsatisfiability, instead of the original
asserted axioms. In future work, to improve usability, it might be necessary to
explain the correlation between the originally asserted axioms and the axioms
(modified by the tableau algorithm) in a way that is understandable to the user.

7 Related Work

Several methods have been developed in the literature to deal with unsatisfiable
ontologies. In this section, we first review three existing approaches to analysing
unsatisfiable ontologies, and then describe two related fine-grained approaches
used in debugging ontologies. Finally, we discuss the related work on resolving
unsatisfiable concepts in ontologies.

7.1 Analysing Unsatisfiable Ontologies

We now describe three approaches to analysing unsatisfiable ontologies. One
approach is to find maximally satisfiable sub-ontologies by excluding problematic
axioms [4,15]. Another approach is to find minimal unsatisfiable sub-ontologies
by pinpointing possible problematic axioms [22,21,10,13]. Finally there is the
heuristic approach to explaining unsatisfiability [26].

Baader et al. [4] investigate the problem of finding the maximally satisfiable
subsets of ABox assertions. In their approach, each element in the nodes in a tree
is labeled with a propositional formula which indicates the sources of axioms,
whereas Meyer et al. [15] use an index-set associated with every element of the
label of nodes in a tree. The index-set is used to exclude axioms involved in the

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 91

unsatisfiability of concepts, so that maximally concept-satisfiable subontologies
(so called MCSS) can be obtained.

Schlobach et al. [22,21] proposed to pinpoint the so called Minimal Unsatisfi-
ability Preserving Sub-ontologies (MUPSs), which are sets of axioms responsible
for an unsatisfiable concept. This is called axiom pinpointing. Roughly, a MUPS
of a named concept contains only axioms that are necessary to preserve its un-
satisfiability. They further exploit the minimal hitting-set algorithm described
by Reiter [19] to calculate diagnosis sets, i.e minimal subsets of an ontology that
need to be repaired/removed to make the ontology satisfiable.

Overall, the above approaches achieve the same result. A MCSS can be ob-
tained by excluding the axioms in any one of the diagnosis sets. Moreover, they
are only applicable to unfoldable terminologies T ; they simply remove problem-
atic axioms from the ontology, and the support for rewriting the axioms is still
limited.

Kalyanpur et al. [13,10] extended the axiom pinpointing technique (i.e., find-
ing MUPS) to the more expressive description logic SHOIN . They utilise a
glass-box strategy for finding the first MUPS of an unsatisfiable concept. The
description logic tableaux reasoner was modified to keep track the cause for
the unsatisfiability of a concept, so that the minimal set of relevant axioms in
the ontology that support the concept unsatisfiability was obtained. Their tool,
SWOOP, also detects interdependencies between unsatisfiable concepts, in which
root and derived unsatisfiable concepts are identified. The user can differentiate
the root bugs from others which are caused by the root unsatisfiable concepts,
and focus solely on the root concepts. This is a particularly effective approach
to fixing a large set of derived unsatisfiable concepts. Then, they use a black-box
approach, which is reasoner independent, to derive the remaining MUPSs from
the first MUPS. Reiter’s Hitting Set Tree (HST) algorithm [19] was adapted to
find the remaining MUPSs [12]. The advantage of this approach is that it makes
use of the optimisation techniques embedded in the reasoner. The disadvantage
is that the complexity of generating the HST is exponential with the number
of MUPSs. Their results showed the algorithm performed well in practice, be-
cause most of the satisfiability tests exhibited at most three or four MUPSs,
with five to ten axioms each [11]. In comparison, RepairTab detects all MUPSs
of an unsatisfiable concepts by fully expanding the tree. The disadvantage of our
approach is that most optimisations are not applicable, however, its complexity
is independent of the number of MUPSs.

Rector et al. [18] addressed some common problems of ontology users during
the modelling of OWL ontologies. Based on these common errors, the authors
developed a set of heuristic rules and incorporated them into a Protégé-OWL
plugin. Their program is called OWLDebugger; it can detect commonly occurring
error patterns in OWL ontologies. This alleviates the user from troubleshooting
the unsatisfiable concepts. It helps users to track down the reasons for errors
in OWL concepts. Quasi-natural language explanations for unsatisfiable OWL
concepts are also generated. As the heuristic approach and pattern matching
cannot determine the causes of the inconsistency in every case, the authors are

92 J.S.C. Lam et al.

still investigating how to extend and improve the set of heuristic rules. However,
the process of resolving problems is left to the user who has to run the reasoner
frequently to check if consistency has been achieved.

7.2 Fine-Grained Approaches

Schlobach et al. [22] apply syntactic generalisation techniques to highlight the
exact position of a contradiction within the axioms of the TBox. This is called
concept pinpointing. Concepts are diagnosed by successive generalisation of ax-
ioms until the most general form which is still unsatisfiable is achieved. The
main difference with our work is that in [22] the concepts in axioms are gen-
eralised and only these generalised axioms are shown to the user. For example,
α1: A � C � D � E, α2: C � ¬D � F , then the generalised axioms A � C � D,
and C � ¬D are shown. It can be an additional burden on the user to cor-
relate between the generalised axioms and the originally asserted axioms. In
the case of very complicated axioms, the user might find it difficult to know
which generalised axioms correspond to which of the original asserted axioms.
Compared to our approach, we use a tracing technique to pinpoint problematic
parts of axioms, the asserted axioms are directly displayed and faulty parts are
highlighted.

Kalyanpur et al. [12] also propose a fine-grained approach, which determines
which parts of the asserted axioms are responsible for the unsatisfiability of
concepts. Their idea is to rewrite the axioms in an ontology in a normal form
and split up conjunctions in the normalised version, e.g., A � ∃R.(C � D) is
rewritten as A � ∃R.E, E � C, E � D and C � D � E. In comparison, we
achieve the same results as their approach, but we identify the irrelevant parts of
axioms by making use of the tableaux algorithm, instead of splitting the axioms.

7.3 Resolving Unsatisfiable Concepts

Few approaches have been proposed which address the strategies for resolving
unsatisfiable concepts. Plessers et al. [17] propose a set of rules to rewrite ax-
ioms to resolve the detected inconsistencies. They weaken restrictions either by
removing an axiom, replacing it with its superconcepts, or changing its cardi-
nality restriction values.

On the other hand, in SWOOP[13], the rewriting axioms suggestions are pro-
vided, but these suggestions are limited to a small number of common errors
patterns. Moreover, the common error patterns may only apply for those ontolo-
gies built by non-expert users, it is insufficient to cover other applications, such
as ontology merging/integration. The lost information due to their suggestions
for rewriting axioms is also not considered. For example, an intersection concept
C �D is suggested to be changed as C D, the modified concept is more generic,
and hence certain information is lost.

Furthermore, Kalyanpur et al. [13] analyse the impact on an ontology when
a whole axiom is removed. Currently, they only consider the subsumption/
disjointness between two named concepts (i.e., A � B) and an instantiation

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 93

(i.e., B(a)) which will be lost due to axiom removal. The difference with our
work is the following: (1) the lost entailments we consider in Section 4 which are
not responsible for concepts’ unsatisfiability can be added back to the ontology,
whereas this feature is not available in their approach. (2) we calculate the lost
entailments of named concepts when a part of an axiom or a whole axiom is
removed; they only consider the impact when a whole axiom is removed. (3) we
adapt the “difference” operator to calculate the lost entailment of a concept
(see Section 4.2); their lost entailment is limited to subsumption/disjointness
between two named concepts and instantiations. (Continuing our mad cow ex-
ample in Example 4, if α4 is removed, their lost entailment is Cow � Animal.15

See Section 4 to compare with our results).

8 Conclusion

In this paper we have proposed a fine-grained approach to rewriting problematic
axioms in an ontology, by revising the classical tableaux algorithm. Our tech-
nique not only identifies the problematic axioms, but also captures which parts
of the axioms are responsible for the unsatisfiability of concepts. Moreover, we
present methods for finding harmful and helpful changes for concepts which are
going to be replaced. With our approach, users are provided with support to
help them to: (1) understand the reasons for the unsatisfiability of concepts,
and (2) rewrite axioms in order to resolve the problems with minimal impact
on the ontology. The results of our usability evaluation have demonstrated the
applicability of our approach in practice. The plugin which we have developed,
RepairTab, is very useful for ontology users who want to diagnose problematic
axioms at a fine-grained level and achieve satisfiable ontologies. In future work,
we plan to extend our algorithms to support more expressive Description Logics.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

2. Baader, F., Nutt, W.: Basic description logics. The Description Logic Handbook:
Therory, Implementation, and Applications

3. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artif.
Intell. 88(1-2), 195–213 (1996)

4. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

5. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.: An empirical
analysis of optimization techniques for terminological representation systems or
“making KRIS get a move on”. In: International Conference on the Principles
of Knowledge Representation and Reasoning, San Mateo, pp. 270–281. Morgan
Kaufmann, San Francisco (1992)

15 The result is obtained from the latest version of SWOOP 2.3 Beta3.

94 J.S.C. Lam et al.

6. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description
logics. In: KR 2002. Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 203–214. Morgan Kaufmann,
San Francisco (2002)

7. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological
knowledge representation systems. Journal of Artificial Intelligence Research 1,
109–138 (1993)

8. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of descrip-
tion logic ontologies at the instance level. In: Proceedings of the 21st National
Conference on Artificial Intelligence, pp. 1271–1276. AAAI Press, Stanford (2006)

9. Horrocks, I.: Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester (1997)

10. Kalyanpur, A., Parsia, B., Grau, B.C., Sirin, E.: Justifications for entailments in
expressive description logics. Technical report, University of Maryland (January
2006)

11. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, Dept. of
Computer Science, University of Maryland (2006)

12. Kalyanpur, A., Parsia, B., Cuenca-Grau, B.: Beyond asserted axioms: Fine-grain
justifications for OWL-DL entailments. In: DL 2006. International Workshop on
Description Logics (June 2006)

13. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B.: Repairing Unsatisfiable Con-
cepts in OWL Ontologies. In: ESWC 2006. Proceedings of the Third European
Semantic Web Conference (June 2006)

14. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In:
KR. Proceedings of International Conference of Principles of Knowledge Represen-
tation and Reasoning, pp. 46–56 (June 2006)

15. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: AAAI 2006. Proceedings of the 21st National
Conference on Artificial Intelligence (July 2006)

16. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. Springer,
Heidelberg (1990)

17. Plessers, P., De Troyer, O.: Resolving inconsistencies in evolving ontologies. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 200–214. Springer,
Heidelberg (2006)

18. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL Pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer,
Heidelberg (2004)

19. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

20. Schaerf, A.: Reasoning With Individuals in Concept Languages. Data and Knowl-
edge Engineering 13(2), 141–176 (1994)

21. Schlobach, S., Huang, Z., Cornet, R.: Inconsistent ontology diagnosis: Evaluation.
SEKT Deliverable 3.6.2, University of Karlsruhe (January 2006)

22. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI 2003. 8th International Joint Conference
on Artificial Intelligence, Morgan Kaufmann, San Francisco (2003)

23. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artifical Intelligence 48(1), 1–26 (1991)

A Fine-Grained Approach to Resolving Unsatisfiable Ontologies 95

24. Teege, G.: Making the difference: A subtraction operation for description logics. In:
KR 1994. 4th International Conference on Principles of Knowledge Representation
and Reasoning, Morgan Kaufmann, San Francisco (1994)

25. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications.
The Knowledge Engineering Review (1996)

26. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging
OWL-DL Ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer,
Heidelberg (2005)

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 96–132, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Deploying Semantic Web Services-Based Applications
in the e-Government Domain

Alessio Gugliotta1, John Domingue1, Liliana Cabral1, Vlad Tanasescu1,
Stefania Galizia1, Rob Davies2, Leticia Gutierrez Villarias2, Mary Rowlatt2,

Marc Richardson3, and Sandra Stincic3

1 Knowledge Media Institute, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, UK

{a.gugliotta, j.b.domingue, l.s.cabral, v.tanasescu,
s.galizia}@open.ac.uk

2 Essex County Council, County Hall,
Chelmsford, CM1 1LX, UK

{Leticia.gutierrez, maryr}@essexcc.gov.uk,
rob.davies@mdrpartners.com

3 BT Exact
Adastral Park Martlesham, Ipswich IP5 3RE, UK

{marc.richardson, sandra.stincic}@bt.com

Abstract. Joining up services in e-Government usually implies governmental
agencies acting in concert without a central control regime. This requires to the
sharing scattered and heterogeneous data. Semantic Web Service (SWS)
technology can help to integrate, mediate and reason between these datasets.
However, since a few real-world applications have been developed, it is still
unclear which are the actual benefits and issues of adopting such a technology
in the e-Government domain. In this paper, we contribute to raising awareness
of the potential benefits in the e-Government community by analyzing
motivations, requirements and expected results, before proposing a reusable
SWS-based framework. We demonstrate the application of this framework by
showing how integration and interoperability emerge from this model through a
cooperative and multi-viewpoint methodology. Finally, we illustrate added
values and lessons learned by two compelling case studies: a change of
circumstances notification system and a GIS-based emergency planning system,
and describe key challenges which remain to be addressed.

Keywords: e-Government, Semantic Web Services, Case Study, GIS, Change
of Circumstances.

1 Introduction

To a large extent, tiers of government – such as national, county, and district –
operate autonomously, without central control of service provision. Additionally, they
each have distinct viewpoints which may differ from that of general citizens.
Therefore, integration and interoperability are significant requirements in the
development of service-oriented applications in the e-Government domain.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 97

Integration leads to “form a temporary or permanent larger unit of government
entities for the purpose of merging processes and/or sharing information” [18]. In
particular, this requires the assembly and transformation of processes needed to
support specific user tasks into a single service with the corresponding back-office
practices. As a result, interoperation among multiple government entities at different
levels occurs “whenever independent or heterogeneous information systems - or their
components - controlled by different jurisdictions/administrations or by external
partners smoothly and effectively work together in a predefined and agreed upon
fashion” [18].

Interoperability is a key issue in order to allow for data and information to be
exchanged and processed seamlessly across governments. A working paper by the
Commission of European Communities [6] emphasized its role in e-Government, not
only as a technical issue concerned with linking up computer networks, but also as a
fundamental requirement to share and re-use knowledge between networks, and re-
organize administrative processes to better support the services themselves.
Additionally in [7], the following three levels of interoperability were individuated:

I. Technical: concerning with the technical issues of linking up computer systems,
the definition of open interfaces, data formats and protocols, including
telecommunications;

II. Semantic: concerning with the exchange of information in an understandable
way - whether within and between administrations, either locally or across
countries and with the enterprise sector - by any other application not initially
developed for this purpose.

III. Organizational: concerning with modelling business processes, aligning
information architectures with organizational goals and enabling processes to co-
operate, by rewriting rules for how governmental agencies work internally,
interact with their customers, and use Information and Communication
Technologies (ICT).

The semantic Web [3] can alleviate integration and interoperability issues by creating
a universal medium for information exchange and by giving meaning (semantics) to
contents on the Web, in a manner understandable by machines. The semantic Web
moreover allows the development of easy to use applications and transparent access
to services and data. In particular, Semantic Web Services (SWS) technology [31], [8]
provides an infrastructure in which new services can be added, discovered and
composed continually, and the organization processes automatically updated to reflect
new forms of cooperation [16]. SWS combine the flexibility, reusability, and
universal access that typically characterize Web services with the expressivity of
semantic mark-up and reasoning, in order to make feasible the invocation,
composition, mediation, and automatic execution of complex services with multiple
paths of execution and levels of process nesting.

The adoption of SWS in e-Government therefore appears to be a natural
development. However, demonstrating this to the e-Government community requires
the achievement of several prerequisites: (a) creating compelling demonstrators and
prototypes; (b) establishing visible standards; (c) developing stable and mature
technology and products; (d) proving convincing business cases.

98 A. Gugliotta et al.

In our work, a close collaboration has been established with the Essex County
Council (ECC) - a large local authority in South East England (UK) comprised of 13
boroughs and containing a population of 1.3M – to deploy real-world applications in
the e-Government domain. During this collaboration, we developed, tested and
refined a specific framework designed around an existing SWS broker: IRS-III [8]. In
this paper, we report our experience by firstly introducing the devised approach and
then focusing on the obtained results. The main contributions are to provide a proof of
concept of the added values introduced by SWS in real-world application scenarios,
propose a guide for the deployment of new e-Government applications, test the IRS-
III approach with complex use cases and outline future research directions on the
basis of the lessons learned.

The rest of the paper is structured as follows: Section 2 briefly introduces the
technologies at the basis of our work: Web services, ontologies and SWS; in Section 3
we discuss the rationales that prompted our work by identifying motivations,
requirements and expected results of matching two present-day research areas: SWS
and e-Government; Section 4 and Section 5 provide an overview of IRS-III and our
framework for creating SWS-based applications; Section 6 details and demonstrates
our approach through two e-Government applications. On the basis of these two
implementations, we summarize the lessons learned and point out the open challenges
in Section 7. Finally, Section 8 describes the related work and Section 9 reports our
conclusions.

2 Web Services, Ontologies, and Semantic Web Services

From an information technology viewpoint the two important features of Web
Services are that: (a) they are accessible over the Internet using standard XML-based
protocols and (b) the interface of a Web service encapsulates its actual
implementation. The first feature gives Web services high availability whereas the
second feature facilitates reusability and interoperability since interface descriptions
are independent from software platforms.

From a business perspective one key feature is that Web services can be used to
expose the business services – i.e. value-producing activities directly accessible by the
customer - of an organization. For example, Google [13] has a Web service interface
to its search engine and Amazon allows software developers to directly access their
technology platform and product data [2]. The ability to couple business services to
Web accessible software components will have profound effects on the nature of
business and on the structure of participating organisations.

Three main technologies are currently used to implement Web services: SOAP
[28], WSDL [36] and UDDI [33]. SOAP is an XML based, stateless, one-way
message exchange paradigm for interacting with Web services. SOAP messages are
transported over HTTP and are composed of two elements: a header and a body.
WSDL is also an XML-based format and defines services as collections of network
endpoints or ports. UDDI is a registry which allows clients to find Web services
through descriptions of theirs entities, provided functionalities or via technically
oriented aspects.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 99

A key problem with the above technologies is that they are purely syntactic. They
thus rely on human developers to understand the intended meaning of the descriptions
and to carry out the activities related to Web service use.

The semantic Web [3] is an extension of the current Web where documents
incorporate machine processable meaning. The overall semantic Web vision is that
one day it will be possible to delegate non-trivial tasks, such as booking a holiday, to
computer based agents able to locate and reason with relevant heterogeneous online
resources. One of the key building blocks for the semantic Web is the notion of an
ontology [14]. An ontology is an explicit formal shared conceptualization of a domain
of discourse. More specifically, an ontology captures the main concepts and relations
that a community shares over a particular domain. Within the context of the semantic
Web, ontologies facilitate interoperability as the underlying meaning of terms within
a Web document can be made explicit for computer based agents to support
processing.

Semantic Web Services (SWS) research aims to automate the development of Web
service based applications through the semantic Web technologies. By providing
formal descriptions with well defined semantics, SWS facilitate the machine
interpretation of Web service – functional and not functional - properties. The
research agenda for SWS identifies a number of key areas of concern, namely:

• Discovery: finding the Web service which can fulfil a task. Discovery usually
involves matching a formal task description against semantic descriptions of Web
services.

• Mediation: we can not assume that the software components which we find are
compatible. Mediation aims to overcome all incompatibilities involved. Typically
this means mismatches at the level of data format, message protocol and
underlying business processes.

• Composition: often no single service will be available to satisfy a request. In this
case we need to be able to create a new service by composing existing
components. Artificial Intelligence (AI) planning engines are typically used to
compose Web service descriptions from high goals.

3 Motivations, Requirements, and Expected Results

In our work, we address the following two research questions: (a) how can semantic
Web support interoperability and reuse of software components available on the
Web? (b) How can SWS support e-Government? In the following, we detail these two
perspectives by analyzing motivations, requirements, and expected results of moving
from SWS to e-Government (Section 3.1) and from e-Government to SWS (Section
3.2), respectively.

3.1 From Semantic Web Services to e-Government

Currently, one of the main needs of SWS technology is the development of real-world
applications that demonstrate its added (business) values. The next application-driven
research challenge thus can be defined only through the feedback from practical

100 A. Gugliotta et al.

prototypes and applications. The full potential application of SWS requires many
more large-scale testing domains.

Since it is an enormous challenge to achieve interoperability and to address
semantic differences related to the great variety of datasets and information
technology solutions which should be networked, e-Government may be a very
effective test-bed for evaluating SWS technology. E-Government moreover exhibits
further significant characteristics which may indicate several research issues for SWS.
For example, e-Government is characterized by top-down prescribed constraints in
key areas (e.g. laws, legal requirements, policies in the use of services and access to
data); limited central control; strong requirements to come to same decisions in
similar situations; high requirements for non-functional properties such as security,
privacy, and trust; wide information imbalances between stakeholders, as well as
multiple and heterogeneous stakeholders involved in the same process.

3.2 From e-Government to Semantic Web Services

The ability to aggregate and reuse diverse information resources relevant to a given
situation in a cost-effective way and to make this available as a basis for transparent
interaction between community partner organizations and individual citizens is a key
benefit that SWS technology can provide to e-Government. Specifically, SWS
technology promises to:

a) Provide added value joined up services: allowing software agents to create
interoperating services transparently to the users and hence automate integration,
reasoning and mediation among heterogeneous data sources and processes
available at distinct governmental levels.

b) Enable formalization of government business processes in an unambiguous
structure: allowing the creation of a common understanding of processes and
visualization of the knowledge involved. This could eventually lead to a
reengineering of the governmental systems and simplification of processes.

c) Reduce risk and cost: (i) moving from “hard coding” services to reusable
functionalities through, for example, utility computing of shared services (e.g.
payment platforms, legal resources, etc.); (ii) keeping government organizations’
autonomy in the description/management of their domains; (iii) increasing
flexibility; enabling discovery of new or previously unknown services; (iv)
aggregating services on the basis of user preferences; (v) providing better service
to third-parties and customers; (vi) easily addressing the evolution and change of
existing services and scenario.

d) Provide better support to front line: allowing one-stop, customer focused, and
multiple viewpoint access to services and shared information.

The e-Government community (stakeholders, administrations, end-users, but also
researchers) needs to perceive these benefits more clearly before it will adopt the
technology. At present, Web services are being introduced as infrastructure (often
experimental) in some areas of government and the broad awareness of need for
semantic enrichment is increasing. However, since SWS are completely new – and
are mainly visible to the academic and industrial research ‘e-Government’ sector - a

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 101

measurable benefit to service and achievable cost savings, or “cashable benefits” will
need to be established.

In absence of golden standards, demonstrating real-world applications is the
important first step to accomplish this goal. Perhaps more importantly, this may
provide a way to address existing barriers and perceptions, such as:

e) Trust in automated data sharing: governmental organizations are concerned
about: (i) ownership, control and quality among service providers; (ii) security,
data protection, confidentiality, and privacy issues.

f) Patchy awareness of Web services: stakeholders are often unclear about the
distinction between Web services and general services available via Web.

g) Up-front Infrastructure costs (e.g. investment in Web Services): governmental
organizations are reluctant to be the pioneers which take the initial financial ‘hit’
in implementing SWS, as with almost any new technology.

h) Market development: in terms of raising the awareness of potential SWS benefits
in e-Government, increasing pilot applications, and promoting the availability of
working SWS platforms.

4 IRS-III: A Broker-Based Approach for SWS

IRS-III [8] is a platform and broker for developing and executing SWS. By definition,
a broker is an entity which mediates between two parties and IRS-III mediates
between a service requester and one or more service providers. To achieve this, IRS-
III adopts a semantic Web based approach and is thus founded on ontological
descriptions. At the heart of IRS-III there is the SWS Library, where semantic
descriptions of various aspects of Web services, reference Domain Ontologies and
Knowledge bases (instances) are stored using OCML representation language [23].
Specific IRS-III components interpret such descriptions to discover and select the
appropriate Web service, choreograph and ground to the Web service operations [9],
orchestrate multiple Web services, and mediate semantic descriptions by running
mediation rules or invoking mediation services [5]. Note that IRS-III supports
grounding to standard Web services with a WSDL description, as well as stand-alone
Java and Lisp code. Similarly, Web applications accessible as HTTP GET requests
are handled internally by IRS-III.

4.1 The IRS-III Service Ontology

The IRS-III service ontology forms the epistemological basis for IRS-III and provides
semantic links between the knowledge level components describing the capabilities of
a service and the restrictions applied to its use. The IRS-III service ontology is based
on the WSMO standard [37] which specifies the following main aspects:

• Non-functional properties: these properties are associated with every main
component model and can range from information about the provider such as
organisation, to information about the service such as category, cost and quality
of service, to execution requirements such as scalability, security or robustness.

• Ontologies: provide the foundation for describing domains semantically. They are
used by the three other WSMO components.

102 A. Gugliotta et al.

• Goal-related information: a goal description represents the user perspective of the
required functional capabilities. It includes a description of the requested Web
service capability.

• Web service-related information: a Web service interface represents the
functional behavior of an existing deployed Web service. It includes a description
of: (a) Functional capabilities which represent the provider perspective of what
the service does in terms of assumptions, effects, pre-conditions and post-
conditions. Capabilities are expressed by logical expressions that constrain the
state or the type of inputs and outputs. (b) Choreography which specifies how to
communicate with a Web service. (c) Grounding which is part of the Web service
choreography and describes how the semantic declarations are associated with a
syntactic specification such as WSDL. (d) Orchestration which specifies the
decomposition of Web service capability in terms of the functionality of other
Web services.

• Mediators: in WSMO, a mediator specifies which WSMO top elements are
connected and which type of mismatches can be resolved between them. WSMO
defined four kinds of mediators: GG-mediator which links different goals; WG-
mediator which connects Web services with goals; OO-mediator which enables
components to import heterogeneous ontologies; and WW-mediator which links
Web services to Web services.

The WSMO conceptual model has been represented using OCML representation
language [23] and extended in the following ways:

• Explicit input and output role declaration: IRS-III requires that goals and Web
services have input and output roles, which include a name and a semantic type.
The declared types are imported from domain ontologies. This makes the
definition of goal and Web services easier when complex choreographies are not
required.

• Web services are linked to goals via WG-mediators: if a WG-mediator associated
with a Web service has a goal as a source, then this Web service is considered to
solve that goal. An assumption expression can be introduced for further refining
the applicability of the Web service.

• GG-mediators provide data-flow between sub-goals – in IRS-III, GG-mediators
are used to link sub-goals within an orchestration and so they also provide
dataflow between the sub-goals.

• Web services can inherit from goals - Web services which are linked to goals
‘inherit’ the goal’s input and output roles. This means that input role declarations
within a Web service are not mandatory and can be used to either add extra input
roles or to change an input role type.

• Client choreography – the provider of a Web service must describe the
choreography from the viewpoint of the client. This means IRS-III can interpret
the choreography in order to communicate with the deployed Web service.

• Mediation services are goals – a mediator declares a goal as the mediation
service which can simply be invoked. The required transformation is performed
by the associated Web service.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 103

• IRS-III component goals – the main components of IRS-III (e.g. the orchestration
and choreography interpreters and the handlers for the different WSMO
mediators) are implemented using internal goal, Web service and mediator
descriptions. Additionally, a number of utility goals, for example a number of
arithmetic and list primitives are incorporated.

4.2 The IRS-III Core Functionalities

A core design principle for IRS-III is to support capability-based selection and
invocation of Web services. A client sends a request which captures a desired
outcome or goal and, using the set of semantic Web service descriptions introduced in
the previous section, IRS-III will:

F1. Discover potentially relevant Web services.
F2. Select the set of Web services which best fit the incoming request.
F3. Invoke the selected Web services whilst adhering to any data, control flow and

Web service invocation constraints.
F4. Mediate any mismatches at the data, goal or process level.

In the following sub-sections, we highlight the main aspects associated with the
aforementioned functionalities.

4.2.1 Discovery
As introduced in Section 4.1, IRS-III makes use of WG-mediators to link a goal to all
Web services that can solve it. Figure 1 depicts the specific ontology concepts and
relations involved in the IRS-III discovery and selection.

Fig. 1. The ontology concepts and relations involved in the IRS-III discovery

Given a goal, multiple WG-mediators can define such a goal as their source
component. In turn, distinct capability descriptions can refer to a specific WG-
mediator and thus link to a goal. Finally, each capability description is part of a
unique Web service description.

On the basis the semantic descriptions above, a pool of Web services that
potentially satisfy a given goal is identified by a backward chaining rule-based
reasoning. In particular, the can-solve-goal relation is inferred at runtime during

104 A. Gugliotta et al.

the goal achievement process. The listing below shows the OCML [23] definition of
the can-solve-goal relation. The sufficient conditions of the definition
(:sufficient) specify the clauses to be proved when inferring such a relation. The
IRS-III interpreter will fire the clauses in the order in which these are listed, by
finding any instance which makes true the specific clause. As a result, starting from a
goal instance given in input (?goal), it is possible to identify: (i) all of the WG-
mediators (?mediator) which use such a goal as source component1; (ii) the
capabilities (?capabilities) which use the identified WG-mediators; (iii) the Web
services (?thing) which define the identified capabilities.

(def-relation can-solve-goal (?goal ?thing)
 "Returns the web services which solve a goal.
 Uses the mediator to find the link"
 :sufficient (and (instance-of ?goal goal)
 (= ?goal (the-slot-value ?mediator has-source-component))
 (instance-of ?mediator WG-mediator)
 (= ?mediator (the-slot-value ?capability used-mediator))
 (instance-of ?capability capability)
 (= ?capability (the-slot-value ?thing has-capability))
 (instance-of ?thing web-service)))))

4.2.2 Selection
The selection process aims to identify the most appropriate Web services which
satisfy a goal, starting from the results of the previous phase (can-solve-goal
relation). On the basis of the current goal inputs, the IRS-III interpreter will test the
applicability conditions of each discovered Web service.

The listing below shows the suitable-web-service-goal which is invoked to
check if a Web service is satisfactory for a specific goal invocation2.

Suitable-web-service-goal
Input Role
 has-goal goal "sexpr"
 has-actual-role-pairs list "sexpr"
 has-web-service web-service "sexpr"
 has-combined-oo-mediator-ontology ontology "sexpr"
Output Role
 is-suitable-web-service boolean "sexpr"
Post Condition
 (kappa (goal-inst)
 (== (has-role-value goal-inst is-suitable-web-service)
 (is-suitable-for-goal
 (instantiate (has-role-value goal-inst has-goal)
 (has-role-value goal-inst has-actual-role-pairs))
 web-service)))

Suitable-web-service-goal has four input roles which respectively represent:
(a) the current goal; (b) the values for the current goal’s input roles; (c) the Web
service under consideration; and, (d) an ontology created specifically for the goal
invocation. Note that for each input role, we specify the type of values permissible
and a SOAP grounding (sexpr in the listing above) which is ‘inherited’ by Web
services linked through a WG-mediator. Moreover, the ontology created in step (d)

1 The the-slot-value function returns the value of a specific slot (e.g. has-source-
component) of an instance (e.g. ?mediator).

2 As mentioned earlier, IRS-III components themselves are modelled using WSMO descriptions.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 105

combines the goal and Web service ontologies, making use of OO-mediators – both
goal and Web service descriptions refer to OO-mediators (Figure 1) - to resolve any
data mismatches (Section 4.2.4).

The output role (is-suitable-web-service) is a boolean value which is true if
the Web service is suitable for the goal instance, false otherwise.

The post condition expresses the expected result as an OCML anonymous relation,
called kappa expression. The latter takes as argument the suitable-web-service-
goal itself and is satisfied if its clauses hold for the given argument. In the given
example, the is-suitable-for-goal relation is used to state the relationship
between the considered goal and the selected Web services.

To accomplish the suitable-web-service-goal introduced above and thus
infer the is-suitable-for-goal relation, an internal IRS-III Web service is
invoked. The latter exposes an OCML function which performs the following tasks:
(i) retrieving the applicability conditions – currently the assumptions defined in the
WSMO capability description – of a given Web service and (ii) testing the
applicability conditions according to the input roles defined in the given goal instance.
Checking the following OCML relation is the core of such a function.

(def-relation applicable-to-goal (?web-service ?goal)
 :iff-def (or (not (and (= ?capability
 (the-slot-value ?web-service has-capability))
 (instance-of ?capability capability)
 (= ?exp (the-slot-value ?capability has-assumption))
 (not (= ?exp :nothing))))
 (and (= ?capability
 (the-slot-value ?web-service has-capability))
 (instance-of ?capability capability)
 (= ?exp (the-slot-value ?capability has-assumption))
 (not (= ?exp :nothing))
 (holds ?exp ?goal))))

Sufficient and necessary conditions of the definition above (:iff-def) specify the
clauses to be proved. Similar to the can-solve-goal relation introduced in Section
4.2.1, the IRS-III interpreter will fire the clauses. The or expression of the definition
introduces two main cases3.

The first case manages the situation of Web services that do not define any
assumption. We assume that Web services which do not define assumptions are
applicable to the goal. In this way, for example, we can deal with general purpose
Web services.

The second case manages the situation of Web services that define assumptions.
The ?exp variable captures the stated assumption which is expressed as a kappa
expression (e.g. the goal post condition defined above). The holds function invokes
the IRS-III interpreter to test the retrieved kappa expression, using the current goal
instance ?goal as given parameter. If the kappa expression is satisfied, the Web
service is applicable to the goal.

Note that several Web services can be selected. The current IRS-III policy is
invoking the first Web service of the list, since a ranking mechanism is not defined.

3 As in Prolog, depth-first search with chronological backtracking is used in OCML to control

the proof process.

106 A. Gugliotta et al.

However, future work concerns improving current IRS-III selection with trust-based
mechanisms [12].

4.2.3 Invocation, Choreography and Orchestration
According to the WSMO model, the IRS-III interface provides information on how
the functionality of the deployed Web services is achieved, and, as stated in Section
4.1, the main interface components are orchestration and choreography. The semantic
descriptions of the interface model are interpreted by IRS-III when the latter
identified the Web service to satisfy a goal. According to such descriptions, specific
actions are performed.

The overall view is that Web service execution consists of a number of discrete
steps, and, at any given point, the next action performed within an interface execution
will depend upon the current state. IRS-III performs its interface abstract model
through the tuple 〈E, S, C, T〉, where: E is a finite set of events; S is the (possibly
infinite) set of states; C is the (possibly infinite) set of conditions; T represents the
(possibly infinite) set of transitions rules.

The events represent actions performed during the interface execution. The subset
of events from E which can occur in choreography and orchestration differs.
Specifically, E = Ec ∪ Eo: where Ec is the set of choreography events; and Eo is the
set of orchestration events. In more detail, Ec = {obtain, present, provide, receive,
obtain-initiative, present-initiative} [9]. Every choreography event maps to an
operation during the conversation viewed from the IRS-III perspective. Similarly, the
set of possible orchestration events are Eo = {invoke-goal, invoke-mediator, find-
mediator, evaluate-logical-expression, return-output}.

Given a transition step Ti, a state si ∈ S is a non-empty set of ontologies that define
a state signature over which transition rules are executed. Optional mediators are used
to solve ontology or data mismatches (Section 4.2.4). The parameterized
choreography state is a set of instances, concerning message exchange patterns and
the choreography execution. Every state includes a constant subset, which identifies
the Web service host, port, and location, which is invariant whenever the same Web
service is invoked, and the event instantiation e ∈ Ec, dependent on the event which
occurred at step Ti. The orchestration states characterize the phases of the workflow
process during goal decomposition. Given a transition step Ti, an orchestration state
contains a description of the triggering-event, the control flow step identifier, and the
result - the output of the achieved sub-goal.

A condition c ∈ C (also called guard) depicts a situation occurring during interface
execution. Every constraint within the condition has to be verified before the next
event is triggered.

The transition rules express changes of state by modifying a set of instances
within the signature ontology. In particular, a transition rule, t ∈ T,updates the state

after the occurrence of an event, e ∈ E, and consists of a function, () SSt
E

C →2,: ,

that associates a couple (s, {c1, .., cn}) to s’, where s and s’ ∈ S, and every ci ∈ C (1
≤ i ≤ n) . Choreography transition rules are defined with the following two specific
restrictions: (a) ‘If rules do not chain and are of the form “If condition then Fire
Event”; and (b) conditions are mutually exclusive so only one rule can fire at a time.
These rules represent the interaction between IRS-III and the Web service and are

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 107

applied when executing the choreography. Orchestration transition rules provide a
workflow model based on the following set of control flow constructs: sequence,
conditional, loop, fork, join. These rules describe the model of a composed Web
service. The distinguishing characteristic of this model is that the basic unit within
composition is a goal. Further, dataflow and the resolution of mismatches between
goals are supported by mediators.

4.2.4 Mediation
The overall design goal for IRS-III is to act as a semantic broker between a client
application and deployed Web services available at large on the internet. This
brokering activity can be seen as mediation itself, which in IRS-III is further broken
down into goal, process and data mediation [5]. Goal Mediation takes places during
F2, and the types of mismatches that can occur are: the input types of a goal are
different from the input types of the target Web service; and Web services have more
inputs than the goal. A WG-mediator is mainly involved in this mediation. Process
Mediation takes places during F3 – specifically, during orchestration - and the types
of mismatches which can occur are: output types of a sub-goal are different from the
input types of the target sub-goal; output values of a sub-goal are in a different order
from the inputs of the target sub-goal; and, the output of a sub-goal has to be split or
concatenated into the inputs of the target sub-goals. A GG-mediator is mainly
involved in this mediation. Data Mediations is used by both goal and process
mediation to map data across domain ontologies. An OO-mediator is mainly involved
in this mediation.

In IRS-III, a mediator declares a source component, a target component and either
a mediation service or mapping rules to solve mismatches between the two.

The mediation service is just another goal that can be accomplished by published
Web services. For example (Figure 2), a mediation service of a WG-mediator (or GG-
mediator) transforms input values coming from the source goal into an input value
used by the target Web service (or Goal). The mediation goal is invoked and then
accomplished when the respective mediator is considered by the IRS-III interpreter.

Fig. 2. Use of mediation services for WG and GG mediators

Mapping rules are used between two ontologies, source and target components
(Figure 3). They represent backward chaining rules, based on three OCML main
mapping primitives: Maps-to, a relation created internally for every mapped
instance; Def-concept-mapping, generates the mappings specified with the maps-
to relation between two ontological concepts; Def-relation-mapping, generates

108 A. Gugliotta et al.

a mapping between two relations using a rule definition within an ontology. Since
OCML represents concept attributes as relations, this primitive can be used to map
between input and output descriptions.

Fig. 3. Use of mapping rules for OO-mediator

5 Creating Semantic Web Services Based Applications

In this section, we describe the general infrastructure and the methodology adopted to
deploy our e-Government applications. Since government legacy systems are often
isolated - i.e. not interconnected and/or use distinct technological solutions - our
approach firstly enables the data and functionalities provided by existing legacy
systems of the involved governmental partners to be exposed as Web services. The
latter are then semantically annotated and published following the IRS-III approach
(Section 4). The generic application architecture presented in Section 5.1 reflects and
explains this double stage process. The setting up of a domain-specific application is
driven by a cooperative and multi-viewpoint methodology refined during our work,
and here described in Section 5.2.

5.1 Generic Application Architecture

The proposed generic application architecture is depicted in Figure 4. From the
bottom up the four application layers are:

• Legacy System layer: consists of the existing data sources and IT systems
available from each of the organizations involved in the integrated application.

• Service Abstraction layer: exposes (micro-) functionalities of the legacy systems
as Web Services, abstracting from the hardware and software platforms. At this
level we address thus the level I of interoperability defined by [7] and introduced
in Section 1. Web Services are distributed and stored within the multiple
organizational infrastructures that expose the functionality. Existing Enterprise
Application Integration (EAI) software can be used to facilitate the creation of
required Web Services. For example, for standard databases the necessary
functionalities of Web Services can simply be implemented as SQL query
functions. Further services available on the Web - and not related to the involved
legacy systems - can be integrated to perform supporting functionalities (e.g.
mediation services).

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 109

• Semantic Web Service layer: this layer is implemented by IRS-III which provides
the functionalities F1 – F4 described in Section 4.2. At this level we address thus
the levels II and III of interoperability defined by [7] and introduced in Section 1.
To set up an application, a set of application-specific SWS descriptions has to be
provided: goals, mediators, and Web services, all supported by the relevant
ontologies (see Section 5.2). These descriptions are centrally stored within the
SWS Library of IRS-III (Section 4.1). Note that we distinguish two main sets of
SWS descriptions: basic SWS (bottom of the layer) that simply wrap the Web
Services to achieve simple goals; and complex SWS (top of the layer) that require
a composition of basic or complex SWS to achieve complex goals.

• Presentation layer: consist of a Web application accessible through a standard
Web browser. The goals defined within the SWS layer are reflected in the
structure of the interface and can be invoked either through the IRS-III API or as
an HTTP GET request. The goal requests are filled with data provided by the
user and sent to the Semantic Web Service layer. We should emphasise that the
presentation layer may be comprised of a set of Web applications to support
distinct user communities. In this case, each community would be represented by
a set of goals supported by community related ontologies.

Fig. 4. The generic architecture used to create IRS-III-based e-Government applications

5.2 Development Methodology

In order to successfully create applications from SWS as depicted in Figure 4 four key
activities need to be carried out as follows:

1. Requirements capture: the requirements for the overall application are captured
using standard software engineering methodologies and tools. We do not
advocate any particular requirements capture method but envisage that the
resulting documents describe the stakeholders, the main users, roles, and goals,
any potential providers for Web services, and any requirements on the deployed
infrastructure and interfaces.

2. Goal description: using the requirements documents above relevant goals are
identified and semantically described in IRS-III. During this process any required

110 A. Gugliotta et al.

supporting domain ontologies will either be created from scratch or existing
ontologies will be re-used.

3. Web service description: descriptions of relevant Web services are created within
the IRS. Again, any domain ontologies required to support the Web service
descriptions are either defined or re-used as necessary.

4. Mediator description: mismatches between the ontologies used, and mismatches
within and between the formal goal and Web service descriptions are identified
and appropriate mediators created.

All of the above steps are carried out by the SWS application developer. The first two
steps are user/client centric and therefore involve discussions with the relevant client
stakeholders and domain experts, whereas step 3 will require dialogue with the Web
service providers and domain experts. Steps 2 and 3 are mostly independent and in the
future we expect libraries of goals and Web services to become generally available to
support reuse. Steps 2, 3 and 4 are supported by means of IRS-III clients that provide
a set of tools for defining, editing and managing a library of semantic descriptions, as
well as for grounding the descriptions to services. As a result, we obtain a semi-
automatic knowledge acquisition process for the development of our applications.

6 e-Government Applications

In this section, we demonstrate the feasibility and applicability of our approach by
describing two compelling use cases in the e-Government domain: Change of
Circumstances (Section 6.1) and Emergency Management System (Section 6.2). In the
first one, the developed application integrates multiple datasets in order to
automatically notify the change of a citizen situation. In the second one, the
developed application supports emergency planning and management personnel by
retrieving, filtering, and presenting data from a variety of legacy systems to deal with
a specified hazardous situation. Both use case descriptions follow the generic
application architecture introduced in Section 5.1, although the technical emphasis
varies: the first one details the development of SWS descriptions for setting up a
specific application; the second one highlights the use of SWS descriptions within a
specific application.

6.1 Change of Circumstances

The application has been developed to solve a specific use case problem at Essex
County Council (ECC). Whenever the circumstances in which a given citizen lives
change, he/she might be eligible for a set of services and benefits provided by ECC
and other governmental agencies together with public service providers. An example
of such a change of circumstances is, if an elderly, partly disabled woman moves in
together her daughter. This changes the circumstances of both, the mother and the
daughter. For instance, the mother might no longer receive a “meals on wheels”
service, whereas the daughter might get financial supporting for caring her mother.
Starting from existing legacy systems, the aim is to provide integrated functionalities,
such as: change patient details within multiple legacy systems, change patient pending
equipment orders, list of all services for a patient, stop providing service to patient
and assess equipment to patient.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 111

6.1.1 Legacy System Layer
Generally, even very simple process in a change of circumstances requires the
interaction of many different government agencies. Each agency has different legacy
systems in place to keep track of citizen records, provided services, third-party service
providers, etc. In our prototype, the following two data sources provided by two
different departments (at two distinct governmental levels) were considered:

• Citizen Assessment (Community Care Department of the ECC): this relates to
information about citizens registered in ECC for assessment of services and
benefits (e.g. meals on wheels; someone goes and cleans the house; someone
goes and stays with the patient, etc). This information is stored in the SWIFT
database.

• Order Equipment (Housing department of the Chelmsford District Council): this
relates to information about equipment (e.g. stair lift, wheel chair, crutch, etc)
which is provided to citizens registered in Essex. This information is stored in the
ELMS database.

Both SWIFT and ELMS are relational databases that are independently developed and
use different data formats to store the same information - e.g. they both hold personal
details of the patients. Our prototype accesses two testing databases that exactly
replicate the schemata of the two real systems and contain dummy data of the same
quality – i.e. both databases contain records with errors, duplicates, inconsistent
records. As a result, the two databases used in the prototype mimic the behavior and
properties of the real systems.

Figure 5 depicts the database schema of the ELMS system.

Fig. 5. The database schema of the ELMS system

Specific SQL queries provide for each of the tables of the two databases CRUD
style functionalities; for instance functionalities for creating, reading, updating and
deleting records.

112 A. Gugliotta et al.

6.1.2 Service Abstraction Layer
On top of the two legacy systems, we developed a set of Web services that perform
the SQL queries introduced in the previous section and the basic operations
introduced above. We created 8 Web services from the SWIFT database and 19 Web
services from the ELMS database. The Web services were deployed and stored into
the SAP Exchange Infrastructure (SAP XI) [27]. Moreover, we developed some Web
services - implemented in a mixture of Common Lisp and OCML [23] – to support
application-specific operations (e.g. merging results of distinct database queries).

6.1.3 Semantic Web Service Layer
To provide the SWS descriptions (Section 5.1) and the required supporting domain
ontologies - steps 2, 3, and 4 of our development methodology (Section 5.2) - we
devised two teams composed of SWS developers and domain experts. Each team
worked on a distinct domain: Citizen Assessment and Order Equipment. The
following tables summarise the resulting ontologies.

User Oriented Domain Ontologies

e-Government-upper-level-ontology
(Citizen Assessment Team,

Order Equipment Team)

It is an upper ontology for representing commonly
accepted concepts, such as organization, person, citizen,
etc. It has been used as the starting point for developing
domain-specific user-oriented ontologies

Change-of-circumstances-citizen-ontology
(Citizen Assessment Team)

It extends the concepts introduced in the e-Government
upper level ontology by introducing domain-specific
concepts, such as address, assessment, health problem
and benefit.

Change-of-circumstances-equipment-
ontology

(Order Equipment Team)

It extends the concepts introduced in the e-Government
upper level ontology by introducing domain-specific
concepts, such as order, care-item, equipment and
supplier.

Service Oriented Domain Ontologies

SWIFT-service-ontology
(Citizen Assessment Team)

It mainly represents concepts which map entities of the
SWIFT database schema.

ELMS-service-ontology
(Order Equipment Team)

It mainly represents concepts which map entities of the
ELMS database schema.

SWS Description Ontologies

Change-of-circumstances-citizen-basic-SWS
(Citizen Assessment Team)

It contains goal, Web service and mediator
descriptions which define basic and complex SWS on
top of SWIFT database. The respective domain
ontologies are: Change-of-circumstances-citizen-
ontology and SWIFT-service-ontology

Change-of-circumstances-equipment-basic-SWS
(Order Equipment Team)

It contains goal, Web service and mediator
descriptions which define basic and complex SWS on
top of ELMS. The respective domain ontologies are:
Change-of-circumstances-equipment-ontology and
ELMS-service-ontology

Change-of-circumstances-citizen-complex-SWS
(Citizen Assessment Team)

It contains goal, Web service and mediator
descriptions which define complex SWS, integrating
functionalities of both domains. These descriptions
refer to the Change-of-circumstances-citizen-ontology
as domain ontology and make use of Citizen
Assessment and Order Equipment basic SWS.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 113

Figure 6 shows the graphical representation of the dependencies (i.e. “inheritance”)
among ontologies: WSMO is the top ontology; white boxes represent the domain
ontologies (user and service oriented); gray boxes represent the ontologies containing
SWS descriptions. It is important to note the absence of dependencies that cross the
two different domains. Only the bottom ontology (Change-of-circumstances-
citizen-complex-SWS) crosses the two domains; this ontology defines appropriate
mediators to deal with mismatching.

Fig. 6. The ontologies of the Change of Circumstances scenario

To illustrate the development process, we first consider a SWS description of the
Order Equipment domain: Find Item ELMS by Impairment and Weight. The
latter is a complex operation which is decomposed into three basic operations: two
queries of the ELMS database and intersecting the two obtained outputs (Figure 7).

Fig. 7. The Find Item ELMS by Impairment and Weight functionality

Each ellipse in Figure 7 represents a goal which has to be accomplished by simple
or integrated functionalities. Specifically, the three goals on the right are
accomplished by functionalities provided by Web services available at the service
abstraction layer. Such goals have to be automatically orchestrated to accomplish the
main goal on the left. Figure 8 depicts, as example, the IRS-III browser interface for
describing the main goal above and the resulted OCML code [23]. The goal defines

114 A. Gugliotta et al.

two inputs (has-input-role) and one output (has-output-role). The inputs
(weight and impairment) are classes of the Change-of-circumstances-

equipment-ontology. The output is a list of equipments (item-list). Every
equipment description in the list is an instance of the catalogue-data class of the
ELMS-service-ontology.

Fig. 8. Snapshot of the IRS-III editor and the generated OCML code

Such a class maps the respective ELMS database schema (Figure 5). At runtime –
when the goal is invoked to be accomplished - the instances of the input classes are
selected through the user interface of the application, while the instances of the
catalogue-data class are created on-the-fly - i.e. lifted from the syntactic to the
semantic level - from the results of Web service invocations.

For each goal, the respective Web service and mediator descriptions have been
created. Figure 9 below represents the Find Item ELMS by Impairment and
Weight functionality introduced in Figure 7 in terms of goal, mediator and Web
service descriptions. The Web service that accomplishes the main goal (Get-
equipment-assessment-goal) defines the orchestration as the sequence of three
sub-goals. In our approach the orchestration is defined at the semantic level as follows:

(DEF-CLASS GET-EQUIPMENT-ASSESSMENT-WEB-SERVICE-INTERFACE-ORCHESTRATION

 ((HAS-BODY
 :VALUE ((ORCH-SEQUENCE
 FIND-ITEMS-MATCHING-WEIGHT-GOAL
 FIND-ITEMS-MATHCING-IMPAIRMENT-GOAL
 LIST-INTERSECTION-GOAL)
 (ORCH-RETURN (ORCH-GET-GOAL-VALUE LIST-INTERSECTION-GOAL))))))

Each sub-goal, invoked through the orchestration, is accomplished by the respective
Web service. Conversely to the main Web service, these Web services ground to
syntactic Web services - at the service abstraction layer - and they thus define
choreography, as follows:

(DEF-CLASS GET-EQUIPMENT-ASSESSMENT-GOAL (GOAL) ?GOAL
 ((HAS-INPUT-ROLE :VALUE HAS-MAX-CLIENT-WEIGHT
 :VALUE HAS-CLIENT-IMPAIRMENT)
 (HAS-OUTPUT-ROLE:VALUE HAS-SUITABLE-ITEMS-LIST)
 (HAS-MAX-CLIENT-WEIGHT :TYPE NUMBER)
 (HAS-CLIENT-IMPAIRMENT :TYPE IMPAIRMENT)
 (HAS-SUITABLE-ITEM-LIST :TYPE ITEM-LIST)))

generates

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 115

(DEF-CLASS FIND-ITEMS-MATCHING-WEIGHT-WEB-SERVICE-INTERFACE-CHOREOGRAPHY
 (CHOREOGRAPHY)

 ((HAS-GROUNDING
 :VALUE (GROUNDED-TO-WSDL ONLY-OPERATION
 ("c:/CatalogueEntryByWeightInterfaceOut.wsdl"
 "CatalogueEntryByWeightInterfaceOut"
 "CatalogueEntryByWeightInterfaceOut"
 "http://sap.com/research/dip/wp9/elmdb"
 "SAP"
 ((has-client-weight "CatalogueEntryByWeightRequest-Type"))
 "CatalogueEntryResponseType")))
 (HAS-GUARDED-TRANSITIONS :VALUE
 ((RULE1
 (INIT-CHOREOGRAPHY)
 THEN

 (SEND-MESSAGE 'ONLY-OPERATION))))

Moreover, Figure 9 outlines the linking roles of WG and GG mediators in our
approach: a goal to the Web services that may accomplish it; two sub-goals within an
orchestration. More detailed descriptions about the use of WG and GG mediators,
during discovery, selection and mediation phases, are presented in the next use case.

Fig. 9. Structure of the SWS descriptions created for the Find Item ELMS by Impairment and
Weight functionality

The resulting Find Item ELMS by Impairment and Weight SWS
description accomplishes the requested functionality (goal) by integrating services of
the same legacy system. Note that each legacy system is an autonomous entity within
the given scenario and the provided Web services abstract from the underlying
technology. Therefore, we would not have any central control on the involved parties
and detailed information about the respective technologies. For example, we could not
require a new SQL query of the ELMS database that can simply implement the Find
Item ELMS by Impairment and Weight functionality.

The effectiveness of a SWS-base approach becomes clearer when integrating
services from multiple distributed autonomous entities. In this case, we need to deal
with the distinct viewpoints of each involved party. To prove this aspect in the current
scenario, we consider a further complex SWS description: Assess Equipment to

116 A. Gugliotta et al.

Patient. The latter is part of the Change-of-circumstances-citizen-
complex-SWS ontology and integrates functionalities of both domains. It is
decomposed into two complex operations (Figure 10).

Fig. 10. The cross-domain Assess Equipment to Patient functionality

The first operation is the aforementioned Find Item ELMS by Impairment
and Weight. The second operation filters the equipments retrieved in the first
operation by checking if the current case worker – an employee of the Community
Care Department – is entitle to provide the equipments to the user. The following
listing shows the goal and orchestration definitions of the Assess Equipment to
Patient functionality.

(DEF-CLASS ASSESS-EQUIPMENT-TO-PATIENT-GOAL (GOAL) ?GOAL
 ((HAS-INPUT-ROLE :VALUE HAS-CITIZEN-WEIGHT
 :VALUE HAS-CITIZEN-DISEASE
 :VALUE HAS-CASE-WORKER-CODE)
 (HAS-OUTPUT-ROLE:VALUE HAS-SUITABLE-ITEMS-LIST)
 (HAS-CITIZEN-WEIGHT :TYPE NUMBER)
 (HAS-CITIZEN-DISEASE :TYPE DISEASE)
 (HAS-CASE-WORKER-CODE :TYPE NUMBER)

 (HAS-SUITABLE-ITEM-LIST :TYPE ITEM-LIST)))

(DEF-CLASS ASSESS-EQUIPMENT-TO-PATIENT-WEB-SERVICE-INTERFACE-ORCHESTRATION

 ((HAS-BODY
 :VALUE ((ORCH-SEQUENCE
 GET-EQUIPMENT-ASSESSMENT-GOAL
 CHECK-EQUIPMENT-CASE-WORKER-GOAL)
 (ORCH-RETURN (ORCH-GET-GOAL-VALUE CHECK-EQUIPMENT-CASE-WORKER-GOAL))))))

As in the previous SWS description, the new functionality has been created by

simply stating the sequence of goals to accomplish into an orchestration description.
Note that the first goal of the orchestration is the goal depicted in Figure 8.
Conversely to the previous SWS description, however, the first goal of the sequence
refers to the Order Equipment domain ontologies, while the second one - as well as
the main goal – refers to the Citizen Assessment domain ontologies. Particularly, the
inputs of the main goal refer to citizen and disease classes, while the inputs of
the first goal refer to client and impairment classes, respectively. Moreover, the
first goal adopts the ELMS catalogue-data in the output list of equipments, while
the second and main goals use the SWIFT care-item in the respective list of
equipments. To map between the two domains and thus solve the mismatches, we
make use of OO-mediators. As described in Section 4.2, OO-mediators are linked to
the goal through the used-mediator relation and define mapping rules to solve data
mismatching. The mapping rules are valuated when the goal is invoked. The listing

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 117

below shows as excerpt of the mapping rules for the catalogue-data and care-
item classes.

(def-concept-mapping catalogue-data care-item)

(def-relation-mapping catalogue-care-max-weight-mapping
 ((has-max-citizen-weight ?care-item ?value)
 If
 (maps-to ?care-item ?catalogue-data)
 (has-max-user-weight ?catalogue-data ?value)))

The example above makes use of the primitives introduced in Section 4.2.4. More
specifically, the definitions above link the has-max-user-weight slot of class
catalogue-data in the source ontology to the has-max-citizen-weight slot of
class care-item in the target ontology. The def-concept-mapping construct
associates each instance of the catalogue-data class to a newly created instance of
the care-item class and link them by generating instances of the relation maps-to
internally. The def-relation-mapping construct uses the generated maps-to
relation within a rule which asserts the value of the mapped catalogue max user
weight to the value of the care item max citizen weight.

As a result, we easily defined and reused SWS descriptions to implement an
integrated functionality, abstracting from the underlying legacy systems, keeping the
autonomy of involved parties and covering multiple heterogeneous domains. If new
systems need to be integrated, we simply introduce the appropriate SWS descriptions
and mediation facilities - when mismatches occur - likewise we have done in the
second example of the present use case. Conversely, standard database techniques
would necessitate that the different parties harmonise their database schemas or agree
upon a unifying schema. The addition of a single new system would require a new
consensus to be agreed upon.

Further benefits of our approach are highlighted in the next use case.

6.1.4 Presentation Layer
The application is a service oriented portal for the employees of the Community Care
department at ECC. Employees assist citizens to notify their changes of
circumstances, and the system delivers the change to the different agencies involved
in the process. In this way, citizens only have to inform the public administration once
about their changes. The user interface uses the Java API of IRS-III to invoke the
defined goals. The user selects the action to perform from a list of available goals.
After the user has entered the required data, he/she triggers the execution of a goal
and IRS-III performs the appropriate Web service - in the case of get equipment
assessment, the three basic Web services are performed.

6.2 Emergency Management System

In an emergency situation, multiple agencies need to collaborate, sharing data and
information about actions to be performed. However, many emergency relevant
resources are not available on the network and interactions among agencies or
emergency corps usually occur on a personal/phone/fax basis. The resulting
interaction is therefore limited in scope and slower in response time, contrary to the
nature of the need for information access in an emergency situation.

118 A. Gugliotta et al.

Emergency relevant data is often spatial-related. Spatial-Related Data (SRD) is
traditionally managed with the help of Geographical Information Systems (GIS),
which allow access to different layers of SRD such as highways, transportation, postal
addresses index, land use, etc. GIS support decision making by facilitating the
integration, storage, querying, analysis, modeling, reporting, and mapping of this data.
Following several interviews with SRD holders in ECC, it was decided to focus the
scenario on a real past emergency situation: a snowstorm which affected the M11
motorway on 31st January 2003.

6.2.1 Legacy Systems Layer
The Emergency Management System (EMS) aggregates data and functionalities from
three different sources:

• Meteorological Office: is a national UK organization which provides
environmental resources, such as weather forecast, snow and pollution data.

• ViewEssex: is a collaboration between ECC and British Telecommunications
(BT) which has created a single corporate spatial data warehouse. As can be
expected ViewEssex contains a wide range of data including data for roads,
administrative boundaries, buildings and Ordnance survey maps, as well as
environmental and social care data.

• BuddySpace: is an Instant Messaging client facilitating lightweight
communication, collaboration, and presence management [10] built on top of the
instant messaging protocol Jabber4. The BuddySpace client can be accessed on
standard PCs, as well as on PDAs and mobile phones which in an emergency
situation may be the only hardware device available.

6.2.2 Service Abstraction Layer
We distinguish between two classes of services: data and smart. The former refer to
the three data sources introduced above, and they are exposed by means of standard
Web services:

• Meteorological services: provide weather information - e.g. snowfall level - over
a given rectangular spatial area.

• ViewEssex services: return detailed information on specific types of rest centre.
For example, getHospitals is a Web service that returns a list of relevant
hospitals within a given circular area.

• BuddySpace services: allow presence information on online users to be accessed.

Smart services represent specific emergency planning reasoning and operations on the
data provided by the data services. They are implemented in a mixture of Common
Lisp and OCML [23] and make use of the EMS ontologies. In particular, we created a
number of services that filter the data retrieved from ViewEssex according to
emergency-specific requirements: e.g. rest centres with heating system, hotels with at
least 40 beds, easy accessible hospital, etc. The used criteria were gained from our
discussions with emergency officers of ECC.

4 Jabber. http://www.jabber.org/

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 119

6.2.3 Semantic Web Service Layer
The following tables summarise the ontologies reflecting the client and provider
domains to support SWS descriptions.

Service Oriented Domain Ontologies

Meteorology Domain Ontology
It contains the concepts used to semantically describe the
services attached to the data sources of the Met-Office
domain, such as snow and rain.

Emergency Planning Domain Ontology

It contains the concepts used to semantically describe the
services attached to the data sources of the ViewEssex
domain, such as hospitals and supermarkets.

Jabber Domain Ontology

It contains the concepts used to semantically describe the
services attached to the data sources of the Jabber
domain, such as session and preferences.

As in the previous use case, we introduced lifting operations to get the information
provided by Web services up to the semantic level. These lisp functions automatically
extract data from SOAP/XML messages and create instances of the domain
ontologies. The mapping information between syntactic data types and ontological
classes is defined at design time by developers.

User Oriented Domain Ontologies

GUI Ontology

It contains GUI and user-oriented concepts. It maps the
ontology elements which will be displayed to the
elements of the particular user interface which is used.
Note that although the choice of the resulting syntactic
format depends of the chosen lowering operation,
concepts from the GUI ontology are used in order to
achieve this transformation in a suitable way.

Archetypes Ontology

It is a minimal ontological commitment ontology aiming
to provide a cognitively meaningful insight into the
nature of a specialized object; for example, by conveying
the cognitive (“naïve”) feeling that for example an
hospital, as a “container” of people and provider of
“shelter” can be assimilated to the more universal
concept of “house”. The latter can be considered as an
archetypal concept, i.e. based on image schemata and
therefore supposed to convey meaning immediately. It is
moreover assumed that any client, whilst maybe lacking
the specific representation for a specific basic level
concept, knows its archetypal representation.

Spatial Ontology

It describes geographical concepts of location, such as
coordinates, points, polygonal areas and fields. It also
allows describing spatial objects as entities with a
location and a set of attributes.

Context Ontology

It allows describing context n-uples which represent a
particular situation. In the emergency planning
application, context n-uples have up to four components,
the use case, the user role, the location, and the type of
object. Contexts are linked with (WSMO-) goals; i.e. if
this type of user accesses this type of object around this
particular location, these particular goals will be
presented. Contexts also help to inform goals, e.g. if a
goal provides information about petrol stations in an
area, the location part of the context is used to define this
area, and input from the user is therefore not needed.

120 A. Gugliotta et al.

The purpose of the GUI, Archetypes and Spatial ontologies is the aggregation
of different data sources on, respectively, a representation, a cognitive and a spatial
level. Therefore we can group them under the appellation aggregation ontologies.
They allow the different data sources to be handled and presented in a similar way.
Inversely to the lifting operations, lowering operations transform instances of
aggregation ontologies into syntactic documents to be used by the server and client
applications. This step is usually fully automated since aggregation ontologies are, by
definition, quite stable and unique.

SWS Description Ontologies

Met-Office SWS
It contains goal, Web service and mediator descriptions
which define SWS on top of the Met Office database.

Emergency Planning SWS

It contains goal, Web service and mediator descriptions
which define SWS on top of the ViewEssex GIS system.

BuddySpace SWS

It contains goal, Web service and mediator descriptions
which define SWS on top of the BuddySpace instant
messaging system.

Fig. 11. The use of semantics within the Semantic Web Service Layer

Figure 11 outlines how the ontologies and SWS descriptions stored within the
SWS library of IRS-III link the user interface (Application) to the Met Office, ECC
Emergency Planning, and BuddySpace Web services (WSs). Starting from the
application, counterclockwise, the italics words in the picture represent the main
operations performed within IRS-III. The Web service descriptions make use of
domain ontologies - Meteorology, ViewEssex and Jabber – whilst the goal encodings
rely on the GUI, archetypes and spatial ontologies. Mismatches are resolved by
mediation services linked to WG and GG mediators.

Figure 12 shows an example of the created SWS descriptions: Get-Polygon-
GIS-data-with-Filter-Goal represents a request for available shelters within a
given area. The user specifies a polygon area and the shelter type (e.g. hospitals, inns,
hotels). The results obtained by querying ViewEssex need to be filtered in order to

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 121

return shelters correlated to emergency-specific requirements only. The problems to
be solved in this example include: (i) discovering and selecting the appropriate
ViewEssex Web service; (ii) meditating the difference in area representations
(polygon vs. circular) between the user goal and available Web services; (iii)
composing the retrieve and filter data operations.

Fig. 12. A portion of WSMO descriptions for the EMS prototype

We outline below how the SWS representations in Figure 12 address these problems.

• Web service discovery and selection: when the Get-Circle-GIS-Data-Goal
is invoked, IRS-III discovers all of Web services that can solve it by means of the
WG-mediator (Section 4.2.1). Each semantic description of ViewEssex Web
service defines the Web service capability - i.e. the class of shelter provided by
the Web service. The listing below reports an example of kappa expression
defining a capability assumption:

(DEF-CLASS GET-ECC-HOSPITALS-WEB-SERVICE-CAPABILITY (CAPABILITY) ?CAPABILITY
 ((USED-MEDIATOR :VALUE GET-GIS-DATA-MEDIATOR)
 (HAS-ASSUMPTION:VALUE
 (KAPPA(?WEB-SERVICE)
 (= (WSMO-ROLE-VALUE ?WEB-SERVICE'HAS-SPATIAL-OBJECT-QUERY)
 'HOSPITALSQUERY))))

If the Web service provides the class of shelters defined in one of the inputs of
the goal, IRS-III selects it (Section 4.2.2). In the example above, the Web service
is selected if the request class of shelters is hospital (‘hospitalquery).

• Area mediation and orchestration: the Get-Polygon-GIS-data-with-

Filter-Goal is associated with a unique Web service that orchestrates three
sub-goals in sequence. The first one gets the list of polygon points from the input;
the second one is the Get-Circle-GIS-Data-Goal described above; the third
one invokes the smart service which filters the list of shelter data. The first and
second sub-goals are linked by three GG-mediators which return the centre, in the

122 A. Gugliotta et al.

form of latitude and longitude, and the radius of the smallest circle that
circumscribes the given polygon. To accomplish this, we created three mediation
services represented by three distinct goals: Polygon-to-Circle-Lat-Goal,
Polygon-to-Circle-Lon-Goal, and Polygon-to-Circle-Rad-Goal.
Each mediation service is performed by a specific Web service, exposing a Lisp
function (the respective WG-mediator and Web service ovals were omitted to
avoid cluttering the diagram). The results of the mediation services and the class
of shelter required are the inputs to the second sub-goal. A unique GG-mediator
connects the output of the second to the input of the third sub-goal, without
introducing any mediation service.

Additionally to the benefits of our approach introduced in Section 6.1.3, this use
case highlighted the following aspects:

• We created complex SWS descriptions on top of three distinct kinds of legacy
system: database, GIS and instance messaging. The use of Web services allows us
to abstract from the underlying technologies and ease thus their integration.

• A given goal – e.g. Get-Circle-GIS-Data-Goal – might be achieved by
several Web services. The most appropriate one is selected on the basis of the
specific situation. The effective workflow – i.e. the actual sequence of service
invocations – is known at run-time only. In existing Web service-based
approaches the functionalities are mapped at design-time, when the actual context
is not known.

• The use of WG and GG mediators allows goal and process mediation and thus a
smoothly crossing among services of distinct domains in the same workflow. The
most appropriate mediation service is selected at run-time, according to the
specific situation.

• If new Web services will be available – for instance providing data from further
GIS - new Web Service descriptions can be simply introduced and linked to the
Get-Circle-GIS-Goal by the proper mediators - or reusing the existing one, if
semantic mismatches do not exist - without affecting the current structure. In the
same way, new filter services - e.g. more efficient ones - may be introduced.

6.2.4 Presentation Layer
The Emergency Management System (EMS) prototype is in effect a decision support
system, which assists the end-user – currently the Emergency Planning Officer (EPO)
– in assembling information related to a certain type of event, more quickly and
accurately. The application’s user interface is based on Web standards. XHTML and
CSS are used for presentation, while JavaScript (i.e. EcmaScript) is used to handle
user interaction together with AJAX techniques to communicate with IRS-III. One of
the main components of the interface is a map, which uses the Google Maps API [13]
to display polygons and objects (custom images) at specific coordinates and zoom
level. Each time an object is displayed by a user at a particular location, a function of
the context ontology provides the goals which need to be displayed and what inputs
are implicit. A screencast with an example of end-user interactions as well as a live
version are available online5, to be used preferably with the Firefox Web browser.

5 http://irs-test.open.ac.uk/sgis-dev/

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 123

7 Lessons Learned

On the basis of challenges encountered - and the ways in which they were overcome -
we now summarize the lessons learned in terms of: identifying the suitable scenario,
following the adequate development process, verifying the advantages of SWS over
other technologies and outlining the open challenges.

7.1 The Scenario

The first challenge is the identification of the proper scenario; i.e. a scenario where
SWS technology can provide substantial benefits. On the basis of our experience, we
can outline the following main features:

• The scenario is a distributed and heterogeneous environment with a lack of
centralized control, which provides a large amount of alternative – i.e. providing
different functionalities in distinct situations - and competitive - i.e. providing the
same functionalities in the same situation – services.

• The services used in the scenario are connected to external environments and
access to common data/resources already available on the Web.

• The scenario involves multiple stakeholders - clients and service providers - that
need to collaborate. They represent the heterogeneous viewpoints/domains to
describe.

• The scenario is not static, but subject to changes and evolutions. The dynamism
may involve the viewpoint descriptions – e.g. government policies, citizen needs,
agencies’ participation – or the service descriptions - e.g. changes in the service
business process, or new services provided by existing or new partners.

In our work, we preliminary identified a lot of promising service-oriented application
fields, such as e-Procurement, school admissions, libraries, health, GIS applications
(e.g. emergency planning), change of circumstance, child care/children’s services,
youth services, adult social care, benefits and revenues, and criminal justice
initiatives. On the basis of existing legacy systems, services and datasets, resources,
stakeholders’ requirements and needs within ECC, we refined the list reported above
and chose the use cases described in Section 6.

7.2 The Development Process

According to the features of the suitable scenario outlined in the previous section, we
expect that, during the development process, new requirements may arise or some
domain aspects may be better comprehended, new services need to be developed or
integrated in order to cover existing lacks, and new datasets may be available in order
to improve the existing information space. These aspects are common in almost every
scenario, but they are particularly true when dealing with distributed and
heterogeneous sources. Therefore, we aimed to design a pragmatic - in order to
quickly lead to a working outcome – as well as flexible - in order to easily respond to
possible changes or improvements and meet the multiple actors’ viewpoints –
development process. The prototyping approach is a commonly used methodology to

124 A. Gugliotta et al.

mach such requirements. Moreover, the semantic approach generally helps to address
flexibility, since the changes mainly concern the semantic descriptions only - e.g.
ontologies and SWS descriptions of the Semantic Web Service layer - and not the
overall architecture of the system. The challenge was to identify an appropriate
prototyping methodology which takes advantage of the decoupled nature of SWS
descriptions (WSMO approach). As a result, we tailored a SWS-oriented prototyping
development process composed of the following three straightforward phases:
requirements capture, SWS description, evaluation (Figure 13).

Fig. 13. Main steps of the devised prototyping process

The first phase represents the step 1 of the methodology presented in Section 5.2.
The second phase focuses on the semantic descriptions, and encloses the required
flexibility of the process. This phase is decomposed into several activities that deal
with the knowledge acquisition and representation of the multiple domains and actors’
viewpoints of the application context. Each activity can be independently iterated
whenever an improvement or change only involves the respective domain/viewpoint.
This phase represents the steps 2, 3 and 4 of the methodology presented in Section
5.2. The last phase introduces the prototyping iterations of the whole application
development process. The prototype has been shown to stakeholders (clients and
service providers) and end-users. Prototype improvements and changes have been
mainly based on their feedback. Finally, it is important to note that:

• Along the whole development process, we keep a constant contact with the
stakeholders and users. In the first phase, we mainly interview stakeholders’
manager and technical people. Then, we cooperate with domain experts (i.e.
organization employees). Finally, we consult again the stakeholders and involve
the end-users. In this way, we can address the barriers e) and f) identified in
Section 3.2.

• The structure of the second phase leads to a sound approach that separately
focuses on each of the involved actors – i.e. their viewpoints and specific
languages/terminology/skills - keeps organizations’ autonomy in the description
of their domain and allows the cooperative development of the application.

• The proposed methodology is not an e-Government specific formula.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 125

7.3 The Verified Added Values

The deployed applications highlighted advantages of adopting SWS over other
technologies. In this section, we summarise the comparison with existing Web
services-based and ontology-based approaches. Other technologies (e.g. standard
database technologies), indeed, do not provide the adequate abstraction over
heterogeneous and autonomous legacy systems (Section 6.1.3).

• SWS vs. Web Services. By using Web Services, data and functionalities can be
shared with anyone through the Internet. As introduced in Section 2, the supplied
services are autonomous and platform-independent computational elements. The
syntactic definitions used in these specifications allow fast composition and good
results in term of application performance. However, they do not completely
describe the capability of a service and cannot be understood by software
programs. A human developer is required to interpret the meaning of inputs,
outputs and applicable constraints, as well as the context in which services can be
used. Moreover, Web Services lack in flexibility: for instance, if a new Web
Service is deployed, the application developers need to re-model several syntax
descriptions – introducing a cost - in order to integrate it.

On the other hand, the SWS approach is able to model the background
knowledge of a context together to the requested and provided capabilities, and it
hence addresses automatic reasoning and reuse (Section 6.1.3). As a result,
service invocation, discovery, composition and mediation are automated by
adopting the best available solutions for a specific request and increasing the
flexibility, scalability, and maintainability of an application. Moreover, the
execution sequence of a complex SWS (Sections 6.1.3 and 6.1.3) is not hard-
coded, and it is dynamically created by using a goal-based invocation: several
Web Services may be associated with a goal, and only the best one will be
discovered and invoked at runtime only (late binding); if a new service will be
available, the developers simply will describe and then link it to an existing goal;
if a service will change, only the specific semantic description will be affected,
and not the whole process (Section 6.2.3).

• SWS vs. other ontology-based approaches. Creating and managing ontologies is a
bottleneck: understanding a domain, acquiring and representing knowledge,
populating with instances and evolving ontologies are big tasks for the
application developers. In complex domain such as e-Government, centralized
ontologies would require an unrealistic development effort with no guarantee of
satisfactory results. Moreover, government agencies deal with huge datasets (e.g.
demographic, GIS, etc.) that cannot easily transposed to ontology’s instances.
However, in the context of semantic-based applications, such a cost cannot be
deleted, but it may be contained.

SWS technology makes knowledge capture and maintenance process simpler
and more efficient (Section 6.1.3). (a) The only knowledge which must be
modeled is related to the exposed functionality of the Web service. This means
describing the concepts used by the Web service only, such as inputs and output.
Moreover, the instances of a concept are not defined a priori, but they are created
at runtime – i.e. lifted after the execution of the Web service. This minimalist

126 A. Gugliotta et al.

approach makes easy the management of ontologies – i.e. evolution and
maintenance. (b) The knowledge capturing process is distributed among all of the
stakeholders: each partner describes – and it is responsible for – its particular
domain. In this way, the several viewpoints can be independently and
concurrently described by the proper knowledge holders. Partners can also reuse
their own existing ontologies. As a result, we obtain a model that reflects the e-
Government structure and addresses the required lack of central control.

Moreover, a WSMO based approach addresses interoperability among very
heterogeneous knowledge sources and mediation among several viewpoints (users,
multiple providers, etc.). WSMO mediators are mappings that solve existing
mismatches and do not affect service descriptions. In our applications, we have
gathered the following mediation requirements and solutions:

• Data mediation: organizations have their own databases and hence different data
formats for the same concept. Lifting at the semantic level these distinct data
formats, the resulting instances can be mapped by means of either mediation
services (Section 6.2.3) or mapping rules (Section 6.1.3).

• Goal mediation: Multiple Web services can be linked to the same goal via
mediators. In principle, goal and web service descriptions are provided by
distinct organizations, and a mediation service is used to solve the existing
mismatches (Section 6.2.3).

• Process mediation: organizational processes behave in different ways according
to their own set of operational procedures, requirements and constraints. Added
value functionalities can be provided by composing several goal descriptions.
Mediation between two goals in sequence may be necessary to solve exiting
mismatches (Section 6.2.3).

7.4 Open Challenges

Since we are adopting a young technology and e-Government is a very complex
domain, we are aware that not all of the existing issues are completely addressed. The
main remaining challenges identified are:

• SWS infrastructure. SWS technology is an ongoing research, and some of its
main features - e.g. mediation, orchestration, non functional properties based
discovery - are still under development. However, in order to respond to the
needs of real-world applications, IRS-III already introduced some solutions.
During the development of the presented applications, we continually improved
and tested selection, choreography, orchestration and mediations of IRS-III.
However, further use cases will highlight unconsidered aspects and allow us to
improve IRS-III performances. Moreover, the choice of a specific SWS approach
involves the adoption of its defined features; for instance, IRS-III uses client
instead of service choreography, goal-based orchestration instead of goal and web
service composition, etc. However, in a wide domain such as e-Government,
some features may be adequate in a context but not in others, and several partners
may adopt distinct approaches. The openness of IRS-III aims to address the
interoperability of multiple SWS approaches.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 127

• Commercialization. The transition of the currently available systems into a stable
and robust infrastructure is one of the major challenges that need to be solved,
before a SWS-based solution can be deployed into a productive environment.
However, the prototyping development (Section 7.2) of carefully targeted
applications, with clear objectives stated, can lead to real-world operational
systems.

• Organizational and social aspects. The employees of governmental agencies
usually perform their tasks well established procedures; the inappropriately-
handled introduction of new processes or applications may lead to the reluctance
of use them. Active participation of stakeholders and end-users in the design and
development processes allows developers to deploy applications that respect
current procedures and, at the same time, ease the work of staff, leading to
improved acceptance. As described in Section 7.2, our approach follows this
idea; however, more detailed investigations on the approach/methodology to
follow and social implications could be performed.

• Privacy, Security, and Trust. As stated in Section 3.2, these are fundamental
requirements in e-Government. At the syntax level, efficient solutions for
addressing privacy and security issues already exist (e.g. SSL protocol and virtual
private networks for protecting the communications, firewalls and digital
certificates for avoiding malicious accesses and protecting data), or there is
relevant ongoing research (e.g. enriching Web Services description with digital
certificates and signatures). In the Change of Circumstances application, where
citizen information had to be protected, we based on the security and privacy
solutions provided by the adopted EAI system [27].

The semantic level should extend the syntactic solutions by ontologically
describing security and privacy policies of accessing data and processes.
Moreover, trust-based discovery of SWS would be a crucial issue, in order to
avoid invocation of malicious or unreliable services, for which there are no
defined standards by which SWS may expose their policies and trust features.
Most of existing approaches inherit methodologies from the peer-to-peer
networks [21], [24]. Trust evaluation algorithms for SWS consider security
issues, such as confidentiality, authorization, authentication, as rating statements
[17],[19],[20],[21], or more generically Quality of Service performance
properties [35], such as precision and accuracy of data, timeliness in executing a
task, and security. The key to enabling a trust-based selection for SWS lies in a
common ontological representation, where Web service and client perform their
trust guaranties and requirements. In [12], we propose our trust managing
approach based on IRS-III. Essentially, all participants can expose their trust
guaranties and requirements by specifying trust policies. Since this work is still in
progress, we do not apply it to the presented use cases.

• Ease of use of SWS technology in e-Government. The full integration between e-
Government and SWS is not an easy task. The following further requirements
should be considered. (a) Government agencies usually do not directly use the
SWS infrastructure to represent knowledge internally. For instance, organizations
will likely adopt their own workflow paradigm to describe their processes [1].
(b) Organization processes involve interactions with non-software agents, such as
citizens, employees, managers, and politicians; thereby, component services

128 A. Gugliotta et al.

cannot in general be executed in a single-response step, and may require to
following an interaction protocol with humans that involves multiple sequential,
conditional and iterative steps. For instance, a service may require a negotiation
between the citizen and the provider. In our approach, the management of such an
interaction is embedded in the Presentation layer, because IRS-III supports one-
shot goal invocation only.

In order to address these issues, we argue that a more complex semantic layer
– i.e. an explicit e-Government framework - needs to be modelled. In [15], we
identify and model three knowledge levels: Constraints, describing the context
that bounds the creation and evolution of services: legislations, policies, and
strategies influencing the development and management of an e-Government
service-supply scenario; Configuration, describing the context in which services
are supplied: requirements, resources, actor’s role, business processes, and
transactions of an e-Government service-supply scenario; Service delivery,
adopting SWS technology as the base for the description, discovery, composition,
mediation, and execution of (Web) services.

• Standardization. Currently, there are not reference standards for (semantic)
service oriented applications in e-Government. The e-Government community is
still debating on the approach to follow between, as a broadly described option,
standardization versus integration - i.e. focusing on interoperation among several
existing approaches. We believe that our approach is open to both solutions and
our results may contribute to the investigation of possible standards.

8 Related Work

In the last years, several projects applied SWS technology in the e-Government
domain, but only a few of them show reusability and composability in real usage
scenarios. The OntoGov project [25] develops a platform that will facilitate the
consistent composition, reconfiguration and evolution of e-Government services. It
focuses more on the service life cycle than the interoperability and integration issues.
Services are described by means of a “meta ontology” that extends OWL-S [26] by
introducing WSMO [36] features. Terregov [32] is a project at an early stage of
development. It aims to address the issue of interoperability of e-Government
services. Its architecture is composed by a framework and intelligent agents that will
offer configuration and reconfiguration of service workflows by selecting competing
Web Services on the basis of their performance, and composing dynamic workflows
based on semantic descriptions. In order to represent e-Government processes, it
adopts OWL-S for describing the behaviors of Web Services, and BPEL [4] workflow
description language for their orchestration. WebSenior [22] uses ontologies to
automatically generate Web Services customized to senior citizen’s needs and
government program laws and regulations. Differently to both OntoGov and
Terregov, WebSenior proposes a solution to a specific real usage scenario. This
highlights the practical applicability of its approach, but limits the reusability and
flexibility.

No one of the mentioned approaches adopts mediation mechanisms to overcome
data and process mismatches: they only propose centralized ontologies for
representing the entire domain and thereby addressing interoperability.

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 129

Further efforts on investigating multiple aspects of the application of semantic
technologies in the e-Government domain are under way: BRITE [11] aims to enable
interoperations in a transnational scenario among institutions that concert the
registration of businesses in the European Union; FIT [29] will develop, test, and
validate a self-adaptive citizen-oriented e-government framework; SAKE [30] will
develop a holistic framework - and the supporting tools – that will be sufficiently
flexible to adapt changing, diverse environment, and needs; and SemanticGov [34]
will provide a WSMO-based infrastructure for Pan-European e-Government services.
Since all of these projects started in 2006, they are still in their initial phase.

9 Summary and Future Work

In our work, we successfully established a close collaboration with a large local
authority in UK in order to define a reusable SWS-based framework for deploying
real-world applications in the e-Government domain. The aim is to dealing with
complex scenarios, by easily interconnecting heterogeneous domains and allowing
governmental agencies to cooperate and consume shared data in an easy way and
without a centralized control. SWS technology promises to address interoperability
and integration issues, and automate the development of service-oriented applications
through semantic Web technologies (Section 2).

The analysis of motivations, requirements, and expected results of matching SWS
and e-Government research areas (Section 3) provided us the aspects to stress first in
the design of our framework and then in the development of compelling use cases.

To provide semantics and step towards the creation of added value services, we
adopted IRS-III, an existing SWS broker (Section 4). In our work, we enclosed IRS-
III into a 4-layers generic application architecture (Section 5.1) and devised a
development methodology (Section 5.2) to propose a reusable framework for
deploying SWS-based applications. The layering of the architecture proved to be very
useful: (a) the development of ontologies and SWS descriptions could be decoupled
from the implementation of the user interface and the deployment of Web Services;
(b) using Web Services on top legacy systems, we abstracted from the technical
details of involved legacy systems. The proposed methodology allowed the easy
development of agile and flexible applications based on the idea of reuse. For
instance, the methodology involves the ontological decoupling of the client’s context
from the providers’ one. This led us to lower the cost of application deployment by
introducing cooperative development and creating small ontologies focused on the
specific service functionalities.

Following our approach, we deployed two e-Government applications (Section 6):
Change of Circumstances and Emergency Management System. In this way, we (a)
tested the reusability and adaptability of our approach to different e-Government
contexts, (b) proved how our framework addresses interoperability and integration
issues, and (c) stressed all of the aspects associated with the development of SWS-
based applications: e.g. knowledge acquisition, discovery, composition, and
mediation. Note that the development of the second application got benefits from the
lessons learned in the development of the first one. In particular, we reduced the time
of capturing requirements and describing SWS and obtained more qualitative results.

130 A. Gugliotta et al.

On the basis of these considerations and the results obtained from the two
applications introduced above, we reported the main lessons learned (Section 7). We
outlined a general scenario where SWS technology can provide substantial benefits;
detailed our prototyping development process and highlighted the active role of
stakeholders and end-users; summarized the verified added values of SWS over other
technologies; and pointed out the open challenges that will drive our future work.

The analysis of related work (Section 8) showed that the application of SWS in e-
Government is a really interesting topic, but a few projects provide real-world
applications yet. Since e-Government community claims for creating compelling
prototypes, establishing visible standards, stable and mature technologies, and
convincing business cases, we believe that our work may contribute to raising
awareness of the potential benefits of SWS in e-Government. Perhaps more
importantly, the lessons learned may be also used to (a) guide the efforts of new e-
Government applications/projects; (b) influence the e-Government standards
environment and the e-Government strategic environment so as to encourage take up
of SWS technologies.

Acknowledgments. This work is supported by the DIP (Data, Information and
Process Integration with Semantic Web Services) project. DIP (FP6 – 507483) is an
Integrated Project funded under the European Union’s IST programme.

References

[1] der Aalst, W.V., ter Hofstede, A., Weske, M.: Business process management: a survey.
In: BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

[2] Amazon: Amazon web services (2006), http://www.amazon.com/gp/browse.html/104-
6906496-9857523?%5Fencoding=UTF8&node=3435361/

[3] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(4),
34–43 (2001)

[4] BPEL4WS Consortium: Business process execution language for web services (2004),
http://www.ibm.com/developerworks/library/ws-bpel

[5] Cabral, L., Domingue, J.: Mediation of Semantic Web Services in IRS-III. In: Proceeding
of the Workshop on Mediation in Semantic Web Services in conjunction with the 3rd
International Conference on Service Oriented Computing, Amsterdam, The Netherlands
(2005)

[6] Commission of the European Communities: The Role of e-Government for Europe’s
Future. Commission Staff Working Paper COM 567, 26.9 (2003)

[7] Commission of the European Communities: Linking up Europe: the Importance of
Interoperability for e-Government Services. Commission Staff Working Paper SEC, 801
(2003)

[8] Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci,
C.: IRS-III: A Broker for Semantic Web Services based Applications. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.
(eds.) ISWC 2006. LNCS, vol. 4273, Springer, Heidelberg (2006)

[9] Domingue, J., Galizia, S., Cabral, L.: Choreography in IRS-III- Coping with
Heterogeneous Interaction Patterns in Web Services. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 171–185. Springer,
Heidelberg (2005)

 Deploying Semantic Web Services-Based Applications in the e-Government Domain 131

[10] Eisenstadt, M., Komzak, J., Dzbor, M.: Instant messaging + maps = powerful
collaboration tools for distance learning. In: Proceedings of TelEduc 2003, Havana, Cuba
(2003)

[11] van Elst, L., Klein, B., Maus, H., Schoning, H., Tommasi, A., Zavattari, C., Favaro, J.,
Giannella, V.: Business Register Interoperability throughout Europe: The BRITE Project.
In: AAAI Spring Symposium Semantic Web meets eGovernment, AAAI Press, Stanford
(2006)

[12] Galizia, S.: WSTO: A Classification-Based Ontology for Managing Trust in Semantic
Web Services. In: Proceedings of 3th International Semantic Web Conference, Budva,
Montenegro (2006)

[13] Google: Google Web APIs (2005), http://www.google.com/apis/index.html
[14] Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition 5(2) (1993)
[15] Gugliotta, A., Cabral, L., Domingue, J.: Knowledge Modeling for Integrating e-

Government Applications and Semantic Web Services. In: AAAI Spring Symposium
Semantic Web meets eGovernment, AAAI Press, Stanford (2006)

[16] Gugliotta, A., Cabral, L., Domingue, J., Roberto, V.: A semantic web service-based
architecture for the interoperability of e-Government services. In: Proceeding of the
International Workshop on Web Information Systems Modeling, Sydney, Australia
(2005)

[17] Kagal, L., Paoucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization
and privacy for Semantic Web Services. In: Proceeding of AAAI 2004 Spring
Symposium on Semantic Web Services, Stanford University (2004)

[18] Klischewski, R., Scholl, H.J.: Information Quality as a Common Ground for Key Players
in e-Government Integration and Interoperability. In: Proceedings of the 39th Hawaii
International Conference on System Sciences, Hyatt Regency Kauai, Hawaii (2006)

[19] Kolovski, V., Parsia, B., Katz, Y., Hendler, J.: Representing Web Service Policies in
OWL-DL. In: Proceedings of 4th International Semantic Web Conference, Galway,
Ireland (2005)

[20] Mani, A., Nagarajan, A.: Understanding quality of service for Web Services: Improving
the performance of your Web Services -IBM-report (2002), http://www-
128.ibm.com/developerworks/library/ws-quality.html

[21] Maximilien, E.M., Singh, M.P.: Toward Autonomic Web Services Trust and Selection.
In: ICSOC 2004. Proceedings of 2nd International Conference on Service Oriented
Computing, New York (2004)

[22] Medjahed, B., Bouguettaya, A.: Customized Delivery of E-Government Web Services.
Web Services, IEEE Intelligent Systems 20(6) (2005)

[23] Motta, E.: An Overview of the OCML Modelling Language. In: Proceedings of the 8th
Workshop on Knowledge Engineering Methods and Languages (1998)

[24] Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust Negotiation for Semantic Web
Services. In: Proceedings of 1st International Workshop on Semantic Web Services and
Web Process Composition in conjunction with the 2004 IEEE International Conference
on Web Services, San Diego, California, USA (2004)

[25] OntoGov: Ontogov project (2004), http://www.ontogov.com
[26] OWL-S Coalition: OWL-S 1.1 release (2004), http://www.daml.org/services/owl-s/1.1/
[27] SAP: SAP exchange infrastructure: The integration solution for process-centric

collaboration, http://www.sap.com/xi
[28] SOAP: SOAP Version 1.2 Part 0: Primer (2003), http://www.w3.org/TR/soap12-part0/

132 A. Gugliotta et al.

[29] Stojanovic, N., Stojanovic, L., Hinkelmann, K., Mentzas, G., Abecker, A.: Fostering self-
adaptative e-Government services improvement using semantic technologies. In: AAAI
Spring Symposium Semantic Web meets eGovernment, AAAI Press, Stanford (2006)

[30] Stojanovic, N., Mentzas, G., Apostolou, D.: Semantic-enbled Agile Knowledge-based e-
government. In: AAAI Spring Symposium Semantic Web meets eGovernment, AAAI
Press, Stanford (2006)

[31] Sycara, K., Paoulucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of semantic web services. Journal of Web Semantic 1(1)
(2003)

[32] TerreGov: Terregov project (2004), http://www.terregov.eupm.net/my spip/index.php
[33] UDDI: UDDI Spec Technical Committee Specification v. 3.0 (2003), http://uddi.org/

pubs/uddi-v3.0.1-20031014.htm
[34] Vitvar, T., Kerrigan, M., van Overeem, A., Peristeras, V., Tarabanis, K.: Infrastructure

for the Semantic Pan-European E-Government Services. In: AAAI Spring Symposium
Semantic Web meets eGovernment, AAAI Press, Stanford (2006)

[35] Vu, L., Hauswirth, M.H., Aberer, K.: QoS-based Service Selection and Ranking with
Trust and Reputation Management. Technical Report IC2005029, Swiss Federal Institute
of Technology at Lausanne (EPFL), Switzerland (2005)

[36] WSDL: Web Services Description Language (WSDL) 1.1 (2001), http://www.w3.org/
TR/2001/NOTE-wsdl-20010315

[37] WSMO Working Group, D2v1.0: Web Service Modeling Ontology (WSMO). WSMO
Working Draft (2004), http://www.wsmo.org/2004/d2/v1.0/

Linking Data to Ontologies

Antonella Poggi1, Domenico Lembo1, Diego Calvanese2,
Giuseppe De Giacomo1, Maurizio Lenzerini1, and Riccardo Rosati1

1 Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy

{poggi,degiacomo,lembo,lenzerini,rosati}@dis.uniroma1.it
2 Faculty of Computer Science, Free University of Bozen-Bolzano,

Piazza Domenicani 3, I-39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract. Many organizations nowadays face the problem of accessing
existing data sources by means of flexible mechanisms that are both pow-
erful and efficient. Ontologies are widely considered as a suitable formal
tool for sophisticated data access. The ontology expresses the domain of
interest of the information system at a high level of abstraction, and the
relationship between data at the sources and instances of concepts and
roles in the ontology is expressed by means of mappings. In this paper
we present a solution to the problem of designing effective systems for
ontology-based data access. Our solution is based on three main ingre-
dients. First, we present a new ontology language, based on Description
Logics, that is particularly suited to reason with large amounts of in-
stances. The second ingredient is a novel mapping language that is able
to deal with the so-called impedance mismatch problem, i.e., the problem
arising from the difference between the basic elements managed by the
sources, namely data, and the elements managed by the ontology, namely
objects. The third ingredient is the query answering method, that com-
bines reasoning at the level of the ontology with specific mechanisms for
both taking into account the mappings and efficiently accessing the data
at the sources.

1 Introduction

In several areas, such as Enterprise Application Integration, Data Integra-
tion [19], and the Semantic Web [13], ontologies are considered as the ideal
formal tool to provide a shared conceptualization of the domain of interest. In
particular, in many of the above areas, ontologies are advocated for realizing
what we can call ontology-based data access, that can be explained as follows: we
have a set of pre-existing data sources forming the data layer of our information
system, and we want to build a service on top of this layer, aiming at presenting
a conceptual view of data to the clients of the information system. Specifically,
the conceptual view is expressed in terms of an ontology, that will represent the
unique access point for the interaction between the clients and the system, and
the data sources are independent from the ontology. In other words, our aim is

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 133–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 A. Poggi et al.

to link to the ontology a collection of data that exist autonomously, and have not
been necessarily structured with the purpose of storing the ontology instances.

Therefore, in ontology-based data access, the ontology describes the domain
of interest at a high level of abstraction, so as to abstract away from how data
sources are maintained in the data layer of the system itself. It follows that the
conceptual view and the data sources are both at different abstraction levels, and
expressed in terms of different formalisms. For example, while logical languages
are nowadays used to specify the ontology, the data sources are usually expressed
in terms of the relational data model.

Taking into account these differences, the specific issues arising from the in-
teraction between the ontology and the data sources can be briefly summarized
as follows:
1. Ontologies exhibit to the client a conceptual view of the domain of interest,

and allow for expressing at the intensional level complex kinds of semantic
conditions over such domain. One of the main challenges in this respect
is to single out ontology languages that provide an acceptable compromise
between expressive power and computational complexity of reasoning over
both the ontology and the underlying sources storing data about the domain.

2. The amount of data stored at the sources can be very large. Therefore, one
needs to resort to a technology that is able to efficiently access very large
quantities of data. Nowadays, relational database technology is the best (if
not the only) one that fulfills such a requirement. Hence, in our context,
we are interested in determining how much one can push the expressive
power of the formalism used for expressing the conceptual layer, while still
maintaining the ability to answer queries by relying on a relational DBMS
to access data at the sources.

3. Since we assume that the data sources exist in the information system inde-
pendently of the conceptual layer, the whole system will be based on specific
mechanisms for mapping the data at the sources to the elements of the on-
tology. So, in ontology-based data access, the mapping is the formal tool by
which we determine how to link data to the ontology, i.e., how to reconstruct
the semantics of data stored in the sources in terms of the ontology.

4. In general, there is a mismatch between the way in which data is (and can be)
represented in a relational database, and the way in which the corresponding
information is rendered in an ontology. Specifically, while the database of a
data source stores data, instances of concepts in an ontology are objects,
each one denoted by an object identifier, not to be confused with a data
value. Such a problem is known as impedance mismatch. The language used
to specify the mappings between the data and the ontology should provide
specific mechanisms for addressing the impedance mismatch problem.

5. The main reason to build an ontology-based data access system is to pro-
vide high-level services to the clients of the information system. The most
important service is query answering. Clients express their queries in terms
of the conceptual view (the ontology), and the system should reason about
the ontology and the mapping and should translate the request into suitable
queries posed to the sources.

Linking Data to Ontologies 135

Recent research in the area of ontology languages for the Semantic Web has
addressed several important aspects regarding the issues mentioned above.

As for issue 1, an effort has been undertaken to understand which language
would be best suited for representing ontologies in a setting where an ontology
is used for accessing large quantities of data [7,26,17]. This work has shown that
most of the languages proposed so far are not really suited for this task. Indeed,
the most significant fragments of OWL [14]1 that have been proposed by the
W3C (namely, OWL-DL and OWL-Lite) are actually coNP-hard in data com-
plexity [10,7], i.e., when complexity is measured with respect to the size of the
data layer only, which is indeed the dominant parameter in this context [31].
This means that, in practice, computations over large amounts of data are pro-
hibitively costly. A way to overcome such a problem is to impose restrictions
on the ontology language, so as to guarantee that reasoning remains compu-
tationally tractable with respect to data complexity. Possible restrictions that
guarantee polynomial reasoning have been studied and proposed in the context
of description logics, such as Horn-SHIQ [17], EL++ [3], and DLP [12]. Among
such fragments, of particular interest are those belonging to the DL-Lite fam-
ily [6,7]. These logics allow for answering complex queries (namely, conjunctive
queries, i.e., SQL select-project-join queries, and unions of conjunctive queries)
in LogSpace with respect to data complexity. More importantly, after a prepro-
cessing phase which is independent of the data, they allow for delegating query
processing to the relational DBMS managing the data layer.

Hence, by adopting a technology based on logics of the DL-Lite family, we
also aim at a solution to issue 2 above. Specifically, according to [7] there are
two maximal languages in the DL-Lite family that allow for delegating query
processing to a DBMS. The first one, called DL-LiteF in [7], allows for specify-
ing the main modeling features of conceptual models, including cyclic assertions,
ISA on concepts, inverses on roles, domain and range of roles, mandatory par-
ticipation to roles, and functional restrictions on roles. The second one, called
DL-LiteR, is able to fully capture (the DL fragment of) RDFS, and has in addi-
tion the ability of specifying mandatory participation to roles and disjointness
between concepts and roles. The language obtained by unrestrictedly merging
the features of DL-LiteF and DL-LiteR, while quite interesting in general, is not
in LogSpace with respect to data complexity anymore [7], and hence looses the
most interesting computational feature for ontology-based data access. Hence,
to obtain a language whose expressive power goes beyond that of DL-LiteF or
DL-LiteR and that is still useful, we need to restrict how the features of both
languages are merged and can interact.

Regarding issues 3 and 4, i.e., the impedance mismatch between data items in
the data layer and objects at the conceptual level, we observe that such a problem
has received only little attention in the Semantic Web community. Some of the
issues that need to be addressed when putting into correspondence a relational
data source with an ontology, arise also in the context of ontology integration and
alignment, which is the topic of several recent research works. These works study

1 http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

136 A. Poggi et al.

formalisms for specifying the correspondences between elements (concepts, rela-
tions, individuals) in different ontologies, ranging from simple correspondences
between atomic elements, to complex languages allowing for expressing complex
mappings. We now briefly discuss the most significant of such proposals found
in the literature.

C-OWL and DDLs (Distributed Description Logics) [30] are extensions of
OWL and DLs with so-called bridge rules, expressing simple forms of semantic
relations between concepts, roles, and individuals. At the semantic level, the
sets of objects in two ontologies are disjoint, but objects are related to each
other by means of domain relations, which model simple translation functions
between the domains. Reasoning in C-OWL is based on tableaux techniques.
MAFRA [23] is a system that allows one to extract mappings from ontologies,
and to use them for the transformation of data between ontologies. It does so
by providing a so-called Semantic Bridge Ontology, whose instantiation provides
the ontology mapping, and which can also be used as input for data transfor-
mations. The Ontology Mapping Language [29] of the Ontology Management
Working Group (OMWG)2 is an ontology alignment language that is indepen-
dent of the language in which the two ontologies to be aligned are expressed.
The alignment between two ontologies is represented through a set of mapping
rules that specify a correspondence between various entities, such as concepts,
relations, and instances. Several concept and relation constructors are offered to
construct complex expressions to be used in mappings.

While the above proposals deal with the alignment between ontologies, none
of them addresses properly the problem of establishing sound mechanisms for
linking existing data to the instances of the concepts and the roles in the ontology.
This issue is studied in [11,5], where specific mapping languages are proposed
for linking data to ontologies. Such approaches, however, do not deal with the
problem of the impedance mismatch between objects and values, which needs to
be addressed by defining suitable mechanisms for mapping the data values to
the objects in the ontology, and specifying how object identifiers can be built
starting from data values. Instead, such a problem has already been considered
in databases, and specifically in the context of declarative approaches to data
integration. For example, in [9], a mechanism is proposed for annotating the
mappings from the data to a global schema (which plays the role of an ontology).
Such annotations, together with specific conversion and matching predicates,
specify which attributes should be used to identify objects at the conceptual
level, and how data coming from different data sources should be joined. We
also mention the work done in deductive object-oriented databases on query
languages with invention of objects [15,16]. Such objects are created starting
from values specified in the body of a query, by applying suitable (Skolem)
functions.

We argue that the results of the above mentioned papers, although interesting
from several points of view, do not provide a clear and comprehensive solution
to the problem of designing effective and efficient tools for ontology-based data

2 http://www.omwg.org/

http://www.omwg.org/

Linking Data to Ontologies 137

access. The goal of this paper is to present one such solution. Specifically, we
present three contributions towards this end:

– We propose a new logic of the DL-Lite family. By looking at the interaction
between the distinguishing features of DL-LiteF and DL-LiteR, we have been
able to single out an extension of both logics that is still LogSpace with
respect to data complexity, and allows for delegating the “data dependent
part” of the query answering process to the relational DBMS managing the
data layer. In devising this logic, called DL-LiteA, we take seriously the dis-
tinction between objects and values (a distinction that is typically blurred
in description logics), and introduce, besides concepts and roles, also at-
tributes, which describe properties of concepts represented by values rather
than objects.

– We illustrate a specific language for expressing mappings between data at
the sources and instances of concepts and roles in the ontology. The map-
ping language has been designed in such a way to provide a solution to the
impedance mismatch problem. Indeed, with respect to previous proposals of
mapping languages, the distinguishing feature of our proposal is the possi-
bility to create new object identifiers by making use of values retrieved from
the database. We have borrowed this idea from the work mentioned above
on query languages with invention of objects [15,16]. With respect to these
works, our approach looks technically simpler, since the mapping mecha-
nism used to create object terms does not allow for recursion. However, we
have to deal with the complex constructs presented in the ontology, which
significantly complicates matters.

– Our mapping mechanism also deals with the fact that the data sources and
the ontology Om are based on different semantical assumptions. Indeed, the
semantics of data sources follows the so-called “closed world assumption”
[28], which intuitively sanctions that every fact that is not explicitly stored
in the database is false. On the contrary, the semantics of the ontology is
open, in the sense that nothing is assumed about the facts that do not appear
explicitely in the ABox.

– We devise a novel query answering method, which is able to fully take into
account both the ontology and the mappings from the data layer to the
ontology itself. The method extends the ones already presented in [7] for the
two sub-logics DL-LiteF and DL-LiteR. Similar to these, it works by first
expanding the query according to the constraints in the ontology. In this
case, however, the expanded query is not directly used to compute the result.
Rather, the expanded query is the input of a novel step, called unfolding,
that, taking into account the mappings, translates the expanded query in
terms of the relations at the sources. The unfolded query is then evaluated
at the sources, and the result is processed so as to conform to the concepts
and roles in the ontology. The unfolding step relies on techniques from partial
evaluation [21], and the whole query answering method runs in LogSpace

in data complexity, i.e., the complexity measured with respect to the size of
source data.

138 A. Poggi et al.

The rest of the paper is organized as follows. In Section 2 we present the de-
scription logic we deal with, namely DL-LiteA. In Section 3 we present the frame-
work for linking external data sources to an ontology expressed in DL-LiteA. In
Section 4 we provide an overview the query answering method, and in Sections 5
and 6 we provide the technical details of such method. Finally, Section 7 con-
cludes the paper.

2 The Description Logic DL-LiteA

Description Logics (DLs) [4] are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs. Different DLs allow for different constructs. A DL ontology is con-
stituted by a TBox and an ABox, where the first component specifies general
properties of concepts and roles, whereas the second component specifies the
instances of concepts and roles.

The study of the trade-off between expressive power and computational com-
plexity of reasoning has been traditionally one of the most important issues
in DLs. Recent research has shown that OWL, the W3C Web Ontology Lan-
guage for the Semantic Web3, if not restricted, is not suited as a formalism
for representing ontologies with large amounts of instance assertions in the
ABox [7,26,17], since reasoning in such a logic is inherently exponential (coNP-
hard) with respect data complexity, i.e., with respect to the size of the ABox.

On the contrary, the DL-Lite family [6,7,8] is a family of DLs specifically tai-
lored to capture basic ontology languages, conceptual data models (e.g., Entity-
Relationship [1]), and object-oriented formalisms (e.g., basic UML class dia-
grams4) while keeping the complexity of reasoning low. In particular, ontology
satisfiability, instance checking, and answering conjunctive queries in these logics
can all be done in LogSpace with respect to data complexity.

In this section, we present a new logic of the DL-Lite family, called DL-LiteA.
Such a DL is novel with respect to the other DLs of the DL-Lite family, in
that it takes seriously the distinction between objects and values, and therefore
distinguishes:

– concepts from value-domains – while a concept is abstraction for a set of
objects, a value-domain, also known as concrete domain [22], denotes a set
of (data) values,

– attributes from roles – while a role denotes a binary relation between objects,
a (concept) attribute denotes a binary relation between objects and values.

We notice that the distinction between objects and values, although present
in OWL, is typically blurred in many DLs. In the following, we first illustrate

3 http://www.w3.org/TR/owl-features/
4 http://www.omg.org/uml/

http://www.w3.org/TR/owl-features/
http://www.omg.org/uml/

Linking Data to Ontologies 139

the mechanisms provided by DL-LiteA for building expressions, and then we
describe how expressions are used to specify ontologies, and which is the form
of queries allowed in our logic. Finally, we conclude the section by describing
relevant reasoning tasks over DL-LiteA ontologies.

2.1 DL-LiteA Expressions

Like in any other logics, DL-LiteA expressions are built over an alphabet. In
our case, the alphabet comprises symbols for atomic concepts, value-domains,
atomic roles, atomic attributes, and constants.

The value-domains that we consider in DL-LiteA are those corresponding
to the data types adopted by the Resource Description Framework (RDF)5.
Intuitively, these types represent sets of values that are pairwise disjoint. In the
following, we denote such value-domains by T1, . . . , Tn.

Furthermore, we denote with Γ the alphabet for constants, which we assume
partitioned into two sets, namely, ΓV (the set of constant symbols for values),
and ΓO (the set of constant symbols for objects). In turn, ΓV is partitioned into
n sets ΓV1 , . . . , ΓVn , where each ΓVi is the set of constants for the values in the
value-domain Ti.

In providing the specification of our logics, we use the following notation:

– A denotes an atomic concept, B a basic concept, C a general concept, and
�C denotes the universal concept. An atomic concept is a concept denoted
by a name. Basic and general concepts are concept expressions whose syntax
is given at point 1 below.

– E denotes a basic value-domain, i.e., the range of an attribute, F a value-
domain expression, and �D the universal value-domain. The syntax of value-
domain expressions is given at point 2 below.

– P denotes an atomic role, Q a basic role, and R a general role. An atomic
role is simply a role denoted by a name. Basic and general roles are role
expressions whose syntax is given at point 3 below.

– UC denotes an atomic attribute (or simply attribute), and VC a general
attribute. An atomic attribute is an attribute denoted by a name, whereas
a general attribute is a concept expression whose syntax is given at point 4
below.

Given an attribute UC , we call the domain of UC , denoted by δ(UC), the set
of objects that UC relates to values, and we call range of UC , denoted by ρ(UC),
the set of values that UC relates to objects. Note that the domain δ(UC) of an
attribute UC is a concept, whereas the range ρ(UC) of UC is a value-domain.

We are now ready to define DL-LiteA expressions.

1. Concept expressions:

B ::= A | ∃Q | δ(UC)
C ::= �C | B | ¬B | ∃Q.C

5 http://www.w3.org/RDF/

http://www.w3.org/RDF/

140 A. Poggi et al.

2. Value-domain expressions:

E ::= ρ(UC)
F ::= �D | T1 | · · · | Tn

3. Role expressions:
Q ::= P | P−

R ::= Q | ¬Q

4. Attribute expressions:
VC ::= UC | ¬UC

The meaning of every DL-LiteA expression is sanctioned by the semantics.
Following the classical approach in DLs, the semantics of DL-LiteA is given
in terms of first-order logic interpretations. All such intepretations agree on
the semantics assigned to each value-domain Ti and to each constant in ΓV . In
particular, each Ti is interpreted as the set val(Ti) of values of the corresponding
RDF data type, and each ci ∈ ΓV is interpreted as one specific value, denoted
val(ci), in val(Ti). Note that, for i �= j, it holds that val(Ti) ∩ val(Tj) = ∅.

Based on the above observations, we can now define the notion of interpreta-
tion in DL-LiteA. An interpretation is a pair I = (ΔI , ·I), where

– ΔI is the interpretation domain, that is the disjoint union of two non-empty
sets: Δ I

O , called the domain of objects, and Δ I
V , called the domain of values.

In turn, Δ I
V is the union of val(T1), . . . , val(Tn).

– ·I is the interpretation function, i.e., a function that assigns an element of
ΔI to each constant in Γ , a subset of ΔI to each concept and value-domain,
and a subset of ΔI × ΔI to each role and attribute, in such a way that

• for each a ∈ ΓV , aI = val(a),
• for each a ∈ ΓO, aI ∈ Δ I

O ,
• for each a, b ∈ Γ , a �= b implies aI �= bI ,
• for each Ti, T I

i = val(Ti),
• the following conditions are satisfied:

�I
C = Δ I

O

�I
D = Δ I

V

AI ⊆ Δ I
O

P I ⊆ Δ I
O × Δ I

O

UI
C ⊆ Δ I

O × Δ I
V

(¬UC)I = (Δ I
O × Δ I

V) \ UI
C

(¬Q)I = (Δ I
O × Δ I

O) \ QI

(ρ(UC))I = { v | ∃o. (o, v) ∈ UI
C }

(δ(UC))I = { o | ∃o. (o, v) ∈ UI
C }

(P −)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(∃Q.C)I = { o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI }
(¬B)I = Δ I

O \ BI

Note that theabovedefinition implies thatdifferentconstantsare interpreteddif-
ferently in thedomain, i.e.,DL-LiteA adopts the so-calleduniquenameassumption.

2.2 DL-LiteA Ontologies

As usual when expressing ontologies in DLs, a DL-LiteA ontology O = 〈T , A〉
represents the domain of discourse in terms of two components: the TBox T ,

Linking Data to Ontologies 141

representing the intensional knowledge, and the ABox A, representing the exten-
sional knowledge. DL-LiteA TBoxes and ABoxes are defined as follows. DL-LiteA
intensional assertions are assertions of the form:

B
 C (concept inclusion assertion)
Q
 R (role inclusion assertion)
E
 F (value-domain inclusion assertion)

UC
 VC (attribute inclusion assertion)

(funct Q) (role functionality assertion)
(funct UC) (attribute functionality assertion)

A concept (respectively, value-domain, role, and attribute) inclusion assertion
expresses that a basic concept B (respectively, basic value-domain E, basic role
Q, and atomic attribute UC) is subsumed by a general concept C (respectively,
value-domain F , role R, attribute VC). A role functionality assertion expresses
the (global) functionality of a role. In the case where Q = P , the functional-
ity constraint is imposed on an atomic role, while in the case where Q = P−,
it is imposed on the inverse of an atomic role. Analogously, an attribute func-
tionality assertion expresses the (global) functionality of an atomic attribute.
Concept (respectively, value-domain, and role) inclusions of the form B1
 ¬B2
(respectively, E1
 ¬E2, Q1
 ¬Q2) are called negative inclusion assertions.

Then, DL-LiteA TBoxes are finite sets of DL-LiteA intensional assertions
where suitable limitations in the combination of such assertions are imposed. To
precisely describe such limitations, we first introduce some preliminary notions.
An atomic attribute UC (respectively, a basic role Q) is called an identifying
property in a TBox T , if T contains a functionality assertion (funct UC) (respec-
tively, (funct Q)). Let X be an atomic attribute or a basic role. We say that X
appears positively (respectively, negatively) in the right-hand side of an inclusion
assertion α if α has the form Y
 X (respectively, Y
 ¬X). Also, an atomic
attribute or a basic role is called primitive in a TBox T , if it does not appear
positively in the right-hand side of an inclusion assertion of T , and it does not
appear in an expression of the form ∃Q.C in T . Then,

a DL-LiteA TBox is a finite set T of DL-LiteA intensional assertions
satisfying the condition that every identifying property in T is primitive
in T .

Roughly speaking, in a DL-LiteA TBox, identifying properties cannot be spe-
cialized, i.e., they cannot appear positively in the right-hand side of inclusion
assertions.

We now specify the semantics of a TBox T , again in terms of interpretations.
An interpretation I satisfies

– a concept (respectively, value-domain, role, attribute) inclusion assertion
B
 C (respectively, E
 F , Q
 R, UC
 VC), if

BI ⊆ CI (respectively, EI ⊆ F I ,QI ⊆ RI ,U I
C ⊆ V I

C)

142 A. Poggi et al.

– a role functionality assertion (funct Q), if for each o1, o2, o3 ∈ Δ I
O

(o1, o2) ∈ QI and (o1, o3) ∈ QI implies o2 = o3

– an attribute functionality assertion (funct UC), if for each o ∈ Δ I
O and

v1, v2 ∈ Δ I
V

(o, v1) ∈ U I
C and (o, v2) ∈ U I

C implies v1 = v2.

I is a model of a DL-LiteA TBox T , or, equivalently, I satisfies T , written
I |= T , if and only if I satisfies all intensional assertions in T .

We next illustrate an example of a DL-LiteA TBox. In all the examples of
this paper, we write concept names in lowercase, role names in UPPERCASE,
attribute names in sans serif font, and domain names in typewriter font.

Example 1. Let T be the TBox containing the following assertions:

tempEmp
 employee (1)
manager
 employee (2)
employee
 person (3)
employee
 ∃WORKS-FOR (4)

∃WORKS-FOR−
 project (5)
person
 δ(PersName) (6)
(funct PersName) (7)
ρ(PersName)
 xsd:string (8)

project
 δ(ProjName) (9)
(funct ProjName) (10)
ρ(ProjName)
 xsd:string (11)
tempEmp
 δ(until) (12)
δ(until)
 ∃WORKS-FOR (13)
(funct until) (14)
ρ(until)
 xsd:date (15)
manager
 ¬δ(until) (16)

The above TBox T models information about employees and projects they
work for. Specifically, the assertions in T state the following. Managers and tem-
porary employees are two kinds of employees (2, 1), and employees are persons
(3). Each employee works for at least one project (4, 5), whereas each person
and each project has a unique name (6, 7, 9, 10). Both person names and project
names are strings (8, 11), whereas the attribute until associates objects with dates
(14, 15). In particular, any temporary employee has an associated date (which
indicates the expiration date of her/his contract) (12), and everyone having a
value for attribute until participates in the role WORKS-FOR (13). Finally, T
specifies that a manager does not have any value for the attribute until (16),
meaning that a manager has a permanent position, Note that this implies that
no employee is simultaneously a temporary employee and a manager. �

We now specify the form of DL-LiteA ABoxes. A DL-LiteA ABox is a finite set
of assertions, called membership assertions, of the form:

A(a), P (a, b), UC(a, b)

where a and b are constants in the alphabet Γ .

Linking Data to Ontologies 143

As for the semantics of a DL-LiteA ABox A, we now specify when an inter-
pretation I = (ΔI , ·I) satisfies a membership assertion α in A, written I |= α. I
satisfies:

– A(a) if aI ∈ AI ;
– P (a, b) if (aI , bI) ∈ P I ;
– UC(a, b) if (aI , bI) ∈ U I

C .

I is model of A, or, equivalently, I satisfies A, written I |= A, if I satisfies all
the membership assertions in A.

We next illustrate an example of a DL-LiteA ABox. In the example, we use
the bold face font for constants in ΓO, and the slanted font for constants in
ΓV .

Example 2. Consider the following ABox A:

tempEmp(Palm) (17)
until(Palm, 25-09-05) (18)
ProjName(DIS-1212, QuOnto) (19)
manager(White) (20)
WORKS-FOR(White,FP6-7603) (21)
ProjName(FP6-7603, Tones) (22)

The ABox assertions in A state that the object (identified by the constant)
Palm denotes a temporary employee who works until the date 25-09-05 . More-
over, DIS-1212 and FP6-7603 are projects whose names are respectively
QuOnto and Tones. Finally, the object White is a manager. �

Now that we have introduced DL-LiteA TBoxes and ABoxes, we are able to de-
fine the semantics of a DL-LiteA ontology, which is given in terms of interpreta-
tions which satisfy both the TBox and the ABox of the ontology. More formally,
an interpretation I = (ΔI , ·I) is model of a DL-LiteA ontology O = 〈T , A〉, or,
equivalently, I satisfies O, written I |= O, if both I |= T and I |= A. We say
that O is satisfiable if it has at least one model.

Example 3. Let O = 〈T , A〉 be the DL-LiteA ontology whose TBox T is the one
of Example 1, and whose ABox A is the one of Example 2. The first observation is
that O is satisfiable. Furthermore, it is easy to see that every model I = (ΔI , ·I)
of A satisfies the following conditions:

PalmI ∈ tempEmpI

(PalmI , 25-09-05I) ∈ untilI

(DIS-1212I , QuOntoI) ∈ ProjNameI

WhiteI ∈ managerI

(WhiteI ,FP6-7603I) ∈ WORKS-FORI

(FP6-7603I , TonesI) ∈ ProjNameI .

144 A. Poggi et al.

Furthermore, the following are necessary conditions for I to be a model of the
TBox T (we indicate in parenthesis the reference to the relevant axiom of T):

PalmI ∈ employeeI , to satisfy inclusion assertion (1)
WhiteI ∈ employeeI , to satisfy inclusion assertion (2)
PalmI ∈ personI , to satisfy inclusion assertion (3)
WhiteI ∈ personI , to satisfy inclusion assertion (3)
PalmI ∈ ∃WORKS-FORI , to satisfy inclusion assertion (4)
FP6-7603I ∈ projectI , to satisfy inclusion assertion (5)
PalmI ∈ (δ(PersName))I , to satisfy inclusion assertion (6)
WhiteI ∈ (δ(PersName))I , to satisfy inclusion assertion (6)

Notice that, in order for an interpretation I to satisfy the condition specified in
the fifth row above, there must be an object o ∈ Δ I

O such that (PalmI , o) ∈
WORKS-FORI . According to the inclusion assertion (5), such an object o must
also belong to projectI (indeed, in our ontology, every employee works for at
least one project). Similarly, the last two rows above derive from the property
that every person must have a name (inclusion (6)).

We note that, besides satisfying the conditions discussed above, an interpreta-
tion I ′ may also add other elements to the interpretation of concepts, attributes,
and roles specified by I. For instance, the interpretation I ′ which adds to I the
tuple

(WhiteI′
,DIS-1212I′

) ∈ WORKS-FORI′

is still a model of the ontology.
Note, finally, that there exists no model of O such that White is interpreted

as a temporary employee, since, according to (20), White is a manager and,
as observed in Example 1, the sets of managers and temporary employees are
disjoint. �

The above example clearly shows the difference between a database and an
ontology. From a database point of view the ontology O discussed in the example
might seem incorrect: for example, while the TBOx T sanctions that every person
has a name, there is no explicit name for White (who is a person, because he
has been asserted to be a manager, and every manager is a person) in the ABox
A. However, the ontology is not incorrect: the axiom stating that every person
has a name simply specifies that in every model of O there will be a name for
White, even if such a name is not known.

2.3 Queries over DL-LiteA Ontologies

We are interested in expressing queries over ontologies expressed in DL-LiteA,
and similarly to the case of relational databases, the basic query class that we
consider is the class of conjunctive queries.

A conjunctive query (CQ) q over a DL-LiteA ontology is an expression of the
form

q(x) ← conj(x, y)

Linking Data to Ontologies 145

where x is a tuple of distinct variables, the so-called distinguished variables, y is
a tuple of distinct existentially quantified variables (not occurring in x), called
the non-distinguished variables, and conj(x, y) is a conjunction of atoms of the
form A(x), P (x, y), D(x), UC(x, y), x = y, where:

– A, P, D, and UC are respectively an atomic concept, an atomic role, an
atomic value-domain, and an atomic attribute in O,

– x, y are either variables in x or in y, or constants in Γ .

We say that q(x) is the head of the query whereas conj(x, y) is the body. More-
over, the arity of q is the arity of x.

We will also refer to the notion of conjunctive query with inequalities (CQI),
that is simply a conjunctive query in which atoms of the x �= y (called inequal-
ities) may appear. Finally, a union of conjunctive queries (UCQ) is a query of
the form:

Q(x) ← conj1(x, yi) ∪ · · · ∪ conjn(x, yn).

Unions of conjunctive queries with inequalities are obvious extensions of unions
of conjunctive queries. In the following, we use the Datalog notation for unions
of conjunctive queries. In this notation a union of conjuctive queries is written
in the form

Q(x) ← conj1(x, y1)
........
Q(x) ← conjn(x, yn)

Given an interpretation I = (ΔI , ·I), the query Q(x) ← ϕ(x, y) (either a
conjunctive query or a union of conjunctive queries) is interpreted in I as the set
of tuples ox ∈ ΔI ×· · ·×ΔI such that there exists oy ∈ ΔI ×· · ·×ΔI such that
if we assign to the tuple of variables (x, y) the tuple (ox, oy), then the formula
ϕ is true in I [1].

Example 4. Let O be the ontology introduced in Example 3. Consider the fol-
lowing query asking for all employees:

q1(x) ← employee(x).

If I is the model described in Example 3, we have that:

qI
1 = {(WhiteI), (PalmI)}.

Note that we would obtain an analogous result by considering the model I ′

introduced in Example 3. Suppose now that we ask for project workers, together
with the name of the project s/he works in:

q2(x, y) ← WORKS-FOR(x, z), ProjName(z, y).

Then we have the following (we assume that, according to I, p is the project for
which PalmI works):

– qI
2 = {(WhiteI , TonesI), (PalmI , p)};

146 A. Poggi et al.

– qI′

2 = {(WhiteI′
, TonesI′

), (WhiteI′
, QuOntoI′

)}. �

Let us now describe what it means to answer a query over a DL-LiteA ontology.
Let O be a DL-LiteA ontology, Q a UCQ over O, and t a tuple of elements of
Γ . We say that t is a certain answer to q over O, written t ∈ ans(Q , O), if for
every model I of O, we have that tI ∈ QI . Answering a query Q posed to an
ontology O means exactly to compute the certain answers.

Example 5. Consider again the ontology introduced in Example 3, and queries
q1, q2 of Example 4. One can easily verify that the set of certain answers to q1 is
{White,Palm}, whereas the set of certain answers to q2 is {(White, QuOnto)}.

2.4 Reasoning over DL-LiteA Ontologies

Our logic DL-LiteA is equipped with traditional DL reasoning services, such
as concept and role subsumption, ontology satisfiability and instance checking.
Notably, it can be shown (cf. [8]), that all these services can be reduced to
satisfiability and query answering. In the following, we therefore briefly discuss
satisfiability and query answering for DL-LiteA ontologies, and present some
important properties of such services. The technical results mentioned in this
subsection are easy extensions of analogous results presented in [8,6,27].

Before discussing the main properties of our reasoning method, we observe
that we assume that the ABox of a DL-LiteA ontology is represented by a rela-
tional database. More precisely, if O = 〈T , A〉 is a DL-LiteA ontology, then we
represent A in terms of the relational database db(A), defined as follows:

– db(A) contains one unary relation TA for every atomic concept A appearing
in T . Such relation has the tuple t in db(A) if and only if the assertion A(t)
is in A.

– db(A) contains one binary relation TP for every atomic role P appearing in
T . Such relation has the tuple t in db(A) if and only if the assertion P (t) is
in A.

– db(A) contains one binary relation TU for every atomic attribute U appearing
in T . Such relation has the tuple t in db(A) if and only if the assertion U(t)
is in A.

One notable property of DL-LiteA is that, by virtue of the careful definition
of the expressive power of the logic, reasoning over the ontology O = 〈T , A〉 can
be reduced to answering suitable queries over db(A).

As for satisfiability, i.e., the problem of checking whether O = 〈T , A〉 is sat-
isfiable, it can be shown [8,27] that such a reasoning task can be reduced to the
task of evaluating a suitable query, called Violates(T). Intuitively, Violates(T) is
a first-ored query that asks for all constants in A violating either:

– explicit constraints corresponding to the functionality and disjointness as-
sertions in T , or

– implicit constraints, following from the semantics of T , namely constraints
imposing that every concept is disjoint from every domain, and that, for
every pair Ti, Tj of value−domains , Ti and Tj are disjoint.

Linking Data to Ontologies 147

We denote with ViolatesDB(T) the function that transforms the query
Violates(T) by changing every predicate X in Violates(T) into TX . Therefore, the
query ViolatesDB(T) is equivalent to Violates(T), but is expressed over db(A).
Also, it is immediate to verify that ViolatesDB(T) can be expressed in SQL.

The correctness of this reduction is sanctioned by the results of [8,6,27], sum-
marized here by the following theorem.

Theorem 1. The DL-LiteA ontology O = 〈T , A〉 is satisfiable if and only if the
result of evaluating Violates(T) over Om is the empty set, if and only if the result
of evaluating ViolatesDB(T) over db(A) is the empty set.

Example 6. Consider the ontology introduced in Example 3. Then, Violates(T)
is a union of conjunctive queries including the following disjuncts (corresponding
to explicit constraints):

Qs(x) ← manager(x), until(x, y)
Qs(x) ← PersName(x, y1), PersName(x, y2), y1 �= y2
Qs(x) ← ProjName(x, y1), ProjName(x, y2), y1 �= y2
Qs(x) ← until(x, y1), until(x, y2), y1 �= y2

�

As for query answering, it can be shown that computing the certain answers
of a query with respect to a satisfiable DL-LiteA ontology O = 〈T , A〉 can be
reduced, through a process called perfect reformulation, to the evaluation over
db(A) of a suitable union of conjunctive queries. The crucial task of perfect
reformulation is carried out by the function PerfectRef. Informally, PerfectRef
takes as input a UCQ Q over Om and the TBox T , and reformulates Q into a
new query Q′, which is still a UCQ and has the following property: the answers
to Q′ with respect to 〈∅, A〉 coincide with the certain answers to Q with respect
to 〈T , A〉. Thus, all the knowledge represented by the TBox T that is relevant for
computing the certain answers of the query Q is compiled into PerfectRef(Q, T).

We denote with PerfectRefDB(Q, T) the function that transforms the query
PerfectRef(Q, T) by changing every predicate X in PerfectRef(Q, T) into TX .
Therefore, the query PerfectRefDB(Q, T) is equivalent to PerfectRef(Q, T), but
is expressed over db(A). Also, it is immediate to verify that PerfectRefDB(Q, T)
can be expressed in SQL.

From the results of [8,6,27], we have the following:

Theorem 2. If O = 〈T , A〉 is a satisfiable DL-LiteA ontology, and Q is
a union of conjunctive queries over O, then t ∈ ans(Q , O) if and only if
t ∈ ans(PerfectRef(Q , T), 〈∅, A〉), if and only if t is in the result of evaluating
PerfectRefDB(Q, T) over db(A).

Example 7. Consider again the ontology O of Example 3 and the query q asking
for all workers, i.e., those objects which participate to the WORKS-FOR role:

q(x) ← WORKS-FOR(x, y).

148 A. Poggi et al.

It can be shown that PerfectRef(q, T) is the following query Qp (that is a
UCQ):

Qp(x) ← WORKS-FOR(x, y)
Qp(x) ← until(x, y)
Qp(x) ← tempEmp(x)
Qp(x) ← employee(x)
Qp(x) ← manager(x).

By virtue of the above theorem, the result of evaluating Qp over db(A) coincides
with the set of certain answers to q over O. Roughly speaking, in order to
return all workers, Qp looks in those concepts, relations, and attributes, whose
extensions in db(A) provide objects that are workers, according to the knowledge
specified by T . In our case, the answer to the query is {White,Palm}. �

We finally point out that, from the properties discussed above, namely that both
ontology satisfiability and query answering are reducible to first-order query eval-
uation over a suitable relational database, it follows that, after the reformulation
process, the task of computing the certain answers to a query can be delegated
to a standard relational DBMS [7]. In turn, this implies that all reasoning tasks
in DL-LiteA can be done in LogSpace with respect to data complexity [8,27].

3 Linking Relational Data to DL-LiteA Ontologies

The discussion presented in the previous section on DL-LiteA ontologies assumed
a relational representation for the ABox assertions. This is a reasonable assump-
tion only in those cases where the ontology is managed by an ad-hoc system,
and is built from scratch for the specific application.

We argue that this is not a typical scenario in current applications (e.g., in
Enterprise Application Integration). As we said in the introduction, we believe
that one of the most interesting real-world usages of ontologies is what we call
“ontology-based data access”. Ontology-based data access is the problem of ac-
cessing a set of existing data sources by means of a conceptual representation
expressed in terms of an ontology. In such a scenario, the TBox of the ontology
provides a shared, uniform, abstract view of the intensional level of the applica-
tion domain, whereas the information about the extensional level (the instances
of the ontology) reside in the data sources that are developed independently of
the conceptual layer, and are managed by traditional technologies (such as the
relational database technology). In other words, the ABox of the ontology does
not exist as an independent syntactic object. Rather, the instances of concepts
and roles in the ontology are simply an abstract and virtual representation of
some real data stored in existing data sources. Therefore, the problem arises of
establishing sound mechanisms for linking existing data to the instances of the
concepts and the roles in the ontology.

In this section we present the basic idea for our solution to this problem,
by presenting a mapping mechanism that enables a designer to link existing
data sources to an ontology expressed in DL-LiteA, and by illustrating a formal

Linking Data to Ontologies 149

framework capturing the notion of DL-LiteA ontology with mappings. In the
following,we assume that the data sources are expressed in terms of the relational
data model. In other words, all the technical development presented in the rest
of this section assumes that the set of sources to be linked to the ontology is one
relational database. Note that this is a realistic assumption, since many data
federation tools are now available that are able to wrap a set of heterogeneous
sources and present them as a single relational database.

Before delving into the details of the method, a preliminary discussion on the
notorious impedance mismatch problem between values (data) and objects is in
order [24]. When mapping relational data sources to ontologies, one should take
into account that sources store values, whereas instances of concepts are objects,
where each object should be denoted by an ad hoc identifier (e.g., a constant in
logic), not to be confused with any data item. For example, if a data source stores
data about persons, it is likely that values for social security numbers, names,
etc. will appear in the sources. However, at the conceptual level, the ontology
will represent persons in terms of a concept, and instances of such concepts will
be denoted by object constants.

One could argue that data sources might, in some cases, store directly object
identifiers. However, in order to use such object identifiers at the conceptual
level, one should make sure that such identifiers have been chosen on the basis
of an “agreement” among the sources on the form used to represent objects.
This is something occurring very rarely in practice. For all the above reasons, in
DL-LiteA, we take a radical approach. To face the impedance mismatch prob-
lem, and to tackle the possible lack of an a-priori agreement on identification
mechanisms at the sources, we keep data values appearing in the sources sep-
arate from object identifiers at the conceptual level. In particular, we consider
object identifiers formed by (logic) terms built out from data values stored at
the sources. The way by which these terms will be defined starting from the
data at the sources will be specified through suitable mapping assertions, to be
described later in this section. Note that this idea traces back to the work done
in deductive object-oriented databases [15].

To realize this idea from a technical point of view, we specialize the alphabets
of object constants in a particular way, that we now describe in detail.

We remind the reader that ΓV is the alphabet of value constants in DL-LiteA.
We assume that data appearing at the sources are denoted by constants in ΓV

6,
and we introduce a new alphabet Λ of function symbols in DL-LiteA, where each
function symbol has an associated arity, specifying the number of arguments it
accepts. On the basis of ΓV and Λ, we inductively define the set τ(Λ, ΓV) of all
terms of the form f(d1, . . . , dn) such that

– f ∈ Λ,
– the arity of f is n > 0, and
– d1, . . . , dn ∈ ΓV .

6 We could also introduce suitable conversion functions in order to translate values
stored at the sources into value constants in ΓV , but, for the sake of simplicity, we
do not deal with this aspect here.

150 A. Poggi et al.

We finally sanction that the set ΓO of symbols used in DL-LiteA for denoting
objects actually coincides with τ(Λ, ΓV). In other words, we use the terms built
out of ΓV using the function symbols in Λ for denoting the instances of concepts
in DL-LiteA ontologies.

All the notions defined for our logics remain unchanged. In particular, an
interpretation I = (ΔI , ·I) still assigns a different element of ΔI to every element
of Γ , and, given that ΓO coincides with τ(Λ, ΓV), this implies that different terms
in τ(Λ, ΓV) are interpreted as different objects in Δ I

O , i.e., we enforce the unique
name assumption on terms. Formally, this means that I is such that:

– for each a ∈ ΓV : aI ∈ Δ I
V ,

– for each a ∈ ΓO, i.e., for each a ∈ τ(Λ, ΓV): aI ∈ Δ I
O ,

– for each a, b ∈ Γ , a �= b implies aI �= bI .

The syntax and the semantics of a DL-LiteA TBox, ABox and UCQ, intro-
duced in the previous section, do not need to be modified. In particular, from
the point of view of the semantics of queries, the notion of certain answers is
exactly the same as the one presented in Section 2.4.

We can now turn our attention to the problem of specifying mapping as-
sertions linking the data at the sources to the objects in the ontology. In the
following, we make the following assumptions:

– As we said before, we assume that the data sources are wrapped into a rela-
tional database DB (constituted by the relational schema, and the extensions
of the relations), so that we can query such data by using SQL, and that all
value constants stored in DB belong to ΓV .

– As mentioned in the introduction, the database DB is independent from the
ontology; in other words, our aim is to link to the ontology a collection of
data that exist autonomously, and have not been necessarily structured with
the purpose of storing the ontology instances.

– ans(ϕ, DB) denotes the set of tuples (of the arity of ϕ) of value constants
returned as the result of the evaluation of the SQL query ϕ over the database
DB.

With these assumptions in place, to actually realize the link between the data
and the ontology, we adapt principles and techniques from the literature on data
integration [19]. In particular, we use the notion of mappings as described below.

A DL-LiteA ontology with mappings is characterized by a triple Om =
〈T , M, DB〉 such that:

– T is a DL-LiteA TBox;
– DB is a relational database;
– M is a set of mapping assertions, partitioned into two sets, Mt and Ma,

where:
• Mt is a set of so-called typing mapping assertions, each one of the form

Φ � Ti

Linking Data to Ontologies 151

where Φ is a query of arity 1 over DB denoting the projection of one
relation over one of its columns, and Ti is one of the DL-LiteA data
types;

• Ma is a set of data-to-object mapping assertions (or simply mapping
assertions), each one of the form

Φ � Ψ

where Φ is an arbitrary SQL query of arity n > 0 over DB, Ψ is a conjunc-
tive query over T of arity n′ > 0 without non-distinguished variables,
that possibly involves variable terms. A variable term is a term of the
same form as the object terms introduced above, with the difference that
variables appear as argument of the function. In other words, a variable
term has the form f(z), where f is a function symbol in Λ of arity m,
and z denotes an m-tuple of variables.

We briefly comment on the assertions in M as defined above. Typing mapping
assertions are used to assign appropriate types to constants in the relations of
DB. Basically, these assertions are used for interpreting the values stored in the
database in terms of the types used in the ontology, and their usefulness is evident
in all cases where the types in the data sources do not directly correspond to
the types used in the ontology. Data-to-object mapping assertions, on the other
hand, are used to map data in the database to instances of concepts, roles, and
attributes in the ontology.

We next give an example of DL-LiteA ontology with mappings.

Example 8. Let DB be the database constituted by a set of relations with the
following signature:

D1[SSN:STRING,PROJ:STRING, D:DATE],
D2[SSN:STRING,NAME:STRING],
D3[CODE:STRING,NAME:STRING],
D4[CODE:STRING,SSN:STRING]

We assume that, from the analysis of the above data sources, the following mean-
ing of the above relations has been derived. Relation D1 stores tuples (s, p, d),
where s and p are strings and d is a date, such that s is the social security number
of a temporary employee, p is the name of the project s/he works for (different
projects have different names), and d is the ending date of the employment. Re-
lation D2 stores tuples (s, n) of strings consisting of the social security number
s of an employee and her/his name n. Relation D3 stores tuples (c, n) of strings
consisting of the code c of a manager and her/his name n. Finally, relation D4
relates managers’ code with their social security number.

A possible extension for the above relations is given by the following sets of
tuples:

D1 = {(20903, Tones, 25-09-05)}
D2 = {(20903, Rossi), (55577, White)}
D3 = {(X11, White), (X12, Black)}
D4 = {(X11, 29767)}

152 A. Poggi et al.

Now, let Λ = {pers,proj,mgr} be a set of function symbols, where pers,
proj and mgr are function symbols of arity 1. Consider the DL-LiteA ontology
with mappings Om = 〈T , M, DB〉 such that T is the TBox of Example 1, and
M = Mt ∪ Ma, where Mt is as follows:

Mt1 : SELECT SSN FROM D1 � xsd:string
Mt2 : SELECT SSN FROM D2 � xsd:string
Mt3 : SELECT CODE FROM D3 � xsd:string
Mt4 : SELECT CODE FROM D4 � xsd:string
Mt5 : SELECT PROJ FROM D1 � xsd:string
Mt6 : SELECT NAME FROM D2 � xsd:string
Mt7 : SELECT NAME FROM D3 � xsd:string
Mt8 : SELECT SSN FROM D4 � xsd:string
Mt9 : SELECT D FROM D1 � xsd:date

and Ma is as follows:

Mm1 : SELECT SSN,PROJ,D � tempEmp(pers(SSN)),
FROM D1 WORKS-FOR(pers(SSN),proj(PROJ)),

ProjName(proj(PROJ), PROJ),
until(pers(SSN), D)

Mm2 : SELECT SSN,NAME � employee(pers(SSN)),
FROM D2 PersName(pers(SSN), NAME)

Mm3 : SELECT SSN, NAME � manager(pers(SSN)),
FROM D3, D4 PersName(pers(SSN), NAME)
WHERE D3.CODE=D4.CODE

Mm4 : SELECT CODE, NAME � manager(mgr(CODE)),
FROM D3 PersName(mgr(CODE), NAME)
WHERE CODE NOT IN

(SELECT CODE FROM D4)

We briefly comment on the data-to-ontology mapping assertions in Ma. Mm1

maps every tuple (s, p, d) in D1 to a temporary employee pers(s) with name p,
working until d for project proj(p). Mm2 maps every tuple (s, n) in D2 to an
employee pers(s) with name n. Mm3 and Mm4 tell us how to map data in D3
and D4 to managers and their name in the ontology. Note that, if D4 provides
the social security number s of a manager whose code is in D3, then we use the
social security number to form the corresponding object term, i.e., the object
term has the form pers(s). If D4 does not provide such information, then we
use an object term of the form mgr(c) to denote the corresponding instance of
the concept manager. �

In order to define the semantics of a DL-LiteA ontology with mappings, we
need to define when an interpretation satisfies an assertion in M with respect
to a database DB. To this end, we make use of the notion of ground instance of
a formula. Let Ψ(x) be a formula over a DL-LiteA TBox with n distinguished

Linking Data to Ontologies 153

variables x, and let v be a tuple of value constants of arity n. Then the ground
instance Ψ [x/v] of Ψ(x) is the formula obtained by substituting every occurrence
of xi with vi (for i ∈ {1, .., n}) in Ψ(x). We are now ready to define when an
interpretation satisfies a mapping assertion:

– Let mt be an assertion in Mt of the form Φ � Ti. We say that the interpreta-
tion I satisfies mt with respect to a database DB, if for every v ∈ ans(Φ, DB),
we have that v ∈ val(Ti).

– Let ma be an assertion in Ma of the form

Φ(x) � Ψ(t, y)

where x and y are variables, y ⊆ x and t are variable terms of the form
f(z), f ∈ Λ and z ⊆ x.
We say that I satisfies ma with respect to a database DB, if for every tuple of
values v such that v ∈ ans(Φ, DB), and for each ground atom X in Ψ [x/v],
we have that:

• if X has the form A(s), then sI ∈ AI ;
• if X has the form D(s), then sI ∈ DI ;
• if X has the form P (s1, s2), then (sI

1, s
I
2) ∈ P I ;

• if X has the form UC(s1, s2), then (sI
1, s

I
2) ∈ U I

C .

Finally, we say that an interpretation I = (ΔI , ·I) is a model of Om =
〈T , M, DB〉 if:

– I is a model of T ;
– I satisfies M with respect to DB, i.e., satisfies every assertion in M with

respect to DB.

We denote as Mod(Om) the set of models of Om, and we say that a DL-LiteA
ontology with mappings Om is satisfiable if Mod(Om) �= ∅.

Example 9. One can easily verify that the ontology with mappings Om of Ex-
ample 8 is satisfiable. �

Note that, as we said in the introduction, the mapping mechanism described
above nicely deals with the fact that the database DB and the ontology Om are
based on different semantical assumptions. Indeed, the semantics of DB follows
the so-called “closed world assumption” [28], which intuitively sanctions that
every fact that is not explicitly stored in the database is false. On the contrary,
the semantics of Om is open, in the sense that nothing is assumed about the
facts that do not appear explicitly in the ABox. In a mapping assertion of the
form Φ � Ψ , the closed semantics of DB is taken into account by the fact that Φ
is evaluated as a standard relational query over the database DB, while the open
semantics of Om is reflected by the fact that mappings assertions are interpreted
as “material implication” in logic. It is well known that a material implication
of the form Φ � Ψ imposes that every tuple of Φ contribute to the answers to
Ψ , leaving open the possibility of additional tuples satisfying Ψ .

154 A. Poggi et al.

Let Q denote a UCQ expressed in terms of the TBox T of Om. We call certain
answers to Q posed over Om the set of n-tuples of terms in Γ , denoted QOm ,
that is defined as follows:

QOm = {t | tI ∈ QI , ∀I ∈ Mod(Om)}

Clearly, given an ontology with mappings and a query Q posed in terms of T ,
query answering is the problem of computing the certain answers to Q.

4 Overview of the Reasoning Method

Our goal in the next sections is to illustrate a method for both checking sat-
isfiability, and query answering in DL-LiteA ontologies with mappings. In this
section, we present an overview of our reasoning method, by concentrating in
particular on the task of query answering.

The simplest way to tackle reasoning over a DL-LiteA ontology with mappings
is to use the mappings to produce an actual ABox, and then reasoning on the
ontology constituted by the ABox and the original TBox, applying the techniques
described in Section 2.4. We call such approach “bottom-up”. However, such a
bottom-up approach requires to actually build the ABox starting from the data
at the sources, thus somehow duplicating the information already present in the
data sources. To avoid such redundancy, we propose an alternative approach,
called “top-down”, which essentially keeps the ABox virtual.

We sketch out the main ideas of both approaches below. As we said before, we
refer in particular to query answering, but similar considerations hold for satis-
fiability checking too. Before delving into the discussion, we define the notions
of split version of an ontology and of virtual ABox, which will be useful in the
sequel.

4.1 Splitting the Mapping

Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings as defined in
the previous section. We show how to compute the split version of Om, that
is characterized by a particularly “friendly form”. Specifically, we denote as
Split(Om) = 〈T , M′, DB〉 a new ontology with mappings that is obtained from
Om, by constructing M′ as follows:

1. all typing assertions in M are also in M′;
2. for each mapping assertion Φ � Ψ ∈ M, and for each atom X ∈ Ψ , the

mapping assertion Φ′ � X is in M′, where Φ′ is the projection of Φ over the
variables occurring in X .

Example 10. Consider the ontology with mappings Om = 〈T , M, DB〉 of Ex-
ample 8. By splitting the mappings as described above, we obtain the ontology
Split(Om) = 〈T , M′, DB〉 such that M′ contains all typing assertions in M and
contains furthermore the following split mapping assertions:

Linking Data to Ontologies 155

Mm11 : SELECT SSN � tempEmp(pers(SSN))
FROM D1

Mm12 : SELECT SSN, PROJ � WORKS-FOR(pers(SSN),proj(PROJ))
FROM D1

Mm13 : SELECT PROJ � ProjName(proj(PROJ), PROJ)
FROM D1

Mm14 : SELECT SSN,D � until(pers(SSN), D)
FROM D1

Mm21 : SELECT SSN � employee(pers(SSN))
FROM D2

Mm22 : SELECT SSN,NAME � PersName(pers(SSN), NAME)
FROM D2

Mm31 : SELECT SSN � manager(pers(SSN))
FROM D3, D4

WHERE D3.CODE=D4.CODE
Mm32 : SELECT SSN, NAME � PersName(pers(SSN), NAME)

FROM D3, D4

WHERE D3.CODE=D4.CODE
Mm41 : SELECT CODE � manager(mgr(CODE))

FROM D3

WHERE CODE NOT IN
(SELECT CODE FROM D4)

Mm42 : SELECT CODE, NAME � PersName(mgr(CODE), NAME)
FROM D3

WHERE CODE NOT IN
(SELECT CODE FROM D4)

��

The relationship between an ontology with mappings and its split version is
characterized by the following theorem.

Proposition 1. Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings.
Then, we have that:

Mod(Split(Om)) = Mod(Om).

Proof. The result follows straightforwardly from the syntax and the semantics
of the mappings. �
The theorem essentially tells us that every ontology with mappings is logically
equivalent to the corresponding split version. Therefore, given any arbitrary
DL-LiteA ontology with mappings, we can always reduce it to its split version.
Moreover, such a reduction has PTime complexity in the size of the mappings
and does not depend on the size of the data. This allows for assuming, from now
on, to deal only with split versions of DL-LiteA ontologies with mappings.

4.2 Virtual ABox

In this subsection we introduce the notion of virtual ABox. Intuitively,
given a DL-LiteA ontology with mappings Om = 〈T , M, DB〉, the virtual ABox

156 A. Poggi et al.

corresponding to Om is the ABox whose assertions are computed by “applying”
the mapping assertions starting from the data in DB. Note that in our method
we do not explicitly build the virtual ABox. However, this notion will be used
in the technical development presented in the sequel of the paper.

Definition 1. Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings,
and let M be a mapping assertion in M of the form M = Φ � X. We call
virtual ABox generated by M from DB the following set of assertions:

A(M, DB) = {X [x/v] | v ∈ ans(Φ, DB)},

where v and Φ are of arity n, and, as we said before, X [x/v] denotes the ground
atom obtained from X(x) by substituting the n-tuple of variables x with the
n-tuple of constants v ∈ Γ n

V . Moreover, the virtual ABox for Om, denoted
A(M, DB), is the set of assertions

A(M, DB) = {A(M, DB) | M ∈ M}.

Notice that A(M, DB) is an ABox over the constants Γ = ΓV ∪ τ(Λ, Γ), as
shown by the following example.

Example 11. Let Split(Om) be the DL-LiteA ontology with split mappings of
Example 10. Consider in particular the mappings Mm21 , Mm22 . Suppose we
have D2 = {(20903, Rossi), (55577, White)} in the database DB. Then, the sets
of assertions A(Mm21 , DB), A(Mm22 , DB) are as follows:

A(Mm21 , DB)={employee(pers(20903)), employee(pers(55577))}
A(Mm22 , DB)={PersName(pers(20903), Rossi), PersName(pers(55577), White)}

�
By proceeding in the same way for each mapping assertion in M, we can easily
obtain the whole virtual ABox for Om.

Virtual ABoxes allow for expressing the semantics of DL-LiteA ontologies with
mappings in terms of the semantics of DL-LiteA ontologies as follows:

Proposition 2. If Om = 〈T , M, DB〉 is a DL-LiteA ontology with mappings,
then

Mod(Om) = Mod(〈T , A(M, DB)〉).

Proof. Trivial, from the definition. �

Now that we have introduced virtual ABoxes, we discuss in more detail both the
bottom-up and the top-down approach.

4.3 A Bottom-Up Approach

The proposition above suggests an obvious, and “naive”, bottom-up algorithm
to answer queries over a satisfiable DL-LiteA ontology Om = 〈T , M, DB〉 with

Linking Data to Ontologies 157

mappings, which we describe next. First, we materialize the virtual ABox for
Om, i.e., we compute A(M, DB). Second, we apply to the DL-LiteA ontology
O = 〈T , A(M, DB)〉, the algorithms for query answering, briefly described in
Section 2.4.

Unfortunately, this approach has the following drawbacks. First, the time
complexity of the proposed algorithm is PTime in the size of the database,
since the generation of the virtual ABox is by itself a PTime process. Second,
since the database is independent of the ontology, it may happen that, during the
lifetime of the ontology with mappings, the data it contains are modified. This
would clearly require to set up a mechanism for keeping the virtual ABox up-to-
date with respect to the database evolution, similarly to what happens in data
warehousing. Thus, next, we propose a different approach (called “top-down”),
which uses an algorithm that avoids materializing the virtual ABox, but, rather,
takes into account the mapping specification on-the-fly, during reasoning. In
this way, we can both keep the computational complexity of the algorithm low,
which turns out to be the same of the query answering algorithm for ontologies
without mappings (i.e., in LogSpace), and avoid any further procedure for data
refreshment.

4.4 A Top-Down Approach

While the bottom-up approach described in the previous subsection is only of
theoretical interest, we now present an overview of our top-down approach to
query answering.

Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with split mappings, and let
Q be a UCQ over Om. According to the top-down approach, query answering
is constituted by three steps, called reformulation, unfolding, and evaluation,
respectively.

– Reformulation. In this step, we compute the perfect reformulation Q′ =
PerfectRef(Q, T) of the original query Q, according to what we said in Sec-
tion 2.4. Q′ is a first-order logic query satisfying the following property: the
certain answers to Q with respect to Om coincide with the set of tuples com-
puted by evaluating Q′ over db(A(M, DB))7, i.e., the database representing
A(M, DB).

– Unfolding. Instead of materializing A(M, DB) and evaluating Q′ over
A(M, DB) (as in the bottom-up approach), we “unfold” Q′ according to
M, i.e., we compute a new query Q′′, which is an SQL over the source
relations. As we will show in Section 6, this computation is done by us-
ing logic programming techniques, and allows us to get rid of M, in
the sense that the set of tuples computed by evaluating Q′′ over the
sources coincides with the set of tuples computed by evaluating Q′ over
db(A(M, DB)).

7 The function db is defined in Section 2.

158 A. Poggi et al.

– Evaluation. The evaluation step consists simply in delegating the evaluation
of Q′′ over the database DB to the DBMS managing such database.

Example 12. Consider the ontology Split(Om) of Example 10, and assume it is
satisfiable. The mapping assertions in M′ of Split(Om) can be encoded in the
following portion of a logic program (see Section 6):

tempEmp(pers(s)) ← Aux11(s)
WORKS-FOR(pers(s),proj(p)) ← Aux12(s, p)
ProjName(proj(p), p) ← Aux13(p)
until(pers(s), d) ← Aux14(s, d)
employee(pers(s)) ← Aux21(s)
PersName(pers(s), n) ← Aux22(s, n)
manager(pers(s)) ← Aux31(s)
PersName(pers(s), n) ← Aux32(s, n)
manager(mgr(c)) ← Aux41(c)
PersName(mgr(c), n) ← Aux42(c, n)

where Auxij is a suitable predicate denoting the result of the evaluation over
DB of the query Φmij in the left-hand side of the mapping Mmij (note that for
different Auxih and Auxik, we may have Φmih

equal to Φmik
). Now, let

q(x) ← WORKS-FOR(x, y)

be the query discussed in Example 7. As we saw in Section 2, its reformulation
Q′ = PerfectRef(q, T) is:

Q′(x) ← WORKS-FOR(x, y)
Q′(x) ← until(x, y)
Q′(x) ← tempEmp(x)
Q′(x) ← employee(x)
Q′(x) ← manager(x)

In order to compute the unfolding of Q′, we unify each of its atoms in all possible
ways with the left-hand side of the mapping assertions in M′, and we obtain the
following partial evaluation of Q′:

q(pers(s)) ← Aux12(s, p)
q(pers(s)) ← Aux14(s, d)
q(pers(s)) ← Aux11(s)
q(pers(s)) ← Aux21(s)
q(pers(s)) ← Aux31(s, n)
q(mgr(c)) ← Aux41(c, n)

From the above formulation, it is now possible to derive the corresponding SQL
query Q′′ that can be directly issued over the database DB:

Linking Data to Ontologies 159

SELECT CONCAT(CONCAT(’pers (’,SSN),’)’)
FROM D1
UNION
SELECT CONCAT(CONCAT(’pers (’,SSN),’)’)
FROM D2
UNION
SELECT CONCAT(CONCAT(’pers (’,SSN),’)’)
FROM D3, D4
WHERE D3.CODE=D4.CODE
UNION
SELECT CONCAT(CONCAT(’mgr (’,CODE),’)’)
FROM D3
WHERE CODE NOT IN (SELECT CODE FROM D4)

�

In the next two sections we delve into the details of our top-down method for
reasoning about ontologies with mappings. In particular, in Section 5 we deal
with the unfolding step, whereas in Section 6 we present the complete algorithms
for both satisfiablity checking and query answering, and we discuss their formal
properties. In both sections, we assume to deal only with ontologies with split
mappings.

5 Dealing with Mappings

As we saw in the previous section, the unfolding step is one of the ingredients of
our top-down method for reasoning about ontologies with mappings. The goal
of this section is to illustrate the technique we use to perform such a step.

Suppose we are given a DL-LiteA ontology with split mappings Om =
〈T , M, DB〉 and an UCQ Q over Om. The purpose of “unfolding” Q accord-
ing to M, is to compute a new query Q′ satisfying the following properties:

1. Q′ is a query (in particular, an SQL query) over the source relations,
2. the set of tuples computed by evaluating Q′ over the data sources coincides

with the set of tuples computed by evaluating Q over db(A(M, DB)).

From the above specification, it is clear that the unfolding step is crucial for
avoiding materializing the virtual ABox.

The method we use for carrying out the unfolding step is based on logic
programming notions [20]. The reason why we resort to logic programming is
that mapping assertions are indeed similar to (simple forms of) rules of a logic
program. The connection between data integration mappings and logic program-
ming has already been noticed in several papers (see, for example, [25]). Our case,
however, differs from those addressed in such papers, for two main reasons:

– while most of the above works use Datalog rules for modeling mappings, our
mapping assertions contain functional terms, and therefore they go beyond
Datalog;

160 A. Poggi et al.

– we do not want to use the rules for directly accessing data. Instead, we aim
at using the rules for coming up with the right queries to ship to the data
sources. In this sense, we use the rules only “partially”.

The fact that we use the rules only partially is the reason why we will make use of
the notion of “partial evaluation” of a logic program. This notion, together with
more general notions of logic programming, is introduced in the next subsection.

5.1 Relevant Notions from Logic Programming

We briefly recall some basic notions from logic programming [20], upon which
we build our unfolding technique. In particular, we exploit some crucial results
on the partial evaluation [18] of logic programs given in [21], which we briefly
recall below.

Definition 2. A definite program clause is an expression of the form

A ← W

where A is an atom, and W is a conjunction of atoms A1, . . . , An. The left-hand
side of a clause is called its head, whereas its right-hand side is called its body.
Either the body or the head of the clause may be empty. When the body is empty,
the clause is called fact (and the ← symbol is in general omitted). When the
head is empty, the clause is called a definite goal. A definite program is a finite
set of definite program clauses.

Notice that A ← W has a first-order logic reading, which is represented by the
following sentence:

∀x1, · · · , ∀xs(A ∨ ¬W).

where x1, . . . , xs are all the variables occurring in W and A. This reading explains
why a logic program clause is also called a rule.

From now on, when we talk about programs, program clauses and goals, we
implicitly mean definite programs, definite program clauses and definite goals,
respectively.

A well-known property of logic programs is that every definite program P
has a minimal model, which is the intersection MP of all Herbrand models for
P [20]. Intuitively, the minimal model of P is the set of all positive ground facts
(i.e., atomic formulae without variables) that are true in all the models of P . We
say that an atomic formula (or atom) containing no variable is true in a logic
program P if it is true in the minimal model of P .

Logic program clauses are used to derive formulae from other formulae. The
notion of derivation is formalized by the following definition.

Definition 3. If G is a goal of the form ← A1, · · · , Am, · · · , Ak, and C is a
program clause A ← B1, · · · , Bq, then G′ is derived from G and C through

Linking Data to Ontologies 161

the selected atom Am using the most general unifier8 (mgu) θ if the following
conditions hold:

– θ is an mgu of Am and A, and
– G′ is the goal

← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ

where (A1, · · · , An)θ = A1θ, · · · , Anθ, and Aθ is the atom obtained from A
applying the substitution θ.

Next we define the notion of resultant. We actually present a simplified definition
of this notion, which is sufficient for our purpose.

Definition 4. A resultant is an expression of the form

Q1 ← Q2

where Q1 is a conjunction of atoms, and Q2 (called the body of the resultant) is
either absent or a conjunction of atoms.

The possible derivations of a goal using a program are represented by a special
tree, called SLD-tree, which is defined next.

Definition 5. (SLD-Tree [21]) Let P be a program and let G′ be a goal with body
G. Then, an SLD-Tree of P ∪ {G′} is a tree satisfying the following conditions:

– each node is a resultant,
– the root node is G0θ0 ← G0, where G0 = G, and θ0 is the empty substitution,
– let Gθ0 · · · θi ← Gi

9 be a node N at depth i ≥ 0 such that Gi has the form
A1, . . . , Am, . . . , Ak, and suppose that Am is the atom selected in Gi. Then,
for each program clause C of the form A ← B1, · · · , Bq in P such that Am

and A are unifiable with mgu θi+1, the node N has a child

Gθ0θ1 · · · θi+1 ← Gi+1,

where the goal ← Gi+1 is derived from the goal ← Gi and C through Am

using θi+1, i.e., Gi+1 has the form (A1, . . . , B1, . . . , Bq, . . . , Ak)θi+1,
– a node which is a resultant with an empty body has no children.

We say that a branch of an SLD-tree is failing if it ends in a node such that
the selected atom does not unify with the head of any program clause. Moreover,
we say that an SLD-Tree is complete if all its non-failing branches end in the
empty clause. An SLD-tree that is not complete is called partial.

Finally, given a node Qθ0, . . . , θi ← Qi at depth i, we say that the derivation
of Qi has length i with computed answer θ, where θ is the restriction of θ0, · · · , θi

to the variables in the goal G′.
8 A unifier of two expressions is a substitution of their variables that makes such

expressions equal. A most general unifer is a unifier with a minimal number of
substitutions.

9 The expression θ1θ2 · · · θn denotes the composition of the substitutions θ1, . . . , θn.

162 A. Poggi et al.

Finally, we recall the definition of partial evaluation (PE for short) from [21]. The
definition actually refers to two kinds of PE: the PE of an atom in a program,
and the PE of a program with respect to an atom. Intuitively, to obtain a PE of
an atom A in P , one considers an SLD-tree T for P ∪ {← A}, and chooses a cut
in T . The PE of P with respect to A is defined as the union of the resultants
that occur in the cut and do not fail in T .

Definition 6. Let P be a program, A an atom, and T an SLD-tree for P ∪ {←
A}. Then,

– any set of nodes such that each non-failing branch of T contains exactly one
of them is a PE of A in P;

– the logic program obtained from P by replacing the set of clauses in P whose
head contains A with a PE of A in P is a PE of P with respect to A.

Note that, by definition, a PE of A in P is a set of resultant, while the PE of P
with respect to A is a logic program.

Also, a well-known property of PE is that a program P and any PE of P with
respect to any atom are procedurally equivalent, i.e., the minimal model of P
and the minimal model of any PE of P with respect to any atom coincide.

5.2 The Unfolding Step

We are now ready to look into unfolding step for reasoning in DL-LiteA ontologies
with mappings. In particular, the goal is to define a function UnfoldDB, that, in-
tuitively, takes as input a DL-LiteA ontology with mappings Om = 〈T , M, DB〉,
and a UCQ (possibly with inequalities) Q over Om, and returns a set of resul-
tants describing

1. the queries to issue to DB, and
2. the substitution to apply to the result in order to obtain the answer to Q.

In order to use logic programming based techniques for unfolding, we express
the UCQ Q and the relevant information about M and DB in terms of a logic
program, called the program for Q and Om.

In all this subsection, unless otherwise stated, we consider Om = 〈T , M, DB〉
to be a DL-LiteA ontology with mappings, and Q to be a union of conjunctive
queries over Om, possibly including inequalities.

Definition 7. The program for Q and Om, denoted P(Q, M, DB), is the logic
program formed as follows:10

1. for each conjunctive query (q(x) ← Q′) ∈ Q, P(Q, M, DB) contains the
clause

q(x) ← σ(Q′)

where σ(α) denotes the query obtained by replacing each x �= y in the body
of α with the atom Distinct(x, y), where Distinct is an auxiliary binary
predicate;

10 We assume that the alphabet of T does not contain the predicate Distinct, and, for
any i, does not contain the predicate Auxi.

Linking Data to Ontologies 163

2. for each mapping assertion mk ∈ M of the form Φk(x) � pk(t),
P(Q, M, DB) contains the clause

pk(t) ← Auxk(x)

where Auxk is an auxiliary predicate associated to mk, whose arity is the
same as Φk;

3. for each Φk appearing in the left-hand side of a mapping assertion in M, for
each t ∈ ans(Φk , DB), P(Q, M, DB) contains the fact Auxk(t);

4. let ΓDB be the set of all values appearing in DB; then for each pair
t1, t2 of distinct terms in τ(Λ, ΓDB) ∪ ΓDB, P(Q, M, DB) contains the fact
Distinct(t1, t2).

Intuitively, item (1) in the definition is used to represent the query Q in the
logic program P(Q, M, DB), with the proviso that all inequalities are expressed
in terms of the predicate Distinct. Item (2) introduces one auxiliary predicates
Auxi for each Φi appearing in the left-hand side of the mapping assertion in
mi ∈ M, and item (3) states that the extension of Auxi(x) coincides with
ans(Φi , DB). Finally, item (4) is used to enforce the unique name assumptionin
P(Q, M, DB).

The following two lemmas state formally the relationship between
P(Q, M, DB), Om and Q. They essentially show that P(Q, M, DB) is a faithful
representation in logic programming of both Om and Q.

Lemma 1. A(M, DB) coincides with the projection over the alphabet of T of
the minimal model of P(Q, M, DB).

Proof. We first show that, for each tuple t of terms, if X(t) ∈ A(M, DB), then
X(t) is true in the minimal model MP of P(Q, M, DB). Consider a tuple t
such that X(t) ∈ A(M, DB). Thus, by construction of A(M, DB) we have that
there exists a mapping Φk(x) � X(α) in M, a tuple t′ of values in ΓDB, and
a substitution θ such that t′ ∈ ans(Φk , DB) and t = αθ. But then, since t′ ∈
ans(Φk , DB), we have that Auxk(t′) ∈ P(Q, M, DB). Moreover, since Φk(x) �

X(α) is a mapping in M, we have that X(α) ← Auxk(x) ∈ P(Q, M, DB). Thus,
θ is an mgu of Auxk(x) and Auxk(t′). Therefore, it is possible to derive X(t)
from Auxk(t′) and X(α) ← Auxk(x) by using θ, and, by a well-known property
of logic programming, X(t) is true in MP .

Conversely, let X(t) be true in the minimal model MP of P(Q, M, DB). By
following a similar line of reasoning as above, it can be easily shown that X(t) ∈
A(M, DB). �

Lemma 2. For each tuple t ∈ τ(ΓV , Λ) ∪ ΓV , we have that

t ∈ ans(Q , db(A(M, DB))) if and only ifP(Q, M, DB)∪{← q(t)}is unsatisfiable.

Proof. The result follows directly from the previous lemma and the construction
of P(Q, M, DB). �

164 A. Poggi et al.

We now illustrate how to compute a specific PE of the program P(Q, M, DB)
(where Q has the form q(x) ← β) with respect to q(x), denoted PE(Q, M, DB).
Such a PE is crucial for our development.

We first define the function SLD-Derive(P(Q, M, DB)) that takes as input
P(Q, M, DB), and returns a set S of resultants constituting a PE of q(x) in
P(Q, M, DB), by constructs an SLD-Tree T for P(Q, M, DB) ∪ {← q(x)} as
follows:

– it starts by selecting the atom q(x),
– it continues by selecting the atoms whose predicates belong to the alphabet

of T , as long as possible;
– it stops the construction of a branch when no atom with predicate in the

alphabet of T can be selected.

Note that the above definition implies that SLD-Derive(P(Q, M, DB)) returns
the set S of resultants obtained by cutting T only at nodes whose body contains
only atoms with predicate Auxi or Distinct.

Second, we use SLD-Derive(P(Q, M, DB)) to define PE(Q, M, DB), a specific
PE of P(Q, M, DB) with respect to q(x). PE(Q, M, DB) is obtained simply
by dropping the clauses for q in P(Q, M, DB), and replacing them by S =
SLD-Derive(P(Q, M, DB)).

Obviously, since PE(Q, M, DB) is a PE of P , the two programs are procedu-
rally equivalent, i.e., for every atom A, A is true in PE(Q, M, DB) if and only
if A is true in P(Q, M, DB).

Let Q a UCQ of the form q(x) ← β. We now define the function spreadOm

that takes as imput a resultant q(x)θ ← Q′ in PE(Q, M, DB), and returns an
extended form of resultant q(x)θ ← Q′′ such that Q′′ is a first-order query over
DB, which is obtained from Q′ by proceeding as follows. At the beginning, Q′′

has an empty body. Then, for each atom A in Q′,

– if A = Auxk(x), it adds to Q′ the query Φk(x); note that, by hypothesis,
Φk(x) is an arbitrary first-order query with distinguished variables x, that
can be evaluated over DB;

– if A = Distinct(x1, x2), where x1, x2 have resp. the form f1(y1) and f2(y2),
then:

• if f1 �= f2, then it does nothing,
• otherwise, it adds to Q′ the following conjunct:

∨

i∈{1,...,w}
y1i �= y2i ,

where w is the arity of f1.
Note that in this case we obtain a disjunction of variables, which, again, can
be obviously evaluated over a set of data sources DB.

The next lemma establishes the relationship between the answers to the pro-
gram PE(Q, M, DB), and the tuples that are answers in the queries over the
data sources that are present in the mapping assertions. It essentially sayss that

Linking Data to Ontologies 165

every answer to the program PE(Q, M, DB) is “generated” by tuples in the data
sources.

This lemma and the next theorems make use of a new notion, that we now
introduce. We say that an atom q(t) is obtained from q(x) and θ through t′ if
q(x)θ = q(t), and all constants used in θ appear in t′. For example, q(f(2, 3), 4)
is obtained from q(x1, x2) and the substitution {x1/f(2, 3), x2, 4} through the
tuple (2, 3, 4).

Lemma 3. Let Q be a UCQ of the form q(x) ← β. For each tuple t ∈ τ(ΓV , Λ)∪
ΓV , q(t) is true in PE(Q, M, DB) if and only if there is a resultant q(x)θ ← Q′

in PE(Q, M, DB) and a tuple t′ in ΓV such that q(x)θ = q(t), q(t) is obtained
from q(x) and θ through t′, spreadOm

(q(x)θ ← Q′) = (q(x)θ ← Q′′), and
t′ ∈ ans(Q ′′, DB).

Proof. The if-direction is easy to prove. For the only-if-direction, if q(t) is true
in PE(Q, M, DB), q(t) can be derived using a resultant in PE(Q, M, DB). Let
q(x)θ ← Q′ be such a resultant in PE(Q, M, DB), and let Q′ have the form
A1(x1), · · · , An(xn). By construction, Ai(xi) is either

– Auxki(xi), or
– Distinct(xi), where xi = (xi1 , xi2).

Suppose that Ai has predicate Auxki for each i ≤ j whereas it has predicate
Distinct for j < i ≤ n. By construction, spreadOm

(q(x)θ ← Q′) = (q(x)θ ←
Q′′), with Q′′ of the form:

{x, · · · yi11
, yi21

, · · · yi1wi
, yi2wi

· · ·
| Φk1(x1), · · · , Φkj (xj), (

∨
i≤n (

∨
h∈{1,...,wi} yi1h

�= yi2h
))}

where (
∨

h∈{1,...,wi} yi1h
�= yi2h

) occurs together with the corresponding distin-
guished variables yi1h

, yi2h
if there is an atom Distinct(xi1 , xi2) in q such that

xi1 = f(yi1), xi2 = f(yi2) where f has arity wi.
Now, let t be a tuple in τ(ΓV , Λ) ∪ ΓV . We show next that if q(t) is true

in PE(Q, M, DB), then there is a tuple t′ in ΓV such that q(x)θ = Q(t),
q(t) is obtained from q(x) and θ through t′, and t′ ∈ ans(Q ′′, DB). Suppose
that q(t) is true in PE(Q, M, DB). Then there exists θq such that q(t) =
(A1(x1), · · · , An(xn))θq is true in PE(Q, M, DB). This implies that there ex-
ist n facts Fi in PE(Q, M, DB) such that Fi = Aiθ

q is true in PE(Q, M, DB)
for each i = 1, · · · , n. But then, by construction:

– if i ≤ j, then Fi has the form Auxki(ti), which by construction means that
ti ∈ ans(Φki , DB);

– otherwise, Fi has the form Distinct(ti), where ti = (ti1, ti2) and ti1, ti2 are
such that ti1 �= ti2.

By the above observations, one can easily verify that t′ ∈ ans(Q ′′, DB). Indeed,
for i ≤ j we have trivially that Φki(t′i) is true, whereas for j < i ≤ k, we have
that if f1 = f2, then vi1 �= vi2 . Thus, since q(x)θq belongs to PE(Q, M, DB),
then q(t) is obtained from q(x) and θp through t′, and we have proved the claim.

�

166 A. Poggi et al.

Before presenting the function UnfoldDB, we need to make a further observa-
tion. The program P(Q, M, DB), being a faithful representation of Q and Om,
contains also the facts regarding the predicates Auxi and Distinct. Since we
use partial evaluation techniques for computing the queries to issue to the data
sources, we are interested in the program obtained from P(Q, M, DB) by ignor-
ing such facts. Formally, we define P(Q, M) to be the program obtained from
P(Q, M, DB) by eliminating all facts Auxk(t) and Distinct(t). Notice that while
P(Q, M, DB) depends on the DB, P(Q, M) does not. The next theorem shows
that the programs P(Q, M, DB) and P(Q, M) are equivalent with respect to
partial evaluation.

Lemma 4. SLD-Derive(P(Q, M, DB)) = SLD-Derive(P(Q, M)).

Proof. The proof follows from the observation that SLD-Derive(P(Q, M, DB))
constructs an SLD-Tree for P(Q, M, DB)∪{← q(x)} by selecting only the atoms
in the alphabet of T , and that P(Q, M, DB) and P(Q, M) coincide in the clauses
containing atoms in the alphabet of T . �

Now we are finally able to come back to the definition of UnfoldDB. As usual
in this subsection, Om = 〈T , M, DB〉 is an ontology with mappings, and Q
a union of conjunctive queries (possibly with inequalities) over Om. We define
UnfoldDB(Q, Om) as the function that takes as input Q and Om, and returns a
set S′ of resultants by proceeding as shown in Fig. 1.

Algorithm UnfoldDB(Q, Om)
Input: DL-LiteA ontology with mappings Om = 〈T , M, DB〉

UCQ (possibly with inequalities) Q over Om

Output: set of resultants S′

build the program P(Q,M);
compute the set of resultants S = SLD-Derive(P(Q,M));
for each ansθ ← q ∈ S do

S′ ← spreadOm
(ansθ ← q);

return S′

Fig. 1. The Algorithm UnfoldDB

The next theorem shows the correctness of UnfoldDB, i.e., termination,
soundeness and completeness.

Theorem 3. For every UCQ Q of the form q(x) ← β and for every Om,
UnfoldDB(Q, Om) terminates, and for each tuple of constants t in τ(ΓV , Λ)∪ΓV

we have that:

t ∈ ans(Q , db(A(M, DB))) if and only if
∃(q(x)θ ← Q′′) ∈ UnfoldDB(Q, Om) such that q(x)θ = q(t),
q(t) is obtained from q(x) and θ through t′, and t′ ∈ ans(Q ′′, DB).

Proof. Termination of UnfoldDB is immediate. Soundness and completeness can
be directly proved by using the lemmas presented in this section. �

Linking Data to Ontologies 167

Note that the algorithm UnfoldDB described in Fig. 1 returns a set of resultants,
called S′. This form of the algorithm was instrumental for proving the correctness
of our method. However, from a practical point of view, the best choice is to
translate these set of resultants into a suitable SQL query that can be issued on
the data sources. Indeed, this is exactly what our current implementation does.
In particular, in the implementation, the final for each loop in the algorithm
is replaced by a step that, starting from S, builds an SLQ query that, once
evaluated over the data sources, computes directly the answers of the original
query Q. For the sake of space, we do not describe such a step here. We only
note that the kind of SQL queries obtained with this method can be seen by
looking at example 12 in Section 4.

We end this section by observing that UnfoldDB allows for completely forget-
ting about the mappings during query evaluation, by compiling them directly
in the queries to be posed over the underlying database. Next we show that
this crucial property allows for devising reasoning procedures that exploit, on
one hand, the results on reasoning over DL-LiteA ontologies, and, on the other
hand, the ability of the underlying database of answering arbitrary first-order
queries.

6 Reasoning over DL-LiteA Ontologies with Mappings

Now that we have described the unfolding step, we are ready to illustrate the
complete algorithms for both satisfiablity checking and query answering, and
to discuss their formal properties. We deal with satisfiability checking first, and
then we address query answering.

Both algorithms make use of several functions that were introduced in the
previous sections, and that we recall here. In what follows, we refer to a DL-LiteA
ontology Om = 〈T , M, DB〉 with split mappings.

– The boolean function Violates takes as input the TBox T , and computes a
first-order query over Om that intuitively looks for violations of functionality
and disjointness assertions specified in the TBox T .

– The function PerfectRef takes as input a UCQ Q over Om and the TBox T ,
and reformulates Q into a new query Q′, which is still a UCQ and has the
following property: answering Q′ with respect to 〈∅, M, DB〉 is the same as
answering Q with respect to 〈T , M, DB〉.

– The function UnfoldDB is the one discussed in Section 5.

6.1 Satisfiability Checking

In Fig. 2 we present the Algorithm Sat that checks the satisfiability of a DL-LiteA
ontology with mappings. More precisely, Sat(Om) issues the call Violates(T)
to compute the query Qs, asking, for each functionality assertion in T and
each negative inclusion assertion in cln(T), whether db(A(M, DB)) violates the
assertion. Then, by calling UnfoldDB(Qs, Om), that allows for “compiling” the

168 A. Poggi et al.

knowledge represented by the mapping assertions, Sat(Om) computes the set of
resultants S′ as discussed in the previous section. After extracting from S′ the
union of queries Q′, Sat(Om) evaluates Q′ over DB, and returns true, if and only
if ans(Q ′, DB) = false.

Algorithm Sat
Input: DL-LiteA ontology with mappings Om = 〈T , M, DB〉
Output: true or false

Qs ← Violates(T);
S′ ← UnfoldDB(Qs, Om);
Q′ ← false;
for each ansθ ← q′ ∈ S′ do

Q′ ← Q′ ∪ {q′};
return not(ans(Q ′, DB))

Fig. 2. The Algorithm Sat

We next show the correctness of Algorithm Sat.

Theorem 4. Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings.
Then, Sat(Om) terminates, Om is satisfiable if and only if Sat(Om) = true.

Proof. The termination of the algorithm follows from the termination of
UnfoldDB.

Concerning the soundness and the completeness of the algorithm, by Proposi-
tion 2, we have that Om is satisfiable if and only if O = 〈T , db(A(M, DB))〉
is unsatisfiable. Moreover, as discussed in Section 2.4, we have that O =
〈T , db(A(M, DB))〉 is unsatisfiable if and only if ans(Qs , db(A(M, DB))) = true
where Qs = Violates(T). Thus, in order to prove the theorem, it suffices to prove
that:

(∗)ans(Qs , db(A(M, DB))) = true if and only if ans(Q ′, DB) = true,

where Q′ is such that Q′ =
⋃

ansθ←q′∈S′ q′ and S′ = UnfoldDB(Qs, Om).
Clearly, this concludes the proof, since (∗) follows straightforwardly from the

correctness of UnfoldDB. �

6.2 Query Answering

In Fig. 3 we present the algorithm Answer to answer UCQs posed over a DL-LiteA
ontology with mappings. Informally, the algorithm takes as input a DL-LiteA
ontology Om with mappings and a UCQ Q over Om. If the ontology is not
satisfiable, then it returns the set of all possible tuples of elements in Γ0 ∪ ΓV
denoted AllTup(Q, Om), whose arity is the one of the query Q. Otherwise, it
computes the perfect reformulation Qp of Q, and then unfold Qp by calling
UnfoldDB(Qp, Om) to compute the set of resultants S′. Then, for each resultant

Linking Data to Ontologies 169

Algorithm Answer
Input: DL-LiteA ontology with mappings Om = 〈T , M, DB〉,

UCQ Q over Om

Output: set of tuples Rs

if Om is not satisfiable
then return AllTup(Q, Om)
else

Qp ←
⋃

qi∈Q PerfectRef(qi, T);
S′ ← UnfoldDB(Qp, Om);
Rs ← ∅;
for each ansθ ← q′ ∈ S′ do

Rs ← Rs ∪ ans(q ′, DB)θ;
return Rs

Fig. 3. Algorithm Answer(Q, Om)

Q′ in S′, it extracts the conjunctive query in its body, evaluates it over DB and
further processes the answers according to the substitution occurring in the head
of Q′.

We next show the correctness of Algorithm Answer.

Theorem 5. Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings, and
Q a union of conjunctive queries over Om. Then, Answer(Q, Om) terminates.
Moreover, let Rs be the set of tuples returned by Answer(Q, Om), and let t be a
tuple of elements in Γ0 ∪ ΓV . Then, t ∈ ans(Q , Om) if and only if t ∈ Rs.

Proof. The termination of the algorithm follows from the termination of the
Algorithm PerfectRef and the function UnfoldDB.

Concerning the soundness and completeness of the Algorithm Answer,
by Proposition 2, we have that: Mod(Om) = Mod(O), where O =
〈T , db(A(M, DB))〉. Moreover, given a union of conjunctive queries Q, as dis-
cussed in Section 2.4, we have that ans(Q , O) = ans(Qp , db(A(M, DB))), where
(Qp) = PerfectRef(Q). Then, since by definition, we have that:

– ans(Q , O) = {t | tI ∈ QI , I ∈ Mod(O)}, and
– QOm = {t | tI ∈ QI , I ∈ Mod(Om)},

it is easy to see that:

ans(Q , Om) = ans(Qp , db(A(M, DB))).

On the other hand, by construction, we have that:

Rs = {t′θ | t′ ∈ ans(q ′, DB), ansθ ← q′ ∈ S′}

where S′ is such that S′ = UnfoldDB(Qp, Om). Then, clearly, by the correctness
of UnfoldDB, we obtain the claim. �

Note that the algorithm Answer reconstructs the result starting from the results
obtained by evaluating the SQL queries q′ over the database DB. However, from

170 A. Poggi et al.

a practical point of view, we can simply delegate such a reconstruction step to
the SQL engine. Indeed, this is exactly what our current implementation does.
In particular, in the implementation, the final for each loop in the algorithm
is replaced by a step that, starting from S′, builds an SQL query that, once
evaluated over the data sources, computes directly the answers of the original
query Q.

6.3 Computational Complexity

We first study the complexity of UnfoldDB. Note that, in this section, we assume
that the mappings in M involve SQL queries over the underlying database DB,
and such SQL queries belong to the class of first-order logic queries. So, queries
in the left-hand side of our mapping assertions, are LogSpace with respect to
the size of the data in DB.11

Lemma 5. Let Om = 〈T , M, DB〉 be a DL-LiteA ontology with mappings, and
Q a UCQ over Om. The function UnfoldDB(Q, Om) runs in exponential time
with respect to the size of Q, and in polynomial time with respect to the size of
M.

Proof. Let Q be a UCQ, and let n be the total number of atoms in the body
of all q’s in Q. Moreover, let m be the number of mappings and let mn be
the maximum size of the body of mappings. The result follows immediately by
considering the cost of each of the three steps of UnfoldDB(Q, Om):

1. The construction of P(Q, M) is clearly polynomial in n and m.
2. The computation of SLD-Derive(P(Q, M)) builds first a tree of depth at

most n such that each of its nodes has at most m children, and, second,
it processes all the leaves of the tree to obtain the set S of resultants. By
construction, this set has size Om(mn). Clearly, the overall computation has
complexity Om(mn).

3. Finally, the application of the function spreadOm
to each element in S has

complexity Om(mn · mn). �

Based on the above property, we are able to establish the complexity of checking
the satisfiability of a DL-LiteA ontology with mappings and the complexity of
answering UCQ over it.

Theorem 6. Given a DL-LiteA ontology with mappings Om = 〈T , M, DB〉,
Sat(Om) runs LogSpace in the size of DB (data complexity). Moreover, it
runs in polynomial time in the size of M, and in polynomial time in the size of
T .
11 The assumption of dealing with SQL queries that are first-order logic queries al-

lows for using the most common SQL constructs (except for few of them, e.g., the
“groupby” construct). Obviously, our approach works also for arbitrary SQL queries.
In such a case, the complexity of the overall approach is the complexity of evaluating
such queries over the underlying database.

Linking Data to Ontologies 171

Proof. The claim is a consequence of the results discussed in Section 2.4, i.e.,
the fact that Om is satisfiable if and only if ans(Violates(T), db(A(M, DB))):

1. Violates(T) returns a union of queries Qs over db(A(M, D)) whose size is
polynomial in the size of T ;

2. each query Q contains two atoms and thus, by Lemma 5, the application of
UnfoldDB to each Q is polynomial in the size of the mapping M and constant
in the size of the data sources;

3. the evaluation of a union of SQL queries over a database can be computed
in LogSpace with respect to the size of the database (since we assume that
the SQL queries belong to the class of first-order logic queries). �

Theorem 7. Given a DL-LiteA ontology with mappings Om, and a UCQ Q over
Om, Answer(Q, Om) runs in LogSpace in the size of DB (data complexity).
Moreover, it runs in polynomial time in the size of M, in exponential time in
the size of Q, and in polynomial time in the size of T .

Proof. The claim is a consequence of the results discussed in Section 2.4, i.e.,
the fact that ans(Q , Om) = ans(PerfectRef(Q , T), db(A(M, DB))):

1. the maximum number of atoms in the body of a conjunctive query generated
by the Algorithm PerfectRef is equal to the length of the initial query Q;

2. by Lemma 5, the algorithm PerfectRef (Q, T) runs in time polynomial in the
size of T ;

3. by Lemma 5, the cost of applying UnfoldDB to each conjunctive query in
the union generated by PerfectRef has cost exponential in the size of the
conjunctive query and polynomial in the size of M; which implies that the
query to be evaluated over the data sources can be computed in time expo-
nential in the size of Q, polynomial in the size of M and constant in the size
of DB (data complexity);

4. the evaluation of a union of SQL queries over a database can be computed
in LogSpace with respect to the size of the database. �

7 Conclusions

We have studied the issue of ontology-based data access, under the fundamental
assumption of keeping the data sources and the conceptual layer of an infor-
mation system separate and independent. The solution provided in this paper
is based on the adoption of the DL-LiteA description logic, which distinguishes
between objects and values, and allows for connectingto external databases via
suitable mappings. Notably, such a description logic admits advanced forms of
reasoning, including satisfiability and query answering (with incomplete infor-
mation), that are LogSpace in the size of the data at the sources. Even more
significant from a practical point of view, DL-LiteA allows for reformulating such
forms of reasoning in terms of the evaluation of suitable SQL queries issued over
over the sources, while taking into account and solving the impedance mismatch
between data and objects.

172 A. Poggi et al.

We are currently implementing our solution on top of the QuOnto system12 [2],
a tool for reasoning over ontologies of the DL-Lite family. QuOnto was originally
based on DL-LiteF , a DL that does not distinguish between data and objects. By
enhancing QuOnto with the ability of reasoning both over DL-LiteA ontologies
and mappings, we have obtained a complete system for ontology-based data
access.

While the possibility of reducing reasoning to query evaluation over the
sources can only be achieved with description logics that are specifically tai-
lored for this, such as DL-LiteA, we believe that the ideas presented in this
paper on how to map a data layer to a conceptual layer and how to solve the
impedance mismatch problem are of general value and can be applied to virtually
all ontology formalisms.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co, Reading (1995)

2. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: AAAI 2005. Proc. of the 20th
Nat. Conf. on Artificial Intelligence, pp. 1670–1671 (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI 2005. Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence, pp. 364–369 (2005)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

5. Barrasa, J., Corcho, O., Gomez-Perez, A.: R2O, an extensible and semantically
based database-to-ontology mapping language. In: WebDB 2004. Proc. of the 7th
Int. Workshop on the Web and Databases (2004)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: AAAI 2005. Proc. of the 20th Nat.
Conf. on Artificial Intelligence, pp. 602–607 (2005)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: KR 2006. Proc. of the 10th Int.
Conf. on the Principles of Knowledge Representation and Reasoning, pp. 260–270
(2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning (to appear, 2007)

9. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data inte-
gration in data warehousing. Int. J. of Cooperative Information Systems 10(3),
237–271 (2001)

10. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept lan-
guages: From subsumption to instance checking. J. of Logic and Computation 4(4),
423–452 (1994)

11. Goasdoue, F., Lattes, V., Rousset, M.-C.: The use of CARIN language and al-
gorithms for information integration: The Picsel system. Int. J. of Cooperative
Information Systems 9(4), 383–401 (2000)

12 http://www.dis.uniroma1.it/∼quonto/

http://www.dis.uniroma1.it/~quonto/

Linking Data to Ontologies 173

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: WWW 2003. Proc. of the 12th
Int. World Wide Web Conf, pp. 48–57 (2003)

13. Heflin, J., Hendler, J.: A portrait of the Semantic Web in action. IEEE Intelligent
Systems 16(2), 54–59 (2001)

14. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26
(2003)

15. Hull, R.: A survey of theoretical research on typed complex database objects. In:
Paredaens, J. (ed.) Databases, pp. 193–256. Academic Press, London (1988)

16. Hull, R., Yoshikawa, M.: ILOG: Declarative creation and manipulation of object
identifiers. In: VLDB 1990. Proc. of the 16th Int. Conf. on Very Large Data Bases,
pp. 455–468 (1990)

17. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: IJCAI 2005. Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence, pp. 466–471 (2005)

18. Komorowski, H.J.: A specification of an abstract Prolog machine and its application
to partial evaluation. Technical Report LSST 69, Linköping University (1981)

19. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS 2002. Proc.
of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems, pp. 233–246 (2002)

20. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

21. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. of
Logic Programming 11, 217–242 (1991)

22. Lutz, C.: Description logics with concrete domains: A survey. In: Balbiani, P.,
Suzuki, N.-Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logics,
vol. 4, King’s College Publications (2003)

23. Mädche, A., Motik, B., Silva, N., Volz, R.: MAFRA – a mapping framework for
distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

24. Meseguer, J., Qian, X.: A logical semantics for object-oriented databases. In: Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pp. 89–98 (1993)

25. Minker, J.: A logic-based approach to data integration. Theory and Practice of
Logic Programming 2(3), 293–321 (2002)

26. Ortiz, M.M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunc-
tive query answering in expressive description logics. In: AAAI 2006. Proc. of the
21st Nat. Conf. on Artificial Intelligence (2006)

27. Poggi, A.: Structured and Semi-Structured Data Integration. PhD thesis, Diparti-
mento di Informatica e Sistemistica, Università di Roma La Sapienza (2006)

28. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Databases, pp. 119–140. Plenum Publ. Co, New York (1978)

29. Scharffe, F., de Bruijn, J.: A language to specify mappings between ontologies. In:
SITIS 2005. Proc. of the 1st Int. Conf. on Signal-Image Technology and Internet-
Based Systems, pp. 267–271 (2005)

30. Serafini, L., Tamilin, A.: DRAGO: Distributed reasoning architecture for the Se-
mantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 361–376. Springer, Heidelberg (2005)

31. Vardi, M.Y.: The complexity of relational query languages. In: STOC 1982. Proc.
of the 14th ACM SIGACT Symp. on Theory of Computing, pp. 137–146 (1982)

Context Representation in Domain Ontologies

and Its Use for Semantic Integration of Data

Guy Pierra

Laboratory of Applied Computer Science (LISI)
National Engineering School for Mechanics and Aerotechnics (ENSMA), Poitiers

86960 Futuroscope Cedex - France
pierra@ensma.fr

Abstract. The goal of this paper is to identify various aspects of
context-awareness needed to facilitate semantics integration of data, and
to discuss how this knowledge may be represented within ontologies. We
first present a taxonomy of ontologies and we show how various kinds
of ontologies may cooperate. Then, we compare ontologies and concep-
tual models. We claim that their main difference is the consensual na-
ture of ontologies when conceptual models are specifically designed for
one particular target system. Reaching consensus, in turn, needs specific
models of which context dependency has been represented and mini-
mized. We identify five principles for making ontologies less contextual
than models and suitable for data integration and we show, as an exam-
ple, how these principles have been implemented in the PLIB ontology
model developed for industrial data integration. Finally, we suggest a
road map for switching from conventional databases to ontology-based
databases without waiting until standard ontologies are available in every
domains.

1 Introduction

A number of computer science problems, including heterogeneous database inte-
gration, natural language processing, intelligent document retrieval would ben-
efit from the capability to model the absolute meaning of things of a domain,
independently of any particular use of them. In the structured-data universe,
information is represented as data. Indeed, many studies have been performed
to integrate heterogeneous and autonomous databases [8], in particular using
domain ontologies [33]. Distributed architecture models have been developed,
where mediators [34] provide uniform access to heterogeneous data sources. Me-
diators export integrated schemas that reconcile data both at the structural
(schematic heterogeneity) and at the meaning level (semantic heterogeneity). If
large progresses have been made to automate schema integration at the struc-
tural level, using in particular new model management techniques [3], the major
challenge remains the automation of semantic integration of several heteroge-
neous schemas. Such an automation would need enabling programs to identify
unambiguously:

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 174–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Context Representation in Domain Ontologies 175

– those data having exactly the same semantic meaning,
– those data that are similar and may be converted in or compared with each

others by given processes, and
– those data having no semantic commonality.

In the above list, data may be either atomic or structured data like tuple or
entity instance. On the Internet, data is not the only means for representing
information, another one is largely used, namely documents. Large progresses
were achieved by search engines to retrieve over the Internet the most relevant
documents with respect to a user query expressed as a sentence of words. Un-
fortunately, if semantic of both the query and target documents are not made
computer-sensible, it is impossible to retrieve documents dealing with the query
subject without using exactly the same words (e.g., worker instead of employee,
size instead of length or convertible instead of car). Here again some kinds of
computer interpretable representation of word meaning is needed:

– in a first step to improve search engine in order to retrieve which documents
are semantically relevant for a topic defined by a set of words, even when
the same words are not used, and

– in a second step, to retrieve which documents might provide answer to a user
query.

Both kinds of information integration requiring explicit representation of mean-
ing, these last ten years a lot of work has been done to develop domain ontology
models1 intended to capture the a priori nature of reality of some Universe of
Discourse (UoD), as independently as possible from any particular use of this
reality. Once defined, such representations may then be used to reconcile various
information sources addressing this UoD at the meaning level.

The word ontology is now extensively used in a number of computer science
domains, including e.g., knowledge management, natural language processing,
database, object oriented modeling. If there seems to be some consensus on
what an ontology structure should be - categories (classes), properties, logical
relationships - the focus of the various approaches is so different that the same
word seems to represent quite different realities, and that ontologies developed,
e.g., for natural language processing seems to be nearly useless for e.g., database
integration, and conversely.

The goal of this paper is twofold. The first goal is to investigate the concept
of an ontology in a structured-data integration perspective. We claim that the
major difference between ontologies and conceptual models is the existence of
a consensus that founds ontologies as a shared meaning, and that consensus, in
turn, needs representation of the modeling context. As an example, it is easy
to reach consensus on the fact that the resistance is an essential property of a
resistor. But the resistance depends upon the temperature where the resistance
is measured, and it is nearly impossible to reach consensus on the temperature

1 In this paper, we only consider domain ontologies, and not upper-level generic on-
tologies. Thus, for short, ontology means domain ontology.

176 G. Pierra

where the resistance should be measured since this temperature depends upon
the resistor target usage. To include in the ontology model a mechanism allowing
to represent with each resistance value the temperature where it was evaluated
(value-evaluation context awareness) enables consensus since it allows each user
category to select its own resistance measuring process while making explicit
commonality and differences. Thus, we propose five principles allowing to make
ontologies much more generic through context representation, and thus more
suitable for heterogeneous data integration. The second goal is to show how
these principles have been implemented in the ontology model we have devel-
oped over the last 15 years. Discussed within an international standardization
project (see Annex A), the PLIB ontology model (officially ISO 13584), was
initially developed for giving meaning to technical data and for providing for
automatic integration of heterogeneous engineering data sources. The overview
of PLIB presented in this paper allows both to illustrate the context representa-
tion principles that we propose, and to show some typical uses of this ontology
model.

The content of this paper is as follows. In the next section, we discuss the
various kinds of ontologies needed for representing semantics. We distinguish
between document-oriented linguistic ontology (LO) and information-modeling-
oriented conceptual ontology (CO). In section 3, we investigate the differences
between ontologies and models, and we propose mechanisms to represent both
modeling and value context within an ontology. In section 4, we outline how PLIB
ontologies are specified (and exchanged) thanks to an executable specification de-
fined in the EXPRESS data specification language, and we present how context-
awareness mechanisms are represented in the PLIB ontology model. In section
5, we present a formal model of PLIB ontologies, including the mapping capa-
bilities to external ontologies, and we outline how such ontologies may be used
to integrate various heterogeneous data bases. We suggest, in section 6, a road
map for switching from conventional databases to ontology-based databases. A
discussion of related work regarding context representation, ontology models and
data integration is presented in section 7. Conclusion is presented in section 8.
Some standards being quoted in the paper, Annex A outlines the standardization
activities around PLIB.

2 Concept Ontologies and Linguistic Ontologies

Since the term ontology was borrowed from philosophy and introduced in the
computer science vocabulary, many definitions have been offered. The most com-
monly cited definition is one by T. Gruber ”An ontology is an explicit specifica-
tion of a conceptualization”, therefore ”shared ontologies” provide for ”knowl-
edge sharing” [15]. In all the ontology models, such a conceptualization consists
of three parts :

– primitive items of the ontology (where items are either classes or properties)
are those items ”for which we are not able to give a complete axiomatic

Context Representation in Domain Ontologies 177

definition; we must rely on textual documentation and a background of
knowledge shared with the reader” [15],

– defined items are those items for which the ontology provides a complete
axiomatic definition by means of necessary and sufficient conditions, and

– logical relationships (or inference rules) provide for reasoning over ontology
items, and for supporting some problem-solving activities over the ontology
domain.

The agreed definition and structure description leave open what may be consid-
ered as the major criteria for classifying ontologies and ontology models: whether
their area of interest consists of beings (what does exist in the world) or of words
(how beings are apprehended and reflected in a particular natural language).

We call linguistic ontologies (LO) those ontologies whose goal is to represent
the meaning of the words used in a particular UoD in a particular language.
We call concept ontology (CO) those ontologies whose goal is to represent the
categories of objects and object properties that are used to apprehend some part
of the world. These two kinds of ontologies address quite different problems and
should have quite different contents.

LOs [9] are document-oriented. The typical problem they address may be
termed as follows:
”find all documents relevant to a query expressed as a set of words possibly
connected by logical operators like AND, OR and NOT, even if these documents
do not contain these words”.

Since natural languages contain a number of different words for reflecting
identical or similar meanings, LOs are large in nature. They include a number
of conservative definitions, i.e., defined items that only introduce terminology
and do not add any knowledge about the world [15]. They are language-specific
and they use a number of linguistic relationships such that synonym, hypernym,
hyponym, overlap, covering, disjoint to capture in a semi-formal way meaning
relations [33]. Such relationships being not formally grounded, inference could
only provide some help to a user supposed to be involved in some computer-aided
search process. Development of LOs may be done through a semi-automatic
process where significant words are automatically extracted from a document
collection and then validated and structured by experts.

COs, for instance themeasure ontology [15], are information-modeling-oriented.
The typical problem they address may be termed as follows:

”decide whether two instances belong to the same class and whether two proper-
ties have identical meaning or may be converted into each other”.

To be able to represent all the beings existing in some part of the world, COs
need only to describe those primitive concepts that cannot be derived from other
concepts. Like technical vocabulary where one and only one word should always
be used for the same meaning, COs may be restricted to primitive concepts.
Such primitive COs, that we call canonical conceptual ontologies (CCOs), are
compact in nature. To reduce again the number of concepts that need to be
represented, COs may also be property-oriented. This means that in place of

178 G. Pierra

introducing a number of different concepts such that ”10-HP-engine”,”20-HP-
engine”,”25-HP-engine”, they introduce only two concepts that may express the
same meaning: one class (engine) and one integer-valued property (power in
HP). Indeed, only those classes that cannot be represented by restriction of an
existing class by means of property values need to belong to a property-oriented
CCO. The focus being on primitive concepts, and understanding such concepts
being based on reader background knowledge, an extensive information model
has to be used to describe both textually and formally each primitive concept.
COs are multilingual because most concepts are language-independent. Even
though a collection of documents in one particular language of which significant
words are automatically extracted may be used as a starting point for defining
a CO of some domain, development of a CO is mainly manual. Finally, if the
relationships involved in a CO are formally defined, and if two data sources
reference the same CO, semantic integration of these data sources may be done
automatically [2].

Table 1. Typical characteristics of LO and CO

LO CO
Tokens Word Concept

Token identification Word Id
Token definition Sentence Model
Ontology Size Extensive Minimal

Relations Formal + Linguistic Formal
Content Primitive Items Primitive Items (CCO)

+ Conservative Definitions + Conservative Definitions (NCCO)
Focus Class-oriented Property-oriented

Development Automatic/Semi-automatic Semi-automatic/Manual
Ontology usage Computer-aided tasks Task automation

When the goal of a CO is to define a common language for data exchange or
data integration, CCOs are well suited. For data integration, the use of CCOs
assumes that each source or agent is in charge of converting its own vocabulary
onto the shared CCO. It is the approach followed by the PLIB ontology model
developed to support exchange of industrial data. In PLIB ontologies, equiva-
lences between ontology concepts are not represented within the PLIB ontology
but as an external mapping between ontologies, called ontology articulations (see
section 5.2). Example 1 presents an informal description of a small CCO that
represents some categories of industrial components2.

Example 1. A circular bearing is a mechanical component used to connect and to
transmit load between two cylindrical shapes having the same axis but different
diameters and rotational movements. Characteristic properties include width,
inner diameter and outer diameter. But a crucial property, called life-time, is
2 Such an ontology is formally defined in ISO 23768 using the PLIB ontology model.

Context Representation in Domain Ontologies 179

the length of the time period where the bearing will behave correctly. The value of
this property depends upon the number of revolutions done by the bearing, and
of the load it must support. Mathematically, the bearing life-time is a function
of the velocity (i.e. rotational speed), the radical load and the axial load. At
the class level, circular bearings may be circular ball bearings (there are also
other kinds of bearings, not modeled within this small ontology, having, e.g.,
needles or rollers). The ball diameter is a property that should be defined at the
level of circular ball bearing where it is meaningful. Figure 1 presents the main
properties of a circular ball bearing.

Fig. 1. Characterization of a bearing

Equivalence of concepts may also be represented within a CO. This may be
done for instance using either formal class relationships like set-oriented oper-
ations (union, intersection and difference) and class restrictions (by property
values), as it is done in OWL [20], or property value deduction, as it is done
by F-logic rules, or property value algebraic derivation function, like in the EX-
PRESS language [30]. For example, the thickness of the bearing may be defined
as (outer diameter − inner diameter)/2. Such COs, that we call non-canonical
conceptual ontologies (NCCO), allow to integrate in the same ontology different
conceptualizations and the articulations between them. NCCOs are in particular
largely used in artificial intelligence. They allow to make inference over concept
equivalence, but they often encounter scaling problems for processing large data
sets.

Table 1 emphasizes the main differences between COs and LOs. But, in fact,
LO, NCCO and CCO are complementary, and, in a number of ontology-based
applications, all three kinds of constructs are needed over the same domain. It
is the case, for instance, when a domain ontology is built using natural language
processing (NLP) tools that extract terms from a document corpus. This set
of terms is progressively structured by domain experts into a LO that contains
both formal relationships, such that subsumption and class-property links, and
linguistic relationships such that homonymy or synonymy. In this ontology, en-
tries are still words of a particular language. From this LO, a NCCO may be
extracted under expert supervision. In this ontology, entries become identifiers,

180 G. Pierra

and relationships are based on a clear mathematical semantics. Finally, a CCO
may be chosen from the NCCO and all non-canonical concepts are formally de-
fined in terms of canonical concepts. Note that this process is quite similar to
the one defined in [24]. Similarly, all three kinds of constructs are also needed
when one wants indexing a set of documents by means of concepts of a CO,
either CCO or NCCO. If the starting ontology is a CCO, a NCCO needs first
to be defined to address all the concepts usual in the CCO domain, even when
some of them might be represented by some other ones. Then, a LO must be
developed on top of this NCCO. This LO must include all the language-specific
terms, and term patterns, that may be considered as representing each particu-
lar concept or particular property. Then, these terms may be used for indexing
a set of documents, either automatically or under expert supervision. These
two possible approaches for building domain ontology suggest a layered view
of domain ontologies [18] in which CCOs, NCCOs and LOs may cooperate. In
this view, a kernel CCO defines all the UoD semantics. We call this layer the
characterization layer. Thanks to this CCO, any object belonging to the UoD
may be characterized by class belonging and property-value pairs, thus provid-
ing a canonical language for information exchange. At the second layer, that
we call integration layer, a NCCO extends this conceptual vocabulary by means
of conservative definitions to encompass all concepts broadly used in the do-
main. Using the ontology defined according to this layer, several data sources
addressing the same domain but based on different CCOs may be integrated,
and inference may be performed. At the third layer, that we call discourse layer,
a LO provides a multilingual natural language interface for person-system and
person-person communication. Figure 1 show the resulting onion-shaped model
that we call the Characterization-Integration-Discourse CID model of domain
ontology.

Fig. 2. The CID layered model of domain ontologies

Context Representation in Domain Ontologies 181

Example 2. A CCO for characterizing (to some extent) persons might define the
class person with two properties: gender and age. If one wants to cover more
broadly the same domain, the two classes man and woman need to be introduced
in a NCCO. Man for instance being defined as a person whose gender= male.
Migrating to LO would need, beside the terms used as labels for the NCCO and
that are formally grounded on this NCCO, other terms such that children, boy,
girl, oldster that could not be formally defined.

Data integration being mainly concerned with CO, in the next section we discuss
the differences between CO and conceptual models.

3 Concept Ontologies Versus Model

In the previous section we have discussed the differences between the various
kinds of domain ontologies and we have proposed a model representing how they
may fit and cooperate altogether. In this section we propose to clarify the differ-
ences between domain ontologies and conceptual models. Indeed, a conceptual
model may be considered as an ”explicit specification of a conceptualization”.
Therefore, as noticed by Guarino and Welty [16], conceptual models are some-
times denoted as ontologies. But we perfectly know that conceptual modeling
leaves open the semantic heterogeneity problem. Thus, it is worthwhile investi-
gating the difference between a shared ontology and a model if we want to use
ontology as a tool for semantic integration of data.

An old definition from Minsky [22] would introduce the discussion: ”To an
observer B, an object A* is a model of an object A to the extent that B can use
A* to answer questions that interest him about A”. This definition emphasizes
the ternary character of a model relationship: it depends on the object (A)
and the observer (B), but it depends also on which questions the observer is
interested about A. In other terms, in which context the model was built. In data
engineering, we are in line with this definition when we teach that a conceptual
model shall be built within a precise context. The key point here is that when one
designs an application system, the context of the modeling activity is defined by
the target system goals and environment. The functions that two systems must
perform are never exactly the same. Thus models are always slightly different,
enough to make instance data incompatible.

This shows that usual conceptual models can hardly fit several needs. If one
wants to build shared ontologies, i.e., ontologies that reflect the information
requirements of several application contexts, not only the conceptualization ap-
proach must be different from usual modeling activity directed toward a specific
target system, but also the conceptualization formalism must have specific ca-
pabilities to allow specification of generic models. These generic models must be
either context-independent or at least context explicit to fit the needs of various
application contexts.

Importance of context representation for semantic integration of heteroge-
neous database was already underlined by researchers in multidatabase systems.
Kashyap et al. [19] proposed an explicit representation of the modeling context

182 G. Pierra

at the schema definition level. For instance, what is the meaning of the ”width”
property when we try to use it with a ”car engine” without knowing in the con-
text of which class and with which precise meaning this property was described?

The property becomes clear when we know that it was defined in a packaging
perspective for any material object as the width of the virtual box where it might
be packaged.

But even if a property definition is clearly understood, property value may
also be context dependent, such context-sensitivity was studied in particular by
[31], [14]. These authors proposed to represent context at the extensional level,
i.e., at the level of data values and object instances. For instance, what means
the temperature of a particular city if we do not know when this temperature
was measured, and in which unit? What means the life time of a bearing if we
do not know which load it supports and what would be its rotational speed?

In fact most of the causes of semantic conflicts in data integration result from
implicit context, either in schema definition or in value evaluation. They may
be solved if both the modeling context and the value context are made explicit.
Goh [14] identified three main causes for semantic heterogeneity:

1. naming conflicts occur when naming schemas of information differ signifi-
cantly. A frequent phenomenon is the presence of homonyms and synonyms.
We claim that naming conflicts may be avoided if data base schemas refer
explicitly for all the shared concepts they represent to identifiers of a shared
conceptual ontology, and if this shared ontology makes explicit the context
of each definition. Driving license id is unambiguous if it is defined in the
context of a French car drivers class, it becomes ambiguous (and may have
several values) in a context of a person.

2. scaling conflicts occur when different reference systems are used to measure
the value of some properties. Examples are different currencies. Scaling con-
flict may be avoided, either by associating explicitly at the schema level a
computer-interpretable representation of the unit that shall be used for any
value of a property, or by associating explicitly with each value its own unit.

3. confounding conflicts occur when information items seem to have the same
meaning, but differ in reality, e.g., due to different temporal contexts. We
claim that confounding conflicts may be avoided by investigating whether a
value is an intrinsic and permanent property of some instance, or it depends
on some evaluation context, and, in the latter case, by associating this value
with its context. For instance the driving license id of a person depends on
the country where the license was issued, its weight depends on the date
where it was recorded, but its birth date is not context dependent (once the
scaling conflicts is solved as above).

Moreover, most causes of schematic conflicts, and in particular schema isomor-
phism conflicts which means that semantically similar entities have a different
number of attributes [19] also result from context sensitivity. It is not so difficult
to identify, to describe and to reach consensus in some community on all the
major properties which are rigid [16], i.e. which necessarily hold for all instances

Context Representation in Domain Ontologies 183

of a class. For instance, each customer has a birth date, each mechanical com-
ponent has a weight, and each town has a (current) number of inhabitants. But
it is impossible to agree on those rigid properties that should be represented for
each class in a database. Thus, ontological description of a class should describe
all its rigid properties (at least within some rather broad context common to
all data sources that might exist in some target community) in order to reduce
context-dependency in the class description. Then, each schema may restrict
this general description to its design context by selecting those ontology-defined
properties that are relevant to the problem at hand and are thus represented
in the database. For instance, the weight or birth date of a person are seldom
used in a customer database. So, when several schemas refer to a same ontology
by means explicit mappings [2], these mappings allow to identify automatically
which ontology-defined properties are semantically equivalent in several data
sources, which properties are represented in some data sources without being
represented in some others, and, possibly, which properties if any are not de-
fined in the common ontology.

This discussion allows to define five principles that should be followed by
ontology models to provide for automatic integration of several data sources. It
also suggests five mechanisms that may be proposed for satisfying each principle.

– Definition context representation. At the schema level the modeling context
in which each class or property is defined should be explicitly represented
and minimized.
Proposed mechanism: to represent its definition context, each property should
be defined in the context of a class that defines its domain of application. To
minimize its context-sensitivity, each class should define all its rigid proper-
ties, at least in some very broad context common to all the target data sources.

– Point of view representation. The perspective adopted by the modeling team
when the ontology is designed and agreed upon in some community should
be explicitly represented.
Proposed mechanism: if several perspectives are needed over the ontology
target domain, an ontology of perspectives should be defined or referenced.
Then, each needed perspective should correspond to a specific domain ontol-
ogy. Different perspectives over the same real world object should be repre-
sented either by an instance aggregate, one instance per perspective-specific
ontology, or by multi-instantiation.

– Locality of interpretation context. Importation of resources from one ontology
into another one should be possible while controlling the impact of the former
over the interpretation of the latter.
Proposed mechanism: importation on a class per class basis, and, for a class,
on a property per property basis should be feasible. Domains of both ontolo-
gies should be separated.

– Value context representation. At the value level, the local context in which
each value is evaluated should be explicit.
Proposed mechanism: when the property value of some ontology class in-
stance depends upon some evaluation context, this evaluation context should

184 G. Pierra

be modeled by properties defined over this evaluation context, and the for-
mer property should be modeled as a function over the latter properties.

– Value scaling representation When the same property magnitude may be
represented by different values depending upon some scaling process, scale
should be explicitly represented, either at the ontology level, or at the in-
stance level.
Proposed mechanism: When property value represents a physical (resp. a
financial) amount, represent or reference in a computer-sensible way the
physical unit (resp. the currency unit) used for scaling the value.

We present in the next section how these mechanisms have been implemented
and may be represented in the PLIB ontology model.

4 PLIB: A Context-Explicit Ontology for Data
Integration

Initiated in the early 90’s the goal of the PLIB project was to develop an ap-
proach and standard models for exchanging and integrating automatically engi-
neering component databases [26]. To allow such an automatic integration, an
ontology-based approach has been developed. An ontology model (known as the
PLIB ontology model) has been defined3 and each PLIB-based data source is
supposed to contain at least three parts: (1) an ontology, (2) a database schema,
and (3) instance data represented according to the schema that references the
ontology. Because one cannot assume that complete shared ontologies will ever
exist, each database must have its own local ontology. But, to make automatic
integration feasible, each particular local ontology may also contain (4) a map-
ping onto pre-existing shared ontology(ies) (e.g., standard ontologies) through
semantic relationships. In particular, a specific subsumption relationship called
case-of was defined to allow a local ontology to reference a shared ontology
and to import properties without needing to duplicate class or property defini-
tions. Development of standard ontologies is encouraged. Several such ontologies
already exist or are in progress (see Annex A).

The role of a PLIB ontology is twofold. First it is intended to support user
query over integrated component databases. Such queries need to be supported
at various levels of abstraction (a screw, a machine screw, an hexagon machine
screw, an ISO 1014-compliant hexagon machine screw). Thus, subsumption is a
key feature of any PLIB ontology. Second, it provides for automatic integration.

We first present in this section a formalization of PLIB ontologies. 4.1 gives a
short overview of the EXPRESS data specification language, and 4.2 presents,
through two simplified schemas, the global architecture of the formal PLIB spec-
ification. Then, clauses 4.3 to 4.7 present the main mechanisms used to make
context explicit in PLIB ontologies. Finally, clause 4.8 discusses the relationships
between ontologies and schema in databases.
3 ISO 13584-42:1998. Industrial Automation Systems and Integration, Parts Library,

Methodology For Structuring Part Families. H. U. Wiedmer and G. Pierra, Eds.
ISO, Geneva, 1998.

Context Representation in Domain Ontologies 185

4.1 Specification of the PLIB Ontology Model: EXPRESS

The PLIB ontology model is defined in EXPRESS, a standard data specification
language initially developed in ISO [30] to represent product models in the engi-
neering field. The major advantage of this language is the integration of schema
definition, constraint specification and instance representation capabilities in a
common formalism with common semantics. This integration avoids the use of
several models and languages like e.g., UML, OCL and XMI.

A specification in EXPRESS is represented by a set of schemas that may
refer to each other. Each schema contains two parts. The first part is a set of
entities that are structured in an object oriented approach supporting multiple
inheritance. The second part is a procedural part that contains procedures and
functions. These procedures and functions are used for restricting the allowed
interpretation of the schemas by describing constraints on data. They are also
used to specify how the value of a property of some entity may be computed
from values of some other properties (derivation functions).

Each entity is described by a set of properties called attributes. Each attribute
has a range (where it takes its values) defining a data type. It can be either a
simple type (like integer, string ...), an entity type (meaning that the attribute
establishes a relationship with another entity), a union of type (like integer OR
string) or a collection over any data type (collections may be list, set, bag and
array that are hard encoded in EXPRESS).

Syntactically one writes:

SCHEMA Foo1;
TYPE number_or_string = SELECT (REAL, STRING);END_TYTPE;

ENTITY b;
ENTITY a; att_1:number_or_string;
att_a:OPTIONAL INTEGER; att_2:LIST [0:?] OF STRING;
INVERSE att_3:a;
att_i: DERIVE
SET [0:2] OF b FOR att_3; att_4:BOOLEAN

END_ENTITY; := EXISTS(SELF.att_3.att_a);
END_ENTITY;

END_SCHEMA;

Informally, the entity b has three attributes: a value that may be either a real
or a string, a list of any number of strings and a pointer to another entity a.
Entity a has only one integer attribute that may have no value (lack of value
is represented by a particular symbol). Attribute att i is an inverse attribute of
entity a, corresponding to the inverse link defined by attribute att 3 in entity b.
At most, two instances of b may reference an instance of a. Attribute att 4 is
a derived attribute of entity b computed by the predefined EXPRESS function
EXISTS. This function evaluates to true if its parameter has a value. In the
case of entity b, this parameter is the optional att a attribute of the instance of
entity a referenced by the current instance (optional keyword SELF) of entity
b. As usual, EXPRESS uses the dot notation to access attributes of an entity.

186 G. Pierra

Semantically, an entity has a model. In the EXPRESS community, the model
is named a physical file. The model consists of a set of entity instances with
explicit instance identity. The attribute values are either literal values of the
EXPRESS simple or structured built-in types or they are references to other
entity instances. Instead of entering into deep semantic details, we give below
an example of a model (physical file) which can be associated to the previous
entity definitions. Note that an EXPRESS schema is an executable specification.
EXPRESS compilers are able to generate both storage structures for managing
EXPRESS models, checking constraints over these data or computing derivation
functions and programs able to read and write physical files for which a standard
syntax has been defined.

Let us consider a particular instance of the entity b, where att 1 evaluates to
4.0, att 2 is the list (’hello’, ’bye’) and att 3 points the particular instance of
the entity a whose att a attribute evaluates to 3. Then, the model (physical file)
associated to these particular instances of the entities A and B is described by
(derived and inverse attributes are not represented as they may be computed):

1=A(3);
2=B(4.0, (’hello’,’bye’), #1);

It is possible to limit the allowed population (elements) of the models to
those instances that satisfy some stated constraints. EXPRESS uses first order
logic which is completely processable since the set of instances (physical file) is
finite. Constraints are introduced thanks to the WHERE clause of EXPRESS
that provides for instance invariant, and thanks to the global RULE clause that
provides for model invariant.

Let us assume that the allowed values for att a in a are [1..10] and that exactly
two instances of entity a shall have an attribute value equals to 1. We may write
(QUERY is a built-in iterator on class, and SIZEOF a built-in function that
returns the size of a collection):

ENTITY a;
att_A:OPTIONAL INTEGER;

WHERE
WR1: correct_range (SELF.att_A); -- WR1 is the constraint label

END_ENTITY;
RULE Card FOR a;
WHERE SIZEOF(QUERY(inst <* a|inst.att_a=1)) = 2; END_RULE;

FUNCTION correct_range (val: integer): Boolean;
BEGIN RETURN ((val>=1) AND (val<=10));END_FUNCTION;

All value domains and operators are extended with the INDETERMINATE (’?’)
value to process optional attributes, and EXPRESS uses a tree-valued logic
(TRUE, UNKNOWN, FALSE) to return values of predicates that cannot be
assigned a Boolean result. Assignment, sequence and control structures (if state-
ments, loops and recursion) can be used in the function bodies. These features
give powerful expression possibilities to the language. Indeed, one gets the same

Context Representation in Domain Ontologies 187

expression possibility as other recursive specification languages. Derivations and
constraints are the only places where functions may occur. They provide the two
high level abstraction mechanisms identified as necessary in data driven active
databases. Therefore, it is possible to specify formally a large class of problems.
Moreover, derivations and constraints are inherited. These features define a set
inclusion semantics to the EXPRESS inheritance mechanism.

4.2 PLIB Syntax and Semantics

To provide for easy integration of several ontologies, PLIB uses a meta-modeling
approach for representing both ontologies, and ontology-based representation of
domain objects. These two schemas are connected by formal constraints to ensure
that instances of ontology classes fit with class descriptions. The partial schema
below outlines the global structure of the PLIB ontology (meta) model (the
data type entity, not detailed, allows to specify the data type of a property).

SCHEMA PLIB_ontology;
TYPE class_id=STRING;END_TYPE; TYPE prop_id=STRING;END_TYPE;
TYPE class_ref=SELECT (class, class_id);END_TYPE;
TYPE prop_ref=SELECT (property, prop_id);END_TYPE;
ENTITY property;
code:STRING; version:STRING; name:STRING; domain:class_ref;
range:data_type; value_context:SET [0:?] OF prop_ref;
DERIVE
prop_id:STRING:= compute_class_id(domain)+’.’+code +’-’+version;
END_ENTITY;
ENTITY class;
id:class_id; name:STRING; superclass:OPTIONAL class_ref;
case_of:SET [0:?] OF class_ref;
imported_properties:SET [0:?] OF prop_ref;
new_applicable_properties:SET [0:?] OF prop_ref;
DERIVE
known_applicable_properties

:SET [0:?] OF prop_ref := compute_applic (SELF);
WHERE
WR1: is_acyclic([SELF], SELF.superclass);
WR2: correct_importation(SELF.imported_properties, SELF.case_of);
WR3: correct_applicability(SELF.new_applicable_properties, SELF);
END_ENTITY;

Properties and classes are identified by universal identifiers (UId) (prop id and
class id), but references between them are done either by these identifiers, or by
instance references to allow exchanging partial ontologies or referencing external
ontologies. A property is defined in the context of the higher class (domain)
where it is meaningful, even if it is not applicable (semi-rigid [16]) to some of its
subclasses. Its UId concatenates the identifier of this class (user-defined function
compute class id), its code and its version. If the value of a property depends

188 G. Pierra

upon some evaluation context (see 4.6), parameters that characterize this context
are specified (value context). A class has at most one superclass. It selects among
all the inherited (semi-rigid) properties, those that become applicable, (rigid
[16]), i.e., essential for all its instances (new applicable properties). Moreover, it
may also establish subsumption links with other preexisting classes (case-of), for
instance from standard ontologies, of which it imports any number of properties
(imported properties).

The rules that govern the semantics of such a specification are formally de-
fined by means of user-defined functions. As examples, is acyclic asserts that
subclass/superclass relationships do not include loops, correct importation as-
serts that only properties defined for the classes referenced by means of case of
are imported from these classes and correct applicability asserts that the current
class is (possibly by inheritance) in the domain of all the properties it selects as
applicable by new applicable properties). The final set of applicable properties
of a class (that gathers inherited applicable properties, new applicable proper-
ties and imported properties) is also formally specified by means of a function
(known applicable properties). When the specification is run over some model
(physical file), if some classes are only referenced by their class ids but are not
available in the model, the assertions do not fail. They return an UNKNOWN
result as allowed by the EXPRESS language.

Let us consider the class of ball bearing presented in Fig.2. Let us assume
that it is a subclass of a predefined bearing class whose class id attributes equals
’XX.bearing-1’ and where all Fig.2 properties, but ball radius, are already defined
as applicable. Then, the model (physical file) allowing to extend this predefined
ontology by a new ball bearing class associated with a new ball radius applicable
property would be as follows (measure type, not detailed here, allows to represent
a subtype of data type that is a real number associated with a measure unit,
and ’()’ represents the empty set):

1=PROPERTY(’b_radius’,’1’,’ball radius’,’XX.ball_bear-1,#10);
#10= MEASURE_TYPE(...);
2=CLASS(’XX.ball_bear-1’,’ball bearing’,’XX.bearing-1’,(),(),(#1));

Ontologies being represented as instances of the PLIB ontology schema, an-
other schema, called the PLIB instance schema, has been developed for repre-
senting domain objects (e.g., a particular ball bearing) as ontology individuals.
Such individuals, called ontology-based data, may be exchanged together or with-
out the domain ontologies to which they correspond. The partial schema below
outlines the structure of the PLIB instance schema (the REFERENCE clause
imports all the definitions from a referenced schema):

SCHEMA PLIB_instance;
REFERENCE FROM PLIB_ontology;
TYPE primitive_value=SELECT (integer, string, instance); END_TYPE;
ENTITY property_value;
property:prop_ref; value:primitive_value;
WHERE WR1: correct_type(SELF.property, SELF.value);

Context Representation in Domain Ontologies 189

END_ENTITY;
ENTITY instance;
class:class_ref; properties:LIST [0:?] OF property_value;
WHERE WR1: correct_properties(SELF.class, SELF.properties);
END_ENTITY;

When ontology and ontology-based data are gathered in the same model (i.e.,
physical file or database), thanks to the constraints specification capabilities of
the EXPRESS language, constraints over the instance schema allow to assert
that each ontology individuals complies with its ontological definition in the
following sense. The user-defined correct type function ensures that the value
of each property belongs to the range defined for this property at the ontology
level. The user-defined correct properties function ensures that an instance of
an ontology class may only be described by properties that are applicable to this
class, and that if the evaluation context of a property depends upon some other
properties, any value of the former is associated with values of the latter. Note
that the database schema of a class consists of the union of all its applicable
properties that are associated with values for at least one of its instances.

Let us consider an instance of the ball bearing class presented in Fig.2 that
is only described by its ball radius property that evaluates to 3.0 (in the unit
specified for this property in the ontology, e.g., millimeter). Then, the model
(physical file) allowing to represent this particular bearing would be as follows :

1=PROPERTY_VALUE(’XX.ball_bear-1.b_radius-1’,3.0);
2=INSTANCE(’XX.ball_bear-1’,(#1));

Thus, both PLIB ontologies and PLIB ontology-based data may be modeled,
exchanged and checked for consistency by automatic tools generated from the
two EXPRESS schemas. Note that only simplified versions of these schemas
were presented above. We describe informally in the next sections, the various
mechanisms used to make context explicit in PLIB ontologies.

4.3 Global Structuring of the Definition Context and Point of View
Representation

The role of ontologies being to capture the essence of beings, PLIB supports a
distinction between:

– those properties that are rigid [16] for a class, i.e., that are essential for any
instance of a class (i.e., that must hold or have a value): all these properties
are associated with a particular class

– those properties that may or not hold or exist according to the role in which
an entity is involved.

Each category of real world objects is represented by one or more ontology
classes. One particular class, point of view-independent, contains all the rigid

190 G. Pierra

properties. If needed, point of view-specific classes gather those additional prop-
erties that correspond to a particular point of view over objects of the real world
class.

For instance having a birth date is an essential property for any person: such a
birth date may be unknown in some context, but, if it does not exist, the person
does not exist. Contrariwise, having a salary is not an essential property. It
exists only if the person is an employee of some organization and it corresponds
to a working status point of view. For a mechanical part, having a mass is a
rigid property, having a price is not. The price only exists if the part is sold on
the market, and the price depends on the market (e.g., wholesaler or retail sale,
quantity of order, discounted customer). It corresponds to the marketing point
of view.

Of course, in a database schema, a person may have a salary, and a part
may have a price and a supplier, but this is based on some implicit context
assumptions that shall be explicit at the ontological level.

In fact, a PLIB ontology consists of three categories of classes of which only
the first one was presented in clause 4.2.

– definition classes (modeled by the class entity in clause 4.2) capture the
beings of the area of interest, together with all their rigid properties.

– functional model classes represent the additional properties that result from
a particular role or point of view [27]. A functional model class exists only
when associated with a definition class. Each instance of a functional model
class is a view of an instance of a definition class. This relationship is termed
is-view-of.

– Point of view classes capture the modeling context of (i.e., the point of view
corresponding to) each particular functional model class: each functional
model class shall reference a point of view class as its modeling context.

For instance, the definition class of a person should contain properties such that
birth date, gender, current name, first name. An employee functional model class
should contain properties like: date of first employment, status, salary. A working
status point of view class allows to define the context of the functional model
class. It may also contains for instance the date of recording, and the employer
id attribute.

The definition class of a particular subclass of mechanical part, e.g., screw
should contain properties like threaded length, total length, threaded diameter,
material. The screw procurement functional model class should contain proper-
ties such that price, quantity of order. The marketing point of view class specifies
the context of the screw procurement. It contains properties such that date, kind
of market (e.g., wholesale, retail sale, negotiated), supplier.

4.4 Representation of the Local Definition Context

As noted in [19] a property cannot be understood if we don’t know in which
context it was defined: the same property names and informal definitions may

Context Representation in Domain Ontologies 191

be used with quite different meanings in different context. Thus, to define un-
ambiguously classes and properties of an ontology, a basic modeling principle is
that:

– a property cannot be defined without defining, in the mean time, its field of
application by means of the class where it is meaningful; this class constitutes
its definitions context;

– a class cannot be defined without defining, in the mean time, the properties
that are essential for its instances.

Following this principle, a PLIB ontology includes two aspects:

– a classification tree where classes and properties are identified and connected;
– a set of meta-attributes that describe successively each class and each prop-

erty.

Defined through a set of formal relationships, the first aspect allows to for-
mally retrict the allowed interpretations of an ontology. Described through a
number of human-readable pieces of information, the second part allows to make
understandable the real world semantics of the conceptualization represented by
the ontology.

Property definitions are formulated in the context of the higher class where
they are meaningful (attribute domain in 4.2), even if they don’t apply to all
its subclasses (in PLIB jargon they are said to be visible for this class, and all
its subclasses). Then, class definitions specify which properties are applicable,
i.e., essential for every instance of this class (attribute new applicable properties
and imported properties in 4.2). Finally, when instances are represented within
some model (physical file) or some database schema, only a subset of all the
applicable properties may be used to describe them (such properties are said to
be provided). For any class C the following holds:

provided(C) ⊂ applicable(C) ⊂ visible(C)
This formula shows, at the property level, the difference between an ontology

and a schema: various schemas, designed by various database administrators,
may represent for the same ontology class C various subsets of applicable(C).
During an integration process, and thanks to the UId of each ontology concept,
it will be obvious which properties are the same and which are not.

Concerning the classes to be defined, PLIB is property-oriented: all what can
be described meaningfully by properties is defined by properties. A class shall
only be introduced in an ontology when it constitutes the domain of a new
property, i.e., the property would be meaningless for the superclass of this new
class, but it is meaningful for the new class and all its subclass. Thus reference
ontologies are in general rather flat. For example, the internal diameter property
is meaningless for a mechanical component whatever its definition. It becomes
meaningful if one introduces a new subclass of mechanical components that
models circular bearings.

But these formal relationships between classes ands properties are not suffi-
cient for unambiguous definitions. Indeed, a PLIB ontology mainly consisting of

192 G. Pierra

primitive items, i.e., items whose definition ”must rely on textual documentation
and a background of knowledge shared with the reader to convey meanings” [15],
the PLIB ontology model includes an extensive number of (meta) attributes used
for representing the real world conceptualization and for connecting the ontol-
ogy constructs to the background knowledge of the ontology user. In clause 4.2
only the name (meta) attribute was presented, in fact these (meta) attributes
include: names and synonymous names, symbols, definitions with notes and re-
marks, pictures and drawings, references to document.

4.5 Locality of Ontology Interpretation Context

When a particular domain ontology is developed, it is often the case that (1)
its domain overlaps the target domains of some other ontology, and (2) the
perspective adopted in these various ontologies is, at least, partially different.
For example, a travel ontology needs the capability to capture the concept of
a plane. Let’s assume that a plane ontology exists. If such an ontology has
been developed to provide a suitable vocabulary for exchanging information
between airplane manufacturers and airline companies, the ontological definition
of a plane might contain such properties as frequency of maintenance operation,
guaranty duration, and a number of technical properties which are useless in the
context of the travel ontology. If the capability to use the basic plane properties
in another ontology requires to integrate all the plane properties, more all the
plane subclasses, probably the travel ontology designers would prefer to define
their own plane concept. Indeed, the plane ontology might contain a number of
technical details not understandable by the travel ontology designers, thus, they
would not be able to understand the global conceptualization resulting from the
global merging.

For addressing this issue, the PLIB ontology model introduces the case-of sub-
sumption relationship. This relationship affects only one class of the referenced
ontology from which it imports some selected properties, and the interpretation
domains of both ontologies remains different.

Note that this importation is compatible with the local definition context
representation discussed in 4.4: the referencing class being subsumed by the ref-
erenced one, the former is included in the domain of the latter. This mechanism
allows to provide a view of a local ontology in terms of a global one, and, if the
local classes is also defined as a restriction of the referenced classes, to migrate
instances from the global context to the local one.

4.6 Representation of the Local Value Context

In a number of cases, the value of an instance property changes when its eval-
uation context changes. This means that the range of such properties is not a
value set, it is a function set. Let C be the set of all instances of a class, P be
a property whose domain includes C, D be the range of values of P , EV ALC,P

be the set of all the states of the context where values of property P may be

Context Representation in Domain Ontologies 193

evaluated for any instance of C, P1, ..., Pn be the set of properties allowing to
characterize the states of EV ALC,P , and D1, ..., Dn their ranges of values.

– A characteristic property (characteristic for short) is a property that defines
a function over C:

P : C → D.
– A context parameter is a property that defines a function over EV ALC,P :

Pi : EV ALC,P → Di.
– A context dependent property is a property whose value is a function of the

context:
P : C → (EV ALC,P → D).

Table 2 shows various examples of characteristics and context dependent prop-
erties.

Table 2. Representing value context

Entity Person Ball bearing Plane
characteristic birth date inner diameter plane type

context-dependent property hair color life time cheapest fare
context parameter date load, speed customer age

In the PLIB ontology model, the signature of the function corresponding to a
context dependent property is defined by the value context attribute (see 4.2),
and context parameters must be explicitly defined within the ontology. Two
means are provided for specifying the function itself:

– either, as suggested in [31], it is discretized at the instance level as one or
several sets of property-value pairs, each set defining the particular value
of the context dependent property for a particular evaluation context state,
defined by context parameter values;

– or, when the dependency may be expressed by an algebraic function that
is the same for all instances and all interpretations, the function itself may
be represented at the ontology level as an instance of an expression meta-
model4.

Moreover, on the database site, a database administrator may implement the
function as a database-defined function, allowing a user to query the database
by means of context parameters and context-dependant property values.

Of course, the ontology designer may decide to freeze all the context parameter
values within a property definition, like: hair color when birth; life time for
100 Pascal radial load and 6000 RPM; cheapest fare when 65 years old. But, if
the whole evaluation context is not specified within a property definition, this
property shall be represented as a context-dependent property. In this case, the

4 This expression meta-model is defined in ISO13584-20.

194 G. Pierra

context parameters of which its value depends shall be explicitly modeled at the
ontology level, together with the dependency relationships.

Note that representing instances is a question of schema and not of ontology.
As discussed in Sciore et al. [31], all the context-parameter/value pairs that char-
acterize a context dependent property value shall be represented by some means:
at the property value level, at the instance level if the same context has been
used for all the instance properties, or even at the level of the whole database
if properties of all instances were evaluated in the same context. Anyway, the
PLIB ontology model includes axioms that ensure that context-dependant values
cannot exist in a model without their evaluation context.

4.7 Representation of Value Scaling

To provide for automatic value conversion and integration, units and currencies
must be formally modeled. But they may be represented either at the ontology
definition level, or at the value level. In a PLIB ontology, default units have to be
represented at the ontology property definition level, together with alternative
units. The default unit may be overridden by an alternative unit at the value level
by associating each value with its own unit. The unit model allows to represent
both dimensional exponents for a physical quantity, and all kinds of measure
unit: either SI unit (e.g., millimeter), derived (e.g., m/s), or conversion-based
unit (e.g., inch).

4.8 From Ontology to Schema

Provided that property inheritance and referential integrity is ensured, any sub-
set of classes of a CCO, each one associated with any subset of its applicable prop-
erties, defines a database schema. We call ontology-based database (OBDB)[28]
a database (1) that explicitly represents an ontology, (2) whose schema refers to
the ontology for each of its represented class and property. In such a database,
each data may be interpreted in a consistent way using the meaning defined for
the corresponding ontology entry. Note that an OBDB is not required to popu-
late either all the classes of its ontology or all the properties defined for a given
class. Moreover, provided that the link from data to ontology is preserved, the
schema structure is not required to preserve the ontology structure. Inheritance
composition and view-of relationship may be ”flattened”. This means that values
representing:

– properties of a definition class instance,
– properties of a part of this instance, and
– properties of a functional model class instance that is view-of the definition

class instance

may all appear as values in the same database relation. This shows the diversity
of the various schemas that may be built just from the same ontology while
preserving semantic integration capabilities.

Context Representation in Domain Ontologies 195

5 Formal Definition of PLIB Ontologies

In section 4 we have outlined, through partial schemas, how PLIB ontologies
and ontology-based data were specified and exchanged using an executable data
specification language. We also detailed informally the various mechanisms used
for making context explicit in PLIB ontologies. In this section, we present a
formal model of PLIB ontology semantics independent of any syntax (note that
an XML syntax, called OntoML, is currently under ballot within ISO as an al-
ternative for exchanging PLIB ontologies). This model covers globally the PLIB
specification. Its only restriction is to focus on ontologies that consists of def-
inition classes (no functional model class or point of view class as the use of
these construct is not widespread). A PLIB ontology may be defined separately
as a single ontology, but it may also be mapped onto one (or several) stan-
dard ontologies. These two models are presented respectively in 5.1 and in 5.2.
Clause 5.3 outlines how a shared ontology and various mapped ontologies may
be used to integrate heterogeneous data bases. To illustrate the various aspects
of the formal definitions, example 3 represents formally the ontology described
in example 1

5.1 Single PLIB Ontology

Formally, a single PLIB ontology may be defined as a 8-tuple :
O =< C, P, U, IsA, PropCont, ClassCont, V alCont, V alScale >,

where:

– C is the set of classes used to describe the concepts of a given domain;
– P is the set of properties used to describe the instances of C; P is partitioned

into Pval (characteristics properties), Pfonc (context dependent properties)
and Pcont (context parameters);

– U is the set of units of measure, including currencies, used to describe the
values of the properties of a given domain that define a measure;

– IsA : C → C is a partial function5 that associates to a class its smallest
subsumer6; IsA implies inheritance of both visible properties (as visible)
and of applicable properties (as applicable);

– PropCont : P → C associates to each property the higher class where it is
meaningful;

– ClassCont : C → 2P associates to each class all the properties that are
applicable to every instances of this class (rigid properties);

– V alCont : Pfonc → 2Pcont associates to each context dependent property the
context parameters of which its value depends;

– V alScale : P → U ×2U is a partial function that associates to each property
that defines a measure the default unit used to represent its values, and,
possibly, the other units that may be used to override the default unit.

5 IsA is assumed to define a single subsumption hierarchy.
6 C1 subsumes C2 iff ∀x ∈ C2 ⇒ x ∈ C1.

196 G. Pierra

Example 3. Definition of the circular bearing ontology presented in example 1
is as follows.

– C = {circular bearing, circular ball bearing};
– Pval={inner diameter, outer diameter, width, ball radius}, Pcont ={velocity,

radial load, axial load}, Pfonc = {life time};
– U = {millimeter, meter, revolutions per minute, newton, hour };
– IsA(circular ball bearing) = circular bearing, IsA(circular bearing) = ∅ ;
– PropCont(inner diameter | outer diameter | width | velocity | radial load |

axial | life time) = circular bearing, PropCont(ball radius) = circular ball
bearing;

– ClassCont(circular bearing) = {inner diameter, outerdiameter, width, ve-
locity, radial load, axial load, life time}, ClassCont(circular ball bearing) =
{ball diameter};

– V alCont(life time) = {velocity, radial load, axial load};
– V alScale(inner diameter | outer diameter | width | ball radius) = (millime-

ter, {meter}), V alScale(radial load | axial load) = (newton , {}), V alScale
(velocity) = (revolutions per minute, {}), V alScale(life time) = (hour, {});

Example 4. Let’s assume that, using some bearing ontology, a user queries the
life-time of a circular bearing whose part identification property equals XYZ
when its velocity is 1500 rpm and it supports a radial load of 6000 N. Using the
OntoML PLIB syntax, a system answer would be as follows (all class and prop-
erty UIds come from a bearing ontology standardized as ISO 23768, the codes
of class and properties have been changed to reflect their meaning, all concepts
are in version 1, and condition is the OntoML tag for context parameters):

<item class-ref="ISO23768#CIRCULAR_BALL_BEARING#1">
<property-value property-ref="ISO23768#PART_IDENTIFICATION#1">

<val:string-value >XYZ</val:string-value>
</property-value>
<property-value property-ref="ISO23768#LIFE_TIME#1">

<val:real-value>20000</val:real-value>
<val:condition>

<val:element property-ref="ISO23768#VELOCITY#1">
<val:real-value>1500</val:real-value>

</val:element>
<val:element property-ref="ISO23768#RADIAL_LOAD#1">

<val:real-value>6000</val:real-value>
</val:element>

</val:condition>
</property-value>

</item>

Four axioms are defined on this formal PLIB model. If we define recursively the
visible properties as7:

visible(c) = visible(IsA(c))
⋃

PropCont−1(c),
then the following axioms shall hold :
7 To simplify notation, we extend all functions f by f(∅) = ∅.

Context Representation in Domain Ontologies 197

1. IsA defines a single sumsumption hierarchy: the graph G whose vertex are
classes and whose edges are the IsA relationships is a forest, i.e., a disjoint
union of trees. G is defined by:
G = {C, {(c1, c2)}|c1 ∈ C ∧ c1 ∈ Dom(IsA) ∧ c2 ∈ IsA(c1)}

2. IsA implies inheritance of applicable properties:
ClassCont(c) ⊇ ClassCont(IsA(c))

3. A context-dependent properties must not be defined in a class that does not
belong to the domain of the context parameters of which it depends:
∀c ∈ C, p ∈ Pfonc p ∈ ClassCont(c) ⇒ V alCont(p) ⊂ ClassCont(c)

Moreover, for stand-alone ontologies, one more axiom applies: only meaningful
properties (i.e., visible properties) may become applicable :

(4a) ClassCont(c) − ClassCont(IsA(c)) ⊂ visible(c)

5.2 Mapped PLIB Ontology

A major focus of PLIB ontologies being heterogeneous data source integration,
PLIB does not assume that all data sources use the same ontology. Each data
source may build its own local ontology without any external reference. It may
also build it based upon one or several existing ontologies (e.g., standard ones).
A class of a local ontology may be described as subsumed by one or several other
class(es) defined in other ontologies by the case-of relationship. Through this
relationship the subsumed class may import properties (their UIds and defini-
tions are preserved, as presented in 4.2). But it may also map properties that
are defined in the referenced class(es) (the properties are different but they are
semantically equivalent) . A class of a local ontology may also define properties
that are neither imported nor mapped.

A PLIB ontology Om that includes mapping onto one (or several) other on-
tologies may be formally defined as a pair: Om =< O, M >, where : O =<
C, P, U, IsA, PropCont, ClassCont, V alCont, V alScale > is an ontology, and
M = {mi}, is a mapping defined as a set of mapping objects.

Each mapping object has four attributes: m=< domain, range, import, map >

– domain ∈ C defines the class that is mapped onto an external class by a
case-of relationship;

– range ∈ UId ⊂ {string} is the universal identifier of the external class onto
which the m.domain class is mapped;

– import ∈ 2p is a set of properties visible or applicable in the m.range class
that are imported in ClassCont(m.domain);

– map ⊂ {(p, id) | p ∈ P ∧ id ∈ UId ⊂ {string}} defines the mapping of
properties defined in the m.domain class with equivalent properties visible
or applicable in the m.range class. The latter are identified by their UIds.

Note that each mapping object defines a subsumption relationship between
the m.range and m.domain classes. Nevertheless, the m.range class does not
belong to C. The interpretation domain of the referencing ontology remains
different from the one of the referenced ontology. Note also that when properties
are imported, they belong to P .

198 G. Pierra

Fig. 3. An example of a reference ontology (a) and of an user defined ontology (b)

Example 5. Figure 2 (a) presents a single ontology. Class hierarchy is represented
by indentation. P = {mass}. The mass properties applies to hardware and com-
ponents, but not to software and simulation models. mass is visible at the level
of resources : PropCont(mass) = resources, with a definition s. t. ”the physical
mass of a resource that is a material object”. It becomes applicable in hardware
and components : ClassCont (hardware) = {mass}; ClassCont (component) =
{mass}

Example 6. Figure 2 (b) presents a (user-defined) ontology mapped on a refer-
ence ontology (a). C = {items, products, computer hardware, electronic compo-
nents, software} and P = {mass}. M = m1, m2, m3, m4 with m1 =(item, id1, (),
()) ; m2 = (products, id1, (id2), ()) ; m3 = (computer hardware, id4, (), ()) ; m4
= (electronic components, id7, (), ()). We note that no properties are mapped,
they are all imported.

All the axioms for single ontologies hold. The specific axiom (4a) becomes (4b
and 4c) that state that imported properties belongs to the set of applicable
properties of the importing class (and of its subclasses), and that the other new
applicable properties of the importing class shall belongs to its visible properties.
(4b) ∀m ∈ M, ClassCont(m.domain) ⊃ m.import,
(4c) ∀m ∈ M, LetM(m) = {mi ∈ M | mi.domain = m.domain}

(ClassCont(m.domain) − ClassCont(IsA−1(m.domain)) −
⋃

mi∈M(m)

mi.import)

⊂ visible(m.domain)

As shown by Figure 2, the structure of a (user) ontology may be quite dif-
ferent from the one of a standard ontology it references. Nevertheless, a system
storing the user ontology < O, M > may automatically answer queries against

Context Representation in Domain Ontologies 199

a standard ontology onto which O is mapped. It may also migrate instance data
from its local user ontology to the standard ontology.

Note that the above mapping only allows to query local ontologies through
one, or a set of standard ontologies of which the former are case-of, and to
return the answer as standard ontology individuals. A typical application is the
case where component provider data sources are based on ontologies defined as
specialization, through case-of, of a standard ontology. The customer formulates
its query in terms of the standard ontology. The answers is also returned in
terms of the standard ontology, whatever local ontology is used by the provider.
Nevertheless, this approach does not allow:

– to know the precise definition of the provider product; for example if ad-
ditional properties were defined by the provider, value of these properties
cannot be returned in the answer;

– to store automatically the returned data in the customer database when the
customer has also created its own local ontology by specialization from the
same standard ontology, as I recommend it in 6.

Concerning the first problem, if the customer needs this precise information, the
provider may return the answer not as a projection onto the standard ontology,
but in the native terms of the provider ontology together with the relevant spe-
cialization of the standard ontology defined locally. Then, these two pieces of
information may be integrated automatically within a customer ontology-based
database providing fine grain access to provider-defined specialization. This ap-
proach, called ExtendOnto, was proposed in [2]. Note that such an approach
may be followed both with PLIB ontologies, using one of the PLIB exchange
format, and with C-OWL [4] ontology, using OWL syntax.

Example 7. Let’s assume that in Figure 2, 2a is the standard ontology and 2b
is the provider ontology, and that a customer wants to retrieve those hardware
products whose mass is less that 104 .

The provider answer may consist of two parts:

1. the computer hardware class definition together with all its applicable prop-
erties and its subsumption relationship with the standard hardware class;

2. the set of instances of the computer hardware class that correspond to the
customer request.

Concerning the capability for a customer to map a set of standard-ontology-
defined instances onto its own locally defined specialization of the standard on-
tology, this can be done by adding to each mapping object m a fifth attribute
called filter that is a predicate over the subsuming class instances:

filter : (class-of(m.range))I −→ Boolean.8

The meaning of such a filter is that all instances of the subsuming class for
which the predicate holds are members of the subsumed class:
∀x ∈ (class-of(m.range))I , m.filter(x) =⇒ x ∈ m.domain.
8 We note class-of the function that associates to a class identifier the corresponding

class. As usual, we note (.)I the interpretation function.

200 G. Pierra

Example 8. Let’s now assume that, in Figure 2, 2a is the standard ontology
and 2b is the customer ontology. The customer has retrieved those hardware
products whose mass is less that 104, and the value of the category property
of these hardware products. If, in the mapping m of his/her computer hardware
class onto the standard hardware class, the following filter was added :
m.filter = (category = ”computer”),
then all the returned hardware instances whose category values are ”computer”
are automatically recorded as a computer hardware instances. Other hardware
instances are not recorded in the customer database.

5.3 Automatic Integration of Data Sources through a Priori
Ontology Mapping

In the domains where it has been feasible (possibly using the context representa-
tion mechanisms defined in this paper) to define a consensual domain ontology,
this ontology may be used to allow automatic integration of ontology-based data
sources in the following sense:

– Let’s assume that there exist some consensual ontology O over the domain
that is common to all the sources;

– Let’s also assume that each local source Si is associated with a local ontology
Oi and that each class Cij of Si that is in the domain modeled by O is mapped
by a subsumption relationship (e.g. case-of), either directly or indirectly
(through inheritance within Oi), onto its smallest subsuming class Cj in O
(smallest subsuming class reference requirement: SSCRR) [2]

– Then, each local source, whatever its local ontology, may answer queries
stated in terms of O.

Note that this automated integration technique leaves a lot of schematic au-
tonomy to each data source. It only assumes that each database administrator
wants to make its data available in terms of a standard domain ontology. Thus,
each administrator is required to describe a priori a mapping between its own
local ontology and the consensual ontology by means of a subsumption rela-
tionship ensuring the SSCRR assumption, and to import or to map properties
having a common meaning. This a priori approach, different from most existing
approaches where ontology mapping is done at integration time [23], seems to
suit quite well the needs of a number of Web applications, including in particular
B2B e-commerce. This approach is discussed in more details in [2].

6 A Road Map for Implementing Ontology-Based
Databases in Manufacturing Enterprises

Currently, most of manufacturing enterprises still record their component infor-
mation in conventional component databases where the various components are
all described by the same set of relational attributes, one of them encoding in
a long string (often called ”designation”) all the engineering properties (Fig. 3).

Context Representation in Domain Ontologies 201

Such a representation has two major drawbacks. At the cost level, conventional
component databases promote the increase in the number of similar components.
Indeed, when a designer is searching for a component, there are very few chances
that the best existing candidate be retrieved using string matching. As a result,
new components are created again and again, increasing dramatically the cost
of company products. At the quality level, few engineering properties may be
encoded in a single string. Therefore, components are often selected only from
force of habit without checking for each particular design whether all the engi-
neering requirements of the problem at hand are really fulfilled by the selected
component.

’SCREW-ISO1014-L10-D5-GRADa’

Fig. 4. Engineering information encoding in usual component database

Improving this situation requires migrating from conventional component
database to engineering database where each class of components is defined
by its own engineering properties. Taking into account that standard ontologies
are emerging in more and more industrial domains, a major issue is to decide
whether the corporate engineering database should use a private ontology or one
(or a set of) standard ontology.

The direct use of standard ontologies may seems attractive, but it would have
several drawbacks.

– A number of domains being not yet addressed, it would need to wait, but
the market is not waiting.

– Even if the enterprise industrial sector is addressed, the relevant standard
ontology probably does not contain all the classes and properties needed.
And it surely contains a number of classes which are useless.

– Standards are rather stable. Nevertheless each standard is to be updated
from time to time. Remaining in line with a standard ontology might request
to change the corporate database schema when it is no longer in line with
updated standards.

Contrariwise, developing its own corporate ontology would have a number of
advantages.

– It is possible immediately, whatever the particular industrial sector is.
– Provided that there exist some mechanisms allowing to control impact of

standard ontology evolution onto corporate ontology evolution, it would al-
low to gather standard definitions and local definitions. The corporate ontol-
ogy may borrow class definitions and import standardized properties from
standard ontologies, while adding company-specific classes and properties.

– It would ensure that each company remains free to upgrade its own ontology
when and how it is needed, either by importing new standard properties or
by creating new proprietary elements.

202 G. Pierra

Note that both PLIB, through case-of, and OWL, through C-OWL [4] offer
suitable mechanisms for controlling impact of standard ontology evolutions over
local ontologies.

case-of

case-of

case-of

case-of

case-of

Local properties
part number
life cycle
...

capacitors conductors

electronics

bearings gears

basic

mechanics

thermometer thermowell

process control

local ontology

Fig. 5. Defining corporate ontology from standard ontologies (IEC 61360-4:1998 and
ISO 13584-501:2006)

This suggests the following road map for switching from conventional compo-
nent databases to ontology-based engineering databases.

1. Define an ontology that consists of a single class to host those generic
properties that need to be available for describing any existing component.
Definition of these generic properties must take into account both existing
standard ontologies and the current content of the company conventional
component database if any. Then, this ontology will be referenced by the
main corporate ontology and all the classes where generic properties need to
be used will be subsumed by this class (in PLIB, using case-of).

2. Define a proprietary overall classification of the various component domains
until class nodes where generic search would make sense (e.g., metric screw,
circular bearing).

3. At the level of each of these classes, define the technical properties needed
for characterizing their components, importing as many properties as possible
from existing standard ontologies using subsumption (in PLIB, using case-of).

4. If some needed properties require more precise class for defining their ap-
plication domain, refine the existing classes using subsumption relationship
from corporate classes, and possibly from standard classes when properties
of which they define the domain need to be imported.

5. Use this ontology structure for defining the logical schema of the new corpo-
rate engineering database, implemented either on top of an OBDB (ontology
within the database) or on a relational or object relational DBMS.

6. Extend progressively the existing schema when new needs, and possibly new
standard ontologies, emerge.

7. If automatic exchange of component information appears both feasible and
useful, define mapping from proprietary class and property onto standard
class and property when the latter become available.

Context Representation in Domain Ontologies 203

7 Related Work

We discuss below three research threads deeply connected with the material
presented in this paper: (1) the role of context representation in data integration,
(2) context representation in some ontology models, and (3) some proposed
approaches for ontology-based data integration.

7.1 Context Representation for Semantic Integration

Importance of context representation for data integration was identified by sev-
eral researchers in the field of multidatabase system in the 90’s. Kashyap and
al. [19] proposed to represent the intentional definition context, at the schema
level, as a set of meta-attributes expressing intentional properties, and in par-
ticular the constraints each object must fulfill. They proposed to use descrip-
tion logic (DL) to reason over such a context. But, in this work, the evaluation
context of property values was only informally defined. Sciore and al. [31] pro-
posed to represent value context at the value level by means of another set
of meta-attributes. For these authors, a semantic value is a piece of data to-
gether with its associated context. This context may be represented, e.g., as a
LISP-like list of meta-attribute-value pairs, or a set of environment variables.
Following this work, the COntext INterchange project (COIN) was developed in
MIT [13,14]. This project noted that a number of property values depends both
of the evaluation context in which they are evaluated, and on the way in which
they are represented. They proposed to associate with properties both attributes
and modifiers. Attributes characterize the evaluation context of property values
(e.g., the date where some financial property was evaluated). Modifiers charac-
terize how property values should be interpreted (e.g., the currency in which it
is represented, and possibly the scaling factor used to encode the value). In an
integration process, both the information source and the information receiver
specify their respective context for all the properties of some shared ontology.
Then, a context mediator ensures the conversion of data from the export context
to the import context to achieve interoperability at the semantic layer.

The idea to associate to each source the context of all its information element
as a set of meta-data was also followed by Ziegler et al. [35] in the SIRUP project.
The SIRUP system assumes the existence of one or several shared ontologies,
but these ontologies are not supposed to explicitly define in which context prop-
erties are evaluated and represented. Therefore, source owner must build an
intermediate model, called IConcepts (intermediate concepts), where each on-
tology concept is associated with ”extensive meta-data ...(attribute data types,
measurement unit, precision, constraints, etc)” [35].

In the context of data warehousing, a powerful data integration and reconcilia-
tion approach based on value context representation was proposed by. Calvanese
et al. [5]. In this approach, domain conceptual model and source conceptual mod-
els, similar to ontologies, are formalized using a specific description logic, called
DLR, which supports n-ary relations. Articulations between global model and

204 G. Pierra

source models are specified by means of inter-model assertions, and the links be-
tween conceptual and logical levels is formally defined by associating with each
relational table a query over the conceptual model that describes its content.
This query is adorned by annotations that represent the local value context of
each table column (e.g., the currency used for a price). Data conflicts are avoided
by declaratively specifying suitable matching, conversion and data reconciliation
operations by means of non-materialized views adorned by the name of a pro-
gram able to compute the view. Then, a re-writing algorithm is able to compute
automatically (or semi-automatically) the query allowing to load the various
data warehouse relations.

If all these contributions developed efficient integration algorithms once value
contexts are made explicit, up to now, few ontology models provided the nec-
essary meta-attributes. Thus, context representation could not be provided by
source owners. It needed to be done at source integration time, thus preventing
automatic integration. Extending ontology models to support extensive context
representation, as proposed by this paper, would constitute a major step toward
automatic integration of heterogeneous data sources.

7.2 Context Representation in Ontology Models

Currently, most ontology models, and in particular OIL [11], DAML [6] and OWL
[20] are based on DL. The main focus of these ontology languages is semantic
annotations of Web resources using terms, and inferences over these terms. As
a rule, DL-based ontologies consist of two parts. The TBox specifies class-level
and property-level axioms. Class, and possibly properties, are structured as a
subsumption lattice. The ABox (that may be empty) consists of a number of
individual assertions. A class lattice is a powerful means for representing class
definition context as it supports two important reasoning tasks [1]. Subsumption
checking amounts to check whether a class is a subclass of another class. Class
membership inference allows to checking whether an individual is a member of
a specific class.

Concerning property definition context, most formalisms allow (but do not
require) that a property is associated with a domain. Provided that this ca-
pability is systematically used in each source ontology and that ontology-level
information may be accessed at integration time, an integration system may be
able to distinguish, e.g., department.name and employee.name and to know that
these two attributes are not semantically equivalent. Moreover, the C-OWL ex-
tension of OWL [4] allows to contextualize the interpretation of OWL constructs
when they are imported from an ontology into another one. In such a case, the
classical OWL semantics [25] assumes the existence of a unique interpretation
domain used both for the referencing ontology and the referenced ontologies.
This may lead to inconsistency, in particular when imported ontologies evolve.
To the contrary, C-OWL associates with each ontology its own local domain
[4]. The various domains may overlap but they are different. For the importing
ontology, the local interpretation of an imported construct, i.e., concept or role,
is different from its interpretation in its source ontology. This interpretation is

Context Representation in Domain Ontologies 205

restricted to the set of objets that belong to the local interpretation domain
of the importing ontology. Bridge rules may be defined between imported and
importing ontology constructs, thus controlling how object may be mapped, or
migrated, from an imported ontology domain to a local domain. Such a do-
main contextualisation provides the required autonomy for corporate ontology
to implement the road map proposed in section 6 also in OWL.

So, DL-based ontologies allow to represent important aspects of schema def-
inition context and to contextualize interpretation domain. But they are much
less efficient for representing context at the extensional level. Indeed, most DL
languages support only unary (classes) and binary (properties) predicates. And
binary predicates may only have class as a domain. Therefore, it is impossible,
in DL-based ontologies, to connect formally two properties. It is neither possible
e.g., to define, like in COIN, that the value of a financial property depends upon a
date, or that a length depends upon a temperature, nor to express that the finan-
cial value is represented in billions of Euros, the length in millimeters, and the
temperature in degree Celsius. These drawbacks of DL-based ontology languages,
that exist also for OWL, require evolution of these languages, as suggested in
this paper, for making them really usable in domains like engineering.

7.3 Ontology-Based Integration of Information

Various approaches have been developed for ontology-based integration of infor-
mation [33]. In the single ontology approach each source is related to the same
global domain ontology (e.g., PICSEL [12], COIN [14]). As a result, a new source
cannot bring any new or specific concept without requiring change in the global
ontology. In the multiple ontologies approach (e.g., Observer [21]), each source
has its own ontology developed without respect of other sources. In this case the
inter-ontology mapping is very difficult to define. This is because the different
ontologies may use different aggregation and granularity of the ontology con-
cept [33]. To overcome the drawback of single or multiple ontology approaches,
several researches have proposed an hybrid approach where each source has its
own ontology, but where all ontologies are connected by some means to a com-
mon shared vocabulary. For instance, BUSTER system [32] assumes that local
ontologies are only restrictions of the global ontology. PLIB-based integration
follows the hybrid approach and proposes a formal model for ontologies and on-
tology mappings. But, unlike BUSTER it does not restrict source autonomy and
sovereignty: each source may define its own classes and completely re-structure
the class subsumption hierarchy. It may also add whatever properties. To give
modeling autonomy to the local sources, we use the same kind of ontology ar-
ticulation as ONION [23]. But, unlike ONION, we suppose that articulation
between local and shared ontology is done a priori by the local source admin-
istrator (as done in another context in e.g., [35]). As a result, our integration
approach is completely automatic and it scales to any number of data sources
[2]. Note that the PLIB ontology model is the first model we know that explicitly

206 G. Pierra

represents ontology mapping within a local ontology as a first class citizen (see
4.2: case of and imported properties attributes) as suggested by model manage-
ment vision [3].

8 Conclusion

The concept of a domain ontology was mainly studied in computer science
since early 90’s. Its intent is to capture and to represent the essential nature
of things of a domain through class structures and properties. In a number of
computer disciplines, such an explicit representation of semantics appeared like
some kind of philosopher’s stone and a lot of languages, understandings, mod-
els and approaches were developed. Not surprisingly, differences in approaches
reflect differences in the addressed problems, and it is often unclear how the
various approaches and languages fit with each other and how they may be used
for addressing a particular problem.

In this paper, we have investigated the use of ontology in a structured data
integration perspective. First we have proposed a taxonomy of ontologies. Lin-
guistic ontologies (LO) represent words and words relationships. They are nat-
ural language-oriented. They provide, in particular, for intelligent structuring,
modeling and querying set of documents, such as those available on the Web. But
they may also be used for defining a canonic human vocabulary for a particular
domain, or for searching for equivalence between concepts through relationships
between their linguistic descriptions. Conceptual ontologies (CO) represent con-
cepts, as they are manipulated in the structured data universe like database
or data engineering, and concept properties. Like for LO, two slightly different
but complementary problems may be addressed using CO. The first one is to
define a set of concepts allowing software systems, databases or agents existing
within some community to exchange unambiguously information about a do-
main. For this purpose, concept equivalence should be avoided and canonical
conceptual ontology (CCO) are needed. The second one is to also map different
conceptualizations over the same domain. In this case, several CCOs need to
be gathered within a unique non-canonical conceptual ontology (NCCO) that
includes operators for reasoning over concept equivalence. In both cases how-
ever concept definitions and value interpretations must be unambiguous across
their target community, and we have shown that this requests, in turn, ontology
models of which context sensitivity has been explicitly represented and mini-
mized. We have defined five principles to ensure that the definitions and value
representations within an ontology are not context-sensitive and may thus be
used to support semantic integration of data while leaving enough autonomy to
the various sources. We have also shown how these principles have been imple-
mented within the PLIB model, a CCO model developed to support integration
of industrial data. The goal was not to promote PLIB as an alternative ontology
language, but to identify and to illustrate those mechanisms that any ontology
formalism should support to be usable for large-size integration of data. These
principles are as follows:

Context Representation in Domain Ontologies 207

– Definition context representation. Each property should be defined in the
context of a class. Each class should define all its rigid properties, at least
in some very broad context common to all the target data sources.

– Point of view representation. If several perspectives are needed over the
domain, an ontology of perspectives should be defined and each needed per-
spective should correspond to a specific domain ontology.

– Locality of interpretation context. Resource importation between ontology
should be feasible on a class per class basis, and then on a property per
property basis. Interpretation domains of both referenced and referencing
ontologies should be separated.

– Value context representation. Value dependency between property values
should be explicit.

– Value scaling representation Unit and scaling of values should be explicit
and computer interpretable.

A first version of the PLIB ontology model is now standardized, and a number
of standard ontologies and of implementations are now emerging in various do-
mains, and in particular in e-procurement and e-engineering that were the initial
domains targeted by PLIB. Currently, most major manufacturing enterprises are
switching from conventional component databases to ontology-based engineering
databases that should allow to reduce useless component diversity, to improve
component selection support and to facilitate integration of supplier catalogs,
whatever the ontology model used. In this domain, our recommendation is not
to use directly standard ontologies if they exist. It is to define a proprietary on-
tology and (1) to map classes onto standard classes if and when they exist, and
(2) to import as much properties as needed properties from standard ontologies.
Not only this approach may be followed immediately. But it also seems much
more promising for the future.

Our current implementation of ontology-based databases are mainly based on
the PLIB model with mapping onto this model of other ontology-based data [7].
We are now developing layered implementations [10] based on the CID model we
have proposed and where various ontology models may cooperate. At the data
level, all the context representation mechanisms are implemented together with
a canonical data model. In the above layer, some concept equivalence operators
from OWL and FLIGHT are implemented, providing for some ontology-level
reasoning. In the upper layer, linguistic access is provided, in particular using
ontology model-independent query language [17]. We are also further developing
the PLIB model, adding integrity constraints and UML/XML [29] view over this
model.

Acknowledgements

The author would like to thank the anonymous referees who provided helpful
and valuable comments on an earlier version of this paper. The research reported
here was supported in part by EU Project Esprit 8984 and IST-1999-12238 and
by ANR grant 05RNTL02706.

208 G. Pierra

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook. Cambridge University Press, Cambridge (2003)

2. Bellatreche, L., Dung, N.X., Pierra, G., Dehainsala, H.: Contribution of ontology-
based data modeling to automatic integration of electronic catalogues within en-
gineering databases. Computers in Industry 57(8-9), 711–724 (2006)

3. Bernstein, P.A., Havely, A.Y., Pottinger, R.A.: A vision of managament of complex
models. SIGMOD Record 29(4), 55–63 (2000)

4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
Contextualizing ontologies. Journal of Web Semantics 1(4), 325–343 (2004)

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: A principled
approach to data integration and reconciliation in data warehousing. In: DMDW
1999. Proceedings of the Intl. Workshop on Design and Management of Data Ware-
houses, Heidelberg, Germany (June 14-15, 1999)

6. Connolly, D., Stein, L., McGuinness, D.: Daml-ont initial release (2000),
www.daml.org/2000/10/daml-ont.html

7. Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An ontology-based database
for data intensive applications. In: Kotagiri, et al. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 497–508. Springer, Heidelberg (2007)

8. Elmagarmid, A., Rusinkiewicz, M.: Heterogeneous Autonomous Database Systems.
Morgan Kaufmann, San Francisco (1999)

9. Everett, J.O., Bobrow, D.G., Stolle, R., Crouch, R.S., de Paiva, V., Condoravdi, C.,
van den Berg, M., Polanyi, L.: Making ontologies work for resolving redundancies
across documents. Communication of ACM 45(2), 55–60 (2002)

10. Fankam, C., Aı̈t-Ameur, Y., Pierra, G.: Exploitation of ontology languages for
both persistence and reasoning purposes: Mapping PLIB, OWL and flight ontol-
ogy models. In: WEBIST 2007. Proc. of Third International Conference on Web
Information Systems and Technologies, pp. 254–262 (2007)

11. Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F: Oil: an ontology infrastructure for the semantic web. IEEE Intelligent Sys-
tems 16(2), 38–45 (2001)

12. Goasdoué, F., Lattès, V., Rousset, M.C.: The use of carin language and algorithms
for information integration: The picsel system. International Journal of Cooperative
Information Systems (IJCIS) 9(4), 383–401 (2000)

13. Goh, C.H., Madnick, S.E., Siegel, M.: Context interchange: Overcoming the chal-
lenges of large-scale interoperable database systems in a dynamic environment. In:
CIKM 1994. Proceedings of the Third International Conference on Information
and Knowledge Management, pp. 337–346 (December 1994)

14. Goh, C.H., Bressan, S., Madnick, E., Siegel, M.D.: Context interchange: New fea-
tures and formalisms for the intelligent integration of information. ACM Transac-
tions on Information Systems 17(3), 270–293 (1999)

15. Gruber, T.: Toward principles for the design of ontologies used for knowledge shar-
ing in formal ontology. In: Guarino, N., Poli, R. (eds.) Conceptual Analysis and
Knowledge Representation, Kluwer Academic, Dordrecht (1993)

16. Guarino, N., Welty, C.A.: Evaluating ontological decisions with ontoclean. Com-
munications of the ACM 45(2), 61–65 (2002)

www.daml.org/2000/10/daml-ont.html

Context Representation in Domain Ontologies 209

17. Jean, S., Aı̈t Ameur, Y., Pierra, G.: Querying ontology based databases using
ontoql (an ontology query language). In: ODBASE, pp. 704–721 (2006)

18. Jean, S., Pierra, G., Ameur, Y.A.: Domain ontologies: A database-oriented analysis.
In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST (Selected Papers). Lecture
Notes in Business Information Processing, vol. 1, pp. 238–254. Springer, Heidelberg
(2006)

19. Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context-based approach. VLDB Journal 5(4), 276–304 (1996)

20. McGuinness, D.L., Harmelen, F.: OWL web ontology language overview. W3C
Recommendation (February 10, 2004)

21. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.P.: Managing multiple informa-
tion sources through ontologies: Relationship between vocabulary heterogeneity
and loss of information. In: Proceedings of Third Workshop on Knowledge Repre-
sentation Meets Databases (August 1996)

22. Minsky, M.: Matter, mind and models. International Federation of Information
Processing Congress 1, 45–49 (1965)

23. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of
ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann,
P.C. (eds.) EDBT 2000. LNCS, vol. 1777, Springer, Heidelberg (2000)

24. Noy, N.F., McGuinness, D.L.: Ontology development: A guide to creating your
first ontology. Technical report ksl-01-05 and stanford medical informatics technical
report smi-2001-0880, stanford Knowledge Systems Laboratory (April 2001)

25. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL web ontology language seman-
tics and abstract syntax. W3C Recommendation (February 2004)

26. Pierra, G.: An object oriented approach to ensure portability of cad standard parts
libraries. In: Eurographics 1990. Proceedings of the European Computer Graphics
Conference and Exhibition, pp. 205–214 (1990)

27. Pierra, G.: A multiple perspective object oriented model for engineering design.
In: New Advances in Computer Aided Design & Computer Graphics, pp. 368–373.
International Academic Publishers, Beijing (1993)

28. Pierra, G., Dehainsala, H., Aı̈t-Ameur, Y., Bellatreche, L.: Base de données
à base ontologique: principe et mise en oeuvre. Ingénierie des systèmes
d’information 10(2), 91–115 (2005)

29. Pierra, G., Sardet, E.: Proposal for a XML representation of the PLIB ontology
model: Ontoml. Research Report RR 07-01, p. 188 (2007),
http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/
2007-LISI-2007-01.pdf

30. Schenck, D., Wilson, P.: Information modelling: The express way. Oxford Univer-
sity Press, Oxford (1994)

31. Sciore, E., Siegel, M., Rosenthal, A.: Using semantic values to facilitate interoper-
ability among heterogeneous information systems. ACM Transactions on Database
Systems 19(2), 254–290 (1994)

32. Stuckenschmidt, H., Vögele, T., Visser, U., Meyer, R.: Intelligent brokering of en-
vironmental information with the buster system. In: Proceedings of the 5th Inter-
national Conference “Wirtschaftsinformatik”, Physica-Verlag, pp. 15–20 (2001)

33. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-based integration of information - a survey of existing
approaches. In: Proceedings of the International Workshop on Ontologies and In-
formation Sharing, pp. 108–117 (August 2001)

http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/2007-LISI-2007-01.pdf
http://www.lisi.ensma.fr/ftp/pub/documents/reports/2007/2007-LISI-2007-01.pdf

210 G. Pierra

34. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25(3), 38–49 (1992)

35. Ziegler, P., Dittrich, K.R.: User-specific semantic integration of heterogeneous data:
The sirup approach. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra,
S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 44–64. Springer, Heidelberg (2004)

A Annex: PLIB-Related Standards

Some standard numbers are quoted throughout the paper. Formal designations
and some descriptions of these standards may be found at :

– http://www.iso.org/iso/en/CatalogueListPage.CatalogueList ;
– http://www.iec.ch;
– http://www.plib.ensma.fr .

This annex gives a short overview of international standardization activities
around PLIB.

One may distinguish four categories of standards.

A.1 Ontology Model

The standard ontology model was developed as a joint effort of ISO (Interna-
tional Organization for Standardization) and IEC (International electro techni-
cal commission) and published as the ISO 13584 and IEC 61360 standard series.
The ontology model was first published in ISO 13584-42 and IEC 61360-2, as
an EXPRESS specification, further extended in ISO 13584-25. A new edition is
currently in process. An UML / XML self-contained view of the model, called
OntoML (ISO 13584-32), is currently under ballot. Both should be published in
2008.

A.2 Ontology-Based Data

Capability to model and to exchange real world objects as ontology individuals
(e.g., electronic catalogues, ontology-based database content) was specified in
some other parts of ISO 13584, mainly part 20, 24 and 25 that provide both for
static description (i.e., property value pairs) and dynamic behavioral description
by meta-modelling of expressions and functions.

A.3 Methodological Aspect

Over the last two years, a guide for using PLIB ontology model for specification
of product properties and classes was developed. It will be published as ISO/IEC
Guide 77 in 2007, and recommended for use by all ISO and IEC product stan-
dardization committees.

Context Representation in Domain Ontologies 211

A.4 Standard Ontologies

Several standard domain ontologies have been developed or are currently under
development. Some of them are associated with maintenance agencies allowing to
update continuously these ontologies. Examples of already standardized domain
ontologies include : Electronic Components (IEC 61360-4), Laboratory Mea-
suring Instruments (ISO 13584-501), Machining Tools (ISO 13399), Mechanical
Fasteners (ISO 13584-511). Examples of domain ontologies under development
include: Optics and Optronic (ISO 23584), Bearing (ISO 23768).

Semantically Processing Parallel Colour

Descriptions(∗)

Shenghui Wang1 and Jeff Z. Pan2

1 School of Computer Science, University of Manchester, UK
2 Department of Computing Science, University of Aberdeen, UK

Abstract. Information integration and retrieval are useful tasks in
many information systems. In these systems, it is far from an easy task
to directly integrate information from natural language (NL) sources, be-
cause precisely capturing NL semantics is not a trivial issue in the first
place. In this paper, we choose the botanical domain to investigate this
issue. While most existing systems in this domain support only keyword-
based search, this paper introduces an ontology-based approach to pro-
cess parallel colour descriptions from botanical documents. Based on a
semantic model, it takes advantage of ontologies so as to represent the
semantics of colour descriptions precisely, to integrate parallel descrip-
tions according to their semantic distances, and to answer colour-related
species identification queries. To evaluate this approach, we implement
a colour reasoner based on the FaCT-DG Description Logic reasoner,
and present some results of our experiments on integrating parallel de-
scriptions and species identification queries. From this highly specialised
domain, we learn a set of more general methodological rules.

1 Introduction

Automatic information integration and retrieval have become desirable features
for many information systems. The information which these systems have to
process is often descriptive (written in natural language) and parallel (multiple
sources describing the same objects or phenomena). Parallel descriptions may
emphasise different aspects of the same object; they may represent the same
information in different ways, or they may plainly disagree with each other. It
is far from an easy task to directly integrate information from natural language
(NL) sources, because capturing NL semantics precisely is not a trivial task.

In this paper, we choose the botanical domain to investigate this issue. As one
of the premier descriptive sciences, botany offers a wealth of material on which
to test our methods. For instance, in our dataset, the species Origanum vulgare
(Marjoram) has four descriptions of its flowers’ colour:

(∗) This is an extended and revised version of the paper “Ontology-based Representation
and Query of Colour Descriptions from Botanical Documents,” which was published
in the 4th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE-2005). This work is partially supported by the FP6 Network
of Excellence EU project Knowledge Web (IST-2004-507842).

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 212–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantically Processing Parallel Colour Descriptions 213

– “violet-purple” in Flora of the British Isles [1],
– “reddish-purple, rarely white” in New Flora of the British Isles [2],
– “white or purplish-red” in Flora Europaea [3],
– “purple-red to pale pink” in Gray’s Manual of Botany [4].

It has been demonstrated by Wood et. al. [5] that extracting and collecting
parallel information from different sources can produce more complete results.
Some current projects, such as eFloras1 and the PLANTS database,2 attempt
to store knowledge from natural language documents in electronic form. These
projects generally allow keyword-based queries but fail to process information
directly based on their semantics.

This paper makes the following contributions towards semantically processing
parallel colour descriptions:

1. It introduces an ontology-based approach to processing parallel colour de-
scriptions from botanical documents. Ideally, an ontology captures a shared
understanding of certain aspects of a domain: it provides a common vocab-
ulary, including important concepts, properties and their definitions, and
constraints regarding the intended meaning of the vocabulary, sometimes
referred to as background assumptions. One of the main advantages of us-
ing ontologies is that parallel information can be extracted and represented
in a uniform ontology. The explicitly written information can be accessed
easily and the implicit knowledge can also be deduced naturally by apply-
ing reasoning on the whole ontology. Some earlier work [6,7] has indicated
that an ontology could help in extracting, collecting and organising parallel
information.

2. It proposes to use a well known colour model, namely the Hue Saturation
Lightness (HSL) Model, to model basic colour terms. Based on this seman-
tic model, complex colour descriptions are precisely quantified by applying
common morpho-syntactic rules, including adjective modifiers, ranges, con-
junctions and disjunctions indicated by NL constructions (see Section 3 for
more details). It should be noted that our approach is a general one, and
using the HSL model is just one example of a semantic model that can be
applied to our approach.

3. It proposes to use the OWL-Eu ontology language [8] to represent the quan-
titative semantics in the model. OWL-Eu is an extension of the W3C OWL
DL [9] standard with unary datatype expressions, which can be used, e.g., to
capture the intended quantitative semantics in the HSL Model. The formal
representation brings computational and reasoning benefits [10]. For exam-
ple, subsumption reasoning of the OWL-Eu language can be used to check
if one colour description is more general than another one.

4. It presents a framework to support species identification queries. It substan-
tially extends our previous conference paper [11] with the following aspects:
(1) For the first time, it proposes two distance functions to calculate dis-
tances between parallel information (e.g., the distance between “light blue

1 http://www.efloras.org
2 http://plants.usda.gov/

214 S. Wang and J.Z. Pan

to purple” and “violet-blue to pink”). The first distance function d1 is based
on the hue dimension only, and the second distance function d3 is based on all
three HSL dimensions. The main advantage of these two distance functions is
that they are designed for measuring distances between ranges, while exist-
ing distance functions can only measure distances between points. These are
on the one hand not precise enough to capture the semantic colour model
and on the other hand not expressive enough to capture the distance be-
tween colour descriptions. (2) Based on the distance functions, an algorithm
is provided for integrating parallel colour descriptions. (3) the OWL-Eu sub-
sumption reasoning service can then be used to query the integrated colour
descriptions, and the distance functions can be used to rank the answers to
such queries.

5. Most importantly, it presents our colour reasoner, which is based on the
FaCT-DG DL reasoner, and experiments on species identification queries,
including comparing our semantic query with existing keyword-based search.
The colour reasoner provides the following functionalities: (1) with the help
of a NL parser, it transforms the semantics of colour descriptions into their
ontological representations; (2) it collaborates with the FaCT-DG reasoner to
answer colour-related species identification queries; (3) it calculates distances
of parallel information for integration and also infers some probabilistic con-
clusions. Furthermore, we present some results of our experiments with the
colour reasoner on integrating parallel descriptions and species identification
queries (see Section 6 and 8 for more details).

We argue that the ontology-based approach is effective in the colour domain,
and we have been investigating its applicability to other domains. We believe that
it can also be successfully applied to other domains, as long as an appropriate
semantic model is chosen and the domain-dependent aspects are well studied.

The rest of the paper is structured as follows. Section 2 introduces some tech-
nical background knowledge of multi-dimensional colour models and the OWL-
Eu ontology language. Section 3 presents the morpho-syntactic rules that are
used to build complex colour descriptions. Section 4 describes how the seman-
tics of colour descriptions are represented in the OWL-Eu language. Section 5
investigates how to answer species identification queries. Section 6 gives primary
experimental results of such queries. Sections 7 and 8 introduce the collaboration
of distance measuring and DL reasoning, with some interesting integration re-
sults. Some related work is described in Section 9. Finally, Section 10 concludes
this paper and discusses some of our future work.

2 Technical Background

2.1 The Colour Model

Several colour representations using a multi-dimensional space (CIE XYZ,
L*a*b*, L*u*v*, RGB, CMYK, YIQ, HSV, HSL, etc.) have been employed
in computer graphics and image processing. Colours are quantified as points

Semantically Processing Parallel Colour Descriptions 215

Fig. 1. HSL Colour Model

(or regions) in those spaces. Naming of physically represented colours has been
thoroughly investigated [12].

The HSL (Hue Saturation Lightness) model is psychologically based. It cor-
responds to human’s use of colour terms more naturally than machine-oriented
colour models, such as the RGB (Red Green Blue) model. In colour notation, it
is second only to natural language [13]. The HSL model was therefore chosen to
represent basic colour terms. Its colour space is a double cone (see Figure 1).

In the HSL model, a colour is represented by the following three parameters:

– Hue is a measure of the colour tint. In fact, it is a circle ranging from 0 (red)
to 100 (red again), passing through 16 (yellow), 33 (green), 50 (cyan), 66
(blue) and 83 (magenta).

– Saturation is a measure of the amount of colour present. A saturation of 0
is a total absence of colour (i.e. black, grey or white), a saturation of 100 is
a pure colour tint.

– Lightness (also Luminance or Luminosity) is the brightness of a colour. A
lightness of 0 is black, and 100 is white, between 0 and 100 are shades of
grey. A lightness of 50 is used to generate a pure colour.

Each basic colour term corresponds to a small space in the double cone whose
centre is the particular point representing its HSL value; that is, instead of a
point, we represent a colour term by a cuboid space, defined by a range triplet
(hueRange, satRange, ligRange). For instance, “purple” is normally defined as
the HSL point (83, 50, 25), but is represented by adding a certain range to each
parameter, as the region (78–88, 45–55, 20–30).3

2.2 OWL DL and Its Datatype Extension OWL-Eu

The OWL Web Ontology Language [15] is a W3C recommendation for express-
ing ontologies in the Semantic Web. OWL DL is a key sub-language of OWL.
Datatype support [16,17] is one of the most useful features that OWL is expected
to provide, and has brought extensive discussions in the RDF-Logic mailing
list [18] and Semantic Web Best Practices mailing list [19]. Although OWL pro-
vides considerable expressive power to the Semantic Web, the OWL datatype
3 Referring to the NBS/ISCC Color System [14], giving a 100-point hue scale, each

major hue is placed at the middle of its 10-point spread, or at division 5.

216 S. Wang and J.Z. Pan

formalism (or simply OWL datatyping) is much too weak for many applications.
In particular, OWL datatyping does not provide a general framework for cus-
tomised datatypes, such as XML Schema user-defined datatypes.

To solve the problem, Pan and Horrocks proposed OWL-Eu [8], a small
but necessary extension to OWL DL. OWL-Eu supports customised datatypes
through unary datatype expressions (or simply datatype expressions) based on
unary datatype groups. OWL-Eu extends OWL DL by extending datatype ex-
pressions with OWL data ranges.4 Let G be a unary datatype group. The set
of G-datatype expressions, Dexp(G), is inductively defined in abstract syntax as
follows [8]:

1. atomic expressions: if u is a datatype URIref, then u ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, then not(u) ∈ Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, then oneOf(l1, . . . , ln) ∈ Dexp(G);

with arity 1, where {} is called the oneOf constructor;
4. conjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then and(E1, . . . , En) ∈

Dexp(G);
5. disjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then or(E1, . . . , En) ∈

Dexp(G).

For example, the following XML Schema user-defined datatype
<simpleType name = “HueRange”>

<restriction base = “xsd:integer”>
<minInclusive value = “0”/>
<maxInclusive value = “100”/>

</restriction>
</simpleType>

can be represented by the following conjunctive datatype expression:
and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100),

where xsdx:integerLessThanOrEqualTo100 is the URIrefs for the user-defined
datatype ≤100. Note that Uniform Resource Identifiers (URIs) are short strings
that identify Web resources [20]. A URI reference (or URIref) is a URI, together
with an optional fragment identifier at the end. In OWL, URIrefs are used as
symbols for classes, properties and datatypes, etc.

Similarly to an OWL DL ontology, an OWL-Eu ontology typically contains
a set of class axioms, property axioms and individual axioms. FaCT-DG, a
datatype group extension of the FaCT DL reasoner, supports OWL-Eu ontolo-
gies.5 In Section 5, we will use the FaCT-DG reasoner to help answering queries.

3 NL Processing

A close observation of the descriptions in floras shows that colour descriptions are
mostly complex phrases, so that they can cover the variations of plant individuals
in the field (see the example in Section 1). Complex colour descriptions are built

4 This is the only extension OWL-Eu brings to OWL DL.
5 To be more precise, FaCT-DG supports the SHIQ(G) DL, i.e., OWL-Eu without

nominals, which are not used in the paper.

Semantically Processing Parallel Colour Descriptions 217

Table 1. Colour description patterns and their relative frequencies of occurrence, where
X, Y and Z each represent a single colour term or an atomic colour phrase, A is a degree
adjective and P is a probability adverb

Description patterns Frequency of occurrence Example
X 25.5% “orange”
A X 36.5% “pale blue”
X to Y (to Z. . .) 25.9% “white to pink to red to purple”
X-Y 19.9% “rose-pink”
X+ish(-)Y 13.2% “reddish-purple”
X(, Y) or Z 6.5% “white or violet”
X(, Y), P Z 6.4% “reddish-purple, rarely white”
X/Y 4.6% “pink/white”
X, Y 2.8% “lavender, white-pink”
X(, Y), and Z 2.3% “white and green”

from several basic colour terms by applying certain morpho-syntactic rules. In
order to be represented correctly, a complex colour description has to be analysed
by using the same rules.

We carried out a morpho-syntactic analysis on 227 colour descriptions of 170
species from five floras.6 Different description patterns and their relative fre-
quencies of occurrence in the data set are summarised in Table 1. Table 3 gives
the corresponding BNF syntax for colour descriptions. As shown in Table 1,
most patterns describe colour ranges that are built from several atomic colour
phrases, such as “blue,” “blue-purple” or “bright yellow.”

There are two steps in our text processing. Firstly, we construct the following
atomic colour phrases as basic colour spaces:

X: This is a single colour space, i.e. (hueRange, satRange, ligRange).7
A X: We need to modify the space of X according to the meaning of A, as

shown in Table 2. For example, “light blue” is represented as (61–71, 70–80,
65–75) where “blue” is (61–71, 90–100, 45–55).

X-Y: This represents an intermediate colour between the two colours X and
Y [22]. For example, “blue-purple” is generated as the halfway colour between
“blue” (66, 100, 50) and “purple” (83, 50, 25), that is, the colour with HSL
value of (75, 75, 38). The hue is calculated by the following formula (with
similar calculations for saturation and lightness):

HueX−Y =
HueX + HueY

2
(1)

6 They are Flora of the British Isles [1], Flora Europaea [3], The New Britton and
Brown Illustrated Flora of the Northeastern United States and Adjacent Canada [4],
New Flora of the British Isles [2] and Gray’s Manual of Botany [21].

7 According to the Colour Naming System (CNS) [22], given a 100-point hue scale,
each major Munsell hue placed at the middle of its 10-point spread, or at division 5.
Therefore, for each basic term, a 5-point spread along each side of the prototypical
values builds up a reasonable space. This setting is inherited by some of the following
operations.

218 S. Wang and J.Z. Pan

Table 2. Meanings of modifiers and their corresponding operations on a colour space

Adjective Meaninga Operationb

strong high in chroma satRange + 20
pale deficient in chroma satRange - 20, ligRange + 20
bright of high saturation or brilliance satRange + 20, ligRange + 20
deep high in saturation and low in lightness satRange + 20, ligRange - 20
dull low in saturation and low in lightness satRange - 20, ligRange - 20
light medium in saturation and high in lightness satRange - 20, ligRange + 20
dark of low or very low lightness ligRange - 20

a Referring to Merriam-Webster online dictionary.
b Referring to the specifications from the Colour Naming System (CNS) [22], satu-

ration and lightness are each divided into 5 levels, which causes a range/ranges to
change by 20 (100/5).

Finally it is represented by the range triple (70–80, 70–80, 33–43), by adding
5-point spread in each dimension from the centre.

Xish-Y: Specified in CNS [22], this denotes a quarterway value between the
two colours, closer to the latter colour term. For instance, “reddish-purple”
means it is basically purple (83, 50, 25) but reflecting a quarterway deviation
to red (100, 100, 50), so the hue range for “reddish-purple” is centred on
87, calculated by the following formula (similar formulae for saturation and
lightness):

HueXish−Y = HueY +
HueX − HueY

4
(2)

and the colour is finally represented as (82–92, 58–68, 29–39).

Secondly, we build up combined colour spaces based on basic ones. Specifi-
cally, combined colour spaces are built up by a colour reasoner, according to the
following morpho-syntactic rules:

1. If atomic colour phrases are connected by one or more “to”s, the final colour
space should be the whole range from the first colour to the last one. For
instance, if “light blue” is (66, 80, 70) and “purple” is (83, 50, 25), “light blue
to purple” should be the whole range (66–83, 50–80, 25–70), which contains
any colour in between.

Note that special care is needed for ranges starting or ending with a grey
colour, such as “white to purple.” In the HSL model, colours ranging from
white, through different levels of grey, to black have no hue and saturation
values. For instance, the HSL value of “white” is (0, 0, 100), while “red”
also has a hue value of 0 but its saturation is 100. A special rule for building
such ranges has to be followed; that is, a range from colour A (0, 0, la) to
colour B (hb, sb, lb) should be (hb − 5–hb + 5, 0–sb, la–lb), where the hue
value does not range from 0 to hb which is actually from red to colour B. For
example, the range from “purple” (83, 50, 25) to “white” (0, 0, 100) should

Semantically Processing Parallel Colour Descriptions 219

Table 3. BNF syntax of colour descriptions

< Cterm >::= red|yellow|green| . . .
< Dmodifier >::= strong|pale|bright|deep|dull|light|dark| . . .
< Pmodifier >::= usually|often|sometimes|occasionally|rarely|never| . . .

< Cphrase >::= < Cterm >
| < Cterm > [ish][−|] < Cterm >
| < Cphrase > − < Cphrase >
| < Dmodifier > < Cterm >

< Cdescription >::= < Cphrase >
| < Cphrase > { to < Cphrase >}
| < Cphrase >, < Cphrase >
| < Cphrase > / < Cphrase >
| < Cphrase > {, < Cphrase >} or < Cphrase >
| < Cphrase > {, < Cphrase >} and < Cphrase >
| < Cphrase > {, < Cphrase >}, < Pmodifier > < Cphrase >

be represented by the triple (78–88, 0–50, 25–100), so that the hue range
(78–88) keeps the purple tint when the colour changes from purple to white.

2. If atomic colour phrases are connected by any of these symbols: “or,” “and,”
comma (“,”) or slash (“/”), they are treated as separate colour spaces; that
is, they are disjoint from each other. For instance, “white, lilac or yellow”
means that the colour of this flower could be either white or lilac or yellow,
not a colour in between.

Notice that “and” is treated as a disjunction symbol because, in floras,
it normally means several colours can be found in the same species, instead
of indicating a normal logical conjunction. For instance, flowers of species
Rumex crispus (Curled Dock) are described as “red and green,” which means
that both red and green flowers may occur in the same species, but it does
not mean that one colour is both red and green.

By using an NL parser based on our BNF syntax, we can generate an OWL-Eu
ontology to model complex colour information.

4 Representation of Colour Descriptions in OWL-Eu

Based on the morpho-syntactic rules introduced in the last section, we can de-
compose the semantics of colour descriptions into several quantifiable compo-
nents, which can be represented as DL datatype expressions. In this section, we
will show how to use the OWL-Eu ontology language to represent the semantics
of a colour description.

The fragment of our plant ontology OC contains Colour as a primitive class.
Important primitive classes in OC include

Class(Species), Class(Flower), Class(Colour);

important object properties in OC include

220 S. Wang and J.Z. Pan

ObjectProperty(hasPart), ObjectProperty(hasColour);

important datatype properties in OC include

DatatypeProperty(hasHue Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasSaturation Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasLightness Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),

which are all functional properties. A functional datatype property relates an
object with at most one data value. Note that the datatype expression
and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100)

is used as the range of the above datatype properties.
Based on the above primitive classes and properties, we can define specific

colours, such as Purple, as OWL-Eu defined classes (indicated by the keyword
“complete”) .

Class(Purple complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo78,
xsdx:integerLessThanOrEqualTo88)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo47,
xsdx:integerLessThanOrEqualTo52)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo20,
xsdx:integerLessThanOrEqualTo30))))

In the above class definition, datatype expressions are used to restrict the values
of the datatype properties hasHue, hasSaturation and hasLightness. Note that
not only colour terms but complex colour descriptions can be also represented in
OWL-Eu classes, as long as they can be transformed into proper colour subspaces
with constraints on their hue, saturation and lightness.

As colour descriptions are represented by OWL-Eu classes, we can use the
subsumption checking service provided by the FaCT-DG reasoner to check if one
colour description is more general than another. Namely, if ColourA is subsumed
by ColourB, we say that ColourB is more general than ColourA. With the help
of the FaCT-DG DL reasoner, the formal representation of colour descriptions
makes it possible to express a query about a range of colours, such as to retrieve
all species which have “bright rose-pink” or “light blue to purple” flowers.

5 Domain-Oriented Queries

The flower colour of an individual plant is an important distinguishing feature for
identifying which species it belongs to. The species identification that botanists
are interested in can be written as a query: “Given a certain colour, tell me all

Semantically Processing Parallel Colour Descriptions 221

the possible species whose flowers have such a colour.” We would like to point
out that, from a botanical point of view, one has to take the variations between
individuals in nature into account. In other words, botanists rarely use colour
as a strict criterion. It is more appropriate to answer such species identification
queries in an fuzzy manner, that is, returning a list which contains all species
that could match the query. We call this kind of query, which is particularly
suitable for domain interests, domain-oriented queries.

We can answer species identification queries based on subsumption queries
that are supported by the FaCT-DG DL reasoner. For example, if the plant on-
tology contains the following class axioms:

Class(SpeciesA restriction(hasPart someValueFrom(FlowerA)))

Class(FlowerA restriction(hasColour someValueFrom(ColourA)))

Class(SpeciesB restriction(hasPart someValueFrom(FlowerB))

Class(FlowerB restriction(hasColour someValueFrom(ColourB)))

and if from the definitions of ColourA and ColourB we can conclude that ColourA
is subsumed by ColourB, when we ask our DL reasoner whether the above on-
tology entails that SpeciesA is subsumed by SpeciesB, the reasoner will return
“yes.” By using this kind of subsumption query, we can, for example, conclude
that a species having “golden” flowers is subsumed by a more general species
which has “yellow” flowers, which again is subsumed by another species which
has “orange to yellow” flowers. Therefore, if one asks “Which species might have
yellow flowers,” our colour reasoner will return all these three species.

For species identification, this hierarchical subsumption matching is very use-
ful for shortening the possible species list. After classification reasoning, we have
already had three different levels of matchings:

– Exact matching (ClassRealSpecies ≡ ClassQuerySpecies),
– PlugIn matching (ClassRealSpecies � ClassQuerySpecies)
– Subsume matching (ClassRealSpecies � ClassQuerySpecies)

Actually there is another possible species list, which is not covered by the above
three kinds of matchings, that is, Intersecting matching (¬(ClassRealSpecies �
ClassQuerySpecies �⊥)) [23,24]. For example, if a species has “greenish-yellow”
flowers, it would also be possible to find in the field an individual which has
“yellow” flowers. Although this latter list has a lower probability to contain the
correct answers, it is still helpful from botanical point of view.

Our colour reasoner reduces our domain problems into standard DLs reasoning
problems. In fact, in order to answer domain-oriented queries, it interacts with
the FaCT-DG reasoner. First, the colour in a query is represented by an OWL-Eu
class Q with datatype constraints about its hue, saturation and lightness.

Secondly, the colour reasoner calculates the complete set of colours completeQ

which satisfies the above four levels of matching. Specifically, completeQ consists
of the following four sets.

– equivQ: all elements are equivalent to the class Q, such as “yellow;”
– subQ: all elements are subsumed by the class Q, such as “golden;”

222 S. Wang and J.Z. Pan

– superQ: all elements subsume the class Q, such as “yellow to orange to red;”
– intersectionQ: all elements intersect with the class Q, such as “greenish-

yellow.”

Note that the first two contain answers with 100% confidence, while the latter
two contain those with less confidence. Thirdly, in order to find all species that
have flowers whose colour satisfies the query, the colour reasoner interacts with
the Fact-DG reasoner to return those species which have flowers whose colour is
contained in completeQ set.

6 Experiments on Representation and Query

In this section, we will present some experiments, based on our plant ontology,
of species identification queries.

We chose 100 colour terms which are commonly found in floras, as basic
colour terms. For each basic term, we obtained its RGB value by referring to the
X11 Colour Names,8 converted this into its corresponding HSL value and finally
defined it as ranges in hue, saturation and lightness (as described in Section 4).

A simple plant ontology, mentioned in Section 4, was constructed using the
OWL-Eu language. This ontology contains 1154 species, selected from five floras,
mentioned before, and the online eFloras.9, each of which has a flower part
which has a colour property. The colour property is represented by a datatype
expression, representing the colour spaces transformed from the original colour
descriptions,

For example, species Viola adunca has “light blue to purple” flowers.

Class(Viola adunca complete Species
restriction(hasPart someValuesFrom(Viola adunca flower))),

Class(Viola adunca flower complete Flower
restriction(hasColour someValuesFrom(Viola adunca flower colour))),

Class(Viola adunca flower colour complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo66,
xsdx:integerLessThanOrEqualTo83)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo50,
xsdx:integerLessThanOrEqualTo100)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo25,
xsdx:integerLessThanOrEqualTo70))))

In our experiments, 10 species identification queries based flower colours were
8 http://en.wikipedia.org/wiki/X11 Color Names
9 This is an international project which collects plant taxonomy data from several

main floras, such as Flora of China, Flora of North America, Flora of Pakistan, etc.
Plant species descriptions are available in electronic form, but still written in the
common style of floras, i.e. semi-NL.

Semantically Processing Parallel Colour Descriptions 223

Table 4. Query results (partial) of species having “yellow,” “light blue” and “light
blue to purple” flowers

Species Flower colour Matching type
Amsinckia menziessi yellow Exact matching
Ranunculus acris golden PlugIn matching
Eucalyptus globulus creamy-white to yellow Subsume matching
Tropaeolum majus yellow to orange to red Subsume matching
Rhodiola sherriffii greenish-yellow Intersection matching
Eschscholzia californica deep orange to pale yellow Intersection matching

(a) “yellow”

Species Flower colour Matching type
Aster chilensis light blue Exact matching
Heliotropium curassavicum white to bluish Subsume matching
Linum bienne pale blue to lavender Subsume matching
Triteleia laxa blue to violet Intersection matching
Dichelostemma congestum pink to blue Intersection matching

(b) “light blue”

Species Flower colour Matching type
Viola adunca light blue to purple Exact matching
Linum bienne pale blue to lavender PlugIn matching
Verbena lasiostachys blue-purple PlugIn matching
Lupinus eximus blue to purple, sometimes lavender Intersection matching
Stachys bullata light purple to pink to white Intersection matching
Triteleia laxa blue to violet Intersection matching

(c) “light blue to purple”

carried out. The queries consist of basic terms, range phrases and others with
different levels of complexity (as shown in Table 1). Each query finished in 1–
2 seconds on a 2G Hz Pentium 4 PC. Some of the results are presented in
Tables 4, in the order of complexity of colours: “yellow,” “light blue,” “light
blue to purple.”

We can query in a specific manner, for example to find species which have “light
blue” flowers but excluding those with “dark blue” flowers (see Table 4 (b)); or in
a more general style, to query all species which could have flowers ranging from
“light blue to purple” (see Table 4 (c)). All of these facilities use our quantitative
model which makes it possible to compare and reason with classes at a semantic
level.

As stated in Section 5, the resulting list is from four different levels of match-
ing, which gives a complete list for species identification. We can also specify to
stop at certain levels of matching to get results with different confidences, such
as only returning those species which fully satisfy the query.

The semantics of a colour term or a complex colour description is decomposed
and represented by a group of ranges in multiple numerical parameters, which is
a small subspace in a multi-dimensional space. Numerical representation makes

224 S. Wang and J.Z. Pan

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Lavender

Blue

Light Purple

Purple

A B

Light Blue

Light Purple to Pink
 to WhiteLi

gh
tn

es
s

Hue

Fig. 2. Range between “light blue” and“purple”

Table 5. Performance comparison between semantic matching and keyword matching

Method Precision Recall
Semantic matching 98.2% 81.1%
Keyword matching 84.8% 71.9%

it easy to build ranges between colours, but a further observation shows that
this is not as obvious as we thought. For example, there could be different ways
of interpreting the meaning of “light blue to purple” (see Figure 2):

– light blue to purple directly (area B),
– light blue to blue then to purple,
– light blue to light purple then to purple,
– the whole rectangle (area A).

In our experiment (see Table 4 (c)), we used the last option (the whole rectangle)
for the sake of simplicity and computation cost. It is open to extend our work
and to allow the users to pick up one of the above options when they query with
the keyword “to.”

We further compared our semantics-based query with the simple keyword
matching. The standard precision and recall10 were use to measure the per-
formance. Here, if the distance of returned answer to the query is less than a
threshold used for integration, as we will introduce later, then this answer is
considered correct. Table 5 gives the comparison results of the performance of
these two methods.

10 The precision indicates the proportion of answers in the returned list which are
correct, while the recall is all the correct answers in the whole dataset that were
found.

Semantically Processing Parallel Colour Descriptions 225

7 Integration of Parallel Colour Descriptions

In the previous sections, we have shown that, by using a multi-dimensional colour
model, we can precisely represent the semantics of complex colour descriptions.
Represented in the OWL-Eu language, this quantitative representation enables
reasoning on the real semantics of NL information and provides more practical
query results.

However, the reality does not stop here. As the example in Section 1 shows,
a species is often observed by different botanists, that is, parallel descriptions
of the same species are easily found cross different floras. Since they describe
the same species, these parallel colour descriptions are expected to be similar
to or compatible with each other. Most importantly, as demonstrated in [5],
extracting and collecting parallel information from different sources can produce
more complete results.

A close observation of real data shows that, even using a standard naming
system, botanists use their personally preferred patterns to describe what they
observe, so as to cover the variations of plant individuals in nature. Accordingly,
parallel colour descriptions are rarely exactly the same; sometimes they vary a
lot, especially when the species itself has a relatively wide variation. Here we do
not focus on some genuine geographic or temporal influences on species variation
or some literary errors; instead, we are only concerned linguistic differences be-
tween parallel information. We assume that information from different sources
is correct but probably incomplete; i.e. different sources are never considered
contradictory, only complementary, possibly with a certain degree of overlap.

The key task is to find good strategies to integrate parallel colour descrip-
tions; otherwise, we could end up producing incomplete or redundant results.
A simple conjunction (or intersection) would cause information loss. For exam-
ple, if one flora says that a flower is “white” while another says it is “white or
purplish, sometimes yellow,” the result of their intersection is “white”—“purple”
and “yellow” would be removed. Another logic operation, disjunction (or union),
does not work ideally either. For example, there are two descriptions of the same
flower: “reddish-purple, rarely white” and “white or purplish-red.” Each of them
is represented by two separate colour subspaces. The union operation results in

White � Purplish-red � Reddish-purple

Note that the other “white” is omitted because two “white”s are identical. The
result is complete but there is a redundant overlap between “reddish-purple”
and “purplish-red;” while people can easily infer from the original texts that
actually any colour between red and purple is possible for this species.

The above observations show that naive use of logic operations cannot produce
the integration results as we really expect, indicating that it is not appropriate
to simply mix information without careful studies of how similar or how different
they are. Along this line, investigations of the similarities of parallel informa-
tion seem to be a good integration strategy. To a large degree, similarities of
their semantics can tell how much different descriptions agree with each other,

226 S. Wang and J.Z. Pan

L
2

L
1

r
1

r
2

(a)

L
2

L
1

r
1

r
2

(b)

L
2

L
1

r
1

r
2

(C)

Fig. 3. Three different relations between two ranges

namely, the more similar two descriptions are, the more compatible they are.
Thus, given similarities are quantified properly, if two descriptions are similar
enough, although they might not be exactly the same (due to various reasons),
it is better to combine them as one single “super-description” and remove re-
dundancies; otherwise, it is safer to leave them separate because they are both
likely to provide partial information of the same object.

The similarity of two objects is often closely related to the distance between
their representations in certain underlying spaces [25]. More specifically, similar-
ity is a decaying function of distance. Ideally, since colour is a common perceptual
phenomenon, any distance function for colours should be able to capture the real
differences perceived by human eyes. However, how to find perfect colour dis-
tances in different colour models is beyond the scope of this paper. Here, we
claim that any perceptually acceptable distance function d(x, y) (for a metric
space S) which satisfies the following conditions (for all points x, y in S) will
suffice.

Minimality: d(x, y) = 0 =⇒ x = y;
Symmetry: d(x, y) = d(y, x).

In what follows, we will present two ways to define the distance function d(x, y);
we will also show that both distances satisfy the above two conditions.

Inspired by Tversky’s feature contrast and ratio model [26], given two ranges
r1 and r2, the distance of r1 and r2, i.e. d(r1, r2), is equal to the “non-common
part of r1 and r2” divided by “the minimal super-range that contains both r1
and r2”.

Distance Function d1. We start to consider a simple distance function: dis-
tance w.r.t. the hue-range only. Obviously, hue differences is always the first and
the most prominent aspect when people try to compare colours.

There are 3 different types of relations between two ranges, shown in Figure
3. With the help of the FaCT-DG DL reasoner, we can tell whether one range
subsumes the other (r1 � r2), or they intersect with each other (¬(r1 � r2) �⊥),
or they are disjoint from each other ((r1 � r2) �⊥). Accordingly, we define the
following distance function for two arbitrary ranges r1 and r2:

d1(r1, r2) =

{
1 − L1

L2
if r1 and r2 overlap

1 + L1
L2

otherwise;
(3)

Semantically Processing Parallel Colour Descriptions 227

where L2 is the length of minimal super-range which contains both r1 and r2,
and L1 is defined as follows: when r1 and r2 overlap (see (a) and (b)), L1 is the
length of the overlap part of two ranges; otherwise, for (c), L1 is the length of
the gap between two ranges. If two ranges r1 and r2 only share one point, we
say they meet each other and L1 = 0

The distance d1(r1, r2) is continuous and nicely scaled into the range [0, 2): if
d1(r1, r2) = 0, r1 equals r2; if 0 < d1(r1, r2) < 1, r1 and r2 overlap; if d1(r1, r2) =
1, r1 meets r2; if 1 < d1(r1, r2) < 2, r1 and r2 are disjoint; as two ranges move
further apart from each other, the distance gets closer to 2.

Distance Function d3. As we know, hue, saturation and lightness values should
be assigned to a colour at the same time because they are integral dimensions
[27]. In order to have a more sensible distance measure, it might be better to
take the other two dimensions into account.

We still use the overlap/gap ratio to measure distances. Instead of comparing
the length of ranges in one dimension, we measure the volume of the overlap/gap
space. Similarly, the FaCT-DG DL reasoner helps to classify the relation between
two colour spaces, which would be subsumption, intersection or disjunction.
Accordingly, we define the function d3 for two colour spaces cs1 and cs2:11

d3(cs1, cs2) =

{
1 − V1

V2
if cs1 and cs2 overlap

1 + V1
V2

otherwise
(4)

where V2 is the volume of minimal cuboid space which contains both cs1 and
cs2, and V1 is defined as follows: when cs1 and cs2 overlap with each other, V1
is the volume of the overlap space of the two spaces; otherwise, V1 is the volume
of the gap between two spaces in terms of their “super-space” V2. It is easy to
show that the distance function 4 has exactly the same properties as the distance
function 3 has.

Once the distances of any two colour descriptions are calculated, users can
have a better overview of all parallel information from different sources. Based
on such an overview, they can therefore decide whether it is necessary to com-
bine two pieces of information or just to leave them as separate as they are. If a
reasonable distance threshold is given,12 our colour reasoner automatically com-
bines two descriptions if they are close/similar enough or keeps them separate
otherwise.

The integration process is recursive as follows:

Step 1. Use the FaCT-DG DL reasoner to classify the relations between any
two colour spaces generated from parallel descriptions of the same species,
and then use our colour reasoner to calculate their distances (by using either
Formula 3 or 4).

Step 2. Select two closest colour spaces and check whether they are “similar-
enough,” i.e. their distance is less than the distance threshold.

11 Here, d3 means the distance function considers all three dimensions, instead of only
the hue is considered as d1 measures.

12 See Section 8 for more detail.

228 S. Wang and J.Z. Pan

Step 3. If they are not similar enough then the integration stops; otherwise,
the smallest cuboid space which contains them is generated and substitutes
them as their integrated space (the same operation as building “to” ranges
in Section 3).

Step 4. Go back to Step 1 to check the updated colour spaces.

In the final results, not only the integrated colour spaces are stored, but also
those generated from parallel sources are kept for further references. For each
disjoint colour space rcsi in the final results, we check how many of the original
colour spaces intersect with it.

Probrcsi =
Count of original colour spaces that intersect with rcsi

Count of original colour spaces
(5)

According to the Prob value of each original colour space, we can see how many
authors agree on one particular range of colours, which reflects how likely people
will find such coloured plant individuals in the field. Therefore, some interesting
frequency inferences can be deduced from parallel information integration, which
will be illustrated in the next section.

8 Experiments on Integration

In this section, we present some results of our experiments on the integration of
parallel colour descriptions. These experiments illustrate how the collaboration
of DL reasoning and similarity measuring helps to integrate parallel information.
Interestingly, our results can also be used to evaluate the performance of the two
similarity functions in a real application.

We further selected 656 species, each of which has at least two parallel de-
scriptions. Note that due to geographic influences, i.e. some species only exist in
some particular regions, parallel information is not guaranteed for each species.

We extended the NL parser introduced in Section 3 in order that it can parse a
whole botanical document and extract flower colour descriptions before it deeply
parses these colour descriptions by using morpho-syntactic rules (see Table 3).
All data is extracted by the parser automatically and double-checked manually.

In order to calculate the threshold for the integration, we selected a group
of parallel descriptions from the whole dataset, which are not identical yet are
still considered to be similar enough to be combined. The average distance of
these parallel descriptions is used as the threshold. Interestingly, we got slightly
different thresholds for two similarity functions, i.e. 1.5 for d1 and 1.4 for d3.

To simplify the presentation, here we use two species to illustrate our ex-
periments. According to three different authors, Linum bienne (Pale Flax) has
“pale blue to lavender,” or “pale lilac-blue” or “pale blue” flowers. In the 3D
HSL-space, the FaCT-DG DL reasoner classifies their relations as follows:

– ¬(CSpale blue to lavender �CSpale blue) �⊥ (“pale blue to lavender” intersects with
“pale blue”),

– (CSpale blue to lavender � CSpale lilac−blue) �⊥ (“pale blue to lavender” is disjoint
from “pale lilac-blue”), and

Semantically Processing Parallel Colour Descriptions 229

– (CSpale blue �CSpale lilac−blue) �⊥ (“pale blue” is disjoint from “pale lilac-blue”).

According to their logic relations, their distances are calculated differently.
By using function d3, distances between these colour spaces are:

– d3(CSpale blue to lavender , CSpale blue) = 0.55,
– d3(CSpale blue to lavender , CSpale lilac−blue) = 1.26,
– d3(CSpale blue, CSpale lilac−blue) = 1.77.

CSpale blue to lavender and CSpale blue are combined first because they are close
enough (actually, CSpale blue � CSpale blue to lavender , so CSpale blue to lavender

is kept as their integrated space), then the integration process goes back to check
the newly updated colour spaces. This time, CSpale lilac−blue is close enough
(1.26 is less than the threshold for d3, which is 1.4) to the newly integrated
colour space (CSpale blue to lavender), they are combined too although they do
not overlap with each other directly. Therefore, three slightly different NL de-
scriptions are finally combined as one single and unified colour space.

Differently, the species Allium dichlamydeum (Coast Onion) has two descrip-
tions about its flower colour: “pink to rose” and “deep reddish-purple”. They are
obviously disjoint from each other; their distance is 1.63 which is higher than
the threshold, so they are kept separately.13 Table 7 shows more examples of
parallel data and their integration results.

Our experiments confirm that the different effects of two distance functions
d1 (based on hue dimension only) and d3 (based on all three HSL dimensions).
Again taking Allium dichlamydeum (Coast Onion) for example, if only the hue
dimension is considered, the two descriptions would be combined as a single
colour space because their hue ranges are actually quite similar. However, after
taking saturation and lightness into account, the HSL-space similarity function
successfully keeps them separate, which seems more acceptable to human per-
ception. Other similar cases are shown in Table 6.

It might be expected that using all three HSL dimensions would lead to very
different integration results to those using the distances in the single hue dimen-
sion. Interestingly, these two distance functions give almost the same results in
most cases. Only 20% of the parallel data give different results; for example,
in Table 7, both distance functions (with different thresholds) give exactly the
same integrated results. The more complicated HSL-space distance function (d3)
does not produce as much advantage as we had expected. One possible reason
is, as we mentioned in Section 7, that although people use different modifiers
to distinguish colours’ saturation and lightness, hue is still the most prominent
aspect which really counts for describing flower colours. Therefore we choose to
use the simpler hue-range distance as the default criterion for integration, while
HSL-space distance is used for some advanced comparisons.

As stated in Section 7, one of the advantages of processing parallel informa-
tion is that we can infer some probabilistic conclusions by observing how often
certain information is mentioned by different authors, as the last column in
13 It has been checked out that this species has slightly different flower colour according

to its geographic distribution.

230 S. Wang and J.Z. Pan

Table 6. Comparison of integration results from two different distance functions

Species Parallel Descriptions
Integration Results

Distance
H S LFunction

Allium pink to rose d1 84–0 13–61 6–87
dichlamydeum deep reddish-purple

d3
84–90 22–61 6–16
97–0 13–24 45–87

Iris blue d1 63–86 39–100 25–77
laevigata dark blue or violet

d3 80–86 39–45 67–77
63–69 60–100 25–55

Hylotelephium pink or light purple d1 80–0 22–50 20–92
ewersii purplish-red

d3
84–0 22–26 82–92
80–86 35–50 20–50

Table 7 shows. Looking back to the example mentioned in Section 1, flowers
of Origanum vulgare (marjoram) have been described by four different authors.
After integration, “violet-purple,” “purplish-red,” “purple-red to pale pink” and
“reddish-purple” are combined and substituted by the colour space whose hue
ranges from 80 to 99, saturation from 18 to 88 and lightness from 26 to 100;
“white” is kept as a disjoint colour space found from parallel sources. The former
colour space has a higher probability value (66.7%) than the latter one (33.3%),
from which a reasonable inference can be deduced that white marjoram flowers
are less likely to be found in nature.

Table 7. Examples of parallel descriptions and their integration results

Species Parallel Descriptions
Integration Results

H S L Prob
Lathyrus bright rose-pink
latifolius vivid magenta-pink 87–2 13–50 61–91 100%

rose-pink
Linum pale blue to lavender
bienne pale lilac-blue 63–78 3–80 65–94 100%

pale blue
lavender, white-pink 63–0 5–50 20–99 66.7%

Raphanus white or violet 0–0 0–0 95–100 22.2%
sativus white, lilac or violet, 13–19 95–100 45–55 11.1%

rarely purple/yellow
Ranunculus lemon-yellow 12–23 60–96 46–75 100%
arvensis pale greenish-yellow

violet-purple
Origanum white or purplish-red 80–99 18–88 26–100 66.7%
vulgare purple-red to pale pink 0–0 0–0 95–100 33.3%

reddish-purple, rarely white

Semantically Processing Parallel Colour Descriptions 231

9 Related Work

Automatically integrating information from a variety of sources has become a
necessary feature for many information systems [10]. Compared to structured
or semi-structured data sources, information in natural language documents is
more cumbersome to access [28]. Our work focuses mainly on parallel information
extraction and integration from homogeneous monolingual (English) botanical
documents.

Information Extraction (IE) [29] is a common Natural Language Processing
(NLP) technique which can extract information or knowledge from documents.
Ontologies, containing various semantics expressions of domain knowledge, have
recently been adopted in many IE systems [30,31,32]. Semantics embedded in
ontologies can boost the performance of IE in terms of precision and recall [33].
Since they can be shared by different sources, ontologies also play an impor-
tant role in the area of information integration [10,34,28]. Ontology reasoning
is also introduced into the extraction, representation and integration processes
[35,36,33]. We have shown that reasoning support for ontologies with customised
datatypes is very useful for answering species identification queries and integra-
tion of parallel colour descriptions.

One of our main contributions is to capture the NL semantics as precisely as
possible. In other research areas, many methods have been tried to solve simi-
lar problems. Semantic differential [37] measures people’s reactions to words or
concepts in terms of ratings on bipolar scales defined with contrasting adjectives
at each end, such as “good–bad”. Individuals’ connotations are captured in a
multidimensional space and thus the psychological “distance” between words
or concepts are measured. Lexical Decomposition [38] attempts to break the
meanings of words down to several basic categories, hoping to find some internal
structure for words’ meaning. Multidimensional modelling was also employed
in several areas of cognitive science [25]. Spatial or geometrical structures are
exploited in concept formation and learning, and also in studies in cognitive
linguistics [39]. The limitations of their methods are either the dimensions are
difficult to interpret or they are most qualitative which prevents to capture se-
mantics precisely.

The quantitative semantic model can produce more useful results for real
domain purposes. Specifically, in the botanical domain, many current plant
databases can only support keyword-based query, such as the ActKey,14 ePIC
project,15, the PLANTS database,16 etc. They rely heavily on the occurrence
of keywords. As demonstrated in Section 6, our method uses real semantics
matching, instead of pure keyword matching, which supports more flexible-styled
queries, especially range-based ones.

Another important related research area is semantic similarity measurement.
Obviously, similarity is an important criterion for integration. Depending on how

14 http://flora.huh.harvard.edu:8080/actkey/
15 http://www.rbgkew.org.uk/epic/
16 http://plants.usda.gov/

232 S. Wang and J.Z. Pan

they are represented in different models, similarity between objects is calculated
differently, such as the ratio of common/distinct features in feature models [26],
the vector distances in multidimensional spacial models [25,40], the path-length
in network models [41,42], etc. In NL research, corpus-based methods are often
used to measure similarities between concepts by comparing their information
content [43]. Unfortunately, these methods only focus on relations between basic
terms, but rarely pay enough attention to more complex expressions, such as
regions or ranges. In other words, they are probably able to find the similarity
between “lilac” and “purple,” but cannot tell how close “lilac to pale blue” is
to “deep reddish-purple,” which is much more common in the real world. Our
method uses a 3D-space as a basic representation of basic colour terms and
maps all common linguistics rules into operations on such spaces. Complex NL
descriptions are represented by one or several subspaces. By calculating the
distances between these subspaces, the similarities between their original NL
descriptions are successfully quantified and therefore used as a crucial criterion
for the integration.

10 Conclusion and Outlook

This paper has presented and evaluated an ontology-based approach which fa-
cilitates representing, integrating and querying colour information from parallel
floras. It turns out that, even in this limited domain, formally representing the
semantics of colour descriptions is not a trivial problem. Based on a multi-
dimensional semantic model and certain morpho-syntactic rules, we have imple-
mented an NL parser which translates complex colour descriptions into quantita-
tive representations written in the OWL-Eu ontology language. A colour reasoner
is implemented to interact with the FaCT-DG DL reasoner in order to integrate
parallel information and carry out queries for real botanical applications.

We have shown that our approach outperforms keyword-based approaches,
which are widely used in this domain. Firstly, our quantifiable model enables
automatic reasoning on the real semantic level. Relations between colour de-
scriptions are captured precisely. For example, yellow is between red and green
in terms of hue, lilac is lighter than purple although they have the same hue.
Furthermore, based on the rules of processing adjective modifiers and ranges,
we can query in a detailed manner, such as “light blue,” which excludes pure
blue and dark blue. We can also query on a fuzzy manner, such as “light blue
to purple”, as required for particular domain purposes.

Furthermore, we have also addressed a common but crucial problem for inte-
gration systems: semantic similarities between information from different
sources. Two reasonable distance functions are proposed. The distance mea-
suring collaborates with the FaCT-DG DL reasoner to give complete but not
redundant results. From our experiments, the simpler distance function (i.e. d1)
works well enough in a real-world application. By comparing integrated results
with their original descriptions, some useful probabilistic conclusions can be in-
ferred, which are especially useful for, e.g., the botanical domain.

Semantically Processing Parallel Colour Descriptions 233

Encouraged by the existing results, we plan to extend our work further on
ontology-based species identification queries. Firstly, as suggested in Section 6,
a future version of our colour reasoner should provide several options so as to
allow users to decide on their intended meaning of the “to” keyword. Technically,
this requires the use of not only unary but also n-ary datatype expressions as
constrains on datatype properties hasHue, hasSaturation and hasLightness.
To capture these constraints, we need to use the OWL-E [44,24] ontology lan-
guage, which is the n-ary extension of OWL-Eu.

Another possible future work is to represent the probabilistic information in
the ontology. There are many descriptions with adverbs of quantification, such
as “sometimes,” “rarely,” “often,” etc., which also indicate the probability of
certain colour information. Because current ontology languages do not support
the annotation of classes with probabilities, the probabilistic aspect is ignored
in the text processing. This obviously affects the interpretation of integration
results. However, there are several attempts to extend DL languages with fuzzy
expressions [45,46,47], which, in the future, may be used to enable our logic
representation to capture more of the real semantics implied by its original NL
descriptions.

Most importantly, from this highly specialised domain, we have learnt a set of
more general methodological rules. Key tasks we identified in our study include:
(1) modelling the primitive terms (2) based on the semantic model, the effect
of modifiers has to be defined and ranges have to be built properly; (3) in order
to integrate parallel information, a proper distance measurement is crucial to
quantify the similarities among information from multiple sources; (4) depend-
ing on the application, more expressive representation and additional reasoning
may be necessary to solve real problems. This has proved itself a successful com-
bination, not only in the evaluation but also in its computational tractability,
providing us with a semantic basis for information integration and knowledge
retrieval. Under this light, many continuous quantities occurring in botany and
other descriptive domains, such as leaf shapes, texture, sound, spatial and tem-
poral arrangements, appear to fit fairly straightforwardly into this framework. It
is clear that much more development is possible in this very practical area and
a holistic system is our future task.

References

1. Clapham, A., Tutin, T., Moore, D.: Flora of the British Isles. Cambridge University
Press, Cambridge (1987)

2. Stace, C.: New Flora of the British Isles. Cambridge University Press, Cambridge
(1997)

3. Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Moore, D.M. (eds.):
Flora Europaea. Cambridge University Press, Cambridge (1993)

4. Gleason, H.: The New Britton and Brown Illustrated Flora of the Northeastern
United States and Adjacent Canada. Hafner Publishing Company, New York (1963)

5. Wood, M.M., Lydon, S.J., Tablan, V., Maynard, D., Cunningham, H.: Using paral-
lel texts to improve recall in IE. In: RANLP 2003. Proceedings of Recent Advances
in Natural Language Processing, Borovetz, Bulgaria, pp. 505–512 (2003)

234 S. Wang and J.Z. Pan

6. Wood, M., Lydon, S., Tablan, V., Maynard, D., Cunningham, H.: Populating
a database from parallel texts using ontology-based information extraction. In:
Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 254–264. Springer,
Heidelberg (2004)

7. Wood, M., Wang, S.: Motivation for ”ontology” in parallel-text information extrac-
tion. In: ECAI-OLP. Proceedings of ECAI-2004 Workshop on Ontology Learning
and Population, Poster, Valencia, Spain (2004)

8. Pan, J.Z., Horrocks, I.: OWL-Eu: Adding Customised Datatypes into OWL. In:
Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005, LNCS, vol. 3532, Springer, Hei-
delberg (2005), An extended version is published in the Journal of Web Seman-
tics(to appear)

9. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. Technical report, W3C, W3C Recommendation
(2004)

10. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Huebner, S.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Proceedings of the IJCAI-01 Workshop: Ontologies and Information
Sharing, Seattle, WA, pp. 108–117 (2001)

11. Wang, S., Pan, J.Z.: Ontology-based representation and query colour descriptions
from botanical documents. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3761, pp. 1279–1295. Springer, Heidelberg (2005)

12. Lammens, J.M.: A computational model of color perception and color naming.
Ph.D. thesis, State University of New York (1994)

13. Berk, T., Brownston, L., Kaufman, A.: A human factors study of color notation
systems for computer graphics. Communications of the ACM 25(8), 547–550 (1982)

14. U.S. Department of Commerce, National Bureau of Standards: Color: Universal
Language and Dictionary of Names. NBS Special Publication 440. U.S. Government
Printing Office, Washington D.C. (1976) (S.D. Catalog No. C13.10:440)

15. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F. (eds.): L.A.S.: OWL Web Ontology Language Reference (2004),
http://www.w3.org/TR/owl-ref/

16. Pan, J.Z., Horrocks, I.: Extending Datatype Support in Web Ontology Reasoning.
In: Meersman, R., Tari, Z., et al. (eds.) ODBASE 2002. LNCS, vol. 2519, pp.
1067–1081. Springer, Heidelberg (2002)

17. Pan, J.Z., Horrocks, I.: Web Ontology Reasoning with Datatype Groups. In: Fensel,
D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer,
Heidelberg (2003)

18. W3C Mailing List (starts from 2001),
http://lists.w3.org/archives/public/www-rdf-logic/

19. W3C Mailing List (starts from 2004) (2004),
http://lists.w3.org/archives/public/public-swbp-wg/

20. Group, J.W.U.P.I.: URIs, URLs, and URNs: Clarifications and Recommendations
1.0., W3C Note (2001), http://www.w3.org/TR/uri-clarification/

21. Fernald, M.: Gray’s Manual of Botany. American Book Company, New York (1950)
22. Berk, T., Brownston, L., Kaufman, A.: A new color-naming system for graphics

languages. IEEE Computer Graphics and Applications 2(3), 37–44 (1982)
23. Li, L., Horrocks, I.: A Software Framework For Matchmaking Based on Semantic

Web Technology. In: WWW 2003. Proc. of the Twelfth International World Wide
Web Conference, pp. 331–339. ACM Press, New York (2003)

24. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD the-
sis, School of Computer Science, The University of Manchester (2004)

http://www.w3.org/TR/owl-ref/
 http://lists.w3.org/archives/public/www-rdf-logic/
http://lists.w3.org/archives/public/public-swbp-wg/
http://www.w3.org/TR/uri-clarification/

Semantically Processing Parallel Colour Descriptions 235

25. Gärdenfors, P.: Conceptual Spaces: the geometry of thought. MIT Press, Cam-
bridge (2000)

26. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
27. Melara, R.: The concept of perceptual similarity: from psychophysics to cognitive

psychology. In: Algom, D. (ed.) Psychophysical Approaches to Cognition, pp. 303–
388. Elsevier, Amsterdam (1992)

28. Williams, D., Poulovassilis, A.: Combining data integration with natural language
technology for the semantic web. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)

29. Gaizauskas, R., Wilks, Y.: Information extraction: Beyond document retrieval.
Journal of Documentation 54(1), 70–105 (1998)

30. Embley, D., Campbell, D., Liddle, S., Smith, R.: Ontology-based extraction and
structuring of information from data-rich unstructured documents. In: Proceed-
ings of International Conference On Information And Knowledge Management,
Bethesda, 7, Maryland, USA, (1998)

31. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based informa-
tion extraction system. studies in fuzziness and soft computing. In: Szczepaniak,
P., Segovia, J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web,
Springer, Berlin (2002)

32. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt,
N.R.: Automatic ontology-based knowledge extraction from web documents. IEEE
Intelligent Systems 18(1), 14–21 (2003)

33. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Journal of Natural Language
Engineering 10(3-4), 327–348 (2004)

34. Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal Special issue on deep computing for the life sciences 40(2), 532–
552 (2001)

35. Calvanese, D., Giuseppe, D.G., Lenzerini, M.: Description logics for information
integration. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Program-
ming and Beyond. LNCS (LNAI), vol. 2408, pp. 41–60. Springer, Heidelberg (2002)

36. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the
automotive industry. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003)

37. Osgood, C., Suci, G., Tannenbaum, P.: The measurement of meaning. University
of Illinois Press, Urbana (1957)

38. Dowty, D.R.: Word Meaning and Montague Grammar. D. Reidel Publishing, Dor-
drecht (1979)

39. Lakoff, G.: Women, fire, and dangerous things: what categories reveal about the
mind. University of Chicago Press, Chicago (1987)

40. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis.
Discourse Processes 25, 259–284 (1998)

41. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of
a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernet-
ics 19(1), 17–30 (1989)

42. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: The 32th Annual
Meeting of the Association for Computational Linguistics, Las Cruces, Mexico,
pp. 133–138 (1994)

236 S. Wang and J.Z. Pan

43. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: The 14th International Joint Conference on Artificial Intelligence, Mon-
treal, vol. 1, pp. 448–453 (1995)

44. Pan, J.Z.: Reasoning Support for OWL-E (Extended Abstract). In: Basin, D.,
Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, Springer, Heidelberg
(2004)

45. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: ECAI 1998.
Proceedings of the 13th biennial European Conference on Artificial Intelligence,
pp. 361–365. John Wiley and Sons, Chichester (1998)

46. Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–
399. Springer, Heidelberg (2004)

47. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrock, I.: A Fuzzy Description
Logic for Multimedia Knowledge Representation. In: Proc. of the International
Workshop on Multimedia and the Semantic Web, Crete (2005)

A Cooperative Approach for Composite

Ontology Mapping

Cássia Trojahn1, Márcia Moraes2, Paulo Quaresma1, and Renata Vieira3

1 Departamento de Informática, Universidade de Évora, Portugal
2 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul,

Brazil
3 Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos Sinos,

Brazil
cassia@di.uevora.pt, mmoraes@pucrs.br, pq@di.uevora.pt, renatav@unisinos.br

Abstract. This paper proposes a cooperative approach for composite
ontology mapping. We first present an extended classification of auto-
mated ontology matching and propose an automatic composite solution
for the matching problem based on cooperation. In our proposal, agents
apply individual mapping algorithms and cooperate in order to change
their individual results. We assume that the approaches are complemen-
tary to each other and their combination produces better results than the
individual ones. Next, we compare our model with three state of the art
matching systems. The results are promising specially for what concerns
precision and recall. Finally, we propose an argumentation formalism as
an extension of our initial model. We compare our argumentation model
with the matching systems, showing improvements on the results.

1 Introduction

Ontology mapping is the process of linking corresponding terms from different
ontologies. The mapping result can be used for ontology merging, agent commu-
nication, query answering, or for navigation on the Semantic Web.

There are many different approaches to the mapping problem. Whereas lex-
ical approaches consider measures of lexical similarity; semantic ones consider
semantic relations usually on the basis of semantic oriented linguistic resources.
Other approaches consider term positions in the ontology hierarchy. Indeed,
taxonomies of the different mapping approaches have been proposed in the liter-
ature, see for example [28][30] and [31]. However, the use of a single technique for
a large variety of schemes is unlikely to be successful[7]. Since these approaches
are complementary to each other their combination should lead to high matching
accuracies than those provided by each one individually.

We consider that different agents working on the basis of particular approaches
arrive to distinct matching results that must be shared, compared, chosen and
agreed. In order to deal with this problem, we present a composite mapping ap-
proach based on cooperative agents, which negotiate on a final matching result.

S. Spaccapietra (Ed.): Journal on Data Semantics X, LNCS 4900, pp. 237–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

238 C. Trojahn et al.

We compare our model with three state of the art schema-based matching sys-
tems, namely Cupid[19], COMA[7], and S-Match[14]. The results are promising
specially for what concerns precision and recall.

To deal with some mapping conflicts, which are not resolved by our negotia-
tion model, we propose an argument formalism for composite ontology mapping.
We extend a state of art argumentation framework, namely the Value-based Ar-
gumentation Framework (VAF)[3], in order to represent arguments with confi-
dence degrees. The VAF allows to determine which arguments are acceptable,
with respect to the different audiences represented by different agents. We then
associate to each argument a confidence degree, representing the confidence that
a specific agent has in that argument.

In our novel proposal, cooperative agents apply individual mapping algorithms
and cooperate in order to change theirs local results (arguments). Next, based
on their preferences and confidence of the arguments, the agents compute their
preferred mapping sets. The arguments in such preferred mapping sets are viewed
as the set of globally acceptable arguments. This is a more formal presentation
for composite mapping. We also compare our argumentation model with the
Cupid, COMA, and S-Match systems. The results are better than when using
our negotiation model.

The paper is structured as follows. The next section briefly reviews the state
of the art in ontology mapping. Section 3 comments on cooperative negotiation.
Section 4 presents our negotiation model. Section 5 presents the results using
the negotiation model. Section 6 presents the argumentation formalism and sec-
tion 7 presents our argumentation model. Section 8 compares the results of the
argumentation model and previous approaches. In section 9, related work are
commented. Finally, section 10 presents the final remarks and the future work.

2 Ontology Mapping Approaches

The previous work of [28], [30] and [31] present a broad overview of the vari-
ous approaches on automated ontology matching, classifying the mapping ap-
proaches in terms of input and techniques utilized in the mapping process. We
propose a revision of the classification of mapping approaches presented in pre-
vious work, and we complement their proposals, including new elements in these
classification. We point out that [20] presents other style of ontology mapping
classification that is based on frameworks, methods and tools, translators, medi-
ators, etc. We are not including these aspects in the classification presented here.

[28] distinguishes between individual and combining matchers. Individual
matchers comprise schema-based and instance-based, element and structure lev-
els, linguistic and constrained-based matching techniques. Combining matchers
comprise hybrid and composite matchers.

Based on this previous taxonomy, [30] distinguishes between heuristic and for-
mal techniques at schema-level; and implicit and explicit techniques at element-
and structure-level. [31] introduces new criterias which are based on (i) gen-
eral properties of matching techniques, i.e., approximate and exact techniques;

A Cooperative Approach for Composite Ontology Mapping 239

(ii) interpretation of input information, i.e., syntactic, external, and semantic
techniques at element and structure levels; and (iii) the kind of input informa-
tion, i.e., terminological, structural, and semantic techniques.

Moreover, [13] distinguishes between weak semantics and strong semantics
element-level techniques. Weak semantics techniques are syntax-driven tech-
niques (e.g., techniques which consider labels as strings, or analyze data types,
or soundex of schema elements) while strong semantics techniques exploit, at
the element level, the semantics of labels (e.g., based on the use of thesaurus).

We present a revised classification in Figure 1 (our modifications are in bold
font). As in [28], we distinguish between individual and combining matchers.
However, we divided the individual matchers on data level, ontology level, or
context level, but we kept the combining matcher divided on hybrid or composite.

At the data level, data instances are used as input to the matching process.
At the ontology level, the terms of the ontology structure and the hierarchy are
taking into account. Then, as [28], we distinguish between element-level matcher
and structure level matcher. Finally, the ontology’s application context can be
used, i.e, how the ontology entities are used in some external context. This
is specially interesting, for instance, to identify WordNet sense that must be
considered to specific terms.

Fig. 1. Our classification of matching approaches

At the element-level we consider, according to [31], semantic and external
matchers. However, we replaced the syntactic by lexical and added a constraint-
based matchers. We assume that the term “syntactic” refers to morpho-syntactic
categories of words (i.e., implicating some word annotation). We consider that
the term “lexical” is more appropriated to refer to the category of approaches
based on string similarity.

240 C. Trojahn et al.

The lexical approaches use metrics to compare string similarity. One well-
known measure is the Levenshtein distance or edit distance [23], which is given
by the minimum number of operations (insertion, deletion, or substitution of a
single character) needed to transform one string into another. Based on Leven-
shtein measure, [25] proposes a lexical similarity measure for strings, the String
Matching (SM), that considers the number of changes that must be made to
change one string into the other and weighs the number of these changes against
the length of the shortest string of these two. Other common metrics are: the
Smith-Waterman[34], which additionally uses an alphabet mapping to costs; and
the [11] which searches for the largest common substring.

Semantic matchers consider semantic relations between concepts to measure
the similarity between them, usually on the basis of one thesaurus or similar
semantic oriented linguistic resources. The well-known WordNet1 database, a
large repository of English items, has been used to provide these relations. This
kind of mapping is complementary to the pure string similarity metrics. Cases
where string metrics fail to identify high similarity between strings that represent
completely different concepts are common. For example, for the words “score”
and “store” the Levenshtein metric returns 0.68, which is a high metric if we
consider that the they represent very different concepts. On the other hand terms
like “student” and “learner” are semantically similar although they are lexically
distant from each other.

Constraint-based matchers are based on data types, value ranges, uniqueness,
cardinalities, and other information constraints in the matching process. For
example, the similarity between two terms can be based on the equivalence of
data types and domains, of key characteristics (e.g., unique, primary, foreign),
or relationship cardinality (e.g., 1:1 relationships) [28].

Finally, at the element-level, we consider that external matchers consider some
type of external information, such as user input or previous matching results.

Structural matchers use the ontology structure as input to the matching pro-
cess (i.e., the positions of the terms in the ontology hierarchy are considered).
Several approaches using this intuition have been proposed: super(sub)-concept
rules consider that if super or sub concepts are the same, the actual concepts
are similar to each other ([5][10]); bounded path matching takes two paths with
links between classes defined by the hierarchical relations, compare terms and
their positions along these paths, and identify similar terms (see, for instance,
Anchor-prompt algorithm [27][16]); leaves-rules, where two non-leaf schema el-
ements are structurally similar if their leaf sets are highly similar, even if their
immediate children are not, see, for example[19].

We also consider, as [28], hybrid and composite matchers, at combining matcher
level. Hybrid matchers use multiple matching criteria (e.g., name and type equal-
ity) within an integrated matcher; and composite matchers (which can use a man-
ual or automatic process) combine multiple match results produced by different
match algorithms. Our approach is an automatic composite matcher and then we
add a cooperative approach at automatic level, which can be based on negotia-

1 http://www.wordnet.princeton.edu

A Cooperative Approach for Composite Ontology Mapping 241

tion or argumentation. We point out that an automatic mapping approach can be
also based on machine learning techniques, as presented by [8], which combines
multiple matchers using a learning approach.

Due to the complexity of the problem using only one approach is usually not
satisfactory. These approaches are complementary to each other. Combining dif-
ferent approaches must reflect a better solution when compared to the solutions
of individual approaches. Our first proposal is to use a cooperative negotiation
model, where agents apply individual mapping algorithms and negotiate on a
final mapping result.

3 Cooperative Negotiation

Negotiation is a process by which two or more parties make a joint decision
[38]. It is a key form of interaction that enables groups of agents to arrive at
mutual agreement regarding beliefs, goals or plans [2]. Hence the basic idea
behind negotiation is reaching a consensus [15].

Negotiation usually proceeds in a series of rounds, with every agent making
a proposal at each round [37]. The process can be described as follow, based on
[22]. One agent generates a proposal and other agents review it. If some other
agent does not like the proposal, it rejects the proposal and might generate a
counter-proposal. If so, the other agents (including the agent that generated the
first proposal) review the counter-proposal and the process is repeated. It is
assumed that a proposal becomes a solution when it is accepted by all agents.

Cooperative negotiation is a particular kind of negotiation where agents coop-
erate and collaborate to obtain a common objective. In cooperative negotiation,
each agent has a partial view of the problem and the results are put together via
negotiation trying to solve the conflicts posed by having only partial views [12].

This kind of negotiation has been currently adopted in resource and task al-
location fields [4][26][38]. In these approaches, the agents try to reach the maxi-
mum global utility that takes into account the worth of all their activities. In our
approach the cooperative negotiation is a form of interaction that enables the
agents to arrive to mutual agreement regarding the result of different ontology
mapping approaches.

4 Cooperative Negotiation Model for Composite
Ontology Mapping

In our model, the agents use lexical, semantic and structural approaches to map
terms of two different ontologies. The distinct mapping results are shared, com-
pared, chosen and agreed, and a final mapping result is obtained. This approach
aims to overcome the drawbacks of the using individual ontology mapping ap-
proaches. First, we present the organization of the agent society and next we
detail the negotiation process.

242 C. Trojahn et al.

4.1 Organization of the Agent Society

We describe our model according to an agent society (Figure 2), using the
Moise+ model [18]. This model proposes three dimensions for the organization
of agent societies: structural, functional and deontic. The structural dimension
defines what agents could do in their environment (theirs roles). The functional
dimension defines how agents execute their goals. The deontic dimension defines
the permissions and obligations of a role in a goal. This paper focuses on the
first dimension.

Fig. 2. Organizational model

According to [18] and [17], structural specification has three main concepts,
roles, role relations and groups that are used to build, respectively, the individual,
social and collective structural levels of an organization. The individual level is
composed by the roles of the organization. A role means a set of constraints
that an agent ought to follow when it accepts to play that role in a group. The
following roles are identified in the proposed organization:

– Mediator: this role is responsible for mediating the negotiation process, send-
ing and receiving messages to and from the mapping agents.

– Matcher: this role is responsible for giving an output between two ontology
mappings (i.e., encapsulates the mapping algorithms). One matcher could as-
sume the lexical, semantic or structural role. On the lexical role, the matcher
makes the mapping using algorithms based on string similarity. On the se-
mantic role, the agent search by corresponding terms in a semantic oriented
linguistic database. On the structural role, the agent is based on the intuition
that if super-classes are the same, the compared classes are similar to each
other. If sub-classes are the same, the compared classes are also similar.

A Cooperative Approach for Composite Ontology Mapping 243

In the social level are defined the kinds of relations among roles that directly
constrain the agents. Some of the possible relations are:

– Acquaintance (acq): agents playing a source role are allowed to have a rep-
resentation of the agents playing the destination role. In Figure 2, this kind
of relation is present between the source role mediator and the destination
role matcher.

– Communication (com): agents playing a source role are allowed to commu-
nicate with agents that play the destination role. In Figure 2 this kind of
relation is present between the source role mediator and the destination role
matcher (by heritage, lexical, semantic and structural).

– Authority (aut): agents playing a source role has authority upon agent play-
ing destination role. In Figure 2 this kind of relation is present between the
source role semantic and the destination roles lexical and structural.

The collective level specifies the group formation inside the organization. A
group is composed by the roles that the system could assume, the sub-groups
that could be created inside a group, the links (relations) valid for agent and
by the cardinality. A group can have intra-groups links and inter-groups links.
The intra-group links state that an agent playing the link source role in a group
is linked to all agents playing the destination role in the same group or in its
sub-groups. The inter-group links state that an agent playing the source role is
linked to all agents playing the destination role despite the groups these agents
belong to [18]. Links intra-group are represented by a hatched line and links
inter-groups are represented by a continue line. This specification defines only a
group called negotiation and all links are intra-group.

Based on the structural specification of the proposed organization, our society
is composed by one agent that assumes the mediator role and three agents that
assume the matcher role. One of the matcher agents is assuming the lexical role,
one is assuming the semantic role, and one is assuming the structural role.

4.2 Negotiation Process

Basically, the negotiation process involves two phases. First, the agents work in
an independent manner, applying a specific mapping approach and generating
a set of negotiation objects. A negotiation object is a 3-tuple O = (t1,t2,C),
where t1 corresponds to a term in the ontology 1, t2 corresponds to a term in the
ontology 2, and C is the mapping category resulting from the mapping for these
two terms. Second, the set of negotiation objects, that compose the mapping
is negotiated among the agents. The negotiation process involves one mediator
and several matcher agents.

In order to facilitate the negotiation process (i.e, reduce the number of nego-
tiation rules), we define four mapping categories according to the output of the
matcher agents. Table 1 shows the categories and the corresponding mapping
results.

244 C. Trojahn et al.

Lexical agent. The output of the lexical agents is a value from the interval
[0,1], where 1 indicates high similarity between two terms (i.e, the strings are
identical). The Levenshtein metric is used. For example, the words “reference”
and “citation” have a Levenshtein value equals to 0.0. This way, if the output
is 1, a “mapping with certainty” is obtained. If the output is 0, the agent has
a “not mapping with certainty”. A threshold is used to classify the output in
uncertain categories. The threshold value is specified by the user.

Semantic agent. The semantic agents consider semantic relations between
terms according to the WordNet database. Relations such as synonym, antonym,
holonym, meronym, hyponym, and hypernym can be returned for a given pair
of terms. For instance, the semantic agent searches the relations between the
terms “reference” and “citation” in the WordNet database and can assume that
these terms are synonymous. Synonymous terms are considered as mapping with
certainty; terms related by holonym, meronym, hyponym, or hypernym are con-
sidered mapping with uncertainty; when the terms can not be related by the
WordNet (the terms are unknown for the WordNet database), the terms are
considered as not mappings with uncertainty.

Structural agent. The structural agent uses the super-classes intuition to ver-
ify if the terms can be considered similar. First, it is verified if the super-classes
are lexically similar. Otherwise, the semantic similarity is used. If the super-
classes are lexically or semantically similar, the terms are similar to each other.
For instance, when mapping the terms “reference/thesis” (where “reference” is
the super-class of “thesis”) and “citation/proceeding”, the structural agent indi-
cates that the terms can be mapped because the super-classes are semantically
similar. The matching category corresponds the output of the lexical or semantic
comparison (e.g, if super-classes are not lexically similar, but they are considered
synonymous, a “mapping with certainty” is returned).

We point out that semantic and structural mappings are complex problems,
and in this paper we simple adopted state-of-art semantic and structural ap-
proaches. Therefore, we are composing on what is now generally available. We
consider that using richer semantic and structural mappings is relevant, but our
emphasis for this paper is in combining state of art approaches.

Figure 3 shows an AUML interaction diagram with the messages changed
between the agents during a negotiation round. We use an extension of AUML-2
standard to represent agents’ actions (the actions are placed centered over the

Table 1. Mapping categories

Category Lexical Semantic
Mapping (certainty) 1 synonym
Mapping (uncertainty) 1 > r > t related
Not mapping (uncertainty) 0 < r <= t unknown
Not mapping (certainty) 0

A Cooperative Approach for Composite Ontology Mapping 245

Mediator Lexical Semantic Structural

askNumberMappings

askNumberMappings

askNumberMappings

numberMappings

numberMappings

numberMappings

askProposal

proposal

proposal

proposal

counterProposal

counterProposal

negotiation

start negotiation

getMaxNumberMappings

getObjectNotEvaluated

evaluateProposal

evaluateProposal

evaluateCounterProposal

addObjectConsensus

Fig. 3. AUML negotiation interaction

lifeline of the named agent). The interaction diagram refers to negotiation of the
mapping between the classes “personal computer ” and “pc” (Figures 4 and 5)2.

The negotiation process starts with the mediator agent asking to the matcher
agents for its number of “mappings with certainty”. The first matcher agent
to generate a proposal is one that has the greatest number of “mappings with
certainty” (lexical agent, in the specific example).

The proposal contains the first negotiation object that still wasn’t evaluated
by the agent. This proposal is then sent to the mediator agent, which sends
it to other agents (in the specific example, the lexical agent proposes a “not
mapping with certainty” to the mapping between the classes “personal computer
” and “pc”). Each agent then evaluates the proposal, searching for an equivalent
negotiation object. One negotiation object is equivalent to another when both
refers to same terms which are being compared in the two ontologies.

If an equivalent negotiation object has the same category, the agent accepts
the proposal. Otherwise, if the agent has a different category for the compared
2 Ontologies available in http://dit.unitn.it/ accord/Experimentaldesign.html(Test 4).

246 C. Trojahn et al.

Fig. 4. Ontology 1 Fig. 5. Ontology 2

terms in the negotiation object, its object negotiation is sent as a counter-
proposal to the mediator agent, which evaluates the several counter-proposals
received (several agents can send a counter-proposal). In the example, semantic
and structural agents have generated counter-proposals, indicating a “mapping
with certainty” between the compared terms. The semantic agent identifies that
the terms are synonymous in WordNet, and structural agent identifies terms
having the same super-class (electronics).

The mediator selects one counter-proposal that has the greater number of
hits. If two categories receive equals number of hits, the category indicated by
the semantic agent is considered as the negotiation consensus. When a proposal is
accepted by all agents or a counter-proposal consensus is obtained, the mediator
adds the corresponding negotiation object in a consensus negotiation set and
the matcher agents mark its equivalent one as evaluated. The negotiation ends
when all negotiation objects are evaluated.

5 Experiments Using the Negotiation Model

We applied our negotiation model to link corresponding class names in two
different ontologies. The results produced by our negotiation model were com-
pared with manual matches3 (expert mappings). The manual matches specified
between the attributes of the ontologies were not considered in this set of exper-
iments.

Previous experiments using our negotiation model were presented in [36]. This
current work extends that previous one in many aspects. First, there we used
only lexical and semantic agents in the negotiation process. Second, the result-
ing mapping category was obtained by majority, where the semantic agent had
authority over the lexical agents (when two mapping categories received the
equal number of hits, the semantic agent decides the resulting mapping cate-

3 Obtained from http://dit.unitn.it/ accord/Experimentaldesign.html

A Cooperative Approach for Composite Ontology Mapping 247

gory). Third, we used only two other ontologies related to bibliography domain
to evaluate that initial proposal.

The negotiation model was implemented in Java for Windows, version 1.5.0,
and the experiments ran on Pentium(R) 4, UCP 3.20GHz, 512MB. The lexical
agent was implemented using the edit distance measure (Levenshtein measure).
We used the algorithm available in the API for ontology alignment
(INRIA)4 (EditDistNameAlignment). The semantic agent uses the JWordNet
API5, which is an interface to the WordNet database. For each WordNet synset,
we retrieved the synonymous terms and considered the hypernym, hyponym,
member-holonym, member-meronym, part-holonym, and part-meronym as re-
lated terms. The structural agent is based on super-classes similarity.

The threshold used to classify the matcher agents output was 0.6. A pre-
processing step was made, where special (e.g.,) and stop words (e.g., “and”,
“or”, “of”) were removed.

We have used four groups of ontologies: parts of Google and Yahoo web direc-
tories6, product schemas7, course university catalogs8, and company profiles9.
We considered the “mappings with certainty” and the “mappings with uncer-
tainty” as examples of the positive classes. As a mapping quality measure, the
well-know measures of precision, recall, and f–measure were used.

First, we compared the results obtained from our model with the results
from expert mapping (Table 2 – the column “Others” contains mappings iden-
tified as corrects by our model, which where not identified by the experts).
We also indicated the number of terms for each group of ontologies (only class
names).

The negotiation consensus identified correctly all mappings defined by the
expert, for all groups – all mappings defined by the expert were returned as
“mappings with certainty” by our model. When considering the other mappings
(“Others”), for the “Google and Yahoo”, 3 “mappings with certainty” and 5
“mappings with uncertainty” have been returned. For instance, a “mapping with
uncertainty” between the terms “/Arts/Visual Arts” (where “Arts” is the super-
class of “Visual Arts”) and “/Arts Humanities/Design Art” has seen identified.
This mapping was not defined by expert, however it could be considered as cor-
rect. This kind of “mapping with uncertainty” has been observed in the other
examples. In “Product schemas”, only one new mapping has been returned,
being a “mapping with certainty”, but incorrectly (i.e., “/Electronics/Personal
Computers/Accessories” and “/Electronic/Cameras and Photos/Accessories”).
Finally, for the “Course catalogs”, 3 new mappings were categorized as
“mappings with uncertainty” (e.g., “/Courses/College of engineering” and
“/Courses/ College of Arts and Sciences”).

4 http://alignapi.gforce.inria.fr
5 http://jwn.sourceforge.net (using WordNet 2.1).
6 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 3).
7 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 4).
8 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 7).
9 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 8).

248 C. Trojahn et al.

Table 2. Expert mapping and consensus results

Consensus
Ontology Expert mapping Correct Others
Google and Yahoo directories (54) 4 4 8
Product schemas (30) 4 4 1
Course catalogs (48) 6 6 3
Company profiles (9) 3 3 0

Second, we compared the output of all agents (Table 3). Using lexical or
structural individual agents was not sufficient to obtain all corrects mappings.
These agents did not classify correctly all positive classes (0.64 and 0.68, re-
spectively, for recall, and 0.67 and 0.71, for f–measure), although having good
precision measures. The consensus resulting from negotiation was better than
the individual results obtained by these agents, having identified correctly all
positive classes (recall equals 1 for all groups of ontologies). The semantic agent
had better performance than lexical and structural agents (recall equals 1 and
f–measure equals 0.78), and it produces similar results when compared with the
negotiation consensus. For ontologies which are lexically and structurally simple
(e.g., “Company profiles”), all agents produce equivalent results.

Table 3. Matcher agents and consensus results

Consensus Lexical Semantic Structural
Ontology P R F P R F P R F P R F
Google-Yahoo dir. (54) 0.33 1.0 0.49 0.50 0.25 0.33 0.28 1.0 0.43 1.0 0.50 0.66
Product schemas (30) 0.80 1.0 0.88 0.40 0.50 0.44 0.80 1.0 0.88 0.60 0.75 0.66
Course catalogs (48) 0.66 1.0 0.79 1.0 0.83 0.90 0.66 1.0 0.79 0.60 0.50 0.54
Company profiles (9) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Average 0.69 1.0 0.79 0.72 0.64 0.67 0.68 1.0 0.78 0.80 0.68 0.71

The similar results between semantic agent and negotiation consensus occurs
because the labels mapped by experts have strong semantic correspondence,
identified as “mappings with certainty” by the semantic agent. In these cases,
the structural agent returned “mappings with uncertainty”, while the lexical
agent returned “not mappings with certainty” (e.g., the correct mapping be-
tween “/Arts/Arts History” and “/Architecture/History” terms). Then, the se-
mantic agent decides the final category. However, for the “Google and Yahoo”
ontologies, which have greater number of terms (54) when compared with the
other groups of ontologies, the consensus returned better precision (0.33) than
semantic agent (0.28). As a concluding result, the consensus had better behav-
ior than lexical, semantic and structural individual agents, with f–measure value
equals 0.79 against 0.67, 0.78 and 0.71, respectively.

We also identified cases where conflicts occur, which are not resolved by our
model and the semantic agent is not sufficient to identify them. Considering

A Cooperative Approach for Composite Ontology Mapping 249

the terms “Music/History” and “Architecture/History” (“Google and Yahoo”
ontologies), the semantic and lexical agents returned a “mapping with certainty”,
differently of the structural agent. However, this is not a correct mapping. As
will be commented in section 7, we are working on argument-based negotiation,
in order to solve this kind of conflict. An argument for accepting the mapping
may be that the terms are synonymous and an argument against may be that
some of their super-concepts are not mapped.

Third, we compared our negotiation model with three state of the art match-
ing systems: Cupid[19], COMA[7], and S-Match[14]. The comparative results
among these three systems are available in [14]. We utilized these test results as
criteria to evaluate our proposal, but the details of these tests (implementations,
time of run, processor, etc) are not available. Following, we describe each system.

The Cupid algorithm is based on linguistic and structural approaches. In a first
phase, called linguistic matching, it matches individual schema elements based
on their names, data types, domains, etc. A thesaurus is used to help match
names by identifying short-forms (for instance, Qty for Quantity), acronyms,
and synonyms. The result is a linguistic similarity coefficient, lsim, between
each pair of elements. The second phase is the structural matching of schema
elements based on the similarity of their contexts or vicinities. The structural
match depends in part on linguistic matches calculated in phase one and the
result is a structural similarity coefficient, ssim, for each pair of elements. The
weighted similarity (wsim) is a mean of lsim and ssim: wsim = wstruct × ssim
+ (1−wstruct) × lsim, where the constant wstruct is in the range 0 to 1.

The COMA represents a generic system to combine match results. The match
result is a set of mapping elements specifying the matching schema elements
together with a similarity value between 0 (strong dissimilarity) and 1 (strong
similarity) indicating the plausibility of their correspondence. The matchers cur-
rently supported fall into three classes: simple, hybrid and reuse-oriented match-
ers. They exploit different kinds of schema information, such as names, data
types, and structural properties, or auxiliary information, such as synonym ta-
bles and previous match results.

The S-Match algorithm is based on two main steps. First, the meaning of each
concept of the ontologies is captured, using the WordNet database to obtain
the senses of them (element-level). Second, the structural schema properties
are taken into account, where the path to the root is computed (structure-level).
Element level semantic matchers provide the input to the structure level matcher,
which is applied on to produce the set of semantic relations between concepts
as the matching result.

Our proposal uses different techniques for composite mapping approaches
from these previous work.

Our comparative results consider the mappings between attributes of the on-
tologies in order to compute the precision and recall measures. Then, we have
added to our ontologies such attributes, which are viewed as specific sub-classes
by our agents. Table 4 shows the comparative results. Considering the attributes

250 C. Trojahn et al.

Table 4. Comparative mapping results – matching systems and negotiation model

Consensus Cupid COMA S-Match
Ontology P R F P R F P R F P R F
Company profiles (160) 1 0.63 0.77 0.50 0.60 0.54 0.80 0.70 0.74 1.0 0.65 0.78

of the ontologies, the number of terms to be compared is 160 (i.e., 10 terms in
the first ontology with 16 terms in the second ontology).

As shown in Table 4, our model returned better precision than Cupid and
COMA, and similar precision when compared to the S-Match, having returned
as “mapping with certainty” only the correct expert mappings (precision equals
to 1). When comparing the F-measure values, our model had similar result than
COMA and S-Match and better result than Cupid.

In order to obtain better results than our negotiation model, we propose ex-
tend the model using the argumentation formalism. In the following sections, we
first introduce the argumentation formalism. Next, we present our novel argu-
mentation model and its evaluation. using it.

6 Argumentation Framework

Our argumentation model is based on the Value-based Argumentation Frame-
works (VAF)[3], a development of the classical argument system of Dung [9].
First, we present the Dung’s framework, upon which a VAF rely. Next, we present
a VAF and our extended framework.

6.1 Classical Argumentation Framework

Dung [9]defines an argumentation framework as follows.

Definition 2.1.1 An Argumentation Framework is a pair AF = (AR,attacks),
where AR is a set of arguments and attacks is a binary relation on AR, i.e.,
attacks ⊆ AR × AR. An attack(A,B) means that the argument A attacks
the argument B. A set of arguments S attacks an argument B if B is attacked
by an argument in S.

The key question about the framework is whether a given argument A, A ∈ AR,
should be accepted. One reasonable view is that an argument should be accepted
only if every attack on it is rebutted by an accepted argument [3]. This notion
produces the following definitions:

Definition 2.1.2 An argument A ∈ AR is acceptable with respect to set argu-
ments S(acceptable(A,S)), if (∀ x)(x ∈ AR) & (attacks(x,A)) −→ (∃ y)(y ∈
S)&attacks(y,x)

Definition 2.1.3 A set S of arguments is conflict-free if ¬(∃ x)(∃ y)((x ∈ S)&(y
∈ S)&attacks(x,y))

A Cooperative Approach for Composite Ontology Mapping 251

Definition 2.1.4 A conflict-free set of arguments S is admissible if (∀x)(x ∈ S)
−→ acceptable(x,S)

Definition 2.1.5 A set of arguments S in an argumentation framework AF
is a preferred extension if it is a maximal (with respect to set inclusion)
admissible set of AR.

A preferred extension represent a consistent position within AF, which can de-
fend itself against all attacks and which cannot be further extended without
introducing a conflict.

The purpose in extending the AF is to allow to distinguish between one ar-
gument attacking another, and that attack succeeding, so that the attacked
argument is defeated.

6.2 Value-Based Argumentation Framework

In Dung’s frameworks, attacks always succeed. However, in many domains, in-
cluding the one under consideration, arguments lack this coercive force: they
provide reasons which may be more or less persuasive [21]. Moreover, their per-
suasiveness may vary according to their audience. The VAF is able to distinguish
attacks from successful attacks, those which defeat the attacked argument. It
allows relate strengths of arguments to their motivations and accommodate dif-
ferent audiences with different interests and preferences.

Definition 2.2.1 A Value-based Argumentation Framework (VAF) is a 5-tuple
VAF = (AR,attacks,V,val,P) where (AR,attacks) is an argumentation
framework, V is a nonempty set of values, val is a function which maps
from elements of AR to elements of V and P is a set of possible audiences.
For each A ∈ AF, val(A) ∈ V.

Definition 2.2.2 An audience-specific value based argumentation framework
(AVAF) is a 5-tuple VAFa = (AR, attacks,V,val,Valprefa) where AR, at-
tacks,V and val are as for the VAF, a is an audience and Valprefa is a
preference relation (transitive, irreflexive and asymmetric) Valprefa ⊆ V ×
V, reflecting the value preferences of audience a. Valpref(v1,v2) means v1 is
preferred to v2.

Definition 2.2.3 An argument A ∈ AF defeatsa (or successful attacks) an ar-
gument B ∈ AF for audience a if and only if both attacks(A,B) and not
valpref(val(B), val(A)).

An attack succeeds if both arguments relate to the same value, or if no preference
value between the values has been defined.

Definition 2.2.4 An argument A ∈ AR is acceptable to audience a (acceptablea)
with respect to set of arguments S, acceptablea(A,S)) if (∀ x) ((x ∈ AR &
defeatsa (x,A)) −→ (∃y)((y ∈ S)& defeatsa(y,x))).

252 C. Trojahn et al.

Definition 2.2.5 A set S of arguments is conflict-free for audience a if (∀ x)(∀
y)((x ∈ S & y ∈ S) −→ (¬attacks(x,y) ∨ valpref(val(y),val(x)) ∈ valprefa)).

Definition 2.2.6 A conflict-free for audience a set of argument S is admissible
for an audience a if (∀x)(x ∈ S −→ acceptablea(s,S)).

Definition 2.2.7 A set of argument S in the VAF is a preferred extension for
audience a (preferreda) if it is a maximal (with respect to set inclusion)
admissible for audience a of AR.

In order to determine the preferred extension with respect to a value order-
ing promoted by distinct audiences, [3] introduces the notion of objective and
subjective acceptance.

Definition 2.2.8 An argument x ∈ AR is subjectively acceptable if and only if
x appears in the preferred extension for some specific audiences but not all.
An argument x ∈ AR is objectively acceptable if and only if, x appears in
the preferred extension for every specific audience.
An argument which is neither objectively nor subjectively acceptable is said
to be indefensible.

6.3 An Extended Value-Based Argumentation Framework

We extend the VAF in order to represent arguments with confidence degrees.
Two elements have been added to VAF: a set with confidence degrees and a func-
tion which maps from confidence degrees to arguments. The confidence value
represents the confidence that a specific agent has in some argument. We as-
sumed that the confidence degrees compose a second axis which is necessary to
represent a problem domain, such as the ontology mapping.

Definition 2.3.1 AnExtendedValue-basedArgumentationFramework(E-VAF)
is a 7-tuple E-VAF = (AR, attacks,V,val,P,C,valC) where (AR,attacks,V,val,
P) is a value-based argumentation framework, C is a nonempty set of values
representingtheconfidencedegrees,valC isafunctionwhichmapsfromelements
ofAR to elements of C. valC ⊆ C × C and valprefC(c1,c2) means c1 is preferred
to c2.

Definition 2.3.2 An argument A ∈ AF defeatsa (or successful attacks) an
argument B ∈ AF for audience a if and only if attacks(A,B) and (val-
prefC(valC(A),valC(B)) or (¬ valpref(val(B),val(A)) and ¬ valprefC
(valC(B), valC(A)))).

An attack succeeds if (a) the confidence degree of the attacking argument is
greater than the confidence degree of the argument being attacked; or if (b) the
argument being attacked does not have greater preference value than attack-
ing argument (or if both arguments relate to the same preference values) and
the confidence degree of the argument being attacked is not greater than the
attacking argument.

A Cooperative Approach for Composite Ontology Mapping 253

Definition 2.3.4 A set S of arguments is conflict-free for audience a if (∀A)(∀B)
((A ∈ S & B ∈ S) −→ (¬attacks(A, B) ∨ (¬valprefC(valC(A),valC(B)) and
(valpref(val(B), val(A)) ∨ valprefC(valC(B),valC(A))))).

7 E-VAF for Composite Ontology Mapping

In our model, dedicated agents encapsulate different mapping approaches which
represent different audiences in an E-VAF, i.e, the agents’ preferences are based
on specific approach used by the agent. In this paper we will consider three
argumentive audiences: lexical (L), semantic (S), and structural (E) (i.e. P =
{L, S, E}, where P ∈ E-AVF). We point out that our model is extensible to
others audiences.

First, we present the re-organization of the agents society and next we detail
the argumentation process.

7.1 Organization of the Agents Society

We use the Moise+ model to describe our novel argumentation model (Figure 6).
In this society, only the matcher role is identified, which is responsible for giv-
ing an output between two ontology mappings (i.e., encapsulate the mapping
algorithms). One matcher could assume the lexical, semantic or structural role.
Differently from our negotiation model, there is no role responsible for mediating
the argumentation process. The mediator role has been eliminated.

The possible relation between the agents is the communication, where the
agents playing a source role are allowed to communicate with agents playing
the destination role. This kind of relation is present through the communication
among the three matcher agents within an agent society.

Fig. 6. Organizational model

254 C. Trojahn et al.

7.2 Argumentation Generation

First, the agents work in an independent manner, applying the mapping ap-
proaches and generating mapping sets. The mapping result will consist of a set
of all possible correspondences between terms of two ontologies. A mapping can
be described as a 3-tuple m = (t1,t2,R), where t1 corresponds to a term in the
ontology 1, t2 corresponds to a term in the ontology 2, and R is the mapping
relation resulting from the mapping for these two terms. The lexical and seman-
tic agents are able to return equivalence values to R, while the structural agents
returns sub-class or super-class values to R.

Each mapping m is represented as a argument. Now, we can define arguments
as follows:

Definition 4.1 An argument ∈ AF is a 4-tuple x = (m,a,c,h), where m is
a mapping; a ∈ P is the agent’s audience generating that argument; c ∈
C is the confidence degree associated to that mapping; h is one of {-,+}
depending on whether the argument is that m does or does not hold.

The confidence degree is defined by the agent when applying the specific mapping
approach. Here, we assumed C = {certainty, uncertainty}, where C ∈ E-VAF.

Table 5 shows the possible values to h and c, according to the agent’s audi-
ences. The agents generate theirs arguments based on rules from Table 5.

Table 5. h and c to audiences

Audiences
h c Lexical Semantic
+ certainty 1 synonym
+ uncertainty 1 > r > t related
- certainty 0 < r <= t
- uncertainty 0 unknown

Lexical agent. The output of lexical agents (r) is a value from the interval [0,1],
where 1 indicates high similarity between two terms. This way, if the output is
1, the lexical agent generates an argument x = (m,L,certainty,+), where m =
(t1,t2,equivalence).

If the output is 0, the agent generates an argument x = (m,L,certainty,-),
where m = (t1,t2, equivalence). A threshold (t) is used to classify the output in
uncertain categories. The threshold value can be specified by the user.

Semantic agent. The semantic agents consider semantic relations between
terms, such as synonym, antonym, holonym, meronym, hyponym, and hyper-
nym (i.e., such as in WordNet database). When the terms being mapped are
synonymous, the agent generates an argument x = (m,S,certainty,+), where
m= (t1,t2, equivalence).

The terms related by holonym, meronym, hyponym, or hypernym are con-
sidered related and an argument x = (m,S, uncertainty,+) is generated, where

A Cooperative Approach for Composite Ontology Mapping 255

m =(t1,t2, equivalence); when the terms can not be related by the WordNet
(the terms are unknown for the WordNet database), an argument x = (m,L,
uncertainty,-), where m = (t1,t2,equivalence), is then generated.

Structural agent. The structural agents consider the super-classes (or sub-
classes) intuition to verify if the terms can be mapped. First, it is verified if the
super-classes are lexically similar. If not, the semantic similarity is used. If the
super-classes are lexically or semantically similar, the terms are equivalent to
each other. The argument will be generated according to the lexical or semantic
comparison.

For instance, if super-classes are not lexically similar, but the terms are con-
sidered synonymous, an argument x = (m,E,certainty,+), where m = (t1,t2,
super-class), is generated.

7.3 Preferred Extension Generation

After generating their set of arguments, the agents change with each other their
arguments. Following a well-defined protocol, an agent asks the others about
theirs arguments. The other agents then, send their arguments to the first agent.
An ack sign is then sent to requesting agents, in order to indicate that the
arguments have been correctly received. Otherwise, an error sign is sent. Figure 7
shows an AUML interaction diagram with the messages exchanged between the
agents during the argumentation process.

When all agents have received the set of argument of each other, they gener-
ate their attacks set. An attack (or counter-argument) will arise when we have
arguments for the mapping between the same terms, but with conflicting values
of h. For instance, an argument x = (m1,L,certainty,+) have as an attack an
argument y = (m2,E, certainty,-), where m1 and m2 have the same terms in the
ontologies. The argument y also represents an attack to the argument x.

As an example, consider the mapping between the terms “Reference/ Disser-
tation” and “Citation/Thesis” and the lexical and structural agents. The lexical
agent generates an argument x = (m,L,uncertainty,-), where m = (disserta-
tion,thesis,equivalence); and the structural agent generates an argument y =
(m,E,certainty,+), where m = (dissertation,thesis, super-class). For both lexical
and structural audiences, the set of arguments is AR= {x,y} and the attacks =
{(x,y),(y,x)}. However, the relations of successful attacks will be defined accord-
ing to specific audience (see Definition 2.3.2), as it is commented below.

When the set of arguments and attacks have been produced, it is necessary for
the agents to consider which of them they should accept. To do this, the agents
compute their preferred extension, according to the audiences and confidence
degrees. A set of arguments is globally subjectively acceptable if each element
appears in the preferred extension for some agent. A set of arguments is globally
objectively acceptable if each element appears in the preferred extension for every
agent. The arguments which are neither objectively nor subjectively acceptable
are considered indefensible.

256 C. Trojahn et al.

Lexical Semantic Structural

askArguments

askArguments

arguments

arguments

ack

ack

askArguments

askArguments

arguments

arguments

ack

ack

askArguments

askArguments

arguments

arguments

ack

ack

Argumentation

start argumentation

generateAttacks

computePreferredExtension

generateAttacks

computePreferredExtension

generateAttacks

computePreferredExtension

Fig. 7. AUML interaction diagram

In the example above, considering the lexical(L) and structural(E) audiences,
where L � E and E � L, respectively. For the lexical audience, the argument
y successful attacks the argument x, while the argument x does not successful
attack the argument y for the structural audience. Then, the preferred extension

A Cooperative Approach for Composite Ontology Mapping 257

of both lexical and structural agents is composed by the argument y, which
can be seen as globally objectively acceptable. The mapping between the terms
“Reference/ Dissertation” and “Citation/Thesis”, indicated by y is correct.

8 Experiments Using the E-VAF

Let us consider that three agents need to obtain a consensus about mappings
that link corresponding class names in two different ontologies.

First, we considered part of the ontology of Google and Yahoo web directo-
ries10, and the argumentation model output have been compared with manual
matches11 (expert mappings).

We considered lexical (L), semantic (S), and structural (E) audiences in or-
der to verify the behavior of our argumentation model. These agents were im-
plemented in Java, and the experiments ran on Pentium(R) 4, UCP 3.20GHz,
512MB. The argumentation model, however, was not fully implemented. In or-
der to have its practical evaluation, the output of the agents were used as input
for a manual simulation of the argumentation protocol.

The threshold used to classify the matcher agents output was 0.6. We have se-
lected three possible mappings between terms of the ontologies: “Music/History”
and “Architecture/History”, “Art/ArtHistory” and “ArtHumanity/ArtHistory”,
and “Art” and “ArtHumanity”. Table 6 shows arguments and attacks (counter-
arguments) generated for each audience. The mappings between these terms have
been selected because they were identified as conflicting cases when using our
negotiation model.

Table 6. Arguments and attacks

ID Argument Attacks
1 (history,history,equivalence,L,certainty,+) 3
2 (history,history,equivalence,S,certainty,+) 3
3 (history,history,super-class,E,certainty,-) 1,2
4 (art-history,art-history,equivalence,L,certainty,+) -
5 (art-history,art-history,equivalence,S,certainty,+) -
6 (art-history,art-history,super-class,E,certainty,+) -
7 (art,art-humanity,L,equivalence,uncertainty,-) 8,9
8 (art,art-humanity,S,equivalence,certainty,+) 7
9 (art,art-humanity,E,super-class,uncertainty,+) 7

For the mapping between the terms “Music/History” and “Architecture/ His-
tory”, each agent has as arguments AR = {1,2,3} and as relations of attack at-
tacks = {(3,1), (3,2), (1,3), (2,3)}. These sets are generated by each agent, after
receiving the arguments of the other agents. After, the arguments that defeat
10 http://dit.unitn.it/ãccord/Experimentaldesign.html (Test 3).
11 http://dit.unitn.it/ accord/Experimentaldesign.html

258 C. Trojahn et al.

each other are computed. For the lexical audience, where L � S and L � E,
there is no arguments that successful attack each other, because all agent have
certainty in the mappings. The same occurs for the semantic (S � L and S � E)
and structural (E � L and E � S) audiences.

Then, the preferred extensions of the agents are composed by the arguments
generated by the corresponding agent (i.e, the preferred extension of the lexical
agent is {1}; the preferred extension of the semantic agent is {2}; and the pre-
ferred extension of the structural agent is {3}). This way, there is no argument
globally objectively acceptable. We can consider that the mapping between the
terms is not possible, what is true according to the manual mapping.

Using our negotiation model, the final mapping between the “Music/History”
and “Architecture/ History” terms was incorrect. The semantic and lexical
agents returned mappings with certainty, while the structural agent returned
a not mapping with certainty. By majority, the mapping with certainty was
obtained. This conflict is then resolved by our argumentation model.

For the mapping between the terms “Art/ArtHistory” and “ArtHumanity/
ArtHistory”, each agent has as arguments AR = {4,5,6}, but there are not rela-
tions of attack. Then, all agents accept the mapping with certainty between these
terms. This mapping is considered a correct mapping by the manual mapping.

Finally, for the mapping between the terms “Art” and “ArtHumanity”, each
agent has as arguments AR = {7,8,9} and as relations of attack attacks = {(8,7),
(9,7), (7,8), (7,9)}. For the lexical audience, the argument 8 successful attacks
the argument 7. Then, the preferred extension has the argument 8. For the
semantic audience, the argument 8 also successful attacks the argument 7, and
for audience structural, the arguments 8 and 9 successful attack theirs counter-
arguments. Then, the preferred extension of the structural agent is {8,9}. The
argument 8 is present in all preferred extension, then it is globally objectively
acceptable, confirming the mapping indicated by manual mapping.

We have used different agents’ output which use distinct mapping algorithms
in order to verify the behavior of our model. Our argumentation model has
identified correctly the three mappings defined by expert mappings, being two
mapping positives (h is +) and one negative (h is -).

Second, we compared the argumentation output with the results obtained
by a cooperative negotiation model. Table 7 shows the comparative results. Al-
though the negotiation model having obtained better precision than argumenta-
tion model, the F-measure of the argumentation model is better than negotiation
model. The negotiation model identified 7 true positive mappings and it did not
classify correctly 4 true positive mappings. The argumentation model identified
8 true positive, returning 1 false positive mapping not identifying 3 true positives
mappings.

Third, we compared our argumentation model with Cupid, COMA, and S-
Match systems. We consider the class and the attribute names of the ontologies
in the comparison. Table 8 shows the results. Our argumentation model had
better F-measures than all others systems.

A Cooperative Approach for Composite Ontology Mapping 259

Table 7. Argumentation vs. negotiation

Argumentation Negotiation
Ontology P R F P R F
Company profiles (160) 0.88 0.72 0.79 1 0.63 0.77

Table 8. Comparative mapping results – argumentation model

Arg Cupid COMA S-Match
Ontology P R F P R F P R F P R F
Company profiles (160) 0.88 0.72 0.79 0.50 0.60 0.54 0.80 0.70 0.74 1.0 0.65 0.78

9 Related Work

In the field of ontology negotiation we find distinct proposals. [35] presents an
ontology to serve as the basis for agent negotiation, the ontology itself is not the
object being negotiated. A similar approach is proposed by [6], where ontologies
are integrated to support the communication among heterogeneous agents.

[1] presents an ontology negotiation model which aims to arrive at a common
ontology which the agents can use in their particular interaction. We, on the
other hand, are concerned with delivering mapping pairs found by a group of
agents using the argumentation formalism. The links between related concepts
are the result of the preferred mappings of each agent, instead of an integrated
ontology upon which the agents will be able to communicate for a specific pur-
pose. We do not consider negotiation steps such as the ones presented in [1],
namely clarification and explanation. But we consider different mapping methods
represented by different audiences selecting by argumentation the best solution
for the mapping problem.

[32] describes an approach for ontology mapping negotiation, where the map-
ping is composed by a set of semantic bridges and their inter-relations, as pro-
posed in [24]. The agents are able to achieve a consensus about the mapping
through the evaluation of a confidence value that is obtained by utility func-
tions. According to the confidence value the mapping rule is accepted, rejected
or negotiated. Differently from [32], we do not use utility functions. Our model
is based on cooperation and argumentation, where the agents change their argu-
ments and by argumentation they select the preferred mapping. The arguments
in each preferred set are considered globally acceptable.

[21] proposes to use an argument framework to deal with arguments that
support or oppose candidate correspondences between ontologies. The mapping
candidates are provided by a single service. The accepted mappings resulting
from argumentation are used to agent communication. Differently from [21], the
mappings are obtained by different agents specialized on different mapping al-
gorithms and not only in a single service. In [21], the mappings are assumed to
be correct, and we are interested in how to obtain mapping sets by combining

260 C. Trojahn et al.

different approaches for ontology mapping. Moreover, in [21] it is assumed that
arguments being negotiated have the same confidence. We are proposing to as-
sociate to each argument a confidence degree. This way, in order to compute the
preferred mapping, the audiences and confidence degrees must be considered.

Semantic heterogeneity is an important problem for data bases and more
recently it has been raised as one of the key problems to be solved for the devel-
opment of the semantic web. We can find in the literature different approaches
to the problem. The work presented in [29] provides an encoding of the exten-
sible knowledge on commonly found semantic conflicts, providing an automatic
way of comparing and manipulating contextual knowledge of different informa-
tion sources, which is used for semantic transformation across heterogeneous
databases. In [33], the MAFRA Toolkit is presented, the tool helps a domain
expert to work on ontology mapping tasks. Whereas these previous approaches
are concerned with the specification of semantic conflicts that arise between dif-
ferent sources, ours is concerned with the particular problem of identifying pairs
of corresponding terms in different ontologies. In the future we will see these
various approaches in an integrated way.

10 Final Remarks

This paper presented the use of cooperative agents for composite ontology map-
ping. We first presented an extended classification on automated ontology match-
ing and proposed an automatic composite solution for the matching problem
based on cooperative approach. Our agents encapsulate different mapping ap-
proaches (lexical, semantic and structural) and a consensual result from coop-
erative negotiation of these agents. This model is fully implemented. We com-
pared our results with expert mappings, for four ontologies in different domains.
The negotiation result was better than lexical and structural agents and it re-
turned better F-measure value than the semantic agent. When comparing our
model with other state of the art matching systems, our model obtained bet-
ter F-measure than Cupid and COMA and similar results if compared with the
S-Match system.

Next, we proposed an extension of our negotiation model, which is based on
argumentation formalism. With this we were able to give a formal presenta-
tion of our composite mapping approach. Our proposal extends the Value-based
Argumentation Framework, in order to represent arguments with confidence de-
grees. We assumed that the confidence degrees compose a second axis which is
necessary to represent a problem domain, such as the ontology mapping. We
initially evaluated the argumentation model considering the mapping identified
as conflicting cases when using the negotiation model. This model has obtained
satisfactory results for the conflicting cases. We also compared the argumenta-
tion model with the Cupid, COMA, and S-Match. Our model obtained better
F-measure values than these systems. The contribution of the argumentation
model, which is the only one that is not implemented resides in the formal pre-
sentation of the problem, which was given with its practical evaluation.

A Cooperative Approach for Composite Ontology Mapping 261

As future work we plan to improve the semantic and structural approaches.
We also intend to develop further tests considering also agents using constraint-
based approaches; and use the ontology’s ap- plication context in our matching
approach. Another goal is to evaluate our proposal against systems based on
machine learning techniques, such as the system proposed by [8]. Finally, we
plan to use the mapping result as input to an ontology merging process in the
question answering domain.

Acknowledgments

The first author is supported by the Programme Alban, the European Union
Programme of High Level Scholarships for Latin America, scholarship
no.E05D059374BR.

References

1. Bailin, S., Truszkowski, W.: Ontology negotiation between intelligent information
agents. The Knowledge Engineering Review 17(1), 7–19 (2002)

2. Beer, M., d’Inverno, M., Luck, M., Jennings, N., Preist, C., Schroeder, M.: Nego-
tiation in multi-agent systems. In: Workshop of the UK Special Interest Group on
Multi-Agent Systems (1998)

3. Bench-Capon, T.: Persuasion in practical argument using value-based argumenta-
tion frameworks. Journal of Logic and Computation 13, 429–448 (2003)

4. Bigham, J., Du, L.: Cooperative negotiation in a multi-agent system for real-time
load balancing of a mobile cellular network. In: Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
568–575. ACM Press, New York (2003)

5. Dieng, R., Hug, S.: Comparison of personal ontologies represented through con-
ceptual graphs. In: ECAI. Proceedings of the European Conference on Artificial
Intelligence, p.341 (1998)

6. Diggelen, J.v., Beun, R., Dignum, F., Eijk, v.R., Meyer, J.C.: Anemone: An effec-
tive minimal ontology negotiation environment. In: Proceedings of the V Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems, pp. 899–906
(2006)

7. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.)
VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

8. Doan, A., Madhaven, J., Dhamankar, R., Domingos, P., Helevy, A.: Learning to
match ontologies on the semantic web. VLDB Journal (Special Issue on the Se-
mantic Web) (2003)

9. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n–person games. Artificial Intelligence 77,
321–358 (1995)

10. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Proceedings
of the European Semantic Web Symposium, pp. 76–91 (2004)

11. Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., De Bo, J., Dieng-Kuntz, R.,
Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou,
G., Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Van Acker, S., Zaihrayeu, I.: State
of the art on ontology alignment. Technical report (2004)

262 C. Trojahn et al.

12. Gatti, N., Amigoni, F.: A cooperative negotiation protocol for physiological model
combination. In: Proceedings of the Third Internation Joint Conference on Auto-
momous Agents and Multi-Agent Systems, pp. 655–662 (2004)

13. Giunchiglia, F., Shvaiko, P.: Semantic matching. Knowledge Engineering Re-
view 18(3), 265–280 (2004)

14. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: An algorithm and an im-
plementation of semantic matching. In: First European Semantic Web Symposium
(2004)

15. Green, S., Hurst, L., Nangle, B., Cunningham, P., Somers, F., Evans, R.: Software
agents: A review. Technical report, Trinity College (1997)

16. Hovy, E.: Combining and standardizing large-scale, practical ontologies for machine
translation and other uses. In: Proceedings of the First International conference on
language resources and evaluation (1998)

17. Hubner, J.: Um Modelo de Reorganização de Sistemas Multiagentes. PhD thesis,
Escola Politécnica da Universidades de São Paulo, Departamento de Engenharia
da Computação e Sistemas Digitais (2003)

18. Hubner, J., Sichman, J., Boisser, O.: A model for structural, functional, and de-
ontic specification of organizations in multiagent systems. Advances in Artificial
Intelligence (2002)

19. Madhavan, P.B.J., Rahm, E.: Generic schema matching with cupid. In: VLDB
2001. Proceedings of the Very Large Data Bases Conference, p.49 (2001)

20. Kalfoglou, Y., Schorlemmer, W.M.: Ontology mapping: The state of the art. In:
Semantic Interoperability and Integration (2005)

21. Laera, L., Tamma, V., Euzenat, J., Bench-Capon, T., Payne, T.R.: Reaching agree-
ment over ontology alignments. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273,
Springer, Heidelberg (2006)

22. Lander, S., Lesser, V.: Understanding the role of negotiation in distributed search
among heterogeneous agents. In: Proceedings of the International Joint Conference
on Artificial Intelligence (1993)

23. Levenshtein, I.: Binary codes capable of correcting deletions, insertions an reversals.
In: Cybernetics and Control Theory (1966)

24. Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra - a mapping framework for dis-
tributed ontologies. In: 13th International Conference on Knowledge Engineering
and Knowledge Management, pp. 235–250 (2002)

25. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of
the European Conference on Knowledge Acquisition and Management, pp. 251–263
(2002)

26. Mailler, M., Lesser, V., Horling, B.: Cooperative negotiation for soft real-time
distributed resource allocation. In: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pp. 576–583. ACM
Press, New York (2003)

27. Noy, N., Musen, M.: Anchor-prompt: using non-local context for semantic match-
ing. In: IJCAI. Proceedings of the workshop on Ontologies and Information Sharing
at the International Joint Conference on Artificial Intelligence, pp. 63–70 (2001)

28. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB 10, 334–350 (2001)

29. Ram, S., Park, J.: Semantic conflict resolution ontology (scrol): An ontology for de-
tecting and resolving data and schema-level semantic conflicts. IEEE Transactions
on Knowledge and Data Engineering 16(2), 189–202 (2004)

A Cooperative Approach for Composite Ontology Mapping 263

30. Shvaiko, P.: A classification of schema-based matching approaches. Technical re-
port, Informatica e Telecomunicazioni, University of Trento (2004)

31. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Technical
report, Informatica e Telecomunicazioni, University of Trento (2004)

32. Silva, N., Maio, P., Rocha, J.: An approach to ontology mapping negotiation. In:
Proceedings of the K-CAP Workshop on Integrating Ontologies

33. Silva, N., Rocha, J.: Semantic web complex ontology mapping. In: WI 2003. Proc.
of IEEE/WIC Web Intelligence Conference, pp. 82–88 (2003)

34. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147, 195–197 (1981)

35. Tamma, V., Wooldridge, M., Blacoe, I., Dickinson, I.: An ontology based approach
to automated negotiation. In: Proceedings of the IV Workshop on Agent Mediated
Electronic Commerce, pp. 219–237 (2002)

36. Trojahn, C., Moraes, M., Quaresma, P., Vieira, R.: A negotiation model for ontol-
ogy mapping. In: Proceedings of the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (2006)

37. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley and Sons,
Chichester (2002)

38. Zhang, X., Lesser, V., Podorozhny, R.: Multi-dimensional, multistep negoriation
for task allocation in a cooperative system. Autonomous Agents and Multi-Agent
Systems 10, 5–40 (2005)

Author Index

Albertoni, Riccardo 1

Cabral, Liliana 96
Calvanese, Diego 133

Davies, Rob 96
De Giacomo, Giuseppe 133
De Martino, Monica 1
Domingue, John 96

Galizia, Stefania 96
Gugliotta, Alessio 96
Gutierrez Villarias, Leticia 96

Hurtado, Carlos A. 31

Lam, Joey Sik Chun 62
Lembo, Domenico 133
Lenzerini, Maurizio 133

Moraes, Márcia 237

Pan, Jeff Z. 62, 212
Pierra, Guy 174
Poggi, Antonella 133
Poulovassilis, Alexandra 31

Quaresma, Paulo 237

Richardson, Marc 96
Rosati, Riccardo 133
Rowlatt, Mary 96

Sleeman, Derek 62
Stincic, Sandra 96

Tanasescu, Vlad 96
Trojahn, Cássia 237

Vasconcelos, Wamberto 62
Vieira, Renata 237

Wang, Shenghui 212
Wood, Peter T. 31

	Title Page
	Preface
	Organization
	Table of Contents
	Asymmetric and Context-Dependent Semantic Similarity among Ontology Instances
	Motivations and Scenarios
	Motivations
	Introduction
	Framework Scenario

	Preliminary Assumptions
	Semantic Similarity Approach
	Context Layer
	Motivation Behind the Application Context Formalization
	Application Context Formalization

	Ontology Layer
	External Similarity
	Extensional Similarity

	Data Layer and Knowledge Layer
	Experiments and Evaluations
	Experiments
	Evaluations

	Related Work
	Conclusions and Future Work
	References

	Query Relaxation in RDF
	Introduction
	RDFS Ontologies
	The RELAX Clause
	Notion of Query Relaxation for RDF
	Summary of Contributions
	Outline

	Preliminary Definitions
	RDF Graphs and RDFS Ontologies
	Conjunctive Queries for RDF

	Formalizing Query Relaxation
	Triple Pattern Relaxation
	Relaxation Graph of a Triple Pattern
	Relaxation Graph of a Query
	Types of Relaxation
	Notion of Ranking

	Computing the Relaxation Graph
	Computing the Relaxation Graph of a Triple Pattern: Naive Algorithm
	Computing the Relaxation Graph Incrementally
	Complexity

	Computing the Relaxed Answer
	Algorithm
	Example
	A Further Example --- Heterogeneous Database Integration
	Complexity

	Introducing Simple Relaxations
	Notion of Simple Relaxation
	Types of Simple Relaxation

	Related Work
	Concluding Remarks
	Proofs

	A Fine-Grained Approach to Resolving Unsatisfiable Ontologies
	Introduction
	Ontology and the ALC DL
	Approach
	Extended Tableaux Algorithm
	Applications of Expansion Rules
	Sequences of a Clash
	Refined Blocking
	Complexity, Soundness and Completeness
	Removing Clashes

	Impact of Removing Axioms
	Impact on Named Concepts Involved in the Unsatisfiability
	Impact on Satisfiable Concepts Irrelevant to the Unsatisfiability
	Impact on the Classification

	Harmful and Helpful Changes
	Harmful Changes
	Helpful Changes

	Evaluation
	Usability Evaluation
	Analysis of Results
	Overall Comments and Summary
	Performance Analysis

	Related Work
	Analysing Unsatisfiable Ontologies
	Fine-Grained Approaches
	Resolving Unsatisfiable Concepts

	Conclusion

	Deploying Semantic Web Services-Based Applications in the e-Government Domain
	Introduction
	Web Services, Ontologies, and Semantic Web Services
	Motivations, Requirements, and Expected Results
	From Semantic Web Services to e-Government
	From e-Government to Semantic Web Services

	IRS-III: A Broker-Based Approach for SWS
	The IRS-III Service Ontology
	The IRS-III Core Functionalities

	Creating Semantic Web Services Based Applications
	Generic Application Architecture
	Development Methodology

	e-Government Applications
	Change of Circumstances
	Emergency Management System

	Lessons Learned
	The Scenario
	The Development Process
	The Verified Added Values
	Open Challenges

	Related Work
	Summary and Future Work
	References

	Linking Data to Ontologies
	Introduction
	The Description Logic DL-LiteA
	DL-LiteA Expressions
	DL-LiteA Ontologies
	Queries over DL-LiteA Ontologies
	Reasoning over DL-LiteA Ontologies

	Linking Relational Data to DL-LiteA Ontologies
	Overview of the Reasoning Method
	Splitting the Mapping
	Virtual ABox
	A Bottom-Up Approach
	A Top-Down Approach

	Dealing with Mappings
	Relevant Notions from Logic Programming
	The Unfolding Step

	Reasoning over DL-LiteA Ontologies with Mappings
	Satisfiability Checking
	Query Answering
	Computational Complexity

	Conclusions

	Context Representation in Domain Ontologies and Its Use for Semantic Integration of Data
	Introduction
	Concept Ontologies and Linguistic Ontologies
	Concept Ontologies Versus Model
	PLIB: A Context-Explicit Ontology for Data Integration
	Specification of the PLIB Ontology Model: EXPRESS
	PLIB Syntax and Semantics
	Global Structuring of the Definition Context and Point of View Representation
	Representation of the Local Definition Context
	Locality of Ontology Interpretation Context
	Representation of the Local Value Context
	Representation of Value Scaling
	From Ontology to Schema

	Formal Definition of PLIB Ontologies
	Single PLIB Ontology
	Mapped PLIB Ontology
	Automatic Integration of Data Sources through a Priori Ontology Mapping

	A Road Map for Implementing Ontology-Based Databases in Manufacturing Enterprises
	Related Work
	Context Representation for Semantic Integration
	Context Representation in Ontology Models
	Ontology-Based Integration of Information

	Conclusion
	Annex: PLIB-Related Standards
	Ontology Model
	Ontology-Based Data
	Methodological Aspect
	Standard Ontologies

	Semantically Processing Parallel Colour Descriptions
	Introduction
	Technical Background
	The Colour Model
	OWL DL and Its Datatype Extension OWL-Eu

	NL Processing
	Representation of Colour Descriptions in OWL-Eu
	Domain-Oriented Queries
	Experiments on Representation and Query
	Integration of Parallel Colour Descriptions
	Experiments on Integration
	Related Work
	Conclusion and Outlook

	A Cooperative Approach for Composite Ontology Mapping
	Introduction
	Ontology Mapping Approaches
	Cooperative Negotiation
	Cooperative Negotiation Model for Composite Ontology Mapping
	Organization of the Agent Society
	Negotiation Process

	Experiments Using the Negotiation Model
	Argumentation Framework
	Classical Argumentation Framework
	Value-Based Argumentation Framework
	An Extended Value-Based Argumentation Framework

	E-VAF for Composite Ontology Mapping
	Organization of the Agents Society
	Argumentation Generation
	Preferred Extension Generation

	Experiments Using the E-VAF
	Related Work
	Final Remarks

	Author Index

