
Label Semantics as a Framework for Granular
Modelling

Jonathan Lawry

Artificial Intelligence Group, Department of Engineering Mathematics
University of Bristol, BS8 1TR, United Kingdom
J.Lawry@bris.ac.uk

Summary. An alternative perspective on granular modelling is introduced where an
information granule characterises the relationship between a label expression and ele-
ments in an underlying perceptual space. Label semantics is proposed as a framework
for representing information granules of this kind. Mass relations and linguistic decision
trees are then introduced as two types of granular models in label semantics. Finally,
its shown how linguistic decision trees can be combined within an attribute hierarchy
to model complex multi-level composite mappings.

1 Introduction to Granular Modelling

Fundamental to human communication is the ability to effectively describe the
continuous domain of sensory perception in terms of a finite set of description
labels. It is this process of granular modelling which permits us to process and
transmit information efficiently at a suitable level of detail, to express similarity
and difference between perceptual experiences and to generalize from current
knowledge to new situations. Furthermore, it allows us to express information
and knowledge in a way that is robust to small variations, noise and sensory
aggregations in a complex multi-dimensional and evolving perceptual environ-
ment. Given these advantages, the formalization of granular models within a
mathematical theory can allow for the effective modelling of complex multi-
dimensional systems in such a way as to be understandable to practitioners who
are not necessarily experts in formal mathematics.

The use of labels as a means of discretizing information plays a central role
in granular modelling. Indeed one possible definition of an information granule
could be in terms of the mapping between labels and domain values as follows:

An information granule is a characterisation of the relationship between
a discrete label or expression and elements of the underlying (often con-
tinuous) perceptual domain which it describes.

From this perspective crisp sets, fuzzy sets [19], random sets [10] and rough
sets [11] can all correspond to information granules in that they can be used
to characterise just such a relationship between a label and the elements of the
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underlying domain. A typical form of information granule is as the extension of
the concept symbolically represented by a given label. For a label L the extension
of L identifies the set of domain elements to which L can be truthfully or appro-
priately applied. Fuzzy sets, random sets and rough sets are then mechanisms
according to which gradedness, uncertainty and imprecision can respectively be
introduced into the definition of concept extensions.

The above definition of information granule should be contrasted with that
of Zadeh [20] who explains granularity in terms of (possibly fuzzy) clusters of
points as follows:

A granule is a clump of objects (points) which are drawn together by
indistinguishability, similarity, proximity and functionality.

However, while different there are a number of clear connections between the two
notions of information granule. Gärdenfors [3] introduces conceptual spaces as
metric spaces of sensory inputs in which the extensions of concepts correspond to
convex regions. Certainly from this perspective elements within the extension of
a concept are indeed likely to be linked in terms of their similarity and proximity
to one another. Also the functionality of an object can directly inference the way
that it is labelled or classified. For example. the labelling of parts of the face as
nose, mouth, ear etc is, as noted by Zadeh [20], significantly dependant on their
respective functions.

Label semantics [5], [6] is a representation framework to encode the conven-
tions for allocating labels and compound expressions generated from labels, as
descriptions of elements from the underlying domain. As such it provides a useful
tool for granular modelling when formulated as above with an emphasis on the
association of points and labels. The notion of vagueness is also closely related
to that of information granularity in that for most examples of information pro-
cessing in natural language the information granules are not precisely defined.
Indeed this semantic imprecision can often result in more flexible and robust
granular models. Label semantics is based on an epistemic theory of vagueness
[18] according to which the individual agents involved in communication believe
in the existence of language conventions shared across the population of com-
municators but are (typically) uncertain as to which of the available labels can
be appropriately used to describe any given instance.

2 Underlying Philosophy of Vagueness

In contrast to fuzzy set theory [19], label semantics encodes the meaning of lin-
guistic labels according to how they are used by a population of communicating
agents to convey information. From this perspective, the focus is on the decision
making process an intelligent agent must go through in order to identify which
labels or expressions can actually be used to describe an object or value. In other
words, in order to make an assertion describing an object in terms of some set of
linguistic labels, an agent must first identify which of these labels are appropri-
ate or assertible in this context. Given the way that individuals learn language
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through an ongoing process of interaction with the other communicating agents
and with the environment, then we can expect there to be considerable uncer-
tainty associated with any decisions of this kind. Furthermore, there is a subtle
assumption central to the label semantic model, that such decisions regarding
appropriateness or assertibility are meaningful. For instance, the fuzzy logic view
is that vague descriptions like ‘John is tall’ are generally only partially true and
hence it is not meaningful to consider which of a set of given labels can truth-
fully be used to described John’s height. However, we contest that the efficacy
of natural language as a means of conveying information between members of
a population lies in shared conventions governing the appropriate use of words
which are, at least loosely, adhere to by individuals within the population.

In our everyday use of language we are continually faced with decisions about
the best way to describe objects and instances in order to convey the informa-
tion we intend. For example, suppose you are witness to a robbery, how should
you describe the robber so that police on patrol in the streets will have the best
chance of spotting him? You will have certain labels that can be applied, for ex-
ample tall, short, medium, fat, thin, blonde, etc, some of which you may view as
inappropriate for the robber, others perhaps you think are definitely appropriate
while for some labels you are uncertain whether they are appropriate or not. On
the other hand, perhaps you have some ordered preferences between labels so
that tall is more appropriate than medium which is in turn more appropriate
than short. Your choice of words to describe the robber should surely then be
based on these judgements about the appropriateness of labels. Yet where does
this knowledge come from and more fundamentally what does it actually mean
to say that a label is or is not appropriate? Label semantics proposes an interpre-
tation of vague description labels based on a particular notion of appropriateness
and suggests a measure of subjective uncertainty resulting from an agent’s par-
tial knowledge about what labels are appropriate to assert. Furthermore, it is
suggested that the vagueness of these description labels lies fundamentally in
the uncertainty about if and when they are appropriate as governed by the rules
and conventions of language use. The underlying assumption here is that some
things can be correctly asserted while others cannot. Exactly where the dividing
line lies between those labels that are and those that are not appropriate to use
may be uncertain, but the assumption that such a division exists would be a
natural precursor to any decision making process of the kind just described.

The above argument is very close to the epistemic view of vagueness as ex-
pounded by Timothy Williamson [18]. Williamson assumes that for the exten-
sions of a vague concept there is a precise but unknown dividing boundary
between it and the extension of the negation of that concept. However, while
there are marked similarities between the epistemic theory and the label se-
mantics view, there are also some subtle differences. For instance, the epistemic
view would seem to assume the existence of some objectively correct, but un-
known, definition of a vague concept. Instead of this we argue that individ-
uals when faced with decision problems regarding assertions find it useful as
part of a decision making strategy to assume that there is a clear dividing line
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between those labels which are and those which are not appropriate to describe
a given instance. We refer to this strategic assumption across a population of
communicating agents as the epistemic stance, a concise statement of which is
as follows:

Each individual agent in the population assumes the existence of a set of
labelling conventions, valid across the whole population, governing what
linguistic labels and expressions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the appropriate use of labels
would not be imposed by some outside authority. In fact, they may not exist at
all in a formal sense. Rather they are represented as a distributed body of knowl-
edge concerning the assertability of predicates in various cases, shared across a
population of agents, and emerging as the result of interactions and communi-
cations between individual agents all adopting the epistemic stance. The idea is
that the learning processes of individual agents, all sharing the fundamental aim
of understanding how words can be appropriately used to communicate infor-
mation, will eventually converge to some degree on a set of shared conventions.
The very process of convergence then to some extent vindicates the epistemic
stance from the perspective of individual agents. Of course, this is not to suggest
complete or even extensive agreement between individuals as to these appropri-
ateness conventions. However, the overlap between agents should be sufficient to
ensure the effective transfer of useful information.

A further distinction between our view of appropriateness and the epistemic
view of Williamson can be found in the local, or instance-based, nature of ap-
propriateness judgements. Arguments in favour of the epistemic view concern
the existence of a precise boundary between the extension of a concept and that
of its negation. The appropriateness of labels on the other hand is judged with
reference to a particular instance. From this perspective it is unlikely that agents
would generate an explicit representation of the extension of a vague concept.
Instead their knowledge would be based on previous experience of assertions
about similar instances from a range of other agents and a subsequent process of
interpolation between these examples. In most cases decision problems about as-
sertions would then typically concern a particular instance, so that the problem
of identifying concept boundaries would not be directly considered.

The epistemic stance allows agents to meaningfully apply epistemic models
of uncertainty to quantify their subjective belief in whether certain labels are
appropriate. In the sequel we will introduce two related probabilistic measures
of an agent’s uncertainty concerning the appropriateness of vague expressions
and explore the resulting calculus.

3 Label Semantics

Label semantics proposes two fundamental and inter-related measures of the
appropriateness of labels as descriptions of an object or value. We begin by
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assuming that for all agents there is a fixed shared vocabulary in the form of a
finite set of basic labels LA for describing elements from the underlying universe
Ω. These are building blocks for more complex compound expressions which can
then also be used as descriptors as follows. A countably infinite set of expressions
LE can be generated through recursive applications of logical connectives to the
basic labels in LA. So for example, if Ω is the set of all possible rgb values and
LA is the set of basic colour labels such as red, yellow ,green, orange etc then LE
contains those compound expressions such as red & yellow, not blue nor orange
etc. The measure of appropriateness of an expression θ ∈ LE as a description of
instance x is denoted by μθ(x) and quantifies the agent’s subjective probability
that θ can be appropriately used to describe x. From an alternative perspective,
when faced with describing instance x, an agent may consider each label in LA
and attempt to identify the subset of labels that are appropriate to use. This is
a totally meaningful endeavour for agents who adopt the epistemic stance. Let
this complete set of appropriate labels for x be denote by Dx. In the face of their
uncertainty regarding labelling conventions agents will also be uncertain as to
the composition of Dx, and we represent this uncertainty with a probability mass
function mx : 2LA → [0, 1] defined on subsets of labels. Hence, for the subset of
labels {red, orange, yellow} and rgb value x, mx({red, orange, yellow}) denotes
the subjective probability that Dx = {red, orange, yellow}, or in other words
that {red, orange, yellow} is the complete set of basic colour labels with which
it is appropriate to describe x. We now provide formal definitions for the set of
expressions LE and for mass functions mx, following which we will propose a
link between the two measures μθ(x) and mx for expression θ ∈ LE.

Definition 1. Label Expressions
The set of label expressions LE generated from LA, is defined recursively as
follows:

• If L ∈ LA then L ∈ LE
• If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE.

Definition 2. Mass Function on Labels
∀x ∈ Ω a mass function on labels is a function mx : 2LA → [0, 1] such that∑

S⊆LA mx (S) = 1.

Note that there is no requirement for the mass associated with the empty set
to be zero. Instead, mx(∅) quantifies the agent’s belief that none of the labels
are appropriate to describe x. We might observe that this phenomena occurs
frequently in natural language, especially when labelling perceptions generated
along some continuum. For example, we occasionally encounter colours for which
none of our available colour descriptors seem appropriate. Hence, the value mx(∅)
is an indicator of the describability of x in terms of the labels LA.

Now depending on labelling conventions there may be certain combinations
of labels which cannot all be appropriate to describe any object. For example,
small and large cannot both be appropriate. This restricts the possible values of
Dx to the following set of focal elements:
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Definition 3. Set of Focal Elements
Given labels LA together with associated mass assignment mx : ∀x ∈ Ω, the set
of focal elements for LA is given by F = {S ⊆ LA : ∃x ∈ Ω, mx (S) > 0}.

The link between the mass function mx and the appropriateness measures μθ(x)
is motivated by the intuition that the assertion ‘x is θ’ directly provides infor-
mation dependent on θ, as to what are the possible values for Dx. For example,
the assertion ‘x is blue’ would mean that blue is an appropriate label for x, from
which we can infer that blue ∈ Dx. Similarly, the assertion ‘x is green and not
blue’ would mean that green is an appropriate label for x while blue is not, so
that we can infer green ∈ Dx and blue 
∈ Dx. Another way of expressing this
information is to say that Dx must be a member of the set of sets of labels which
contain green but do not contain blue i.e. Dx ∈ {S ⊆ LA : green ∈ S, blue 
∈ S}.
More generally, we can define a functional mapping λ from LE into 22LA

(i.e.
the set containing all possible sets of label sets) for which the assertion ‘x is
θ’ enables us to infer that Dx ∈ λ(θ). This mapping is defined recursively as
follows:

Definition 4. λ-mapping
λ : LE → 2F is defined recursively as follows: ∀θ, ϕ ∈ LE

• ∀L ∈ LA λ(L) = {S ∈ F : L ∈ S}
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)
• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)
• λ(¬θ) = λ(θ)c.

The λ-mapping then provides us with a means of evaluating the appropriateness
measure of an expression θ directly from mx, as corresponding to the subjective
probability that Dx ∈ λ(θ) so that:

Definition 5. Appropriateness Measures
For any expression θ ∈ LE and x ∈ Ω, the appropriateness measure μθ(x) can
be determined from the mass function mx according to:

∀θ ∈ LE μθ(x) =
∑

S∈λ(θ)

mx(S).

From this relationship the following list of general properties hold for expressions
θ and ϕ in LE [5]:

Theorem 1. Lawry [5],[6]

• If θ |= ϕ then ∀x ∈ Ω μθ(x) ≤ μϕ(x)
• If θ ≡ ϕ then ∀x ∈ Ω μθ(x) = μϕ(x)
• If θ is a tautology then ∀x ∈ Ω μθ(x) = 1
• If θ is a contradiction then ∀x ∈ Ω μθ(x) = 0
• ∀x ∈ Ω μ¬θ(x) = 1 − μθ(x).

Notice, here that the laws of excluded middle and non-contradiction are
preserved since for any expression θ, λ(θ ∨ ¬θ) = λ(θ) ∪ λ(θ)c = 22LA

and
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λ(θ ∧ ¬θ) = λ(θ) ∩ λ(θ)c = ∅. Also, the idempotent condition holds since
λ(θ ∧ θ) = λ(θ) ∩ λ(θ) = λ(θ).

The λ-mapping provides us with a clear formal representation for linguistic
constraints, where the imprecise constraint ‘x is θ’ on x is interpreted as the
precise constraint Dx ∈ λ(θ) on Dx.

3.1 Ordering Labels

As discussed above an agent’s estimation of both mx and μθ(x) should depend
on their experience of language use involving examples similar to x. Clearly the
form of this knowledge is likely to be both varied and complex. However, one
natural type of assessment for an agent to make would be to order or rank label
in terms of their estimated appropriateness for x. This order information could
then be combined with estimates of appropriateness measure values for the basic
labels (i.e. elements of LA) in order to provide estimates of values for compound
expressions (i.e. elements of LE). Hence we assume that:

An agent’s knowledge of label appropriateness for an instance x, can be
represented by an ordering on the basic labels LA and an allocation of
uncertainty values to the labels consistent with this ordering.

Effectively we are assuming that through a process of extrapolation from expe-
rience agents are, for a given instance, able to (at least partially) rank labels in
terms of their appropriateness and then, consistent with this ranking, to esti-
mate a subjective probability that each label is appropriate. On the basis of both
the ordering and probability assignment to basic labels the agent should then
be able to evaluate the appropriateness measure of more complex compound
expressions. The ranking of available labels would seem to be an intuitive first
step for an agent to take when faced with the decision problem about what to
assert. Also, the direct allocation of probabilities to a range of complex com-
pound expressions so that the values are internally consistent is a fundamentally
difficult task. Hence, restricting such evaluations to only the basic labels would
have significant practical advantages in terms of computational complexity.

Definition 6. (Ordering on Labels)
For x ∈ Ω let �x be an ordering on LA such that for L, L′ ∈ LA, L′ �x L
means that L is at least as appropriate as a label for x as L′.

The identification by an agent of an ordering on labels �x for a particular x ∈ Ω
(as in definition 6), restricts the possible label sets which they can then consis-
tently allocate to Dx. For instance, L′ �x L then this implies that if L′ ∈ Dx

then so is L ∈ Dx, since L is as least as appropriate a description for x as
L′. Hence, given �x for which L′ �x L it must hold that mx(S) = 0 for
all S ⊆ LA where L′ ∈ S and L 
∈ S. Trivially, from definition 5 this also
means that μL′(x) ≤ μL(x). Given these observations an important question
is whether the information provided by ordering �x together with a set of ap-
propriateness values μL(x) : L ∈ LA for the basic labels, consistent with �x,
is sufficiently to specify a unique mass function mx? Notice that in the label
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semantics framework the identification of a unique mass function mx in this
way immediately enables the agent to apply definition 5 in order to evaluate
the appropriateness μθ(x) of any compound expression θ from the appropri-
ateness measure values for the basis labels. In fact, in the case that �x is a
total (linear) ordering it is not difficult to see that such a unique mapping
does indeed exist between the mass function and the appropriateness mea-
sures of basic labels. To see this suppose that we index the labels in LA so
that Ln �x Ln−1 �x . . . �x L1 with corresponding appropriateness measures
μLn(x) = an ≤ μLn−1(x) = an−1 ≤ . . . ≤ μL1(x) = a1. Now from the above
discussion we have that in this case the only possible values for Dx are from
the nested sequence of sets ∅, {L1}, {L1, L2}, . . . , {L1, . . . , Li}, . . . , {L1, . . . , Ln}.
This together with the constraints imposed by definition 5 that for each label
ai = μLi(x) =

∑
S:Li∈S mx(S) results in the following unique mass function:

mx := {L1, . . . , Ln} : an, . . . , {L1, . . . , Li} : ai − ai+1,

. . . , {L1} : a1 − a2, ∅ : 1 − a1

Hence, for �x a total ordering we see that μθ(x) can be determined as a function
of the appropriateness measure values μL(x) : L ∈ LA on the basic labels. For
an expression θ ∈ LE, this function is a composition of the above mapping,
in order to determine a unique mass function, and the consequent summing of
mass function values across λ(θ), as given in definition 5, to evaluate μθ(x). Al-
though functional in this case, the calculus for appropriateness measures cannot
be truth-functional in the sense of fuzzy logic since appropriateness measures
satisfy all the classical Boolean laws and a well known result due to Dubois and
Prade [2] shows that no truth-functional calculus can in general preserve all such
laws. For a more detailed discussion of the difference between functionality and
truth-functionality see Lawry [6]. The following theorem shows that in the case
where �x is a total ordering the max and min combination rules can be applied
in certain restricted cases:

Theorem 2. [5, 16]
Let LE∧,∨ ⊆ LE denote those expressions generated recursively from LA using
only the connectives ∧ and ∨. If the appropriateness measures on basic labels are
consistent with a total ordering �x on LA then ∀θ, ϕ ∈ LE∧,∨ it holds that:

μθ∧ϕ (x) = min (μθ (x) , μϕ (x)) , μθ∨ϕ (x) = max (μθ (x) , μϕ (x)) .

In the case that �x is only a partial ordering on LA then in general this does
not provide the agent with sufficient information to determine a unique mass
function from the appropriateness measure values on the basic labels. Instead,
further information is required for the agent to evaluate a mass function and
consequently the appropriateness of compound label expressions. In Lawry [7]
it is proposed that this additional information takes the form of conditional in-
dependence constraints imposed by a Bayesian network generated by �x. These
additional assumptions are then sufficient to determine mx uniquely. Details of
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this approach, however, are beyond the scope of this current paper. Instead in
the examples presented in the sequel we will assume that the ordering �x is
total.

4 Granular Models in Label Semantics

In label semantics information granules correspond to appropriateness measure
for a fixed expression i.e. an information granule is a function μθ : Ω → [0, 1] for
some label expression θ ∈ LE. In fact, within the scope of this definition we can
also use mass functions to represent information granules. Specifically, for a fixed
focal set F ⊆ LA an information granule may also be represented by the function
corresponding to the values of mx(F ) as x varies across Ω. To see this notice
that the value mx(F ) can also be represented by the appropriateness measure
μαF (x) where αF = (

∧
L∈F L) ∧ (

∧
L �∈F ¬L) is the label expression stating that

all and only the labels in F are appropriate. Hence, for a focal set F ⊆ LA the
corresponding information granule is the function μαF : Ω → [0, 1]. For example,
in figure 1 information granules are defined in terms of the appropriateness
measures for labels low, medium and high, represented by trapezoidal functions
of x ∈ Ω = [0, 30]. Assuming a total ordering �x on labels for all x ∈ Ω results in
mass functions mx for the focal sets F = {{l}, {l, m}, {m}, {m, h}, {h}}, shown
as triangular functions in figure 2. These triangular functions then correspond
to the information granules generated by the focal sets in F . The direct use of
focal sets as information granules in granular models can in some cases allow for
more straightforward information processing. In particular, note that the mass
function mx defines a probability distribution on Dx which can in turn make it
relatively straightforward to evaluate probability values from a granular model
based on such functions.
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Consider the following formalization of a simple modelling problem: Given
attributes x1, . . . , xk+1 with universes Ω1, . . . , Ωk+1 suppose that xk+1 is depen-
dent on x1, . . . , xk according to some functional mapping g : Ω1 × . . . × Ωk →
Ωk+1 (i.e. xk+1 = g(x1, . . . , xk)). In the case that Ωk+1 is finite then this
is referred to as a classification problem whereas if Ωk+1 is an infinite sub-
set of R (typically a closed interval) then it is referred to as a prediction or
regression problem. For a learning problem, information regarding this func-
tion is then provided by a training database containing vectors of input val-
ues together with their associated output. Let this database be denoted by
DB = {〈x1(i), . . . , xk(i), xk+1(i)〉 : i = 1, . . . , N}. For a more general modelling
problem information on g may take a variety of forms including qualitative in-
formation elicited from domain experts.

Label semantics can be used to represent linguistic rule based models which
provide an approximation ĝ of the underlying function mapping g. Here we con-
sider two such models; mass relations and linguistic decision trees. For both
these approaches we use appropriateness measures to define a set of labels de-
scribing each attribute LAj : j = 1, . . . , k + 1 with associated label expressions
LEj : j = 1, . . . , k + 1 and focal sets Fj : j = 1, . . . , k + 1. We will also de-
scribe how these models can be used within a hierarchical structure to provide
a decomposed model for high-dimensional mappings.

4.1 Mass Relational Models

If we consider the problem of describing an object or instance on the basis of
k attributes x1, . . . , xk then we need to jointly quantify the appropriateness of
labels in each of the associated labels sets LAj : j = 1, . . . , k to describe each
attribute. In other words, we need to define a joint mass function on Dx1 × . . .×
Dxk

mapping from F1 × . . .×Fk into [0, 1]. We refer to such joint mass functions
on label sets as a mass relations. Mass relations can be used to represent a
granular model of the function g. Typically, this is achieved by defining a mass
relation between input focal sets conditional on each of the output focal sets in
Fk+1. Together these can then be used to infer a mass functions on output focal
sets given a vector of input attribute values.

Definition 7. Mass Relations
A mass relation is a conditional function m : F1 × . . . × Fk → [0, 1] such that
for Fi ∈ Fi : i = 1, . . . , k + 1, m(F1, . . . , Fk|Fk+1) is the conditional joint mass
function value of the input focal sets F1, . . . , Fk given output focal set Fk+1. This
can be evaluated from a database DB according to:

m(F1, . . . , Fk|Fk+1) =

∑
i∈DB

∏k+1
j=1 mxj(i)(Fj)

∑
i∈DB mxk+1(i)(Fk+1)

A set of mass relations conditional on each of the output focal sets in Fk+1
generates a set of weighted rules of the form:
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(Dx1 = F1) ∧ . . . ∧ (Dxk
= Fk) → (Dxk+1 = Fk+1) : w where

w = m(Fk+1|F1, . . . , Fk) =
m(F1, . . . , Fk|Fk+1)m(Fk+1)∑

Fk+1
m(F1, . . . , Fk|Fk+1)m(Fk+1)

and m(Fk+1) =
1
N

∑

i∈DB

mxk+1(i)(Fk+1).

Given a vector of input values x = 〈x1, . . . , xk〉 we can use Jeffrey’s rule [4] to
determine a mass function on the output focal sets Fk+1 from a mass relation
between F1 × . . . × Fk and Fk+1, as follows:

∀Fk+1 ∈ Fk+1 m(Fk+1|x) =
∑

F1∈F1

. . .
∑

Fk∈Fk

m(Fk+1|F1, . . . , Fk)mx(F1, . . . , Fk) where

mx(F1, . . . , Fk) =
k∏

i=1

mxi(Fi)

In practice it can be computationally expensive to calculate the mass relation
exactly and typically we need to use some form of approximation. One of the
simplest is to assume conditional independence between Dx1 , . . .Dxk

given the
values of Dxk+1 . In this case:

m(F1, . . . , Fk|Fk+1) =
k∏

i=1

m(Fi|Fk+1)

An extension to this approach involves searching for dependency groupings
amongst the attributes and assume conditional independence (given Fk+1) be-
tween these groups (see [14] for details).

Recent applications of mass relations have focussed on the area of flood pre-
diction where they have been used to model river flow [13] and also tidal surges
up to the Thames barrier in London [15].

4.2 Linguistic Decision Trees

A linguistic decision tree is a decision tree with attributes as nodes and linguistic
descriptions of attributes as branches. Also associated with each branch, there
is a mass function over the output focal sets.

Definition 8. Linguistic Decision Trees (LDT)
A linguistic decision tree is a decision tree where the nodes are attributes from
x1, . . . , xk and the edges are label expressions describing each attribute. More
formally, supposing that the j’th node at depth d is the attribute xjd

then there
is a set of label expressions Lj,d ⊆ LEi forming the edges from xjd

such that
λ(

∨
θ∈Lj,d

θ) ⊇ Fjd
and ∀θ, ϕ ∈ Lj,d λ(θ ∧ ϕ) ∩ Fjd

= ∅. Also a branch B from a
LDT consists of a sequence of expressions ϕ1, . . . , ϕm where ϕd ∈ Lj,d for some
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j ∈ N for d = 1, . . . , m, augmented by a conditional mass value m(Fk+1|B) for
every output focal set Fk+1 ∈ Fk+1. Hence, every branch B encodes a set of
weighted linguistic rules of the form:

(xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) → (Dxk+1 = Fk+1) : m(Fk+1|B)
where xjd

is a depth d attribute node.

Also the mass assignment value m(Fk+1|B) can be determined from DB
according to:

m(Fk+1|B) =
∑

i∈DB mxk+1(i)(Fk+1)
∏m

d=1 μϕd
(xjd

(i))
∑

i∈DB

∏m
d=1 μϕd

(xjd
(i))

Notice that a branch of a linguistic decision tree can be rewritten using the λ-
function so that it refers only to constraints on Dxi : i = 1, . . . , k. This means
that the rules generated by LDT branches are a more general form of the rules
generated by mass relations. For example, the branch rule

(xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) → (Dxk+1 = Fk+1) : m(Fk+1|B)
can be rewritten as

(Dxj1
∈ λ(ϕ1)) ∧ . . . ∧ (Dxjm

∈ λ(ϕm)) → (Dxk+1 = Fk+1) : m(Fk+1|B)

Given a vector of input attribute values x = 〈x1, . . . , xk〉 we can use a LDT to
determine a mass function on output focal sets as follows: Suppose the LDT has
branches B1, . . . , Bt each with an associated mass function m(•|Bj) : j = 1, . . . , t

x1

x2 x3

LF1 LF2 LF3

LF4

LF5 LF6 LF7

{s}
s ∧ ¬l {s, l}

s ∧ l
l ∧ ¬s
{l}

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

{s}
s ∧ ¬l

{s, l}
s ∧ l

{l}
l ∧ ¬s

m(•|B1) m(•|B2) m(•|B3)

m(•|B4)

m(•|B5) m(•|B6) m(•|B7)

Fig. 3. An example of a linguistic decision tree
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on Fk+1. By applying Jeffrey’s rule we obtain an aggregated mass function on
Fk+1 for a given input vector x according to:

m(Fk+1|x) =
t∑

j=1

m(Fk+1|Bj)P (Bj |x) where if

Bj = (xj1 is ϕ1) ∧ . . . ∧ (xjm is ϕm) then P (Bj |x) =
m∏

d=1

μϕd
(xjd

)

Notice that from a computational viewpoint the output mass function above is
determined from the LDT as a function of the input masses mx1 , . . . , mxk

only.
From this perspective a LDT can be viewed as a function mapping from mass
functions on the input attribute labels to a mass function on the output labels.

m(•|x) = LDT (mx1, . . . , mxk
)

Figure 3 shows an example of a simple linguistic decision tree involving only
three input attributes x1, x2 and x3. Each of these is described by the same
set of two overlapping labels LA = {small, large}, so that we have focal sets
{{s}, {s, l}, {l}}. Each branch in figure 3 is labelled with its associated linguistic
expressions together with their corresponding representation in terms of focal
sets. In this case all the linguistic expressions involved are atomic in nature so
that their λ-mappings contain only one focal set. For example, the branch B2
ending in the leaf node LF2 encodes the follow rules: For all Fk+1 ∈ Fk+1,

(x1 is s ∧ ¬l) ∧ (x2 is s ∧ l) → (Dxk+1 = Fk+1) : m(Fk+1|B2)

Now λ(s ∧ ¬l) = {{s}} and λ(s ∧ l) = {{s, l}} and hence the above rule has the
following focal set representation:

(Dx1 = {s}) ∧ (Dx2 = {s, l}) → (Dxk+1 = Fk+1) : m(Fk+1|B2)

Linguistic decision trees can be learnt from data using the LID3 algorithm
[12]. This is an extension of ID3 to allow for the type of calculations on mass
functions required for a LDT. Recent application of LID3 include classification
of radar images [9] and online path planning [17].

4.3 Linguistic Attribute Hierarchies

In many cases the function g is complex and it is difficult to define ĝ as a
direct mapping between x1, . . . , xk and xk+1. Attribute hierarchies [1] are a well
known approach to this problem and involve breaking down the function g into
a hierarchy of sub-functions each representing a new intermediate attribute. A
bottom-up description of this process is as follows: The set of original attributes
{x1, . . . , xk} are partitioned into attribute subsets S1, . . . , Sm and new attributes
z1, . . . zm are defined as functions of each partition set respectively, so that zi =
Gi(Si) for i = 1, . . . , m. The function g is then defined as a new function F of
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xk+1

ziz1 zm

SiS1 Sm

GiG1 Gm

F

Fig. 4. Attribute hierarchy showing partition of attributes

the new attributes z1, . . . zm, so that xk+1 = g(x1, . . . , xk) = F (z1, . . . , zm) =
F (G1(S1), . . . , F (Gm(Sm)). The same process can then be repeated recursively
for each partition set Si, to generate a new layer of new variables as required.

The identification of attribute hierarchies and their associated functional map-
pings is often a highly subjective process involving significant uncertainty and
imprecision. Hence, the relationship between certain levels in the hierarchy, can
best be described in terms of linguistic rules and relations. This can allow for
judgements and rankings to be made at a level of granularity appropriate to the
level of precision at which the functional mappings can be realistically defined.
In linguistic attribute hierarchies the functional mappings between parent and
child attribute nodes in the attribute hierarchy are defined in terms of weighted
linguistic rules (typically linguistic decision trees) which explicitly model both
the uncertainty and vagueness which often characterises our knowledge of such
aggregation functions.

In linguistic attribute hierarchies the functional relationship between child and
parent nodes are not defined precisely. Instead the labels for a parent attribute
are defined in terms of the labels describing the attributes corresponding to its
child nodes, by means of a linguistic decision tree. To illustrate this idea consider
the following simple linguistic attribute hierarchy as shown in figure 5. Here we
have 4 input attributes x1, . . . , x4 and output attribute x5, these being described
by label sets LA1, . . . , LA5 with focal sets F1, . . . , F5 respectively. The labels for
x5 are defined in terms of the labels for two intermediate level attributes z1 and
z2 by a linguistic decision tree LDT1. Let LAz1 , LAz2 and Fz1 , Fz2 be the labels
and focal sets for z1 and z2 respectively. Furthermore, the labels for z1 are defined
in terms of those for x1 and x2 according to linguistic decision tree LDT2, and
the labels for z2 are defined in terms of those for x3 and x4 according to linguistic
decision tree LDT3. Information is then propagated up through the hierarchy
as mass functions on the relevant focal sets. Specifically, LDT2 combines mass
functions on F1 and F2 in order to generate a mass function on Fz1 . Similarly
mass functions on F3 and F4 are combined using LDT3 to generate a mass
function on Fz2 . These two mass functions on Fz1 and Fz2 respectively are then
combined according to LDT1 in order to obtain a mass assignment on the output
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x5

z1
LDT1

z2

x1

LDT2

x2 x3

LDT3

x4

Fig. 5. Example of a simple linguistic attribute hierarchy

focal sets F5 conditional on the inputs. At the mass function level the complete
mapping is:

m(•|x1, . . . , x4) = LDT1(LDT2(mx1 , mx2), LDT3(mx3 , mx4))

5 Conclusions

An alternative perspective on granular modelling has been introduced where in-
formation granules encode the relationship between description labels and the
underlying perceptual domain. Label semantics has been introduced as a frame-
work for modelling linguistic vagueness and granularity. In this framework infor-
mation granules are appropriateness measures and mass functions which quantify
the appropriateness of label expressions to describe elements from the underly-
ing universe. Two types of granular models have been described; mass relations
and linguistic decision trees. These encode the relationship between labels on
input values and those on the output values in an imprecisely defined functional
mapping. In addition, we have shown how linguistic decision trees can be used
as part of attribute hierarchies to combine information in complex multi-level
composite mappings.
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