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Summary. The main goal of information fusion can be seen as improving human
or automatic decision-making by exploiting diversities in information from multiple
sources. High-level information fusion aims specifically at decision support regarding
situations, often expressed as “achieving situation awareness”. A crucial issue for de-
cision making based on such support is trust that can be defined as “accepted depen-
dence”, where dependence or dependability is an overall term for many other concepts,
e.g., reliability. This position paper reports on ongoing and planned research concerning
imprecise probability as an approach to improved dependability in high-level informa-
tion fusion. We elaborate on high-level information fusion from a generic perspective
and a partial mapping from a taxonomy of dependability to high-level information
fusion is presented. Three application domains: defense, manufacturing, and precision
agriculture, where experiments are planned to be implemented are depicted. We con-
clude that high-level information fusion as an application-oriented research area, where
precise probability (Bayesian theory) is commonly adopted, provides an excellent eval-
uation ground for imprecise probability.

1 Introduction

Information fusion (IF) is a research field that has been tightly coupled with
defense applications (e.g., [27]) for many years. However, recently researchers in
other domains such as manufacturing (e.g., [38]) and precision agriculture (e.g.,
[34]) have started to recognize the benefits of IF. IF, sometimes also referred to
as data fusion, can be depicted as done by Dasarathy [13].

“Information fusion encompasses the theory, techniques, and tools con-
ceived and employed for exploiting the synergy in the information ac-
quired from multiple sources (sensor, databases, information gathered by
human etc.) such that the resulting decision or action is in some sense
better (qualitatively and quantitatively, in terms of accuracy, robustness
and etc.) than would be possible, if these sources were used individually
without such synergy exploitation.”

From Dasarathy’s description, it is seen that the overall goal is to improve deci-
sion making, and since there most often exist uncertainty regarding decisions, it
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can be concluded that uncertainty management is crucial to IF. In fact, it has
even been argued that the main goal of an IF system is to reduce uncertainty [9].
Many methods for handling uncertainty in the IF domain are based on Bayesian
theory, e.g., Kalman filtering [16] and Bayesian networks (BNs) [6].

Most research in the IF domain so far has addressed problems in low-level IF,
e.g., target tracking by multi-sensor fusion, while the higher abstraction levels
of reasoning, referred to as high-level information fusion (HLIF), have been a
relatively uncharted research field. Furthermore, those attempts that do exist
for HLIF rarely address dependability issues (cf. [36]).

In this position paper, we elaborate on HLIF from a generic perspective and
a partial mapping from a taxonomy of dependability to HLIF is presented. We
argue for imprecise probability as an interesting approach for improved depend-
ability in HLIF, and that more research on this topic is needed. We also argue for
the importance of more research on deployment of methods based on imprecise
probabilities in “real-world” applications.

The paper is organized as follows: in Sect. 2, we depict the foundations of IF.
A thorough description of HLIF is presented in Sect. 3. In Sect. 4, we describe
a partial mapping from a taxonomy of dependability to HLIF. Imprecise proba-
bility as an approach to improved dependability in HLIF is described in Sect. 5.
Three application domains, defense, manufacturing, and precision agriculture,
for evaluation of imprecise probability, are presented in Sect. 6. Lastly, in Sect. 7,
we argue for the importance of evaluation of imprecise probability in comparison
with precise probability (Bayesian theory) through experiments in “real-world”
applications.

2 Information Fusion

In order to allow for easy communication among researchers of IF, the Joint
Directors of Laboratories (JDL) data fusion group has established a model that
comprises the IF domain [43]. The model, referred to as the JDL model, has
been revised many times (e.g., [35, 26]), either due to the lack of some important
aspect of IF, or for the purpose of making it more general. Steinberg et al. [35]
have presented the following variant of the JDL model, hereafter referred to as
the revised JDL model, with five functions or levels:

• Level 0 – Sub-Object Data Assessment: estimation and prediction of
signal observable states

• Level 1 – Object Assessment: estimation and prediction of entity states,
based on observation-to-track association

• Level 2 – Situation Assessment: estimation and prediction of relations
among entities

• Level 3 – Impact Assessment: estimation and prediction of effects of
actions on situations

• Level 4 – Process Refinement: continuous improvement of the informa-
tion fusion process
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The claim that uncertainty management is crucial to IF is here reinforced since
words such as estimation and prediction appear in all of the levels except Level 4.
With HLIF, we refer to Level 2, 3, and with low-level IF to Level 0, 1, in the
revised JDL model. The reason to not include Level 4 in HLIF, is that it may be
regarded as a meta-process that is a part of all levels, i.e., refinement of processes
at each level.

3 High-Level Information Fusion

The aim of high-level information fusion (HLIF) is to establish the current sit-
uation, and possible impacts of that situation conditional on a set of actions.
Since HLIF mainly has addressed issues in the defense domain, we here elab-
orate on it from a generic perspective. A terminology for HLIF that captures
concepts such as situations and impacts is presented. It should be noted that
there exists a framework, referred to as situation theory [14] for which there are
some similarities to the terminology that we introduce here, e.g., that situations
are about relations (this can also be seen from the revised JDL model). Kokar
et al. [24] have developed an ontology for situation awareness that is based on
situation theory and which is referred to as situation awareness ontology (STO).
However, uncertainty is not the main focus of the above framework; thus, the
concepts introduced here aim at providing a generic and clear understanding of
HLIF from the perspective of uncertainty.

3.1 Level 2 – Situation Assessment

As can be seen from the revised JDL model, the main concern in Level 2 –
Situation Assessment – is relations among entities. As noted by Kokar et al.
[23, 24], a binary relation in mathematics, denoted by R, has the following
structure:

R ⊆ X × Y (1)

X × Y
def.= {(x, y) : x ∈ X, y ∈ Y } (2)

However, in order to allow other relations than binary, it is necessary to consider
n-ary relations that can be formally depicted as, cf. [24]:

R ⊆ X1 × . . . × Xn (3)

X1 × . . . × Xn
def.= {(x1, . . . , xn) : xi ∈ Xi} (4)

A relation can be defined intensionally by a predicate P that decides which
n-tuples that actually belong to the relation [24]:

R def.= {(x1, . . . , xn) : P (x1, . . . , xn), xi ∈ Xi} (5)

The relations that are of interest in HLIF, are usually not observable in a direct
way; thus, uncertainty regarding the predicate, and hence the relation, is most
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often evident. As Kokar et al. [24] have also noted, and which can be seen from
the revised JDL model [35], a situation can consist of more than one relation.
Consequently, it is necessary to interpret a situation as a set of relations denoted
by S and more formally stated as:

S def.= {R1, . . . , Rk} (6)

One may think of the relations as representing different concepts that for some
reason are needed by a decision maker in order to make a decision about situa-
tions in a particular application domain.

Since there most often exists uncertainty regarding which n-tuples that satisfy
the predicate for a given relation in HLIF; it is necessary to be able to consider
the elements of the relation as hypotheses, which we here denote by (x1, . . . , xn)h

j

to indicate that it is a hypothesis with respect to a specific relation Rj , 1 ≤ j ≤ k.
Since the elements of a given relation Rj now can be considered as hypotheses,
it is also necessary to consider the relation itself as such, a relational hypothesis,
denoted by Rh

j . Lastly, since a situation S is defined using relations that may be
hypotheses, a situation can also be a hypothesis, denoted by Sh

i , i ∈ JS , where
JS is an index set.

Let the set of available information (sensor readings, domain knowledge and
stored information) be denoted by ξ. Note that ξ may contain information that is
uncertain, e.g., information from an unreliable source, imprecise, i.e., information
which in some sense refers to more than one possibility, and inconsistent, e.g.,
information sources are in conflict [7] (for more detail, see [22, Sect. II-A1]). We
will here use belief as a generic term for quantifying a rational agent’s belief,
thus, belief in the above sense is not associated with any particular Uncertainty
Management Method (UMM). The following belief measure needs to be assessed
in Level 2 – Situation Assessment:

μS(Sh
i = S|ξ), (7)

i.e., the degree of belief for a specific situation hypothesis Sh
i being the “true”

current situation S conditional on ξ. Depending on the application domain and
the type of relations involved in S, it may also be necessary to define belief
measures that capture some specific part of a situation in more detail. Examples
of such measures are:

μTj ((x1, . . . , xn)h
j ∈ Rj |ξ) (8)

μRj (Rh
j = Rj |ξ), (9)

where μTj denotes the degree of belief for a single tuple Rj , and μRj depicts
the degree of belief for the “true” set that constitutes the relation. In particular
scenarios it could be sufficient to define some of these belief measures in terms
of the others by for example using the mean. As an example μRj can be defined
in terms of μTj by using the mean, in the following way:
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μRj (Rh
j = Rj |ξ) =

1
|X1 × . . . × Xn|⎡

⎣ ∑

(x1,...,xn)h
j ∈Rh

j

μTj ((x1, . . . , xn)h
j ∈ Rj |ξ)

+
∑

(x1,...,xn)h
j ∈Rh

j

μTj ((x1, . . . , xn)h
j /∈ Rj |ξ)

⎤
⎥⎦ ,

where Rh

j = (X1 × . . . × Xn)\Rh
j .

(10)

The last part of the equation can be simplified if one assumes that the following
holds:

μTj((x1, . . . ,xn)h
j /∈ Rj |ξ) =

1 − μTj ((x1, . . . , xn)h
j ∈ Rj |ξ)

(11)

However, depending on the UMM, this is not always the case (e.g., Dempster-
Shafer theory). In the general case one might want to assess the measures μTi ,
μRi , and μS more specifically by applying some other method than just using
the mean over an existing belief measure.

3.2 Level 3 – Impact Assessment

Consider Level 3 – Impact Assessment – where the aim is to estimate effects
on situations given certain actions [35]. The representation of situations still
applies since “estimation and prediction of effects on situations” as stated in the
revised JDL model can be interpreted as estimation and prediction of “future
situations”, impacts, which we here will denote by I, and Ih

i , i ∈ JI , when
considered as a hypothesis. From a decision maker’s point of view, a certain
set of planned actions is expected to lead to a desirable impact. Now, since
there most often exists uncertainty regarding the current situation, something
that is reflected in the belief measure μS , it is also necessary to incorporate
this uncertainty when estimating future situations, impacts Ih

i . Consequently, a
belief measure for Impact Assessment, μI , has the following appearance:

μI(Ih
i = I|A, μS , ξ), (12)

i.e., the degree of belief regarding a possible impact Ih
i is conditional on: a set

of actions A, the belief measure for the current situation μS , and the set of
available information ξ. Additional belief measures that capture some specific
part of an impact in more detail, similarly to expressions (8) and (9), may also
be defined for Impact Assessment.

4 Dependable High-Level Information Fusion

One of the main issues in HLIF is to assess the belief measures μS and μI
over possible current situations, {Sh

i }i∈JS and possible impacts {Ih
i }i∈JI . Since
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these quantifications constitute a basis for HLIF-based decision making, human
or automatic, a question one can pose is how trustworthy such quantifications
are? However, a clarification on what is actually meant by “trustworthiness”
or “trust” in HLIF is necessary since there is a lack of research on that topic.
Avižienis et al. [5] define trust as “accepted dependence” and have presented
a taxonomy of dependability that is well-accepted within the dependable com-
puting domain. In HLIF, however, some of these concepts, e.g., reliability and
robustness, are also utilized but with no consistent meaning; thus, researchers
have adapted their particular interpretation in a specific application domain
and problem. We will here present a partial mapping from this taxonomy to
HLIF that preserves as much consistency as possible with respect to how con-
cepts have been utilized in HLIF. Since specific characteristics of dependability
is application dependent, this partial mapping should be seen as a guideline
for interpreting dependability in HLIF. We will later use this terminology when
we discuss why imprecise probability seems to be an interesting approach to
improved dependability in HLIF (Sect. 5).

4.1 High-Level Information Fusion as a Service

The basis for the concepts in the dependability taxonomy is a service; thus, we
need to clearly state what type of service the involved functions in HLIF provide.
By the description of HLIF in Sect. 3, it can be argued that a HLIF service
provides the artifacts listed in the introduction of this section, i.e., {Sh

i }i∈JS ,
{Ih

i }i∈JI , μS , and μI . These artifacts are utilized by a decision maker (human
or automatic) in order to make a decision concerning situations, in other words,
a HLIF service aims at providing decision support regarding situations.

4.2 Reliability

We start this partial mapping with the attribute of dependability referred to
as reliability; an attribute that has many different interpretations [30, 26, 42].
Svensson [36] has proposed the following interpretation of reliability for HLIF-
based decision-support systems:

“Technical system property of delivering quantitative results which are
reasonably close to best possible, subject to known statistical error distri-
butions”.

However, “...results which are reasonably close to best possible...” could be hard
to interpret since “best possible” needs to be more clearly defined, and “...sta-
tistical error distributions” is too specific in many circumstances, e.g., when
subjective opinions (from domain experts) are utilized.

In the dependability taxonomy, it is seen that reliability is defined as “con-
tinuity of correct service”. Llinas [25] has listed “Correctness in reasoning” as
an important criteria for evaluation of fusion performance in a context of HLIF.
Thus, one can argue that the key to think about reliability is correctness. The
question then becomes what a correct HLIF service is, and a natural answer is
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that correctness refers to what such service actually delivers, i.e., correctness of
the artifacts: {Sh

i }i∈JS , {Ih
i }i∈JI , μS , and μI .

For the sets of hypotheses, correctness refers to the extent of all plausible
hypotheses actually being in the sets (cf. [31]), i.e., exhaustivity. For the belief
measures, it can be argued that correctness is achieved when the measures reflect
the character of the available information (cf. [39, Section 1.1.4]). As an example,
if information is scarce, uncertain, imprecise or conflicting (see further [22]), this
should be reflected in the belief measure.

Lastly, if we assume that ξ continuously gets updated, e.g., via a sensor
stream, then it is necessary for the belief measures to continuously reflect ξ,
thus in agreement with “continuity...” in the definition of reliability found in
the taxonomy.

4.3 Fault

A fault in the dependability taxonomy is defined as the cause of an error that
in its turn is something that may cause a failure, i.e., a deviation from correct
service [5]. Since we have already argued that a correct HLIF service delivers
an exhaustive set of plausible hypotheses and belief measures that reflect the
character of ξ, the negation of this statement, i.e., a service that provides a non-
exhaustive set of plausible hypothesis or belief measures that do not reflect ξ, is
considered to be a service that is not correct.

Based on these arguments, faults can be defined as: uncertain, imprecise,
inconsistent, and lack of information (for more detail, see [22, Sect. II-A1]),
since if inadequately handled, all of these may lead to service incorrectness. For
a non-exhaustive set of hypotheses, insufficient or inaccurate domain knowledge
about the process can also be considered as a fault since design of hypotheses
most often rely on domain knowledge. Another important fault in HLIF concerns
unreliable sources. If we consider a source as providing a service, reliability of this
service would be correctness of the source output. It is possible to account for
unreliable sources by introducing reliability coefficients that quantify the degree
of reliability for the sources [30]. Thus, one can say that a service, based on
unreliable sources, is still reliable as long as one know the quality of sources,
e.g., reliability coefficients, and compensate for this.

4.4 Safety

The next concept in the taxonomy that we will consider is safety, which is defined
as “Absence of catastrophic consequences on the user(s) and the environment”
[5]. Seen from a decision maker’s point of view, one can aim at a minimized num-
ber of possible catastrophic consequences. In essence, when a decision is taken by
utilizing a HLIF service, a possible catastrophic consequence may be interpreted
as an unexpected impact of such decision. There are two important so called sec-
ondary attributes (attributes that refine primary attributes [5]) that we consider
to be a part of safety: robustness and stability.
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Robustness

Svensson [36] has proposed the following definition of robustness for HLIF-based
decision-support systems:

“Property of a system to react appropriately to exceptional conditions,
including to avoid making large changes in recommendations as a con-
sequence of small changes in input data.”

Bladon et al. [6] have proposed the following description of robust in conjunction
with a Situation-Assessment system:

“Robust: able to handle inconsistent, uncertain, and incomplete data.”

Llinas [25] has listed the following criteria for evaluation of HLIF performance:

“Adaptability in reasoning (robustness)”

Antony [3] claims that:

“Robustness measures the fragility of a problem-solving approach to
changes in the input space.”

Avižienis et al. [5] define robustness as a secondary attribute in the following
way:

“...dependability with respect to external faults, which characterizes a
system reaction to a specific class of faults.”

When looking at the statements above, it can be argued that most of them re-
late to a reaction. The description of robustness by Avižienis et al. [5] suggests
that we need to find a class of faults that the reaction refers to. In order to be
able to distinguish “robust” from “reliable”, we partially adopt Svensson’s inter-
pretation that robustness is about “...exceptional conditions...”. Consequently,
we define the class of faults as exceptional which in HLIF may be exceptional
degrees of:

• Uncertain, imprecise, and inconsistent information
• Lack of information
• Insufficient or inaccurate domain knowledge
• Unreliable sources

Exceptional degrees is something that is dependent on the application domain
at hand, and must therefore be defined accordingly. The desired reaction to
exceptional faults, from a decision maker’s point of view, would be to expect
that the service still fulfill reliability, i.e., correctness. Altogether, robustness in
HLIF is about being able to provide a reliable service even though exceptional
faults are present.

Stability

Stability is included in the definition of robustness by Svensson [36]:
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“...avoid making large changes in recommendations as a consequence of
small changes in input data.”

In order to allow for as precise and clear meaning as possible for both robust-
ness and stability, we prefer to view stability as a separate secondary attribute to
safety. It is somewhat unclear what Svensson exactly means by “...large changes
in recommendations...”. When are recommendations of actions considered to be
different from each other? One may even think of two very different recommenda-
tions that are expected to lead to essentially the same impact. Thus, we rephrase
stability as: small variations in input should not cause changes in actions that are
expected to lead to different impacts. Here, “expected” and “different impacts”,
needs to be more clearly defined, something that must be done with respect to
a specific problem and application domain.

As an example, assume that one has two different sets of actions, A1 and A2,
which for some reason are expected to lead to different impacts. Assume that
the following holds for an impact Ih

i :

μI(Ih
i = I|A1, μS , ξ)−

μI(Ih
i = I|A2, μS , ξ) = κ

(13)

Let the input in our interpretation of stability refer to ξ, more concretely, let ξ

constitute a sensor stream of information. Now, assume that the stream becomes
noisy, i.e., small random variations in the information are present, denoted by
ξ′. Such variation may cause, at a given time instant, the following equation to
hold:

μI(Ih
i = I|A1, μS , ξ′)−

μI(Ih
i = I|A2, μS , ξ′) = κ′ (14)

By fulfilling stability the following is prevented:

|κ − κ′| > ε (15)

In other words, the difference in belief is not allowed to deviate “too much” due
to random variations in ξ′. Here ε is a parameter that quantifies an acceptable
deviation with respect to the variation in ξ′. In the worst case, a decision maker
may choose to implement A1 when Eq. (13) holds and A2 when Eq. (14) holds.
Since the action sets were expected to lead to impacts that are in some sense
different from each other, such behavior is considered to be “unsound”. In this
example, the input was the set of available information ξ, but one may equally
well consider the belief measure μS as the input, i.e., small variations in μS
should not cause the behavior defined by Eq. (15).

5 Imprecise Probability - Dependable High-Level
Information Fusion

Imprecise probability [41] refers to a family of theories that allow imprecision in
the belief measures, e.g., a probability interval. Walley [39, 40, 41] has argued
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extensively for the importance of imprecision in probabilities and describes sev-
eral different sources of it such as: lack of information, conflicting information
(inconsistent information), and conflicting beliefs (e.g., conflict amongst a group
of domain experts), to name a few of them. Lack of information is related to
a specific type of uncertainty referred to as epistemic or reducible [33], since
gathering more information may reduce this type of uncertainty; closely related
to one of the goals of IF, i.e., reducing uncertainty. The two latter sources of im-
precision in probabilities: conflicting information and conflicting beliefs, are also
obvious in an IF context, since utilizing multiple sources of information typically
lead to conflict.

As pointed out by Walley [39, Section 5.1.5], a significant difference between
Bayesian theory and imprecise probability, is the way the amount of information
is reflected in the belief measure. If little or no prior information concerning
some process is available, Bayesian theory propose a non-informative prior, e.g.,
maximum entropy [20], while imprecise probability utilize the degree of impre-
cision to reflect the amount of information; substantial information implies a
small interval of possible probabilities, and scarce information a large interval of
possible probabilities. Thus, when utilizing imprecise probability, the informa-
tion can actually be seen in the belief measure itself, while in Bayesian theory
the same belief measure can be adopted before any information is available, as
well as later when a large amount of information is available. Subsequently, if
we consider reliability in HLIF as a correctness criterion, where the belief mea-
sure should reflect the character of the available information, even in exceptional
cases when there is a severe lack of it (related to robustness), Bayesian theory
cannot adequately fulfill this. From a decision maker’s point of view, reliability
can be thought of as a sort of “soundness” criterion, i.e., the decision maker will
be aware of the quality of the belief measure.

Imprecise probabilities also allow a direct way of handling the problem of
stability. Consider Bayesian networks (BNs) [17], a method that is commonly
proposed for HLIF [6, 12, 21], where precise probabilities, usually referred to as
conditional probability tables (CPTs) needs to be assessed from data, or elicited
from a domain expert. A problem with such networks, besides assessment or
elicitation of precise CPTs, is that it is necessary to perform sensitivity analysis,
i.e., examine for chaotic behavior [37] by perturbation of the CPTs. By utilizing
imprecise probability (e.g., [10, 11]) it is possible to account for “possible” values
of the CPTs in a direct way. Thus, instead of assessing or eliciting precise proba-
bilities followed by sensitivity analysis, where the CPTs are perturbed; imprecise
probability account for this from the start, i.e., the imprecision constitutes “pos-
sible” probabilities that potentially could have resulted from a perturbation of
precise probability.

6 Application Domains

Information fusion (IF) has its roots in the defense domain and is still tightly
coupled to it. In this section, we first depict the current state of IF techniques
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and applications within defense. Then, we describe two “civilian” application do-
mains, manufacturing and precision agriculture, where researchers have started
to recognize the benefits of IF, mainly through initial studies in low-level IF.

6.1 Defense

There exist a number of different IF applications within the defense domain
such as: ocean surveillance, air-to-air and surface-to-air defense, battlefield in-
telligence, surveillance, target acquisition, and strategic warning and defense [16].
In a defense context, Level 1 – Object Assessment – concerns the problem of de-
tecting objects and their corresponding physical attributes, e.g., vehicle type
(e.g, tank or jeep), position, velocity, and heading.

The goal of Level 2 – Situation Assessment – is to establish relationships
among the identified objects and events, which belong to the environment under
consideration [16]. A common relation applied at this level is clustering, e.g.,
clustering of vehicles into platoons, companies, and battalions [32]. Lastly, in
Level 3 – Impact Assessment – predictions are made about future situations,
e.g., different threats of enemies [16].

So far in the defense domain, most of the research has concerned Level 1 – Ob-
ject Assessment –, e.g., target tracking with multi-sensor fusion. Most attempts
to HLIF in defense involves Bayesian theory and especially BNs [6, 12, 21].
Other approaches to HLIF in the defense domain are: Dempster-Shafer theory
[32], genetic algorithms, fuzzy logic, neural networks [18], case-based reasoning,
and fuzzy belief networks [27].

6.2 Manufacturing

A well-known problem in manufacturing is planning of maintenance such that
the cost and risk of failure are minimized. According to Jardine et al. [19], main-
tenance can be divided into: unplanned maintenance (breakdown maintenance)
and planned maintenance. In unplanned maintenance, utilization of a physical
asset occurs until breakdown, an approach that enables for maximum amount
of utilization while there are no serious failures, but on the other hand, a break-
down can potentially cause a halt in production or even more serious failures,
leading to severe economic loss. In planned maintenance, a schedule is utilized
for each physical asset. The advantage of this approach is that it reduces the
number of breakdowns, but for a cost of decreased utilization, since maintenance
is performed independently of the actual condition of the physical asset. Due to
an increased complexity in machines, planned maintenance has become a costly
activity [19].

Recently, there has been an increased interest in multi-sensor fusion as a
means to achieve more reliable prognosis and diagnosis in maintenance [19], and
researchers have started to notice the commonalities between the IF domain and
manufacturing [38, 19].
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6.3 Precision Agriculture

The aim of precision agriculture is to account for large within-field spatial and
temporal variations of different crop and soil factors [34]. By measuring different
soil properties such as texture, moisture content, nitrogen (N) content and pH [1],
the field can be divided into zones that have different needs, e.g., of fertilization
or pesticides. When combining a geographical information system with a global
positioning system, each zone can be targeted, through model simulation, with
its corresponding need of for instance N-fertilization, pesticides, or watering. In
the case of fertilization, it is also common to utilize so called on-the-go sensors
(e.g., radiometric sensors) where sensor readings are used as further input for
fertilization calculations. Since these calculations are performed during the ac-
tual fertilization process, they need to meet certain time constraints. Precision
agriculture is both economical and environmentally friendly since the purpose
is to estimate the exact need for optimal yield and minimum influence on the
environment [28].

7 Discussion and Future Work

While there are many articles that describe theoretical aspects of imprecise prob-
abilities (e.g., [41]), and comparative studies of uncertainty management meth-
ods addressing “artificial” (toy) problems (e.g., [15]), the more practical aspects
where such methods are implemented and evaluated in “real-world” applications
seem to be to a large extent overlooked (there are exceptions, e.g., [4, 8, 29]).
We believe that the only way for imprecise probability to gain recognition by
researchers in HLIF in particular and other research communities in general, is
to conduct experiments that actually demonstrate benefits of such approach in
comparison with precise probability. We have here described three application
domains which will be utilized for this purpose. The exact theories to be eval-
uated in the family of imprecise probability will be selected in accordance to
characteristics of the specific problem in each of these application domains. A
common feature of all these domains, and most IF applications, is that decisions
must be made within a certain period of time, i.e., certain time constraints need
to be met. Such constraints may be challenging to meet when using imprecise
probability, due to the additional complexity introduced by imprecision (sets of
probability measures instead of a single probability measure).

Since many attempts to address HLIF rely on Bayesian theory such as BNs;
imprecise probability will naturally be evaluated against existing precise solu-
tions. Consequently, HLIF provides an excellent evaluation ground for imprecise
probability. There is also genuine need for addressing dependability issues in
HLIF, an area that has been more or less neglected, or as Svensson [36] puts it:

“Indeed, unless concepts and methodologies are found and generally ap-
plied which enable researchers and developers to achieve and demonstrate
reliability of high-level information fusion methods and algorithms, oper-
ational decision makers are unlikely to be willing to trust or use decision
support systems based on such techniques.”
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In a recent publication, Antonucci et al. [2] have recognized the benefits of uti-
lizing imprecise probability – credal networks [10, 11] – in IF. The application
of credal networks to HLIF is definitely something that should be further inves-
tigated and contrasted against BNs.

8 Conclusions

In this position paper we have reported on ongoing and planned future work
on deployment and evaluation of imprecise probability in high-level information
fusion (HLIF) applications. A detailed description of HLIF and a partial mapping
from a dependability taxonomy to HLIF were presented. There is a need to find
more dependable methods within HLIF, and imprecise probability seems to be
an interesting approach to improve dependability. We have also argued that it
is important to implement and evaluate imprecise probability in “real-world”
applications, if such methods are going to be acknowledged. Since HLIF is an
application oriented research area, where most methods are based on Bayesian
theory, we have also concluded that HLIF is an excellent evaluation ground for
this purpose. Three application domains: defense, manufacturing, and precision
agriculture, for evaluation of imprecise probability as an approach to improved
dependability in HLIF, were described. Design of experiments in these domains,
which contrasts the benefits and drawbacks of imprecise probability to precise
probability, is our next step, something that in itself is challenging and valuable
to the dissemination of research on imprecise probability.
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