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Summary. Support Vector Machines (SVM) is one of the most widely used technique
in machines leaning. After the SVM algorithms process the data and produce some
classification, it is desirable to learn how well this classification fits the data. There exist
several measures of fit, among them the most widely used is kernel target alignment.
These measures, however, assume that the data are known exactly. In reality, whether
the data points come from measurements or from expert estimates, they are only known
with uncertainty. As a result, even if we know that the classification perfectly fits the
nominal data, this same classification can be a bad fit for the actual values (which are
somewhat different from the nominal ones). In this paper, we show how to take this
uncertainty into account when estimating the quality of the resulting classification.

1 Formulation of the Problem

Machine learning: main problem. In many practical situations, we have examples
of several types of objects, and we would like to use these examples to teach the
computers to distinguish between objects of different types. Each object can be
characterized by the corresponding values of several relevant quantities. If we
denote the number of these quantities by d, then we can say that each object
i can be represented by a d-dimensional vector x(i) = (x(i)

1 , . . . , x
(i)
k , . . . , x

(i)
d ),

where x
(i)
k denotes the value of the k-th quantity for i-th object. So, from the

mathematical viewpoint, the problem is as follows: in d-dimensional space X ,
we have several points x(1), . . . , x(n) belonging to different classes, and we need
to be able, given a new point x ∈ X , to assign it to one of these classes.

In the simplest case when we have two classes, we have several points belonging
to the first class, and several points which do not belong to the first class, and
we must find a separating algorithm.
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Linear classification: main idea. In the past, a typical approach to data classi-
fication was to find a hyperplane c1 · x1 + . . . + cd · xd = c0 which separates the
two classes – so that c1 · x

(i)
1 + . . . + cd · x

(i)
d > c0 for all positive examples (i.e.,

examples from the first class) and c1 · x
(i)
1 + . . . + cd · x

(i)
d < c0 for all negative

examples (i.e., examples which do not belong to the first class).

Linear classification: limitations. The main limitations of linear classification
approach is that in many important practical cases, there is no hyperplane sep-
arating positive and negative examples.

For example, suppose that we want to teach the computer to distinguish
between the center of the city and its suburbs. To do that, we mark several
places in the center as positive examples and places in the suburbs as negative
examples. Here, a natural idea is to take d = 2, so that x1 and x2 are two
coordinates of each point. To make it easier, we can take the central square of
the city as the origin of the coordinate system, i.e., as a point (0, 0).

In this example, separation is straightforward: points whose distance
√

x2
1 + x2

2
to the center is below a certain threshold t are within the city center, while points
for which the distance is > t are in the suburbs. However, no straight line can
separate close points from the distant ones – because on each side of the straight
line we have points which are far away from the center.

Support Vector Machines: main idea. What can we do when there is no linear
separation? In the 2-D case, as long as there is a separation, i.e., as long as the
same point x ∈ X does not appear as both a positive and a negative example, we
can draw a curve separating positive points from negative ones. Similarly, in the
d-dimensional case, we can always draw a (d − 1)-dimensional surface separat-
ing positive and negative examples. Moreover, we can always find a continuous
function f(x1, . . . , xd) such that f(x(i)

1 , . . . , x
(i)
d ) > 0 for all positive examples

and f(x(i)
1 , . . . , x

(i)
d ) < 0 for all negative examples.

A continuous function f(x1, . . . , xd) can be, with arbitrary accuracy, approx-
imated by polynomials; thus, be selecting a good enough accuracy, we can have
a polynomial

f̃(x1, . . . , xd) = c0 + c1 · x1 + . . . + cd · xd +
d∑

k=1

d∑

l=1

ckl · xk · xl + . . .

which has the same separating property, i.e.,

c0 + c1 · x(i)
1 + . . . + cd · x

(i)
d +

d∑

k=1

d∑

l=1

ckl · x
(i)
k · x

(i)
l + . . . > 0

for all positive examples and

c0 + c1 · x(i)
1 + . . . + cd · x

(i)
d +

d∑

k=1

d∑

l=1

ckl · x
(i)
k · x

(i)
l + . . . < 0
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for all negative examples. These formulas clearly show that this non-linear sep-
aration means that we linearly separate points (x1, . . . , xn, x2

1, x1 · x2, . . .).
Instead of polynomials, we could use trigonometric polynomials or sums

of Gaussian functions, or any other class of approximating functions. In all
these cases, what we are doing is mapping each point x into a point φ(x) =
(φ1(x), . . . , φp(x), . . . , φN (x)) in a higher-dimensional space (of dimension N ≥
d), and then use linear separation to separate the resulting points φ(x(1)), . . . ,
φ(x(n)) in the N -dimensional space. This, in a nutshell, is the main idea behind
the Support Vector Machines (SVM) techniques; see, e.g., [10].

Need to estimate classification quality. The fact that we have a surface separating
positive examples from negative examples does not necessarily mean that this
classification is good. Intuitively, if we have a new example x which is similar
to one of the previously given examples x(i), then this new example should be
classified to the same class as x(i). So, we want to make sure not only that all
the positive examples are on the right side of the separating surface, but also
that the points which are close to these examples are also on the same side of the
separating surface. In other words, we want to make sure that all the examples
are sufficiently far away from the separating surface. Thus, some reasonable
measure of the distance from this surface can serve as the measure of the quality
of the resulting classification.

Several such criteria have been proposed. These criteria are usually defined
in terms of the kernel matrix kij

def= 〈φ(x(i)), φ(x(j))〉, where

〈φ, φ′〉 def=
N∑

p=1

φp · φ′
p.

KTA. The most widely used criterion is the kernel target alignment (KTA) A
[1], which is defined as follows (in our notations):

A =

n∑

i=1

n∑

j=1

kij · yi · yj

n ·
n∑

i=1

n∑

j=1

k2
ij

,

where yi = 1 for positive examples and yi = −1 for negative examples. This cri-
terion has a very intuitive meaning. In the ideal situation, the separation should
be as sharp as possible: we should have all the vectors φ(x(i)) corresponding to
the positive examples to be equal to some unit vector e and all the vectors cor-
responding to the negative examples to be equal to −e. In this ideal situation,
the kernel matrix is equal to yi · yj. To estimate the quality of a classification,
it is reasonable to check how close the actual kernel matrix is to this ideal one.
One way to check is to consider both matrices as vectors in a N ×N dimensional
space, and estimate the cosine of the angle between these vectors; if the vectors
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coincide, the angle is 0, and the cosine is 1; if the vectors are close, the angle is
close to 0, and the cosine is close to 1, etc. This cosine is equal to

〈K, ·yT 〉F√
〈K, K〉F 〈y · yT , y · yT 〉F

,

where

〈K, K ′〉F
def=

n∑

i=1

n∑

j=1

kij · k′
ij ,

so we get the above expression for the KTA.

Class Separability Measure (CSM). An alternative measure to KTA has been
proposed in [13]. This measure is actually defined for a general case of classi-
fying the data into several (C ≥ 2) classes. The main idea is that in a good
classification, data points within each class should be close to each other, while
data points from different classes should be far away from each other. In other
words, “within-class” scatter should be much smaller than the “between-classes”
scatter.

Each class is naturally characterized by its average. Thus, for each data point,
its contribution to the “within-class” scatter can be described as a (squared) dis-
tance from this data point to the average, and its contribution to the “between-
classes” scatter can be described as a (squared) distance between the average of
this class and the overall average.

In the SVM approach, each data point x(i) is represented by the vector φ(x(i)).
Thus, the above idea can be reformulated as follows. For each class Sc, c =
1, 2, . . . , C, let nc denote the number of data points classified into this class. Let
φc denote the average of all the vectors φ(x(i)) from the c-th class, and let φ
denote the average of all n vectors φ(x(i)). Then, we can define the within-class
scatter sw as

sw
def=

C∑

c=1

∑

i∈Sc

‖φ(x(i)) − φc‖2,

and the between-classes scatter as

sb
def=

C∑

c=1

nc · ‖φc − φ‖2.

We can also define total scatter as the sum st
def= sw + sb. A classification is of

good quality if sw � sb, i.e., equivalently, if sb ≈ st and the ratio C
def=

sb

st
is

close to 1. This ratio C is used as an alternative quality characteristic.
For the case of two classes, we will denote the number of the corresponding

examples as n+ and n−, and the averages of the corresponding vectors φ(x(i))
by φ+ and φ−. The value of the CSM ratio C can be computed in terms of the
kernel matrix kij = 〈φ(x(i)), φ(x(j))〉 as follows:
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• First, for every i, we compute

a+
i =

1
n+

∑

j:yj=1

kij ; a−
i =

1
n−

∑

j:yj=−1

kij .

• Second, we compute

a++ =
1

n+

∑

j:yj=1

a+
i , a+− =

1
n−

∑

j:yj=−1

a+
i ,

a−+ =
1

n+

∑

j:yj=1

a−
i , a−− =

1
n+

∑

j:yj=−1

a−
i ,

and sb = a++ − a+− − a−+ + a−−.
• Then, we compute

sw =
n∑

i=1

kii − n+ · a++ − n− · a−−,

and C =
sb

sb + sw
.

A new alternative quality measure: FSM. In many practical examples, KTA and
CSM provides a reasonable estimate for the quality of fit, in the sense that cases
when we have a better fit have a larger value of KTA or CSM. However, there
are examples when the values of KTA and CSM are larger for the cases when
intuitively, the classification quality is worse.

One reason for the sometimes counterintuitive character of CSM is that CSM
estimates a within-class scatter based on deviations in all directions. For exam-
ple, if for some coordinate φp(x), we have φp(x(i)) = 1 for all positive examples
and φp(x(i)) = −1 for all negative examples, then intuitively, we have a perfect
classification. However, since the values φq(x(i)) for q 	= p may be widely scat-
tered, we can have a huge value of the within-class scatter, and thus, a very low
value of the CSM measure of fit.

To avoid this problem, it is reasonable to take into account only the scatter in
the direction between the centers φ− and φ+. The corresponding Feature-Spaced
Measure (FSM) was proposed in [7].

To estimate this measure, we do the following:

• First, we compute the average φ+ of the values φ(x(i)) for all the positive
examples and the average φ− of the values φ(x(i)) for all the negative exam-
ples. In the ideal case, as we have mentioned, we should have φ+ = e and
φ− = −e for some unit vector e.

• Then, we estimate the vector e as the unit vector in the direction of the

difference φ+ − φ−, i.e., as e =
φ+ − φ−

‖φ+ − φ−‖ .
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• Next, for each example i, we compute the projection pi = 〈φ(x(i)), e〉 of the
vector φ(i) to the direction e.

• Finally, we compute the population means

p+ =
1

n+ ·
∑

i:yi=1

pi; p− =
1

n− ·
∑

i:yi=−1

pi,

where n+ and n− (= n − n+) denote the numbers of positive and negative
examples, compute population variances

V + =
1

n+ − 1
·

∑

i:yi=1

(pi − p+)2; V − =
1

n− − 1
·

∑

i:yi=−1

(pi − p−)2,

and the desired value √
V + +

√
V −

‖φ+ − φ−‖ .

This algorithm describes how to compute these values based on the vectors
φ(x(i)); alternatively, as shown in [7], we can compute it from the kernel matrix
kij as follows:

• First, we compute the values a+
i and a−

i as in the CSM case.
• Second, we compute the values a++, a+−, a−+, and a−− as in the CSM case,

and compute ‖φ+ − φ−‖2 = a++ − a+− − a−+ + a−−.
• Then, we compute

V + =

∑

i:yi=1

((a−
i − a−+) − (a+

i − a++))2

(n+ − 1) · ‖φ+ − φ−‖2 ,

V − =

∑

i:yi=−1

((a+
i − a+−) − (a−

i − a−−))2

(n− − 1) · ‖φ+ − φ−‖2 ,

and the desired value √
V + +

√
V −

‖φ+ − φ−‖ .

2 How to Take into Account Probabilistic and Interval
Uncertainty: Formulation of the Problem and
Linearized Algorithms for Solving This Problem

Need to take into account probabilistic and interval uncertainty. In presenting
algorithms for computing the SVM quality measures, we (implicitly) assumed
that we know the exact values of the data points x(i) = (x(i)

1 , . . . , x
(i)
d ). In reality,

the values x
(i)
k come from measurements or from expert estimates, and both

measurements and expert estimates are never 100% accurate. As a result, the



Estimating Quality of SVM Learning 63

measured (estimated) values x̃
(i)
k of the corresponding quantities are, in general,

different from the (unknown) actual values x
(i)
k .

It is desirable to take into account this measurement (estimation) uncertainty
when estimating the quality measures.

Need to describe measurement and/or estimation uncertainty. In order to gauge
the effect of the measurement (estimation) uncertainty on the values of the
quality measures, we must have the information about the measurement (esti-
mation) uncertainty, i.e., the information about the measurement (estimation)
errors Δx

(i)
k

def= x̃
(i)
k − x

(i)
k .

For simplicity, in the following text, we will mainly talk about measurement
errors; for estimation errors the situation is very similar.

Upper bound on the measurement error. How can the measurement error be
described? First, the manufacturer of a measuring instrument must provide us
with an upper bound Δ on the absolute value |Δx| of the measurement error
Δx. If no such bound was guaranteed, this would mean that the difference Δx
can be arbitrarily large; in this situation, after getting a measurement result say
x̃ = 1, we cannot be sure whether the actual value x of the measured quantity
is 1, 0, 10, 100, or 1,000,000. In this situation, x̃ = 1 is a wild guess, not a
measurement result.

When we know this upper bound Δ, this means that the actual value Δx of
the measurement error must be inside the interval [−Δ, Δ].

Probabilistic information. In addition to the upper bound Δ, we often also know
the probabilities of different values Δx from the interval [−Δ, Δ].

This situation of probabilistic uncertainty is traditionally used in engineering
and scientific practice. Most frequently, scientists and engineers consider the
situation when the measurement error is normally distributed, with 0 mans and
known standard deviation σ; see, e.g,., [9].

Case of interval uncertainty. In many important practical situations, we do not
have the information about the probabilities of different values of Δx, we only
know the upper bound Δ.

The reason is that the probabilistic information usually comes from com-
paring the results of measuring the same quantity with two different measuring
instruments: the one used for actual measurements and the standard (much more
accurate) one – whose results are so much closer to the actual values that we can
ignore the corresponding measurement errors and consider these results actual
values.

There are two situations when this comparison is not done. The first such
situation is the situation of cutting-edge measurements, when we are actually
using the best possible measuring instrument. For example, if we perform some
protein measurements by using a state-of-the-art electronic microscope, it would
be nice to be able to compare the results with a much more accurate microscope
– but ours is already the best.
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Another case when the probabilities are not determined is when we have
limited resources. For example, in geophysics, in every seismic experiment, we
use a large number of sensors to measure the corresponding time delays. It would
be nice to be able to compare all these sensors with more accurate ones. However,
the detailed comparison of each sensor requires the use of costly standard sensors
and, as a result, costs several orders of magnitude more than the cost of buying
a new sensor – so we often cannot do this detailed probabilistic “calibration”
within our limited resources.

In both cases, the only information we have about the measurement error
Δx = x̃ − x is the upper bound Δ: |Δx| ≤ Δ. In such situations, once we
have the measurement result x̃, the only conclusion that we can make about
the (unknown) actual value x is that x belongs to the interval x = [x, x], where
x

def= x̃ − Δ and x
def= x̃ + Δ. This situation is called the situation of interval

uncertainty.

Estimating the measures of fit under measurement uncertainty: formulation of
the problem. In general, we have an algorithm

Q(x(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d )

which transforms the values

x
(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d

of the corresponding quantities into the value

y = Q(x(1)
1 , . . . , x

(1)
d , x

(2)
1 , . . . , x

(2)
d , . . . , x

(n)
1 , . . . , x

(n)
d )

of the corresponding quality characteristic. Due to measurement errors, we do
not know the actual values x

(i)
k . Instead, we only know the intervals [x(i)

k , x
(i)
k ]

of possible values of x
(i)
k – and possible also the probabilities of different values

from these intervals.
Different values x

(i)
k ∈ [x(i)

k , x
(i)
k ] lead, in general, to different values of the

measure of fit y = Q(x(1)
1 , . . . , x

(n)
d ). It is therefore desirable to find the range y

of possible values of y:

y = {Q(x(1)
1 , . . . , x

(n)
d ) | x(1)

1 ∈ [x(1)
1 , x

(1)
1 ], . . . , x(n)

d ∈ [x(n)
d , x

(n)
d ]},

and, if possible, the probability of different values of y within this interval.

Case of relatively small measurement error: possibility of linearization. When
the measurement errors Δxi are relatively small, we can use linearization.

By definition of the measurement error Δx
(i)
k = x̃

(i)
k − x

(i)
k , hence x

(i)
k =

x̃
(i)
k − Δx

(i)
k . When the measurement errors Δx

(i)
k of direct measurements are

relatively small, we can expand the expression

Δy = ỹ − y = Q(x̃(1)
1 , . . . , x̃

(n)
d ) − Q(x(1)

1 , . . . , x
(n)
d ) =
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Q(x̃(1)
1 , . . . , x̃

(n)
d ) − Q(x̃(1)

1 − Δx
(1)
1 , . . . , x̃

(n)
d − Δx

(n)
d )

in Taylor series and only keep linear terms in the resulting expansion. Since

y = Q(x̃(1)
1 −Δx

(1)
1 , . . . , x̃

(n)
d −Δx

(n)
d ) ≈ Q(x̃(1)

1 , . . . , x̃
(n)
d )−

n∑

i=1

d∑

k=1

∂Q

∂x
(i)
k

·Δx
(i)
k ,

we conclude that Δy = ỹ − y =
n∑

i=1

d∑

k=1
c
(i)
k · Δx

(i)
k , where c

(i)
k

def=
∂Q

∂x
(i)
k

.

Linearization: probabilistic case. When Δx
(i)
k are independent normally dis-

tributed random variables with 0 means and known standard deviations σ
(i)
k ,

the linear combination Δy =
n∑

i=1

d∑

k=1
c
(i)
k ·Δx

(i)
k is also normally distributed, with

0 mean and standard deviation

σ =

√√
√
√

n∑

i=1

d∑

k=1

(c(i)
k · σ(i)

k )2.

So, in this case, to find the uncertainty in the value of the measure of fit, it is
sufficient to be able to compute the values of the corresponding partial derivatives
c
(i)
k .

Linearization: interval case. The dependence of Δy on Δx
(i)
k is linear: it is in-

creasing relative to x
(i)
k if c

(i)
k ≥ 0 and decreasing if c

(i)
k < 0. So, to find the

largest possible value Δ of Δy, we must take:

• the largest possible value Δx
(i)
k = Δ

(i)
k when c

(i)
k ≥ 0, and

• the smallest possible value Δx
(i)
k = −Δ

(i)
k when c

(i)
k < 0.

In both cases, the corresponding term in the sum has the form |c(i)
k | ·Δ(i)

k , so we
can conclude that

Δ =
n∑

i=1

d∑

k=1

|c(i)
k | · Δ

(i)
k .

Similarly, the smallest possible value of Δy is equal to −Δ. Thus, the range of
possible values of y is equal to [y, y] = [ỹ − Δ, ỹ + Δ]. So, to compute Δ, it is

also sufficient to know the partial derivatives c
(i)
k .

How to compute the derivatives. For all the above characteristics y, we have
an explicit expression in terms of the values kij . Thus, we can find the explicit
analytic formulas in terms of the corresponding derivatives as

c
(i)
k =

n∑

a=1

n∑

b=1

∂y

∂kab
· ∂kab

∂x
(i)
k

.
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Here, the first partial derivative can be explicitly computed: e.g., for KTA Q = A,
we have

∂y

∂kab
=

ya · yb

n ·
n∑

i=1

n∑

j=1
k2

ij

− 2kab ·

n∑

i=1

n∑

j=1
kij · yi · yj

n ·
(

n∑

i=1

n∑

j=1
k2

ij

)2 .

For kab =
N∑

p=1
φp(x(a)) · φp(x(b)), the derivative

∂kab

∂x
(i)
k

is only different from 0 if

a = i or b = i:

∂kib

∂x
(i)
k

=
N∑

p=1

∂φp

∂xk
(x(i)) · φp(x(b)) for a = i and b 	= i;

∂kai

∂x
(i)
k

=
N∑

p=1

φp(x(a)) · ∂φp

∂xk
(x(i)) for a 	= i and b = i;

∂kii

∂x
(i)
k

= 2
N∑

p=1

∂φp

∂xk
(x(i)) · φp(x(i)) for a = b = i.

3 In General, Estimating Quality of SVM Learning under
Interval Uncertainty Is NP-Hard

Motivations. In the previous section, we considered the case when measurement
errors are small, e.g., no more than 10%, so that we can ignore terms which are
quadratic in terms of these errors. For example, for 10% = 0.1, the quadratic
terms are proportional to 0.12 = 1% � 10% and thus, indeed, much smaller than
the original errors. In this case, we can linearize the formulas for the quality
of SVM learning and get efficient algorithms for computing the range of the
corresponding quality characteristics.

In practice, however, the measurement errors are often not very small. For ex-
ample, for a realistic measurement error of 30%, the square is ≈ 10% and is no
longer negligible in comparison with the original measurement errors. In such sit-
uations, we can no longer use linearized techniques, we must consider the original
problem of computing the range [y, y] of a given characteristic Q(x(1)

1 , . . . , x
(n)
d )

under interval uncertainty:

[y, y] = {Q(x(1)
1 , . . . , x

(n)
d ) | x(1)

1 ∈ [x(1)
1 , x

(1)
1 ], . . . , x(n)

d ∈ [x(n)
d , x

(n)
d ]}.

It turns out that in general, this problem is NP-hard – at least it is NP-hard for
the most widely used measures of fit KTA and CSM.

Crudely speaking, NP-hard means that there is practically no hope of design-
ing an efficient algorithm which would always correct compute this range; for
precise definitions, see, e.g., [3, 4, 8].
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Theorem 1. Computing the range of KTA under interval uncertainty is NP-
hard.

Proof. To prove NP-hardness of our problem, we will reduce a known NP-hard
problem to our problem of computing the range A of KTA A under interval
uncertainty. Specifically, we will reduce, to our problem, the following partition
problem [3] that is known to be NP-hard:

• Given k positive integers s1, . . . , sk,

• check whether it is possible to find the values εi ∈ {−1, 1} for which
k∑

i=1
εi ·

si = 0.

To each instance s1, . . . , sk of this problem, we assign the following instance of
the problem of computing A: we take d = 1, n = k + 1, y1 = . . . = yk = 1,
yk+1 = −1, x(i) = [−si, si] for i ≤ k, and x(n) = {2S}, where S

def= max
i=1,...,k

si. As

φ, we take a 2-dimensional mapping φ = (φ1, φ2) consisting of the following two
piece-wise linear functions:

φ1(x) =

⎧
⎪⎨

⎪⎩

x if x ≤ S

2S − x if S ≤ x ≤ 2S

0 if x ≥ 2S

; φ2(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ S

x/S − 1 if S ≤ x ≤ 2S

1 if x ≥ 2S

.

In this case,

kij = 〈φ(x(i)), φ(x(j))〉 =

⎧
⎪⎨

⎪⎩

x(i) · x(i) if i, j < n,
1 if i = j = n,
0 otherwise.

Therefore,

n∑

i=1

n∑

j=1

kij · yi · yj =
k∑

i=1

k∑

j=1

x(i) · x(i) + 1 =

(
k∑

i=1

x(i)

)2

+ 1;

n∑

i=1

n∑

j=1

k2
ij =

k∑

i=1

k∑

j=1

(
x(i)

)2
·
(
x(j)

)2
+ 1 =

(
k∑

i=1

(
x(i)

)2
)2

+ 1; and

A =

(
k∑

i=1
x(i)

)2

+ 1

n ·

√(
k∑

i=1

(
x(i)

)2
)2

+ 1

.

The numerator is always greater than or equal to 1. Since |x(i)| ≤ si, we have
(
x(i)

)2 ≤ s2
i and hence, the denominator is always ≤ n ·

√(
k∑

i=1
s2

i

)2

+ 1. Thus,
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we always have A ≥ A0
def=

1

n ·

√(
k∑

i=1
s2

i

)2

+ 1

. The only possibility for A = A0

is when the numerator of the fraction A is equal to 1, and its denominator is

equal to n ·

√(
k∑

i=1
s2

i

)2

+ 1. This is only possible when |x(i)| = si for all i, i.e.,

when x(i) = εi · si for some εi ∈ {−1, 1}, and
k∑

i=1
x(i) = 0 – i.e., exactly when the

original instance of the partition problem has a solution. So, A = A0 if and only
if the original instance has a solution. This reduction proves that our problem
is indeed NP-hard.

Theorem 2. Computing the range of CSM under interval uncertainty is NP-
hard.

Proof. Under the same reduction as in Theorem 1, we get n+ = k, n− = 1,

a+
n = 0 and for i < n, we have a+

i =
1
k

·
k∑

j=1

x(i) · x(j) = x(i) · E, where E
def=

1
k

·
k∑

i=1

x(i). Similarly, a−
n = 1 and a−

i = 0 for all i < n. Thus, a++ =
1
k

·
k∑

i=1

a+
i =

E · 1
k

·
k∑

i=1

x(i) = E2, a+− = a−+ = 0, and a−− = 1. Hence, sb = E2 + 1,

sw =
k∑

i=1

(
x(i)

)2 − k · E2 − 1 and thus, C =
E2 + 1

k∑

i=1

(
x(i)

)2 − (k − 1) · E2

. The

numerator is ≥ 1, the denominator is ≤
k∑

i=1
s2

i , hence C ≥ C0
def=

1
k∑

i=1
s2

i

. The

only possibility to have C = C0 is when E = 0 and |x(i)| = si for all i, i.e.,
when the original instance of the partition problem has a solution. The theorem
is proven.

4 Conclusion

For classification produced by machine learning techniques, it is desirable to
learn how well this classification fits the data. There exist several measures of
fit, among them the most widely used is kernel target alignment.

The existing formulas for these measures assume that the data are known
exactly. In reality, whether the data points come from measurements or from
expert estimates, they are only known with uncertainty. As a result, even if we
know that the classification perfectly fits the nominal data, this same classifica-
tion can be a bad fit for the actual values (which are somewhat different from
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the nominal ones). In this paper, we show how, when the measurement errors
are relatively small, we can take this uncertainty into account when estimating
the quality of the resulting classification. We also show that in the general case
of large uncertainty, the problem of estimating the range of these measures of fit
is NP-hard.
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