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Summary. In many practical situations, we are not satisfied with the accuracy of
the existing measurements. There are two possible ways to improve the measurement
accuracy:

• first, instead of a single measurement, we can make repeated measurements; the
additional information coming from these additional measurements can improve
the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accurate one;
correspondingly, we can use a more accurate (and more expensive) measurement
procedure provided by a measuring lab – e.g., a procedure that includes the use of
a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements with a
more accurate measuring instrument. What is the appropriate trade-off between sample
size and accuracy? This is the general problem that we address in this paper.

1 General Formulation of the Problem

We often need more accurate measurement procedures. Measurements
are never 100% accurate, there is always a measurement inaccuracy.

Manufacturers of a measuring instrument usually provide the information
about the accuracy of the corresponding measurements. In some practical situ-
ations, however, we want to know the value of the measured quantity with the
accuracy which is higher than the guaranteed accuracy of a single measurement.

Comment. Measurements are provided either by a measuring instrument or,
in situations like measuring level of pollutants in a given water sample, by a
measuring lab. Most problems related to measurement accuracy are the same,
whether we have an automatic device (measuring instrument) or operator-
supervised procedure (measuring lab). In view of this similarity, in the following
text, we will consider the term “measuring instrument” in the general sense, so
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that the measuring lab is viewed as a particular case of such (general) measuring
instrument.

Two ways to improve the measurement accuracy: increasing sample
size and improving accuracy. There are two possible ways to improve the
measurement accuracy:

• first, instead of a single measurement, we can make repeated measurements;
the additional information coming from these additional measurements can
improve the accuracy of the result of this series of measurements;

• second, we can replace the current measuring instrument with a more accu-
rate one; correspondingly, we can use a more accurate (and more expensive)
measurement procedure provided by a measuring lab – e.g., the procedure
that includes the use of a higher quality reagent.

In general, we can combine these two ways, and make repeated measurements
with a more accurate measuring instrument.

Problem: finding the best trade-off between sample size and accuracy.
What guidance shall we give to an engineer in this situation? Shall she make
repeated measurements with the original instrument? shall she instead purchase
a more accurate measuring instrument and make repeated measurements with
this new instrument? How more accurate? how many measurement should we
perform? In other words, what is the appropriate trade-off between sample size
and accuracy?

This is the general problem that we address in this paper.

2 In Different Practical Situations, This General Problem
Can Take Different Forms

There are two different situations which, crudely speaking, correspond to engi-
neering and to science.

In most practical situations – in engineering, ecology, etc. – we know what
accuracy we want to achieve. In engineering, this accuracy comes, e.g., from the
tolerance with which we need to guarantee some parameters of the manufactured
object. To make sure that these parameters fit into the tolerance intervals, we
must measure them with the accuracy that is as good as the tolerance. For
example, if we want to guarantee, e.g., the resistance of a certain wire does not
deviate from its nominal value by more than 3%, then we must measure this
resistance with an accuracy of at least 3% (or better).

In ecological measurements, we want to make sure that the measured quantity
does not exceed the required limit. For example, if we want to guarantee that
the concentration of a pollutant does not exceed 0.1 units, then we must be able
to measure this concentration with an accuracy somewhat higher than 0.1. In
such situations, our objective is to minimize the cost of achieving this accuracy.
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In science, we often face a different objective:

• we have a certain amount of funding allocated for measuring the value of a
certain quantity;

• within the given funding limits, we would like to determine the value of the
measured quantity as accurately as possible.

In other words:

• In engineering situations, we have a fixed accuracy, and we want to minimize
the measurement cost.

• In scientific situations, we have a fixed cost, and we want to maximally im-
prove the measurement accuracy.

3 A Realistic Formulation of the Trade-Off Problem

Traditional engineering approach. The traditional engineering approach to
solving the above problem is based on the following assumptions – often made
when processing uncertainty in engineering:

• that all the measurement errors are normally (Gaussian) distributed known
standard deviations σ;

• that the measurement errors corresponding to different measurement are in-
dependent random variables; and

• that the mean value Δs of the measurement error is 0.

Under these assumptions, if we repeat a measurement n times and compute the
arithmetic average of n results, then this average approximates the actual value
with a standard deviation

σ√
n

. So, under the above assumptions, by selecting

appropriate large number of iterations n, we can get make measurement errors
as small as we want.

This approach – and more general statistical approach – has been actively used
in many applications to science in engineering problems; see, e.g., [1, 2, 6, 8].

Limitations of the traditional approach. In practice, the distributions are
often Gaussian and independent; however, the mean (= systematic error) Δs

is not necessarily 0. Let us show this if we do not take systematic error into
account, we will underestimate the resulting measurement inaccuracy.

Indeed, suppose that we have a measuring instrument about which we know
that its measurement error cannot exceed 0.1: |Δx| ≤ 0.1. This means, e.g., that
if, as a result of the measurement, we got the value x̃ = 1.0, then the actual
(unknown) value x (= x̃ − Δx) of the measured quantity can take any value
from the interval [1.0 − 0.1, 1.0 + 0.1] = [0.9, 1.1].

If the mean of the measurement error (i.e., the systematic error component)
is 0, then we can repeat the measurement many times and, as a result, get more
and more accurate estimates of x. However, if – as is often the case – we do
not have any information about the systematic error, it is quite possible that
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the systematic error is actually equal to 0.07 (and the random error is negligible
in comparison with this systematic error). In this case, the measured value 1.0
means that the actual value of the measured quantity was x = 1.0−0.07 = 0.93.
In this case, we can repeat the measurement many times, and every time, the
measurement result will be equal to ≈ x + Δs = 0.93 + 0.01 = 1.0. The average
of these values will still be approximately equal to 1.0 – so, no matter how many
times we repeat the measurement, we will get the exact same measurement
error 0.07.

In other words, when we are looking for a trade-off between sample size
and accuracy, the traditional engineering assumptions can result in misleading
conclusions.

A more realistic description of measurement errors. We do not know the
actual value of the systematic error Δs – if we knew this value, we could simply
re-calibrate the measuring instrument and thus eliminate this systematic error.

What we do know are the bounds on the systematic error. Specifically, in
measurement standards (see, e.g., [7]), we are usually provided with the upper
bound Δ on the systematic error – i.e., with a value Δ for which |Δs| ≤ Δ. In
other words, the only information that we have about the systematic error Δs

is that it belongs to the interval [−Δ, Δ].

Resulting formulas for the measurement accuracy. Under these assump-
tions, what is the guaranteed accuracy of a single measurement made by the
measuring instrument?

Although formally, a normally distributed random variable can take any value
from −∞ to +∞, in reality, the probability of value which are too far away from
the average is practically negligible. In practice, it is usually assumed that the
values which differ from the average a by more than k0 ·σ are impossible – where
the value k0 is determined by how confident we want to be:

• 95% confidence corresponds to k0 = 2,
• 99.9% corresponds to k0 = 3, and
• confidence 100% − 10−6% corresponds to k0 = 6.

Thus, with selected confidence, we know that the measurement error is be-
tween Δs−k0 ·σ and Δs+k0 ·σ. Since the systematic error Δs can take any value
from −Δ to +Δ, the smallest possible value of the overall error is −Δ − k0 · σ,
and the largest possible value of the overall error is Δ + k0 · σ.

Thus, for a measuring instrument with a standard deviation σ of the random
error component and a upper bound Δ on the systematic error component, the
overall error is bounded by the value Δ+k0 ·σ, where the value k0 is determined
by the desired confidence level.

Resulting formulas for the accuracy of a repeated measurement. When
we repeat the same measurement n times and take the average of n measurement
results, the systematic error remains the same, while the standard deviation of
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the random error decreases
√

n times. Thus, after n measurements, the overall
error is bounded by the value Δ + k0 · σ√

n
.

So, we arrive at the following formulation of the trade-off problem.

Trade-off problem for engineering. In the situation when we know the over-
all accuracy Δ0, and we want to minimize the cost of the resulting measurement,
the trade-off problem takes the following form:

Minimize n · F (Δ, σ) under the constraint Δ + k0 · σ√
n

≤ Δ0, (1)

where F (Δ, σ) is the cost of a single measurement performed by a measuring
instrument whose systematic error is bounded by Δ and whose random error
has a standard deviation σ.

Trade-off problem for science. In the situation when we are given the limit
F0 on the cost, and the problem is to achieve the highest possible accuracy within
this cost, we arrive at the following problem

Minimize Δ + k0 · σ√
n

under the constraint n · F (Δ, σ) ≤ F0. (2)

4 Solving the Trade-Off Problem in the General Case

Mathematical comment. The number of measurement n is a discrete variable.
In general, optimization with respect to discrete variables requires much more
computations than continuous optimization (see, e.g., [4]). Since our formulation
is approximate anyway, we will treat n as a real-valued variable – with the idea
that in a practical implementation, we should take, as the actual sample size,
the closest integer to the corresponding real number solution nopt.

Towards resulting formulas. For both constraint optimization problems, the
Lagrange multiplier method leads to the following unconstraint optimization
problem:

n · F (Δ, σ) + λ ·
(

Δ + k0 · σ√
n

− Δ0

)

→ min
Δ,σ,n

, (3)

where λ can be determined by one of the formulas

Δ + k0 · σ√
n

= Δ0, n · F (Δ, σ) = F0. (4)

Equating the derivatives of the objective function (with respect to the unknowns
Δ, σ, and n) to 0, we conclude that

n · ∂F

∂Δ
+ λ = 0; n · ∂F

∂σ
+ λ · k0√

n
= 0; F − 1

2
· λ · k0 · σ

n3/2 = 0. (5)
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Substituting the expression for λ from the first equation into the second one, we
conclude that

n = k2
0 · (∂F/∂Δ)2

(∂F/∂σ)2
. (6)

Substituting these expression into the other equations from (5) and into the
equations (4), we get the following non-linear equations with two unknowns Δ
and σ:

F +
1
2

· σ · ∂F

∂σ
= 0; (7)

Δ +
σ · (∂F/∂σ)

∂F/∂Δ
= Δ0; k2

0 · (∂F/∂Δ)2

(∂F/∂σ)2
· F = F0. (8)

So, we arrive at the following algorithm:

General formulas: results. For each of the optimization problems (1) and (2),
to find the optimal accuracy values Δ and σ and the optimal sample size n, we
do the following:

• First, we determine the optimal accuracy, i.e., the optimal values of Δ and σ,
by solving a system of two non-linear equations with two unknowns Δ and σ:
the equation (7) and one of the equations (8) (depending on what problem
we are solving).

• After that, we determine the optimal sample size n by using the formula (6).

For practical engineering problems, we need more explicit and easy-
to-use recommendations. The above formulas provide a general theoretical
solution to the trade-off problem, but to use them in practice, we need more
easy-to-use recommendations. In practice, however, we do not have the explicit
formula F (Δ, σ) that determines how the cost of the measurement depends on
its accuracy. Therefore, to make our recommendations more practically useful,
we must also provide some guidance on how to determine this dependence – and
then use the recommended dependence to simply the above recommendations.

5 How Does the Cost of a Measurement Depend on Its
Accuracy?

Two characteristics of uncertainty: Δ and σ. In our description, we use
two parameters to characterize the measurement’s accuracy: the upper bound Δ
on the systematic error component and the standard deviation σ of the random
error component.

It is difficult to describe how the cost of a measurement depends on
σ. The standard deviation σ is determined by the noise level, so decreasing σ
requires a serious re-design of the measuring instrument. For example, to get
a standard measuring instrument, one thing designers usually do is place the
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instrument in liquid helium so as to eliminate the thermal noise as much as
possible; another idea is to place the measuring instrument into a metal cage,
to eliminate the effect of the outside electromagnetic fields on the measuring
instrument’s electronics.

Once we have eliminated the obvious sources of noise, eliminating a new source
of noise is a creative problem, requiring a lot of ingenuity, and it is difficult to
estimate how the cost of such decrease depends on σ.

The inability to easily describe the dependence of cost on σ may not
be that crucial. The inability to easily handle the characteristic σ of the ran-
dom error component may not be so bad because, as we have mentioned, the
random error component is the one that can be drastically decreased by increas-
ing the sample size – in full accordance with the traditionally used simplifying
engineering assumptions about uncertainty.

As we have mentioned, in terms of decreasing the overall accuracy, it is
much more important to decrease the systematic error component, i.e., to de-
crease the value Δ. Let us therefore analyze how the cost of a measurement
depends on Δ.

How we can reduce Δ: reminder. As we have mentioned, we can decrease the
characteristic Δ of the systematic error component by calibrating our measuring
instrument against the standard one.

After N repeated measurements, we get a systematic error Δs whose
standard deviation is ≈ σ/

√
N (and whose distribution, due to the Central

Limit Theorem, is close to Gaussian). Thus, with the same confidence level
as we use to bound the overall measurement error, we can conclude that
|Δs| ≤ k0 · σ/

√
N.

Calibration is not a one-time procedure. To properly take calibration into
account, it is important to recall that calibration is not a one-time procedure.
Indeed, most devices deteriorate with time. In particular, measuring instruments,
if not periodically maintained, become less and less accurate. Because of this, in
measurement practices, calibration is not a one-time procedure, it needs to be
done periodically.

How frequently do we need to calibrate a device? The change of Δs with time
t is slow and smooth. A smooth dependence can be represented by a Taylor
series Δs(t) = Δs(0)+k · t+c · t2 + . . . In the first approximation, we can restrict
ourselves to the main – linear – term (linear trend) in this expansion, and thus,
in effect, assume that the change of Δs with time t is linear.

Thus, if by calibrating the instrument, we guaranteed that |Δs| ≤ Δ, then
after time t, we can only guarantee that |Δs| + k · t ≤ Δ. Once the upper
bound on Δs reaches the level that we want not to exceed, this means that a
new calibration is in order. Usually (see, e.g., [7]), to guarantee the bound Δ
throughout the entire calibration cycle, we, e.g., initially calibrate it to be below
Δ/2, and then re-calibrate at a time t0 when Δ/2+k ·t0 = Δ. In such a situation,
the time t0 between calibrations is equal to t0 = Δ/(2 · k).
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How the calibration-based reduction procedure translates into the
cost of a measurement: the main case. As we have just mentioned, the
way to decrease Δ is to calibrate the measuring instrument. Thus, the resulting
additional cost of a measurement comes from the cost of this calibration (spread
over all the measurement performed between calibrations).

Each calibration procedure consists of two stages:

• first, we transport the measuring instrument to the location of a standard –
e.g., to the National Institute of Standard and Technology (NIST) or one of
the regional standardization centers – and set up the comparison measure-
ments by the tested and the standard instruments;

• second, the we perform the measurements themselves.

Correspondingly, the cost of calibration can be estimated as the sum of the costs
of there two stages.

The standard measuring instrument is usually a very expensive operation. So,
setting it up for comparison with different measuring instruments requires a lot
of time and a lot of adjustment. Once the set-up is done, the second stage is fast
and automatic – and therefore not that expensive.

As a result, usually, the cost of the first stage is the dominating factor. So,
we can reasonably assume that the cost of the calibration is just the cost of the
set-up – i.e., the cost of the first stage of the calibration procedure.

By definition, the set-up does not depend on how many times N we perform
the comparison measurements. Thus, in the first approximation, we can simply
assume that each calibration requires a flat rate f0.

The interval between time calibrations is t0 = Δ/(2 · k), then during a fixed
period of time T0 (e.g., 10 years), we need

T0

t0
=

T0

Δ/(2 · k)
=

2 · k · T0

Δ

calibrations. Multiplying this number by the cost f0 of each calibration, we get
the overall cost of all the calibrations performed during the fixed time T0 as
2 · k · T0 · f0

Δ
. Finally, dividing this cost by the estimated number N0 of mea-

surements performed during the period of time T0, we estimate the cost F (Δ)
of an individual measurement as

F (Δ) =
c

Δ
, (9)

where we denoted
c

def=
2 · k · T0 · f0

N0
. (10)

Comment. The above formula was first described, in a somewhat simplified form,
in [3].

This formula is in good accordance with chemistry-related measure-
ments. It is worth mentioning that the dependence c ∼ 1/Δ also occurs in
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measurements related to chemical analysis. Indeed, in these measurements, the
accuracy of the measurement result is largely determined by the quality of the
reagents, i.e., mainly, by the concentration level δ of the unwanted chemicals
(pollutants) in a reagent mix. Specifically, the maximum possible error Δ is
proportional to this concentration δ, i.e., Δ ≈ c0 · δ.

According to [9], the cost of reducing pollutants to a level δ is proportional
to 1/δ. Since the accuracy Δ is proportional to δ, the dependence of the cost
of the accuracy is also inverse proportional to Δ, i.e., F (Δ) = c/Δ for some
constant c.

This formula is in good accordance with actual prices of different mea-
surements. This dependence is in good agreement by the experimental data on
the cost of measurements of chemical-related measurements. For example, in
a typical pollution measurement, a measurement with the 25% accuracy costs
≈ $200, while if we want to get 7% accuracy, then we have to use a better reagent
grade in our measurements which costs between $500 and $1,000. Here, the 3–4
times increase in accuracy (i.e., 3–4 times decrease in measurement error) leads
to approximately the same (4–5) times increase in cost – which is indeed in good
accordance with the dependence F (Δ) ≈ c/Δ.

How the calibration-based reduction procedure translates into the
cost of a measurement: cases of more accurate measurements. In deriv-
ing the formula F (Δ) ≈ c/Δ, we assumed that the cost of actually performing
the measurements with the standard instrument is much smaller than the cost
of setting up the calibration experiment. This is a reasonable assumption if the
overall number of calibration-related measurement N is not too large.

How many measurement do we need? After N measurements, we get the
accuracy Δ = k0 · σ/

√
N . Thus, for a measuring instrument with standard

deviation σ, if we want to achieve the systematic error level Δ, we must use

N = k0 · σ2

Δ2 (11)

measurements.
So, if we want to use the calibration procedure to achieve higher and higher

accuracy – i.e., smaller and smaller values of Δ – we need to perform more
and more calibration-related measurements. For large N , the duration of the
calibration-related measurements exceeds the duration of the set-up. Since the
most expensive part of the calibration procedure is the use of the standard
measuring instrument, the cost of this procedure is proportional to the overall
time during which we use this instrument. When N is large, this time is roughly
proportional to N .

In this case, instead of a flat fee f0, the cost of each calibration becomes
proportional to N , i.e., equal to f1 · N , where f1 is the cost per time of using
the standard measuring instrument multiplied by the time of each calibration
measurement. Due to the formula (11), the resulting cost of each calibration is

equal to f1 · k0 · σ2

Δ2 . To get the cost of a single measurement, we must multiply
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this cost by the number of calibrations
2 · k · T0

Δ
required during the time period

T0, and then divide by the typical number of measurements performed during

this period of time. As a result, the cost of a single measurement becomes
const
Δ3 .

The cost of measurements beyond calibration: general discussion. In
many scientific cutting-edge experiments, we want to achieve higher accuracy
than was possible before. In such situations, we cannot simply use the existing
standard measuring instrument to calibrate the new one, because we want to
achieve the accuracy that no standard measuring instrument has achieved earlier.

In this case, how we can increase the accuracy depends on the specific quantity
that we want to measure.

The cost of measurements beyond calibration: example. For example, in
radioastrometry – the art of determining the locations of celestial objects from
radioastronomical observation – the accuracy of a measurement by a single radio
telescope is Δ ≈ λ/D, where λ is the wavelength of the radio-waves on which we
are observing the source, and D is the diameter of the telescope; see, e.g., [10].
For a telescope of a linear size D, just the amount of material is proportional to
its volume, i.e., to D3; the cost F of designing a telescope is even higher – it is
proportional to D4. Since D ≈ const/Δ, in this case, we have F (Δ) ≈ const/Δ4.

The cost of measurements beyond calibration: power laws. The above
dependence is a particular case of the power law F (Δ) ≈ const/Δα. Power laws
are, actually, rather typical descriptions of the dependence of the cost of an
individual measurement on its accuracy.

In [5], we explain why in the general case, power laws are indeed reasonable
approximation: crudely speaking, in the absence of a preferred value of the mea-
sured quantity, it is reasonable to assume that the dependence does not change
if we change the measuring unit (i.e., that it is scale invariant), and power laws
are the only scale-invariant dependencies.

Comment. The same arguments about scale invariance apply when we try to find
out how the cost of a measurement depends on the standard deviation. So, it
is reasonable to assume that this dependence is also described by a power law
F (σ) ≈ const/σβ for some constant β.

6 Trade-Off between Accuracy and Sample Size in
Different Cost Models

Let us plug in the above cost models into the above general solution for the
tradeoff problem and find out what is the optimal trade-off between accuracy
and sample size in the above cost models.

Since the above cost models only describe the dependence of the cost of Δ and
n, we will assume that the characteristic σ of the random error component is fixed,
so we can only select the accuracy characteristic Δ and the sample size n.
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Basic cost model: engineering situation. Let us start with the basic cost
model, according to which F (Δ) = c/Δ. Within this model, we can explicitly
solve the above system of equations. As a result, for the engineering situation,
we conclude that

nopt =
9 · k2

0 · σ2

4 · Δ2
0

; Δopt =
1
3

· Δ0. (12)

Observation. In this case, the overall error bound Δ0 is the sum of the bounds
coming from two error components:

• the bound Δ0 that comes from the systematic error component, and
• the bound k0 · σ√

n
that comes from the random error component.

In the optimal trade-off, the first component is equal to 1/3 of the overall er-
ror bound, and therefore, the second component is equal to 2/3 of the over-
all error bound. As a result, we conclude that when the error comes from several
error components, in the optimal trade-off, these error components are of ap-
proximately the same size.

Heuristic consequence of this observation. As a result of this qualitative
idea, it is reasonable to use the following heuristic rule when looking for a good
(not necessarily optimal) trade-off: split the overall error into equal parts.

In the above example, this would mean taking Δ = (1/2) · Δ0 (and, corre-
spondingly, k0 · σ√

n
= (1/2) · Δ0) instead of the optimal value Δ = (1/3) · Δ0.

How non-optimal is this heuristic solution?
For the optimal solution Δ = (1/3) · Δ0, the resulting value of the objective

function (1) (representing the overall measurement cost) is
27
4

· k2
0 · σ2 · c

Δ2
0

, while

for Δ = (1/2) · Δ0, the cost is 8 · k2
0 · σ2 · c

Δ2
0

– only ≈ 20% larger.

If we take into account that all our models are approximate, this means that
the heuristic trade-off solution is practically as good as the optimal one.

Basic cost model: science situation. In the science situation (2), we get

nopt =
(

F0 · k0 · σ

2 · c

)2/3

; Δopt =
nopt · c

F0
. (13)

Cases of more accurate and cutting-edge measurements. When F (Δ) =
c/Δα, for the engineering case, we get

nopt =
(α + 2)2 · k2

0 · σ2

4 · Δ2
0

; Δ0 =
α

2 + α
· Δ0.

For the science case,

nopt =
(

F0

c

)2/(2+α)

·
(

k0 · α

2

)(2α)/(2+α)

; Δopt =
α

2
· k0 · σ

√
nopt

.
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In both cases, the error bound coming from the systematic error component
is approximately equal to the error bound coming from the random error
component.

7 Conclusion

In many practical situations, we are not satisfied with the accuracy of the ex-
isting measurements. There are two possible ways to improve the measurement
accuracy. First, instead of a single measurement, we can make repeated measure-
ments; the additional information coming from these additional measurements
can improve the accuracy of the result of this series of measurements. Second,
we can replace the current measuring instrument with a more accurate one; cor-
respondingly, we can use a more accurate (and more expensive) measurement
procedure provided by a measuring lab – e.g., a procedure that includes the use
of a higher quality reagent. In general, we can combine these two ways, and make
repeated measurements with a more accurate measuring instrument.

What is the appropriate trade-off between sample size and accuracy? Tradi-
tional engineering approach to this problem assumes that we know the exact
probability distribution of all the measurement errors. In many practical situa-
tions, however, we do not know the exact distributions. For example, we often
only know the upper bound on the corresponding measurement (or estimation)
error; in this case, after the measurements, we only know the interval of possible
values of the quantity of interest. In the first part of this paper, we show in such
situations, traditional engineering approach can sometimes be misleading, so for
interval uncertainty, new techniques are needed. In the remainder of this paper,
we describe proper techniques for achieving optimal trade-off between sample
size and accuracy under interval uncertainty.
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