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Summary. In many areas of science and engineering, it is desirable to estimate statis-
tical characteristics (mean, variance, covariance, etc.) under interval uncertainty. For
example, we may want to use the measured values x(t) of a pollution level in a lake at
different moments of time to estimate the average pollution level; however, we do not
know the exact values x(t) – e.g., if one of the measurement results is 0, this simply
means that the actual (unknown) value of x(t) can be anywhere between 0 and the
detection limit DL. We must therefore modify the existing statistical algorithms to
process such interval data.

Such a modification is also necessary to process data from statistical databases,
where, in order to maintain privacy, we only keep interval ranges instead of the actual
numeric data (e.g., a salary range instead of the actual salary).

Most resulting computational problems are NP-hard – which means, crudely speak-
ing, that in general, no computationally efficient algorithm can solve all particular cases
of the corresponding problem. In this paper, we overview practical situations in which
computationally efficient algorithms exist: e.g., situations when measurements are very
accurate, or when all the measurements are done with one (or few) instruments.

1 Computing Statistics Is Important

In many engineering applications, we are interested in computing statistics. For
example, in environmental analysis, we observe a pollution level x(t) in a lake at
different moments of time t, and we would like to estimate standard statistical
characteristics such as mean, variance, autocorrelation, correlation with other
measurements.

For each of these characteristics C, there is an expression C(x1, . . . , xn) that
enables us to provide an estimate for C based on the observed values x1, . . . , xn.
For example:

• a reasonable statistic for estimating the mean value of a probability distri-

bution is the population average E(x1, . . . , xn) =
1
n

· (x1 + . . . + xn);
• a reasonable statistic for estimating the variance V is the population variance

V (x1, . . . , xn) =
1
n

·
n∑

i=1

(xi − E)2.
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Comment. The population variance is often computed by using an alternative

formula V = M − E2, where M =
1
n

·
n∑

i=1
x2

i is the population second moment.

Comment. In many practical situations, we are interested in an unbiased esti-

mate of the population variance Vu(x1, . . . , xn) =
1

n − 1
·

n∑

i=1

(xi − E)2. In this

dissertation, we will describe how to estimate V under interval uncertainty; since
Vu =

n

n − 1
· V , we can easily transform estimates for V into estimates for Vu.

2 Interval Uncertainty

In environmental measurements, we often only measure the values with interval
uncertainty. For example, if we did not detect any pollution, the pollution value v
can be anywhere between 0 and the sensor’s detection limit DL. In other words,
the only information that we have about v is that v belongs to the interval
[0, DL]; we have no information about the probability of different values from
this interval.

Another example: to study the effect of a pollutant on the fish, we check on
the fish daily; if a fish was alive on Day 5 but dead on Day 6, then the only
information about the lifetime of this fish is that it is somewhere within the
interval [5, 6]; we have no information about the distribution of different values
in this interval.

In non-destructive testing, we look for outliers as indications of possible faults.
To detect an outlier, we must know the mean and standard deviation of the
normal values – and these values can often only be measured with interval un-
certainty; see, e.g., [38]. In other words, often, we know the result x̃ of measuring
the desired characteristic x, and we know the upper bound Δ on the absolute
value |Δx| of the measurement error Δx

def= x̃ −x (this upper bound is provided
by the manufacturer of the measuring instrument), but we have no information
about the probability of different values Δx ∈ [−Δ, Δ]. In such situations, after
the measurement, the only information that we have about the true value x of
the measured quantity is that this value belongs to interval [x̃ − Δ, x̃ + Δ].

In geophysics, outliers should be identified as possible locations of minerals;
the importance of interval uncertainty for such applications was emphasized in
[34, 35]. Detecting outliers is also important in bioinformatics [41].

In bioinformatics and bioengineering applications, we must solve systems of
linear equations in which coefficients come from experts and are only known
with interval uncertainty; see, e.g., [48].

In biomedical systems, statistical analysis of the data often leads to improve-
ments in medical recommendations; however, to maintain privacy, we do not
want to use the exact values of the patient’s parameters. Instead, for each pa-
rameter, we select fixed values, and for each patient, we only keep the corre-
sponding range. For example, instead of keeping the exact age, we only record
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whether the age is between 0 and 10, 10 and 20, 20 and 30, etc. We must then
perform statistical analysis based on such interval data; see, e.g., [23].

3 Estimating Statistics under Interval Uncertainty: A
Problem

In all such cases, instead of the true values x1, . . . , xn, we only know the inter-
vals x1 = [x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values of
the measured quantities. For different values xi ∈ xi, we get, in general, dif-
ferent values of the corresponding statistical characteristic C(x1, . . . , xn). Since
all values xi ∈ xi are possible, we conclude that all the values C(x1, . . . , xn)
corresponding to xi ∈ xi are possible estimates for the corresponding statistical
characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate
for the corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) | x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that they com-
pute, or bound these ranges. This is the problem that we will be solving in this
dissertation.

This problem is a part of a general problem. The above range estimation
problem is a specific problem related to a combination of interval and proba-
bilistic uncertainty. Such problems – and their potential applications – have been
described, in a general context, in the monographs [30, 42]; for further develop-
ments, see, e.g., [4, 5, 6, 7, 16, 19, 32, 33, 39, 40, 43] and references therein.

4 Mean

Let us start our discussion with the simplest possible characteristic: the mean.
The arithmetic average E is a monotonically increasing function of each of its
n variables x1, . . . , xn, so its smallest possible value E is attained when each
value xi is the smallest possible (xi = xi) and its largest possible value is
attained when xi = xi for all i. In other words, the range E of E is equal

to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words, E =
1
n

· (x1 + . . . + xn) and

E =
1
n

· (x1 + . . . + xn).

5 Variance: Computing the Exact Range Is Difficult

Another widely used statistic is the variance. In contrast to the mean, the de-
pendence of the variance V on xi is not monotonic, so the above simple idea does
not work. Rather surprisingly, it turns out that the problem of computing the
exact range for the variance over interval data is, in general, NP-hard [17] which
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means, crudely speaking, that the worst-case computation time grows exponen-
tially with n. Specifically, computing the upper endpoint V of the range [V , V ]
is NP-hard. Moreover, if we want to compute the variance range or V with a
given accuracy ε, the problem is still NP-hard. (For a more detailed description
of NP-hardness in relation to interval uncertainty, see, e.g., [22].)

6 Linearization

From the practical viewpoint, often, we may not need the exact range, we can
often use approximate linearization techniques. For example, when the uncer-
tainty comes from measurement errors Δxi, and these errors are small, we can
ignore terms that are quadratic (and of higher order) in Δxi and get rea-
sonable estimates for the corresponding statistical characteristics. In general,
in order to estimate the range of the statistic C(x1, . . . , xn) on the intervals
[x1, x1], . . . , [xn, xn], we expand the function C in Taylor series at the midpoint
x̃i

def= (xi + xi)/2 and keep only linear terms in this expansion. As a result,
we replace the original statistic with its linearized version Clin(x1, . . . , xn) =

C0 −
n∑

i=1
Ci · Δxi, where C0

def= C(x̃1, . . . , x̃n), Ci
def=

∂C

∂xi
(x̃1, . . . , x̃n), and

Δxi
def= x̃i − xi. For each i, when xi ∈ [xi, xi], the difference Δxi can take all

possible values from −Δi to Δi, where Δi
def= (xi −xi)/2. Thus, in the linear ap-

proximation, we can estimate the range of the characteristic C as [C0−Δ, C0+Δ],

where Δ
def=

n∑
i=1

|Ci| · Δi.

In particular, if we take, as the statistic, the population variance C = V ,

then Ci =
∂V

∂xi
=

2
n

· (x̃i − Ẽ), where Ẽ is the average of the midpoints x̃i, and

C0 =
1
n

·
n∑

i=1

(x̃i − Ẽ)2 is the variance of the midpoint values x̃1, . . . , x̃n. So, for

the variance, Δ =
2
n

·
n∑

i=1

|x̃i − Ẽ| · Δi.

It is worth mentioning that for the variance, the ignored quadratic term is

equal to
1
n

·
n∑

i=1

(Δxi)2 − (ΔE)2, where ΔE
def=

1
n

·
n∑

i=1

Δxi, and therefore, can

be bounded by 0 from below and by Δ(2) def=
1
n

·
n∑

i=1

Δ2
i from above. Thus, the

interval [V0 − Δ, V0 + Δ + Δ(2)] is a guaranteed enclosure for V.

7 Linearization Is Not Always Acceptable

In some cases, linearized estimates are not sufficient: the intervals may be wide so
that quadratic terms can no longer be ignored, and/or we may be in a situation
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where we want to guarantee that, e.g., the variance does not exceed a certain
required threshold. In such situations, we need to get the exact range – or at
least an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing
its exact range is NP-hard, we cannot have a feasible-time algorithm that always
computes the exact range of these characteristics. Therefore, we must look for
the reasonable classes of problems for which such algorithms are possible. Let
us analyze what such classes can be.

8 First Class: Narrow Intervals

The main idea behind linearization is that if the measurement errors Δxi are
small, we can safely ignore quadratic and higher order terms in Δxi and replace
the original difficult-to-analyze expression by its easier-to-analyze linear approx-
imation. The accuracy of this techniques is determined by the size of the first
term that we ignore, i.e., is of size O(Δx2

i ). Thus, the narrower the intervals (i.e.,
the smaller the values Δxi), the more accurate is the result of this linearization.

In real life, we want to compute the range with a certain accuracy. So, when the
intervals are sufficiently accurate, the results of linearization estimation provide
the desired accuracy and thus, we have a feasible algorithm for solving our
problem. When the intervals become wider, we can no longer ignore the quadratic
terms and thus, the problem becomes more computationally complex. In other
words, when intervals are narrower, the problem of computing statistics under
interval uncertainty becomes easier. It is therefore reasonable to consider the case
of narrow intervals as the first case in which we can expect feasible algorithms
for computing statistics of interval data.

How can we describe “narrowness” formally? The very fact that we are per-
forming the statistical analysis means that we assume that the actual values
x1, . . . , xn come from a probability distribution, and we want to find the statis-
tical characteristics of this probability distribution. Usually, this distribution is
continuous: normal, uniform, etc. Formally, a continuous distribution is a one
for which a finite probability density ρ(x) exists for every x. In this case, for
every the real number a, the probability p =

∫ a+δ

a−δ
ρ(x) dx to have a random

value within an interval [a − δ, a + δ] is approximately equal to ρ(a) · 2δ and
thus, tends to 0 as δ → 0. This means that for every value a, the probability
to have a random value exactly equal to a is 0. In particular, this means that
with probability 1, all the values x1, . . . , xn randomly selected from the original
distribution are different.

The data intervals x1, . . . ,xn contain these different values x1, . . . , xn. When
the intervals xi surrounding the corresponding points xi are narrow, these in-
tervals do not intersect. When their widths becomes larger than the distance
between the original values, the intervals start intersecting.

Thus, the ideal case of “narrow intervals” can be described as the case when
no two intervals xi intersect.
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9 Second Class: Slightly Wider Intervals

Narrow intervals can be described as intervals which do not intersect at all.
Namely, we have a set of (unknown) actual values x1 < x2 < . . . < xn, and
we have intervals around each value which are so narrow that the neighboring
intervals xi and xi+1 do not intersect.

As the widths of the intervals increase, they start intersecting. At first, only
the neighboring intervals xi and xi+1 intersect, but intervals xi and xi+2 still
do not intersect. As the widths increase further, intervals xi and xi+2 start
intersecting, etc. When the intervals become very wide, all n intervals intersect.

We can therefore gauge the degree of narrowness by the number of intervals
which have a common point.

Specifically, we define the case of slightly wider intervals as the situation when
for some integer K, no set of K intervals has a common intersection. The case
of narrow intervals correspond to K = 2, the next case is K = 3, etc. – all the
way to the general case K = n.

As we have mentioned, the narrower the intervals, the easier the corresponding
computational problem. Since the parameter K is a measure of this narrowness,
it is therefore reasonable to expect that feasible algorithms exist in this case –
at least for values of K which are not too large.

10 Third Class: Single Measuring Instrument

We have already mentioned that one of the most widely used engineering tech-
niques for dealing with measurement uncertainty is linearlization. To be able
to easily compute the range C of a statistic C by using linearization, we must
make sure not only that intervals are relatively narrow, but also that they are
approximately of the same size: otherwise, if, say, Δx2

i is of the same order as
Δxj , we cannot meaningfully ignore Δx2

i and retain Δxj . In other words, the
interval data set should not combine high-accurate measurement results (with
narrow intervals) and low-accurate results (with wide intervals): all measure-
ments should have been done by a single measuring instrument (or at least by
several measuring instruments of the same type).

The traditional linearization techniques only provide us with an approximate
range. However, as we will show, for some classes of problems, these approximate
estimates can be refined into an efficient computation of the exact range. Be-
cause of this possibility, let us formulate, in precise terms, the class of problems
for which linearization is possible, i.e., the class of problem for which all the
measurements have been performed by a single measuring instrument.

How can we describe this class mathematically? A clear indication that we
have two measuring instruments (MI) of different quality is that one interval is
a proper subset of the other one: [xi, xi] ⊆ (xj , xj).

This restriction only refers to not absolutely measurement results, i.e., to
non-degenerate intervals. In addition to such interval values, we may also have
machine-represented floating point values produced by very accurate measure-
ments, so accurate that we can, for all practical purposes, consider these values
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exactly known. From this viewpoint, when we talk about measurements made
by a single measuring instrument, we may allow degenerate intervals (i.e., exact
numbers) as well.

As we will see, the absence of such pairs is a useful property that enables us
to compute interval statistics faster. We will also see that this absence happens
not only for measurements made by a single MI, but also in several other useful
practical cases. Since this property is useful, we will give it a name.

We say that a collection of intervals satisfies a subset property if [xi, xi] �⊆
(xj , xj) for all i and j for which the intervals xi and xj are non-degenerate.

11 Fourth Class: Several MI

After the single MI case, the natural next case is when we have several (m) MI,
i.e., when our intervals are divided into several subgroups each of which has the
above-described subset property.

We have already mentioned that the case of a single MI is the easiest; the
more MI we involve, the more complex the resulting problem – all the way to
the general case m = n, when each measurement is performed by a different MI.

Since the parameter m is a measure of complexity, it is therefore reasonable
to expect that feasible algorithms exist for the case of a fixed number m – at
least for the values of m which are not too large.

12 Fifth Class: Privacy Case

In the previous text, we mainly emphasized that measurement uncertainty natu-
rally leads to intervals. It is worth mentioning, however, that interval uncertainty
may also come from other sources: e.g., from the desire to protect privacy in sta-
tistical databases. Indeed, often, we collect large amounts of data about persons
– e.g., during census, or during medical experiments. Statistical analysis of this
data enables us to find useful correlations between, e.g., age and effects of a
certain drug, or between a geographic location and income level. Because of this
usefulness, it is desirable to give researchers an ability to perform a statistical
analysis of this data. However, if we simply researchers to receive answers to ar-
bitrary queries and publish the results of their analysis, then these results may
reveal the information from the databases which is private and not supposed to
be disclosed.

One way to protect privacy is not to keep the exact actual values of the
privacy-related quantities such as salary or age in the database. Instead, we fix
a finite number of thresholds, e.g., 0, 10, 20, 30 years, and for each person, we
only record the corresponding age range: from 0 to 10, or from 10 to 20, or from
20 to 30, etc. Since the actual values are not stored in the database anymore, no
queries can disclose these values.

So, this idea solves the privacy problem, but it opens up another problem: how
can perform statistical processing on this privacy-related interval data? Suppose
that we are interested in the values of a statistical characteristic C(x1, . . . , xn).
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If we knew the actual values x1, . . . , xn, then we could easily compute the value
of this characteristic. However, in case of privacy-related interval uncertainty,
all we know is intervals xi = [xi, xi] of possible values of xi. Different values
xi ∈ xi lead, in general, to different values of C(x1, . . . , xn). So, a reasonable
idea is to return the range of possible values of the characteristic C(x1, . . . , xn)
when xi ∈ xi.

From the algorithmic viewpoint, we get the same problem as with measure-
ment-related interval uncertainty: find the range of the given characteristic
C(x1, . . . , xn) on given intervals x1, . . . ,xn. The difference between this case
and the two previous cases is that, in the first two cases, we do not know the
exact values, while in this case, in principle, it is possible to get the exact value,
but we do not use the exact values, because we want to protect privacy.

From the mathematical viewpoint, privacy-related intervals have the following
property: they either coincide (if the value corresponding to the two patients
belongs to the same range) or are different, in which case they intersect in at most
point. Similarly to the above situation, we also allow exact values in addition
to ranges; these values correspond, e.g., to the exact records made in the past,
records that are already in the public domain.

We will call interval data with this property – that every two non-degenerate
intervals either coincide or intersect in at most one point – privacy case.

Comment. For the privacy case, the subset property is satisfied, so algorithms
that work for the subset property case work for the privacy case as well.

Comment. Sometimes, in the privacy-motivated situation, we must process in-
terval data in which intervals come from several different “granulation” schemes.
For example, to find the average salary in North America, we may combine US
interval records in which the salary is from 0 to 10,000 US dollars, from 10,000 to
20,000, etc., with the Canadian interval records in which the ranges are between
0 to 10,000 Canadian dollars, 10,000 to 20,000 Canadian dollars, etc. When we
transform these records to a single unit, we get two different families of intervals,
each of which satisfies the subset property. Thus, to handle such situations, we
can use algorithms developed for the several MI case.

13 Sixth Class: Non-detects

An important practical case is the case of non-detects. Namely, many sensors
are reasonably accurate, but they have a detection limit DL – so they cannot
detect any value below DL but they detect values of DL and higher with a very
good accuracy.

In this case, if a sensor returns a value x̃ ≥ DL, then this value is reasonably
accurate, so we can consider it exact (i.e., a degenerate interval [x̃, x̃]). However,
if the sensor does not return any signal at all, i.e., the measurement result x̃ = 0,
then the only thing we can conclude about the actual value of the quantity is
that this value is below the detection limit, i.e., that it lies in the interval [0, DL].
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In this case, every interval is either an exact value or a non-detect, i.e., an
interval [0, DLi] for some real number DLi (with possibly different detection
limits for different sensors). Under this assumption, the resulting non-degenerate
intervals also satisfy the subset property. Thus, algorithms that work for the
subset property case work for this “non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for the
non-detects case when all sensors have the same detection limit DL.

14 Results

The main results are summarized in the following table:

Table 1. Computational complexity of statistical analysis under interval uncertainty:
an overview

Case E V L, U S

Narrow intervals O(n) O(n) O(n · log(n)) O(n2)
Slightly wider

narrow intervals O(n) O(n · log(n)) O(n · log(n)) ?
Single MI O(n) O(n) O(n · log(n)) O(n2)

Several (m) MI O(n) O(nm) O(nm) O(n2m)
New case O(n) O(nm) ? ?

Privacy case O(n) O(n) O(n · log(n)) O(n2)
Non-detects O(n) O(n) O(n · log(n)) O(n2)

General O(n) NP-hard NP-hard ?

Here, E is a population mean, V is a population variance, S
def=

1
n

·
n∑

i=1

(xi−E)3 is

the population skewness, and L
def= E−k0 ·σ and U

def= E+k0 ·σ are endpoints of
the confidence interval, where a parameter k0 is usually taken as k0 = 2, k0 = 3,
or k0 = 6.

Comment. For descriptions of the algorithms, and for proofs of the algorithm
correctness, see [18, 46] and references therein; see also [1, 3, 12, 13, 14, 20, 21,
23, 24, 25, 26, 27, 28, 29, 31, 44, 45, 47].

Applications. There are several application areas in which it is possible to take
into account interval uncertainty in statistical data processing:

• the seismic inverse problem in geophysics [2],
• the problem of estimating and decreasing the clock cycle in computer chips

[36, 37],
• the problem of separating the core from the fragments in radar data process-

ing [15], and
• the problem of inverse half-toning in image processing [11].
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15 Conclusion

In many areas of science and engineering, it is desirable to estimate statistical
characteristics (mean, variance, covariance, etc.) under interval uncertainty. Such
a modification is necessary, e.g., to process data from statistical databases, where,
in order to maintain privacy, we only keep interval ranges instead of the actual
numeric data (e.g., a salary range instead of the actual salary).

Most resulting computational problems are NP-hard – which means, crudely
speaking, that in general, no computationally efficient algorithm can solve all
particular cases of the corresponding problem.

In this paper, we overview practical situations in which computationally effi-
cient algorithms exist: e.g., situations when measurements are very accurate, or
when all the measurements are done with one (or few) instruments.
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