Using Interval Function Approximation to
Estimate Uncertainty

Chenyi Hu

Computer Science Department
University of Central Arkansas
Conway, AR 72035, USA

CHu@uca.edu

Summary. Uncertainties in the real world often appear as variabilities of observed
data under similar conditions. In this paper, we use interval functions to model un-
certainty and function volatility. To estimate such kinds of functions, we propose a
practical interval function approximation algorithm. Applying this algorithm, we have
studied stock market forecasting with real economic data from 1930-2004. The com-
putational results indicate that interval function approximation can produce better
quality forecasts than that obtained with other methodd].

1 Introduction

1.1 Interval Function

Functions have been among the most studied topics in mathematics and appli-
cations. Provided in analytical form, a function can be easily examined for its
properties. However, in real world applications, the analytical form of a function
is often unknown. To discover a function that properly models an application is
a major challenge. Hence, computational methods on interpolation and approx-
imation are often applied in estimating a function. Also, the main objective of
studying differential and integral equations is to search for the unknown function
that satisfies given conditions either theoretically or computationally.

Real world observations often differ from from the exact mathematical defini-
tion of a function. Even for a fixed x, the observed values of y may be different
from time to time. These kinds of uncertainties are traditionally considered as ef-
fects of random noise and are modeled with probability theory. These variations
of the value of a function f, for a given x, are often within a finite interval rather
than completely random. Also, due to imprecise measurement and control, the
value of x can be within an interval rather than an exact point. This means that
an observed data pair can be represented as an interval valued pair (x,y) rather
than precise point (z,y).

! The computational results have been published recently [12]. This paper is a gener-
alized abstraction.
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Definition 1. Let f be a mapping from " — R and x be an interval vector in
R™ (i. e. each component of x is an interval in R). If for any interval vector x
there is an interval y such that f(x) =y, then f is an interval function.

We use Figure 1 to illustrate a volatile function that can be better modeled
with a interval function. In observing the function values in the figure repeatedly,
due to imprecise measurement and control, one may obtain different values of
y even for a “fixed” x. More importantly, even one can control x precisely and
get the exact y, the point data pairs (z,y) can be misleading when use them
in classical function interpolation and approximation. Therefore, an observation
recorded as (x,y) should be more appropriate.

Fig. 1. A volatile function

We say that a real valued function f is ‘volatile’ in a domain D, if within
any small subset of D the sign of the derivatives of f alternates frequently.
Figure 1 presents a ‘volatile’ function. Real world examples of volatile functions
include stock prices during any volatile trading day and recorded seismic wave.
As shown in Figure 1, for a volatile function, it would be more appropriate to
use an interval valued pair to record an observation.

1.2 The Objective of This Paper

Using observed discrete data pairs (z,y) to computationally approximate an
unknown function has been intensively studied. Numerical polynomial interpo-
lation and the least squares approximation are the classical methods in scientific
computing. In this paper, we view uncertainty as function volatility modeled
with interval valued function. Our objective is to establish a general algorithm
that can approximate an unknown interval function. In other words, we try to
estimate an interval function from a collection of interval valued pairs (x,y).
Algorithms on interpolating interval functions have been discussed in [13]. In
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this paper, we focus on approximation, specifically, on the least squares approx-
imation, since it is probably the most broadly used computational method in
function approximation.

The rest of this paper is organized as the follow. Section 2 reviews briefly
the classical least-squares approximation. Section 3 presents an algorithm for
interval function least squares approximation. Section 4 discusses assessment
indicators. Section 5 presents a case study. Section 6 concludes the paper.

2 Least Squares Approximation

In this section, we briefly review the principle and computational methods of
the ordinary least squares approximation.

2.1 Basis of a Function Space

Let us start with basic concepts related to a function space first.

Definition 2. Let F' be a function space and @ = {¢g, ¢1,- -, dn, -} be a set
of functions in F'. We say that @ is a basis of F' if for any function f € F and
any given € > 0 there is a linear combination of ¢, f = Zaj¢j, such that
J
|f(z) — Z a;¢;| < e for all z in the domain.
J

For example, the set {1,z,22,---} is a basis of polynomial function space as
well as a basis of a function space that consists of all continuous functions. Of
course, there are other bases for a function space. For example, Chebychev poly-
nomials, Legendre polynomials, sine/cosine functions, and others are commonly
used as bases in approximating continuous functions.

2.2 The Least Squares Principle

For a continuous function f (even with countable discontinuities), we may ap-

proximate it as f(x) =~ Z a;¢;(x), where ¢;j(x) is a preselected set of m
0<j<m

basis functions. To determine the coefficient vector o = (g, ay, - - -, ), the

least squares principle requires that the integral of the squares of the defer-

ences between f(x) and Z a;j¢;(x) is minimized. In other words, applying
0<j<m

the least-squares principle in approximating a function f, one selects the vector

a= (ag,a1,- -+, ay,)T that minimizes / f(x) — Z a;j¢i(x) | d.
0<j<m
2.3 Discrete Algorithm

In real world applications, one usually only knows a collection of N pairs of
(4, y;) rather than the function y = f(z). Therefore, one minimizes the total
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2

N

sum Z Yi — Z ajd;(x;) | dx instead. The classical algorithm that com-
i=1 0<j<m

putationally determines the coefficient vector « is as the follow:

Algorithm 1

(i) Evaluate the basis functions ¢;(z) at z; forall1 <i < N and 1 <j <my
(ii) Form the matrix

N Xipr X - Xiom
Dipr Xidl Zidiga - Xididm
A= Xips Dipapr i3 - Lidotm (1)

Litm Lidmdr Lidmds -+ Lid?,
and the vector

b= (Ziyi Diyitn(v:) Diyiga (i) - Zividm (1) (2)

(iii) Solve the linear system of equations Aa = b for .

The linear system of equations Aa = b above is called the normal equation. In
stead of normal equations, a more current approach applies a design matrix with
a sequence of Householder transformations to estimate the vector a.. For details
about Householder transformations, it is out of the main scope of this paper,
readers may refer [16] or most books that cover computational linear algebra.
Although the basic idea of this paper can be applied to both approaches, we use
the normal equation approach in the rest of is paper for its simplicity.

2.4 Time Series and Slicing-Window

We now switch our attention to the dataset. In real world applications, an ob-
served data pair (x;,y;) is often associated with a specific time. The collection
of data pairs, if ordered chronically, is called a time series. Time series have been
extensively studied for prediction and forecasting [5] and [7]. Rules and func-
tions often rely on a specific time period. We call it time-varying, that is, the
relationship is valid for a limited time period. Therefore, in applying function
approximation on a time series, one should use only data inside an appropri-
ate time-window to estimate the relationship. By slicing the time-window (also
called rolling), one obtains a sequence of function approximations such that each
of them valid only for a specific time-window.

3 Interval Function Approximation

Previous studies on least squares approximation mostly assume, if not all, point
valued data. There are several computational issues that need to be considered
in order to apply Algorithm 1 on interval valued pairs (x,y) to approximate an
interval function.
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3.1 Computational Challenges

With interval arithmetic [I7], it is straightforward to perform both steps 1 and
2 in Algorithms 1. However, it presents a challenge in the step 3. This is because
the normal equations are now interval systems of linear equations Aa = b. The
solution set of an interval linear system of equations is mostly irregular shaped
and non-convex [I§]. A naive application of interval arithmetic to bound the
solution vector v may cause serious overestimation due to the wrap effects, and
then negatively affect the approximation quality. Using the design matrix ap-
proach would not solve the problem since finding a Householder transformation
for an interval matrix remains a challenge.

3.2 An Inner Approximation Approach

While an interval x is usually presented by its lower and upper bounds as x =
T+
[, 2], it can also be represented by its midpoint mid(x) = * and its width

w(x) = x —x. This creates a two-step approach where we consider the midpoint
and width separately in each of the two steps.

Instead of finding the lower and upper bounds of the interval vector « in the
step 3 of Algorithm 1, let us first try to find its midpoint vector, which is a scalar
vector. This suggests us to match the center of two interval vectors Aa and b
in the interval linear system of equations Aa = b. Let A,,;q be the midpoint
matrix of A, and b,,;q be the midpoint vector of b. We solve the non-interval
linear system of equations A,;qa0 = byiq for a.

We would like to emphasize that the result of y = f(x) ~ ag+ Z a;;(x)

1<j<m
is an interval even when we use the midpoint of the interval vector « in the
calculation. This is because of that the independent variable x is interval valued.
However, by collapsing an interval vector « to its midpoint, we could reasonably
expect that the approximation is an inner interval approzimation.

3.3 Width Adjustment

Now, let us consider the width. One may try to look for the width vector of «
vector or for the width of y. There can be different computational heuristics too.
For example, one may select a width vector that makes A« as close as possible to
b in the step 3 of Algorithm 1. One may also use widths to perform least-square
approximation to estimate the width of y. Another computational heuristic is
to adjust the width by multiplying a scale factor to the inner approximation. In
our case study, we adopted the later approach. We believe that there are still
many open questions for further study on width adjustment.

3.4 Interval Least-Squares Approximation

By summarizing the above discussions, we revise Algorithm 1 to Algorithm 2
below for interval function least squares approximation.
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Algorithm 2

(i) Input available interval data pairs (x;,y;) for 1 <i < N;

(ii) Evaluate matrix A and vector b with interval arithmetic;

(iii) Find A,iq and byy;4, the midpoint matrix of A and the midpoint vector of
b, respectively;

(iv) Solve the linear systems of equations: A,,;q¢ = biid;

(v) Apply the vector « to calculate an inner approximation with interval arith-
metic;

(vi) Modify the initial approximation with a width adjustment.

3.5 Other Approaches to Obtain an Interval Approximation

One may obtain an interval approximation without using interval arithmetic
at all. The lower and upper bounds of interval data pairs (x;,y;) form two
collections of point data (mi,yi) and (x;,y,). By applying point least square
approximation to them separately, one can obtain two point estimations. These
two estimations can form an interval estimation. We call this approach the min-
maz interval approzimation. This has been reported and applied in [T10] and [TT].

Another way to obtain an interval approximation is to apply classical statis-
tic/probabilistic approach. By adding to and subtracting from a point approxi-
mation a certain percentage of standard deviations, one can obtain forecasting
intervals. In the literature, this is called a confidence interval. However, the case
study in Section 5 of this paper implies that, at least in certain cases, interval
function lease squares approximation may produce better computational results
than that obtained with the min-max interval and confidence interval.

4 Assessing Interval Function Approximation

There are different ways to produce an interval approximation. A immediate
question is how to assess the quality of different interval estimations. We define
two measurements for quality assessment of an interval approximation.

Definition 3. Let y,,, be an approximation for the interval y. The absolute
error of the approximation is the absolute sum of the lower and upper bounds

errors, i.e. \yest — Yl + Yest — ¥l

Example 1. If one obtained [—1.02,1.95] as an approximation for the interval
[—1.0,2.0], then the absolute error of the estimation is [(—1.02)—(—1.0)|+]1.95—
2.0 = 0.02 + 0.05 = 0.07.

Since both y.., and y are intervals, an additional meaningful quality mea-
surement can be defined. The larger the overlap between the two intervals the
better the approximation should be. By the same token, the less the non-overlap
between the two intervals the more accurate the forecast is. In addition, the ac-
curacy of an interval estimation should be between 0% and 100%. By using the
notion of interval width, which is the difference of the upper and lower bounds
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of an interval, we can measure the intersection and the union (or the convex
hull) of the two intervals. Let w( ) be the function that returns the width of an
interval. Then, we define the concept, named the accuracy ratio of an interval
approximation, as the follow.

Definition 4. Let y_ ;, be an approximation for the interval y. The accuracy ra-
U)(y N yest) lf

tio of the approximation is
’U](y U Yest)

(¥NYest) # 0. Otherwise, the accuracy

ratio is zero.

Example 2. Using [—1.02,1.95] to approximate the interval [—1.0,2.0], the
w([-1.02,1.95]N[~1.0,2.0])  w([-1.0,1.95]) 2.95
w([—1.02,1.95] U [-1.0,2.0])  w([-1.02,2.0]) 3.02

As in classical statistics, for a collection of interval estimations, one can cal-
culate the mean and standard deviation of the absolute error and the accuracy

ratio. Furthermore, one may also apply probability theory to perform compar-
isons of different approximations.

accuracy ratio is =97.68%.

5 Case Study: Forecasting the S & P 500 Index

The S & P 500 index is a broadly used indicator for the overall stock market.
Using interval least squares approximation, we have performed S & P 500 an-
nual forecast with astonishing computational results[d] and [12]. We report it
here again as a case study with comparisons against the result obtained with
traditional ordinary least squares forecasting.

5.1 The Model

Driven by macroeconomic and social factors, the stock market usually varies
with time. The main challenge in studying the stock market is its volatility and
uncertainty. The arbitrage pricing theory (APT) [20] provides a framework that
identifies macroeconomic variables that significantly and systematically influence
stock prices. By modeling the relationship between the stock market and relevant
macroeconomic variables, one may try to forecast the overall level of the stock
market.

The model we use in this case study is a broadly accepted one by Chen, Roll
and Ross (1986). According to their model, the changes in the overall stock
market value (SP;) are linearly determined by the following five macroeconomic
factors: the growth rate variations of seasonally-adjusted Industrial Production
Index (IP;); changes in expected inflation (D1I;) and unexpected inflation (U1);
default risk premiums (DF}); and unexpected changes in interest rates (T'M,).
This relationship can be expressed as

SP,=a;+ I;(IP) + U (UI) + D¢(DI;) + F;(DFy) + Ty (T My)

By using historic data, one may estimate the coefficients of the above equation
to forecast changes of the overall stock market. There is a general consensus in
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the financial literature, that relationships between financial market and macroe-
conomic variables are time-varying. Hence the coefficients are associated with a
time-window.

In the literature, it is called an in-sample forecast if using the obtained co-
efficients in a time-window and the equation above to calculate the SP for the
last time period in the time-window. It is called an out-of-sample forecast if us-
ing the obtained coefficients in a time-window to calculate the SP for the first
time period that immediately follows the time-window [4]. By slicing the time-
window (also called rolling), one obtains a sequence of coefficients and forecasted
S P values. The overall quality of forecasting can be measured by comparing the
forecasts against actual S P values. In practice, the out-of-sample-forecast is more
useful than in-sample-forecast because it can make predictions.

5.2 The Data

So far the primary measurements used in economics and finance are quantified
points. For instance, a monthly closing value of an index is used to represent the
index for that month even though the index actually varies during that month.
The available data in this case study are monthly data from January 1930 to
December 2004. We list a portion of the data here.

Date UI DI SP IP DF ™
30-Jan -0.00897673 O .014382062 -0.003860512 0.0116 -0.0094
30-Feb -0.00671673 -0.0023 .060760088 -0.015592832 -0.0057 0.0115
30-Mar -0.00834673 0.0016 .037017628 -0.00788855  0.0055 0.0053
30-Apr 0.00295327 0.0005 .061557893 -0.015966279 0.01  -0.0051
30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118
30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

04-Jun 0.00312327 -0.0002 0.026818986 0.005903385 -0.0028 0.0115
04-Jul -0.00182673 0.0002 -0.024043354 0.00306212  0.0029 0.0147
04-Aug 0.00008127 0.0002 -0.015411102 -0.002424198 O 0.0385
04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085
04-0ct 0.00470327 O 0.000368476 0.002001341 0.001  0.0143
04-Nov -0.00002273 O 0.044493038 0.006654848 0.0034 -0.0245
04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

In this case study, we use a time-window of ten years to obtain the out-of-
sample annual forecasts for 1940-2004.

5.3 Interval Rolling Least Squares Forecasts

To perform interval rolling least squares forecasts, we need interval input data.
From the provided monthly data, for each of the attributes, we choose its
annual minimum and maximum to form the interval input data. By applying
Algorithm 2, we obtain initial forecasts first. For each of them, we then adjust
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the width of the predicted S & P 500 interval to the average of that of those
within the time-window. The program was written in C++4-. The software pack-
age IntBLAS [I9] was applied for interval and related linear algebra operations.
Figure 2 illustrates the out-of-sample annual interval forecasts.

Out of Sample 10 Year Rolling Interval Forecasts

02

Chenges n S ock Ma ke

02

Year

[—0—SP Lower Bound —— Predicted Loweer —&—SP Upper Bound —%— Predicted Upper |

Fig. 2. Out-of-Sample Annual Interval Forecasts(1940-2004)

For the purpose of quality comparison, we calculated the annual point fore-
casts that are commonly used in financial study. We obtained the out-of-sample
annual forecasts (in percent) for a period of 1940-2004. The out-of-sample annual
point forecasts have an average absolute forecasting error of 20.6% with a stan-
dard deviation of 0.19. By adding to and subtracting from the point-forecasts
with a proportion of the standard deviation, we may form confidence interval
forecasts with 95% statistical confidences.

It is worth pointing out that the ranges of Figure 2 are significantly less than
that of Figure 3 at the ratio only about 14%.

5.4 Quality Comparisons

To assess the quality of the above forecasts, we use the following indicators: (1)
the average absolute forecast error, (2) the standard deviation of forecast errors,
(3) the average accuracy ratio, and (4) the number of forecasts with 0% accuracy.
We summarize the statistics of the quality indicators in the table below.

All measured indicators for forecasting quality in the table suggest that
interval OLS significantly outperform point-based forecasts with a much less
mean forecast error. The much smaller standard deviations produced by the in-
terval approaches indicate that the interval forecasting is more stable than other
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Figure 1. Qut-of-sample 10-year rolling OL S forecasts

Changes in stock market
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Fig. 3. Out-of-Sample Annual Point Forecasts (1940-2004)

Table 1. Quality comparison of annual forecasts (1940-2004)

Methods/Item Absolute standard Accuracy Number of
mean error deviation ratio 0 accuracy
OLS 0.20572 0.18996 NA NA
std dev. 95% confidence 0.723505  0.311973 0.125745 5
Min-Max interval 0.066643  0.040998 0.4617 0
Initial interval Fcast 0.073038  0.038151 0.385531 0
Interval Fcast 0.0516624 0.032238 0.641877 0

comparing methods. Compared with the point-based confidence interval fore-
casting, interval methods produce a much higher average accuracy ratio. The
interval scheme with width adjustments further improves the overall forecast-
ing quality of initial approximations in terms of the higher average accuracy
ratio. All forecasts with interval computing have a positive accuracy ratio while
a number of the point-based confidence intervals has zero accuracy.

6 Conclusion

In this paper, we model uncertainty as volatilities of a function. It is more rea-
sonable to record volatile data as interval valued nodes of an interval function
rather than point values. To apply classical least squares approximation with
discrete interval valued nodes, we use interval arithmetic to obtain the normal
equation. By using the midpoint approach, we calculate an inner approximation
initially. Then, we adjust its width with computational heuristics. Although the
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function to be approximated is unknown, we can still assess the quality of an
interval approximation statistically with provided data. These quality indicators
include absolute error, accuracy ratio, and their means and standard deviations.

Using this approach, in our case study, we performed annual forecasts for the
S & P 500 index from 1940-2004 with real economical data. Although it is merely
one of the initial attempts to use interval methods in financial forecasting, the
empirical results provide astonishing evidence that interval least squares approx-
imation may outperform traditional point approaches in terms of the overall less
mean error and higher average accuracy ratio. Hence, interval methods have a
great potential in dealing with uncertainty.
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