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Summary. The authors previous work on probabilistic constraint reasoning assumes
the uncertainty of numerical variables within given bounds, characterized by a priori
probability distributions. It propagates such knowledge through a network of con-
straints, reducing the uncertainty and providing a posteriori probability distributions.
An inverse problem aims at estimating parameters from observed data, based on some
underlying theory about a system behavior. This paper describes how nonlinear in-
verse problems can be cast into the probabilistic constraint framework, highlighting its
ability to deal with all the uncertainty aspects of such problems.

1 Introduction

Many problems of practical interest can be formulated as nonlinear inverse prob-
lems. Such problems aim at finding the parameters of a model, given by systems
of equations, from noisy data. Classical approaches for these problems are based
on nonlinear regression methods, which search for the model parameter values
that best-fit a given criterion [9]. Best-fit approaches, often based on local search
methods, provide a non reliable single solution which may not be enough to the
adequate characterization of the parameters.

Other stochastic approaches [16] associate a probabilistic model to the prob-
lem, from which is possible to obtain any sort of statistical information on the
model parameters. These approaches typically rely on extensive random sam-
pling to characterize the parameter space. However, even after intensive compu-
tations, no definitive conclusion can be drawn with these approaches, because a
significant subset of the parameter space may have been missed.

In contrast, bounded-error approaches [5, 4] aim at characterizing the set of
all solutions consistent with the uncertainty on the parameters, the model and
the data. This is achieved through constraint reasoning, where initial intervals,
representing the uncertainty on parameter values, are safely narrowed by reliable
interval methods. Nevertheless, this approach has a major pitfall as it considers
the same likelihood for all values in the intervals. In the interval computations
context a combination of intervals with probabilistic uncertainty was proposed
[6]. However, its dependence on a forward evaluation algorithm makes it unsuit-
able for inverse problems.
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The authors previous proposal of a probabilistic constraint framework [2]
aims at computing an a posteriori distribution from an a priori distribution
accordingly to safe reasoning on a continuous constraint model. In this paper
we argue that such framework may constitute an attractive alternative approach
to inverse problems, bridging the gap between pure probabilistic reasoning and
pure safe reasoning.

The paper is organized as follows. In section 2 inverse problems are introduced.
In sections 3 and 4 the constraint programming framework and the basic ideas of
probabilistic reasoning are presented, together with their existing approaches to
inverse problems. Next probabilistic interval computations are briefly presented.
Section 6 describes the authors probabilistic constraint framework and highlights
its ability to deal with all the uncertainty aspects of inverse problems. Finally,
conclusions and future work are discussed.

2 Inverse Problems

A mathematical model describes a system by a set of variables and equations
that establish relationships between them. In the context of inverse problems, the
variables are divided into model parameters, whose values completely character-
ize the system, and observable parameters, which can be measured. The model is
typically a forward model, defining a mapping from the model parameters to the
observable parameters. It allows predicting the results of measurements based
on the model parameters. An inverse problem is the task of obtaining values for
the model parameters from the observed data.

The forward mapping, resulting from some theory about the system behavior,
is commonly represented as a vector function f from the parameter space m
(model parameters) to the data space d (observable parameters):

d = f(m) (1)

Such relation may be represented explicitly by an analytical formula or implicitly
by a complex system of equations or some special purpose algorithm.

Nonlinearity and uncertainty play a major role in modeling the behavior of
most real systems. In inverse problems the main sources of uncertainty are model
approximations and measurement errors. Given uncertainty, an inverse problem
may have no exact solutions, since usually there are no model parameter values
capable of predicting exactly all the observed data. However, since the model
equations are often highly nonlinear, uncertainty may be dramatically magnified,
and an arbitrarily small change in the data may induce an arbitrarily large
change in the values of the model parameters.

For example, consider the data summarized in Table 1 based on the USA
census over the years 1790 (normalized to 0) to 1910 with a 10 year period.

Assuming that an exponential growth is an acceptable model for the popu-
lation growth, the forward mapping would be defined by the following set of
equations (one for each pair 〈ti, di〉):
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Table 1. US Population (in millions) over the years 1790 (0) to 1910 (120)

ti 0 10 20 30 40 50 60 70 80 90 100 110 120
di 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 39.8 50.2 62.9 76.0 92.0

di = m0e
m1ti (2)

where m0 and m1 are the model parameters whose values must be estimated
from the observed data. This is an example of an inverse problem with a simple
nonlinear forward model but with no possible value combination for the model
parameters satisfying the observed data set.

This problem is classically handled as a curve fitting problem [9]. Such
approaches for nonlinear inverse problems are based on nonlinear regression
methods which search for the model parameter values that best-fit a given crite-
rion. For instance, the (weighted) least squares criterion minimizes a (weighted)
quadratic norm of the difference between the vector of observed data and the
vector of model predictions.

In the above example the weighted least squares criterion would be the mini-
mization of the expression:

∑

i

(
di − m0e

m1ti

σi

)2

(3)

where σi is the weight associated with the error of the ith observation.
The minimization criteria (such as the weighted least squares criterion) are

justified by the hypothesis that all problem uncertainties may be modeled using
some well behaved distributions (such as Gaussians) eventually with specific
parameter values for the different observations (the σi values). This is the case for
some linear or weakly nonlinear inverse problems, where efficient computational
techniques exist to solve them as curve fitting problems [9].

In generic nonlinear inverse problems, where no explicit formula can be pro-
vided for obtaining the best-fit values, minimization is often performed through
local search algorithms. However, the search method may stop at a local mini-
mum with no guarantees on the complete search space. Moreover, in most prob-
lems, a single best-fit solution may not be enough. Since other solutions could
also be quite satisfactory with respect to the adopted criterion, the uncertainty
around possible solutions should also be characterized. Analytic techniques can
only be used for this purpose relying on some special assumptions about the
model parameter distributions (for instance, assuming a single maximum). How-
ever, if the problem is highly nonlinear such assumptions do not provide realistic
approximations for the uncertainty.

3 Continuous Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) [10] is defined by a triple (X;D;C)
where X is a set of variables, each with an associated domain of possible
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values in D, and C is a set of constraints on subsets of the variables. A con-
straint specifies which values from the domains of its variables are compatible.
A solution to the CSP is an assignment of values to all its variables, which satis-
fies all the constraints. In continuous CSPs (CCSPs) [8, 1, 15] variable domains
are continuous real intervals and constraints are equalities and inequalities. The
space of possibilities is represented by boxes, i.e., the Cartesian product of real
intervals. The CCSP framework is powerful enough to model a wide range of
problems. In particular, engineering systems with components described as sets
of continuous valued variables and relations defined by numerical equalities or
inequalities, eventually with uncertain parameters. Continuous constraint rea-
soning eliminates value combinations from the initial search space (the Cartesian
product of the initial domains), without loosing solutions. It combines pruning
and branching steps until a stopping criterion is satisfied.

The pruning of the variable domains is based on constraint propagation. The
main idea is to use the partial information expressed by a constraint to eliminate
some incompatible values from the domain of its variables. Once the domain of
a variable is reduced, this information is propagated to all constraints with that
variable in their scopes. The process terminates when the domains cannot be
further reduced by any constraint. Safe narrowing functions (mappings between
boxes) are associated with constraints, to eliminate incompatible value combi-
nations. Efficient methods from interval analysis (e.g. the interval Newton [11])
are often used to implement efficient narrowing functions which are correct (do
not eliminate solutions) and contracting (the box obtained is smaller or equal
than the original one).

Constraint propagation is a local consistency algorithm for pruning the vari-
able domains, which is often insufficient to support safe decisions. To obtain
better pruning, it is necessary to split the boxes and reapply constraint prop-
agation to each sub-box. Such branch and prune process enforces a stronger,
non local, consistency criterion. Several consistency criteria have been proposed
[8, 1, 3], with distinct trade-offs between efficiency and pruning.

3.1 Constraint Approach to Inverse Problems

In the classical CCSP framework, the uncertainty associated with the problem is
modeled by using intervals to represent the domains of the variables. Constraint
reasoning reduces uncertainty, by reshaping the search space to become a safe
approximation of the solution space. Such framework, with its efficient techniques
to deal with nonlinear constraints and its safe uncertainty narrowing capabilities,
is naturally appealing to handle nonlinear inverse problems beyond the classical
best fitting methods.

The application of CCSPs in the context of inverse problems is known as
bounded-error estimation or set membership estimation [5, 4]. The idea is to
replace the search for a single best-fit solution (a parameter value combination)
with the characterization of the set of all solutions consistent with the forward
model, the uncertainty on the parameters and on the observations.
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In its simplest form, bounded-error estimation assumes initial intervals to
each problem variable, either a model or an observable parameter, and solve the
CCSP with the set of constraints representing the forward model. Such strategy
assumes prior knowledge on the acceptable parameter ranges as well as on the
uncertainty of (difference between) predicted and observed data.

From the safe approximation of the solution space, a projection on the set
of model parameters (or any subset of it) provides insight on the remaining
uncertainty about their possible value combinations. In practice, since the nar-
rowed ranges of the observable parameters are not essential, the variables that
represent them may be replaced by their respective initial intervals.

Applying bounded-error estimation to the inverse problem described in sec-
tion 2, it can be reformulated as a CCSP with the following set of constraints
(one for each pair 〈ti, di〉):

[di − δi, di + δi] � m0e
m1ti (4)

where δi is an acceptable difference between the ith observation and the respec-
tive predicted value, and m0 and m1 are the only variables of the constraint
model. The initial ranges for these variables should be provided within reason-
able bounds (I0 and I1) and represent the parameter uncertainty that will be
reduced through constraint reasoning. Figure 1 shows the approximation of the
solution space that is computed with I0 = [0, 100], I1 = [0.01, 0.1] and δi = 3 for
all observations presented in Table 1. From the figure, it is clear which combina-
tions of the model parameter values are consistent with the initial uncertainty
assumptions, the forward model and the observations.

m0

m .101
3

Fig. 1. Approximation of the CCSP solution space

The formulation of an inverse problem as a CCSP may easily accommodate
additional requirements, in the form of constraints, which are more difficult to
enforce in classical approaches. Moreover, the generality of this approach allows
its application to inverse problems whose forward model is not defined by an
explicit analytical formula but rather by a complex set of relations.

However, in many cases, safe reasoning is useless, intervals are often very wide,
and subsequent constraint propagation is not able to narrow them. In fact, an
uncertain value may range over a wide interval but a much narrower interval
may include the most likely values. In some problems, the plausibility distri-
bution of values within the bounds of an uncertain parameter is known. For
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instance, uncertainty due to measuring errors may be naturally associated with
an error distribution. However, the traditional CCSP framework cannot accom-
modate such information and thus, for each variable, all values in its domain are
considered equally plausible.

4 Probabilistic Reasoning

Probability provides a classical model for dealing with uncertainty. The basic
element of probability theory is the random variable, which plays a similar role
to that of the CSP variables. Each random variable has a domain where it can
assume values. In particular, continuous random variables assume real values. A
possible world, or atomic event, is an assignment of values to all the variables of
the model. An event is a set of possible worlds. The complete set of all possible
worlds in the model is the sample space. If all the random variables are con-
tinuous, the sample space is the hyperspace obtained by the Cartesian product
of the variable domains, and the possible worlds and events are, respectively,
points and regions from such hyperspace.

Probability measures may be associated with events. In the continuous case,
an assignment of a probability to a point, is representative of the likelihood in its
neighborhood. A probabilistic model is an encoding of probabilistic information,
allowing to compute the probability of any event, in accordance with the axioms
of probability. The usual method for specifying a probabilistic model assumes,
either explicitly or implicitly, a full joint probability distribution, which assigns
a probability measure to each possible world.

Probabilistic reasoning aims at incorporating new information, known as evi-
dence, by updating an a priori probability into an a posteriori probability given
the evidence. The a priori probability is a description of what is known in the
absence of the evidence. For incorporating this evidence, conditioning is used.
Conditional probability P (A|B) is the probability of some event A, given the oc-
currence of some other event B. The a posteriori probability is the conditional
probability when the relevant evidence is taken into account.

Probabilistic graphical models [7] (Markov networks and Bayesian networks
[13]) provide a powerful framework for efficient probabilistic reasoning. The idea
is to use a probabilistic network that captures the structural properties of the
probabilistic model (such as conditional independence) and defines an implicit
full joint probability distribution. Given new evidence (information about some
nodes), belief propagation [13] is one of the most efficient inference algorithms to
compute a posteriori probabilities for all the non-evidence nodes in the network.
However, such approaches, which require the full specification of a conditional
probability at each node of the network, are often inadequate for continuous
nonlinear problems.

4.1 Probabilistic Approach to Inverse Problems

Inverse problems are often handled by probabilistic approaches that associate an
explicit probabilistic model to the problem [16]. Prior information on the model
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parameters is represented by a probability distribution, which is transformed
into an a posteriori probability distribution, by incorporating a forward theory
(relating the model parameters to the observable parameters) and the actual
result of the observations (with their uncertainties).

On these approaches all the information related to inverse problems is de-
scribed using probability densities. The a posteriori probability density of the
model parameters σM (m) can be computed from these distributions. For exam-
ple, assuming linear data and model spaces this probability density is:

σM (m) = kρM (m)
∫

D

ρD(d)Θ(d,m)dd (5)

where k is a normalization constant and ρD(d), ρM (m) and Θ(d,m) are the
probability densities for the observable parameters, the model parameters and
the underlying theory.

σM (m) provides an explicit definition of a full joint probability distribution on
the model parameter space, from which is possible to obtain any sort of statistical
information on the model parameters compatible with the a priori uncertainty,
the theoretical information and the experimental results. In the particular case
where σM (m) is identically null, some incompatible assumptions were surely
made, indicating that uncertainty has been underestimated.

Only in very simple cases analytic techniques can be used to characterize
σM (m). In general, it is necessary to perform an extensive exploration of the
model space. When it is small, a systematic exploration may be achieved, com-
puting σM (m) at every point of a grid defined over the complete space. Usually,
such exploration cannot be systematic since too many points would have to be
evaluated, so it is replaced by a random (Monte Carlo) exploration. For a more
detailed description of these methods see [16, 12].

Nevertheless, only a number of discrete points of the continuous model space
is analyzed and the results must be extrapolated to characterize the overall un-
certainty. Such approach is highly dependent on the exploration length which, to
provide better uncertainty characterizations, need to be reinforced in highly non-
linear problems. Moreover, contrary to constraint reasoning approaches, these
probabilistic techniques cannot prune the search space based on model informa-
tion. Consequently the entire space is considered for exploration, independently
of its a posteriori probability distribution, which can have null values for incon-
sistent subregions.

5 Probabilistic Interval Computations

A combination of probabilistic and interval representations of uncertainty ap-
pears in [6]. This approach uses interval domains to represent the ranges of
possible values and allows the incorporation of extra information about their
probabilities. Such framework uses interval computations instead of the broader
paradigm of continuous constraint reasoning. It is specially suited for data
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processing problems, where an estimate for a quantity y must be computed,
applying a known deterministic algorithm f to the available estimates for other
quantities x1, . . . , xn.

y = f(x1, . . . , xn) (6)

Data processing problems arise naturally when the estimates for the quanti-
ties x1, . . . , xn come from direct measurements obtained by physical instruments
which provide upper bounds for the measurement errors, together with informa-
tion about the error probability distributions. Probabilistic interval computa-
tions provide an alternative approach when only partial information about error
distributions is available and standard statistical approaches [14] cannot be ap-
plied. It makes use of such partial information in the estimation of y. The idea is
to maintain intervals to represent possible values of variables as well as possible
values of parametric descriptors of their distributions (e.g., expected values).
During interval computations such intervals are maintained consistent by a step
by step evaluation process that extends basic interval arithmetic operations (see
[6] for details).

Contrary to constraint approaches, that are based on undirected relations,
this approach is highly dependent on the availability of a directed algorithm
f to compute the pretended information for y from the x1, . . . , xn estimates.
Clearly this is not the case for inverse problems where the model parameters are
not outputs but rather inputs of the forward model. So, to apply this approach,
it would be necessary to find a suitable analytical solution with respect to each
model parameter.

6 Probabilistic Constraint Reasoning

In [2] the authors proposed the Probabilistic Continuous Constraint Satisfaction
Problem (PCCSP) as an extension of a CCSP. A PCCSP is defined by (X;D;F;C),
where X is a set of continuous random variables, each with an associated inter-
val domain of possible values in D, distributed accordingly to the corresponding
probability density function (p.d.f.) in F, and C is a set of constraints on subsets
of the variables. Given a point in the domain of a random variable, its p.d.f. is
representative of the a priori probability in its neighborhood, without consider-
ing the relations between the variables. It is assumed that all relevant relations
between variables are expressed by the constraints of the model. Thus, when the
constraints are not accounted for, the variables are independent.

The initial search space represents a probability space, characterized by a
joint p.d.f. which, due to the independence assumption, is implicitly defined by
the product of the individual p.d.f.s of the random variables. In the process of
reducing uncertainty, there is a combination of continuous constraint reasoning
and probabilistic reasoning. While the first reduces uncertainty by reshaping the
search space, the second redefines the search space a priori probability distribu-
tion by computing an a posteriori distribution, based on the constraint reasoning
outcome.
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The constraints are the new information that is incorporated in the proba-
bilistic model. The solution space is the event containing all possible worlds that
satisfy the constraints. Through constraint reasoning an approximation (enclo-
sure) of the solution space is obtained. Therefore the a posteriori probability
is computed as a conditional probability, given the evidence represented by the
approximation of the solution space. This probability is calculated by the con-
ditional probability rule P (A|B) = P (A ∩ B)/P (B). The probability of region
A given the evidence, is the probability of the subregion of A contained in the
approximation of the solution space, divided by a normalizing factor.

The quality of the solution space approximation depends on the consistency
and stopping criteria used in the constraint reasoning process. Regions of the
search space that were not pruned during constraint reasoning may contain solu-
tions, although there is no guaranty that they do. In fact, there is no knowledge
why such regions are maintained. Was it due to lack of further exploration of
this regions or did they contain solutions? Normally, the process of constraint
reasoning, leads to non uniform sizes of the boxes that represent the solution
space approximation. Nevertheless, for reasoning with probabilistic information,
some kind of fairness in the exploration of the search space must be guaranteed,
so that the obtained a posteriori distribution is not biased by heterogeneous
search.

In the PCCSP, the stopping criterion is based on the maximum width ε1
allowed for the intervals that constitute a box. A box is no further explored
when all its intervals are smaller or equal to ε1. When all the boxes meet this
criterion the search stops. The stopping criterion assures some uniformity of
the solution space approximation. However, due to the consistency enforcement
narrowing capability, which differs between distinct regions of the search space,
some heterogeneity is still present.

To maintain a generic non parametric representation of the a posteriori
marginal p.d.f.s, some kind of discretization must be assumed. This is achieved
by considering an ε2-hypergrid, i.e., a grid where the dimension is the number
n of variables in the PCCSP, and each grid unit (hypercube) has width ε2 in all
dimensions. The hypergrid allows to transform the non uniform solution space
approximation, resulting from constraint reasoning, in a uniform one, provid-
ing a fair computation of the marginal p.d.f.s. The transformation is achieved
by overlaying the hypergrid upon the solution space approximation, enforcing a
snap to grid to this region. The new approximation is the set of grid hypercubes
that intersect with the original approximation, producing a set of uniform boxes.
Figure 2 illustrates the described reasoning process.

Once obtained the solution space approximation as a set SS of ε2-hypergrid
boxes, algorithm 1 calculates and returns the marginal a posteriori p.d.f. of a
set of m variables (where m ≤ n), discretized accordingly to the ε2-hypergrid.
For that purpose the algorithm maintains a m-dimensional matrix M , where
each dimension corresponds to a variable. In the algorithm, Hbox[i] and Gbox[i]
are the ith intervals of the boxes (Cartesian product of n intervals). Given two
intervals I1 = [l1, r1] and I2 = [l2, r2], the union hull I1 � I2 is the interval
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Fig. 2. Process of probabilistic constraint reasoning. (a) Initial search space and so-
lution space; (b) Solution space approximation; (c) Hypergrid and a priori marginal
p.d.f.s; (d) Snap to grid and a posteriori marginal p.d.f.s.

[min(l1, l2), max(r1, r2)]. Hbox is a box where each interval is the union hull of the
respective intervals of all the boxes in SS, i.e. is the smallest box enclosing all the
boxes in SS (line 2). The length of each dimension is the number of ε2 segments in
which the corresponding variable domain can be divided (line 3). Each matrix cell
thus obtained is initialized to zero (line 4) and its probability value is computed
by summing up the contribution of all hypercubes (boxes) that are aligned with
that cell (line 5-9), normalized by the sum of all hypercube contributions (lines 1,
10, 12). Due to the independence assumption, the contribution of an hypercube
is the product of each variable contribution, i.e., the integral of its a priori p.d.f.
(fi), within the respective box interval (line 8).

Algorithm 1. Calculates marginal a posteriori p.d.f.
function marginalAPosterioriPDF (SS, ε, m)
1: accum ← 0
2: Hbox ← �SS
3: ∀1≤i≤m li ← Hbox[i].width/ε
4: ∀1≤i1<l1 . . . ∀1≤im<lm M [i1] . . . [im] ← 0
5: while SS �= � do
6: Gbox ← remove(SS)
7: ∀1≤i≤m ji ← (Gbox[i].left − Hbox[i].left)/ε

8: pbox =
n∏

i=1

∫ Gbox[i].right

Gbox[i].left

fi(xi)dxi

9: M [j1] . . . [jm] ← M [j1] . . . [jm] + pbox

10: accum ← accum + pbox

11: end while
12: ∀1≤i1<n1 . . . ∀1≤im<nm M [i1] . . . [im] ← M [i1] . . . [im]/accum
13: return M

6.1 Probabilistic Constraint Approach to Inverse Problems

The application of PCCSPs in the context of inverse problems, based on
bounded-error estimation, assumes both prior knowledge on the acceptable pa-
rameter ranges and on the uncertainty about the difference between predicted
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(c)
m  .101 3

Fig. 3. Exponential model. (a) Joint p.d.f.; (b)(c) marginal p.d.f.s.

and observed data. This knowledge is expressed, respectively, by intervals and
explicit a priori probability distributions within such intervals. If prior informa-
tion is unavailable uniform distributions are considered.

When solving the PCCSP, where the set of constraints represents the forward
model, a safe approximation of the solution space is obtained, and a projection
on the set of model parameters (or any subset of it) provides insight on the a
posteriori distribution of the resulting narrowed ranges.

In this approach, data parameters cannot be replaced by their respective
initial intervals because it is necessary to keep track of their p.d.f.s for computing
the a posteriori distributions. However, as long as the model parameters are the
only shared variables between constraints, the contribution of each constraint, on
the model parameters a posteriori distribution, may be independently computed
and incrementally combined.

Consider again the inverse problem presented in section 2. Suppose that be-
sides accepting a difference δi between the ith observation and the respective
predicted value, a p.d.f. ρi(di) is associated to the acceptable interval represent-
ing the prior information on such difference. The initial ranges and respective
p.d.f.s (possibly uniform distributions) must also be provided for the model pa-
rameters m0 and m1, characterizing the full a priori joint p.d.f.. In this case,
the inverse problem may be reformulated as a PCCSP with the following set of
constraints (one for each pair 〈ti, di〉):

di = m0e
m1ti (7)

where m0, m1 and d0, . . . , d12 are the variables of the constraint model. The
a posteriori distribution of the model parameters is computed by solving the
PCCSP (projecting the results with respect to m0 and m1).

Figure 3 shows the a posteriori distribution of the model parameters that
is computed with the initial ranges defined in subsection 3.1 and assuming a
priori uniform distributions for the model parameters and triangular distribu-
tions (centered in di) for the observable parameters. Besides identifying which
value combinations of m0 and m1 are consistent, figure 3(a) illustrates its joint
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(a)
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Fig. 4. Logistic model. (a)(b)(c) marginal p.d.f.s.

probability distribution, allowing to identify regions of maximum likelihood. Fig-
ures 3(b) and 3(c) are projections on m0 and m1 showing the a posteriori prob-
ability computed for each of the model parameters.

If a logistic model is considered, instead of an exponential model for the
population growth, its reformulation as a PCCSP should keep the observable
variables but satisfy a new set of constraints (one for each pair 〈ti, di〉):

di =
m2

1 + m0e−m1ti
(8)

where m0, m1 and m2 are the variables of the constraint model representing the
model parameters. Figure 4 presents the marginal a posteriori distributions for
each model parameter computed from the joint p.d.f. (with equal assumptions
on the observed parameters uncertainty and with initially uniformly distributed
I0 = [10, 100], I1 = [0.02, 0.05] and I2 = [100, 400]).

The PCCSP associated with a given inverse problem can be easily extended to
make predictions on the outcomes of new measurements. For this purpose a new
constraint for each new measurement should be included in the model. Such con-
straints, similar to the other constraints representing the forward model, should
include new unknown observable parameters (initially unbounded and uniformly
distributed). A posteriori distributions for these new variables can be computed
by solving the PCCSP and projecting the results with respect to each of them.
Figure 5 illustrates the predictions for the population size in 1920 (ti = 130) in
the previous problem with both, the exponential model (figure 5(a)) and the logis-
tic model (figure 5(b)). Note that the real observed value for the population size in
1920 was 106.0 (not shown in table 1) which is in accordance with the predictions
of the logistic model, but outside the bounds predicted by the exponential model.

An insight about the quality of a particular model for a specific inverse prob-
lem may be achieved by analyzing the maximum likelihood regions. The obtained
a posteriori marginal p.d.f. for the model parameters provides valuable informa-
tion for inspecting the quality of a particular model. Not only it allows easy
identification of maximum likelihood regions as peaks of such p.d.f., but also
displays the complete shape of the uncertainty dispersion showing, for instance,
if it is unimodal.



Probabilistic Constraints for Inverse Problems 127

(b)
d13

(a)
d13

Fig. 5. Expected US population in 1920. (a) Exponential and (b) logistic models.

In the presented example, given the unimodality of the a posteriori p.d.f.s
for both models, a quantitative measure of their quality may be obtained by
evaluating any numerical best-fit criterion (see section 2) at their maximum
likelihood points. The boxes that enclose such points for the exponential and
the logistic models are, respectively, 〈[6.159, 6.160], [0.022770, 0.022771]〉 and
〈[45, 46], [0.0318, 0.0319], [181, 182]〉. The least squares criterion (formula 3 with
σi = 1) evaluated at this boxes results, respectively, in I1 = [24.6, 18341.6] and
I2 = [0.1, 11.8]. Since the maximum likelihood points are included in those boxes
and any value of I2 is smaller than any value of I1, according to the chosen cri-
terion, the logistic model is a better representation for the population growth
than the exponential model.

7 Conclusions and Future Work

This paper describes how inverse problems can be cast into the probabilistic con-
tinuous constraint framework. The approach introduces new expressive power for
modeling the underlying theory about the system behavior and produces appeal-
ing graphical results for representing the uncertainty on model parameters and
predictions on measurement outcomes. However, it seems to be more adequate to
handle inverse problems with a reduced number of parameters. This is particu-
larly true when the model is highly nonlinear, in which case, a smaller granularity
is required for pruning the search space. To address the scalability of the ap-
proach further experimentation must be done on more realistic inverse problems.
Furthermore, we intend to develop an interactive prototype, to improve usability
and fully explore the framework capabilities.
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