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Foreword

Advances in computational intelligence have created powerful tools for ma-
nipulating vast amounts of patient data and transform it into valuable infor-
mation from which expert knowledge can be extracted. The significance of
this statement is understood best if one considers the large amounts of data
healthcare applications most often need to handle in order to provide the key
information for early detection, diagnosis and decision support – all critical
aspects of healthcare.

This book shows the wide role computational intelligence can play in the
development of healthcare applications. It introduces the core concepts of
computational intelligence and demonstrates their usability in healthcare. Af-
ter introducing the basic concepts, the book’s subsequent chapters cover the
development of various applications ranging from cancer detection in opti-
cal spectroscopy, image interpretation, optimized medication regimens and
diagnostic support, to ubiquitous computing, computational tools to assist
disabled people, and ethical systems.

As a whole, the book is a major reference for practitioners and researchers
alike, interested in both computational intelligence and healthcare. I believe
this is an excellent resource and I hope it will encourage readers to immerse
in this fascinating field and further explore the challenges that lay ahead.

Gabriela Ochoa, PhD
School of Computer Science

University of Nottingham, UK



Preface

Computational Intelligence rises to the imperative challenge of implement-
ing robust computer applications to process the vast amount of information
captured by computers and to extract meaningful knowledge from it. This is
particularly true in healthcare where the most compelling reasons for devel-
oping computational intelligence applications are to foster safety, quality and
efficacy in all aspects of patient care.

This book is an attempt to cover the latest applications of Computational
Intelligence in Healthcare. It includes ten chapters covering all the aspects of
healthcare ranging from cancer detection in optical spectroscopy and imaging,
optimized medication regimens, and diagnostic support, to ubiquitous com-
puting, computational tools to assist disabled people, and ethical systems in
healthcare.

A summary of the book layout is as follows: Chapter one introduces the
concept of computational intelligence from a healthcare point of view. Artifi-
cial intelligence techniques are explored in chapter two to detect and diagnose
cancer based on optical imaging and spectra. The authors have presented a
review on applications of AI paradigms in optical spectroscopy for cancer de-
tection and diagnosis. A case study on oral cancer diagnosis using polarized
light spectra is presented.

Chapter three is on decision making for ranking medicine effectiveness.
Fuzzy decision making models are used to mimic physician judgment and
medication effectiveness. Chapter four is on cognitive categorization for im-
age analysis in medical information systems. The computational efficient algo-
rithms of this system make it exceptionally useful for semantic interpretation
of medical images.

Chapter five is on intelligent pervasive healthcare systems. It presents per-
vasive healthcare systems in controlled environments and/or in sites where
immediate health support is not possible. Chapter six is on agent middle-
ware for ubiquitous computing in healthcare. The authors have implemented
an agent-based ubiquitous computing environment for enhancing medical ac-
tivities. Chapter seven is on detection and classification of microcalcification



VIII Preface

clusters in mammograms using evolutionary neural networks. It is shown by
the authors that the present approach offers improvement in overall accuracy
compared to other reported methods in the literature.

Chapter eight reports the use of a Bayesian constrained spectral method
for segmentation of noisy medical images. It is shown that the proposed
method is applicable to a number of clinical applications. Chapter nine is on
the application of computational intelligence paradigms for processing music
for blind people, music teachers, students, hobbyists and musicians. The final
chapter is on ethical healthcare agents. The system advises human beings as
to the ethically correct action related to the healthcare issues.

We certainly appreciate the vast and varied opportunities for developing
novel computational intelligence approaches with the potential to revolu-
tionize healthcare in the coming years. We are grateful to the authors and
reviewers for their vision and wonderful contributions. We also like to thank
Sridevi Ravi for her valuable assistance in preparing the final manuscript. We
hope that the latest advances of Computational Intelligence in Healthcare
presented in this book will encourage readers to immerse in this field and
further explore the exciting opportunities that this field presents to us.

Editors
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1

An Introduction to Computational Intelligence
in Healthcare: New Directions

M. Sordo1, S. Vaidya2, and L.C. Jain3

1 Decision Systems Group, Brigham & Women’s Hospital, Harvard Medical School
2 Adelaide South Australia
3 School of Electrical & Information Engineering, University of South Australia

Summary. Computational intelligence paradigms offer tremendous advantages in
many areas including healthcare, engineering, science and management. This chapter
presents a brief introduction to computational intelligence in healthcare.

1.1 Introduction

Computers are seamlessly integrated in all realms of our daily lives and the
amount of information they capture is staggering. This poses tremendous chal-
lenges to our ability to not only store data, but more importantly, to process
such vast information to extract meaningful knowledge. This is particularly
true in healthcare where computers have been used to obtain patient infor-
mation, and assist physicians in making difficult clinical decisions.

Computational Intelligence rises to the imperative challenge of imple-
menting robust computer applications to foster healthcare safety, quality and
efficacy. An emerging discipline, Computational Intelligence (CI) comprises
computational models and theories that draw inspiration from neurocognitive
and biological functions. Unlike traditional Artificial Intelligence (AI) which
mainly focuses on high-cognition formalisms and reasoning about symbolic
representations, CI focuses on low-level cognitive functions such as percep-
tion and control [1].

In this chapter we seek to provide the reader with an introduction to the
three core disciplines of Computational Intelligence, namely Neural Networks,
Genetic Algorithms and Fuzzy Logic. We devote a section to the discussion
of a series of Computational Intelligence applications developed over the past
several years to aid the healthcare community in various aspects of preven-
tion, diagnosis, treatment, and management of illnesses. We conclude this
chapter with a summary of the latest advances of Computational Intelligence
in Healthcare, as presented in this book. We hope that the work presented in
this book will encourage readers to immerse in this field and further explore
the possibilities that lay ahead.

M. Sordo et al.: An Introduction to Computational Intelligence in Healthcare: New Directions,

Studies in Computational Intelligence (SCI) 107, 1–26 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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1.2 Computational Intelligence

An emerging discipline, Computational Intelligence (CI) comprises computa-
tional models and theories that draw inspiration from neurocognitive and bi-
ological functions. Unlike traditional Artificial Intelligence (AI) which mainly
focuses on high-cognition formalisms and reasoning about symbolic represen-
tations, CI focuses on low-level cognitive functions such as perception and
control [1].

According to the IEEE Computational Intelligence Society, the field of
Computational Intelligence comprises three core disciplines and their applica-
tions:

• Neural Networks are computational paradigms based on mathematical
models with strong pattern recognition capabilities;

• Fuzzy Logic is an extension of traditional propositional logic. It deals with
approximate reasoning by extending the binary membership {0,1} of a
conventional set into a continuous membership in the interval [0,1];

• Evolutionary Computation refers to computer-based methods inspired by
biological mechanisms of natural evolution.

These three core disciplines are highly complementary, and they can be syn-
ergistically applied to tackle complex problems – like those encountered in
real life.

Given the fact that CI is a relatively new, evolving discipline, a more
modern definition of CI may comprise any computational, non-algorithmic
approach capable of handling ‘raw’ numerical sensory data directly [2, 3].
Hence, under this wider umbrella we may consider, among others, intelli-
gent agents, belief networks, and swarm intelligence, parts of CI. In either
case, the goal is not to simulate human intelligence but rather to understand
the underlying mechanisms of natural or artificial intelligent systems, and to
some extent be able to incorporate such mechanisms into intelligent systems
capable of performing tasks we deem as intelligent.

The following sections briefly describe the three core disciplines of CI,
namely Neural Networks, Fuzzy Logic and Genetic Algorithms – the most
widely used Evolutionary Computation technique.

1.2.1 Neural Networks

Artificial Neural Networks or Neural Networks (NN) for short are computa-
tional paradigms based on mathematical models that unlike traditional com-
puting have a structure and operation that resembles that of the mammal
brain. Neural networks are also called connectionist systems, parallel distrib-
uted systems or adaptive systems, because they are comprised by a series of
interconnected processing elements that operate in parallel. Neural networks
lack centralized control in the classical sense, since all the interconnected
processing elements change or “adapt” simultaneously with the flow of infor-
mation and adaptive rules.
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One of the original aims of Neural Networks was to understand and shape
the functional characteristics and computational properties of the brain when
it performs cognitive processes such as sensorial perception, concept catego-
rization, concept association and learning. However, today a great deal of
effort is focused on the development of Neural Networks for applications such
as pattern recognition and classification, data compression and optimization.

Model for a Neural Network

An artificial neural network can be defined as a computational system consist-
ing of a set of highly interconnected processing elements, called neurons, which
process information as a response to external stimuli. An artificial neuron is
a simplistic representation that emulates the signal integration and threshold
firing behavior of biological neurons by means of mathematical equations. Like
their biological counterpart, artificial neurons are bound together by connec-
tions that determine the flow of information between peer neurons. Stimuli
are transmitted from one processing element to another via synapses or inter-
connections, which can be excitatory or inhibitory. If the input to a neuron is
excitatory, it is more likely that this neuron will transmit an excitatory signal
to the other neurons connected to it. Whereas an inhibitory input will most
likely be propagated as inhibitory.

The inputs received by a single processing element (Figure 1.1) can be
represented as an input vector A = (a1, a2, . . . , an), where ai is the signal
from the ith input. A weight is associated with each connected pair of neurons.
Weights connected to the jth neuron can be represented as a weight vector of
the form Wj = (w1j,w2j, . . . ,wnj), where wij represents the weight associated
with the connection between the processing element ai, and the processing
element aj with i != j. A neuron contains a threshold value that regulates
its action potential. While action potential of a neuron is determined by the

Fig. 1.1. Basic model of a single neuron
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weights associated with the neuron inputs (Eq. 1.1), a threshold modulates
the response of a neuron to a particular stimulus confining such response to a
pre-defined range of values. Equation 1.2 defines the output y of a neuron as an
activation function f of the weighted sum of n + 1 inputs. These n + 1 inputs
correspond to the n incoming signals and a threshold value. The threshold
value is incorporated into the equation as an extra incoming weight denoted
by −w0.

SUM =
n∑

i=1

xiwi (1.1)

y = f

(
n∑

i=0

xiwi

)
(1.2)

Activation functions are generally chosen to be continuous, non-monotonic
and differentiable; the most commonly used being the step or saturation
(Eq. 1.3), sigmoid (Eq. 1.4) and hyperbolic tangent or tanh (Eq. 1.5) func-
tions [4].

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if
n∑

i=1

xiwi > 0

0 if
n∑

i=1

xiwi ≤ 0

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

f(x) =
1

1 + e−x
(1.4)

f(x) =
ex − e−x

ex + e−x
(1.5)

Multilayer Feedforward Networks

A multilayer feedforward network can be defined as an array of processing
elements arranged in layers. Information flows through each element in an
input-output manner. In other words, each element receives an input signal,
manipulates it and forwards an output signal to the other connected elements
in the following layer. A common example of such a network is the Multi-
layer Perceptron (MLP) [5] (Figure 1.2). Multilayer networks normally have
three layers of processing elements with only one hidden layer, but there is no
restriction on the number of hidden layers. The only task of the input layer
is to receive the external stimuli and to propagate it to the next layer. The
hidden layer receives the weighted sum of incoming signals sent by the input
units (Eq. 1.1) and processes it by means of an activation function. The hid-
den units in turn send an output signal towards the neurons in the next layer.
This adjacent layer could be either another hidden layer of arranged process-
ing elements or the output layer. The units in the output layer receive the
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Fig. 1.2. Multilayered Feedforward Network

weighted sum of incoming signals and process it using an activation function.
Information is propagated forwards until the network produces an output.

Based on the input-output relationship, Neural Networks can be of two
types: If the desired output is different from the input, it is said that the
network is hetero-associative, because it establishes a link or mapping between
different signals; while in an auto-associative network, the desired output is
equal to the input.

A Neural Network operates in two different modes: learning and testing.
The learning stage is the process in which the network modifies the weights
of each connection in order to respond to a presented input. At the testing
stage, the network processes an input signal and produces an output. If the
network has correctly learnt, the outputs produced at this stage should be
almost as good as the ones produced in the learning stage for similar inputs.
There are three main learning modes:

Supervised learning. The network receives an input and the desired out-
put. After each trial the network compares the actual output with the desired
output and corrects any difference by adjusting all the weights in the net until
the output produced is similar enough to the desired output or the network
cannot improve its performance any further. Pattern classification is one of
the typical tasks of this learning mode.

Unsupervised learning. The network receives an input signal but not
the target output. Instead, the network organizes itself internally with each
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processing element responding to a particular stimulus or a group of simi-
lar stimuli. This set of inputs forms clusters in the input space. Each cluster
represents a set of elements of the real world with some common features.
Clustering, filtering and estimation are common tasks normally carried out
by unsupervised learning.

Reinforcement learning. At each point in time t the network receives an
input signal and generates an output. The response produced by the network
is evaluated by a cost function ct. The aim of this function is to minimize
some measure of a long-term cumulative cost. Control problems, games and
sequential learning are examples of applications using reinforcement learning.
Once the network has reached the desired performance, the learning stage is
over and the associated weights are frozen. The final state of the network is
preserved and it can be used to classify new, previously unseen inputs.

Backpropagation Learning Algorithm

During the learning stage weights in a network are adapted to optimize the
network response to a presented input. The way in which these weights are
adapted is specified by the learning rule. The most common rules are gener-
alizations of the Least Mean Square Error (LMS) rule, being the generalized
delta rule or Backpropagation the most used for supervised learning in feed-
forward networks [6, 7].

As described before, the supervised learning procedure consists of present-
ing the network with pairs of input-output examples. The network produces
an output in response to the presented input. An error E is calculated as the
difference between the current op and desired tp output. Weights are changed
to minimize the overall output error (Eq. 1.6).

E =
1
2

∑
j

(tpj − opj)
2 (1.6)

The error is propagated backwards and appropriate adjustments in the weights
are made. A summarized mathematical description of the Backpropagation
learning algorithm extracted from Rumelhart et al. [7] and Aleksander and
Morton [8] is presented as follows:

1. Present the input-output pair p and produce the current output op.
2. Calculate the error δpj for each output unit j for that particular input-

output pair p. The error is the difference between the desired tpj and the
current output opj times the derivative of the activation function fj(netpj)
which maps the total input to an output value (Eq. 1.7).

δpj = (tpj − opj) fj (netpj) (1.7)

3. Calculate the error by the recursive computation of δ for each of the
hidden units j in the current layer. Where wkj are the weights in the k



1 An Introduction to Computational Intelligence in Healthcare 7

output connections of the hidden unit j, δpk are the error signals from the
k units in the next layer and fj(netpj) is the derivative of the activation
function (Eq. 1.8). Propagate backwards the error signal through all the
hidden layers until the input layer is reached.

δpj =
∑

k

δpkwkjfj(netpj) (1.8)

This section introduced the basic concepts of Neural Networks from structure
to learning modes. Probably the most used supervised learning algorithm is
the Backpropagation algorithm. It is mainly used to train multilayered feed-
forward neural networks. There are, however, several more types of networks
and learning algorithms equally powerful. We encourage the reader to consult
the following excellent sources [4, 8–11].

1.2.2 Fuzzy Logic

Proposed by Lotfi A. Zadeh in 1965 [12], Fuzzy Logic is an extension of one
of the fundamental underlying concepts of Classic Propositional Logic: di-
chotomization. In propositional logic, truth values are binary. For example,
under this dichotomous assumption, we should be able to unequivocally de-
termine, based on the characteristics of an object, whether it belongs to a
set or not. In other words, an object x is either a member of a set A or not
(Eq. 1.9).

A(x) =
{

1 if x ∈ A
0 if x /∈ A

(1.9)

However powerful this concept may be, the condition defining the boundaries
of a set is very rigid. Fuzzy sets extend the binary membership {0,1} of a con-
ventional set into a continuous one in the interval [0,1], where the membership
values express the degree of compatibility of an object with the properties or
characteristics distinctive of the collection it belongs to. The membership value
can range from 0 (complete exclusion) to 1 (complete membership). Thus, a
fuzzy set A is a set of ordered pairs defined by [3]:

A = {(x, µA(x)) : x ∈ X} (1.10)

where x is any object of a universal set X and µA(x) is the degree of member-
ship of the element x in A. Let us define the following example in a clinical
context. Let us say we want to develop a monitoring system using fuzzy logic
to keep track of the resting heart rate of adult patients at risk of develop-
ing some complications. So, let X be the universal set of RESTING HEART
RATE (RHR) measurements for adults where an element x in X could have
any value in the range [0, 250] beats per minute. We may also want to define
three fuzzy sets to classify our patients, e.g. LOW, NORMAL, HIGH. We
may even want to define some sort of alarms to warn us when a patient heart
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rate deviates from normal. All possible heart rates in the interval [0, 250] are
members of each fuzzy set, though with different membership values in the
interval [0, 1]. For example, a RHR = 70 is a member of all three sets, but the
membership functions µLOW (70), µNORMAL(70) µHIGH(70) will have very
different membership values for the same heart rate (see Figure 1.3).

In fuzzy systems, membership functions can be continuous, and expand
over a continuous spectrum of values (Figure 1.3), or discrete, sampling values
at regular intervals over the whole range of possible values (Figure 1.4).
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Fig. 1.3. Membership curves for the fuzzy sets Low, Normal and High. The x-
axis denotes the resting heart rate for adults. The y-axis denotes the degree of
membership of the given fuzzy sets at different heart rates

Normal

0 20 40 60 80 100 120 140 160 180 200 220 240

Resting Heart Rate

D
eg

re
e 

o
f 

M
em

b
er

sh
ip

(D
is

cr
et

e 
va

lu
es

)

Normal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1.4. Non-uniform sampling of discrete resting heart rate values at non-uniform
intervals for the Normal fuzzy set
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Membership Functions

Although any continuous function of the form A : X → [0, 1] can be used as
membership function of a fuzzy set, the most commonly used are:

• Triangular membership function or bell-shaped function determines
the degree of membership by comparing a given value x against an upper
and lower values a, b and a modal value m as shown in Eq. 1.11. The
graphic representation of this type of function is depicted in Figure 1.5a.

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a
x − a

m − a
if x ∈ [a, m]

b − x

b − m
if x ∈ [m, b]

0 if x ≥ b

(1.11)

• Trapezoidal membership function is typically used to represent the
fuzzy linguistic conditions neither so high nor so low [3]. In our heart rate
example, we could use this function to express that a given heart rate
is neither too high nor too low, for those values between the threshold
boundaries determined by m, n, calculated by Eq. 1.12. See Figure 1.5b.

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x − a

m − a
if x ∈ [a, m]

1 if x ∈ [m,n]
b − x

b − n
if x ∈ [n, b]

0 if x > b

(1.12)
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Fig. 1.5. Typical Membership functions: A) Triangular; B) Trapezoidal; C)
S-Membership; and D) Gaussian
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• S-Membership function has a smoother slope. In our example, we could
use it to calculate the membership for the fuzzy set HIGH. One typical
form of the S-Function is depicted in Figure 1.5c, and the curve is calcu-
lated by Eq. 1.13 as follows:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

2
(

x − a

b − a

)2

if x ∈ [a, m]

1 − 2
(

x − b

b − a

)2

if x ∈ [m, b]

1 if x > b

(1.13)

• Gaussian membership function has a wide application on fuzzy sets. In
our example, this function could be used to calculate the membership for
the fuzzy set NORMAL, with mean value of e.g. 60. To shape the curve
we can experiment with different values for the variance; the smaller the
value, the higher and sharper the curve around the mean value. A typical
Gaussian curve is depicted in Figure 1.5d, and it is calculated by Eq. 1.14.

A(x) = e−k(x−m)2 where k > 0 (1.14)

Fuzzy Set Operations

Fuzzy sets support the same operations as crisp conventional set theory:
Union, Intersection and Negation. In [12] L.A. Zadeh suggests the minimum
operator for the intersection (Eq. 1.15, Figure 1.6 left), the maximum oper-
ator for the union (Eq. 1.16, Figure 1.6 center) and the complement for the
negation (Eq. 1.17, Figure 1.6 right) of fuzzy two sets.

(A ∩ B)(x) = min(A(x), B(x)) = A(x) ∧ B(x) (1.15)

(A ∪ B)(x) = max(A(x), B(x)) = A(x) ∨ B(x) (1.16)

A(x) = 1 − A(x) (1.17)

0

1

Fuzzy AND

A
«

B

A∩B
B
A

0

1

Fuzzy OR

A
»

B

0

1

Fuzzy NOT

- 
A

 

-A
A

A   B
B
A

U

Fig. 1.6. Operations in Fuzzy Sets (from left to right): Fuzzy AND; Fuzzy OR; and
Fuzzy NOT
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Where the sets A and B are defined in a universe X, and (A∩B)(x), (A∪B)(x)
denote the membership functions for the intersection and union of sets A and
B respectively [13].

This section presented a brief introduction to the key aspects of Fuzzy
Sets. Fuzzy sets can be seen as extensions of the classical set theory. Fuzzy
sets provide the means for tackling classification problems where crisp, more
traditional approaches are not feasible given the complexity of the data, or
when a conventional mathematical approach does not yield satisfactory re-
sults. [3, 12–14] are excellent sources for further reading.

1.2.3 Evolutionary Computation

Evolutionary Computation combines several computer-based problem solving
methods inspired by biological mechanisms of natural evolution [15]. Among
these techniques we find Genetic Algorithms [16], Evolutionary Program-
ming [17] and Evolution Strategies [18]. Although similar at the highest level,
their major differences are in their choices of a) representation for individ-
ual structures and b) variation operators. For example, Genetic Algorithms
(GAs) traditionally use domain-independent representations, whereas both
Evolutionary Strategies (ES) and Evolutionary Programming (EP) use rep-
resentations tailored to the problem domain. Similarly, both EP and ES use
mutation as their main operator while GAs use recombination as their primary
operator, and mutation as a secondary operator.

Evolutionary Algorithms are computational analogies that mimic four of
the six propositions of modern theory of evolution or new-Darwinian Theory
[19]: Reproduction, excess, variation and environmental selection. In the com-
putational context, these propositions can be described as follows [20]:

• A computational representation of candidate solutions to the problem at
hand;

• A population of candidate solutions;
• Mechanisms for generating new solutions from members of the current

population;
• An evaluation method to assess the quality of given solutions;
• A selection method to identify good solutions.

A typical evolutionary algorithm consists of the following steps:

a. An initial population of M individuals at t = 0.
b. Evaluate initial population (t = 0).
c. Evolve population from generation t to generation t + 1 by successive ap-

plications of evaluation, selection, recombination and mutation operations.

The remaining of this section focuses on describing the fundamental concepts
of Genetic Algorithms – the most widely known paradigm in Evolutionary
Computation.
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Genetic Algorithms

Developed by John Holland in the 1970s [16], Genetic Algorithms are stocha-
stic search methods that operate over a population of possible solutions. GAs
are mainly used for optimization, machine learning and intelligent search, in
fields as diverse as medicine, engineering, economics and business. A typical
GA consists of the following components:

Representation
An initial population of potential solutions or chromosomes is encoded as bit
strings, where each gene represents a parameter in the universe of possible
solutions (Figure 1.7).

Fitness Evaluation
A fitness function is used to determine the quality of candidate solutions or
chromosomes from the current population.

Reproduction
Genetic operators are applied to the population to create new individuals and
introduce diversity to the current population. There are two main types of
genetic operators, each with an associated parameter to control the probability
of its application:

Mutation or asexual reproduction. One or more bits in the chromo-
some are flipped: changing a 0 to 1 or vice versa, with a probability
given by the mutation rate (Figure 1.8). Mutation is considered a sec-
ondary operator mainly used to restore lost genetic material. However,
some researchers consider the mutation-selection method a powerful
search algorithm [21–23].

   Chromosome 1     1101100100110110 

    Chromosome 2     1101111000011110 

Fig. 1.7. Chromosomes encoded as bit strings

Fig. 1.8. Example of mutation of a chromosome in the 5th bit position
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Fig. 1.9. Examples of a) single point and b) two-point crossover

Crossover or sexual reproduction. Considered the main search opera-
tor in GAs, recombination or crossover produces offspring by merging
portions of two selected parents. Segments of different parents are
combined to produce new individuals that benefit from advantageous
bit combinations of both parents. As with mutation, crossover is con-
trolled by a recombination rate. The most common operators are one-
point, multi-point and uniform crossover. In one-point recombination,
a single cut-point is randomly selected within two parents and the
segments before the cut-points are swapped over. (Figure 1.9a). Multi-
point is a generalization of the single cut-point, introducing a higher
number of cut-points (Figure 1.9b). In uniform crossover [24] a global
parameter is used to indicate the probability of exchanging single bits
between parents.

Any efficient optimization algorithm must balance two contradictory
forces: exploration to investigate new solutions in the search space, and
exploitation to use the available information to produce better solutions. Se-
lection is the component in GAs that determines the character of the search
process: too strong selection means that suboptimal, highly fit individuals
(chromosomes) will take over the population, hence reducing the diversity re-
quired for further change and progress. On the other hand, too weak selection
will result in very slow evolution [20]. There are numerous selection schemes
in the literature, the most commonly used are [20]:

• Proportional Selection. The reproductive opportunities of an individual
are given by its fitness divided by the average fitness of the population.

• Scaling Methods. Scaling methods transform the fitness value of an in-
dividual into positive numbers to a) keep appropriate levels of competition
among individuals and b) satisfy the condition of positive values required
by proportional selection.
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• Rank Selection. Individuals in the population are ranked according to
their fitness. The expected number of offspring of each individual depends
on its rank rather than on its absolute fitness.

• Tournament Selection. n individuals are randomly selected from the
population and the fittest is selected for reproduction. All n individuals
are then returned to the population and can be selected again. This process
is repeated until a new population is filled.

This section introduced the basic concepts of Genetic Algorithms. GAs are
powerful tools for optimization and intelligent search. GAs randomly search
for optimal, or near optimal, solutions from a search space. Portions of this
section are based on the work of Dr. Gabriela Ochoa [20], and were included
here with the author’s kind permission. [20,22,25,26] are excellent references
for further reading.

1.2.4 Synergistic Approaches

The preceding sections introduced the underlying concepts of the three core
disciplines of Computational Intelligence. Each approach has advantages and
disadvantages. For example, Neural Networks is a robust approach for classi-
fication, however, the need for large training datasets, or the risk of getting
trapped at local minima [7] sometimes precludes the applicability of this tech-
nique. Although Fuzzy Logic is very useful for approximate reasoning, the
membership function that supports Fuzzy Logic reasoning under uncertain
conditions sometimes can produce inaccurate results, since, unlike Probabil-
ity Theory which indicates the likelihood or probability of something being
true, Fuzzy Logic indicates the degree to which something is true. A notable
strength of Genetic Algorithms is their robust performance in problems with
complex fitness landscapes. That is, problems where the fitness function is
discontinuous, noisy or has many local minima [20]. GAs strongly rely on
the fitness function as searching mechanism for optimal solutions. However, a
“deceptive”, ill-defined fitness function could steer the whole search process
away from finding the true optimum [25].

Although these approaches are highly successful in solving complex tasks,
sometimes their applicability is precluded by their inherent limitations. A
step towards more powerful and flexible tools relies on synergistic approaches
that embrace the advantages and minimizes the limitations of each method-
ology alone.

Integration or coupling between approaches is of vital importance.
Depending on their compatibility and level of interaction, the synergism
of these techniques can be classified as loose or tight. Interaction in loosely-
coupled synergism is well-defined in time and space. Each tool preserves its
own structural and modular identity and works independently with a mini-
mum of communication. In tightly-coupled synergism there is more interaction
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between modules. Information is not exchanged but shared by the different
tools and communication between tools is achieved via common internal
structures [27].

Fuzzy Neural Networks (FNN)

Fuzzy Neural Networks (FNN) combine the learning and connectionist struc-
ture of Neural Networks with the human-like reasoning of Fuzzy Logic into a
hybrid intelligent system that synergizes these two techniques. The main ad-
vantage of this approach is its ability to accurately learn from noisy datasets
with interpretable outputs [28].

Genetic Evolving Neural Networks

Neuro-GA synergism employs a GA for the optimization of the most impor-
tant parameters of a Neural Network, namely, the internal structure and initial
weights. By optimizing the configuration of nodes in a NN and its weights,
training time is reduced while reducing the risk of getting trapped at local
minima [7].

Fuzzy-GAs

Fuzzy Logic and GAs may synergistically interact in two ways: a) Fuzzy Logic
can be used to improve the GA behavior by modeling the GA fitness func-
tion or reproduction operators; and b) GAs can be used for optimization of
membership functions in Fuzzy classifiers [29].

Neuro-Fuzzy-GAs

“Optimized learning of imprecise data”: this summarizes a common synergy
of GAs, NN and Fuzzy Logic. This is an advantageous combination where a
GA can be used for the optimization of the most important parameters of a
Neural Network. The Neural Network is then trained with fuzzy membership
distributions defined with Fuzzy Logic [3].

1.2.5 Summary

This section presented a brief introduction to Computational Intelligence. The
first part presented a definition of Computational Intelligence, while subse-
quent sections briefly described its three core technologies. A review of syn-
ergistic approaches emphasizes the trend of bringing together different, yet
complementary methodologies to produce more robust computational models.
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1.3 Applications of Computational Intelligence
in Healthcare

Advances in computer and information technology and the amount of data
these new technologies generate have created challenging opportunities for
the Computational Intelligence (CI) community. This is particularly true in
healthcare where computers play an active role in all realms from capturing,
storing and processing patient data in all formats at all times. This bears
tremendous opportunities for developing effective computational solutions to
improve the overall quality of healthcare.

This section presents a review of healthcare applications of the three core
Computational Intelligence techniques e.g. Neural Networks [30], Genetic Al-
gorithms, and Fuzzy Logic as well as other emerging techniques. The following
sections present a series of examples to illustrate the great potential of these
techniques for processing, analysis and mining of complex data acquired from
various sources ranging from imaging capture devices to health monitoring
systems.

1.3.1 Clinical Diagnosis

Neural networks have been used for assisted screening of Pap (cervical) smears
[31], prediction of metastases in breast cancer patients [32], breast cancer
diagnosis [33]. Burke et al compared the prediction accuracy of a multilayer
perceptron trained with the backpropagation learning algorithm and other
statistical models for breast cancer survival [34]. Similarly, neural networks
have been used for prognosis and assessment of the extent of hepatectomy of
patients with hepatocellular carcinoma [35] and prognosis of coronary artery
disease [36].

1.3.2 Signal and Image Analysis and Interpretation

A Backpropagation neural network trained with a robust supervised tech-
nique has been used to perform image processing operations such as filtering,
and segmentation of brain magnetic resonance images (MRIs) [37]. Aizenberg
et al [38] used cellular neural networks to improve resolution in brain tomo-
graphies, and improve global frequency correction for the detection of micro-
calcifications in mammograms. Hall et al compared neural networks and fuzzy
clustering techniques for segmentation of MRI of the brain [39]. [40] imple-
mented a self-organizing network multilayer adaptive resonance architecture
for the segmentation of CT images of the heart. Däschlein et al implemented a
two layer neural network for segmentation of CT images of the abdomen [41].

Olmez and Dokur [42] developed a neural network-based method for the
classification of heart sounds, and a hybrid network trained by genetic algo-
rithms for the classification of electrocardiogram (ECG) beats [43].
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A Neural Network was successfully applied to enhance low-level segmenta-
tion of eye images for diagnosis of Grave’s ophthalmopathy [44], segmentation
of ultrasound images [45] and endoscopy video-frames of colorectal lesions
[46]. Backpropagation (BP) and Radial Basis function (RBF) networks have
been used to evaluate the feasibility of using ECG and blood pressure data
into a neural network for the classification of cardiac patient states in an ICU
setting [47].

A multilayer perceptron was trained to differentiate between Contin-
gent Negative Variation (CNV) evoked responses waveforms of patients with
Huntington’s disease, Parkinson’s disease and schizophrenia [48]. Robert et al
used neural networks for classification of electroencephalograms [49]. Sordo
et al implemented a knowledge-based neural network (KBANN) for classifi-
cation of phosphorus (31P) magnetic resonance spectra (MRS) from normal
and cancerous breast tissues [50].

Applications of Fuzzy Logic in signal processing range from monitoring
and control of electrical and chemical responses of nerve fibers [51], analy-
sis of eye movements [52], clinical monitoring of disease progression [53], and
radiation therapy [54]. Fuzzy image enhancing techniques have been used to
improve the quality of radiographic images [55]. A fuzzy two-dimensional im-
age restoration tool has been developed for diagnostic and treatment planning
of radiation therapy [56]. Similarly, fuzzy logic has been used for segmentation
and estimation of intensity inhomogeneities of magnetic resonance images [57].
A neural network with adaptive fuzzy logic has been used for image restoration
for quantitative imaging for planar and tomographic imaging [58].

1.3.3 Applications in Healthcare

Several Fuzzy Logic applications have been developed in the field of Anes-
thesia. Anesthesiology requires monitoring of patient vital signs during the
controlled administration of drug infusion to maintain the anesthetic level
constant. Examples of applications (extracted from [59]) include depth of
anesthesia [60], muscle relaxation [61,62], hypertension during anesthesia [63],
arterial pressure control [64], mechanical ventilation during anesthesia [65] and
post-operative control of blood pressure [66]. Fuzzy Logic has been applied to
computerized clinical guidelines [67], as well as in risk assessment in a health-
care institution [68]. Similarly, knowledge management techniques have been
applied to structuring clinical and patient information [69,70].

1.3.4 Drug Development

Drug development requires understanding of the drug’s mechanism of ac-
tion from its pattern activity against a disease. Several techniques have been
implemented in this area. Weinstein et al developed a Neural Network to
predict the mechanism of action of an anti cancer drug [71, 72]. Similarly,
Langdon et al used genetic programming, decision trees and neural networks to
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predict behavior of virtual chemicals for the inhibition of a P450 enzyme [73].
Viswanadham et al. developed a knowledge-oriented approach to deploy bio-
chemical information for drug discovery [74].

1.3.5 Disease Treatment

A diseased organism plays a dual active role by being affected by the agent
while at the same time unwillingly hosting the noxious agent causing the
disease. Hence, disease treatment is mainly a two-fold task: Treatment is tar-
geted at the offending agent, and at the same time directed at restoring the
normal physiological state of an individual affected by a disease.

Evolutionary approaches have been applied to chemotherapy scheduling
and cancer treatment [75,76], and in the emergency room [77]. De Luca et al
developed a fuzzy rule system for validation and interpretation of genotypic
HIV-1 drug resistance based on virological outcomes [78]. Sordo et al devel-
oped a state-based model for management of type II diabetes [79].Ying et al
developed a fuzzy finite state machine model for treatment regimens, and
a genetic-algorithm-based optimizer regimen selection for HIV/AIDS treat-
ment [80].

1.3.6 Summary

This section presented a brief overview of Computational Intelligence tech-
niques in various aspects of healthcare. Some of the techniques focused on
diagnosis, from decision support to image and signal processing, treatment of
diseases and drug discovery. This review is by no means exhaustive and we
encourage the reader to further explore this fascinating and promising field.

1.4 Chapters Included in this Book

This book includes ten chapters. Chapter 1 by Sordo et al. provides an intro-
duction to the three core disciplines of Computational Intelligence, namely
Neural Networks, Genetic Algorithms and Fuzzy Logic. It devotes a section
to the discussion of a series of Computational Intelligence applications devel-
oped over the past several years to aid the healthcare community in various
aspects of prevention, diagnosis, treatment, and management of illnesses. The
final part of the chapter presents a summary of the latest advances of Com-
putational Intelligence in Healthcare.

Chapter 2 by Kan et al. presents a literature review on Artificial Intelli-
gence applied to optical spectroscopy for detection of cancer based on bio-
chemical and structural changes of normal and cancerous cells. They also
present a detailed case study on oral cancer diagnosis using polarized light
spectra.
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Chapter 3 by Rakus-Andersson focuses on theoretical fuzzy decision-making
models as useful tools to estimation of the total effectiveness-utility of a drug
when appreciating its positive influence on a collection of symptoms charac-
teristic of a considered diagnosis. The expected effectiveness of a medication
is evaluated by a physician as a verbal expression for each distinct symptom.
Words describing the effectiveness of the medication are converted into fuzzy
sets and then into numbers. These numbers are fed into a utility matrix which
is used in a series of computations by different decision algorithms to obtain a
sequence of tested medications with a positive influence on symptoms.

Chapter 4 by Ogiela et al. presents semantic reasoning methods for describ-
ing the meaning of analyzed objects from spinal cord to bone radiograms. The
semantic reasoning procedures are based on the cognitive resonance model.
Their research highlights the directions in which modern IT systems as well as
medical diagnostic support systems could expand into the field of automatic,
computer meaning interpretation of various patterns acquired in image diag-
nostics.

Chapter 5 by Doukas and Maglogiannis presents the state of the art in
intelligent pervasive healthcare applications and enabling technologies. They
discuss pervasive healthcare systems in both controlled environments (e.g.,
hospitals, health care units), and uncontrolled environments where immedi-
ate health support is not possible (i.e. patient’s home, urban area). They
pay particular attention to intelligent platforms for advanced monitoring and
interpretation of patient status, aimed at optimizing the whole medical as-
sessment procedure.

Chapter 6 by Rodŕıguez and Favela focuses on ubiquitous computing in
the healthcare. They propose the use of agents to model Healthcare environ-
ments and present SALSA, a middleware that enables developers to create
autonomous agents that react to contextual elements of a medical environ-
ment and communicate with other agents, users and services available in an
environment.

Chapter 7 by Hernández-Cisneros et al. describes a system for early
detection of breast cancer based on detection and classification of clusters of
microcalcifications in mammograms. Their system uses sequential difference
of gaussian filters (DoG) and three evolutionary artificial neural networks
(EANNs). They show that the use of genetic algorithms (GAs) for finding
the optimal architecture and initial weight set for an artificial neural network
prior to training it with the Backpropagation algorithm results mainly in im-
provements in overall accuracy, sensitivity and specificity when compared to
other neural networks trained with Backpropagation.

Chapter 8 by Soltysinski presents a combination of multiscale wavelet
decomposition and noise reduction for feature extraction of ultrasound im-
ages. For noise reduction, the system relies on Bayesian inference for edge
detection, and spectral method for contour detection. The proposed segmen-
tation method is tested on ‘denoised’ cardiac ultrasonographic data and its
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performance is compared for different noise clipping values. The author also
demonstrates the flexibility and adaptability of the proposed method in a
number of clinical applications.

Chapter 9 by Homenda describes the role of knowledge based methods in
the implementation of user friendly computer programs for disabled people.
The author describes in detail a specific computer program to aid blind
people interact with music and music notation. The program consists of
two main modules: a) information acquisition, and b) knowledge represen-
tation and processing. The main task of the information acquisition module
is to recognize and store printed music. The knowledge representation and
processing module extracts implicit relations between the stored music data
by a) identifying symbols and their location, b) extracting relevant features
and c) performing a semantic mapping between the identified features and a
Braille score output.

Chapter 10 by Anderson and Anderson presents an ethical theory to de-
velop a system that uses machine-learning to abstract relationships between
prima facie ethical duties from cases of particular types of ethical dilemmas
where ethicists are in agreement as to the correct action. Authors argue that
their proposed system has discovered a novel ethical principle that governs
decisions in a particular type of dilemma that involves three potentially con-
flicting prima facie duties. Authors describe two prototype systems in the
healthcare domain that rely on this principle: one system advises human be-
ings as to the ethically correct action in specific cases of this type of dilemma.
The second system uses this principle to guide its own behavior, making it
what authors believe may be the first explicit ethical agent.

1.5 Summary

Computers are being seamlessly integrated in all realms of our daily lives and
the amount of information they capture is staggering. This poses tremendous
challenges to our ability to not only store data, but more importantly, to
process such vast information to extract meaningful knowledge. This is par-
ticularly true in healthcare where computers have been used to obtain patient
information, and assist physicians in making difficult clinical decisions. As
portrayed in this chapter, Computational Intelligence rises to the imperative
challenge of implementing robust computer applications to foster healthcare
safety, quality and efficacy. We certainly appreciate the opportunities for de-
veloping novel computational intelligence approaches with the potential to
revolutionize healthcare in the coming years. We hope that the latest ad-
vances of Computational Intelligence in Healthcare presented in this book
will encourage readers to immerse in this field and further explore the excit-
ing opportunities that this field presents to us.
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AI in Clinical Decision Support: Applications
in Optical Spectroscopy for Cancer Detection
and Diagnosis

Chih-Wen Kan, Linda T. Nieman, Konstantin Sokolov, and Mia K. Markey

The University of Texas, Department of Biomedical Engineering

Summary. Optical approaches have been studied for the detection and diagnosis
of epithelial cancer. Due to the biochemical and structural changes that occur in
cancerous cells, malignant, benign, and normal tissues have different spectral prop-
erties. Artificial intelligence (AI) methods are being explored to detect and diagnose
cancer based on optical imaging and spectra. AI is also used to optimize the design
of optical spectroscopy and imaging instrumentation. In this chapter, we review the
literature on AI applied to optical spectroscopy for cancer detection and diagnosis
and present a detailed case study of research on oral cancer diagnosis using polarized
light spectra.

2.1 Optical Spectroscopy in Cancer Detection

Cancer is the second leading cause of death in the United States, exceeded only
by heart disease [1]. In 2007, more than 559,650 Americans are expected to die
of cancer [1]. Early detection and treatment of cancer is essential to improve
the survival rate. Among diagnostic modalities, optical methods stand out
since they employ non-ionizing radiation, are non-invasive, and the equipment
is moderate in cost.

Optical instrumentation provides information at biochemical, structural,
and physiological levels for clinical decision making. Over the past few years,
the term “optical biopsy” has been widely used in biomedical optics. “Optical
biopsy” is commonly used to describe the idea that a non-invasive optical
device could augment biopsy, the removal of tissue for analysis. Alternatively,
an optical exam could be used as a screening step to reduce the number of
benign biopsies. In other words, optical biopsy would be performed first and
only those sites that are positive for disease according to the optical method
would be subjected to biopsy.

A review of research on the interaction of light with tissue for disease detec-
tion and diagnosis was presented by Richards-Kortum and Sevick-Muraca [2].
As early as 1965, studies revealed the potential to use quantitative fluorescence
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spectroscopy for discriminating normal and malignant tissues [3]. In the past
few decades, rapid developments of small light sources, detectors, and fiber op-
tic probes have provided opportunities to quantitatively measure light-tissue
interactions. Progress using fluorescence, reflectance, and Raman spectroscopy
for cancer detection was reviewed in several recent articles [4–9]. Whereas
previous reviews have emphasized the underlying biophysical processes and
the design of instrumentation to measure them, this chapter is focused on
approaches to analyzing optical spectra in support of clinical decision making.

What is Optical Spectroscopy?

A typical optical fiber based spectroscopic experiment is shown in Figure 2.1.
Conceptually it is very simple: an optical fiber delivers light to the tissue region
of interest and a second optical fiber collects the remitted photons. The tissue
can be illuminated with a single wavelength or a range of wavelengths, such
as broad-band visible light. Photons interact with tissue through scattering
or absorption. In the visible wavelength range, elastic scattering is often the
dominant form of optical-tissue interaction used for cancer detection [10].
Figure 2.2 shows an example of a diagnostic system set-up. The light generated
by the excitation source is coupled into a fiber-optic probe for delivery to the
tissue. The collected photons are spectrally dispersed by a spectrometer and
the spectra, which is a plot of intensity as a function of wavelength, is measured
by a camera or other light detector. The information is read out and analyzed
using the computer and interface electronics.

Since cancer cells and normal cells have different morphologies, their opti-
cal properties are similarly different (Figure 2.3). Changes in architectural and
morphological features as a result of cancer progression, including increased

Fig. 2.1. Optical geometry of the fiber-optic probe. The light is delivered into the
tissue from an optical fiber probe and interacts with tissue. The remitted light is
then collected by another optical fiber for analysis. This figure is reproduced with
permission from [21] ( c©2007 SPIE)
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Fig. 2.2. A diagram of a diagnostic system setup. The excitation light source gen-
erates photons to impinge on tissue with an optical fiber probe, and the light that
leaves the tissue is collected by another fiber and is spectrally dispersed by a spec-
trometer. The computer and interface electronics control the light source and the
spectrometer. This figure is reproduced with permission from [21] ( c©2007 SPIE)
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Fig. 2.3. Example diffuse reflectance spectra for normal and malignant sites in oral
tissue. The solid curve indicates cancerous oral tissue, while the dash-dotted curve
indicates precancerous tissue, and the dashed curve represents normal tissue
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Fig. 2.4. Absorption extinction coefficient of oxy-hemoglobin (dashed curve) and
deoxy-hemoglobin (solid curve). The absorption extinction coefficient determines
how much light can be absorbed by the object. These two spectra indicate that
oxy-hemoglobin absorbs more light at 580 nm and deoxy-hemoglobin absorbs more
at 560 nm

nuclear/cytoplasmic ratio, hyperchromasia, and pleomorphism, affect the na-
ture of the scattering events when light interacts with the tissue. Therefore,
these changes complicate the interpretation of spectra as they relate to tissue
disease status. For example, cancer cells are well documented to have increased
nuclear size, and decreased cell differentiation [11] due to the abnormal du-
plication of cancerous cells. Larger nuclei result in more backward scattering
events, which leads to the collection of more light at the optical fiber [12].
Therefore, the light intensities can be used, to some extent, as features for
diagnostic decisions.

The spectral distribution may also be altered by the concentration of hemo-
globin. Initially, non-necrotic cancerous tissues contain a higher concentration
of hemoglobin due to the increased consumption of more nutrients than nor-
mal cells. In Figure 2.4, the extinction coefficients of oxy-hemoglobin and
deoxy-hemoglobin are shown. The extinction coefficient is an important opti-
cal property as it determines how much light can be absorbed. Clearly, tissues
containing different oxy- and deoxy-hemoglobin concentrations will have dif-
ferent spectra.

2.2 AI Methods Used for Spectral Classification

Artificial intelligence (AI) is a key technology for developing clinical deci-
sion support systems. AI uses computational techniques to achieve goals that
require intelligence. AI methods are used to extract features and to select
the features that are most indicative of cancer status in order to classify
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spectral patterns. In the following sections, we review the general steps taken
to develop a clinical decision support system in the context of analyzing op-
tical spectroscopy data. First, preprocessing techniques are applied to the
optical spectra to reduce the influences of noise and artifacts and to normal-
ize the spectra of different samples. Second, features are extracted from the
spectra to summarize the key information content. Then, feature selection is
performed to reduce the number of redundant and irrelevant features. After
that, classifiers are trained to distinguish between different histopathology
groups. The choice of evaluation metric and testing paradigm is critical to
accurately evaluate the performance of a clinical decision support system.

2.2.1 Preprocessing

Preprocessing techniques are needed since real-world data are often noisy,
missing, or inconsistent [13]. Biomedical signals are especially notorious in
this regard. Hence, it is desirable to have preprocessing techniques to improve
the quality of data and the efficiency of data analysis. There are two broad
types of preprocessing techniques. Data cleaning refers to the removal of noise
and imputation of missing data. Data normalization transforms the data such
that they are standardized. Data normalization may significantly improve the
accuracy and efficiency of data analysis [13].

There are several factors that influence optical spectra. Some of these
factors are critical for making clinical decisions, such as the structure of the
cells and the hemoglobin concentrations, while other factors are not related to
disease status. For example, fluctuation of the light source and light detector
errors both cause slight changes to the measured optical spectra.

Normalization is a preprocessing step that standardizes the spectral
data and enhances spectral features that distinguish between different
histopathologies. The simplest approach assumes that the error is uniform in
each measurement. In other words, it assumes the same intensity of error at
all wavelengths. In this case, the most common normalization method is to
divide the spectrum by the baseline intensity of a specific wavelength. The
choice of baseline wavelength is often at the extreme ends of a spectrum -
either at a short or long wavelength [14], i.e., wavelengths that are outside of
the range that usually interact with tissue. Another strategy is to normalize
each spectrum by its highest intensity [15]. Normalizing by the peak intensity
standardizes the spectra and makes the highest point the same in every spec-
trum. Unlike normalizing by an extreme wavelength, this method does not
make any assumptions of the wavelength ranges that usually interact with
tissue. Instead, it chooses the peak intensity to be where the most scattering
or absorbing events occur. In a similar manner, one can normalize each spec-
trum by its lowest intensity, the wavelength at which the least scattering or
absorbing events occur. Other researchers have normalized the spectra such
that each spectrum has the same area under the plot [15]. Since the area
under a spectrum can be viewed as the total energy received by the light
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collecting probe, this method assumes that the total energy received remains
constant and uses this property to reduce the variability between different
measurements [15].

Normalization is also key for effective visualization of spectra by clinicians.
Noise and artifacts in the spectra may influence the ability of humans to
make clinical decisions. Therefore, it is desirable to visually enhance the spec-
tral signatures. Normalization methods used to enhance visualization include
smoothing and sharpening of optical spectra and spectral enhancing near a
specific wavelength. This is an interesting topic for future work since there
are few previous studies addressing normalization for visualization purposes.
Moreover, although the normalization goals are different between visualiza-
tion by humans and analysis by computers, the normalization methods may
sometimes be the same.

Other preprocessing methods are used to reduce the noise due to instru-
mentation, patient, or equipment operator influences. To eliminate the effect
that is specific to the patient, a spectrum may be normalized by the spectrum
recorded from the contralateral position in the same patient, for example, the
breast on the opposite side of the patient [15]. However, a contralateral po-
sition measurement is not always available for asymmetric organs or organs
that have disease throughout.

Instrumentation effects are composed of various spectral responses from
different optical components. To reduce the impact of these interferences, dif-
ferent noise models have been developed [16, 17]. Fawzy et al. [16] designed
an experiment that measured the true tissue response and the signal reflected
from a standard disc for reference. Two linear models were developed to ac-
count for the instrument’s spectral response.

Im1(λ) = a1I(λ) + b1I(λ)Rtm(λ) (2.1)

where I(λ) is the instrument’s spectral response and Rtm(λ) is the true tissue
diffuse reflectance to be derived. a1 and b1 are the weights of the instrumen-
tation spectral response and that of the true tissue reflected response, respec-
tively. The signal measured from tissue Im1(λ) is divided by the reflectance
signal measured from a reflectance standard disc to account for instrument
spectral response. The reflectance signal measured from the standard disc is

Im2(λ) = a2I(λ) + b2I(λ)Rs (2.2)

where I(λ) is the instrument’s spectral response, and Rs is the reflectivity of
the standard disc, which is approximately constant across the whole visible
wavelength range, a2 and b2 are the weights of the instrumentation spectral re-
sponse and the spectral response reflected from the standard disc, respectively.

Dividing Eq. 2.1 and Eq. 2.2 and rearranging the equation:

Rm(λ) =
Im1(λ)
Im2(λ)

= a0 + b0Rtm(λ) (2.3)
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where Rm(λ) is the apparent reflectance spectra measured, Rtm(λ) is the true
tissue diffuse reflectance to be derived, and a0 and b0 are additive offset and
multiplicative factor, respectively, which depend on the measurement condi-
tions during each in vivo measurement. In Eq. 2.3, a0 and b0 can be measured
by controlled calibration experiments, allowing the true diffuse reflectance,
Rtm, to be determined. A study conducted by Maŕın et al. pointed out the
importance of establishing calibration standards in fluorescence spectroscopy
[18]. A consensus calibration standard enables meaningful comparison of data
from multiple devices and unambiguous interpretations of experiments.

In the study of Fawzy et al. the weights a0 and b0 in their noise model
can be measured. In some other studies, the weights in the noise models are
adjusted such that the effect of instrumentation noise is minimized. To achieve
this goal, it is necessary to define a merit function that quantifies the effect
of instrumentation noise. Ntziachristos et al. (2002) defined a merit function
that was a summation of the tumor absorption coefficients and the absorption
coefficients of background noise [17]. In other words, the merit function was the
difference between the noise estimated by the model and the measured signals.
This merit function was minimized by a χ2 minimization technique. Since the
noise components vary by different instruments, operators, and locations of
the instrument [18], different noise models are needed for different situations.
There exists no single noise model that fits all the cases.

2.2.2 Feature Extraction

To describe ifferent spectral patterns, features are extracted from the spectra.
Of course, we can simply use the spectral intensities at each wavelength as
the features. But other statistical features, such as the slope of the spectrum,
may more efficiently capture information relevant to disease status. There are
no features that work “best” in detecting all diseases. Thus, the choice of
features is specific to a given diagnostic task.

There are three major categories of feature extraction methods: principal
component analysis (PCA), spectral feature extraction, and model-based fea-
ture extraction. PCA is a linear transformation technique for reducing the
dimensionality of data. Spectral feature extraction describes spectral signa-
tures without prior knowledge of the tissues physical nature, while model
based-extraction requires prior knowledge of the physical properties.

Principal Component Analysis (PCA)

PCA is commonly used for feature extraction and reducing the dimensionality
of data. PCA is a linear transformation of the data to a new coordinate system
such that the data projection on the first principal component has the great-
est variance. One can use PCA to reduce the dimensionality of the data by
keeping the lower-order principal components and ignoring the higher-order
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ones. However, PCA transforms the original features into new features with-
out direct physical or biological interpretation. Thus, PCA is not ideal for
use in designing a clinical decision support system, in which it is desirable
to make decisions based on features that can easily be directly related to the
biophysics of the disease process. That being said, several studies have demon-
strated the potential of PCA in analyzing optical spectra. Bard et al. applied
PCA on reflectance spectra on neoplastic lesions of the bronchial tree [14].
In their study, they retained the first 10 principal components that included
99.99% of the total variation of data. Several other studies also retained a
pre-determined number of principal components [19–22]. Other studies speci-
fied the percentage of the total variances. Mirabal et al. retained the principal
components that account for 65%, 75%, 85%, and 95% of the total variance as
their features [23]. Setting the number of PCs up front has the advantage of
fixing the number of inputs to the classifiers being considered. However, the
second strategy of selecting the number of PCs that account for a specified
percentage of variance controls the amount of information contained in the
features.

Spectral Features

In non-model based feature extraction, calculations are made based on the
statistical properties of the spectrum. In optical spectroscopy, the spectral
intensities themselves are informative since the intensities are related to how
many photons are scattered or absorbed. The means of the spectra are com-
monly used to summarize the amount of light scattered from the tissue [21].
Furthermore, it is possible to divide each spectrum into several spectral bands
and calculate the average spectral intensity of each band as a feature [21]. In
addition to the first moment of the spectrum, higher order moments, such as
the standard deviation, can also be used as features.

Mourant et al. (1995) conducted a study on spectroscopic diagnosis of
bladder cancer with elastic light scattering [24]. They discovered that the
spectral slopes over the wavelength range 330–370 nm have positive values
for nonmalignant tissues, and negative values for malignant ones. Bigio et al.
also used spectral features from a spectral range (330–590 nm) divided into
21 wavelength bands of 20 nm width. Both the average intensities and the
slopes of each interval were calculated as spectral features [21].

In feature extraction, one must understand the biophysical properties that
underlie optical phenomena. Also, it is well accepted that some wavelengths
may be more discriminatory than others. This is because light of different
wavelengths behaves differently when interacting with tissues. As the physi-
cal interpretation of light-tissue interactions is difficult, feature extraction may
help us understand the underlying physics. The advantage of feature extrac-
tion is to explicitly encode spectral information in a biophysically meaningful
manner.



2 AI in Clinical Decision Support 35

Model-based Features

Model-based features are extracted by building quantitative models of the tis-
sue and inversely calculating the parameters in the model. These parameters
contain important tissue information which may be indicative of the cancer
status. For example, the sizes of scatterers in the tissue are typically larger in
cancerous tissues; thus, the sizes of scatterers can be used as a feature indica-
tive of cancer status. In these quantitative models, absorption coefficients and
scattering coefficients are commonly inversely-determined from optical spec-
tra. However, several other parameters such as tissue blood volume fractions
or hemoglobin concentration can also be obtained from these models [22].

Obtaining parameters from quantitative models requires prior knowledge
of the tissue and the light used in the system. That is, one must select the
model that best approximates the properties of the tissue and the light. For
example, the diffusion equation is valid for cases with low to moderate tissue
absorption relative to scattering. A rule of thumb is that if

µa << 3(1 − g)µs (2.4)

then diffusion equation should be appropriate, where µa is the absorp-
tion coefficient [1/m], µs is the scattering coefficient [1/m], and g is the
anisotropy factor. Therefore, the diffusion equation is suitable for red light
and near-infraredlight systems where scattering dominates the light-tissue in-
teraction [25].

Four models are commonly used to numerically and analytically extract
the absorption coefficients from diffuse reflectance spectroscopy - radiative
transfer theory (RTT), Monte Carlo (MC) modeling, empirical methods, and
Mie theory. While the first three methods view light as a flow of photons
traveling through a medium, the last method treats light as an electromagnetic
wave. These modeling techniques are described below.

Radiative transfer theory (RTT) has been developed largely without
reference to electromagnetic theory [26, 27]. It is based on the transfer of
energy through a turbid medium. RTT has a stationary form of

ŝ · ∇I(r, ŝ) + µt(r)I(r, ŝ) = µs(r)
∫

4

πp(ŝ, ŝ′)I(r, ŝ′)dω′ + S(r, ŝ) (2.5)

where I(r, ŝ) is the radiance [W/(m2 · sr)] along the ŝ direction per unit solid
angle and per unit area at location r, µt is the total extinction coefficient
[1/m], µs is the scattering coefficient [1/m], p is the scattering phase function
[1/sr], and S is the source term that corresponds to the power generated at
r in the ŝ direction [W/(m3 · sr)]. As there is no general solution available to
this equation, an analytical approximation is used to model diffuse scattering.
A common analytical approximation of RTT is called the diffusion equation.

Monte Carlo modeling provides a flexible approach to studying light
propagation in biological tissues [28]. This method views light as particles
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and traces three-dimensional random walks of photons in a medium. The two
key parameters in Monte Carlo modeling are the scattering angle and the
mean free path for a photon-tissue interaction. The mean free path is deter-
mined by the probability that a photon is scattered or absorbed after a given
step size. This probability is determined by local optical properties: µs, the
scattering coefficient, and µa, the absorption coefficient. Similarly, the scat-
tering angle is determined by the anisotropy factor g. Monte Carlo modeling
generates uniformly distributed random numbers and transforms them to fol-
low the distributions of the mean free paths and scattering coefficients. These
random attributes are then used to simulate and record the paths of photons.
When modeling stratified tissues, multi-layer models are often needed. Each
layer is described by its thickness, refractive index n, absorption coefficient µa,
scattering coefficient µs, and anisotropy factor g [29,30]. Internal reflection or
refraction at the medium boundaries can also be simulated.

Another approach to inverse modeling is to use an empirical method. Em-
pirical methods do not make explicit assumptions about the interaction of light
and tissue. Instead, the idea is to use a classifier to “learn” the light-tissue in-
teraction from experimental data. For example, Pfefer et al. [31] developed an
empirical method for the extraction of absorption and scattering coefficients
from diffuse reflectance spectra. They trained a neural network with phantoms
and then used the network to extract optical parameters from another set of
phantoms.

Mie theory is a complete analytical solution of Maxwell’s equations for
the scattering of electromagnetic radiation by spherical particles [27, 32, 33].
It assumes a homogeneous, isotropic, and optically linear material irradiated
by an infinitely extending plane wave. Mie theory assumes that the scatterers
are spheres of arbitrary size and have a homogeneous index of refraction. Mie
theory is often combined with the other three models for calculating the size
of scatterers after obtaining the absorption and scattering coefficients of the
tissue [34].

The choice of model depends on the system studied, although it is not
uncommon for multiple quantitative models to be employed to elucidate the
biophysics of the optical-tissue interaction. The main drawback of all these
models, however, is that they either require a priori knowledge of optical pa-
rameters or they require simplifying assumptions, such as sphericity of scat-
terers, which may not be physically realistic. Despite their assumptions, these
quantitative models provide valuable insight into the alterations of optical
spectra with changing tissue state.

2.2.3 Feature Selection

A large number of features, obtained from quantitative modeling or the mea-
sured spectra directly, can be potentially related to health status. Feature
selection can aid identification of those optically derived features that are di-
agnostically relevant and those that are strongly related to each other and
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thus are redundant. Minimizing the number of features is important to re-
duce computation complexity, processing time, and to prevent overtraining of
classifiers.

Since reflectance spectroscopy measures the combination of the elastic
scattering from different organelles, it is not surprising that some wavelengths
indicate cancer progression better than others. It is possible that one or sev-
eral wavelengths contain information on the pathology status. Therefore, it
is necessary to select subsets of these features to reduce the redundancy and
improve the performance.

There are three main approaches to feature selection: filters, wrappers, and
embedded methods [35]. Many feature selection algorithms use filters to select
variables by giving ranks to individual features [35]. For example, Maŕın et al.
(2005) selected their features using a combination of Principal Component
Analysis (PCA) and a two-sample t test. They selected principal component
scores (PCS) identified as statistically significant using a two-sample t test
for independent samples, with equality of variance between the two groups
(positive and negative for dysplasia) based upon an F test [36].

However, it is known that a feature which provides little information by
itself can be valuable when combined with others [35]. Therefore, subsets of
features can have better predictive power than would be expected by ranking
of variables according to their individual predictive power. Thus, wrapper
methods have been developed to select feature subsets rather than individual
features. Wrapper methods use the prediction performance of a given classifier
to assess the relative usefulness of subsets of features. If the number of features
is not too large, an exhaustive search can also be considered. An example of a
wrapper method is stepwise LDA (Linear Discriminant Analysis). It performs
a greedy search of the possible feature combinations [37].

Embedded methods perform feature selection as part of the training
process. Thus, they may be more efficient in the training process. For exam-
ple, decision trees such as CART (Classification and Regression Trees) have a
built-in mechanism to perform variable selection [38]. A study conducted by
Atkinson et al. [39] used CART to analyze fluorescence spectra of suspected
cervical intraepithelial neoplasia (CIN) at colposcopy.

2.2.4 Classification

There are two major types of machine learning algorithms: unsupervised
learning and supervised learning. In unsupervised learning or clustering, the
algorithm identifies clusters in the feature values based on criteria defining
the desired properties of groups. Unsupervised learning techniques are useful
for assessing the discriminatory power of features. The visualization of the
clustering distributions of features provides a qualitative evaluation of their
potential for distinguishing between pre-defined categories, such as healthy
vs. diseased [20]. In developing clinical decision support systems, supervised
learning is more commonly used than unsupervised learning since the task is
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typically one of prediction, e.g., to predict disease status. Supervised learn-
ing refers to an algorithm that uses a training set of items for which target or
truth labels are provided to learn a mapping from feature values to target val-
ues. In the case of cancer diagnosis, histopathological assessment of a biopsy
sample is typically taken as the gold standard for establishing the truth state
for classifier training and evaluation. In other words, the task of a supervised
learning algorithm or classifier is to use the features provided by the feature
extractor and selected in a feature selection step to predict the assignment
of the sample to a diagnostic category [43]. Most clinical diagnostic decisions
cannot be made based on a single feature; thus, classifiers play an important
role in that they determine a function for combining two or more features
to make predictions. The most commonly used classifiers for cancer detec-
tion/diagnosis from optical spectroscopy are LDA [40] and Artificial Neural
Networks (ANN) [41,42].

The difficulty of a classification task depends on the variability of the
feature values within a class relative to the feature variability between classes.
For example, suppose the size of a lesion is a feature that we can use to
discriminate between benign and malignant lesions. All else being equal, it will
be more difficult to distinguish between benign lesions with an average size of
1 mm and malignant lesions with an average size of 2 mm, as compared to the
case in which the benign lesion mean size is 1 mm and the malignant lesion
mean size is 10 mm. Likewise, for a fixed difference in the class means, the
greater the variability within each class, the more challenging the classification
task. Therefore, the underlying probability model of the categories determines
the difficulty of the classification problem.

Some classifiers are more complex than others in the sense of the range
of models that they can describe [43]. For example, a support vector machine
(SVM) is capable of distinguishing samples by forming a non-linear function
of the features, while a linear discriminant analysis (LDA) model is only able
to solve linearly separable tasks. However, this does not mean that complex
classifiers are always “better” than the simple ones. Complex classifiers suf-
fer from generalization issues, i.e., overtraining. It is very easy to “tune” a
complex classifier to the particular training samples, rather than to the real
underlying characteristics of the diagnostic categories. A large training set
will alleviate generalization issues, but assembling an extensive heterogeneous
data set can be challenging. Thus, a simpler classifier may be used to avoid
over-training given a limited amount of data. Another motivation for using
linear classifiers is that they are more computationally efficient.

The choice of classifier depends on how much prior knowledge we have
about the classification task. For example, if we have prior knowledge that
the classification problem is linear, it will be most efficient to use a linear
classifier rather than a non-linear one. However, in the case where we have
little or no prior knowledge about the problem, there is no simple answer as to
how to choose the best classifier. The No Free Lunch theorem [44] states that
if algorithm A outperforms algorithm B on some cost functions, there must
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exist exactly as many other functions where B outperforms A. In other words,
if one algorithm seems to outperform another in a particular situation, it is
because the algorithm is a better fit for that particular problem, not that that
algorithm is generally “better” than the other one [43]. Thus, the selection of
an algorithm for a practical classification task is an empirical choice because
there is typically little prior knowledge of the underlying probability model.

2.2.5 Evaluation

To evaluate the performance of a clinical decision support system, we compare
the diagnostic decisions suggested by our system to a gold standard, e.g.,
biopsy outcome. A performance measure, such as the accuracy, is computed
to quantitatively summarize the efficacy of the system.

In two-class classification problems, Receiver Operating Characteristic
(ROC) analysis is widely used for analyzing the classifier performance [45].
Sensitivity and specificity indicate the ability of the diagnostic method to
distinguish between two groups, e.g., healthy and disease. By varying the
threshold, a ROC curve of sensitivity versus (1-specificity) is generated. The
area under the ROC curve (AUC) is often used as a metric to quantitatively
summarize the performance of a clinical decision support system.

In contrast, for a multi-class classification task, there is not a widely ac-
cepted performance metric [46]. Multiple research groups have been working
on developing ROC-type analyses for multi-class problems. Several approaches
have been proposed, so we briefly review only the most common and refer the
reader to other resources for a broader summary [46]. Hand and Till use the
average AUCs of the binary one-versus-one comparisons in multi-class prob-
lems [47]. Mossman (1999) developed a three-way ROC method [48] that uses
the correct classification rates as two separate decision thresholds are varied
to form a 3-dimensional plot. The volume under the surface (VUS) of this plot
serves as the performance metric. Moreover, Edwards et al. creates a ROC
hypersurface, which is a two-dimensional plane in a six-dimensional space,
and calculates the hypervolume under the hypersurface as a measure of per-
formance [49]. We emphasize that no single metric has been widely adapted.

Generally speaking, three independent sample sets are desired to design
and evaluate a classifier [50]. A training set is used for training a classifier.
A validation set is used during or after classifier training, in order to adjust
the classifier to prevent over-training. A test set is used for evaluating a clas-
sifier to report its performance. Ideally, these three sets should be randomly
selected from the relevant population. However, there are practical issues to
be considered. In particular, since the number of samples available is often
limited, it may not be possible to construct truly independent sets, which
causes bias. Therefore, sampling techniques such as cross-validation [51] and
bootstrap sampling [52–54] are often necessary in experimental design.

Cross-validation refers to the partitioning of data into non-overlapping
subsets of equal size such that the analysis is initially performed on a single
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subset, while the other subset(s) are retained for subsequent use in confirming
and validating the initial analysis [51]. The training/testing process is repeated
until each partition has been used in turn as the testing partition. Leave-one-
out cross-validation is a special case of cross-validation where one sample is
assigned to the testing set and the rest are in the training set.

Bootstrap sampling is another technique that can be used to estimate
the performance of a classifier. Bootstrap sampling creates a new set by sam-
pling with replacement from the original set [52–54]. Typically, each bootstrap
replicate has the same number of observations as the original sample. The
process is repeated to create hundreds or thousands of bootstrap replicates.
Then, a performance metric is computed from all of the bootstrap replicates
and the average performance metric is taken as the estimate of the system
performance.

The choice of appropriate evaluation methods is critical. Since clinical
studies are often restricted to a small sample size, the analyses can suffer from
biased data and little variation between samples [55]. Appropriate evaluation
methods enable reliable estimation of system performance, which is essential
for designing accurate and reliable clinical decision support systems.

2.3 Case Study: Spectroscopy for Oral Cancer Detection

Oral cancer is a major problem throughout the world. For example, in India,
it is the leading cancer in men [56] and in Cuba it is the leading cancer death
for women [1]. In developed countries such as the U.S., early detection is
low despite regular dental or physical examinations. In this section, we will
introduce a case study on developing a clinical decision support system for
oral cancer detection and diagnosis using optical spectroscopy.

2.3.1 Clinical Challenges

Currently, oral cancer is usually found by a dentist during a dental check-up
or by a general practitioner during a routine physical examination. There are
two major challenges to this process. First, suspicious abnormalities must be
detected and localized. Even for an experienced clinician, it is difficult to lo-
calize an oral lesion. Toluidine blue (TB) dye can be used to help identify
the locations that are more probable to be dysplasia or cancer [57]. Unfortu-
nately, although TB dye has a high sensitivity, its specificity is very low [58].
Second, the pathological status of the abnormality must be established, e.g.,
benign, pre-cancer, or cancer. Clinicians visually assess suspicious abnormal-
ities, but benign inflammatory conditions are difficult to visually distinguish
from premalignant lesions. Microscopic histological examination of biopsied
tissue by a trained pathologist is the “gold standard” for diagnosis of mucosal
abnormalities [57]. A less invasive technique called brush biopsy uses a brush
to exfoliate the epithelium of a suspicious lesion. The cells are reviewed by
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a pathologist using a microscope. The brush biopsy method is painful and
can be difficult to scrape the entire epithelium thickness if a keratin layer
has formed. Moreover, although brush biopsy has high sensitivity, it is not
feasible if the lesion covers a large area. Thus, there is considerable interest
in exploring the potential of optical imaging and spectroscopy for detecting,
localizing, and non-invasively diagnosing oral lesions.

2.3.2 Design of the Study

Materials

A pilot clinical study was conducted on 27 patients over the age of 18 years
that were referred to the Head and Neck clinic at The University of Texas
M. D. Anderson Cancer Center (UT MDACC) with oral mucosa lesions sus-
picious for dysplasia or carcinoma. Spectroscopic measurements were typically
performed on 1-2 visually abnormal sites and 1 visually normal site. Biopsies
were taken of all measured tissue sites. We measured a total of 57 sites, of
which 22 were visually and histopathologically normal (Normal), 13 sites that
were visually abnormal but histopathologically normal (Benign), 12 that were
visually abnormal sites that proved to be mild dysplasia (MD) on histopathol-
ogy, and 10 that were visually abnormal sites that proved to be severe high
grade dysplasia or carcinoma (SD) after histopathology.

The spectroscopic measurement that was performed was based on Oblique
Polarization Reflectance Spectroscopy (OPRS) [59–61]. In each measurement,
parallel and perpendicular spectra were collected.

Five spectral signals were used in this study:

1. Parallel signals: I‖
2. Perpendicular signals: I⊥
3. Diffuse reflectance spectrum:

Idiffuse = I‖ + I⊥ (2.6)

4. The ratio of parallel to perpendicular:

Ipar/per =
I‖
I⊥

(2.7)

5. The depolarization ratio:

Idepol =
I‖ − I⊥
I‖ + I⊥

(2.8)

We used MATLAB R14 (The MathWorks, Natick, MA) and a neural
network toolbox developed by Nabney [62] for data analysis in this case study.
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Preprocessing

Two preprocessing steps were are taken in this case study: Down-sampling
and Normalization. Spectra were down-sampled using an averaging window
with a spectral width of 5 nm. The purpose of down-sampling is to reduce the
computation time and complexity. Moreover, down-sampling reduces the in-
strumentation noise from the spectrometer. Since the spectrometer resolution
was 5 nm, signals within a two data point interval of 5 nm were considered
noise. Hence the down-sampling window width was set to be 5 nm. After
down-sampling, the spectra were normalized to remove inter-patient varia-
tion. Each spectrum was normalized by dividing each intensity value by the
intensity at 420 nm.

Feature Extraction and Selection

Three types of features were extracted from each sample. The first and the
second types of features were both spectral features, and the third feature
type was model-based.

1. spectral intensities of each spectrum: For each spectrum, 64 spectral
intensities at 64 different wavelengths were used as features.

2. average spectral intensities: For each spectrum, the average spectral inten-
sity was calculated as a feature.

3. average nuclear size: The average nuclear size of tissue was inversely
calculated by fitting the depolarization ratio spectrum to a Mie theory
based model [60,63].

Consequently, for every sample in the database, we had 64 spectral inten-
sities ×5 spectra +1 average intensity per each of 5 spectra +1 estimate of
the average nuclear size = 326 features. As we only had 57 samples, there was
a substantial imbalance between the number of samples and the number of
features and thus it was critical to reduce the number of features. We did not
employ Principal Component Analysis (PCA) since we wanted to preserve
the physical meaning of the features. For computational simplicity, we used
a filter method to select one spectral intensity from each spectrum. The fea-
tures were ranked by the area under their ROC curves (AUC). The trapezoid
rule was used to compute the AUC under the empirical ROC curve. For each
spectrum, the spectral intensity with the highest AUC was selected as the
most discriminatory. In this manner, we reduced the number of features to
5+5+1 = 11. In this case study, a filter method was used for feature selection
for computational simplicity. In other work, we are testing a wrapper method
that searches for feature combination subsets [61].
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Classification and Evaluation

Leave-one-out cross-validation was employed. The classifiers were trained to
distinguish between two groups at a time and a series of tests was conducted
of different pairwise comparisons, i.e., Normal vs. SD, Normal vs. MD, etc.

A Linear Discrimination Analysis (LDA) and an Artificial Neural Network
(ANN) were used to predict the pathology status based on the 11 features.
Note that one expects the ANN to learn any model that can be produced by
LDA as well as models that have non-linear decision boundaries. However,
overtraining is likely to occur with a large number of hidden nodes, especially
when the sample size is small. Thus, the ANNs in this analysis used only two
hidden nodes so as to reduce the likelihood of overtraining. In this case study,
each of the ANNs used in the 6 comparisons was adjusted separately to obtain
suitable learning rates, momentum, and iteration cycles. These parameters
were adjusted such that the learning was stopped before the mean squared
error increased for the held-out cases in the cross-validation.

Classifier performance was evaluated in terms of the area under the Re-
ceiver Operating Characteristic curve (AUC). The AUC under the empirical
ROC curves was computed using the trapezoid rule. A bootstrapping tech-
nique [54] was used to test the hypothesis that the mean difference in the
AUC between LDA models and ANN models was zero. P values below the
conventional threshold of 0.05 indicate that there is a statistically significant
difference between the AUC of the LDA model and that of the ANN model.

2.3.3 Results and Discussion

In this study, we compared LDA and ANN models for classifying optical
spectral measurements of oral sites. We observed that the ANN performance
was comparable to or higher than that of the LDA for all pairwise classification
considered, e.g., Normal vs. Benign, Normal vs. MD, etc (Table 2.1). For
example, for the task of distinguishing between Normal and MD sites, the
ANN achieved an AUC of 0.83 while the LDA achieved an AUC of 0.65. The
potential improvement in classification performance to be gained from using
an ANN model rather than a LDA model is most evident when the task was
to separate Normal from other disease states. However, the p values generated
from the hypothesis test based on bootstrap sampling indicate that only two
of the six pairwise classifications have significantly different AUCs (p < 0.05).
The other four pairs of AUCs are statistically indistinguishable given the
available data. While the results of this small pilot study must be interpreted
cautiously, our findings are consistent with prior studies that reported that
non-linear classifiers were desirable when predicting pathology status from
optical spectra of other organ sites [40,41].

We also noted that both classifiers generally performed best when
separating Normal from SD (Table 2.1). This is not unexpected because Nor-
mal and SD are pathological extremes. Other groups have also reported good
separation of Normal from SD and Normal from dysplasia using other optical
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Table 2.1. Classifier performances for pairwise classifications. Data are areas under
ROC curve. The first value is for LDA, second value is for ANN, and the third value is
the p value obtained from the hypothesis test based on bootstrap sampling. P values
below the conventional threshold of 0.05 were regarded as statistically significant

techniques [64–67]. This provides additional evidence that the spectroscopy
measurements are capturing meaningful information on the underlying bio-
physical changes associated with cancer progression.

When using ANNs, one must always be concerned about overtraining. If
an ANN is overtrained, its generalization performance can be worse than that
of a simpler model, such as LDA. Overtraining often results from trying to
learn appropriate values for many network parameters (weights) from a small
number of samples. Thus, a common rule of thumb for choosing the maximum
number of hidden nodes is to have at least twice as many samples as there are
weights in the network. Of course, if the classification problem is complicated,
more hidden nodes will be needed and thus more training samples will be
required. In this case study, we chose a small number of hidden nodes (2 hidden
nodes) to reduce the chance of overtraining since there was a small number of
samples available for training. Despite this precaution, very high AUCs were
obtained for some classification tasks, which are likely overly optimistic and
are not expected to generalize as more data are collected.

In this study, we have shown that optical spectroscopy is capable of
discriminating different stages of oral cancer. An ANN model performed better
than LDA models at distinguishing oral cancer histopathologies using optical
spectroscopy. Moreover, this study verified that optical spectroscopy is better
able to distinguish between more histopathologically distinct samples than
less histopathologically distinct samples.

In this case study, we have demonstrated that optical spectroscopy has
high potential for accurate diagnosis of oral cancer. On the other hand,
spectroscopic instruments are not suitable for the detection task since their
probing area is small; optical imaging is better suited for that role. More work
is needed on combining optical spectroscopy with optical imaging in order to
develop systems able to help localize, detect, and diagnose cancer [17].
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2.4 Conclusions and Future Works

The intent of this chapter has been to review the literature on AI meth-
ods applied to optical spectroscopy for cancer diagnosis. We introduced pre-
processing techniques, features extracted from optical spectra to describe key
information, feature selection for reducing redundant information, and classi-
fiers trained to distinguish between different histopathology groups. We also
reviewed the choice of evaluation metric and testing paradigm for evaluating
the performance of a clinical decision support system. Finally, we presented a
detailed case study of research on oral cancer diagnosis using polarized light
spectra.

It is difficult for a human to visually assess the optical spectra and make
a diagnosis despite of the capability of optical spectroscopy for capturing
cancer characteristics. The influence of cancer cell morphology on its optical
properties is complicated, hence a clinical decision support system is necessary.
This chapter shows that AI provides support for clinicians to make diagnostic
decisions based on optical spectroscopy. Moreover, AI can also help scientists
understand the optical properties of different tissue pathologies. For example,
model-based feature extraction enables determining optical parameters of the
measured tissue. This example shows how AI methods are used in data mining,
which extracts useful information from large databases.

This chapter also indicated the the potential for optical spectroscopy to
be extended to optical imaging for detecting epithelial cancer of wide-spread
lesions. Optical spectroscopy is not suitable for detection tasks of wide-spread
lesions because of its small sampling area; optical imaging is better suited
for that. As discussed in preprocessing section, optical spectroscopy can be
very useful for selecting optimal imaging wavelengths. However, optical spec-
troscopy is a practical approach for small lesions, for directing biopsies to limit
their number and frequency, and for margin detection during tumor excision.
Two-dimensional, or even three-dimensional imaging are both very promising
directions for future work.
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Summary. Theoretical fuzzy decision-making models mostly developed by Zadeh,
Bellman, Jain and Yager can be adopted as useful tools to estimation of the total
effectiveness-utility of a drug when appreciating its positive influence on a collection
of symptoms characteristic of a considered diagnosis. The expected effectiveness of
the medicine is evaluated by a physician as a verbal expression for each distinct
symptom. By converting the words at first to fuzzy sets and then numbers we can
regard the effectiveness structures as entries of a utility matrix that constitutes the
common basic component of all methods. We involve the matrix in a number of
computations due to different decision algorithms to obtain a sequence of tested
medicines in conformity with their abilities to soothe the unfavorable impact of
symptoms. An adjustment of the large spectrum of applied fuzzy decision-making
models to the extraction of the best medicines provides us with some deviations in
obtained results but we are thus capable to select this method whose effects closest
converge to the physicians’ judgments and expectations.

Keywords: Fuzzy decision-making, fuzzy utility matrix, utilities of medicines,
powers of symptom importance, minimization of regret, OWA operators, Cho-
quet integral, Sugeno integral.

3.1 Introduction

Theoretical fuzzy decision-making models mostly developed in [3, 8, 9, 26, 27,
29–31], give rise to successfully accomplished technical applications. How-
ever, there are not so many medical applications to decision-making proposals,
especially they are lacking in the domain of pharmacy matters.

After visiting of the homepages of some pharmacological concerns, e.g.,
Astra-Zeneca in Sweden, we realize that the most popular mathematical
methods utilized in appreciation of medicine availability in the treatment of
patients are statistical tests. In the group of statistical methods adaptable
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to approximation of drug effectiveness we can recognize descriptive statistics,
regression and analysis of variance, a general linear model (GLM) approach,
hypothesis tests, continuous statistical distributions including uniform, normal,
exponential, chi-squared, student-t, F-ratio, and Weibull distributions, discrete
distributions including uniform, binomial, geometric, hypergeometric, Pois-
son and user-defined distributions, high-quality random number generators,
including the Mersenne Twister, classes for working with one-dimensional
histograms, Bayes rules, e.g., in [16], Monte-Carlo methods and many others.
Statistical tests are very helpful in grading of the curative power of medi-
cines; nevertheless they cannot effectively handle either interactions among
medicines or imprecise estimations of the medicine influence on a collection
of symptoms that should retreat after the treatment.

Fuzzy set theory, giving the possibility of computing with words [33–36]
and solving of systems accommodated to imprecise or vague data, provides us
with a mathematical apparatus bringing answers to different posed questions
regarding pharmacology. We can list such tools as the adaptation of fuzzy con-
trol in medicine models [11], the recognition prime-decision model (RPD) in
appreciation of drugs [10] or the process of medicine extraction by the method
of midpoints [15]. Other solutions used to estimation of medicine powers and
worth mentioning are: classification of medicines by fuzzy matrices [5], rough
sets in evaluation of medicines [4] and the use of neuro-fuzzy structures contra
rough sets in the possible evaluation of drugs [6].

Anyway, if we formulate the task to solve as determination of a hierar-
chical ladder in a sample of medicines that affect the same symptoms typical
of a considered diagnosis with respect to the choice of the most efficacious
medicine then we cannot find any positions in literature except own previ-
ously made attempts [17–23]. We thus intend to sum up all results in a survey
of fuzzy decision-making models adapted to the selection of the most effec-
tive medicine when comparing it to others in the process of the patients’
recoveries.

We emphasize that all models discussed below are unique and genuine
trials of stating the medicine ranking and therefore we cannot compare the
obtained results to other achievements. This comparison will be made for own
performances in concluding remarks.

To start with the discussion concerning the choice of drugs we sketch the
components of fuzzy decision-making model to introduce the first algorithm
designed by Jain [8, 9] in Section 3.2. In section 3.3 we propose algorithms
based on max- and min-operators enriched by insertion of weights-powers
[3, 27, 30] to extract the best medicine. Finally we perform the aggregation-
[12] and OWA-operations [28, 32] to benefit the concepts of Choquet and
Sugeno integrals [7, 13, 14, 25] to the same purpose of determining the power
of medicines when regarding their influence on clinical symptoms.
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3.2 The Jain Decision Algorithm in the Ranking
of Medicines

We intend to discuss and compare the functions of different theoretical
decision-making models selected as the most appropriate tools adapted to an
extraction of the best medicine from a collection of tested drugs with curative
effects in a considered diagnosis. Let us first prepare basic notions commonly
used in each decision method.

3.2.1 The General Outline of a Drug Decision-Making Model

We introduce the notions of a space of states X = {x1, . . . , xm} and a decision
space (a space of alternatives) A = {a1, . . . , an}. We consider a decision model
in which n alternatives a1, . . . , an ∈ A act as drugs used to treat patients who
suffer from a disease. The medicines should influence m states x1, . . . , xm ∈ X,
which are identified with m symptoms typical of the morbid unit considered
[17–23].

If a rational decision maker comes to a decision ai ∈ A, i = 1, 2, . . ., n,
concerning states-results xj ∈ X, j = 1, 2, . . . , m, then the decision problem
is reduced to the consideration of the ordered triplet (X,A,U), where X
is a set of states-results, A – a set of decisions and U – the utility matrix
[8, 9, 17–23,26,27,29–31]

x1 x2 · · · xm

U =

a1

a2

...
an

⎡
⎢⎢⎢⎣

u11 u12 · · · u1m

u21 u22 · · · u2m

...
. . .

...
un1 un2 · · · unm

⎤
⎥⎥⎥⎦ , (3.1)

in which each element uij , i = 1, 2, . . ., n, j = 1, 2, . . ., m, is a representative
value belonging to [0, 1] for the fuzzy utility following from the decision ai

with the result xj .
The theoretical model with the triplet (X,A,U) can find its practical

application in the processes of choosing an optimal drug from a sample of
tested medicines [17–23].

3.2.2 The Adaptation of Jain’s Decision Model
to Drug – Symptom Dependency

Assume now that the state-result is not known exactly and thus proposed to
be a fuzzy set S ⊆ X given in the form [8,9]

S =
m∑

j=1

µS(xj)
/

xj . (3.2)
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To solve the decision problem under circumstances introduced above
means to find the best decision ai influenced by all constraints.

The theoretical model with the triplet (X,A,U) and the fuzzy set of states
S, thus very shortly sketched, can find its practical application in the processes
of choosing an optimal drug. If the diagnosis is recognized by the symptoms
accompanying it, then we, by giving a medicine, try to liquidate these symp-
toms or at least we try to reduce their unfavorable influence upon the patient’s
health. Not all symptoms retreat after the cure has been carried out. One
sometimes can only soothe their negative effects by, for example, the lowering
of an excessive level of the indicator, the relief of pain, and the like, but can-
not ascertain that the patient is fully free from them. The task of choosing
an optimal drug (decision), which soothes the symptoms or has some power
to remove them in full, corresponds to the theoretical assumptions presented
above.

In order to show the algorithm for finding such a decision let us con-
sider a model with n drugs a1, a2, . . . , an ∈ A. Due to the physician’s de-
cision, the drugs can be prescribed to the patient (thus may be treated
as decisions a1, a2, . . . , an) with a view to have an effect on m symptoms
x1, x2, . . . , xm ∈ X representing certain states characteristic of the diagnosis
considered. To simplify the symbols let us further assume that each symptom
xj ∈ X, where X is a space of symptoms (states), is understood as the result
of the treatment of the symptom after the cure with the drugs a1, a2, . . . , an

has been carried out.
The relationship between a medicine and a symptom is determined in

the term of utility. Let us discuss the formalized technique of stating the
representatives of utilities without using intuitive or perceptional estimations.

On the basis of earlier experiments the physician knows how to define
in words the curative drug efficiency in the case of considered symptoms.
We intend to replace his verbal judgments by numerical expressions to be
able to insert them in the mathematical model [1,2,33,34,36]. In accordance
with the physician’s advice we suggest a list of terms, which introduces a
linguistic variable [33, 35] named “the curative drug effectiveness regarding a
symptom” = {R1 = “none”, R2 = “almost none”, R3 = “very little”, R4 =
“little”, R5 = “rather little”, R6 = “medium”, R7 = “rather large”, R8 =
“large”, R9 = “very large”, R10 = “almost complete”, R11 = “complete”}.

Each notion from this list of terms is the name of a fuzzy set. Assume that
all sets are defined in the space Z = [0, 100] that is suitable as a reference set
to measure a number of patients who have been affected by a medicine in the
grade corresponding to each name.

We propose constrains for the fuzzy sets R1 − R11 by applying linear
functions [21–23]

L(z, α, β) =

⎧⎪⎪⎨
⎪⎪⎩

0 for z ≤ α
z − α

β − α
for α < z ≤ β

1 for z > β

(3.3)
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and

π(z, α, γ, β) =

⎧⎪⎪⎨
⎪⎪⎩

0 for z ≤ α
L(z, α, γ) for α < z ≤ γ
1 − L(z, γ, β) for γ < z ≤ β
0 for z > β

(3.4)

where z is an independent variable from [0, 100], whereas α, β, γ are
parameters.

Let us now define

µRt
(z) =

{
1 − L(z, αt, βt) for t = 1, 2, 3, 4, 5
L(z, αt, βt) for t = 7, 8, 9, 10, 11 (3.5)

and
µR6(z) = π(z, α6, γ, β6) (3.6)

in which αt, βt, γ are the borders for supports of the fuzzy sets R1 − R11.
We decide the values of the boundary parameters αt, βt, γ in Ex. 1 below.

Example 1

Figure 3.1 collects the graphs of restrictions made for fuzzy sets R1−R11 that
are approved as the terms composing the contents of the effectiveness list.

To each effectiveness, expanded as a continuous fuzzy set, we would like
to assign only one value.

Example 2

To find the adequate z ∈ [0, 100] representing the effectiveness terms R1−R11

we adopt as z the values αt for t = 1, 2, 3, 4, 5, and βt for t = 7, 8, 9, 10, 11
in compliance with (3.5), respectively γ due to (3.6). We simply read off

0 10 20 30 40 50 60 70 80 90 100

0.5

1.0(z)m

z

R1 R2 R3 R4 R5

R6

R7 R8 R9 R10 R11

Fig. 3.1. The fuzzy sets R1 − R11
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Table 3.1. The numerical representatives of verbal effectiveness

Effectiveness Representing z-value for effectiveness µeffectiveness(z) = uij

none 0 0
almost none 10 0.1
very little 20 0.2
little 30 0.3
rather little 40 0.4
medium 50 0.5
rather large 60 0.6
large 70 0.7
very large 80 0.8
almost complete 90 0.9
complete 100 1

the values of αt, βt and γ from Fig. 3.1 in order not to introduce evident
calculations. These z-values are elements of the support of a new fuzzy set
“effectiveness” whose membership function is expressed over the interval [0,
100] by µ“effectiveness”(z) = L(z, 0, 100). For the z-representatives of R1−R11

we finally compute membership values µ“effectiveness”(z), which replace the
terms of effectiveness-utility as quantities uij . We summarize the obtained
results in Table 3.1.

To state a connection between ai (medicine) and the effectiveness of the
retreat of xj (symptom) the physician uses the word from the list “the curative
drug effectiveness regarding a symptom” and this word is “translated” into
the quantity uij , i = 1, . . ., n, j = 1, . . .,m.

Let us also admit that the physician possesses a general experience as to
the “difficulties” in the retreat of the symptoms xj , j = 1, 2, . . ., m. His medical
knowledge, based on observations, can contribute in a classification of symp-
toms that are harder to treat and symptoms that recede readily during the
treatment process. Via the words from the list “the curative drug effectiveness
regarding a symptom” one may assign to each symptom a general ability to
retreat, fixed, for instance, by observing the cure of many patients with differ-
ent drugs. For instance, it is commonly known that a fever disappears quicker
than some changes in tissues after inflammation. Such a general classification
of symptoms found its place in the fuzzy set S [17–19] defined theoretically
by (3.2) [8,9], in which the membership degrees µS(xj), j = 1, 2, . . . , m, corre-
spond now to utilities uij . These express the mean effectiveness of treatment
independently of a prescribed medicine. By the “cure” one can mean the level
of the retreating symptom, the decrease of the heightened index, and the like.

In accord with Jain’s theory of decision-making, the fuzzy utility [8,9] for
each decision-drug ai, i = 1, 2, . . ., n, with the fuzzy state S ⊆ X characterized
by means of the membership degrees µS(xj) is defined to be a set
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Ui =
m∑

j=1

µS(xj)
/

uij (3.7)

for i = 1, 2, . . ., n. The set allows observing of the relationship between the
general ability to soothe and this effect in soothing which the drug ai causes
for each symptom xj . Both the membership degrees µS(xj) and the elements
uij in the support of the set Ui are the utility values uij found in the last
column of Table 3.1.

3.2.3 The Solution of Jain’s Decision Case

The problem of choosing of an optimal decision is solved according to the
algorithm developed by Jain [8, 9]. The steps of the action line are listed in
the following order.

Algorithm 1

1. We form a non-fuzzy set Y as the union of supports characteristic of Ui,
i = 1, 2, . . ., n. This set contains the utilities uij , which appear in the
supports of all sets Ui. Hence, we have access to the range of the common

utility expressed as Y =
n⋃

i=1

supp(Ui).

2. We select the maximal element of the set Y , so-called umax.
3. We define the fuzzy sets U ′

i as

U ′
i =

m∑
j=1

µU ′
i
(uij)

/
uij (3.8)

for uij ∈ supp(Ui). This means that the supports of U ′
i and Ui are the

same sets. The membership degrees of U ′
i are computed by means of the

formula
µU ′

i
(uij) =

uij

umax
, (3.9)

where uij stands for an element belonging to the support of the set Ui.
U ′

i ’s membership degrees evaluate the “deviation” between the support
elements of Ui and umax found in the union of all Ui.

4. The next introduced fuzzy set has the form of

Ui0 =
m∑

j=1

µUi0(uij)
/

uij , (3.10)

provided that the membership degree µUi0(uij) is calculated according to
the rule

µUi0(uij) = mean value(µUi
(uij), µU ′

i
(uij)). (3.11)

The fuzzy utility Ui0, constructed for each medicine ai, gathers all possible
factors that can affect appreciation of the soothing power of ai.
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5. We slowly close the action of Algorithm 1 by the adoption of a new fuzzy
set A∗ composed of elements a1, a2, . . ., an(ai ∈ A, i = 1, 2, . . ., n) and for-
malized by

A∗ =
n∑

i=1

µA∗(ai)
/

ai. (3.12)

The membership degree for each ai is generated by

µA∗(ai) = mean value
uij∈supp(Ui0)

(µUi0(uij)). (3.13)

In practice we compute the arithmetic mean for a sample of membership
degrees appearing in each set Ui0. This value expresses the decisive charac-
ter of every ai in accordance with a rule: the higher value of the membership
degree assigned to ai is found, the better influence of ai on the patient’s
health will be expected.

6. To terminate the choice of an optimal decision a∗ we accept as a∗ this ai

whose membership degree satisfies the equation

µA∗(a∗) = max
1≤i≤n

(µA∗(ai)), (3.14)

and we ascertain that the application of the drug a∗ should yield the best
effects in the retreating process of the symptoms xj , j = 1, 2, . . ., m.

Example 3

The Jain model is tested on the clinical data coming from the investiga-
tion carried out among patients who suffer from D1 = “coronary heart dis-
ease” [23]. We consider the most typical symptoms accompanying the illness,
i.e., x1 = “pain in chest”, x2 = “changes in ECG” and x3 = “increased
level of LDL-cholesterol”. A physician has recommended a1 = nitroglycerin,
a2 = beta-adrenergic blockade, a3 = acetylsalicylic acid (aspirin) and
a4 = statine LDL-reductor as the medicines expected to improve the pa-
tient’s state. The physician has also decided that the set S and the matrix U
should have the following descriptions

S = large
/
x1 + medium

/
x2 + rather large

/
x3

and

x1 x2 x3

U =

a1

a2

a3

a4

⎡
⎢⎢⎣

almost complete very large almost none
medium medium little
little little very little
little little very large

⎤
⎥⎥⎦ .
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We begin the computations with determining of the sets Ui, i = 1, 2, 3, 4,
as

U1 = large
/
almost complete + medium

/
very large + rather large

/
almost none

= 0.7
/
0.9 + 0.5

/
0.8 + 0.6

/
0.1,

U2 = 0.7
/
0.5 + 0.5

/
0.5 + 0.6

/
0.3,

U3 = 0.7
/
0.3 + 0.5

/
0.3 + 0.6

/
0.2

and
U4 = 0.7

/
0.3 + 0.5

/
0.3 + 0.6

/
0.8

due to Eq. (3.7).
The non-fuzzy sum of all supports emerges as a set

4⋃
i=1

supp(Ui) = {0.1, 0.2, 0.3, 0.5, 0.8, 0.9}

in which the largest element is found as umax = 0.9.
Equations (3.8) and (3.9) give rise to creation of new sets U ′

i , i = 1, 2, 3, 4.
U ′

1 – the first set in the sequence – appears as the following fuzzy collection
of elements

U ′
1 =

0.9
0.9
/
0.9 +

0.8
0.9
/
0.8 +

0.1
0.9
/
0.1 = 1

/
0.9 + 0.89

/
0.8 + 0.11

/
0.1.

The other sets of U ′
1’s type, i = 2, 3, 4, are expanded as

U ′
2 = 0.56

/
0.5 + 0.56

/
0.5 + 0.33

/
0.3,

U ′
3 = 0.33

/
0.3 + 0.33

/
0.3 + 0.22

/
0.2

and
U ′

4 = 0.33
/
0.3 + 0.33

/
0.3 + 0.89

/
0.8.

We follow the next step of Algorithm 1 in conformity with (3.10) and
(3.11) to arrange the sets Ui0, i = 1, 2, 3, 4 as

U10 = mean value(0.7,1)
/
0.9 + mean value(0.5,0.89)

/
0.8 + mean value(0.6,0.11)

/
0.1

= 0.85
/
0.9 + 0.695

/
0.8 + 0.355

/
0.1,

U20 = 0.63
/
0.5 + 0.53

/
0.5 + 0.465

/
0.3,

U30 = 0.515
/
0.3 + 0.415

/
0.3 + 0.41

/
0.2

and
U40 = 0.515

/
0.3 + 0.415

/
0.3 + 0.745

/
0.8.

The decision set A∗ has been decided as

A∗ = 0.633
/
a1 + 0.542

/
a2 + 0.447

/
a3 + 0.558

/
a4 .



60 E. Rakus-Andersson

The magnitudes of the membership degrees give us a hint about priorities
of drugs, i.e., a1 should have the strongest soothing power when regarding the
considered symptoms, and it should be accepted as the optimal decision-drug.
Moreover, we can state the hierarchy of drugs in the order: a1 � a4 � a2 � a3.
The notion ai � al indicates that ai acts better than al, i, l = 1, 2, 3, 4.

3.3 Unequal States-results in the Choice of Medicines

The purpose of this section is to present other ideas made in the solution of
fuzzy decision-making model that still should provide us with the extraction
of the most efficacious medicine provided that the particular emphasis is
impacted on assigning differing degrees of importance to states-symptoms
[21,27].

3.3.1 The Design of the Bellman-Zadeh Decision Model

We still consider a decision model in which n drugs a1, . . . , an ∈ A act as
decisions. These affect m symptoms x1, . . . , xm ∈ X that are typical of a
morbid unit under consideration. The utility following each ai, when treating
xj with it, is a value of uij constituting the entry of the utility matrix U ,
i = 1, . . ., n, j = 1, . . .,m. In conformity with the Bellman-Zadeh and Yager
suggestions [3,26,27,29] referring to fuzzy decision-making we form the deci-
sion set A∗ with the support consisting of drugs a1, . . ., an as

A∗ =
n∑

i=1

µA∗(ai)
/

ai, (3.15)

in which the membership degree of each ai is shaped by an operation

µA∗(ai) = min
1≤j≤m

(uij). (3.16)

The best medicine a∗ is extracted from the collection A as this ai for which
the membership degree in set A∗ is largest (see Eq. (3.14)).

Example 4

We return to the clinical data from Ex. 3 and utilities from the last column of
Table 3.1. By adopting singular utilities stated for pairs of associated medi-
cines and symptoms we determine the utility matrix U in the form of

x1 x2 x3

U =

a1

a2

a3

a4

⎡
⎢⎢⎣

0.9 0.8 0.1
0.5 0.5 0.3
0.3 0.3 0.2
0.3 0.3 0.8

⎤
⎥⎥⎦
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The decision set A∗ is stated as

A∗ = min(0.9,0.8,0.1)
/
a1 + min(0.5,0.5,0.3)

/
a2 + min(0.3,0.3,0.2)

/
a3 + min(0.3,0.3,0.8)

/
a4

= 0.1
/
a1 + 0.3

/
a2 + 0.2

/
a3 + 0.3

/
a4

After comparing of the membership degrees of drugs in the decision set
A∗ we conclude that ai, i = 1, . . ., 4, are arranged in the sequence a2 = a4 �
a3 � a1.

3.3.2 The Power-Importance of Symptom-States

The last decision seems to be very poor, cautious and contradicts the former
decision obtained in Subsection 3.2.3 because of the unfavorable affection of
the minimum operator when deciding the degrees of ai. The use of minimum
deprives many data values of their decisive power. We intend to improve the
obtained results due to the Bellman-Zadeh decision model by attaching the
importance values to the symptoms-states considered.

Let us associate with each symptom xj , j = 1, . . ., m, a non negative
number, which indicates its power or importance in the decision according to
the rule: the higher the number is, the more important role of the xj ’s retreat
will be regarded. We assign w1, . . ., wm as powers-weights to x1, . . ., xm to
modify (3.15) as a richer and more extended decision

A∗
weighted = µA∗

weighted
(ai)
/

ai (3.17)

in which the membership degree of each ai ∈ A∗
weighted is computed as [27]

µA∗
weighted

(ai) = min
1≤j≤m

(uij
wj ) (3.18)

We note that each ai always takes the value of a membership degree from
[0, 1]. If wj gets bigger then uij

wj , j = 1, . . .,m, i = 1, . . ., n, will get smaller,
closer to zero. On the contrary, wj → 0 implies uij

wj → 1. The behaviour
of minimum warrants that the minimal value in the sequence of quantities
belonging to [0, 1] must be a value coming from the same interval. This time
the application of the minimum operator is better motivated as before since
we neglect large values of uij

wj corresponding to less important symptoms.
A procedure for obtaining a ratio scale of importance for a group of m

elements (symptoms) was developed by Saaty [24].
Assume that we have m objects (symptoms) and we want to construct a

scale, rating these objects as to their importance with respect to the decision.
We ask a decision-maker to compare the objects in paired comparison. If we
compare object j with object k, then we will assign the values bjk and bkj as
follows

(1) bkj = 1
bjk

.
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(2) If objective j is more important than objective k then bjk gets assigned a
number according to the following scheme:

Intensity of importance Definition
expressed by the value of bjk

1 Equal importance of xj and xk

3 Weak importance of xj over xk

5 Strong importance of xj over xk

7 Demonstrated importance of xj over xk

9 Absolute importance of xj over xk

2, 4, 6, 8 Intermediate values

If object k is more important than object j, we assign the value of bkj .

Having obtained the above judgments a m × m importance matrix B =
(bjk)m

j,k=1 is constructed in the drug decision problem sketched above. Matrix
B constitutes a crucial part in the procedure of determining of the degrees
of importance w1, . . ., wm, which affect the decision set A∗

weighted in the sub-
stantial way. The weights are decided as components of this eigen vector that
corresponds to the largest in magnitude eigen value of the matrix B.

Example 5

By involving the computation technique suggested in the description of matrix
B we try to find the weights for objects xj , j = 1, 2, 3, already introduced in
Ex. 3 and Ex. 4.

The physical status of a patient is subjectively better if the pain disap-
pears, which means that at first a physician tries to release the patient from
symptom x1 = “pain in chest”. The next priority is assigned to x2 = “changes
in ECG” and finally, we concentrate our attention on getting rid of x3 = “in-
creased level of LDL-cholesterol”. The last symptom does not disappear very
quickly and the patient must be cured for some time to be free from it [21–23].

These remarks are helpful when constructing a content of the matrix B as

x1 x2 x3

B =
x1

x2

x3

⎡
⎣ 1 3 5

1
3 1 3
1
5

1
3 1

⎤
⎦

The largest eigen value of B has the associated eigen vector V =
(0.93295, 0.30787, 0.18659) ≈ (0.93, 0.31, 0.19). V is composed of coordinates
that are interpreted as the weights w1, w2, w3 sought for x1, x2, x3.

Due to the recommended Eqs. (3.17) and (3.18) the final decision
A∗

weighted is obtained as a fuzzy set
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D = min(0.90.93,0.80.31,0.10.19)
/
a1 + min(0.50.93,0.50.31,0.30.19)

/
a2

+min(0.30.93,0.30.31,0.20.19)
/
a3 + min(0.30.93,0.30.31,0.80.19)

/
a4

= min(0.906,0.92,0.645)
/
a1 + min(0.525,0.806,0.795)

/
a2

+min(0.326,0.688,0.736)
/
a3 + min(0.326,0.688,0.958)

/
a4

= 0.645
/
a1 + 0.525

/
a2 + 0.326

/
a3 + 0.326

/
a4 .

We conclude that the soothing effect of considered medicines is ranked in
the order a1 � a2 � a3 = a4. This time we have considered effectiveness of
drugs by regarding of their action on symptoms and we have paid attention to
the priority of symptoms as well. The importance order among the symptoms
points out the ones that should disappear first for the reason of their harmful
influence on the patient’s psychical and physical condition.

3.3.3 Minimization of Regret

The action of the minimum operation in the final decision formulas has pro-
vided us with a very cautious prognosis referring to the drug hierarchy. Some
high values of utilities, emphasizing a positive effect of medicine on considered
symptoms, have no chance of influencing finally computed decision degrees.
We can even say that the minimum operation acts as a filter for high values
by depriving them of their power.

In the next trial of evaluation of the medicine hierarchy ladder we want
to obtain clearer results when applying another fuzzy decision-making tech-
nique known as a minimization of regret [30]. We preserve a decision space
(a space of medicines) A = {a1, . . . , an} and a space of states-symptoms
X = {x1, x2, . . . , xm}. We form a basic payoff matrix (the old U -utility
matrix)

x1 . . . xj . . . xm

C =

a1

...
ai

...
an

⎡
⎢⎢⎢⎢⎣ cij

⎤
⎥⎥⎥⎥⎦ , (3.19)

where cij = uij is the payoff (utility) to a decision-maker if he connects ai to
xj , i = 1, . . ., n, j = 1, . . .,m.

In a continuation of the proposed approach to the choice of an optimal
medicine we first obtain a regret matrix R. Its components rij indicate the
decision-maker’s regret in selecting alternative ai when the state of X is xj .
We then calculate the maximal regret for each alternative.

A procedure of selecting an optimal ai should follow some steps listed
below due to Algorithm 2.
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Algorithm 2

1. For each xj calculate Cj = max
1≤i≤n

cij .

2. For each pair ai and xj calculate rij = Cj − cij .
3. Suppose that matrix B from Subsection 3.3.2 consists of bjk, which still

describe the importance scale when comparing states-symptoms xj and
xk, j, k = 1, . . .,m. The coordinates of this eigen vector that assists the
largest in magnitude eigen value of B thus constitute weights w1, . . ., wm

assigned to symptoms x1, . . ., xm stated in X. The weights are involved in
the computations of estimates RTi = w1ri1 + · · · + wmri,m for each ai. It
can be proved that the formulas derived for calculations of RTi satisfy the
conditions of OWA operators [12,28,32].

4. Select a∗, such that RTi∗ = min
1≤i≤n

RTi.

The values rij constitute the entries of the matrix R called the regret
matrix. We shall refer to Cj as the horizon under xj .

Example 6

The matrix C remains equal to the matrix U from Ex. 4. We remind of its
existence as the table

x1 x2 x3

C =

a1

a2

a3

a4

⎡
⎢⎢⎣

0.9∗ 0.8∗ 0.1
0.5 0.5 0.3
0.3 0.3 0.2
0.3 0.3 0.8∗

⎤
⎥⎥⎦

in which “∗” points to the largest element in each column due to Step 1.
The regret matrix R is computed as the next table

x1 x2 x3

R =

a1

a2

a3

a4

⎡
⎢⎢⎣

0 0 0.7
0.4 0.3 0.5
0.6 0.5 0.6
0.6 0.5 0

⎤
⎥⎥⎦ .

For w1 ≈ 0.93, w2 ≈ 0.31 and w3 ≈ 0.19 (Ex. 5) the values of
RTi, i = 1, . . . , 4, are appreciated as

RT1 = 0.93 · 0 + 0.31 · 0 + 0.19 · 0.7 = 0.133,

RT2 = 0.56, RT3 = 0.827, RT4 = 0.713.

Finally, due to Step 4 of Algorithm 2 we decide the order of drugs with res-
pect to their curative abilities. We state them in sequence a1 � a2 � a4 � a3,
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which almost confirms the results obtained by the technique of unequal objec-
tives and the Jain algorithm. Moreover, we notice that the last decision is very
clearly interpretable and easy to understand without doubts. This emphasizes
an advantage of applying of the OWA weighted operations, which prevent a
loss of substantial information. The OWA operations have resulted in the si-
multaneous engagement of all effectiveness quantities in mean decision-making
values involved in the regret model.

3.4 The Drug Hierarchy Made by Mean Operators
and Integrals

In the minimization of regret algorithm we have tested the OWA operators
as sorts of mean estimates of regret involving each data value. The obtained
result seems to be a clear-cut decision that takes into consideration all distinct
decisive factors, i.e., the utilities of medicines and powers of symptoms. In
this section we intend to expand the techniques of computing of mean values
as aggregated utilities of the drug series and even we want to extend the
calculations on the concepts of the Choquet and Sugeno integrals [22].

3.4.1 The Utilities of Medicines as Weighted Mean Quantities

Like in Subsections 3.3.2 and 3.3.3, we associate with each state-symptom xj ,
j = 1, . . . , m, a non negative number that indicates its power or importance
in decision making in accordance with the rule: the higher the number is,
the greater significance of symptom xj will be expected, when considering its
harmful impact on the patient’s condition. If we design W = {w1, w2, . . . , wm}
and we assign w1, w2, . . . , wm as powers-weights to x1, x2, . . . , xm, wj ∈ W, j =
1, 2, . . . , m, where W is a space of weights, then we will modify (3.1) as the
weighted matrix [22]

x1 x2 · · · xm

UW =

a1

a2

...
an

⎡
⎢⎢⎢⎣

w1 · u11 w2 · u12 · · · wm · u1m

w1 · u21 w2 · u22 · · · wm · u2m

...
. . .

...
w1 · un1 w2 · un2 · · · wm · unm

⎤
⎥⎥⎥⎦ (3.20)

In compliance with data entries determined in (3.20), the common curative
power of ai is approximated by the quantity UW (ai) defined as an OWA
operation [28,32]

UW (ai) =
m∑

j=1

wj · uij . (3.21)
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As a final optimal decision a∗ we select this ai that satisfies

UW (a∗) = max
1≤i≤n

UW (ai), (3.22)

i.e., we pick out the decision-drug possessing the highest utility grade with
respect to symptoms cured. The distinct utility uij is comprehended to be the
ability of the symptom retreat after medication. In other words, we keep on
defining of utility uij of ai taken to xj as effectiveness of drug ai observed in
the case of xj .

To determine effectiveness-utility of drugs as mathematical expressions
taking places in the matrix UW we recall the investigations accomplished in
Subsection 3.2.2 that terminated with results stated in the last column of
Table 3.1 as numerical substitutes of verbal expressions.

The weights-powers w1, w2, . . . , wm ∈ W corresponding to the symp-
tom importance are still estimated as components of the eigen vector as-
sociated with the largest in magnitude eigen value of the matrix B (see
Subsection 3.3.2). We normalize the weights wj by dividing them all by the
largest weight wlargest. We suggest this simple operation to keep all wj within
interval [0, 1] that constitutes a new range of W .

Let us denote the normalized weights by ŵj = wj

wlargest
[22]. Afterwards

we reorder ŵ1, ŵ2, . . . , ŵm to generate an arrangement of the normalized
weights as the ascending sequence ŵa

1 , ŵa
2 , . . . , ŵa

m satisfying the condition
0 ≤ ŵa

1 ≤ ŵa
2 ≤ . . . ≤ ŵa

m = 1. The symptoms xj follow the new replace-
ment of associated weights. In order to avoid too many designation signs let
us name the ordered and normalized weights ωj = ŵa

j and attached to them
symptoms χj ∈ X, j = 1, 2, . . . , m. The matrix UW is accommodated to new
assumptions as U[0,1] given by

χ1 χ2 · · · χm

U[0,1] =

a1

a2

...
an

⎡
⎢⎢⎢⎣

ω1 · ũ11 ω2 · ũ12 · · · ωm · ũ1m

ω1 · ũ21 ω2 · ũ22 · · · ωm · ũ2m

...
. . .

...
ω1 · ũn1 ω2 · ũn2 · · · ωm · ũnm

⎤
⎥⎥⎥⎦ (3.23)

in which utilities ũij are tied to reorganized symptoms χj .
The formula (3.21) has been replaced by

U[0,1](ai) =
m∑

j=1

ωj · ũij (3.24)

in regard to the new order of weights.
We prove new assumptions made in decision-making model in the next

exercise.
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Table 3.2. The relationship between medicine action and retreat of symptom

ai\xj x1(w1 = 0.93) x2(w2 = 0.31) x3(w3 = 0.19)

a1 almost complete, u11 = 0.9 very large, u12 = 0.8 almost none, u13 = 0.1
a2 medium, u21 = 0.5 medium, u22 = 0.5 little, u23 = 0.3
a3 little, u31 = 0.3 little, u32 = 0.3 very little, u33 = 0.2
a4 little, u41 = 0.3 little, u42 = 0.3 very large, u43 = 0.8

Example 7

By referring to Ex. 3 we recall that the following clinical data concerns the
diagnosis “coronary heart disease”. We consider the symptoms x1 = “pain
in chest”, x2 = “changes in ECG” and x3 = “increased level of LDL-
cholesterol”. The medicines improving the patient’s state are recommended
as a1 = nitroglycerin, a2 = beta-adrenergic blockade, a3 = acetylsalicylic acid
(aspirin) and a4 = statine LDL-reductor.

The physician has already judged the relationship among efficiency of the
drugs and retreat of the symptoms. To be able to attach weights (see Ex. 5)
to the considered symptoms we express all connections in Table 3.2.

The weights w1, w2, w3 found for x1, x2, x3 in Ex. 5 are now normalized
and rearranged in order to obtain ω1 = 0.2 attached to χ1 = x3, ω2 = 0.33
connected to χ2 = x2 and ω3 = 1 as the power of χ3 = x1.

Due to (3.24) we approximate the utilities U[0,1](ai) of medicines ai,
i = 1, 2, 3, 4 as

U[0,1](a1) = 0.2 · 0.1 + 0.33 · 0.8 + 1 · 0.9 = 1.184,

U[0,1](a2) = 0.2 · 0.3 + 0.33 · 0.5 + 1 · 0.5 = 0.725,

U[0,1](a3) = 0.2 · 0.2 + 0.33 · 0.3 + 1 · 0.3 = 0.439,

U[0,1](a4) = 0.2 · 0.8 + 0.33 · 0.3 + 1 · 0.3 = 0.559.

After placing of the utilities of drugs in the decreasing order (see (3.22))
we establish the hierarchy of medicines as a1 � a2 � a4 � a3, which fits for
the results obtained by minimization of regret.

3.4.2 The Choquet Integral as Total Effectiveness

The normalization and the rearrangement of weights have been made in the
intention of proving that formula (3.24) can be interpreted as a rule corre-
sponding to the Choquet integral calculation [7, 13,14,25].

We know that the symptoms χ1, . . . , χm ∈ X act as objects in
X. To them let us assign the measures m ({χj |ai }) = ũij [22], where
the symbols χj |ai reflect the association between symptom χj and medicine
ai, j = 1, 2, . . . , m, i = 1, 2, . . . , n. The values m ({χj |ai }) are listed in the
last column of Table 3.1.

The weights ωj are set as the range values f(χj) of a function
f : X → [0, 1].
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Fig. 3.2. The Choquet integral in evaluation of ai’s total curative effect

By considering the latest suggestions we define the total utility of ai gath-
ered for all symptoms χ1, χ2, . . . , χm as the Choquet integral [22]

UCh
[0,1](ai) =

∫
X={χ1,χ2,...,χm}

f(χj)dm(χj |ai ) (3.25)

with respect to the measures m ({χj |ai }).
To find a precise calculus formula of integral (3.25) we study Fig. 3.2 made

for three symptoms χ1, χ2, χ3. This associates to (3.25) the equation

UCh
[0,1](ai) =

∫
X={χ1,χ2,χ3}

f(χj)dm(χj |ai )

= (ω1 − ω0) · m {χj |ai : f(χj) ≥ ω1}
+ (ω2 − ω1) · m {χj |ai : f(χj) ≥ ω2}
+ (ω3 − ω2) · m {χj |ai : f(χj) ≥ ω3} , (3.26)

which practically explains how to understand the Choquet integral arith-
metic. The measures of sets consisting of elements χj |ai , defined by properties
f(χj) ≥ ω1, f(χj) ≥ ω2 and f(χj) ≥ ω3, are estimated as sums of utilities
corresponding to respective χj |ai fulfilling conditions above.

The general formula of the Choquet integral is revealed in the form

UCh
[0,1](ai) =

∫
X={χ1,χ2,...,χm}

f(χj)dm(χj |ai )

=
m∑

j=1

(ωj − ωj−1) · m {χk |ai : f(χk) ≥ ωj} (3.27)

for ω0 = 0, j, k = 1, 2, . . . , m, i = 1, 2, . . . , n.
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Let us recall that m is a utility measure with values in {0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (the set of uij-values standing for effectiveness)
defined for symptoms after treating them by medicines. If the utility is none
then its measure will be equal to zero. For the total utility complete we reserve
the measuring quantity of one. The physician can decide the common utility
of a medicine for two symptoms being less than the sum of utilities for distinct
symptoms, e.g., the effectiveness of a2 for “changes in ECG” and “increased
level of LDL-cholesterol” together is judged as 0.4 while the separate measures
of effectiveness emerge 0.5 and 0.3 (see Table 3.2). The last remark reveals
the non-additive property of the effectiveness measure m. Without any formal
proofs made for confirmation of effectiveness as a fuzzy measure, we intend
to use it in Choquet integrals constructed for the sample of medicines to
approximate their remedial effects.

In the next example we compute the entire effectiveness of medicines from
Ex. 3 by adopting the Choquet integral calculus.

Example 8

Let us involve formula (3.27) together with Fig. 3.2 to estimate

UCh
[0,1](a1) =

∫
X={χ1,χ2,χ3}

f(χj)dm(χj |a1 )

= (0.2 − 0) · m {χj |a1 : f(χj) ≥ 0.2}
+ (0.33 − 0.2) · m {χj |a1 : f(χj) ≥ 0.33}
+ (1 − 0.33) · m {χj |a1 : f(χj) ≥ 1}

= 0.2 · m {χ1 |a1, χ2 |a1 , χ3 |a1 }
+ 0.13 · m {χ2 |a1 , χ3 |a1 } + 0.67 · m {χ3 |a1 }

= 0.2 · (0.1 + 0.8 + 0.9) + 0.13 · (0.8 + 0.9) + 0.67 · 0.9 = 1.184,

UCh
[0,1](a2) = 0.2 · (0.3 + 0.5 + 0.5) + 0.13 · (0.5 + 0.5) + 0.67 · 0.5 = 0.725,

UCh
[0, 1](a3) = 0.2 · (0.2 + 0.3 + 0.3) + 0.13 · (0.3 + 0.3) + 0.67 · 0.3 = 0.439

and

UCh
[0, 1](a4) = 0.2 · (0.8 + 0.3 + 0.3) + 0.13 · (0.3 + 0.3) + 0.67 · 0.3 = 0.559.

The results are identical with calculations obtained in Ex. 7, which con-
firms the proper interpretation of the Choquet integral in the drug ranking
a1 � a2 � a4 � a3.

3.4.3 The Sugeno Integral in Hierarchical Drug Order

To be able to introduce the Sugeno-like integral in the calculations
leading to the choice of an optimal medicine, we normalize the measures
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m {χk |ai : f(χk) ≥ ωj} from (3.27), j, k = 1, 2, . . . , m, when dividing them
all by the largest value in the sequence. This operation provides us with the
quantities m̂ {χk |ai : f(χk) ≥ ωj} belonging to [0, 1].

As the next estimate of ai’s entire utility we propose a formula [7, 13, 14,
22,25]

US
[0,1](ai) =

∫
X={χ1,χ2,...,χm}

f(χj)dm(χj |ai )

= max
1≤j≤m

(min (ωj , m̂ {χk |ai : f(χk) ≥ ωj})) (3.28)

for j, k = 1, 2, . . . , m, i = 1, 2, . . . , n.

Example 9

The measures m {χk |a1 : f(χk) ≥ 0.2} = 1.8, m {χk |a1 : f(χk) ≥ 0.33} =
1.7 and m {χk |a1 : f(χk) ≥ 1} = 0.9 found for a1 in Ex. 8 are now di-
vided by the largest value of m equal to 1.8 to generate their normalized
versions m̂ {χk |a1 : f(χk) ≥ 0.2} = 1, m̂ {χk |a1 : f(χk) ≥ 0.33} = 0.944 and
m̂ {χk |a1 : f(χk) ≥ 1} = 0.5. In the scenario of (3.28) we estimate the utility
of a1 as

US
[0, 1](a1) =

∫
X={χ1,χ2,χ3}

f(χj)dm(χj |a1 )

= max(min(0.2, 1),min(0.33, 0.944), min(1, 0.5)) = 0.5

For a2 we get the utility value

US
[0, 1](a2) = max(min(0.2, 1),min(0.33, 0.769),min(1, 0.384)) = 0.384,

while a3 and a4, respectively, possess the affection grades on symptoms from
X approximated as

US
[0, 1](a3) = max(min(0.2, 1),min(0.33, 0.75), min(1, 0.375)) = 0.33

and

US
[0, 1](a4) = max(min(0.2, 1),min(0.33, 0.428), min(1, 0.214)) = 0.33.

Even the application of the Sugeno integral provides us with almost the
same hierarchy ladder of medicines upgraded in the order a1 � a2 � a4 = a3.
We should mention that the utility values in the last computations are com-
parable to the “ideal” utility equal to one that can be reached in the state of
absolute absence of all symptoms.



3 Decision-Making Techniques 71

3.5 Conclusions

We have presented the adaptations of some fuzzy decision making models to
the conditions attributed to the process of selecting of the most efficacious
medicine. The decision patterns should be particularly helpful in doubtful
cases when we observe unequal remedial abilities of different medicines acting
on the same symptoms.

As a primary method of fuzzy decision-making we have adjusted the Jain
model to the process of extraction of the best medicine from the collection of
proposed remedies. The basis of investigations has been not only restricted to
judgment of the distinct medicine influence on a clinical symptom but even
extended to estimation of general ability of the symptom retreat.

In the next methods we have also employed the indices of the symptoms’
importance to emphasize the essence of additional factors in the final decision.
We have estimated the regret following utilities of pairs (medicine, symptom)
to be furnished with the medicine order totally confirmed by a physician.

By interpreting the utilities of drugs as measures we have inserted concepts
of the Choquet and Sugeno integrals to successfully revise the ranking of drugs.

Except from Bellman-Zadeh model that provides us with the decision
based on the strict minimum operator we have produced the results absolutely
acceptable from the medical point of view, which confirms the reliabil-
ity of adaptation of tested decision cases to medical assumptions. After
accomplishing of the close analysis of results we should admit that the
utilization of mean values or OWA operators in numerical computations yields
the most significant effects. All algorithms are based on simple calculations
that allow testing of large databases without cumulating of approximation
errors.

In the end, we assure that all medical adaptations constitute own original
contributions in fuzzy decision-making, which have already been published
one by one in many international sources [17–23].
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Summary. This chapter will demonstrate that artificial intelligence methods based
on linguistic mechanisms for semantic meaning reasoning can be used to develop new
classes of intelligent information systems, and can be applied quite successfully to
conduct in-depth meaning analyzes in the presented DSS (Diagnostic Support Sys-
tems) information systems as well as in a subclass of intelligent, cognitive systems
used to analyze images: UBIAS (Understanding Based Image Analysis Systems).
The study will present an IT mechanism for describing the meaning of analyzed
objects using selected examples of analyzes of medical images, including those of
the spinal cord and bone radiograms. The presented semantic reasoning procedures
are based on the cognitive resonance model and have been applied for the job of
interpreting the meaning of a selected type of diagnostic images of the central ner-
vous system as well as images of the bone system. The solutions and applications
presented here are of a research nature and show the directions in which modern
IT systems as well as medical diagnostic support systems expand into the field of
automatic, computer meaning interpretation of various patterns acquired in image
diagnostics.

4.1 Introduction

Intelligent, cognitive information systems used to analyze varied, often
extremely complex medical images have been developing extremely fast
for many years as scientists and researchers try to answer the question how
much the efficiency of this type of systems will allow humans to be replaced in
making the final decision and whether this type of process is at all practicable.
The whole class of computer systems designed for analyzing various types of
images as well as the whole class of diagnostic support systems have over-
stepped their originally set functional limits which restricted the operation of
such systems to visualizing and classifying patterns. At first it was thought
that those systems would be used only for diagnostic jobs, so their operations
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would boil down to making simple statements without the practical possibil-
ity of verifying those. This type of IT systems were not sufficient for meaning
interpretation jobs and for analyzing complex medical data, which would
require imitating the thought processes of diagnosticians and taking steps
towards understanding the semantics of the analyzed images. Consequently,
within the broad class of IT systems, a subclass of systems was developed
which were oriented towards jobs of analyzing various medical patterns, with
the capability of conducting semantic reasoning based on the meaning infor-
mation contained in the analyzed image. This is the UBIAS (Understanding
Based Image Analysis Systems) class, the functional structure of which the
authors have defined [11,14].

DSS systems and UBIAS systems are currently very popular due to their
wide diagnostic possibilities. In this paper we shall show an example of a
system that was prepared not only to diagnose, but one that is also oriented
towards the issues of cognitive analysis and the understanding pathological
lesions taking place in the area of central nervous system. Particular attention
is paid to disease lesions in the spinal cord.

Every medical image constituting a type of primary component for diag-
nostic IT systems is subject to analysis. The objective is to determine whether
there is any important disease lesions observed in the patient’s analyzed organ
or whether there are no such changes (i.e. the patient is healthy). If there are
any such lesions, their type is analyzed and the system directs its functions
towards determining what disease the patient has. DSS systems operate on
the basis of three main rules:

• Image transformation in order to obtain the best possible content quality
and substance which the image carries,

• Image analysis in order to get the image properties in the form of a feature
vector,

• Image recognition in order to classify all features of the analyzed image.

DSS systems proposed in earlier research were used, among others, for
pancreas as well as for kidney and heart disease diagnosis. Their functioning
is based on medical image recognition methods [10,19] (Figure 4.1).

Due to the fact that DSS systems develop very rapidly, an attempt was
made to construct a new class of such systems using in their operation the

Fig. 4.1. Medical image recognition diagram
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mechanisms of cognitive analysis (UBIAS systems). The said are to be directed
at attempts to automatically understand the semantics of analyzed images,
and therefore at their content meaning interpretation.

UBIAS cognitive information systems were thus developed on the basis
of intelligent IT systems whose purpose was not just the simple analysis of
data by storing, processing and interpreting it, but mainly an analysis based
on understanding and reasoning of an about the semantic contents of the
processed data. This is a significant extension of the capabilities of previous
information systems.

Every information system which analyzes a selected image or informa-
tion based on certain characteristic features of it contains in its database
the knowledge indispensable for performing the correct analysis or reasoning,
which forms the basis for generating the system’s expectations of the analy-
sis conducted. Combining the actual features of the analyzed image with the
expectations of the semantic contents of the image generated based on the
knowledge (about the pattern studied), brings about a phenomenon called
the cognitive resonance. This phenomenon has been described more broadly
in the publication [19, 24], but the notion behind it will also be presented in
the next subsection.

UBIAS cognitive information systems are based on methods which lay
down structural reasoning techniques to fit patterns [15,20,25]. Consequently,
the structure of the image being analyzed is compared during the analy-
sis process to the structure of the image representing such a pattern. The
comparison is conducted using sequences of derivation rules which allow this
pattern to be generated unanimously. These rules, sometimes called produc-
tions, are defined in a specially introduced grammar, which in turn defines
a certain formal language or a so-called image language. The image (infor-
mation) recognized in this way is assigned to the class which contains the
pattern representing it. The analysis and reasoning process is conducted us-
ing the phenomenon of cognitive analysis, whose main element and also one
of its foundations is the cognitive resonance phenomenon.

4.2 Using the Cognitive Analysis Method in the Medical
Image Interpretation Process

Cognitive analysis is the main element of the correct operation of cognitive
information systems designed for analyzing and drawing conclusions in the
field of medical diagnostic systems.

Cognitive analysis used in IT systems is very often based on the syntactic
approach [2, 7]. For the purpose of meaning image interpretation it first uses
a pre-processing operation usually composed of:

• Image coding by means of terminal elements of the introduced language,
• Analyzed object shape approximation, as well as
• Filtration and pre-processing of the input image.
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As a result of the execution of such stages it is possible to obtain a new
image representation in the form of hierarchic semantic tree structures and
subsequent production steps of this representation from the initial grammar
symbol [6, 9]. An intelligent cognitive system distinguishing at the stage of
pre-processing image data must, in the majority of cases, perform image seg-
mentation, identify primitive components and determine spatial as well as
semantic relations between them. An appropriate classification (also machine
perception) is based on the recognition of whether a given representation of
the actual image belongs to a class of images generated by languages defined
by one of possible number of grammars. Such grammars can be considered to
belong to sequential, tree and graph grammars while recognition with their
application is made in the course of a syntactic analysis performed by the
system [19].

In the most recent research on intelligent information systems it was ob-
served that the recognition of an analyzed image alone is insufficient since
more and more frequently there is a postulate to direct the intelligent infor-
mation systems’ possibilities so that they are able to perform the operation
of automatically understanding image semantics. In order to enable such rea-
soning, the techniques of artificial intelligence are used. Apart from a simple
recognition of an image they enable one that also extracts important semantic
information allowing for a meaning interpretation, i.e. machine understanding.

This process relates only to cognitive information systems and it is a lot
more complex than with pure recognition. This is due to the fact that in this
case the flow of information goes clearly in two directions. In this model the
stream of empirical data, as contained in the sub-system and aimed to register
and analyze the image, interferes with the stream of generated expectations
[10,19] (Figure 4.2).

Between the stream expectation, generated for every hypothetical image
and the data steam that is obtained by means of analysis of the currently
considered image, there must be a special interference. As a result of this
some coincidences (of expectations and features found on the image) gain
on importance while others (both compliant and non compliant) lose their
importance. This interference leads to a cognitive resonance, which confirms

Fig. 4.2. Cognitive resonance in visual data analysis
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one of certain possible hypotheses (in the case of an image whose content can
be understood) or makes it possible to determine that there is a discordance,
which cannot be removed, between the currently perceived image and all other
gnostic hypotheses with an understandable interpretation. The second case
stands for a failure of automatic image understanding.

Cognitive information systems function based on the cognitive resonance
phenomenon which belongs only to these systems and differentiates them from
other intelligent IT systems [8,9,24]. The application and use of such systems
can be multiple due to wide possibilities offered to them by contemporary
science. Nevertheless the greatest possibilities for the use of cognitive IT sys-
tems are currently offered by the medicine. This is due to the fact that there
are more and more diseases in on-going pathological processes in individual
organs and a growing number of detection cases as well as diagnosing these
diseases. Medical images belong to some of the most varied data and they
contain extremely deep and important (among others, for the patient’s fate)
meaning interpretation. Cognitive information systems could certainly also
serve many other fields of science and everyday life, should an attempt be
made to develop intelligent information systems in the field of economics,
marketing, management, logistics, military affairs by adding the process of
understanding the analyzed information or data.

Here it is worth noting another new class of systems developing very fast at
present, which is used to analyze economic data. This class includes UBMSS
(Understanding Based Managing Support Systems) which also use reasoning
and cognitive resonance, but to analyze a specific type of data, namely that
necessary to take strategic corporate decisions. The operation of UBMSS sys-
tems is presented in Figure 4.3, while the detailed description of the system
presented is available in publications of [12,23].

Fig. 4.3. Understanding Based Managing Support Systems
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The idea of introducing UBMSS is based on the expansion of the already
existing DSS (Decision Support Systems) in which the company must select
the right economic strategy. A company, wanting to select the right economic
strategy, collects a data pool of sufficient information to analyze the stud-
ied phenomenon. Simultaneously, it performs a number of operations aimed
at selecting the right (from the IT point of view) language to describe the
company’s current situation. During data analysis the knowledge of experts
generating certain expectations and requirements with regard to the stud-
ied phenomenon is included in the entire process. The characteristic features
of the data described, which are yielded by the system, are confronted with
the features produced by a panel of experts. This, as a consequence, leads
to cognitive resonance which, as a result, leads to interference between the
expectations generated by the system and the features produced for a given
phenomenon. This interference, of course, aims to define important links be-
tween the features and the expectations, however, the entire process of analysis
may yield irrelevant links. Cognitive resonance in the system leads to a stage
of understanding the phenomenon, its causes, development and characteristic
features. As a result, it becomes one of the most important stages in strategic
decision-making for a given company. Cognitive analysis based on the process
of cognition and understanding enables inference with regard to the future
connected with the selection of the right economic strategy. Of course, such
conclusions may be general and just indicate the weaknesses of the strategy
implemented before as well as the benefits following another improved com-
pany strategy.

4.3 Artificial Intelligence Techniques in UBIAS Medical
Systems

The information systems using cognitive data analysis, which are discussed in
this chapter, vary due to the broad range of possible applications of individ-
ual techniques. Image-type data stored in information systems is nowadays
broadly analyzed by signal processing aimed at improving the quality of data
(e.g. images), their meaning analysis and classification.

The idea of introducing UBIAS is based on the expansion of the already
existing DSS (Decision Support Systems) in which the pattern analysis tasks
are transformed and expanded to the semantic description of the analyzed
medical images leading to the understanding of such images. The human mind
has incomparably greater perception capacities than a computer even with the
best software so that it can reach such meanings appropriate for the observed
objects or analyzed data infinitely better than a machine. Nevertheless also
machine understanding techniques are slowly being improved and with time
they could be used for the performance of a more complex reasoning process,
one relating to the significance of data collected rather than just for their
simple analysis. In order to enable IT systems such semantic reasoning based
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on data, advanced IT techniques are used. These techniques, apart from simple
information analysis and possible classification (recognition) of data destined
for analysis, make it possible also to extract important semantic information
from them, ones that point to meaning interpretation. At the current stage
of development, data semantic analysis is always set in some pre-determined
context. It is impossible for a computer to discover simultaneously the analysis
objective and its result. This means that systems currently built can undertake
an attempt at understanding data with some a priori pre-definition of what
the understanding is supposed to serve. This must be differentiated from a
situation in which a human being, coming across a new situation analyzes it
in many respects; the outcome of the analysis could be completely unexpected
conclusions standing for a complete mental consideration of a given situation,
i.e. its complete understanding. Referring to a frequently quoted example of
semantic analysis of some specified medical images one can expect that the
computer, after an analysis of X-ray image will ‘understand’ that the patient
suffers from some kind of disease. This would not be achievable applying only
the technique of automatic image recognition. On the other hand, a human
being looking at the same image can, of course, do the same by diagnosing
(the diagnosis being the same as the computer would have made or a different
one). However, only a man can understand something totally unexpected,
for example that an image is bad in quality because the X-ray machine was
out of focus and that the examination must be repeated. The first type of
understanding is well set in the context of medical examination. It is therefore
available both for a medical doctor and for an appropriately programmed
computer. The latter requires going outside the framework of an a priori
defined scenario and for the time being it is available only for humans.

The main objective of the considerations presented in this paper is to focus
the Reader’s attention only at the first, easier way of interpreting data un-
derstanding process (for example, of images). Still even this process is a lot
more complex than just data analysis and their possible recognition. Informa-
tion flow in the second case is clearly two-sourced and two-directional (just
like in the cognitive understanding process model, as taking place during eye
perception). In the model considered here, the empirical data stream is col-
lected and stored in a sub-system whose objective is to register and analyze
the data the which the analyzed IT stores and processes in accordance with
its destination; this interferes with a stream of automatically generated expec-
tations concerning some selected features and data properties. The source of
this expectation stream is the knowledge resources located in the system. It is
a basis for the generation of semantic hypothesis while the knowledge source
are people (experts), from whom the knowledge was obtained and adjusted
appropriately for being used in automatic reasoning process.

The terms and conceptual basis of the above-defined approach is a new
knowledge field, the so-called cognitive analysis. Currently it is better known
in the context of psychological scientists’ analyzes examining human cognitive
processes. It is also known in the context of hypotheses about the nature of
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reason and rationality, as examined by philosophers dealing with the epis-
temology, gnoseology and semiotics foundations as well as criteriology by
D. J. Mercier and other advanced intellectual trends. To a smaller degree,
however, was it so far used in science itself [1, 10].

4.4 UBIAS System Model for Cognitive CNS Image
Analysis

In this section we shall propose, as an example of intelligent IT system, a
medical model of IT system supporting diagnosing. The selected system con-
ducts intelligent analysis of image data relating to pathological lesions in the
central nervous system, related both to selected disease units of the spinal
cord [3, 4, 11]. This model will be based on the construction and the operat-
ing rule of UBIAS systems. Due to the fact that the issue of occurrence of
disease units in the spinal cord is extremely extensive, some selected patho-
logical phenomena, representative of central nervous system disease types will
be presented.

The main element of a correctly functioning IT system supporting the
medical image diagnostics is, in accordance with the concept presented in
this paper, analysis preparation of a cognitive method of disease units and
pathological lesions as occurring in the spinal cord. The cognitive analysis
contained in the DSS-CNS system is aimed to propose an automatic correct
interpretation method of these extremely complicated medical images, ones
resulting from imaging parts of the nervous system. Such images are difficult
to interpret due to the fact that various patients have various morphologies
of the imaged organs. This is true both of the correct state and if there are
any disease lesions. The nervous system, similarly as most elements of the
human body, is not always correctly built and fully developed from the birth.
The anatomy and pathomorphology differentiate between a number of de-
velopmental defects of the central nervous system. It often occurs that this
system for the first couple of years functions correctly and only after some
time there are some troubles with its functioning, demonstrated by the child’s
behaviour and feeling: seen either as a single symptom or as a widespread dis-
ease. All kinds of troubles occurring in the central nervous system, identified
with disease units of the spinal cord are clinically diagnosed and subject to
diagnostic procedure based mainly on image diagnostics. Due to small differ-
entiation in the absorption of X-rays by the distinguished medical structures
of the brain (for example, by the while and grey substance) as well as due to
the fact that the whole central nervous system is hidden behind bones (of the
scull and backbone) which strongly attenuate X-rays, the main role in image
examinations of the central nervous system is customary assigned to NMR
topography (Nuclear Magnetic Resonance) labelled also zeugmatography or
most frequently the MRI method (Magnetic Resonance Imaging) – imaging
based on the nuclear magnetic resonance phenomenon.
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Magnetic resonance makes it possible to obtain maps of density
distribution (the so-called topography) primarily of hydrogen atom nuclei
(protons) and of these protons’ relaxation time. Owing to the application
of a projection corresponding to the tomography technique (computational
reconstruction of the examined parameter distribution based on many multi-
directional probing) the NMR image can be obtained on any cross-section
of the body. Hydrogen is a constituent of water making up 60–70% of living
organisms; it is also a constituent of all organic compounds. It is worth
remembering that fats have an extremely high amount of hydrogen. Informa-
tion obtained about its distribution inside the organism is the basis for image
construction: the images differentiate tissues with regards to the degree of
their hydration or fat content. Proton density and their relaxation times can
be mirrored by brightness (i.e. greyness degree) of points on the given map.
The method of magnetic resonance offers a lot more contrasting soft tissue
images then X-ray images. In the case of many diseases it can also show more
precisely the difference between a healthy tissue and one that was changed
by disease.

All the analyzed images of spinal cord were, before their proper recog-
nition, subject to segmentation and filtration procedures. Their aim was to
extract from among other image elements important elements of the spinal
cord [4, 10, 18]. Structures shown in this way were then subject to cognitive
analysis stages using the grammar described below. In order to analyze dis-
ease lesions of the spinal cord, the following attributed grammar has been
proposed – figure 4.4.

Fig. 4.4. Attributed grammar GSC for spinal cord lesions analysis
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The following definitions have been adopted for individual sets defined in
GSC sequence grammar:

ΣN ={SPINE LESION, SPINAL STENOSIS,
SPINAL DILATATION,SPINAL TUMOR, N, D, S},
ΣT = {n, d, s}

Apart from these, the following meaning was given to terminal elements
present in the description: n ∈ [−11◦, 11◦], d ∈ (11◦, 180◦), s ∈ (−180◦,−11◦),

ST = SPINE LESION

The production set P has been presented in fig. 4.5 where grammar rules
and semantic actions have been defined for individual pathological changes.

The proposed grammar makes it possible to detect various kinds of spinal
cord or meningeal stenoses characteristic for neoplastic lesions and inflamma-
tory processes of the spinal cord. Figure 4.6a presents an image of the spinal
cord with a visible deformation; figure 4.6b shows the spinal cord image after
binarising while figure 4.6c depicts the diagram of the spinal cord. The red
area represents the area of occurrence of the anomalies within the structure
of the spinal cord. The set of yellow chords, cross-cutting the spinal cord in
subsequent points perpendicularly to its axis, as shown on figure 4.6c which
demonstrates how the width diagram was made.

Fig. 4.5. The production set defining changes in the GSC grammar
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Fig. 4.6. Spinal cord: deformed, after binarising, spinal cord width diagram

Spinal cord width diagram (Figure 4.6) presents, in the most concise form,
the results of spinal cord morphology analysis. It is the most precious source
of information when one is looking for pathological lesions and it contains
all-important data about the examined fragment of central nervous system.
At the same time it ignores all spinal cord image details unimportant from
the diagnostic point of view, as presented on figure 4.6.

To give an example, the spinal cord MR image, as presented above in fig-
ure 4.6 will be subject to (on Figure 4.7a) a diagnostic description of patho-
logical lesions detected in the spinal cord. Image 4.7a presents an example
of results obtained by the author in the course of examinations for a given
disease case. The results presented here have been achieved by the application
of attribute grammar and they are an example of the cognitive approach to
the medical data considered here. The type of lesion detected here has been
assigned based on its location and on morphometric parameters determined
by the grammar semantic procedures.

Figure 4.7b shows an example diagnosis and a description of the lesion
obtained by cognitive analysis and semantic reasoning which detects and de-
scribes the paraganglioma. This description, just as the description shown
in Figure 4.7a, was generated using cognitive analysis applied in a UBIAS
system.

The examples above (and many others, obtained as a result of research
[13–17]) present the results of semantic meaning interpretation of the analyzed
and detected pathological lesions occurring in the spinal cord.



86 L. Ogiela et al.

Fig. 4.7. Diagnostic descriptions of spinal cord lesions A) Spinal cord lesions with
AVM syndrome detected as a result of cognitive analysis, B) Spinal cord with para-
ganglioma detected by the system

4.5 Cognitive Analysis Effectiveness in UBIAS Systems

In order to perform meaning analysis on spinal cord images with the use of a
linguistic mechanism as described in this paper, the MISA (Medical Image
Syntax Analyzer) computer system has been developed. This enables the
analysis and classification of spinal cord images analyzed in this paper.
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Table 4.1. The efficiency of cognitive analysis methods directed towards discovering
and understanding selected disease phenomena in the central nervous system

Lesion Number
of images

Recognised
images

Efficiency
[%]

Spinal cord
dilation

2 2 100

Cysts 18 17 94
Neoplastic
tumours

27 25 93

Stenoses
and com-
pression

14 12 86

Degeneration 23 20 87
Total 84 76 90,5

The application efficiency of cognitive analysis procedures, using this sys-
tem, has been presented in a table and it is directed towards comparing the
results obtained from the use of this system with those that one can consider
as a correct diagnosis (table 4.1).

These results are obtained as a result of the application of semantic analy-
sis algorithms conducted in reasoning modules of the proposed system and
based on semantic actions assigned to structural rules. The proposed ap-
proach exhibits significant scientific novelty features and is applied in diag-
nostic analysis using DSS medical information systems and UBIAS systems.

The research conducted by the authors, based on the analysis of images
with pathological lesions in a part of the central nervous system, the spinal
cord, have demonstrated that cognitive data analysis can be a factor that
significantly enriches the possibilities of contemporary information systems.
In particular, the described research has demonstrated that an appropriately
built image grammar enables the conduct of precise analysis and the descrip-
tion of medical images from which important semantic information can be
gained on the nature of processes and pathological lesions as found in the pa-
tient’s spinal cord. It is worth emphasizing that the results described in this
paper have been obtained following the cognitive process, simulating an ex-
perts’ method of thinking: if one observes a deformation of the organ shown by
the medical image used, then one tries to understand the pathological process
that was the reason for the appearance of deformations found. One does not
perform a mechanic classification for the purpose of pointing out more simi-
lar samples on the pathological image. Moreover, the research conducted has
demonstrated that for cognitive analysis attempts (on the central nervous
system) it is possible to apply it on sequential grammar-based linguistics.
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4.6 An Example Application of Cognitive Analysis
to Problems of Interpreting Long Bone Fractures

Another example of application of structural formalism for semantic catego-
rization of medical images is lesion analysis in case of leg bones abnormali-
ties or injuries interpretation. Such analysis is possible both for arm and leg
bones, but further will be presented example of interpretation of various types
(shapes) of leg bones fracture, and stages of theirs recovery. For detection of
the most common leg bone fractures the following attributed grammar has
been proposed (figure 4.8):

where:

VN = {RESULT, FRACTURE, FISSURE, TRANSVERSE, SPIRAL,
ABHESION, DELAYED UNION, DISPLACED M1, DISPLACED M2,
DISPLACED1, DISPLACED2, LONGITUDINAL, A, B, C, D, E,
F, G, H}
VT = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’} where symbols defined as follows:
a ∈ [−10◦, 10◦], b ∈ (10◦, 70◦], c ∈ (70◦, 110◦], d ∈ (110◦, 170◦], e ∈
(170◦,−170◦), f ∈ (−110◦,−170◦], g ∈ (−70◦,−110◦], h ∈ (−10◦,−70◦].
STS = RESULT. A production set SP is presented in Table 4.2.

The proposed grammar is designed not just for simple image analysis, but
also becomes the starting point for conducting a semantic reasoning about the
analyzed fractures. The examples of bone fractures described by the authors
have been subjected to a descriptive analysis leading to making a medical
diagnosis, but an attempt has also been made to reason out the substantive
and semantic content of the analyzed image presenting a long bone fracture.
An example result of bone fracture detection and analysis is presented in
fig. 4.9.

Fig. 4.8. Attributed grammar for leg bones fracture analysis
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Table 4.2. Set of grammar rules defining types of fractures

Lesion Grammar rules

Fissure fracture RESULT → FRACTURE → A FISSURE A

FISSURE → H B | H A B

Transverse RESULT → FRACTURE → A H E | A TRANSVERSE E |
fracture A G F E | A TRANSVERSE H E

TRANSVERSE → H G | H F

Spiral fracture RESULT → FRACTURE → A SPIRAL A

SPIRAL → ABHESION F | ABHESION G F |
ABHESION F E | ABHESION F G |
H F | G F | F G | F H | F

ABHESION → B A H | B H

Displaced RESULT → FRACTURE → DISPLACED M1 F |
fracture DISPLACED1 F |

DISPLACED M2 D | DISPLACED2 D

DISPLACED M1 → B A | B G | B H

DISPLACED M2 → H G | H F | H E

DISPLACED1 → B A H G | B A H | B A G | B A G H

DISPLACED2 → H G F E | H G E

Delayed union RESULT → FRACTURE → A DELAYED UNION A

fracture DELAYED UNION → ABHESION ABHESION |
ABHESION A ABHESION | ABHESION G ABHESION |
ABHESION C ABHESION | ABHESION G A ABHESION |
ABHESION G C ABHESION | ABHESION GAC ABHESION |
ABHESION A C ABHESION | ABHESION B C ABHESION

ABHESION → B A H | B H

Longitudinal RESULT →FRACTURE → A LONGITUDINAL E

fracture LONGITUDINAL → TRANSVERSE TRANSVERSE |
TRANSVERSE E TRANSVERSE |
TRANSVERSE EH |HETRANSVERSE |HEH

Adhesion RESULT → FRACTURE → A ABHESIONE

ABHESION → B A H | B H

Elements of the A → ‘a’ A | ‘a’ B → ‘b’ B | ‘b’ C → ‘c’ C | ‘c’ D → ‘d’ D | ‘d’

detected lesions E → ‘e’ E | ‘e’ F → ‘f’ F | ‘f’ G → ‘g’ G | ‘g’ H → ‘h’ H | ‘h’

Figure 4.9a presents a limb fracture after a certain time of union, together
with the periosteum growing around it. The UBIAS system has recognised
this lesion as a bone fracture at the phase of hard bone matter growth. The
fracture is visible in the image, but the analyzed area is partially filled with
periosteum. Figure 4.9b presents the bone fracture with the spiral fracture
automatically detected by the UBIAS system.

The UBIAS systems presented here, designed for analyzing images of lower
and upper limb fractures, serve to analyze various types of fractures, including
spiral, longitudinal, displaced ones, factures at the phase of bone reconstruc-
tion and at the phase of hard bone matter growth. The jobs of analyzing the
lesions and pathologies in the field of long bone fractures make use of cognitive
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Fig. 4.9. Bone fracture analysis A) A description of a bone fracture; the marked
fragment shows the bone fracture at the phase of hard bone matter growth detected
by the system, B) Description of spiral fracture

analysis on the basis of which the system for cognitive analysis and interpre-
tation of image-type data conducts reasoning and analysis using semantic
information contained in the image under consideration.
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4.7 Conclusions

The authors have illustrated the methodology of cognitive analysis presented
in the publication as a tool supporting the development of new generation
IT systems mainly with examples of problems of image analysis, particularly
of medical images. Cognitive analysis applied in the context, presented here,
of interpreting the meaning of selected types of medical images allows a new
class of intelligent information systems to be developed, including the UBIAS
class of systems described in this publication.

The cognitive analysis methods proposed here for pathological phenomena
shown in medical images are a double achievement. Firstly, if we treat them
literally and consider them only in the context of their utilitarian purpose,
they are a successful attempt at developing medical information systems and
systems helping to diagnose selected disease entities. Within this scope, the
publication offers new results which can be considered and assessed with re-
gards to their practical utility. However, a much more important objective of
the authors was to show the capabilities offered by cognitive analysis treated
as a tool for obtaining valuable knowledge components (and not just data)
from modern information systems. By developing a system for the automatic
understanding of medical images, it has been empirically proven that modern
artificial intelligence methods make it possible to cross the barrier between the
form of data collected in the information system and its substantive content
necessary to understand its meaning. Obviously, the cognitive analysis of a
different type of data (e.g. those needed by a UBMSS-class system presented
in Chapter 4.2 for managing a corporation) will require a different type of pre-
processing of this data, other procedures for its analysis and other languages
in which this data will be described and which will later make it possible to
extract itssubstantive sense. So using the results from this publication in a
broader context requires solving many difficult specific problems.

Cognitive analysis methods proposed by the authors of this publication
to develop cognitive information systems may represent an additional, precise
tool very useful for many other purposes. It is worth noting the support for the
early diagnosis of irregularities of the central nervous system in the medicine
of developmental defects of children. The application of these systems in PACS
(Picture Archiving and Communication Systems) is also worth considering.

The very high computational efficiency of the algorithms developed as part
of this project for the semantic interpretation of images (which algorithms are
of a multinomial complexity) makes the proposed cognitive analysis methods
exceptionally useful in practice. It could be said that as a side effect of the
scientific research, this publication offers medical practice a practical tool
for extracting, recognising and understanding the diagnostic features of the
analyzed medical image.

The semantic information on the disease factor extracted during the syn-
tactic reasoning is mainly used to formulate the correct diagnosis, but it may
also have further uses. In particular, it could be used to:
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• follow the progress of the therapeutic process, including the definition of
its direction and type;

• forecast the disease progress and the future condition of the patient;
• construct a description which indexes image data in a specialised medical

database;
• streamline the processes of context-sensitive searching for semantic image

information by a process of automatic formulation of queries to the system
of multimedia database indexing.

The UBIAS systems presented here, which represent cognitive systems for
the intelligent analysis and semantic reasoning on the basis of analyzed data,
are applied not only in the broad and in-depth analysis of medical images,
but are also quite successfully used for interpreting economic problems. These
jobs are performed by another sub-class of DSS systems called UBMSS.
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Summary. The chapter presents the state of the art in intelligent pervasive health-
care applications and the corresponding enabling technologies. It discusses pervasive
healthcare systems in either controlled environments (e.g., health care units or hos-
pitals), or in sites where immediate health support is not possible (i.e. the patient’s
home or an urban area). Special focus is raised on intelligent platforms (e.g., agents,
context-aware and location-based services, and classification systems) that enable
advanced monitoring and interpretation of patient status and environment optimiz-
ing the whole medical assessment procedure.

5.1 Introduction

In this era of ubiquitous and mobile computing the vision in biomedical
informatics is towards achieving two specific goals: the availability of software
applications and medical information anywhere and anytime and the invisibil-
ity of computing [41]. Both aforementioned goals lead to the introduction of
pervasive computing concepts and features in e-health applications. Applica-
tions and interfaces that will be able to automatically process data provided
by medical devices and sensors, exchange knowledge and make intelligent de-
cisions in a given context are strongly desirable. Natural user interactions
with such applications are based on autonomy, avoiding the need for the user
to control every action, and adaptivity, so that they are contextualized and
personalized, delivering the right information and decision at the right mo-
ment [42]. All the above pervasive computing features add value in modern
pervasive e-healthcare systems.

These technologies can support a wide range of applications and services
including mobile telemedicine, patient monitoring, location-based medical ser-
vices, emergency response and management, pervasive access to medical data,
and personalized monitoring. Wireless technology enables ambulance person-
nel to send real-time data about a patient’s condition to a hospital while
en route. In some cases, paramedics can electronically retrieve the patient’s

C. Doukas and I. Maglogiannis: Intelligent Pervasive Healthcare Systems, Studies in Computa-

tional Intelligence (SCI) 107, 95–115 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



96 C. Doukas and I. Maglogiannis

medical records, including known allergies or preexisting conditions, from the
hospital database. In medical facilities equipped with wireless local area net-
works (LANs), doctors and staff can review and update a patient’s medical
record from any location using a handheld device. Entering diagnostic infor-
mation and taking notes electronically eliminates the need for time-consuming
manual dictation and errors associated with handwritten instructions. In addi-
tion, physicians can generate and wirelessly transmit prescriptions to a phar-
macy, which also saves time and increases accuracy.

With remote monitoring, patients undergoing postoperative care who are
no longer in acute danger but are still subject to a relapse or other com-
plications can be safely transferred earlier to other units within a hospital.
Many can move to less costly assisted care facilities or even return home more
quickly. Healthcare providers can use location-based tracking services to su-
pervise elderly patients or those with mental illnesses who are ambulatory but
restricted to a certain area. For example, an assisted care facility could use
network sensors and radiofrequency ID badges to alert staff members when
patients leave a designated safety zone. Network or satellite positioning tech-
nology also can be used to quickly and accurately locate wireless subscribers
in an emergency and communicate information about their location. Proxim-
ity information services can direct mobile users to a nearby healthcare facility;
voice-activated systems could provide such instructions to blind persons.

Both patients and healthcare providers would benefit from pervasive access
to lifetime clinical records. During a check-up, for example, patients could use
a handheld device to upload their personal medical history and insurance data
into their healthcare provider’s database, reducing the effort required to enter
such detailed information manually. Alternatively, such information could be
downloaded from a Web-based health information system with proper authen-
tication. Patients could likewise use mobile devices to update their personal
and family medical information and physician contacts, receive alerts to take
prescribed medications, check for drug interactions, or dynamically change
restrictions on who can access their health data. Wireless service providers or
healthcare providers could use such capabilities to make any information they
store sharable only with the user’s consent.

Numerous portable devices are available that can detect certain medical
conditions—pulse rate, blood pressure, breath alcohol level, and so on—from
a user’s touch. Many such capabilities could be integrated into a handheld
wireless device that also contains the user’s medical history. It may even be
possible to detect certain contextual information, such as the user’s level of
anxiety, based on keystroke patterns. After analyzing data input, the device
could transmit an alert message to a healthcare provider, the nearest hospital,
or an emergency system if appropriate.

The development of pervasive health-care systems is a very promising area
for commercial organizations active in the health monitoring domain. The con-
sidered pervasive infrastructure creates numerous business opportunities for
players like emergency medical assistance companies, the telecommunication
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operators, insurance companies, etc. The pervasive paradigm creates added
value for all these actors in the business chain. Currently, the cost effective
provision of quality healthcare is a very important issue throughout the world
since healthcare faces a significant funding crisis due to the increasing pop-
ulation of older people and the reappearance of diseases that should be con-
trollable. The pervasive healthcare systems are capable of attacking all these
challenges in an efficient, ubiquitous and cost-effective way. Pervasive hard-
ware and software is gradually becoming cost-affordable, can be installed and
operated in numerous sites (frequently visited by patients), can be interfaced
to a wide variety of medical information systems (e.g., patient databases,
medical archives), thus involving numerous actors. Hence, the pervasive e-
health systems present a truly scalable architecture covering a wide spectrum
of business roles and models [31].

This chapter aims at presenting the use of such intelligent pervasive
systems in the medical sector. It is structured as follows: Section 5.2 discuses
the technologies that enable the use of pervasive healthcare computing (i.e.,
patient data acquisition methods and tools, networking technologies, posi-
tioning methods and context-awareness frameworks). Section 5.3 overviews
the intelligent aspect that can be applied in electronic healthcare systems.
Section 5.4 presents pervasive healthcare applications in controlled environ-
ments, such as health care units or hospitals, while Section 5.5 provides exam-
ples of applications in sites where immediate health support is not possible
(i.e. the patient’s home or a remote area). Finally, Section 5.6 presents the
challenges of the near future and concludes this chapter.

5.2 Pervasive HealthCare Enabling Technologies

Applications that conform to the pervasive computing paradigm are continu-
ously running and always available. Pervasive applications are characterized
by adaptation of their functionality subject to their current environment. Such
environment may refer to the physical location, orientation or a user profile.
In a mobile and wireless environment, changes of location and orientation are
frequent. Apart from collecting patient-related data, sensing the user’s iden-
tity, environment characteristics and location in e-health applications is quite
important for adapting the provided to the physician or patient, services in an
intelligent manner. This Section discusses methods and technologies for data
acquisition, networking, and location provision.

5.2.1 Patient Biosignals and Acquisition Methods

A broad definition of a signal is a ‘measurable indication or representation of
an actual phenomenon’, which in the field of biosignals, refers to observable
facts or stimuli of biological systems or life forms. In order to extract and
document the meaning or the cause of a signal, a physician may utilize simple
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examination procedures, such as measuring the temperature of a human body
or have to resort to highly specialized and sometimes intrusive equipment,
such as an endoscope. Following signal acquisition, physicians go on to a
second step, that of interpreting its meaning, usually after some kind of signal
enhancement or ‘pre-processing’, that separates the captured information from
noise and prepares it for specialized processing, classification and decision
support algorithms.

Biosignals require a digitization step in order to be converted into a digital
form. This process begins with acquiring the raw signal in its analog form,
which is then fed into an analog-to-digital (A/D) converter. Since computers
cannot handle or store continuous data, the first step of the conversion pro-
cedure is to produce a discrete-time series from the analog form of the raw
signal. This step is known as ‘sampling’ and is meant to create a sequence of
values sampled from the original analog signals at predefined intervals, which
can faithfully reconstruct the initial signal waveform. The second step of the
digitization process is quantization, which works on the temporally sampled
values of the initial signal and produces a signal, which is both temporally and
quantitatively discrete; this means that the initial values are converted and
encoded according to properties such as bit allocation and value range. Essen-
tially, quantization maps the sampled signal into a range of values that is both
compact and efficient for algorithms to work with. The most popular biosig-
nals utilized in pervasive health applications ([1, 3, 4, 10, 11, 18, 19, 24, 25, 31])
are summarized in the Table below.

In addition to the aforementioned biosignals, patient physiological data
(e,g., body movement information based on accelerometer values), and
context-aware data (e.g., location, environment and age group information)
have also been used by pervasive health applications ([1–4, 6, 13–15, 23, 25,
27,32]). The utilization of the latter information is discussed in the following
sections.

Table 5.1. Broadly used biosignals with corresponding metric ranges, number of
sensors required and information rate [51]

Biomedical
Measurements
(Broadly Used
Biosignals)

Voltage
range
(V)

Number of
sensors

Information
rate
(b/s)

ECG 0.5–4 m 5–9 15000
Heart sound Extremely small 2–4 120000
Heart rate 0.5–4 m 2 600
EEG 2–200 µ 20 4200
EMG 0.1–5 m 2+ 600000
Respiratory rate Small 1 800
Temperature of
body

0–100 m 1+ 80
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In the context of pervasive healthcare applications, the acquisition of bio-
medical signals is performed through special devices (i.e. sensors) attached
on the patients body (see Fig. 5.1) or special wearable devices (see Fig. 5.2).
The transmission of the collected signals to the monitoring unit is performed
through appropriate wireless technologies discussed in Section 5.2.2. Regard-
ing the contextual information, most applications are based on data collected
from video cameras, microphones, movement and vibration sensors.

Fig. 5.1. Accelerometer, gyroscope, and electromyogram (EMG) sensor for stroke
patient monitoring [9]

(a) (b)

Fig. 5.2. Wearable medical sensor devices: (a) A 3-axis accelerometer on a wrist
device enabling the acquisition of patient movement data [9], (b) A ring sensor for
monitoring of blood oxygen saturation [22]
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5.2.2 Communication Technologies

Regarding communication, there are two main enabling technologies according
to their topology: on-body (wearable) and off-body networks. Recent techno-
logical advances have made possible a new generation of small, powerful, mo-
bile computing devices. A wearable computer must be small and light enough
to fit inside clothing. Occasionally, it is attached to a belt or other accessory,
or is worn directly like a watch or glasses. An important factor in wearable
computing systems is how the various independent devices interconnect and
share data. An off-body network connects to other systems that the user
does not wear or carry and it is based on a Wireless Local Area Network
(WLAN) infrastructure, while an on-body or Wireless Personal Area Net-
work (WPAN) connects the devices themselves; the computers, peripherals,
sensors, and other subsystems and runs at ad hoc mode. Table 5.2 presents
the characteristics of wireless connectivity and mobile networking technologies
correspondingly, which are related to off-body and on-body networks. WPANs
are defined within the IEEE 802.15 standard. The most relevant protocols for
pervasive e-health systems are Bluetooth and ZigBee (IEEE 802.15.4 stan-
dard). Bluetooth technology was originally proposed by Ericsson in 1994, as
an alternative to cables that linked mobile phone accessories. It is a wireless
technology that enables any electrical device to communicate in the 2.5-GHz
ISM (license free) frequency band. It allows devices such as mobile phones,
headsets, PDAs and portable computers to communicate and send data to
each other without the need for wires or cables to link the devices together.

Table 5.2. Wireless connection technologies for pervasive health systems

Technology Data rate Range Frequency

IEEE 802.11a 54 Mbps 150 m 5 GHz
IEEE 802.11b 11 Mbps 150 m 2.4 GHz ISM
Bluetooth (IEEE 802.15.1) 721Kbps 10 m–150m 2.4 GHz ISM
HiperLAN2 54 Mbps 150 m 5 GHz
HomeRF (Shared Wireless
Access Protocol, SWAP)

1.6 Mbps (10 Mbps
for Ver.2)

50m 2.4 GHz ISM

DECT 32 kbps 100 m 1880–1900 MHz
PWT 32 kbps 100 m 1920–1930 MHz
IEEE 802.15.3 (high data rate
wireless personal area network)

11–55Mbps 1 m–50m 2.4 GHz ISM

IEEE 802.16 (Local and Metro-
politan Area Networks)

120Mbps City limits 2–66GHz

IEEE 802.15.4 (low data rate
wireless personal area network),
Zigbee

250 kbps, 20 kbps,
40 kbps

100 m–300m2.4 GHz ISM,
868MHz,
915 MHz ISM

IrDA 4 Mbps (IrDA-1.1) 2 m IR (0.90
micro-meter)
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It has been specifically designed as a low-cost, low-size, and low-power radio
technology, which is particularly suited to the short range of a Personal Area
Network (PAN). The main features of Bluetooth are: a) Real-time data trans-
fer usually possible between 10–15 m, b) Support of point-to-point wireless
connections without cables, as well as point-to-multipoint connections to en-
able ad hoc local wireless networks, c) data speed of 400 kb/s symmetrically
or 700–150 kb/s of data asymmetrically. On the other hand, ZigBee (IEEE
802.15.4 standard) has been developed as a low data rate solution with multi-
month to multiyear battery life and very low complexity. It is intended to
operate in an unlicensed international frequency band. The maximum data
rates for each band are 250, 40, and 20 kbps, respectively. The 2.4 GHz band
operates worldwide while the sub-1-GHz band operates in North America,
Europe, and Australia.

Pervasive healthcare systems set high demanding requirements regarding
energy, size, cost, mobility, connectivity and coverage. Varying size and cost
constraints directly result in corresponding varying limits on the energy avail-
able, as well as on computing, storage and communication resources. Low
power requirements are necessary also from safety considerations since such
systems run near or inside the body.

Mobility is another major issue for pervasive e-health applications because
of the nature of users and applications and the easiness of the connectivity to
other available wireless networks. Both off-body and personal area networks
must not have line-of-sight (LoS) requirements. The various communication
modalities can be used in different ways to construct an actual communica-
tion network. Two common forms are infrastructure-based networks and ad
hoc networks. Mobile ad hoc networks represent complex systems that con-
sist of wireless mobile nodes, which can freely and dynamically self-organize
into arbitrary and temporary, “ad hoc” network topologies, allowing devices
to seamlessly inter-network in areas with no pre-existing communication in-
frastructure or centralized administration. The effective range of the sensors
attached to a sensor node defines the coverage area of a sensor node. With
sparse coverage, only parts of the area of interest are covered by the sensor
nodes. With dense coverage, the area of interest is completely (or almost com-
pletely) covered by sensors. The degree of coverage also influences information
processing algorithms. High coverage is a key to robust systems and may be
exploited to extend the network lifetime by switching redundant nodes to
power-saving sleep mode.

5.2.3 Location Based Technologies

Positioning of individuals provides healthcare applications with the ability to
offer services like supervision of elderly patients or those with mental illnesses
who are ambulatory but restricted to a certain area. In addition, assisted care
facilities can use network sensors and radiofrequency ID badges to alert staff
members when patients leave a designated safety zone. Network or satellite
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positioning technology also can be used to quickly and accurately locate wire-
less subscribers in an emergency and communicate information about their
location. Proximity information services can direct mobile users to a nearby
healthcare facility. Location-based health information services can help find
people with matching blood types, organ donors, and so on. A more extensive
list of location-based health services can be found in [44].

Positioning techniques can be implemented in two ways: Self-positioning
and remote positioning. In the first approach, equipment that the user uses
(e.g., a mobile terminal, or a tagging device) uses signals, transmitted by the
gateways/antennas (which can be either terrestrial or satellite) to calculate
its own position. More specifically, the positioning receiver makes the appro-
priate signal measurements from geographically distributed transmitters and
uses these measurements. Technologies that can be used are satellite based
(e.g., the Global Positioning System (GPS) and assisted-GPS), or terrestrial
infrastructure-based (e.g., using the cell id of a subscribed mobile terminal).

The second technique is called remote positioning. In this case the indi-
vidual can be located by measuring the signals traveling to and from a set
of receivers. More specifically, the receivers, which can be installed at one or
more locations, measure a signal originating from, or reflecting off, the ob-
ject to be positioned. These signal measurements are used to determine the
length and/or direction of the individual radio paths, and then the mobile
terminal position is computed from geometric relationships; basically, a sin-
gle measurement produces a straight-line locus from the remote receiver to
the mobile phone. Another Angle Of Arrival (AOA) measurement will yield
a second straight line, the intersection of the two lines giving the position
fix for this system. Time delay can also be utilized: Since electromagnetic
waves travel at a constant speed (speed of light) in free space, the distance
between two points can be easily estimated by measuring the time delay of a
radio wave transmitted between them. This method is well suited for satel-
lite systems and is used universally by them. Popular applications that are
based on the latter technique for tracking provision are the Ekahau Position-
ing Engine [45], MS RADAR [46] and Nibble [47]. More information regarding
positioning techniques and systems can be found in [43].

5.3 Introducing Intelligence in Electronic Healthcare
Systems

This section presents technologies that enable the introduction of intelli-
gence in electronic healthcare systems. Context-awareness, intelligent software
agents, and advanced classification methods for medical data are discussed to
cover this aspect.
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5.3.1 Context Awareness

Context awareness is the capability of the networking applications to be aware
of the existence and characteristics of the user’s activities and environments. In
rapidly changing scenarios, such as the ones considered in the fields of mobile,
pervasive, or ubiquitous computing, systems have to adapt their behavior
based on the current conditions and the dynamicity of the environment they
are immersed in ([48]). A system is context-aware if it can extract, interpret
and use context information and adapt its functionality to the current context
of use. The challenge for such systems lies in the complexity of capturing,
representing and processing contextual data. To capture context information
generally some additional sensors and/or programs are required [28].

The way context-aware applications make use of context can be categorized
into the three following classes: presenting information and services, executing
a service, and tagging captured data.

Presenting information and services refers to applications that either
present context information to the user, or use context to propose appropriate
selections of actions to the user.

Automatically executing a service describes applications that trigger a
command, or reconfigure the system on behalf of the user according to context
changes.

Attaching context information for later retrieval refers to applications that
tag captured data with relevant context information.

5.3.2 Intelligent Agents

Intelligent agents can be viewed as autonomous software (or hardware) con-
structs that are proactively involved in achieving a predetermined task and
at the same time reacting to its environment. According to [49], agents are
capable of:

• performing tasks (on behalf of users or other agents).
• interacting with users to receive instructions and give responses.
• operating autonomously without direct intervention by users, including

monitoring the environment and acting upon the environment to bring
about changes.

• showing intelligence – to interpret monitored events and make appropriate
decisions.

Agents can be proactive, in terms of being able to exhibit goal-directed
behavior, reactive; being able to respond to changes of the environment, in-
cluding detecting and communicating to other agents, autonomous; making
decisions and controlling their actions independent of others. Intelligent agents
can be also considered as social entities where they can communicate with
other agents using an agent-communication language in the process of carry-
ing out their tasks.
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In the context of pervasive healthcare, intelligent agents can contribute by
analyzing patient and contextual information, distributing tasks to responsible
individuals, inform users regarding special actions and circumstances.

5.3.3 Patient Data Classification Methods

Data classification is important problem in a variety of engineering and
scientific disciplines such biology, psychology, medicine, marketing, computer
vision, and artificial intelligence [50]. Its main object is to classify objects into
a number of categories or classes. Depending on the application, these objects
can be images or signal waveforms or any type of measurements that need
to be classified. Given a specific data feature, its classification may consist
of one of the following two tasks: a) supervised classification in which the
input pattern is identified as a member of a predefined class; b) unsupervised
classification in which the pattern is assigned to a hitherto unknown class.

In statistical data classification, input data are represented by a set of n
features, or attributes, viewed as a n-dimensional feature vector. The clas-
sification system is operated in two modes: training and classification. Data
preprocessing can be also performed in order to segment the pattern of inter-
est from the background, remove noise, normalize the pattern, and any other
operation which will contribute in defining a compact representation of the
pattern. In the training mode, the feature extraction/selection module finds
the appropriate features for representing the input patterns and the classifier
is trained to partition the feature space. The feedback path allows a designer
to optimize the preprocessing and feature extraction/selection strategies. In
the classification mode, the trained classifier assigns the input pattern to one
of the pattern classes under consideration based on the measured features.

There is a vast array of established classification techniques, ranging from
classical statistical methods, such as linear and logistic regression, to neural
network and tree-based techniques (e.g., feed-forward networks, which in-
cludes multilayer perception, Radial-Basis Function networks, Self-Organizing
Map, or Kohonen-Networks), to the more recent Support Vector Machines.
Other types of hybrid intelligent systems are neuro-fuzzy adaptive systems
which can comprise of an adaptive fuzzy controller and a network-based
predictor. More information regarding data classification techniques can be
found in [50].

In the context of intelligent pervasive health systems, input classification
data can be both biomedical signals, physiological and contextual data. Gen-
erated classification results can contain information concerning the status of
a patient, suggested diagnosis, behavioral patterns, etc. In the following sec-
tions, pervasive healthcare systems that use such intelligent technologies are
presented.
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5.4 Intelligent Pervasive Healthcare Systems
in Controlled Environments

Pervasive healthcare systems in controlled environments (i.e. in hospital or
treatment centers) are mostly used for the advanced management of health
information (e.g., patient health records, pharmaceutical information, etc.)
and provision of location and context-aware services.

5.4.1 Intelligent Health Information Management

The transformation of healthcare intuitions to sophisticated computerized
environments has resulted in the generation and transaction of volumes
of healthcare information and knowledge for routine healthcare activities.
Notwithstanding issues pertaining to the storage of volumes of healthcare
information, there is an imminent need to address issues regarding effective
information/knowledge utilization and management [5]. Pervasive healthcare
information systems include services like:

• Secure user access to medical records at any time;
• Support for user queries about the medical centers, medical units, or doc-

tors available in a certain area;
• Online booking for appointments with specialist doctors, whose offices, in

turn, automatically receive the appropriate medical records for reference
and updating.

Both patients and healthcare providers can benefit from pervasive access
to healthcare information like lifetime clinical records. During a check-up, for
example, patients could use a handheld device to upload their personal medical
history and insurance data into their healthcare provider’s database, reducing
the effort required to enter such detailed information manually. Alternatively,
such information could be downloaded from a Web-based health information
system with proper authentication.

On the other hand, data like a single patient’s healthcare history, workflows
(i.e. procedures carried out on that patient), and logs (i.e. recording of mean-
ingful procedural events) are often distributed among several heterogeneous
and autonomous information systems. Different healthcare actors—including
general practitioners, hospitals, and hospital departments—administer these
information systems, form disconnected islands of information. Communi-
cation and coordination between organizations and among medical team
members permits information sharing and distributed decision making. Thus,
intelligent health information systems are essential in order to support such
communication and information management. Agent-based techniques [7] of-
ten support this communication; modelling application components as some-
what autonomous agents easily reflects healthcare institutions’ decentralized
networks. Mobile and ubiquitous agent interfaces ([5, 31]) provide continu-
ous and more direct access to the aforementioned information. A common
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Fig. 5.3. An Intelligent Health Information Management System

architecture of an intelligent health management system is illustrated in
Fig. 5.3. Software agents installed either on mobile devices (e.g., PDAs) or
on interactive devices within the treatment center (e.g., LCD monitors, or
smart walls [11]). Information retrieval and presentation can be either per-
formed by user request or reactively (e.g., based on user’s location or patient’s
state). Queries regarding patient data or medical information (e.g., medica-
tion procedures, diseases symptoms, etc.) are parsed through specific agents
(i.e. query optimization agents) and forwarded to knowledge retrieval agents
for research. The information retrieval can be performed either from the lo-
cal hospital information system or remote medical knowledge repositories.
Information retrieval, knowledge adaptation and presentation to the user are
performed by related agents using medical ontologies for proper knowledge
data representation [8].
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Using such advanced knowledge representation and medical data retrieval
methods, access to multiple healthcare information is feasible, even from mo-
bile devices. Proper access restriction to sensitive information can be applied
and direct access to important information in cases of emergency can be
established [40].

5.4.2 Location and Context-aware Services

Location and context-aware services can optimize the treatment process by
proper allocation of physicians according to the patients’ status and location.
Figure 5.4 illustrates the architecture of an intra-hospital intelligent pervasive
system based on the aforementioned services. Location provision based on
RFID and Bluetooth technology enables the intelligent distribution of med-
ical personnel among patients which in turn, helps the nurses to gain time,
which can be dedicated to the care of special patients, to learn or to prepare

Fig. 5.4. Architecture of an intra-hospital intelligent pervasive system enabling
location and context-aware services
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new activities [1]. The time spent on supervision and control tasks is reduced
substantially, as well as the time spent attending false alarms, while the time
for direct patient care has been increased. Real-time decision making can be
improved using mobile devices that facilitate communication between med-
ical experts using location services and intelligent agents for smart retrieval
of patient health records [2, 3]. Intra-hospital exchange of medical multime-
dia content between medical experts can be also facilitated through context-
awareness. The QoS DREAM framework [4] is based on emergency event
notification and location of patients/physicians in order to perform proper
multimedia content (e.g., video and voice calls, patient image and video data,
etc.) streaming. Using location and patient identification services, special en-
tertainment can be delivered to the patients in addition to medication assis-
tance (see “Context-aware Hospital Bed” and “Context-aware Pill Container”
in [37]).

5.5 Intelligent Remote and Home-care Systems

Telemedicine systems enable the remote monitoring and treatment of patients
and can be deployed either within the patient’s environment (e.g., home), on
areas where fully equipped medical facilities are unreachable (e.g., isolated
areas, islands, etc.) and even on mobile treatment units (e.g., ambulances).
The latter systems use also pervasive and ubiquitous devices for continuous
monitoring of patient biological and physiological data. Intelligent technolo-
gies can be incorporated for the proper diagnosis, treatment and interaction
with the patients. A typical platform architecture for remote treatment of pa-
tients, using intelligent pervasive technologies, is illustrated in Fig. 5.5. The
major components are analyzed hereafter:

On-Body Monitoring Devices: Wearable devices ([9,22]) or sensors attached
to the patient’s body ([19, 25]), that enable the acquisition of biological data
(e.g., ECG, temperature, blood pressure, blood oxygen saturation, respiration,
etc.) ([10,16,18,23,26,36]) or physiological data (e.g., movement, location and
weight) ([16,23,24,26,27,30]).

Patient Area Devices : Devices like video cameras, microphones, proximity
and temperature sensors, vibration sensors and respiration devices can be
used for tracking a patient’s state ([11, 13, 15, 18, 20, 21, 24]), location and
behavior ([12, 13, 17, 24]). Smart interactivity devices (e.g., the Smart Table
and Smart Frame in Fig. 5.6) can be used for advanced interaction with the
patients, special tasks performance (e.g., medication program followup) and
emergency communication [30].

Status Monitoring Module: Software modules or applications responsible
for intelligent classification of the sensor data and emergency events detection.
Adaptive neuro-fuzzy inference systems have been used in order to combine
biological (i.e. ECG) and physiological data (i.e. physical activity) as an ad-
vanced method of measurement and prevention of cardiovascular diseases [16].
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Fig. 5.5. A typical platform architecture for remote patient monitoring using intel-
ligent pervasive systems

Fig. 5.6. Smart Table and Smart Frame prototypes for advanced pervasive
interaction with the patient in a home environment [11]

Intelligent healthcare agents in combination to respiratory waveform ontology
and fuzzy recognition agents, have been used in order to classify the respi-
ratory waveform [21]. Home spirometers can be also used for periodically
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screening sirpometric data and detecting changes and trends that may indi-
cate lung dysfunction [18]. Accelerometer data can be used to classify pa-
tient’s daily activity and provide contextual information. ECG analysis and
more precisely, QRS detection can be thus improved by dynamically selecting
the leads with best SNR classified according to the activity type [23]. Ad-
ditionally, intelligent processing of movement data can be successfully used
for detection of emergency events (e.g., patient falls) and for general classi-
fication of movement types [27]. Using patient electronic health records in
combination with biological data, decision making and alarm event triggering
is possible. Proper communication with related care providers is also facili-
tated [10]. Software agents can also be used in order to perform distributed
analysis of vital data and alarm indication to previously-selected physicians
and family members [11]. Agents may also assist patients or treatment experts
to perform basic tasks like meal preparation and medication [11,12].

Context-Aware Module: Intelligent software that collects and interprets
data from the patient’s environment (e.g., environment type, location, audio-
visual context, and network quality). Its development and deployment can
be performed through the utilization of special middleware components and
software agents (AGAPE framework [35]).

The presentation and interpretation of the contextual information can be
done through domain-specific languages [34] or through ontological model-
ing ([36, 39]). Using the latter context information, detection of behavioral
patterns of daily activity using Mixture models can assist diagnosis in con-
junction to a person’s health condition [13]. Special patterns can be built
based on movement data acquired by motion sensors placed on site. Visual
information consisting of body orientation calculated from posture extraction
can trace periods of inactivity indicating an emergency status [15]. The latter
information can also be used for tracking the actions of elders with dementia
and assisting them in their daily activities [32]. Additionally, location and
activity classification can be utilized for the detection of abnormalities in spe-
cial groups, like the elderly [24]. Activity classification is also feasible from the
measurement of floor vibration signals and usage of advanced signal process-
ing techniques [20]. Collection of physiological signals and mapping of the
latter to emotional states can synthesize the patient’s affective information
for the health-care provider [17]. Based on context, advanced collaborative
environments can allow the optimized communication between sensitive pa-
tient groups (e.g., children) with treatment experts and family members [14].
Location tracking can provide information regarding the current ambient air
quality of the patient’s area and thus prevent possible morbidity of asthma
during the patient’s outdoor activities [26]. Similarly, patient tracking when
traveling abroad can provide information regarding nearby treatment centers
in case of an emergency [38].

Decision Making Module: It is the interface to a networked e-health system
since it makes decision regarding the alarm event triggering, the patient data
proper coding and the proper transmission of the latter to the monitoring
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units [33]. Based on information collected from the status monitoring and the
context aware modules, selective transmission of the data is performed (e.g.,
only in cases of emergency), utilizing thus network and other (e.g., power)
resources [28]. Furthermore, based on contextual information like network
quality and patient state, proper data coding can be performed (e.g., com-
pression or encryption) using advanced coding techniques (e.g., scalable video
compression using H.264 coding [29]).

5.6 Conclusions and Future Challenges

The technological advances of the last few years in mobile communications,
location- and context-aware computing has facilitated the introduction of per-
vasive healthcare applications. Healthcare can benefit from pervasive comput-
ing benefits in at least four ways:

• Enabling distributed access and processing of medical data;
• Lowering costs by getting appropriate care to the people who need it much

faster than previously possible;
• Making expert care accessible to more people, thereby increasing the scale

at which first-rate healthcare is applied; and
• Making healthcare more personalized, prompting individuals to take more

responsibility for maintaining their health.

Location and Context-aware services in conjunction with intelligent pa-
tient status interpretation can offer advanced medical services to both pa-
tients and treatment practitioners. As discussed within this chapter, detection
of emergency events can be performed in more sophisticated and direct ways,
patient treatment can be optimized and transferred out of the hospital into
the patient’s site, collaboration between medical experts can optimize deci-
sion making, retrieval of patient information can be done in intelligent and
ubiquitous ways, utilization of network and other resources can be achieved
optimizing the whole telemedicine procedure.

However there are still issues and challenges that have to be addressed:
First, most existing implementations do not interoperate sufficiently, resulting
in segmented solutions. Moving to a fully pervasive system would be a com-
plex transition requiring several steps and incremental budgetary increases to
create the necessary infrastructure. This process should not interfere with the
basic functioning of the current systems. Thus, usage of intelligent systems and
methods, like context-awareness and agent environments must be enhanced
with options and methods for overcoming such interoperability and collab-
oration issues. Privacy and security are also potential problems. Healthcare
data should be available anytime anywhere, but only to authorized persons.
Location privacy is also an important issue that is not sufficiently addressed
in the development of pervasive healthcare systems. The usability of pervasive
healthcare solutions is another challenge, at least in the near future. Those
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who are less technically savvy are generally willing to use intelligent mobile
devices if these devices enrich their lives, give them more independence, and
offer intuitive interfaces. Training healthcare professionals as well as patients
to use such devices will become less problematic as handhelds and other wire-
less products become commonplace in society.

Regardless the remaining challenges, intelligent pervasive healthcare sys-
tems are anticipated to be expanded in the near future by using the most
recent technological advances in a more active and direct way for offering
more comprehensive and higher quality health services to citizens.
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Hervé, Norbert Noury, Vincent Rialle: Multi-sensors acquisition, data fusion,
knowledge mining and alarm triggering in health smart homes for elderly people,
C. R. Biologies 325 (2002) 673–682.



114 C. Doukas and I. Maglogiannis

25. Aleksandar Milenkovic, Chris Otto, Emil Jovanov: Wireless sensor networks for
personal health monitoring: Issues and an implementation, Computer Commu-
nications 29 (2006) 2521–2533.

26. Hsueh-Ting Chu, Chir-Chang Huang, Zhi-Hui Lian, Tsai J.J.P: A ubiquitous
warning system for asthma-inducement, In IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing (2006) 186–191.

27. Charalampos Doukas, Ilias Maglogiannis, Philippos Tragas, Dimitris Liapis,
Gregory Yovanof: A Patient Fall Detection System based on Support Vector
Machines, In Proc. of 4th IFIP Conference on Artificial Intelligence Applica-
tions & Innovations (2007) 147–156.

28. C. Doukas, I. Maglogiannis, G. Kormentzas: Advanced Telemedicine Services
through Context-aware Medical Networks, In International IEEE EMBS Spe-
cial Topic Conference on Information Technology Applications in Biomedicine
(2006).

29. C. Doukas, T. Pliakas, I. Maglogiannis: Advanced Scalable Medical Video
Transmission based on H.264 Temporal and Spatial Compression, Presented
at 2007 IEEE Africon Conference (2007).

30. Vince Stanford: Using Pervasive Computing to Deliver Elder Care, IEEE Per-
vasive Computing 1 (2002) 10–13.

31. Lakshmi Narasimhan V., Irfan M., Yefremov M.: MedNet: A pervasive patient
information network with decision support, In 6th International Workshop on
Enterprise Networking and Computing in Healthcare Industry (2004) 96–101.

32. Alex Mihailidis, Brent Carmichael and Jennifer Boger: The Use of Computer
Vision in an Intelligent Environment to Support Aging-in-Place, Safety, and
Independence in the Home, IEEE Transactions On Information Technology In
Biomedicine 8, 3 (2004) 238–247.

33. Tadj Chakib, Hina Manolo Dulva, Ramdane-Cherif Amar, Ngantchaha Ghislain:
The LATIS Pervasive Patient Subsystem: Towards a Pervasive Healthcare Sys-
tem, In ISCIT ’06. International Symposium on Communications and Informa-
tion Technologies (2006) 851–856.

34. Jennifer Munnelly, Siobh’an Clarke: ALPH: a domain-specific language for cross-
cutting pervasive healthcare concerns, In Proceedings of the 2nd workshop on
Domain specific aspect languages (2007) 4.

35. Bottazzi D., Corradi A., Montanari R.: Context-aware middleware solutions for
anytime and anywhere emergency assistance to elderly people, IEEE Commu-
nications Magazine 44, 4 (2006) 82–90.

36. Dong-Oh Kang, Hyung-Jik Lee, Eun-Jung Ko, Kyuchang Kang and Jeunwoo
Lee: A Wearable Context Aware System for Ubiquitous Healthcare, In 28th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (2006) 5192–5195.

37. Jakob E. Bardram: Applications of context-aware computing in hospital work:
examples and design principles, Proceedings of the 2004 ACM symposium on
Applied computing (2004) 1574–1579.

38. Kim Hwa-Jong, Jo Heui-Sug: A Context-Aware Traveler Healthcare Service
(THS) System, In Pervasive Health Conference and Workshops (2006) 1–3.

39. Eun-Jung Ko, Hyung-Jik Lee, Jeon-Woo Lee: Ontology-Based Context-Aware
Service Engine for U-HealthCare, In The 8th International Conference of : Ad-
vanced Communication Technology (2006) 632–637.



5 Intelligent Pervasive Healthcare Systems 115

40. Choudhri A., Kagal L., Joshi A., Finin T., Yesha Y.: PatientService: electronic
patient record redaction and delivery in pervasive environments, In 5th Inter-
national Workshop on Enterprise Networking and Computing in Healthcare
Industry (2003) 41–47.

41. Upkar Varshney: Pervasive Healthcare, IEEE Computer Magazine 36 12 (2003)
138–140.

42. Birnbaum, J.: Pervasive information systems, Communications of the ACM 40,
2 (1997) 40–41.

43. Vasileios Zeimpekis, George M. Giaglis, George Lekakos: A taxonomy of indoor
and outdoor positioning techniques for mobile location services, ACM SIGecom
Exchanges 3, 4 (2003) 19–27.

44. Lee Shih-wei, Cheng Shao-you, Hsu Jane Yung-jen, Huang Polly, You Chuang-
wen: Emergency Care Management with Location-Aware Services, In Pervasive
Health Conference and Workshops (2006) 1–6.

45. Ekahau LBS, http://www.ekahau.com (available at http://www.ekahau.com,
accessed on September 26, 2005).

46. Bahl P and Padmanabhan V.N: RADAR: An In-Building RF-based User
Location and Tracking System, INFOCOM IEEE Press (2000) 775–784.

47. Castro P, Chiu P, Kremenek T. and Muntz R.: A Probabilistic Room Location
Service for Wireless Networked Environments, Proceedings of the 3rd interna-
tional conference on Ubiquitous Computing – UBICOMP (2001) 18–34.

48. Kavi Kumar Khedo: Context-Aware Systems for Mobile and Ubiquitous
Networks, International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and Learning
Technologies (2006) 123.

49. John Fox, Martin Beveridge, David Glasspool: Understanding intelligent agents:
analysis and synthesis, AI Communications – IOS Press 16, 3 (2003) 139–152.

50. Jun-Hai Zhai, Su-Fang Zhang, Xi-Zhao Wang: An Overview of Pattern Classi-
fication Methodologies, In Proceedings of the Fifth International Conference on
Machine Learning and Cybernetics (2006) 3222–3227.

51. Enderle J., Blanchard S., Bronzino J.: Introduction to Biomedical Engineering.
Second edition. Burlington MA: Elsevier Academic Press Series (2005).



6

An Agent Middleware for Ubiquitous
Computing in Healthcare
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favela@cicese.mx

Summary. Healthcare environments are characterized by the need for coordination
and collaboration among specialists with different areas of expertise, the integration
of data from many devices or artifacts and the mobility of hospital staff, patients,
documents, and equipment. Ubiquitous computing (ubicomp) enable us to meet
these characteristics of medical environment. Ubiquitous computing environments
are spaces where computational artifacts are invisible, become present whenever we
need them, are adaptive to mobile users, can be enabled by simple and effortless
interactions, and act autonomously to support users’ activities. We have proposed
using software agents to implement these characteristics of a ubiquitous computing
system with the aim of enhancing medical activities. Then, we created the SALSA
middleware to facilitate the implementation of these agents for ubiquitous com-
puting systems for healthcare environments. In our approach, autonomous agents
can represent users, act as proxies to devices and information resources, or wrap a
complex system functionality. The SALSA middleware enables developers to create
autonomous agents that react to the contextual elements of the medical environ-
ment and that communicate with other agents, users and services available in the
environment. We used the SALSA middleware for creating the Context-aware Hos-
pital Information System. This chapter presents the SALSA middleware and how it
facilitates the development of ubiquitous computing system for healthcare, in which
the main systems components were conceived as autonomous agents.

6.1 Introduction

Medical activities in healthcare environments, such as hospitals, are
characterized by the need for coordination and collaboration among spe-
cialists with different areas of expertise, the integration of data from many
devices or artifacts and the mobility of hospital staff, patients, documents,
and equipment. Hospital staff demands to promptly extract useful pieces of
data from different artifacts to perform their work. The right information
has to be in the right place, whenever it is needed by whoever needs it, in
whatever representation they need it. With ubiquitous computing (ubicomp)
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technology is feasible to meet these medical environment needs. Ubiquitous
computing environments are spaces where computational artifacts are invis-
ible, become present whenever we need them, are adaptive to mobile users,
can be enabled by simple and effortless interactions, and act autonomously
to support users’ activities. We have proposed using software agents to im-
plement these characteristics of a ubiquitous computing system with the aim
of enhancing medical activities.

Agent technology has been used to create systems with a specific focus on
improving the management of clinical information by reporting the patients’
status to the doctor’ devices; by enabling the construction of unified medical
repositories, or by merging organizational knowledge from various hospitals.
However, these systems do not address the challenges related to the imple-
mentation of ubiquitous computing environments, such as taking into account
the context of users for presenting and adapting the clinical information, nei-
ther do they address the need to access the medical information from multiple
and heterogeneous computing devices. We have used autonomous agents for
dealing with these challenges and created a middleware, named SALSA, to fa-
cilitate the implementation of these agents for ubiquitous computing systems
for healthcare environments. The SALSA middleware enables developers to
create autonomous agents that react to the contextual elements of the med-
ical environment, communicate agents with other agents, users and services
available in the environment; communicate different types of medical infor-
mation; and implement agents that represent users, act as proxies to devices
and information resources, or wrap a complex system functionality.

In the next section, we present the characteristics of healthcare environ-
ments; we introduce the area of ubiquitous computing and the concept of
autonomous agents. Section 6.2 presents the advantages of using autonomous
agents for creating ubiquitous computing systems from three points of view:
Software Engineering, Distributed Systems and Human-Computer Interac-
tion. In Section 6.3 we present several Multi-agents systems created for sup-
porting medical activities. Section 6.4 describes how ubiquitous computing
can enhance medical practices. Section 6.5 presents the design issues regard-
ing the functionality of autonomous agents for creating ubiquitous computing
systems. Based on these design issues, was developed the SALSA Middleware
which is described in Section 6.6. To illustrate the programming facilities of
SALSA, Section 6.7 describes how the Context-aware Hospital Information
System was created with SALSA. Finally, Section 6.8 presents our conclusions
of using SALSA for the development of ubiquitous computing systems for
healthcare settings.

6.1.1 Characteristics of Healthcare Environments

Information management and communication in a hospital setting is charac-
terized by a high degree of collaborative work, mobility, and the integration of
data from many devices or artifacts [1]. Exchanges of information are intense,
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and demands that participants promptly extract useful pieces of data from the
artifacts to perform their job. In contrast with other settings such a control
rooms [2], information in hospitals is not generally concentrated in a single
place but distributed among a collection of artifacts in different locations. For
instance, patients’ records are maintained and used in coordination with data
on whiteboards, computers, or binders located in rooms, labs, common areas
or offices. Following Bossen we might say that for practical purposes the whole
hospital becomes the information space and it is by “navigating” this space
that hospital’s staff can get the data to perform effectively [3]. Given the high
distribution of information together with the intensive nature of the work, it
is clear that tremendous coordination efforts are required from all members
of the hospital staff to properly manage the information to attend and take
care of patients. The right information has to be in the right place, whenever
it is needed by whoever needs it, in whatever format (representation) they
need it. Hence the characteristics of artifacts containing information play a
fundamental role to achieve this coordination. For instance, patient’s records
are easily moved from place to place and filled, checked, read and consulted in
many locations like nurses’ room, analysis labs, or the actual bed where the
patient is being attended; nurses, physicians and other workers interact with
those records and use them to support their work or to transmit instructions
to be followed by others. To have the patient’s records at the right place is in
part what makes them successful in supporting coordination, as well as the
fact that the information contained in them is clear, complete, accurate, and
updated. Unfortunately those conditions are not always achieved. Documents
get lost, instructions are not clear, or the data is not complete to support
decisions.

Physicians, who are in a continuous learning process through their daily
practice, are motivated to seek information to reduce the uncertainty of the
route they ought to follow for the patient’s treatment when faced with a
complex clinical case [4,5]. Hospitals provide medical guides to be consulted by
the physicians. However, given their current workloads, they seldom have the
time to search for information on the local medical guide or in medical digital
libraries. On the other hand, doctors often use information from previous
clinical cases in their decision-making. For this, they might rely on their own
experience or consult other colleagues who are more experienced in a given
subject, or just to have a second opinion. Physicians, however, seldom consult
the clinical records of previous patients, to a large extent because they are
difficult to locate, or because the data that could be used to retrieve them, such
as the patient’s name or the date of a given case, are difficult to recall. The
development of hospital information systems that provide access to electronic
patient records is a step in the direction of providing accurate and timely
information to hospital staff in support for adequate decision-making.

Providing adequate support for managing information in hospital settings
requires technological designs that are based on a proper assimilation of the
context where the hospital’s staff performs their job. Ubiquitous computing
technology enables us to meet with these medical environment requirements.
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6.1.2 Ubiquitous Computing

Beyond the era of personal computing, ubiquitous computing begins with the
vision of decentralizing computing power: The computer is omnipresent be-
coming a part of everyday life and an inevigtable component when performing
a variety of private and business related tasks [6]. Devices of many forms and
sizes enable users to exchange and retrieve information they need quickly, ef-
ficiently, and effortlessly from everywhere at any time. This was the vision
of Mark Weiser in 1991 which led to diverse unresolved issues that must be
addressed before ubiquitous computing truly reaches its goal of improving our
everyday lives [7]. Ubiquitous computing involves a new way of thinking about
computers, one that takes into account the human world and allows computers
to vanish into the background. The vision of a future ubiquitous computing
landscape is dominated by the pervasiveness of a vast manifold of heteroge-
neous computing devices, the autonomy of their programmed behavior, the
dynamicity and context-awareness of services and applications they offer, the
ad-hoc interoperability of services and the different modes of user interaction
upon those services [8]. Today a variety of terms –like Ubiquitous Comput-
ing (ubicomp), Pervasive Computing, Calm Computing, Invisible Computing,
Ambient Intelligence (AmI), Sentient Computing and Post-PC Computing –
refer to new paradigms for interaction among users and mobile and embedded
computing devices [9]. Thus, ubiquitous computing is the attempt to modify
the traditional human-computer interaction paradigm not only by distribut-
ing computers, of all scales, into the environment surrounding users, but by
augmenting work practices, knowledge sharing, and communication of users.
For this, computers should be able to use implicit situational information, or
context, to provide useful services and relevant information whenever users
need them [10].

Context-aware computing refers to an application’s ability to adapt to
changing circumstances and respond based on the context of use. A system is
context-aware if it uses context to provide relevant information and/or services
to the user, where relevancy depends on the user’s task. Dey defined context
as “any information that can be used to characterize the situation of an entity,
which can be a person, place, or object that is considered relevant between
a user and the application, including the user and application themselves”
[10]. Among the main types of contextual information considered relevant
are identity, time, activity, and location which are known as primary context
[10, 11]. This information answers the questions of who, when, what, and
where, which can be used to identify whether a specific piece of information
is relevant to establish context. Thus, the ubiquitous computing environment
should be aware of the user’s context to provide information and services
whenever users need them, in a proactive fashion and anticipating user’s needs.
Furthermore, the services provided by the environment have to be accessible
to diverse and non-specialist users through simple and effortless interactions.
For this, human computer interaction promises to support more sophisticated
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and natural input and output, to enable users to perform potentially complex
tasks more quickly, with greater accuracy, and to improve user satisfaction.

From the previous explanation it can be stated that ubiquitous computing
environments are characterized by:

1) the distribution of their devices and services,
2) the high mobility of users,
3) the need to opportunistically access information, services and devices

available in the environment,
4) and finally, the implicit and natural interactions of users with the ubiqui-

tous computing environment.

Ubiquitous computing environments require software components that
enable the above characteristics. These software components need to
seamlessly establish connections and communicate among themselves in a
transparent way to provide the services required by the users; the software
components should be reactive to the environment and the users’ context
in order to enable them to opportunistically access pervasive computing re-
sources. For this, the components need to be perceptive to context changes
which are highly dynamic due the mobility of users; through adaptive com-
ponents the environment can learn from the user’s interaction in order to
adapt its behavior to the users’ needs; and finally the components need to
act autonomously freeing users to explicitly access the ubiquitous computing
resources and decide how to act in order to enhance the users’ activities.
Thus ubiquitous computing environments are characterized by the collabora-
tion, reactivity, adaptability and autonomy of their software components and
in this sense, they share many characteristics with agents. For this reason,
we propose using autonomous agents as the software components or main
constructs to deal with the challenges in realizing the ubiquitous computing
vision for hospitals.

6.1.3 Autonomous Agents

A software agent is a software entity that acts on behalf of someone to carry
out a particular task which has been delegated to it. To do this, an agent
might be able to infer users’ preferences and/or needs by taking into account
the peculiarities of users and situation. This definition is based on the notion
of agenthood as an ascription made by some person [12]. Other researchers
provide a definition of a software agent based on a description of the at-
tributes that an agent may need to act on behalf of someone or something
else. Under this approach, each agent might possess a greater or lesser degree
of attributes which have to be consistent with the requirements of a particular
problem. Some of these attributes are the following: autonomy (to act on their
own), re-activity (to respond to changes in the environment), pro-activity (to
reach goals), cooperation (with other agents to efficiently and effectively solve
tasks), adaptation (to learn from experience) and mobility (to migrate to new
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places) [12, 13]. For some researchers, particularly those working in Artificial
Intelligence (AI), the term “agent” has a stronger meaning than the one pre-
sented above. By agent they mean a computer system that in addition to
the properties identified above, is conceptualized using terms that are usually
applied to humans. Thus, it is quite common in AI to characterize an agent
using mentalist notions, such as knowledge, beliefs, desires, intentions or oblig-
ations [13]. As the aim of our work is to determine if autonomous agents are
an appropriate metaphor for designing and implementing ubiquitous comput-
ing systems, the following section presents an analyses of the advantages of
using autonomous agents from the perspective of different areas involved in
the building of ubiquitous computing systems, such as Software Engineering,
Distributed Systems and Human-Computer Interaction.

6.2 Advantages of Using Software Agents for Building
Ubiquitous Computing Systems

Software agents have been introduced in many fields of computer science. This
makes the term elusive, since some authors emphasize their distributed nature
while others think about agents from the perspective of being able to exhibit
intelligent behavior. Since ubiquitous computing is a multidisciplinary field,
it can take advantage of the use of agents from these different perspectives.
We describe these perspectives of software agents and their relevance to the
design of ubiquitous computing systems.

6.2.1 Software Engineering and the Agent-oriented Approach

From the software engineering perspective, an agent is seen as a computer
system situated in some environment and capable of flexible, autonomous
action in that environment in order to meet its design objectives [14]. The
role of software engineering is to provide structures and techniques that make
it easier to handle complexity. One approach for doing this is to adopt an
agent-oriented approach which means decomposing a problem into multiple,
autonomous software components that can act and interact in flexible ways
to achieve their objectives. Autonomous agents are software components that
offer greater flexibility and adaptability than traditional components [15]. In
the rest of this document, the term “components” will be used to refer to the
main building blocks that form part of a ubiquitous computing system.

6.2.2 Distributed Systems and Multi-agent Systems

From the Distributed Systems stance, the technology of autonomous agents
appears appropriate for building systems in which data, control, expertise,
or resources are distributed; agents provide a natural metaphor for deliver-
ing system functionality [16]. Agents and multi-agent systems have been used
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as a metaphor to model complex distributed processes. While the area of
multi-agent systems addresses distributed tasks, distributed systems support
distributed information and processes. In short, multi-agent systems are of-
ten distributed systems, and distributed systems are platforms to support
multi-agent systems. One characteristic of ubiquitous computing systems is
that they should provide services and information whenever users need them.
For this, implementing a ubiquitous computing environment as a multi-agent
system hides the fact that devices, services and information are disseminated
all over the physical environment and makes it possible to create an environ-
ment with autonomous components that provide largely invisible support for
tasks performed by users, for which the components may require interacting to
achieve their objectives. However, in a ubiquitous computing environment it is
impossible to a priori know about all potential interactions that may occur at
unpredictable times, for unpredictable reasons, between unpredictable com-
ponents. As agents are components with the ability to initiate and respond to
interactions in a flexible manner [17], the agent oriented approach can be the
natural way to deal with unpredictable associations and interactions among
ubiquitous computing systems’ components.

6.2.3 Agents in Human-Computer Interaction

Finally, autonomous agents have been used to change the way people interact
with computers which has been referred to as indirect management [18]. In
this approach, the agent is a personal assistant that gradually becomes more
effective as it learns about the user’s interests [19]. Thus, from the Human-
Computer Interaction (HCI) viewpoint, autonomous agents can be used to
implement a complementary style of interaction [19]. Agents can also radi-
cally change the style of human-computer interaction and enhance collabora-
tion in ubiquitous computing environments. The metaphor used is that of a
personal assistant who is collaborating with the user in the same work envi-
ronment. Autonomous agents can assist users in a variety of different ways:
they hide the complexity of difficult tasks, they perform tasks on the user’s
behalf, they can train or teach the user, they help different users collaborate,
and they monitor events and procedures. One of the major research directions
for Human-Computer Interaction (HCI) has been exploring the novel forms of
interaction that can achieve Mark Weiser’s vision of naturally integrating com-
puter technology with our daily activities. In this sense, autonomous agents
can seamlessly assist users in their interactions with the ubiquitous computing
environment. For this, autonomous agents can learn of the users’ interactions
to infer their preferences and continuously be aware of their contexts in order
to be responsiveness to their activities.
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6.3 Multi-agent Systems in Healthcare

Agent technology has been used to create systems with a specific focus on
improving the management of clinical information within a hospital. For in-
stance, PalliaSys is a multiagent system that collects information about the
status of palliative patients and reports it to a doctor. This system enables
physicians to consult medical information through different communication
technologies, such as mobile phones, PDAs and computers [20]. In [21] an
adaptable agent-based system is proposed to aid the medical staff in analyz-
ing the data of diabetic patients which could be previously downloaded from
the patient’s PDA. In [22] is presented an agent-mediated Organ Transplant
Management Application (OTMA) which is provenance-awareness. In this
system it was used autonomous agents to enable users to trace how particular
results were reached. With OTMA, users (physicians) can extract valuable in-
formation to validate steps in a medical process or audit the system over time;
for instance, the transplant coordinator can ask OTMA questions related to
either a given patient (donor or recipient) or a given organ’s fate.

Other research projects have focused on providing support for the man-
agement of clinical information that may be distributed among the different
hospitals and departments within a hospital. In [23] a multi-agent system is
presented that physicians may use to access multiple and heterogeneous med-
ical data sources available at the hospital, in a transparent way. This system
enables the proactive construction of unified medical repositories which may
contain a wide range of data type, such as video, images, and text. A multi-
agent community works autonomously, gathering data from the operational
systems, and applying procedures for transforming the data which is then
written to a patient record repository. In [24] the use of agents along with
grid technology is proposed to merge organizational knowledge from various
hospitals. While agents deal with the management of information, such as
retrieving and presenting information, grid technology copes with issues of
security, such as authentication and authorization services. In [25] the con-
cept of ubiquitous healthcare is introduced that refers to the disposition of any
type of health service such that individual consumers can access them through
mobile computing devices. This work presents the OnkoNet initiative which
proposes developing a multi-agent system for cancer treatments. This system
will enable authorized persons/institutions to store, maintain, retrieve and
access medical data by using local and mobile devices in order to integrate
all patients’ information related to diagnosis, therapy and care. Other work
proposes to use mobile-agent technology to cope with the security-enhanced
gathering of inter-institutional and distributed medical data [26].

Agents have also been used for dealing with other challenges in providing
better healthcare services, such as monitoring the state of a patient, provid-
ing assistance services to remote patients, and the care of disabled and se-
nior people. These projects selected agents as the main system’s components
that exhibit dynamic changes and autonomous behavior. For instance, the
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e-Tools project uses sensors, wireless communications devices and agent tech-
nology to provide supportive services to people with disabilities. One such
e-Tool is an electric-powered wheelchair in which a multi-agent system au-
tonomously controls its behavior, monitors the state of the patient, interacts
with him/her through an interface that provides assistance in navigation, and
sends messages indicating the state of the patient to the PDA of the patient’s
caregivers and relatives [27]. The AINGERU project proposes a multi-agent
system for offering tele-assistance services to elderly people. This system con-
sists of agents running on the patient’s PDA, in charge of monitoring the
patient’s health condition and communicating with other agents residing in
the healthcare center which perform other tasks, such as appointment nego-
tiation [28].

Most of the projects presented support the management of patient infor-
mation by means of the use of software agents that have well defined objectives
and that must collaborate among themselves to support different activities re-
lated to the management of medical information. Thus, through a multi-agent
system these information management tasks are transparent to the users. To
do this, these systems provide agents at different system’s layers. For instance,
all of them provide agents at the user interface layer, that interprets the user’s
request or that present the information to them. Then, agents at a higher layer
are in charge of extracting this information and passing it to the interface
agents in order to be presented to the user. The use of agents enabled these
projects to cope with the distribution and heterogeneity of clinical informa-
tion. In spite of the fact that some of the above projects introduce the concept
of AmI or ubiquitous computing for healthcare, these systems do not address
other challenges related to the implementation of ubiquitous computing envi-
ronments, such as taking into account the context of users for presenting and
adapting the clinical information, neither do they address the need to access
the medical information from multiple and heterogeneous computing devices.
However, providing systems such as the one previously presented is a step to-
wards creating a ubiquitous healthcare computing system. An infrastructure
that supports the integration and retrieval of clinical information facilitates
the introduction of pervasive and context-aware systems that enable the op-
portunistic access of medical information.

In our approach, we have explored the use of autonomous agents for de-
signing ubiquitous computing systems for healthcare settings, and for making
the design decisions for a middleware that facilitates the development of these
autonomous agents.

6.4 Context-aware and Ubiquitous Computing
Technology to Enhance Medical Practices

Ubiquitous computing technology, that includes devices such as handhelds
computers and large public displays, can provide timely access to medical
information and services thru a context-aware system. A ubiquitous and
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context-aware computing environment can enhance the medical activities of
the mobile hospital staff by directly addressing those contextual elements
which characterize them.

A ubiquitous computing system can also be able to provide timely access
to medical knowledge thru context-aware information retrieval. It is evident
that in the health-care domain, vast quantities of medical information are now
available through the web and can easily lead to information overload [29].
One way to overcome such a problem is to provide an environment that proac-
tively retrieves and presents information based on the hospital professionals’
context [30]. Context-aware computing technology is a key element to con-
struct this new generation of Web retrieval systems by sensing the changes
in the users’ activities, to predict users’ interests and then, retrieve infor-
mation based on them. Ubiquitous and context-aware computing technology
may provide support to healthcare professionals for opportunistically acquir-
ing, managing, and sharing knowledge, which are issues faced everyday by
hospital workers.

The following are the desirable features to be addressed through ubiqui-
tous computing systems in order to support the characteristics of healthcare
environments described in Section 6.1.1.

6.4.1 Context-aware Communication and Activity Coordination

There are four critical contextual elements that a context-aware system has
to consider in supporting the hospital’s activity coordination and information
management [31]:

1. Location. Where hospital staff members are at a particular time deter-
mines in part the type of information they require. For example, access
to a patient’s medical records is most relevant when the doctor or nurse
is with that patient.

2. Delivery timing. Communication exchanges in a hospital tend to be time
sensitive, which means that a message might be relevant for only a cer-
tain period. For example, a doctor might leave a message that describes
recommendations for treatment to any nurse on the next shift.

3. Role reliance. In hospitals, parties who might be strangers or rarely meet
must communicate with each other. A user often addresses messages not
to particular individuals but to “the nurse on the afternoon shift,” or
“the next doctor to visit the patient.” Thus, the system must be able to
recognize roles as well as particular individuals.

4. Artifact location and state. An artifact, particularly a device, can have
many states. The state of devices (temperature reading) and other arti-
facts (availability of lab results) can be important triggers for appropri-
ate actions, including information exchanges. Medical staff might need to
communicate directly with documents or devices. For example, a doctor
might want to display the patient’s lab analysis on her office desktop as
soon as results become available.
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6.4.2 User’s Location and Authentication

Hospitals are characterized by the mobility of the professionals that work
there and that of the artifacts they use, such as clinical records or medical
equipment, and even that of the patients, who are moved from one hospital
area to another as required. When a doctor examines a patient, he needs to
move to obtain the patient’s clinical records and other documents. Hospital
workers also need to move to locate information displayed in whiteboards. For
instance, the schedule of patient’s operations for the current day is displayed
on the whiteboard in the office of the chief surgeon, and the activities and
working area assigned to nurses are advertised in different boards through-
out the hospital. Boards help to communicate information regarding patients’
condition and location, and hospital staff often visit the boards to find this
information. Thus, hospital workers require access to information from any-
where within the hospital. For instance, a public display should be able to
recognize the user as he approaches it and give him access to relevant clinical
data without cumbersome login procedures.

6.4.3 Content Adaptation and Personalization
based on Contextual Information

Contextual information such as, location, role, and identity should be taken
into account to adapt and personalize the presentation of information to the
user. For instance, when a physician is in front of public display, the pervasive
environment should display the messages addressed to him and enable him
to visualize the patients’ records he is examining. Thus, information overload
is prevented by personalizing the display to provide immediate access to the
clinical records of those patients assigned to the doctor [32].

6.4.4 Information Transfer between Heterogeneous Devices

In the hospital, users frequently transfer information from public spaces to
personal spaces. For instance, the chief nurse might leave a note on a public
board in order to advertise the date of the next meeting; then, another nurse
would write this information into her personal agenda. A few physicians ac-
tually carry PDA’s and reported using them to record information displayed
on whiteboards or corkboards. A pervasive environment furnished with de-
vices of all scales, should support the simple and safe transfer of information
between devices of different scales. Some of these devices are public, such as
large displays, while others are personal, such as PDAs. For instance, a doctor
may want to transfer information from his PDA to a public display in order
to discuss it with a colleague; and when the doctor approaches the board and
is authenticated, the display will use information stored in the user’s PDA to
personalize the information and applications running in the public display.
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6.4.5 Context-aware Retrieval of Medical Information

The electronic patient record offers the opportunity to retrieve relevant med-
ical cases with little effort from the user. To retrieve this information, the
pervasive environment has to take into account the type of clinical problem.
The recommended clinical cases have to be ranked by similarity with the cur-
rent case. For instance, it may be more relevant for the physician to consult
first how she solved previous cases akin to this, and after that, find out the
treatment or diagnosis given by other clinicians to similar problems. The en-
vironment may also opportunistically display medical guides relevant to the
patient’s diagnosis as supporting information for doctors or even locate and
establish contact with a specialist who might be available. In the scenario,
the display presents the hospital’s medical guide relevant to the case they
are discussing and links to previous cases that were estimated to be relevant.
Based on the description of the diagnosis, the system presents the hospital’s
medical guide related with this particular case [33].

6.5 Design Issues of Autonomous Agents for Ubicomp

From the above desirable features to be addressed through ubiquitous comput-
ing to support the characteristics of healthcare environments, several design
issues arose regarding the functionality of autonomous agents for creating
ubicomp systems.

– Autonomous agents are reactive to the contextual elements of the envi-
ronment. As explained in the previous section, these contextual elements
are: location, delivery time, users’ role, and location and state of artifacts
and users that agents may need to monitor for opportunistically provid-
ing information and services to users. For instance, an autonomous agent
can be aware of changes to medical information to be aware of when a
patient’s medical analyses are available and then notify it to the doctor.
Another agent can monitor the environment to make sure that the con-
textual requirements are satisfied before delivering a message. For this,
agents need mechanisms to perceive, recognize and disseminate different
types of context information: role, location (of users and devices), state
(of documents, services, devices, and users) and time.

– Autonomous agents can be decisions makers. We identified the need for
third-party decision makers to decide how to act based on the perceived
context. Autonomous agents would review context and make decisions
about what activities to do, when to do them, and what type of informa-
tion to communicate to whom.

– Autonomous agents can represent users, act as proxies to devices or infor-
mation resources of the environment, or to wrap a complex system’s func-
tionality. In a hospital, the staff requires access to information resources
such as the hospital information system from which a doctor accesses a
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patient’s clinical records. For this, a doctor may interact with her personal
agent on the PDA that will request, on her behalf, medical information
from an agent acting as proxy to the hospital information server. Agents
representing devices, such as the public display, can be aware of the pres-
ence of other agents and users available in the environment. These agents
enable users and other agents to use the devices; for instance, present-
ing information on the public display. Finally, agents can be wrappers of
complex system’s functionality that must be hidden from the users.

– Autonomous agents should be able to communicate with other agents, or
directly to users and services. For this, agents need a platform of commu-
nication that enables them to convey information to other agents, users,
and information resources by using the same protocol of communication.
This platform and protocol of communication should enable agents to
seamlessly interact with users in order to enhance their interaction with
the ubicomp environment.

– Autonomous agents need mechanisms for authentication. Autonomous
agents representing devices or services need mechanisms for authenticating
users and agents that want to access them. For instance, not all users are
allowed to access the hospital information system or present information
on the public display. The physician agent on the PDA may need to know
a priori the agent acting as proxy to the public displays available on the
environment. An autonomous agent such as this, that represents a public
display, needs mechanisms for authenticating users that require accessing
it. Thus, only authorized personnel may access these devices or services.
And the same can be applied to agents. For instance, the agent acting as a
proxy to public display needs to know in advance which other agents may
require publishing information on them, or request the personalization of
information for a user.

– Autonomous agents need to communicate different types of messages.
Agents need a communication language that enables them to convey mes-
sages for requesting information from devices or services (i.e. requesting
medical information from the hospital information system) and responding
to such requests, notifying information to users and devices (i.e. notifying
that the lab results are available to the user), and requesting from another
agent the execution of an action (i.e. personalizing the public display for
the user).

– Autonomous agents may have a reasoning algorithm as complex as the
logic of its functionality. An autonomous agent needs to be aware of in-
formation regarding the environment in order to generate its actions. For
this, agents may need a reasoning algorithm which may include a simple
set of rules or conditions, i.e. to verify that a set of conditions are met in
order to deliver a message; or a more complex reasoning algorithm, i.e.
for estimating the user’s location, or for indexing and retrieving medical
cases to be presented on a public display.
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6.6 The SALSA Middleware

To facilitate the development of autonomous agents with the characteristics
mentioned in the previous section, the Simple Agent Library for Smart Ambi-
ents (SALSA) was created. This section presents these requirements and the
design and implementation of the middleware.

6.6.1 The SALSA Functional Requirements

Based on the design issues for autonomous agents for ubicomp systems, the
following functional requirements for an agent middleware were identified.
In our approach, an agent of a ubicomp environment has specific goals, and
to achieve them, they have to monitor the context of the environment, and
autonomously decide how to act. This lead to the first requirement for the
agent middleware for ubiquitous computing system:

– To implement autonomous agents as decision makers, the middleware
should provide mechanisms for implementing the agents’ components for
perceiving, reasoning, and acting. An agent should include a perception
module to gather information from environment sensors and devices (e.g.
to estimate the users location), directly from users (through an interface),
and other agents; a reasoning module governs the agent’s actions, includ-
ing deciding what to perceive next; and finally, the agent executes the
appropriate action, which may include: sending a notification message to
a user or requesting a service from a device.

– The middleware should provide higher-level mechanisms to enable agents
to perceive context information from other agents, directly from the devices
or services, or from the users. Considering that ubiquitous computing en-
vironments are highly dynamic, mainly due the fact that the user’s context
may change unpredictably, the agent’s perception component should be
able to perceive context information at unpredictable times. The middle-
ware should provide an agent communication language flexible enough to
enable programmers to specify the type of context information that will
be perceived by the agents of a ubicomp system. Thus, the agent commu-
nication language should enable agents to identify the type of information
perceived and the target of the information. Once an agent received infor-
mation, the reasoning component of an autonomous agent has to analyze
it to decide how to act.

– The middleware should be flexible enough to enable developers to en-
dow agents with any reasoning algorithm. The middleware should pro-
vide abstractions that permit not only the implementation of any kind
of reasoning algorithm, but also enables developers to easily modify or
update the agent’s reasoning requiring little or no modifications to the
other agent’s components.
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– The middleware should provide a communication platform that enables
agents to convey information to other agents, users, devices and services
by using the same protocol and communication channel. The actions of
autonomous agents may require them to communicate with other agents
by interchanging different types of messages for conveying the intention of
the interaction and the information content. Agents may also need to com-
municate with users in order to notify and present information to them.
For this, the communication platform should enable users to be aware of
the presence of other users and agents that offer relevant services for their
activities, but they should be unconscious of other agents with whom they
do not need to interact explicitly or that hide a complex functionality. Fi-
nally, it should enable agents to negotiate services with other agents, or
request them to execute an action. The messages conveyed among agents
can be of the following types: a request of information, response to a
request, request to execute an action or service, notification that the ac-
tion was executed, notification of information (that was not previously
requested), notification of the presence of an agent (representing a user
or a service), and notification of information perceived from a device or
sensor. The communication language should be flexible enough to allow
programmers to specify the content of each of these messages and the
programming language of the middleware should facilitate the creation of
these messages.

– Autonomous agents need mechanisms for registering and authenticating
agents. Autonomous agents need to know what agents have permission
to request their services. The middleware should provide an infrastruc-
ture of services that enables the naming, registration, authentication, and
location of agents representing users, devices and services.

Based on the above requirements, the Simple Agent Library for Smart
Ambients (SALSA) was implemented to enable developers to create the soft-
ware entities of a ubiquitous computing environment with which users need
to seamlessly interact. The following Section presents the design of SALSA to
address the above requirements.

6.6.2 Design of SALSA

The design of SALSA includes defining: the agent’s life cycle which implements
the agent’s behavior; an expressive language that enables agents to communi-
cate with other agents; and the architecture which consists of a set of services
and a library of abstract classes to implement autonomous agents [34].

Agent’s Life Cycle

Since it was identified that a SALSA agent should have components for
perceiving, reasoning and acting which may involve communicating with other
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Fig. 6.1. The life-cycle of an agent

agents, the life cycle of agents in a ubicomp environment was defined. As
showed in Figure 6.1 the agent’s life cycle includes the following states:

– Activated. This is the initial state of an agent when it is created. This is a
super-state that contains different sub-states that an activated agent can
present.

– Perceiving. It is the initial sub-state. An agent acquires contextual infor-
mation from its environment in different ways. For example, an agent may
receive information from a user or another agent representing a service;
or agents may perceive information directly from devices or sensors. An
agent may get into this state if its action plan requires it. That is, it moves
from the acting state to the perceiving state.

– Reasoning. The agent evaluates the perceived information, which may
require applying a simple or complex reasoning algorithm to interpret or
transform this information into derived contextual information.

– Executing. Based on the results of the reasoning component, the agent
executes an action that may involve: communicating with other agents;
moving agent’s code to another platform, continuing perceiving informa-
tion, or terminating its execution.

– Communicating. The agent interacts with one or more agents in order to
provide the information that is necessary to reach its goals. An agent can
enter into this state if it is dictated by its action plan or because the agent
needs to transmit specific knowledge.

– Suspended. An agent in this state is alive but it is not performing any
activity. It is waiting to be reactivated. For example, if an agent is waiting
for information that it has requested from another agent, then it changes
from the communicating state to the suspended state, and when contacted
by another agent, its state returns to communicating.

– Deactivated. If the agent has met its goal, then it is deactivated and killed.
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Fig. 6.2. SALSA’s Architecture

Architecture of the SALSA Middleware

As illustrated in Figure 6.2, the SALSA middleware consists of the following
layers:

Communication Platform

The communication channel among agents and users is a Broker component
which is responsible for coordinating communication, and enables the config-
uration of the environment in a manner that is transparent for users since
they do not know the location of the agents even though they can be aware
of the presence of some of these agents.

Thus, an Agent Broker is the component that should handle the
communication among the ubiquitous devices, services and users, which
are represented by agents. SALSA provides a protocol of communication
which consists of an expressive language that enables the exchange of differ-
ent types of objects between agents (such as perceived information, requests
for services), between agents and users (such as events generated by the user’s
actions), and between agents and services (such as the state of a service).
This information will be sent or perceived by the agent through a proxy to
the Broker, which is an agent’s component. The Broker’s Proxy and the set of
messages that can be communicated among agents are created by developers
by using the SALSA API.

API (Application Programming Interface)

The SALSA API is a class framework designed for facilitating the implemen-
tation of the agents’ components and the use of the services provided by the
SALSA middleware. Thus, it is the SALSA API that enables developers to
implement the agent’s components for perceiving, reasoning and acting, and
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to control the agent’s life cycle. The Perception component gathers context in-
formation from the environment’s sensors and devices, from the users through
a graphical user interface, and from other agents through the Broker’s Proxy.
The perceived information generates events which are captured by the Reason-
ing component, which governs the agent’s actions. The programmer, based on
the logic of the agent, implements this component by using a reasoning algo-
rithm, such as a simple conditional-action rule, a neural network or case based
reasoning. The Action component contains the action plan to follow based on
the agent’s reasoning. It also includes sub-components that allow the agent
Communication, and Mobility in order to update its reasoning component,
and to Derive Context information based on information perceived by the
agent.

Services

The SALSA middleware provides an Agent Directory service which is accessi-
ble through the Initialize and Register module of the SALSA API. It provides
a set of classes that allows programmers to register the agent’s attributes in
one or more Agent Directories, and enables agents to look for services provided
by other agents.

SALSA Class Framework

The SALSA class framework provides a set of classes to facilitate the imple-
mentation of the internal architecture of an agent and control its life cycle.
The SALSA API was initially implemented in Java, which enabled agents to
be executed on any computing platform. However, it was observed that this
version of SALSA does not enable agents to access the native libraries of Wid-
ows CE, therefore a sub-set of the SALSA API was implemented in C#, called
micro-SALSA (mSALSA), which enables developers to create the components
of the agents and use the SALSA communication protocol. Developers have
the option of programming in any of these languages and take advantage of
the programming facilities offered by each of them. The complete set of classes
provided by SALSA are depicted in Figure 6.3 and explained in the following
sections.

Agent perception

Two types of perception were identified for SALSA agents: active and passive.
In active perception, an agent decides when to request or gather information
from another agent or entity in the environment such as a sensor. In passive
perception, the agent receives data without requesting it. The Passive Percep-
tion was implemented based on the Observer design pattern [35]. This type
of agent perception starts when a user, device or other agent sends data to an
agent through the Agent Broker. In this case an agent has the role of observing
the environment and acting according to the information received. Figure 6.4
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Fig. 6.4. Passive Perception of a SALSA Agent

shows the main classes for implementing this type of perception. The Pas-
siveEntityToPerceive class represents the subject to be observed by the agent;
and the PassivePerception class captures the information sent by the subject.
For the active perception, an agent decides on its own when to sense an envi-
ronment entity, and requests this information from another agent, or directly
from a sensor’s entity. This type of perception implements the Adapter design
pattern. Figure 6.5 shows that the classes for implementing active percep-
tion are ActiveEntityToPerceive, which has the role of an Adaptee according
to the Adapter design pattern. This class represents the environment entity
that obtains data from a sensor or device. An agent decides when to perceive
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Fig. 6.5. Active Perception of SALSA agents

information by invoking the method passivePerception.perceive() from the
Action object. Then ActivePerception, which has the role of Adapter, invokes
the ActiveEntityToPerceive object, that is the interface to the sensor, in order
to get data from a sensor or device (activeEntityToPerceive.getInput()).

When any of the perception components receive information, a SALSA
event is generated indicating the type of information to the reasoning com-
ponent, as described in Table 6.1. In addition to this, a SALSA event also
contains the perceived data, which can be an XML message received through
the Agent Broker, or an object containing the data that was read directly from
a sensor’s interface (i.e, ArriveSensorDataEvent). Table 6.1 shows in column
2 the events produced when information is perceived by an agent. The third
column explains the type of information that was received and how the event
may be produced. The only active perception supported by SALSA, is when
the agent perceives data directly from a sensor or device. The passive per-
ception of a SALSA agent, in which data is received through its IM client,
is due to another agent that sends information by using the communication
methods of the SALSA API which are presented in column 1.

Agent reasoning

The information perceived by an agent is subtracted from the event by the
reasoning component in order to be analyzed. The programmer, based on
the logic of the agent, implements this component by using an appropriate
reasoning algorithm, such as production rules, a neural network or case base
reasoning. The Reasoning class contains the abstract method think() that
should be implemented by the developer. Its implementation depends on the
complexity of the agent’s behavior. The reasoning component can use the
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Table 6.1. Description of the SALSA events generated when information is
perceived

1. Method used by an
agent for sending
information

2. Event generated when
an agent receives
information

3. Description of the
event

sendRequest() ArriveRequestEvent A request for information
arrives from an agent

sendResponse() ArriveResponseEvent Information that was pre-
viously requested by this
agent arrives

sendCommandRequest() ArriveCommandEvent An agent is requesting to
execute a functionality pro-
vided by this agent, such as
a service

sendNotificationInfo() ArriveNotification

InfoEvent

Information that was not
previously requested ar-
rives

sendPresence() ArrivePresenceEvent A presence message arrives
indicating a change of state
of others agents and users

sendDataSensor() ArriveSensorData

Event

Data perceived from a sen-
sor arrives. It can be an
XML message or a Sen-
sorData object wrapping
information perceived di-
rectly from a sensor.

sendMessage() ArriveSimpleMessage

Event

A non-SALSA message
which is defined by the
programmer arrives.

facilities of SALSA to derive context information from the primary context
information perceived by an agent. For this, SALSA provides the class De-
riveContext which uses an XSL file as a filter that contains a set of rules
to deduce secondary context from the data perceived by the agent. The set
of rules of the XSL filter should be defined by the developer. Using these
SALSA facilities, developers need only indicate, to the DeriveContext class,
the primary contextual variables and the name of the XSL file. Thus, when
an event is passed to the reasoning component, its derive context component
is in charge of: detecting the type of event, extracting the data contained in
the event, and verifying if the data is an expected contextual variable in order
to be analyzed by the filter to check if some of the conditions have been met.
Then, the derive context component returns an XML message to the agent’s
reasoning in order to indicate the inferred situation.
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Agent action

To implement the action component, the framework provides the Action class
with an abstract method that a developer should overwrite to specify how
the agent must react. From, the action component, the agent can invoke the
communication methods provided by SALSA in order to collaborate with
other agents. These methods are presented in column 1 of Table 6.1. The
acting component also enables the agent mobility. It was implemented based
on the pattern Rc2s (request a component to a server), which enables an
agent to update its reasoning component by getting a copy of the reasoning
algorithm from other agent residing on a server [36].

Agent communication

The messages sent among agents through the Agent Broker, are encoded us-
ing XML (eXtensible Markup Language). The aim of the SALSA development
framework is to use a friendly agent language taking advantage of XML to
encode any kind of message. For defining the types of messages that can be
communicated among SALSA agents, the Extensible Messaging and Presence
Protocol (XMPP) of the IM server (www.jabber.org) was extended. SALSA
provides developers with an API that facilitates the composing, sending, and
receiving of messages between agents. However, the code for every content
message type of the communicative act is left to the programmer, because it
depends on the intent of the message generated by each agent in the ubiq-
uitous environment. The SALSA API for implementing the communication
among agents consists of several methods that form the message that will be
communicated. The SALSA communication protocol enables agents to collab-
orate to reach a common goal, such as adapting and personalizing information
for a user. This collaboration may involve one or more of the following actions:

– Negotiating for a service. In this case, an agent (A) requires a service from
another agent (B). For instance, if agent A requests agent B to execute a
service or a specific action with a sendCommandRequest(), agent B could
respond by notifying agent A that the action was successfully executed
or notifying that it can provide such a service by using the sendNotifica-
tionInfo(); or with the method sendResponseInfo() agent B could provide
information returned by the requested service.

– Requesting information. An agent (A) requires information from another
agent (B). As illustrated in Figure 6.6, agent A request information by
using sendRequest(); and agent B can respond by sending the requested
information to agent A with a sendResponse(); or by sending a notification
that it can not provide this information through a sendNotificationInfo().

– Notifying information perceived from a sensor or device. Agents that act as
proxies to devices or sensors, get information from them and may require
communicating with other agents in the environment to be processed. The
information can be communicated by using the sendDataSensor() method.
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– Notifying the presence and status of agents. An agent notifies a change of
presence or status to other agents subscribed to its presence. This enables
agents to be aware of the available services of the ubicomp environment.
Agents also received the presence of the users in the ubicomp environment.

Agent initialization and registration

SALSA provides a set of services that allow programmers to register and look
for new agents added to the ubicomp environment in an Agent Directory.
The implementation of the Agent Directory consists of a server that imple-
ments the Lightweight Directory Access Protocol (LDAP); and a SALSA agent
(AD-proxy agent) acting as proxy to the Agent Directory.

The LDAP information model is based on entries. An entry is a collection
of attributes that has a globally-unique Distinguished Name (DN). The DN
is used to refer to the entry unambiguously. Each of the entry’s attributes has
a type and one or more values. The types are typically mnemonic strings, like
“cn” for common name. As illustrated in Figure 6.7 entries are arranged in
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a hierarchical tree-like structure. For the SALSA Agent Directory, it reflects
the organizational boundaries of the hospital setting, represented by the top
of the tree. Below it are entries representing other areas of the hospital (i.e.
Emergency). In the next level are entries representing organizational units,
which are the users (i.e. physicians, nurses) and services/devices (i.e. public
display) of the ubicomp environment. In the last level are the agents that
represent users or services/devices; for instance, PD-a is an agent representing
the public display. And finally the leaves of the tree represent the attributes
of these agents (i.e. agent location, device or user that it represents).

The SALSA API provides the facilities to register agents in the LDAP
directory and for making specialized searches of agents. Thus, agents can
communicate with a proxy to the Agent Directory (AD-proxy agent) by using
the communication protocol provided by SALSA.

The following Section illustrates how SALSA facilitates the development
of a ubicomp system for a hospital environment.

6.7 Creation of a Ubicomp System for a Hospital Setting

With SALSA we built the context-aware hospital information system (CHIS)
with the aim to support the activities of the hospital staff [31, 32]. CHIS is a
handheld-based system that enables users to locate relevant documents, such
as patient’s records and laboratory results; locate patients and colleagues; and
locate and track the availability of devices such as medical equipment, and
other computational resources such as public displays. The following scenario
illustrates how we envisioned that CHIS will enable hospital staff to access
medical information through public displays:

While Dr. Garcia is checking the patient in bed 234, his PDA alerts him
that a new message has arrived. His handheld displays a hospital floor map
indicating to him that the X-ray results of patient in bed 225 are available.
Before Dr. Garcia visits this patient, he approaches the nearest public display
that detects the physician’s presence and provides him with a personalized view
of the Hospital Information System. In particular, it shows a personalized
floor map highlighting recent additions to clinical records of patients he is in
charge of, messages addressed to him, and the services most relevant to his
current work activities. Dr. Garcia selects the message on bed 225, which opens
windows displaying the patient’s medical record, the X-ray image recently taken
and the hospital’s medical guide related with this case. While Dr. Garcia is
analyzing the X-ray image, he notices in the map, that a resident physician
is nearby and calls him up to show him this interesting clinical case. The
resident physician notices that this is indeed a special case and decides to
make a short note on his handheld computer by linking both the X-ray image
and the medical guide. He can later on use these links to study the case in
more detail or discuss it with other colleagues from any computer within the
hospital.
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6.7.1 Architecture of CHIS

Figure 6.8 presents the design of the system architecture illustrating the main
nodes in which the system’s components are executing. These components are
SALSA agents communicating through the Agent Broker (an IM server), as
specified by the SALSA communication infrastructure.

The Location-aware client resides in the handheld computer which noti-
fies the user’s location to other users and agents, provides mobile users with
information relevant to their location, and communicates with other mem-
bers of the hospital staff. Its interface is based on the IM paradigm, through
which users are notified of the availability of other users and their location.
The location-estimation agent (LE-a) also resides in the handheld with the
purpose of obtaining the user’s position (X,Y coordinates), and informs it to
the location-aware client. By using the mobility attribute of agents, the LE-a
on the PDA can update its reasoning component by getting the reasoning
component from the server on which resides the LE-a that holds a trained
neural network for a specific building’s floor.

The Agent Directory provides information of the agents available in the
environment. For instance, the LE-a can know in which server the agent con-
taining the trained neural network resides by communicating with the agent
acting as proxy to the Agent Directory (AD-a). The hospital information
system agent (HIS-a) acts as proxy of the HIS that manages and stores the
patient’s clinical records and other data relevant to the hospital. This agent
provides access to information contained in the HIS, and monitors its changes.
The Context-aware agent (Ca-a) is the system’s component that sends the
messages that depend on contextual variables for their delivery, such as the
recipients, location and role. In the display server node, several agents reside

Fig. 6.8. Architecture of the context-aware hospital information system
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offering several services for the medical personnel. These services were im-
plemented as SALSA agents. Thus, the responsibility of the Public Display
agent (PD-a) is to act as a proxy to a public display available at the hospital.
This agent enables users to access the public display and have control over the
applications displayed. The responsibility of presenting a personalized map of
the hospital floor was delegated to the map agent (Map-a). It displays a map
of the hospital floor that indicates the location of the hospital staff, available
services, and highlights the beds of patients assigned to the current physician
using the display. The Map-a also shows messages addressed to the user, i.e.
messages related to his patients that may indicates additions to their electronic
records. Finally, the knowledge management agent (KM-a) is responsible for
displaying the hospital medical guide and previous cases relevant to the case
being consulted on the public display.

6.7.2 Implementation of CHIS

This section revisits the scenario presented in Section 6.7 to explain the
functionality and implementation of the context-aware hospital information
system. Figure 6.9 depicts a sequence diagram illustrating how the au-
tonomous agents of CHIS interact by using the SALSA communication pro-
tocol (the SALSA methods are in bold font style on the diagram). In this
scenario, the HI System-a (HIS-a) perceives a change on the hospital infor-
mation system and notifies it to Dr. Garcia by sending a message (sendNo-
tificationInfo) indicating that the X-ray results of patient on bed 225 are
available. When the location-aware client receives this message, it will act
by updating its instant messaging interface. Dr. Garcia approaches the near-

Fig. 6.9. Implementation of CHIS using the SALSA development framework
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est public display when finished with her current patient and before visiting
patient 225. The doctor’s location, which is constantly being tracked by the
location-estimation agent on her PDA, is notified (sendPresence) to all users
and agents in the environment by the Location-aware client. The Public Dis-
play agent (PD-a) acts by displaying the user’s photograph, indicating with
this that the user has been logged into the system. Then, the PD-a requests
(sendCommandRequest) that the Map agent (Map-a) personalize the map
application for Dr. Garcia. Finally, the PD-a also requests (sendRequest) the
contextual messages recently received by the location-aware client, and dis-
play them on the floor map. Thus, the physician can continue accessing the
records of his patients and other medical information by interacting with the
public display.

Implementation of the Location-estimation Agent of CHIS

To illustrate how an autonomous agent is implemented with SALSA, this
section describes the functionality and implementation of the Location-
estimation agent of CHIS [37]. Figure 6.10 presents a sequence diagram with
a detailed description of the interactions carried out to estimate the user’s
location. Thus, when the physician Dr. Diaz visits his patient, the Location-
estimation agent (LE-a) perceives that the Signal to Noise Ratio (SNR) to the
access points change (perceive(SNR)). Then, the LE-a estimates the user’s
location based on its trained neural network (think(estimate user’s posi-
tion)). Thus, the agent obtains the user’s position (X,Y coordinates) which is
communicated to the location aware client (sendDataSensor()). The location
aware client translates the X,Y coordinates to an ID of the place in which the

Location
Aware ClientUser

send Presence (state, location)

location: think ()

Agent Broker

visit the patient

Location-
estimation Agent

perceive (SNR)

SNR changes

Access Points

think (estimateuser’s position)

send Data Sensor (user  X,Y position)

act (update interface)

Fig. 6.10. Location-estimation agent interacting with the agents of CHIS
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user is located (i.e. bed number, room). Thus, the reasoning component maps
the user’s X,Y coordinates to an area identifier (location: think()) and finally,
its acting component communicates the user’s location to the rest of the
system’s agents and users (sendPresence(state,location)). This functionality
of LE-a is wrapped in its components for perceiving, reasoning and acting
which were implemented by extending the SALSA classes as explained in the
following sections:

Perception Component

The agent’s perception module receives the SNR (Signal to Noise Ratio)
through the PassiveEntityToPerceive object, which represents the memory
of the wireless network (WLAN) card. The developer implemented this inter-
face to read data from the WLAN card, wrap the data in an Input object,
and then notify it to the PassivePerception component of the LE-a. When the
SNR value is changed, the PassivePerception object generates an arriveSen-
sorDataEvent which is passed to the reasoning component.

Figure 6.11a) shows the pseudo code for implementing the perception com-
ponent of the LE-a using the SALSA classes. Element (1) of the LE-a is the
entity for perceiving information. This is the WirelessCardInterface that con-
tains the code for reading the SNR from the wireless LAN card. This class has
an embedded a PassiveEntityToPerceive object (pp) which has a reference to
the LE-a. Thus, when a new SNR is read, it is passed to the passive percep-
tion component (2) by invoking the method pp.notifying(). Thus, developers
need to implement just the interface that reads the data from a device/sensor
and to use the SALSA classes to connect the interface with the perception
component, which is automatically activated when an instance of the Agent
class is created.

Fig. 6.11. Code for implementing the entity for perceiving information from the
WLAN card. b) Code of the reasoning component
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Reasoning component

As illustrated in Figure 6.11b), the ReasoningLE class (3) is specialized from
the Reasoning abstract class of SALSA. Its think method was overwritten to
process the perceived input and then, to indicate to the agent what action
should be executed. If the received SALSA event was of type arriveSensor-
DataEvent, it indicates that a new estimation of the user’s location has to be
calculated. Then, the estimatesLocation() method is invoked, which imple-
ments the trained Neural Network. Providing an abstract class to implement
the reasoning component enables programmers to easily update or replace its
logic with another algorithm that may be more efficient.

Action component

When a new user’s location is estimated, the reasoning component decides
to communicate it to the location-aware client which is also executing in the
handheld computer. To do this, the execute() method of the abstract class
Action was overwritten to invoke the SALSA method sendDataSensor().

Creation of the agent

Finally, once the Perception, Reasoning, and Action components of the agent
were implemented, the main body of the agent had to be created. This was
done by extending the SALSA Agent class. Thus, when an instance of this
agent is created, its components are activated and the life cycle of the agent
begins.

6.8 Conclusions

Ubiquitous computing (ubicomp) enables us to fulfill the medical environ-
ment needs. A ubiquitous computing environment is characterized by the
distribution, reactivity, collaboration and adaptation of their artifacts, thus
sharing these characteristics with autonomous agents. This provided us with
the motivation to explore the use of agents as an abstraction tool for the de-
sign and implementation of ubiquitous computing systems for hospitals. We
used autonomous agents as a technique to model and design ubiquitous com-
puting systems for the healthcare domain since they provide a natural and
elegant means to manage the system’s complexities and hospital characteris-
tics. We identified the design issues of autonomous agents for ubicomp that
were the foundation for creating the SALSA middleware that provides the
mechanisms to facilitate the development of ubicomp systems for healthcare
environments. Thus, we have presented how the SALSA middleware facilitates
the implementation of ubiquitous computing systems for hospital settings in
which autonomous agents are the proactive components that enable users to
seamlessly and opportunistically interact with the users, devices and services
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of the environment. To illustrate the facilities provided by SALSA we pre-
sented the Context-aware Hospital Information System (CHIS) whose main
components are agents that respond autonomously in accordance with the
context surrounding the activities performed at the hospital.

The communication channel among agents and users is an Agent Broker
(its implementation is an Instant Messaging Server) which is responsible for
coordinating the communication among agents. As the architecture of SALSA
is based on the instant messaging (IM) paradigm, it allows a standardized form
of interaction among users and services represented by autonomous agents. In
the same form, users are aware of the presence of other users, they are also
aware of the presence and state of the environment’s services and devices. The
scalability of a system implemented with SALSA is enabled by the IM server
used as an Agent Broker, since it scales to a high volume of streaming XML
connections serving hundreds of thousands of simultaneous users and agents.
By using SALSA, developers may easily integrate any reasoning mechanism;
or change the current reasoning algorithm for other, without modifying the
code of the rest of the agent’s components. For instance, we may change the
neural network of the Location-estimation agent of CHIS by a nearest neigh-
bor algorithm without altering the perception and acting component. With
SALSA, different types of agents can be created, such as personal agents and
service agents that may have attributes of autonomy, mobility, reactivity and
collaboration. SALSA agents have well-defined interfaces to interact with their
environment, and mechanisms to encapsulate its implementation. For this rea-
son, these agents may be considered as units of independent deployment or
components, which may be re-used or integrated to any SALSA ubiquitous
system. For instance, the location-estimation agent may be integrated to a
different environment than a hospital by just training its neural network for
this new physical environment. To implement autonomous agents as decision
makers, the SALSA middleware provides a library of classes for implementing
and handling the execution model of agents, which consists of the compo-
nents for perceiving information, reasoning, and acting. Due to the fact that
the ubicomp environment is highly dynamic, an agent can perceive context
information at unpredictable times from other agents, from the devices or ser-
vices, or from the users. Agents can perceive information through the Agent
Broker or directly from devices or sensors. The programmer, based on the
logic of the agent, implements the reasoning component by using any rea-
soning algorithm. SALSA provides abstractions to enable developers to easily
modify or update the agent’s reasoning requiring little or no modifications to
the other agent’s components. The action component implements the action
plan to follow based on the agent’s reasoning. It also includes subcomponents
that allow the agent’s communication and mobility in order to update its rea-
soning component, and to derive context information based on information
perceived by the agent. The actions of autonomous agents may require that
they communicate with other agents and users. The SALSA communication
protocol allows agents to negotiate services with other agents, request them
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to execute an action and communicate with users in order to notify or present
information to them. Finally, SALSA enables the naming and registration
of agents in an Agent Directory (AD). This is a service which is accessible
through an agent acting as a proxy to the AD.

SALSA is an agent middleware to facilitate the implementation and evo-
lution of ubiquitous computing systems in which autonomous agents are the
proactive components that enable users to seamlessly and opportunistically
interact with the healthcare environment.
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Summary. Breast cancer is one of the main causes of death in women and early
diagnosis is an important means to reduce the mortality rate. The presence of mi-
crocalcification clusters are primary indicators of early stages of malignant types of
breast cancer and its detection is important to prevent the disease. This chapter
presents a procedure for the classification of microcalcification clusters in mammo-
grams using sequential difference of gaussian filters (DoG) and three evolutionary
artificial neural networks (EANNs) compared against a feedforward artificial neural
network (ANN) trained with backpropagation. It is shown that the use of genetic
algorithms (GAs) for finding the optimal weight set for an ANN, finding an adequate
initial weight set before starting a backpropagation training algorithm and designing
its architecture and tuning its parameters, results mainly in improvements in over-
all accuracy, sensitivity and specificity of an ANN, compared with other networks
trained with simple backpropagation.

7.1 Introduction

Cancer is a term used to refer to a group of diseases where a group of cells
of the body grow, change and multiply out of control. Usually, each type of
cancer is named after the body part where it originated. When this erratic
and uncontrolled proliferation of cells occurs in the breast tissues, it is known
as breast cancer.

Breast cancer is the fifth cause of death caused by cancer worldwide, after
lung cancer, stomach cancer, liver cancer and colon cancer. During 2005,
breast cancer caused approximately 502,000 deaths in the world. Among
women, breast cancer is the type of cancer that causes the largest num-
ber or deaths worldwide, followed by lung, stomach, colorectal and cervical
cancers [71].

The highest survival rates for breast cancer occur when it is detected in its
earlier stages, when it usually appears in mammograms as very small specks
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of calcium known as microcalcifications. This survival rate decreases as cancer
progresses undetected forming a mass or lump, called a tumor (extra tissue
formed by rapidly dividing cells). Tumors can be either malignant (cancerous)
or benign (non-cancerous). Breast malignant tumors penetrate and destroy
healthy breast tissues. Eventually, a group of cells from a tumor may break
away and spread to other parts of the body. These groups of cells spreading
to another region are called metastases. Survival rates when breast cancer is
discovered and begins to be treated in these latest stages are low.

In this chapter, it is presented a procedure for detecting microcalcifica-
tion clusters in mammograms and classifying them into two classes: benign
(usually presence of tiny benign cysts) or malignant (possible presence of early
breast cancer). This procedure is mainly based in difference of gaussian (DoG)
filters for the detection of suspicious objects in a mammogram, and artificial
intelligence techniques like genetic algorithms (GA) and artificial neural net-
works (ANN) for the classification of such objects into microcalcifications or
non-microcalcifications, and later for classifying the detected microcalcifica-
tion clusters into benign or malignant.

This chapter is organized as follows. In this section, an overview of breast
cancer, artificial intelligence techniques and previous work on detection and
classification of microcalcifications are presented. In the second section, the
proposed procedure along with its theoretical framework are discussed. The
third section deals with the experiments and the main results of this work.
Finally, in the fourth section, the conclusions are presented.

7.1.1 Breast Cancer

The breast is composed of two main types of tissues: glandular tissues and
stromal (supporting) tissues. Glandular tissues include the lobules (milk-
producing glands) and the ducts (the milk passages). Stromal tissues con-
sist of all the fatty and fibrous connective tissues of the breast. Additionally,
the breast is also made up of lymphatic tissue-immune system tissue whose
function is to remove cellular fluids and waste. In Figure 7.1, the stages of
breast cancer are shown. Initially, cancer cells are confined to the part of the
breast where it originated, and in these stages, it is referred as non-invasive
or in situ. Ductal carcinoma in situ (DCIS), shown in Figure 7.1(b), is the
most common form of non-invasive breast cancer (90%). Lobular carcinoma
in situ (LCIS) is less common and considered a marker for increased breast
cancer risk. In time, cancer cells may break from the duct or lobular walls
and invade the surrounding fatty and connective tissues of the breast. When
this happens, breast cancer is referred as invasive (not necessarily metastasic),
as shown in Figure 7.1(c). The previously mentioned types of breast cancer
are now referred as infiltrating ductal carcinoma (IDC) and infiltrating lobu-
lar carcinoma (ILC) respectively. Finally, at some point they invade through
the basement membrane of the duct or lobule and ultimately metastasize to
distant organs, as presented in Figure 7.1(d).
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(a)

(c) (d)

(b)

Fig. 7.1. Stages of Breast Cancer [8] (source: http://carcin.oxfordjournals.org/)

In order to assess the size and location of a patient’s cancer, physicians
use a process called staging. Identifying the cancer stage is one of the most
important factors in selecting treatment options. There are several tests that
may be performed to help to determine the stage of the breast cancer, like
clinical breast exams, biopsy, and some imaging tests such as a chest x-ray,
mammogram, bone scan, CT scan, and MRI scan. A woman’s overall health
is evaluated using blood tests, which are also useful to detect if the cancer has
metastasized to other parts of the body.

Breast cancer is staged using the TNM system, which is included in the
American Joint Committee on Cancer (AJCC) Staging Manual [23]. These
stages are:

– Stage 0 - Carcinoma in situ.
– Stage I - Tumor (T) does not involve axillary lymph nodes (N).
– Stage IIA - T 2-5 cm, N negative, or T < 2 cm and N positive.
– Stage IIB T > 5 cm, N negative, or T 2-5 cm and N positive (<4 axillary

nodes).
– Stage IIIA T > 5 cm, N positive, or T 2-5 cm with 4 or more axillary

nodes
– Stage IIIB T has penetrated chest wall or skin, and may have spread to

<10 axillary N
– Stage IIIC T has >10 axillary N, 1 or more supraclavicular or infraclav-

icular N, or internal mammary N.
– Stage IV Distant metastasis (M)
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Table 7.1. Five-year Relative Survival Rate for Breast Cancer

Stage 5-year Relative
Survival Rate

0 100%
I 100%
IIA 92%
IIB 81%
IIIA 67%
IIIB 54%
IV 20%

The five-year survival rate for breast cancer is calculated based on aver-
ages. Each patient’s individual tumor characteristics, state of health, genetic
background, etc. will impact her survival. In addition, levels of stress, immune
function, will to live, and other unmeasurable factors also play a significant
role in a patient’s survival. The survival rates for each stage of breast cancer
are shown in Table 7.1 [1].

It can be deduced that the key to surviving breast cancer is early detection
and treatment. In Stage 0, the cancer is “in situ” (“in place”), it is contained
and has not spread beyond the ducts or lobules where it originated. As shown
in Table 7.1, when breast cancer is detected and treated since stage 0, the five-
year survival rate is close to 100%. The early detection of breast cancer helps
reduce the need for therapeutic treatment and minimizes pain and suffering,
allowing women to continue leading happy, productive lives.

Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS)
are the two types of breast cancer in stage 0. DCIS is the most frequent of
the stage 0 breast cancers, accounting for 80% of the cases, against 20% of
the LCIS. DCIS may be detected on mammogram as tiny specks of calcium
(known as microcalcifications) 80% of the time. Less commonly DCIS can
present itself as a mass with calcifications (15% of the time); and even less
likely as a mass without calcifications (less than 5% of the time).

7.1.2 Mammography

Mammography is a special type of x-ray imaging used to create detailed
images of the breast. Mammography uses low dose x-ray; high contrast, high-
resolution film; and an x-ray system designed specifically for imaging the
breasts. Successful treatment of breast cancer depends on early diagnosis.
Mammography plays a major role in early detection of breast cancers. Ac-
cording to the US Food and Drug Administration (FDA), mammography can
find 85 to 90 percent of breast cancers in women over 50 and can discover a
lump up to two years before it can be felt. The benefits of mammography far
outweigh the risks and inconvenience.
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Mammography can show changes in the breast well before a woman or
her physician can feel them. Once a lump is discovered, mammography can
be a key in evaluating the lump to determine if it is cancerous or not. If
a breast abnormality is found or confirmed with mammography, additional
breast imaging tests such as ultrasound (sonography) or a breast biopsy may
be performed. A biopsy involves taking a sample(s) of breast tissue and ex-
amining it under a microscope to determine whether it contains cancer cells.
Many times, mammography or ultrasound is used to help the radiologist or
surgeon guide the needle to the correct area in the breast during biopsy.

There are two types of mammography exams, screening and diagnostic:

– Screening mammography is an x-ray examination of the breasts in a
woman who is asymptomatic (has no complaints or symptoms of breast
cancer). The goal of screening mammography is to detect cancer when it
is still too small to be felt by a woman or her physician. Early detection
of small breast cancers by screening mammography greatly improves a
woman’s chances for successful treatment. Screening mammography is rec-
ommended every one to two years for women once they reach 40 years of
age and every year once they reach 50 years of age. In some instances,
physicians may recommend beginning screening mammography before
age 40 (i.e. if the woman has a strong family history of breast cancer).
Screening mammography is available at a number of clinics and locations.
For screening mammography each breast is imaged separately, typically
from above (cranial-caudal view, CC) and from an oblique or angled view
(mediolateral-oblique, MLO).

– Diagnostic mammography is an x-ray examination of the breast in a
woman who either has a breast complaint (for example, a breast lump
or nipple discharge is found during self-exam) or has had an abnormality
found during screening mammography. Diagnostic mammography is more
involved and time-consuming than screening mammography and is used
to determine exact size and location of breast abnormalities and to im-
age the surrounding tissue and lymph nodes. Typically, several additional
views of the breast are imaged and interpreted during diagnostic mam-
mography, including views from each side (lateromedial, LM: from the
outside towards the center and mediolateral view, ML: from the center of
the chest out), exaggerated cranial-caudal, magnification views, spot com-
pression, and others. Thus, diagnostic mammography is more expensive
than screening mammography. Women with breast implants or a personal
history of breast cancer will usually require the additional views used in
diagnostic mammography.

Mammography is currently the only exam approved by the U.S. Food and
Drug Administration (FDA) to screen for breast cancer in women who do
not show any signs or symptoms of the disease. Mammography can detected
approximately 85% of breast cancers. If a screening mammography indicates
an abnormality, women will most likely be recommended for further breast
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imaging (i.e., with spot view mammography, ultrasound or other imaging
tests). If further imaging confirms or reveals an abnormality, the woman may
be referred for biopsy to determine whether she has breast cancer.

However, while screening mammography can detect most breast cancers,
it can miss up to 15% of cancers. These cancers may not be detected on a
mammogram film, because of [20]:

– Low differentiation between the appearance of the cancerous tissue com-
pared against the normal parenchymal tissue, specially when the predom-
inant tissue in the breast is very dense.

– Varied morphology of the findings, many of them not related with the
cancer.

– Similarities between the morphologies of the findings.
– Possible deficiencies in the mammogram acquisition process.
– Visual fatigue of the radiologist.

The sensitivity may be improved having each mammogram checked by two
or more radiologists. It has been proved that double diagnosis improves sensi-
tivity in at most 15% [12,16]. While one radiologist could fail to detect cancer
in a small fraction of cases, another one could detect them. Nevertheless, dou-
ble reading makes the process inefficient from the practical viewpoint, because
the small number of specialists available at a given medical institution and
their reduced individual productivity. A viable alternative is replacing one of
the radiologists by a computer system, giving a second opinion [2, 67].

7.1.3 Automatic Detection and Classification of Microcalcifications

Microcalcifications are tiny specks of mineral deposits (calcium), which can be
scattered through the mammary gland, or can appear forming clusters. When
a specialist detects microcalcifications in a mammogram, he or she observes
some features of the particles themselves, and the patterns they present, in
order to decide if the specks are of concern and further investigatory techniques
or more regular screening are needed. A computer system can be used as a
support for the specialists, helping them to make better decisions.

Several authors have tried to solve the problem of automatic detection of
microcalcifications in digital mammograms [6,7,11,13,37,38,42,45–47,69,73].
This is not an easy problem to solve, because there are many difficulties caused
mainly by the low contrast between microcalcifications and its surroundings,
specially when the normal tissue is very dense. Additionally, microcalcifica-
tions may be very small, specially in their first stages of formation, making
the observation very difficult.

Other authors have dealt with the problem of detecting microcalcification
clusters [21, 51, 54, 61, 76]. In this case, the objective is to identify individual
microcalcifications first, in order to use a clustering algorithm for grouping
those microcalcifications.
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For the detection of possible microcalcifications in mammograms, several
methods have been used, like fractal models [7, 45], adaptive algorithms [68],
mathematical morphology [6, 77], image differences [50, 59], artificial neural
networks [76], laplacian of gaussians [19], support vector machines [5, 17],
etc. For the classification of microcalcifications, methods like artificial neural
networks [56], radial basis function (RBF) networks [34], kernel bayer classi-
fiers [10], support vector machines [5], etc. have been applied.

In the following subsections, we describe the methods we use in more
detail:

Difference of Gaussians (DoG) Filters

The method selected for this work for the detection of potential microcalcifica-
tions was the difference of gaussian filters (DoG). A gaussian filter is obtained
from a gaussian distribution. When it is applied to an image, it eliminates high
frequency noise, acting as a smoothing filter. A 2-D Gaussian distribution is
defined by Equation 7.1:

G(x, y) = ke(x2+y2)/2σ2
(7.1)

where k is the height of the function and σ is the standard deviation.
A DoG filter is a band-pass filter, constructed from two simple gaussian

filters. These two smoothing filters must have different variances. By subtract-
ing two images obtained by the application of separate gaussian filters, DoG
image containing only a desired range of frequencies is obtained. The DoG is
obtained by subtracting two gaussian function, as shown in Equation 7.2.

DoG(x, y) = k1e
(x2+y2)/2σ2

1 − k2e
(x2+y2)/2σ2

2 (7.2)

The parameters of a DoG must be adapted in order to enhance its de-
tection performance. In other words, the detection capacity of a DoG filter
depends of an adequate choice of the standard deviations of each gaussian
filter that constitute it. When a DoG filter is applied to an image, a set of re-
gions containing local maxima and minima is obtained. A binarization process
allows retrieving only the local maxima, and a segmentation process extracts
the regions of interest. DoG filters are adequate for the noise-invariant and
size-specific detection of spots, resulting in a DoG image. This DoG image
represents the microcalcifications if a thresholding operation is applied to it.
We developed a procedure that applies a sequence of Difference of Gaussian
Filters, in order to maximize the amount of detected probable microcalcifica-
tions (signals) in the mammogram, which are later classified in order to detect
if they are real microcalcifications or not. Finally, microcalcification clusters
are identified and also classified into malignant and benign.

DoG filters has been used in [14,48,52,58].
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Artificial Neural Networks

An artificial neural network (ANN), often just called simply a “neural
network” (NN), is a massively parallel distributed processor made up of
simple processing units, which has a natural propensity for storing experien-
tial knowledge and making it available for use [28]. The original inspiration
for the technique was from examination of the central nervous system and the
neurons (and their axons, dendrites and synapses) which constitute one of
its most significant information processing elements. It resembles the human
brain in two respects:

– Knowledge is acquired through a learning process.
– Synaptic weights are used to store the knowledge.

An ANN has several benefits:

– Nonlinearity : A neural network made up of nonlinear neurons has a nat-
ural ability to realize (approximate) nonlinear inputoutput functions.

– Universal approximation: A neural network can approximate input-output
functions (both static and dynamic) to any desired degree of accuracy,
given an adequate computational complexity.

– Adaptivity : With the synaptic weights of a neural network being ad-
justable, the network can adapt to its operating environment and track
statistical variations.

– Fault tolerance: A neural network has the potential to be fault-tolerant,
or capable of robust performance, in the sense its performance degrades
gradually under adverse operating conditions.

– Neurobiological analogy : Neurobiologists look to neural networks as a re-
search tool for the interpretation of neurobiological phenomena. By the
same token, engineers look to the human brain for new ideas to solve
difficult problems.

According to its architecture, ANNs can be classified in:

– Single-layer feedforward networks, which consist of an input layer of source
nodes and a single layer of processing units (neurons).

– Multi-layer feedforward networks, which contain one or more layers of
hidden neurons that are inaccessible from both the input and output sides
of the network. In a feedforward network, regardless of its type, signals
propagate through the network in a forward direction only.

– Recurrent networks, Recurrent networks, which distinguish themselves
from feedforward networks in that they contain one or more feedback
loops that can be of a local or global kind. The application of feedback
provides the basis for short-term memory, and provides a powerful basis
for the design of nonlinear dynamical models.
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Fig. 7.2. Architecture of a Multi-layer Feedforward Neural Network

In Figure 7.2, the architecture of a multi-layer feedforward neural net-
work (which will be referred as ANN for the remainder of this chapter, for
reasons of simplicity) is shown. ANNs are considered to be very powerful clas-
sifiers compared to classical algorithms such as the nearest neighbour method.
The algorithms used in neural network applications are capable of finding a
good classifier based on a limited and in general a small number of training
examples. This capability, also referred to as generalization, is of interest from
a pattern recognition point of view since a large set of parameters is estimated
using a relatively small data set.

Artificial neural networks (ANNs) have been successfully used for
classification purposes in medical applications [55, 57, 64], including the clas-
sification of microcalcifications in digital mammograms [4, 7, 26, 39, 54, 62, 70,
72,78]. Unfortunately, for an ANN to be successful in a particular domain, its
architecture, training algorithm and the domain variables selected as inputs
must be adequately chosen. Designing an ANN architecture is a trial-and-
error process; several parameters must be tuned according to the training
data when a training algorithm is chosen and, finally, a classification problem
could involve too many variables (features), most of them not relevant at all
for the classification process itself.

Genetic Algorithms

A Genetic algorithm (GA) is a search algorithm based on the mechanics of nat-
ural selection and natural genetics [22]. GAs were developed by John Holland
and his colleagues at the university of Michigan in the early 1970s, and became
more popular particularly with the publication of his 1975 book [33]. GAs are
categorized as global search heuristics, and are a particular class of evolution-
ary algorithms (also known as evolutionary computation) that use techniques
inspired by evolutionary biology such as inheritance, mutation, selection, and
crossover (also called recombination).
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GAs are implemented as a computer simulation in which a population of
abstract representations (called chromosomes, the genotype or the genome)
of candidate solutions (called individuals, creatures, or phenotypes) to an op-
timization problem evolves toward better solutions. Traditionally, solutions
are represented in binary as strings of 0s and 1s, but other encodings are also
possible. The evolution usually starts from a population of randomly gener-
ated individuals and happens in generations. In each generation, the fitness
of every individual in the population is evaluated, multiple individuals are
stochastically selected from the current population (based on their fitness),
and modified (recombined and possibly randomly mutated) to form a new
population. The new population is then used in the next iteration of the algo-
rithm. Commonly, the algorithm terminates when either a maximum number
of generations has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated due to a maxi-
mum number of generations, a satisfactory solution may or may not have been
reached. GAs have been applied successfully in many field, like biogenetics,
computer science, engineering, economics, chemistry, manufacturing, mathe-
matics, physics, etc.

A typical GA requires two things to be defined:

– a genetic representation of the solution domain,
– a fitness function to evaluate the solution domain.

A solution is commonly represented as an array of bits. Arrays of other
types (integer, real numbers, etc.) and structures can be used in essentially
the same way. The main property that makes these genetic representations
convenient is that their parts are easily aligned due to their fixed size, that
facilitates simple crossover operation. Variable length representations may
also be used, but crossover implementation is more complex in this case. The
fitness function is defined over the genetic representation and measures the
quality of the represented solution.

The pseudo-code of a simple GA is the following:

1. Choose initial population
2. Evaluate the fitness of each individual in the population
3. Repeat
4. a) Select best-ranking individuals to reproduce

b) Breed new generation through crossover and mutation (genetic oper-
ations) and give birth to offspring

c) Evaluate the individual fitnesses of the offspring
d) Replace worst ranked part of population with offspring

5. Until <terminating condition>

The population size depends on the nature of the problem, but typically
contains several hundreds or thousands of possible solutions. Traditionally, the
initial population is generated randomly, covering the entire range of possible
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solutions (the search space). Occasionally, the solutions may be “seeded” in
areas where optimal solutions are likely to be found. During each succes-
sive generation, a proportion of the existing population is selected to breed
a new generation. Individual solutions are selected through a fitness-based
process, where fitter solutions (as measured by a fitness function) are typically
more likely to be selected. Popular and well-studied selection methods include
roulette wheel selection and tournament selection.

The next step is to generate a second generation population of solutions
from those selected through genetic operators: crossover (also called recom-
bination), and/or mutation. For each new solution to be produced, a pair of
“parent” solutions is selected for breeding from the pool selected previously.
By producing a “child” solution using the above methods of crossover and
mutation, a new solution is created which typically shares many of the char-
acteristics of its “parents”. New parents are selected for each child, and the
process continues until a new population of solutions of appropriate size is
generated. These processes ultimately result in the next generation popula-
tion of chromosomes that is different from the initial generation. Generally the
average fitness will have increased by this procedure for the population, since
only the best organisms from the first generation are selected for breeding,
along with a small proportion of less fit solutions.

This generational process is repeated until a termination condition has
been reached. Common terminating conditions are

– A solution is found that satisfies minimum criteria
– A fixed number of generations is reached
– The allocated budget (computation time/money) is reached
– The highest ranking solution’s fitness is reaching or has reached a plateau

such that successive iterations no longer produce better results
– Manual inspection
– Combinations of the above.

Evolutionary Neural Networks

Genetic algorithms (GAs) may be used to address the inherent problems
presented by the ANNs mentioned previously, helping to obtain more accurate
ANNs with better generalization abilities. Evolutionary artificial neural net-
works (EANNs) refer to a special class of ANNs in which evolution is another
fundamental form of adaptation in addition to learning [74].

A distinctive feature of EANNs is their adaptability to a dynamic envi-
ronment. EANNs are able to adapt to an environment as well as changes in
the environment. These two forms of adaptation, evolution and learning in
EANNs, make their adaptation to a dynamic environment much more effec-
tive and efficient. In a broader sense, EANNs can be regarded as a general
framework for adaptive systems, systems that can change their architectures
and learning rules appropriately without human intervention.
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GAs can interact with ANNs at roughly three different levels: connec-
tion weights, architectures, and learning rules. The evolution of connection
weights introduces an adaptive and global approach to training, especially
where gradient-based training algorithms often experience great difficulties.
The evolution of architectures enables ANNs to adapt their topologies to dif-
ferent tasks without human intervention and thus provides an approach to
automatic ANN design as both ANN connection weights and structures can
be evolved. The evolution of learning rules can be regarded as a process of
“learning to learn”in ANNs where the adaptation of learning rules is achieved
through evolution. It can also be regarded as an adaptive process of automatic
discovery of novel learning rules [75].

EANNs that evolve connection weights overcome the shortcomings of
the common gradient-descent-based training algorithms, by formulating the
training process as the evolution of connection weights in the environment
determined by the architecture and the learning task. GAs can then be used
effectively in the evolution to find a near-optimal set of connection weights
globally without computing gradient information. The fitness of an ANN can
be defined according to different needs. Two important factors which com-
monly appear in the fitness (or error) function are the error between target and
actual outputs and the complexity of the ANN. Unlike the case in gradient-
descent-based training algorithms, fitness (or error) function does not have
to be differentiable or even continuous since GAs do not depend on gradient
information. Because GAs can treat large, complex, non-differentiable, and
multimodal spaces, considerable research and application has been conducted
on the evolution of connection weights.

In the evolution of connection weights, the architecture of the EANN is
assumed to be predefined and fixed. The architecture design of an ANN is
crucial for it successful application, because the architecture has a significant
impact in the ANN performance. Traditionally, ANN architecture design is a
job for human experts, who define the topology of the ANN based on their ex-
perience and a trial-and-error process. There is no a systematic way to design
a near-optimal architecture for a given task. Design of the optimal architec-
ture for an ANN has been formulated as a search problem in the architecture
space where each point represents an architecture. Given some performance
(optimality) criteria (lowest training error, lowest network complexity, etc.)
about architectures, the performance level of all architectures forms a discrete
surface in the space. The optimal architecture design is equivalent to finding
the highest point on this surface, and GAs are adequate for this task.

Exhaustive reviews about EANNs have been presented by Yao [75] and
Balakrishnan and Honavar [3]. More specifically, Fogel et al. [18] presented
one of the first works about EANNs for screening features from mammograms.
In this chapter, we present an automated procedure for feature extraction
and training data set construction for training an ANN is proposed. It is
also described the use of GAs for 1) finding the optimal weight set for an
ANN, 2) finding an adequate initial weight set for an ANN before starting
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a backpropagation training algorithm and 3) designing the architecture and
tuning some parameters of an ANN. All of these methods are applied to the
classification of microcalcifications and microcalcification clusters in digital
mammograms, expecting to improve the accuracy of an ordinary feedforward
ANN performing this task. Some of our previous work on this subject is
presented in [29–32,53].

7.2 Methodology

The mammograms used in this project were provided by the Mammographic
Image Analysis Society (MIAS) [66]. The MIAS database contains 322 images
with resolutions of 50 microns/pixel and 200 microns/pixel. Only 118 in the
database contain some abnormality (66 are benign and 52 are malignant) and
the other 204 are diagnosed as normal. The abnormalities found in these mam-
mograms are microcalcifications (25 cases), circumscribed masses (20 cases),
spiculated masses (21 cases), ill-defined masses (15 cases), architectural dis-
tortions (20 cases) and asymmetries (17 cases). In this work, the images with
a resolution of 200 microns/pixel were used. The data has been reviewed by
a consultant radiologist and all the abnormalities have been identified and
marked. The truth data consists of the location of the abnormality and the
radius of a circle which encloses it. From the 25 images containing micro-
calcifications, 13 cases are diagnosed as malignant and 12 as benign. Several
related works have used this same database [35,44], some of them specifically
for detecting individual microcalcifications [24,41,49,60] and some others for
detecting clusters [15,27,43,65].

The general procedure receives a digital mammogram as an input, and it is
conformed by five stages: pre-processing, detection of potential microcalcifica-
tions (signals), classification of signals into real microcalcifications, detection
of microcalcification clusters and classification of microcalcification clusters
into benign and malignant. The diagram of the proposed procedure is shown in
Figure 7.3. As end-products of this process, we obtain two ANNs for classifying
microcalcifications and microcalcifications clusters respectively, which in this
case, are products of the evolutionary approaches that are proposed.

7.2.1 Pre-processing

During the mammogram acquisition process, and during the digitalization of
the X-ray plaque, some noise can be added unintentionally to the images.
Furthermore, only about 40% of each mammogram corresponds to the actual
mammary gland. The remainder of the image is the background, that may
also contain marks or labels that identify the mammogram, not relevant to
the computer system. The pre-processing stage has the aim of eliminating
those elements in the images that could interfere in the process of identifying
microcalcifications. A secondary goal is to reduce the work area only to the
relevant region that exactlycontains the breast.
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Fig. 7.4. The Pre-processing Stage: (a) original image, (b) binarized image, (c)
binarized image without isolated regions, (d) determination of the boundaries for
trimming, (e) trimmed binarized image and (f) trimmed original image

The procedure receives the original images as input. First, a median filter
is applied in order to eliminate the background noise, keeping the significant
features of the images. A median filter is a non-linear filter frequently used
to eliminate high frequency noise without deleting significant features of the
image. A 3x3 mask was used, centering it in each pixel of the image, replacing
the value of the central pixel with the median of the surrounding nine pixels
covered by the mask. The size of this mask was chosen empirically, trying to
avoid the loss od local details.

Next, binary images are created from each filtered image. The purpose of
the binary images is to help an automatic cropping procedure to delete the
background marks and the isolated regions, so the image will contain only the
region of interest. The cropping procedure first eliminates isolated elements
that are not connected with the group of pixels corresponding to the breast,
and then makes adequate vertical and horizontal cuts based on the sums of
pixels by rows and columns in the binary image. Figure 7.4 depicts the pre-
processing stage.

7.2.2 Detection of Potential Microcalcification (Signals)

The main objective of this stage is to detect the mass centers of the poten-
tial microcalcifications in the image (signals). The optimized difference of two
gaussian filters (DoG) is used for enhancing those regions containing bright
points. The resultant image after applying a DoG filter is globally binarized,
using an empirically determined threshold. In Figure 7.5, an example of the
application of a DoG filter is shown. A region-labeling algorithm allows the
identification of each one of the points (defined as high-contrast regions de-
tected after the application of the DoG filters, that cannot be considered
microcalcifications yet). Then, a segmentation algorithm extracts small 9x9
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Fig. 7.5. Example of the application of a DoG filter (5 × 5, 7 × 7)

windows each, containing the region of interest whose centroid corresponds
to the centroid of each point. In order to detect the greater possible amount
of points, six gaussian filters of sizes 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13
and 15 × 15 are combined, two at a time, to construct 15 DoG filters that
are applied sequentially. Each one of the 15 DoG filters was applied 51 times,
varying the binarization threshold in the interval [0, 5] by increments of 0.1.
The points obtained by applying each filter are added to the points obtained
by the previous one, deleting the repeated points. The same procedure is re-
peated with the points obtained by the remaining DoG filters. All of these
points are passed later to three selection procedures.

These three selection methods are applied in order to transform a point
into a signal (potential microcalcification). The first method performs selec-
tion according to the object area, choosing only the points with an area be-
tween a predefined minimum and a maximum. For this work, a minimum area
of 1 pixel (0.0314 mm2) and a maximum of 77 pixels (3.08 mm2) were consid-
ered. The second method performs selection according to the gray level of the
points. Studying the mean gray levels of pixels surrounding real identified mi-
crocalcifications, it was found they have values in the interval [102, 237] with
a mean of 164. For this study, we set the minimum gray level for points to
be selected to 100. Finally, the third selection method uses the gray gradient
(or absolute contrast, the difference between the mean gray level of the point
and the mean gray level of the background). Again, studying the mean gray
gradient of point surrounding real identified microcalcifications, it was found
they have values in the interval [3, 56] with a mean of 9.66. For this study, we
set the minimum gray gradient for points to be selected to 3, the minimum
vale of the interval. The result of these three selection processes is a list of
signals (potential microcalcifications) represented by their centroids.
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7.2.3 Classification of Signals into Real Microcalcifications

The objective of this stage is to identify if an obtained signal corresponds to
an individual microcalcification or not. A set of features are extracted from
the signal, related to their contrast and shape. From each signal, 47 features
are extracted, related to:

– Signal contrast : Features related to the gray level of the pixels that are
part of the signal (7 features).

– Background contrast : Features related to the gray level of the pixels that
form the background in the window containing the signal (7 features).

– Relative contrast : Features that relate the mean gray level of the signal
with the mean gray level of the background (3 features).

– Shape features: Features that describe the shape of the signal (20 features).
– Contour sequence moments : Moments of shape, mean and standard devi-

ation extracted from the distance to the signal centroid (6 features).
– Invariant geometric moments: The first four invariants of Hu [36] (4 fea-

tures).

A summary of the features extracted from the signals is presented in
Table 7.2.

There is not an a priori criterion to determine what features should be
used for classification purposes, so the features pass through two feature se-
lection processes [40]: the first one attempts to delete the features that present

Table 7.2. Summary of features extracted from the signals (potential microcalcifi-
cations)

Signal contrast Maximum gray level, minimum gray level, median gray
level, mean gray level, standard deviation of the gray level,
gray level skewness, gray level kurtosis.

Background contrast Background maximum gray level, background minimum
gray level, background median gray level, background mean
gray level, standard deviation of the background gray level,
background gray level skewness, background gray level kur-
tosis.

Relative contrast Absolute contrast, relative contrast, proportional contrast.
Shape features Area, convex area, background area, perimeter, maximum

diameter, minimum diameter, equivalent circular diameter,
fiber length, fiber width, curl, circularity, roundness,
elongation1, elongation2, eccentricity, aspect ratio,
compactness1, compactness2, compactness3, solidity.

Contour sequence CSM1, CSM2, CSM3, CSM4, mean radii, standard
moments deviation of radii.
Invariant geometric IM1, IM2, IM3, IM4.
moments
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high correlation with other features, and the second one uses a derivation of
the forward sequential search algorithm, which is a sub-optimal search algo-
rithm. The algorithm decides what feature must be added depending of the
information gain that it provides, finally resulting in a subset of features that
minimize the error of the classifier (which in this case was a conventional feed-
forward ANN). After these processes were applied, only three features were
selected and used for classification: absolute contrast (the difference between
the mean gray levels of the signal and its background), standard deviation
of the gray level of the pixels that form the signal and the third moment of
contour sequence. Moments of contour sequence are calculated using the sig-
nal centroid and the pixels in its perimeter, and are invariant to translation,
rotation and scale transformations [25].

In order to process signals and accurately classify the real microcalcifica-
tions, we decided to use ANNs as classifiers. Because of the problems with
ANNs already mentioned, we decided also to use GAs for evolving popula-
tions of ANNs, in three different ways, some of them suggested by Cantú-Paz
and Kamath [9]. The first approach uses GAs for searching the optimal set
of weights of the ANN. In this approach, the GA is used only for searching
the weights, the architecture is fixed prior to the experiment. The second
approach is very similar to the previous one, but instead of evaluating the
network immediately after the initial weight set which is represented in each
chromosome of the GA, is assigned, a backpropagation training starts from
this initial weight set, hoping to reach an optimum quickly [63]. The last
approach is not concerned with evolving weights. Instead, a GA is used to
evolve a part of the architecture and other features of the ANN. The number
of nodes in the hidden layer is very important parameter, because too few or
to many nodes can affect the learning and generalization capabilities of the
ANN. In this case, each chromosome encodes the learning rate, a lower and
upper limits for the weights before starting the backpropagation training, and
the number of nodes of the hidden layer.

At the end of this stage, we obtain three ready-to-use ANNs, each one
taken from the last generation of the GAs used in each one of the approaches.
These ANNs have the best performances in terms of overall accuracy (fraction
of well classified objects, including microcalcifications and other elements in
the image that are not microcalcifications).

7.2.4 Detection of Microcalcification Clusters

During this stage, the microcalcification clusters are identified. The detec-
tion and posterior consideration of every microcalcification cluster in the im-
ages may produce better results in a subsequent classification process, as we
showed in [53].

Some authors define a microcalcification cluster as a group of three or
more microcalcifications occupying a space lesser than 1 cm2 [21,54,61], while
others state that it is a group of two or more microcalcifications [76]. In this
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work, only the first definition is considered. We consider that every cluster
fits inside a circle that contains a square with an area of 1 cm2, that is, q
circle with a radius of 0.7 cm. This radius, translated to pixels considering
the resolution of 200 microns per pixel, is about 100 pixels in lenght.

This procedure receives a list of the microcalcifications obtained in the
previous stage as input, and then produces a list of cluster features extracted
and selected from each cluster. An algorithm for locating microcalcification
cluster regions where the quantity of microcalcifications per cm2 (density)
is higher, was developed. This algorithm keeps adding microcalcifications to
their closest clusters at a reasonable distance until there are no more micro-
calcifications left or if the remaining ones are too distant for being considered
as part of a cluster. Every detected cluster is then labeled.

7.2.5 Classification of Microcalcification Clusters into Benign
and Malignant

This stage has the objective of classifying each cluster in one of two classes:
benign or malignant. This information is provided by the MIAS database.

From every microcalcification cluster detected in the mammograms in the
previous stage, a cluster feature set is extracted. The feature set is constituted
by 30 features, related to:

– Cluster shape: Features related to the convex polygon that contains all
the microcalcifications of a cluster, and from the radii that connect each
microcalcification to the cluster centroid (14 features).

– Microcalcification area: Features obtained from the area of the microcal-
cifications in the cluster (6 features).

– Microcalcification contrast : Features obtained from the mean gray level of
the microcalcifications in the cluster (10 features).

These features are shown in Table 7.3.
The same two feature selection procedures mentioned earlier are also per-

formed in this stage. Only three cluster features were selected for the clas-
sification process: minimum diameter, minimum radius and mean radius of
the clusters. The minimum diameter is the maximum distance that can exist
between two microcalcifications within a cluster in such a way that the line
connecting them is perpendicular to the maximum diameter, defined as the
maximum distance between two microcalcifications in a cluster. The mini-
mum radius is the shortest of the radii connecting each microcalcification to
the centroid of the cluster and the mean radius is the mean of these radii.

In order to process microcalcification clusters and accurately classify them
into benign or malignant, we decided again to use ANNs as classifiers. We use
GAs for evolving populations of ANNs, in the same three different approaches
we used before for classifying signals. The first approach uses GAs for search-
ing the optimal set of weights of the ANN. The second approach uses a GA
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Table 7.3. Summary of features extracted from the microcalcification clusters

Cluster shape Number of calcifications, convex perimeter, convex area,
compactness, microcalcification density, total radius,
maximum radius, minimum radius, mean radius, standard
deviation of radii, maximum diameter, minimum diameter,
mean of the distances between microcalcifications, standard
deviation of the distances between microcalcifications.

Microcalcification Total area of microcalcifications, mean area of
Area microcalcifications, standard deviation of the area of

microcalcifications, maximum area of the microcalcifica-
tions, minimum area of the microcalcifications, relative area.

Microcalcification Total gray mean level of microcalcifications, mean of the
Contrast mean gray levels of microcalcifications, standard deviation of

the mean gray levels of microcalcifications, maximum mean
gray level of microcalcifications, minimum mean gray level
of microcalcifications, total absolute contrast, mean absolute
contrast, standard deviation of the absolute contrast, max-
imum absolute contrast, minimum absolute contrast.

for defining initial weight sets, from which a backpropagation training algo-
rithm is started, hoping to reach an optimum quickly. The third approach
uses a GA for evolving the architecture and other features of the ANN as it
was shown in a previous stage, when signals were classified. Again, each chro-
mosome encodes the learning rate, a lower and upper limits for the weights
before starting the backpropagation training, and the number of nodes of the
hidden layer. For comparison, a conventional feedforward ANN is used also.

At the end of this stage, we obtain three ready-to-use ANNs, each one
taken from the last generation of the GAs used in each of the approaches.
These ANNs have the best performances in terms of overall accuracy (fraction
of well classified clusters).

7.3 Experiments and Results

In this section, the experiments performed and the results obtained in every
phase of the process are presented and discussed in detail.

7.3.1 From Pre-processing to Feature Extraction

Only 22 images were finally used for this study. In the second phase, six
gaussian filters of sizes 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13 and 15 × 15 were
combined, two at a time, to construct 15 DoG filters that were applied se-
quentially. Each one of the 15 DoG filters was applied 51 times, varying the
binarization threshold in the interval [0,5] by increments of 0.1. The points
obtained by applying each filter were added to the points obtained by the
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previous one, deleting the repeated points. The same procedure was repeated
with the points obtained by the remaining DoG filters. These points passed
through the three selection methods for selecting signals (potential microcal-
cifications), according to region area, gray level and the gray gradient. The
result was a list of 1,242,179 signals (potential microcalcifications) represented
by their centroids.

The additional data included with the MIAS database define, with cen-
troids and radii, the areas in the mammograms where microcalcifications are
located. With these data and the support of expert radiologists, all the signals
located in these 22 mammograms were preclassified into microcalcifications,
and non-microcalcifications. From the 1,242,179 signals, only 4,612 (0.37%)
were microcalcifications, and the remaining 1,237,567 (99.63%) were not. Be-
cause of this imbalanced distribution of elements in each class, an exploratory
sampling was performed. Several sampling with different proportions of each
class were tested and finally we decided to use a sample of 10,000 signals,
including 2,500 real microcalcifications in it (25%).

After the 47 microcalcification features were extracted from each signal,
the feature selection processes reduced the relevant features to only three: ab-
solute contrast, standard deviation of the gray level and the third moment of
contour sequence. Finally, a transactional database was obtained, containing
10,000 signals (2500 of them being real microcalcifications randomly distrib-
uted) and three features describing each signal.

7.3.2 Classification of Signals into Microcalcifications

In the third stage, a conventional feedforward ANN and three evolutionary
ANNs were developed for the classification of signals into real microcalci-
fications.

The feedforward ANN had an architecture of three inputs, seven neurons
in the hidden layer and one output. All the units had the sigmoid hyperbolic
tangent function as the transfer function. The data (input and targets) were
scaled in the range [−1, 1] and divided into ten non-overlapping splits, each
one with 90% of the data for training and the remaining 10% for testing. A
ten-fold crossvalidation trial was performed; that is, the ANN was trained
ten times, each time using a different split on the data and the means and
standard deviations of the overall performance, sensitivity and specificity were
reported. These results are shown in Table 7.4 on the row “BP”.

For the three EANNs used to evolve signal classifiers, all of their GAs
used a population of 50 individuals. We used simple GAs, with gray encoding,
stochastic universal sampling selection, double-point crossover, fitness based
reinsertion and a generational gap of 0.9. For all the GAs, the probability of
crossover was 0.7 and the probability of mutation was 1/l, where l is the length
of the chromosome. The initial population of each GA was always initialized
uniformly at random. All the ANNs involved in the EANNs are feedforward
networks with one hidden layer. All neurons have biases with a constant input
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Table 7.4. Mean (%) and standard deviation of the sensitivity, specificity and
overall accuracy of simple backpropagation and different evolutionary methods for
the classification of signals into real microcalcifications

Sensitivity Specificity Overall

Std. Std. Std.
Method Mean Dev. Mean Dev. Mean Dev.

BP 75.68 0.044 81.36 0.010 80.51 0.013
WEIGHTS 72.44 0.027 84.32 0.013 82.37 0.011
WEIGHTS+BP 75.81 0.021 86.76 0.025 84.68 0.006
PARAMETERS 73.19 0.177 84.67 0.035 83.12 0.028

of 1.0. The ANNs are fully connected, and the transfer functions of every unit
is the sigmoid hyperbolic tangent function. The data (input and targets) were
normalized to the interval [−1, 1]. For the targets, a value of “−1” means
“non-microcalcification” and a value of “1” means “microcalcification”. When
backpropagation was used, the training stopped after reaching a termination
criteria of 20 epochs, trying also to find individual with fast convergence.

For the first approach, where a GA was used to find the ANNs weights,
the population consisted of 50 individuals, each one with a length of l = 720
bits and representing 36 weights (including biases) with a precision of 20 bits.
There were two crossover points, and the mutation rate was 0.00139. The GA
ran for 50 generations. The results of this approach are shown in Table 7.4
on the row “WEIGHTS”. In the second approach, where a backpropagation
training algorithm is run using the weights represented by the individuals in
the GA to initialize the ANN, the population consisted of 50 individual also,
each one with a length of l = 720 bits and representing 36 weights (including
biases) with a precision of 20 bits. There were two crossover points, and the
mutation rate was 0.00139 (1/l). In this case, each ANN was briefly trained
using 20 epochs of backpropagation, with a learning rate of 0.1. The GA ran
for 50 generations. The results of this approach are shown in Table 7.4 on the
row “WEIGHTS+BP”.

Finally, in the third approach, where a GA was used to find the size of
the hidden layer, the learning rate for the backpropagation algorithm and
the range of initial weights before training, the population consisted of 50
individuals, each one with a length of l = 18 bits. The first four bits of the
chromosome coded the learning rate in the range [0,1], the next five bits coded
the lower value for the initial weights in the range [−10,0], the next five bits
coded the upper value for the initial weights in the range [0,10] and the last
four bits coded the number of neurons in the hidden layer, in the range [1,15]
(if the value was 0, it was changed to 1). There was only one crossover point,
and the mutation rate was 0.055555 (1/l). In this case, each ANN was built
according to the parameters coded in the chromosome, and trained briefly
with 20 epochs of backpropagation, in order to favor the ANNs that learned
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quickly. The results of this approach are shown also in Table 7.4, on the row
“PARAMETERS”.

We performed several two-tailed Students t-tests at a level of significance of
5% in order to compare the mean of each method with the means of the other
ones in terms of sensitivity, specificity and overall accuracy. We found that for
specificity and overall accuracy, evolutionary methods are significantly better
than the simple backpropagation method for the classification of individual
microcalcifications. No difference was found in terms of sensitivity, except that
simple backpropagation was significantly better than the method that evolves
weights.

We can notice too that, among the studied EANNs, the one that evolves
a set of initial weights and is complemented with backpropagation training
is the one that gives better results. We found that in fact, again in terms of
specificity and overall accuracy, the method of weight evolution complemented
with backpropagation is significantly the best of the methods we studied.
Nevertheless, in terms of sensitivity, this method is only significantly better
than the method that evolves weights.

7.3.3 Microcalcification Clusters Detection and Classification

The process of cluster detection and the subsequent feature extraction phase
generates another transactional database, this time containing the informa-
tion of every microcalcification cluster detected in the images. A total of 40
clusters were detected in the 22 mammograms from the MIAS database that
were used in this study. According to MIAS additional data and the advice
of expert radiologists, 10 clusters are benign and 30 are malignant. The num-
ber of features extracted from them is 30, but after the two feature selection
processes already discussed in previous sections, the number of relevant fea-
tures we considered relevant was three: minimum diameter, minimum radius
and mean radius of the clusters.

As in the stage of signal classification, a conventional feedforward ANN
and three evolutionary ANNs were developed for the classification of clusters
into benign and malignant. The four algorithms we use in this step are ba-
sically the same ones we used before, except that they receive as input the
transactional database containing features about microcalcifications clusters
instead of features about signals. Again, the means of the overall performance,
sensitivity and specificity for each one of these four approaches are reported
and shown in Table 7.5.

We also performed several two-tailed Students t-tests at a level of signif-
icance of 5% in order to compare the mean of each method for cluster clas-
sification with the means of the other ones in terms of sensitivity, specificity
and overall accuracy. We found that the performance of evolutionary meth-
ods is significantly different and better than the performance of the simple
backpropagation method, except in one case. Again, the method that evolves
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Table 7.5. Mean (%) and standard deviation of the sensitivity, specificity and
overall accuracy of simple backpropagation and different evolutionary methods for
the classification of microcalcification clusters

Sensitivity Specificity Overall

Std. Std. Std.
Method Mean Dev. Mean Dev. Mean Dev.

BP 55.97 0.072 86.80 0.032 76.75 0.032
WEIGHTS 72.00 0.059 92.09 0.038 86.35 0.031
WEIGHTS+BP 89.34 0.035 95.86 0.025 93.88 0.027
PARAMETERS 63.90 0.163 85.74 0.067 80.50 0.043

initial weights, complemented with backpropagation, is the one that gives the
best results.

7.4 Conclusions

This chapter has presented a comparison of simple backpropagation training
and three methods for combining GAs and ANNs, applied to the classifica-
tion of signals into real microcalcifications and microcalcification clusters into
benign and malignant, on mammograms containing microcalcifications from
the MIAS database. Our experimentation suggests that evolutionary methods
are significantly better than the simple backpropagation method for the clas-
sification of individual microcalcifications, in terms of specificity and overall
accuracy. No difference was found in terms of sensitivity, except that simple
backpropagation was significantly better than the method that only evolves
weights. In the case of the classification of microcalcification clusters, we ob-
served that the performance of evolutionary methods is significantly better
than the performance of the simple backpropagation method, except in one
case. Again, the method that evolves initial weights, complemented with back-
propagation, is the one that gives the best results.

As future work, it would be useful to include and process other mammog-
raphy databases, in order to have more examples and produce transactional
feature databases more balanced and complete, and test also how different
resolutions could affect system effectiveness. The size of the gaussian filters
could be adapted depending on the size of the microcalcifications to be de-
tected and the resolution of images. The correspondence between the spatial
frequency of the image and the relation σ1/σ2 has to be thoroughly studied.
Different new features could be extracted from the microcalcifications in the
images and tested also.

In this study, simple GAs and ANNs were used, and more sophisticated
versions of these methods could produce better results. The use of real valued
chromosomes, chromosomes with indirect representation (metaheuristics, NN
construction rules, etc.), use of EANNs for feature selection, etc. are other
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approaches that could give different results. The inclusion of simple back-
propagation training in the EANNs have consequences of longer computation
times, so alternatives to backpropagation should be tested in order to reduce
time costs.
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Summary. The spectral method of medical images segmentation that is con-
strained by Bayesian inference on initial edge map detection is introduced and char-
acterized. It is followed by discussion of the accuracy of the method, that depends on
the noise that affects the data. Gaussian noise model is constructed and a method
for noisy data multiscale wavelet decomposition and denoising is applied. The pro-
posed segmentation method is tested for denoised cardiac ultrasonic data and its
performance is compared for different noise clipping values. Further applications for
multiple multimodal cases are presented showing the universality of the proposed
method that is fixable and adaptable to the number of clinical applications. The
brief discussion of the future development of the method is provided.

8.1 Introduction

Medical imaging, and particularly the methods of image recognition, analysis
and interpretation is one of the most important fields of present days science.
These methods are widely used for research purposes as well as in daily clinical
practice. Since the advent of modern computing and graphical presentation of
data a number of methods and algorithms for segmentation of medical images,
one of the crucial points in automatic or semi-automatic image analysis, has
been developed and introduced.

Segmentation is a process that reveals the required structure hidden in the
data. The data are often disturbed by a noise what further makes the delin-
eation of contours difficult. Segmentation is realized by finding all the data
voxels or pixels which belongs to an object or its boundary. Number of technics
is used [1] to achieve such a goal. One group, that is based on investigation
of pixel intensity values covers technics like thresholding [2, 3], watershed al-
gorithms [4–6], gradient filters, region growing [7] or level sets method [8–11].
Another approach is based on pattern recognition in an image. There are also
methods derived from fuzzy sets theory and membership functions known
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as fuzzy clustering methods. Different realization of segmentation is done by
neural networks which process the data in the parallel distributed manner [12].

Very widely used are the methods adapting deformable models [13–20].
Having the initial model of particular geometrical shape it is further deformed
according to the data properties as long as the final shape representing the
required contour is found. This procedure is usually realized iteratively and
certain criterion is checked at each step to control if the required accuracy
is satisfied for currently found object’s approximation. If not, the process is
repeated. The criterion is usually a kind of cost function and the algorithm
search for parameters that minimize it. The deformable model is given in
analytical form and it is expressed as a partial differential equation (PDE).
Another branch of deformable models are discrete models [21–23]. The great
advantage of deformable models applications is their ability to follow the dy-
namics of a structure. Such applications are useful, for instance, for investiga-
tion of cardiac cycle or elastography of organs. The main limitations of these
methods due to imprecise description of boundary conditions as well as con-
cave boundaries has been overcome by more advanced methods based on force
field called gradient vector flow (GVF) [24,25]. One of the important feature
of application of deformable models is the possibility of direct adaptation of
a priori knowledge taken, for instance, from numerical anatomical atlases.

Incorporation of a priori knowledge is a complex task and is realized by
a number of technics. Again, cost functions may be used to optimize a prob-
lem. Another approach is based on statistical analysis. One of such methods
is Bayesian inference [26–30]. If the data and the model(s) may be described
in terms of probability a new distribution a posteriori, containing the up-
dated knowledge about the modified model given the data, may be derived.
The inference allows one to find the maximum probability a posteriori that
describes a modified model given the data and is the best representation of
what is looked for. Bayesian inference is one of the state-of-the-art technics
currently used for numerous methods of segmentation of medical images.

Another technic that has recently become widely used is multiscale
segmentation. Development of number of transformations based on orthogo-
nal and non orthogonal basis functions as well as the increase of computational
power at low level costs make this approach especially attractive. These meth-
ods also offers a numbers of features not available in single scale methods.
Besides the unique opportunity for efficient noise analysis and reduction that
is provided by multiscale approaches such methods also enable the researcher
or physician to investigate the multi level components of data independently.
Multiscale methods covers such applications like denoising of data by wavelet
coefficients clipping [31], optimal interpolation and statistical analysis of
data [32], segmentation and contour detection based on multiscale mea-
surement of pixel intensities [33], decreasing the time of segmentation [34],
morphometric analysis of data [35], overlaying the surfaces on elastic bodies
during their modeling [36] and image fusion [37].
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The method proposed in this study is somehow combination of the
most up-to-date approaches: multiscale decomposition and noise reduction,
Bayesian inference and spectral method and offers some unique features diffi-
cult or impossible to achieve by other known methods [51].

8.2 Theory of Bayesian-constrained Spectral Method
of Segmentation

8.2.1 Materials and Methods

The method proposed here is discussed on the chart shown on Figure 8.1.
There are two main branches, the left showing the multiscale decomposi-
tion and noise reduction and the right, showing Bayesian-constrained spectral
method. The right branch is composed of three main steps that are essential
for the method: initial presegmentation realized by simple method like thresh-
olding, Bayesian inference on edge position in the region of interest selected
from data and the spectral method to smooth the raw edge map approxima-
tion found by the inference. All these steps are further explained in details
through the next sections.

Raw Ultrasonic Data

For testing the method the algorithm has been applied to a number of
ultrasonographic cardiac images. A centroid was calculated for each scan and
then the final analysis of contour was done. The data was collected from a

Fig. 8.1. Flow chart showing connections between different steps that may
(dotted lines) or must be taken (solid lines) when the Bayesian constrained spec-
tral method is applied. See text for detailed explanations
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healthy volunteer, using an Ultramark ATL scanner equipped with a 3.5 MHz
phased array probe. The data was sampled at 20 MHz rate. Throughout this
paper one frame of cardiac cycle is used to test the approach (Fig. 8.2). The
same raw frame was denoised at different levels.

The proposed method is new approach to image segmentation that
combines the speed of spectral method in contour detection [40] and the
Bayesian inference that allows for the most probable estimation on initial
edge map. The method has been successfully applied to ultrasonic data and
CT brain data with aneurysm and is described in details in [38, 39]. The
real contour of investigated and segmented organ, see fig. 8.3, right, is ex-
tracted in the iterative process of solving the nonlinear partial differential
equation (PDE). This step is realized in Fourier space by fast spectral method.
PDE is approaching the function, as shown on fig. 8.4, that reveals the real
edge of the object and starts from an initially guessed edge map, similar to

Fig. 8.2. Raw ultrasonic data presenting a frame of cardiac cycle. Left ventricle
and mitral valve is clearly visible. The data is affected by typical ultrasonic speckle
noise

Fig. 8.3. Bayesian inferred edge map of the ventricle in brain with aneurysm in
bad quality CT data, on the left. The same ventricle segmented due to the shown
edge map by Bayesian constrained spectral method, the right image. Images taken
from [38]
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Fig. 8.4. First four steps, from the left, of PDE’s iteration leading to the proper seg-
mentation. Starting from the inferred Bayesian edge map the contour is approaching
the real shape of the structure. The best approximation is reached after four itera-
tions and shown at the most right frame. Images taken from [39]

the one shown on fig. 8.3, left. This iterative process is controlled by two
parameters that describe fidelity of reconstruction: one, µ is steering the PDE
and the other is responsible for slight smoothing of the resolved subsequent
partial approximations of the final solution.

Contouring may be expressed as partial differential equation (PDE). This
is the approach commonly found in methods based on active contours that
are iteratively approaching the final contour. Following the work presented
in [40] the final contour f may be found by solving the elliptic equation of
Helmholtz type

∇2f − µ(f − g) = 0 (8.1)

This equation uses known variable which is initially guessed edge map g. It is
solved in spherical coordinates. Moving the g term to right side and relating
it to a previously found value of f , called fn the PDE can be expressed in
linearized form

α∇2fn+1 − fn+1 = gfn
(8.2)

Such an equation is further easily solved by the fast spectral method. Applying
α = 1/µ the solution may be controlled by value of µ.

The edge map g is determined by Bayesian inference on edge placement
in image data. Let P (Ei/I) denote the required probability of the most ap-
propriate edge in our existing data set. This is the conditional probability as
it depends on the contents of I. P (Ei/I) is the probability of the fact that
the I’s point belongs to the edge class Ei, knowing the value of intensity of
this point. Let P (I/Ei) be a probability of how much the value or intensity
of a point is depending on edge class Ei. This term serves as a kernel. P (Ei)
is simply the probability of existence of the edge class Ei among all other
detected edge classes. Edge class is a set of some subsequent pixel intensity
values. Then the required probability can be found by solving the Bayes rule:

P (Ei/I) =
P (I/Ei)P (Ei)

P (I)
=

P (I/Ei)P (Ei)∑
i

P (I/Ei)P (Ei)
(8.3)

P (I) is a sum of all probabilities P (I/Ei) weighted by P (Ei) and thus re-
maining constant. P (I) is only a normalizing term and can be excluded from
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further analysis. The standard way of solving Bayes equation is the maxi-
mization of the right side over the parameter Ei (maximum likelihood, ML
step) and then maximization of the found solution over all accessible data
(maximum-a-posteriori, MAP step). The P (Ei) is a prior and contains a pri-
ori knowledge.

In practice the P (I/Ei) (Fig. 8.8) is estimated from the histogram of I
along given radius (figure 8.5a) from centroid to a point of circumference of
some bounding box selecting the region of interest (ROI ). The histogram
(figure 8.6) is shrank in such a way that each bin is equal to the edge size
assuming that each expected edge covers the same number of intensity levels.
Calculating the normalized probability over all edges Ei (figures 8.6 and 8.7),
ML step is performed and the most probable edge in I is estimated. Then the
MAP is done by searching for maximum over the data itself, and usually the
first maximum in P (I/Ei) is detected as an edge. P (Ei) may be a constant
value if we assume all edge classes as equally probable or may be distributed
uniquely according to the prior knowledge. From P (E/I) the polar edge map,
g(θ) is derived (as shown on figure 8.5b).

The linearized equation 8.2 is solved by a spectral method [40]. Adapting
Cheong’s method [46] the Laplacian operator ∇2 on the unit circle is expressed
as follows:

∇2 1
sin θ

δ

δθ

(
sin θ

δ

δθ

)
(8.4)

Both functions, f and g are defined on the computational grid (θi), where
θi = π(j+0.5)/J . J is the number of points along the longitude of unit circle’s

Fig. 8.5. Scanning radius used to select the data for Bayesian analysis, inside the
ROI is presegmented contour (a). The edge as it is found by Bayesian inference
before spectral method is applied (b)
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Fig. 8.6. The values of pixels along the radius that are further used for Bayesian
inference

Fig. 8.7. Probability of existence of a pixel of given intensity value in data taken
along scanning radius

circumference high enough to engage all points covered by g. Each point in g
may be now expressed by its discrete cosine transform (DCT) representation
yielding

g (θi) =
J−1∑
n=0

gn cos nθi (8.5)
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Fig. 8.8. Conditional probability of intensity values I in data given the edge class
E. The edge class covers a subset of intensity values within certain range

with gn being simply the coefficients of discrete cosine transform. Applying
equation 8.4 into equation 8.1, it may be written as an ordinary differential
equation (ODE):

1
sin θ

δ

δθ

(
sin θ

δ

δθ
f (θ)

)
= µ [f (θ) − g (θ)] (8.6)

which yields an algebraic system of equations in Fourier space:

pn−2fn−2 − pnfn + pn+2fn+2 = µ

[
1
4
gn−2 − 1

2
gn +

1
4
gn+2

]
(8.7)

where

pn−2 =
(n − 1) (n − 2) + µ

4
, pn =

n2 + µ

2
, (8.8)

pn+2 =
(n + 1) (n + 2) + µ

4

after substitution of eq. 8.5 into eq. 8.6 and expressing f in the same way as g.
The index n = 1, 3, . . .J − 1 for odd n and n = 0, 2, . . . , J − 2 for even n. The
system of equation 8.7 may be now expressed as a double matrix equation:

Beĥe = Aeĝe, Boĥo = Aoĝo (8.9)

with subscripts e for even and o for odd n, ĥ and ĝ denote the column vector
of expansion coefficients of f(θ) and g(θ), respectively. B is a tridiagonal
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matrix containing the left side of equation 8.7 and A is tridiagonal matrix
with constant coefficients along each diagonal corresponding to right side of
eq. 8.7.

Matrices B and A are of J/2 × J/2 size and contains only tridiagonal
components. The f and g are column vectors with cosinus transform co-
efficients fm(θ) and gm(θ). The mark ˆ annotates vector’s transposition.
Subscripts o and e are for odd and even indexes, respectively.

For odd indexes the equation 8.9 in its full form is expressed as follows:⎛
⎜⎜⎜⎜⎜⎝

b1 c1

a3 b3 c3

. . . . . . . . .
aJ−3 bJ−3 cJ−3

aJ−1 bJ−1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f1

f2

...
fJ−3

fJ−1

⎞
⎟⎟⎟⎟⎟⎠ (8.10)

=

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

g1

g2

...
gJ−3

gJ−1

⎞
⎟⎟⎟⎟⎟⎠

with coefficients an = pn−2, bn = pn, cn = pn+2. Similar equation may be
shown for even indexes.

The calculated set of expansion coefficients fn+1 serves for the reconstruc-
tion of fi the representation of g on the certain level of approximation i. By
smoothing and summing all partial functions fi, the required smooth approx-
imation to g is recovered revealing the most probable edge map. Figure 8.9
shows the role of µ coefficient.

Application of Bayesian methodology allows for the initial detection of the
most probable edge map. The uncertainty in map estimation is due to noise.
This uncertainty may be decreased if the noise is removed first.

Fig. 8.9. Contour reconstruction for different µ values, (left) µ = 50, (right) µ = 80
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8.3 Noise Model and Denoising of Medical Data
by à trous Transform

We investigate noise removal from the data by multiscale wavelet analysis. The
noisy medical data is decomposed by means of à trous algorithm [41, 42, 45]
that provides the multiscale components of data. Each component represents
details belonging to a particular scale. Those details also are affected by noise
that differs between scales. Assuming a noise model, its influence on particular
scales may be predicted a priori and efficiently removed by simple cancellation
of appropriate coefficients of decomposition and subsequent synthesis [43].
In this work we apply our Bayesian constrained spectral algorithm to the
same noisy medical data set with noise reduced at different rates by à trous
decomposition (see also figure 8.10). It may be summarized as follows:

1. Initialize j, the scale index, to 0, starting with an image cj,k where k
ranges over all pixels.

2. Carry out a discrete convolution of the data cj,k using a wavelet filter,
yielding cj+1,k. The convolution is an interlaced one, where the filter’s
pixel values have a gap (growing with level j) between them of 2j pixels,
giving rise to the name à trous – with holes.

3. From this smoothing it is obtained the discrete wavelet transform,
wj+1,k = cj,k − cj+1,k.

4. If j is less than the number J of resolution levels wanted, then increment
j and return to step 2.

The original image is reconstructed by the summation of all wj,k and the
smoothed array cJ,k, where J is the maximum that j may reach.

Image Convolved Image

Convolution with a kernel

Image - =

Image Convolved ImageImage - =

Convolution with rescaled kernel

Kernel 2D B3 spline function

1st level of
decomposition

2nd level of
decomposition

etc.

Fig. 8.10. Scheme that describes à trous wavelet decomposition algorithm
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For the purpose of this study, further in the chapter, the reversed notation
is used that, as it is believed, makes the analysis more intuitive and convenient.
The smoothed component (originally cJ,k) has index 0 and all subsequent
components, with increasing level of details have growing indexes. Hence, level
w1,k (originally wJ,k) with index 1 has low details but of higher resolution than
the base level with index 0, level w2,k contains details with higher resolution
than previous level but lower than these ones at next level, etc.

The noise model has been assumed to be Gaussian [44]. This approach is
justified when some data’s noise is modeled at the first level of approxima-
tion. For the ultrasonic speckle noisy data it is valid as long as the data are
nonlinearly logarithmically rescaled. Thus all further study of ultrasonic data
are performed on logarithmically rescaled data that are further scaled back to
linear scale for presentation that seems to be more convenient. The Gaussian
model – with zero mean and standard deviation σj , where index j corresponds
to scale – decomposed by à trous transform into its wavelet domain yields the
probability density [45]:

p(wj,l) =
1√

2πσj

e−w2
j,l/2σ2

j (8.11)

If the noise is stationary it is enough to compare wj,l to kσj , where l is given
pixel position in image. If k is equal to 3 then we have standard rejection rate
of 3σ. Further analysis is done as follows:

if |wj,l| ≥ kσj then wj,l is significant and not treated as noise
if |wj,l| < kσj then wj,l is not significant and treated as noise

(removed)

To find the accurate values of σj it is sufficient to decompose the image con-
taining only the Gaussian noise with σ = 1. After decomposition each wavelet
plane (scale or level) will contain the noise only but with different σe

j . Calcu-
lation of σe

j for each scale independently yields the table:

Scale j 0 1 2 3 4 5 6

σe
j 0.005 0.01 0.02 0.041 0.086 0.2 0.889

If for any 2D data, a standard deviation of its Gaussian noise σs is esti-
mated, the σj may be easily found by simple calculation σj = σsσ

e
j .

Figures 8.11 and 8.12 shows the decomposed, denoised and synthesized
data.

Both figures present the data and the noise residuals that are due to
Gaussian noise model. Fig. 8.11 is generated for k = 1σj clipping, while
fig. 8.12 has k = 3.
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Fig. 8.11. The denoised data from fig. 8.2. On the left there is the frame with noise
reduced by à trous decomposition, cancellation of wavelet coefficient below kσ, with
k = 1, and subsequent synthesis. On the right there is an image of noise residuals,
the data removed from the original frame and treated as noise

Fig. 8.12. The same as on fig. 8.11 but with noise reduced at k = 3

All obtained contours of the same structure are presented for different
noise clipping k parameter. Due to limited size of the images only some minor
differences are visible (figure 8.13). The contours are also plotted as a radial
function of angles, where all the radii are bound to the numerically found
centroid of the segmented structure (figure 8.14).

Due to anatomical properties of a heart’s inner walls their structure is
smooth. However, in ultrasonic imaging and the contour reconstruction by
proposed algorithm there are some disturbances from smoothed shape if
the noise is dominating. Suppressing the noise increases the smoothness of
the structure, i.e. top curve seen on fig. 8.14, and more accurately recovers
the real contour.

Denoising of the raw data also improves the Bayesian inference on edge
map estimation. The residuals shown on figure 8.15 are obtained after noise
removal and shows the significant difference between raw edge map, top curve
of figure 8.15, and denoised edge map. The latter is more accurate as the
inference is not confused by noise introducing accidental points that are falsely
recognized as a structure.
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Fig. 8.13. From top left there is the segmented raw data, top right and at the
bottom there are the contours obtained on denoised data, with k = 1, top right,
k = 3, bottom left and k = 6, bottom right

Fig. 8.14. The reconstructed radial contour functions of the segmented structure.
From the bottom to the top there are the contours of original raw data, and sub-
sequently, the contours obtained on denoised data clipped with k = 1, 3, and 6,
respectively. The higher the threshold is, the upper a line is on the plot. Each line
is shifted artificially due to the previous one by 10 points, just to enable the reader
to compare them. In the real dimensions the lines are overploted
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Fig. 8.15. Bayesian inferred edge map of raw data represented by edge point radii
ploted in the function of angle, marked by points. The crosses are the residuals
obtained by subtraction of the edge map obtained on the data clipped with k = 6
from the edge of raw data. These residuals show the imperfection in edge map
estimation if the noise is present

8.4 Applications of Bayesian-constrained Spectral
Method (BCSM) of Segmentation

Automatic Delineation of Left Ventricle in Ultrasonic Imaging
of Cardiac Cycle

Presented method is widely adaptable to many modalities and different
problems of segmentation as it is briefly shown through this section. The
method provides fast and robust framework to automatically segment the
cardiac cycle’s ultrasonic images. Following steps were taken:

• Automatic centroid calculation of presegmented contour
• Selection of subsequent frame of the cycle (see figure 8.16 (a) for example)
• Noise reduction by à trous wavelet transform and k = 1 clipping of wavelet

coefficients (figure 8.17).
• Construction of patterns used as a priori knowledge (presegmented con-

tour) – priors.
• Construction of enhanced patterns by application of technic of multires-

olution support [45], another method for multiscale image binarization
(figure 8.18).

• Bayesian inference on edge position. 6 edge classes were assumed,
parameters µ = 80, s = 20. Multiple priors were used. Additional
limitation was established to automatically correct misclassified edge
points. The final edge found in a previous step was used as a limit for
the currently investigated edge – if the calculated distance between the
edges for the same scanning radius from two subsequent time points
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a) b)

Fig. 8.16. An ultrasonic data sample. A frame before conversion, showing heart’s
left ventricle (a), as an example of noisy medical imaging. ROI of this frame con-
taining the ventricle only with Bayesian inferred edge map (b)

a) b) c) d) e)

Fig. 8.17. Multiscale à trous decomposition of heart’s left ventricle ultrasonic image
of one frame of cardiac cycle. Scales of decomposition, from grain level (a) to finer
scales (b,c,d,e)

 a)  b)  c) 

Fig. 8.18. Construction of enhanced prior for improved strategy in Bayesian infer-
ence based on multiresolution support (MRS), a technics based on à trous multiscale
decomposition. Original image of MRS (a), filtered image (b) and the same image
with edges extracted by Sobel filtration (c), the final prior used in inference

(frames) was greater than certain value the current edge position was
corrected by assigning the value found in the previous step. Anatomical
knowledge places limits on speed of ventricle walls movement what justify
this operation.
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• Contour reconstruction from Bayesian edge map by spectral method.
• Next step with another frame.

All subsequent reconstructed contours are shown on figure 8.19.

Fig. 8.19. All the cycle contours are derived in fully automatic manner from raw,
ultrasonic image data. The dynamics of mitral valve’s region is visible
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Bone Shape Reconstruction

Another example of application of the new method is bone shape reconstruc-
tion from CT scans. The segmentation has been done with the following steps:

• Selection of scans from 3D data set.
• Initial thresholding
• I step of masking – mask was generated from a summarized image of all

subsequent scans containing the tissue of bone of interest
• II step of masking – mask was generated from some predefined masks

defining ROI for particular parts of bone. The partial masks were set as
ellipses. Their sum, the final mask was conjugated (logical operation AND)
with the mask obtained in step I

• The centroid has been calculated
• Bayesian inference with additional prior generated by Sobel filter acting

on the thresholded and masked data
• Application of spectral method

The result, compared with the bone segmented with a standard technic
of Sobel filtering of thresholded image is shown on figure 8.20. Obtained 3D
shapes, combined from 2D radial functions revealed by Bayesian-constrained
spectral method and visualised are shown on figure 8.21.

a) b)

Fig. 8.20. Comparison of contours in 3D structure of a piece of thigh bone obtained
by Sobel edge detection (a) and proposed method based on Bayesian inference (b)

 a) b)

Fig. 8.21. Examples of the bone shown on fig. 8.20 reconstructed by proposed
method and visualized in IDL environment
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3D PET-CT Imaging of Active Part of the Liver

Diagnostics based on multimodal imaging are important part of clinical prac-
tice. The proposed method is applicable to bimodal medical images to support
the diagnostics. When the combined functional and structural information is
available some diagnostic questions are better addressed if they take both
modalities as a source of information into account. For instance, if there is
a question what is the PET active part of the liver the answer that we look
for are the PET active regions that must belong to the liver even if in some
close neighborhood there are some other emitting spots. Hence, to find the
useful answer to the question one may need to segment the CT image taking
the limitations from other modality, PET in our case. On the other hand CT
image of liver is composed of the image of soft tissue that is hardly separable
from surrounding soft tissue of spleen or digestive system as their Hounsfield
number values are similar or overlapping. Then the information from PET
modality is required that limits the tissue selection in CT mode. This self
feedback is very well described in terms of probability, Bayesian inference and
priors. Using CT mode as a primary source of information, the data and the
PET mode data to derive a prior the Bayesian constrained spectral method
may be applied. To construct the prior the multiscale decomposition was
used together with some morphological operations done on image from each
modality as well as on fusion of images from both modalities. The results of
such application of the proposed method are shown on figures 8.22 and 8.23.
Projecting the data into 3D space and visualization allow us to determine the
PET emitting shape, or liver in the presented case, according to the rest of
the body, as seen on figure 8.24.

Application to MRI-PET Bimodally Imaged Tumor Morphology

Bayesian constrained spectral method reveals the radial functions describing
the most probable representation of a real contour that is hidden in data. This

a) b) c)

Fig. 8.22. The prior for Bayesian inference on the region of PET activity in human
liver (a). Initial edge map revealed by Bayesian inference (b) and the resulting
contour based on this map, returned by spectral method (c)
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a) b)

Fig. 8.23. Visualizations of 3D structure PET active region in human liver deter-
mined by proposed method

functional form makes it very straightforward to do some morphometry of the
organ of interest. If the data is segmented by any means and the 3D represen-
tation of organs or objects of interest, like tumors, is available the proposed
method may be applied to measure the fraction of the glucose consuming tis-
sue to nonconsuming one in a tumor. This is done by virtual slicing of the
object in any direction and application of BCSM to delineate the structure
and derive the diameters in particular plane. Example of such object is shown
on figure 8.25 where there is a fusion of MRI-imaged and PET-imaged brain
tumor.

Application for Morphometry of Cells

Histopathological samples of a tissue contain numerous cells. Any automatic
analysis of such samples is done by counting of the cells of interest, usually
prepared and coloured differently than the surroundings. Then the measure-
ment of cells properties is done and their total number, area, circumference
length, shape, etc. is calculated. BCSM fits very well the requirements for
such analysis. Using the method a number of parameters may be derived, the
area, the circumference and the diameters of each cell. Example of delineation
of a cell extracted by masking from a histopathological sample is shown on
figure 8.26. This sample was prepared for angiogenesis research however a nu-
merous different applications of BCSM are possible in the emerging field of
molecular imaging [50].

Spleen’s Semiautomatic Morphometry in Ultrasonic Imaging

Scanning of internal organs like spleen is often a challenging task. The or-
gan is partially hidden beneath the rib, there may be a lack of echo from
some parts of the scanning region, the organ lies beneath the fat layer, etc.
However, if some a priori knowledge is available the organ may be recon-
structed and its morphometry may be done. This is a crucial point for many
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b)a)

c)

Fig. 8.24. Visualizations of 3D structure PET active region in human liver deter-
mined by proposed method. Structural 3D projection based on the CT volume (a),
functional 3D projection of PET active region of liver obtained by proposed method
(b) and the fusion of two projections (c)

clinical applications, like estimation of the progress of splenomegaly, etc. The
a priori knowledge in the discussed case, which is shown on figure 8.27, was
put manually by simple pointing few marks, around 10, in the ROI where the
spleen was displayed. Then the initial contour was found used further as a
prior, the original data has been decomposed, noise reduced, automatic ad-
ditional priors constructed and after Bayesian inference the initial edge map
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a)

c)b)

Fig. 8.25. Fusion (a) of structural MRI (c) and functional PET 3D volumes (b)
limited to the tissue of brain cancer. The data was registered first by a method based
on mutual information estimation

Fig. 8.26. Cell morphometry for angiogenesis research. Proposed method is applied
to find out the edge map of a cell (a) and the final contour (b). Multiscale priors
were used
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Fig. 8.27. Ultrasonic noisy image of spleen with delineated organ contour. The
proposed method has been used

has been converted into the most probable representation of contour by spec-
tral method. The result of delineation is also shown on figure 8.27. Similar
applications for different inner organs are straightforward.

8.5 Conclusions and Future Directions

The method has been tested in many scales from cell level through internal or-
gans to whole body. This makes it a universal tool for segmentation of a human
tissue and organs of body in hierarchical or dynamical digital models. Another
advantage of the method is arbitrary scaling of surface of visualized object
and compression of information which is necessary for object’s description.

The method is well suited for the analysis of noisy and disturbed data
like that obtained by ultrasonography. Applications of the method to ultra-
sonic data is an alternative for existing methods [48,49] especially in the case
of dynamical modeling. Moreover, it offers a unique opportunity for miss-
ing information reconstruction. This is the main advantage of the method in
applications to multimodal data as well. High ability of mutual information
recovering supports the medical diagnostic process based on human-computer
interaction.
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Presented method is suitable for supporting the diagnostic process, it helps
to manage huge amount of information about human body and its functions,
provides tools for virtual reality, academic training and complex digital hu-
man modeling. Possible future direction of the method development is its fully
3D version, with spectral method working in 3D space [40] and appropriate
novel Bayesian inference strategies and automatic incorporation of standard
anatomic atlases. The, most interesting modification or development of the
method would be done by applications of different PDE enhanced by addi-
tional driving terms and working in complementary to real space of adapted
transform, that may be based on different than Fourier bases. Particularly
suitable bases for such a purpose are different orthogonal wavelet bases.
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Summary. A discussion on involvement of knowledge based methods in imple-
mentation of user friendly computer programs for disabled people is the goal of this
paper. The paper presents a concept of a computer program that is aimed to aid
blind people dealing with music and music notation. The concept is solely based
on computational intelligence methods involved in implementation of the computer
program. The program is build around two research fields: information acquisition
and knowledge representation and processing which are still research and technology
challenges. Information acquisition module is used for recognizing printed music no-
tation and storing acquired information in computer memory. This module is a kind
of the paper-to-memory data flow technology. Acquired music information stored
in computer memory is then subjected to mining implicit relations between mu-
sic data, to creating a space of music information and then to manipulating music
information. Storing and manipulating music information is firmly based on knowl-
edge processing methods. The program described in this paper involves techniques
of pattern recognition and knowledge representation as well as contemporary pro-
gramming technologies. It is designed for blind people: music teachers, students,
hobbyists, musicians.

9.1 Introduction

In this paper we attempt to study application of computational intelligence
in a real life computer program. The program is supposed to handle music in-
formation and to provide an access for disabled people, for blind people in our
case. The term computational intelligence, though widely used by computer
researchers, has neither a common definition nor it is uniquely understood
by the academic community. However, it is not our aim to provoke a dis-
cussion on what artificial intelligence is and which methods it does embed.
Instead, we rather use the term in a common sense. In this sense intuitively
understood knowledge representation and processing is a main feature of it.
Enormous development of computer hardware over past decades has enabled
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bringing computers as tools interacting with human partners in an intelligent
way. This required, of course, the use of methods that firmly belong to the
domain of computational intelligence and widely apply knowledge processing.

Allowing disabled people to use computer facilities is an important so-
cial aspect of software and hardware development. Disabled people are faced
problems specific to their infirmities. Such problems have been considered
by hardware and software producers. Most important operating systems in-
clude integrated accessibility options and technologies. For instance, Microsoft
Windows includes Active Accessibility techniques, Apple MacOS has Univer-
sal Access tools, Linux brings Gnome Assistive Technology. These technologies
support disabled people and, also, provide development tools for program-
mers. They also stimulate software producers to support accessibility options
in created software. Specifically, if a computer program satisfies necessary co-
operation criteria with a given accessibility technology, it becomes useful for
disabled people.

In the age of information revolution development of software tools for dis-
abled people is far inadequate to necessities. The concept of music processing
support with a computer program dedicated to blind people is aimed to fill in
a gap between requirements and tools available. Bringing accessibility tech-
nology to blind people is usually based on computational intelligence methods
such as pattern recognition and knowledge representation and processing. Mu-
sic processing computer program discussed in this paper, which is intended
to contribute in breaking the accessibility barrier, is solely based on both
fields. Pattern recognition is applied in music notation recognition. Knowl-
edge representation and processing is used in music information storage and
processing.

9.1.1 Notes on Accessibility for Blind People

The population of blind people is estimated to up to 20 millions. Blindness,
one of most important disabilities, makes suffering people unable to use or-
dinary computing facilities. They need dedicated hardware and, what is even
more important, dedicated software. In this Section our interest is focused
on accessibility options for blind people that are available in programming
environments and computer systems.

An important standard of accessibility options for disabled people is pro-
vided by IBM Corporation. This standard is common for all kinds of personal
computers and operating systems. The fundamental technique, which must be
applied in blind people aimed software, relies on assigning all program func-
tions to keyboard. Blind people do not use mouse or other pointing devices,
thus mouse functionality must also be assigned to keyboard. This requirement
allows blind user to learn keyboard shortcuts which activates any function of
the program (moreover, keyboard shortcuts often allow people with good eye-
sight to master software faster then in case of mouse usage). For instance, Drag
and Drop, the typical mouse operation, should be available from keyboard. Of
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course, keyboard action perhaps will be entirely different then mouse action,
but results must be the same in both cases. Concluding, well design computer
program must allow launching menus and context menus, must give access
to all menu options, toolbars. Such a program must allow launching dialog
boxes and give access to all their elements like buttons, static and active text
elements, etc. These constraints need careful design of program interface. Or-
dering of dialog box elements which are switched by keyboard actions is an
example of such a requirement.

Another important factor is related to restrictions estimated for non dis-
abled users. For instance, if application limits time of an action, e.g. waiting
time for an answer, it should be more tolerant for blind people since they need
more time to prepare and input required information.

Application’s design must consider accessibility options provided by the
operating system in order to avoid conflicts with standard options of the sys-
tem. It also should follow standards of operating system’s accessibility method.
An application for blind people should provide conflict free cooperation with
screen readers, which are common tools by blind people. It must provide
easy-to-learn keyboard interface duplicating operations indicated by pointing
devices.

Braille display is the basic hardware element of computer peripherals being
a communicator between blind man and computer. It plays roles of usual
screen, which is useless for blind people, and of control element allowing for
a change of screen focus, i.e. the place of text reading. Braille display also
communicates caret placement and text selection.

Braille printer is another hardware tool dedicated to blind people. Since or-
dinary printing is useless for blind people, Braille printer punches information
on special paper sheet in form of the Braille alphabet of six-dots combinations.
Punched documents play the same role for blind people as ordinary printed
documents for people with good eyesight.

Screen reader is the basic software for blind people. Screen reader is the
program which is run in background. Screen reader captures content of an ac-
tive window or an element of a dialog box and communicates it as synthesized
speech. Screen reader also keeps control over Braille display communicating
information that is simultaneously spoken.

Braille editors and converters are groups of computer programs giving
blind people access to computers. Braille editors allow for editing and control
over documents structure and contents. Converters translate ordinary docu-
ments to Braille form and oppositely.

9.1.2 Notes on Software Development for Blind People

Computers become widely used by disabled people including blind people. It
is very important for blind people to provide individuals with technologies
of easy transfer of information from one source to another. Reading a book
becomes now as easy for blind human being as for someone with good eyesight.
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Blind person can use a kind of scanning equipment with a speech synthesizer
and, in this way, may have a book read by a computer or even displayed at
a Braille display. Advances in speech processing allow for converting printed
text into spoken information. On the other hand, Braille displays range from
linear text display to two dimensional Braille graphic windows with a kind of
gray scale imaging. Such tools allow for a kind of reading or seeing and also
for editing of texts and graphic information.

Text processing technologies for blind people are now available. Text read-
ers, though still very expensive and not perfect yet, becomes slowly a standard
tool of blind beings. Optical character recognition, the heart of text readers, is
now well developed technology with almost 100% recognition efficiency. This
perfect technology allows for construction of well working text readers. Also,
current level of development of speech synthesis technology allows for acoustic
communicating of a recognized text. Having text’s information communicated,
it is easy to provide tools for text editing. Such editing tools usually use a
standard keyboard as input device.

Text processing technologies are rather exceptions among other types of
information processing for blind people. Neither more complicated document
analysis, nor other types of information is easily available. Such areas as, for
instance, recognition of printed music, of handwritten text and handwritten
music, of geographical maps, etc. still raise challenges in theory and practice.
Two main reasons make that software and equipment in such areas is not
developed for blind people as intensively as for good eyesight ones. The first
reason is objective - technologies such as geographical maps recognition, scan-
ning different forms of documents, recognizing music notation are still not well
developed. The second reason is more subjective and is obvious in commercial
world of software publishers - investment in such areas scarcely brings profit.

9.2 Acquiring Music Information

Any music processing system must be supplied with music information.
Manual inputs of music symbols are the easiest and typical source of music
processing systems. Such inputs could be split in two categories. One category
includes inputs from - roughly speaking - computer keyboard (or similar com-
puter peripheral). Such input is usually linked to music notation editor, so it
affects computer representation of music notation. Another category is related
to electronic instruments. Such input usually produce MIDI commands which
are captured by a computer program and collected as MIDI file representing
live performance of music.

Besides manual inputs we can distinguish inputs automatically converted
to human readable music formats. The two most important inputs of auto-
matic conversion of captured information are automatic music notation recog-
nition which is known as Optical Music Recognition technology and audio



9 Breaking Accessibility Barriers 211

music recognition known as Digital Music Recognition technology. In this pa-
per we discuss basics of automatic music notation recognition as a source of
input information feeding music processing computer system.

9.2.1 Optical Music Recognition

Optical Music Recognition is an example of paper-to-computer-memory infor-
mation transfer technologies. Printed music notation is scanned to get image
files in TIFF or similar graphical format of music notation sheets. Then, OMR
technology converts music notation to the internal format of computer system
of music processing.

Optical music recognition brings difficulties common to general pattern
recognition as well as domain specific problems. Scanned music notations sub-
jected to recognition are blurred, noised, fragmented or overlapping printing;
rotated and shifted symbol placement; skewed and curved scanning, etc. On
the other hand, music symbols appearance is highly irregular: symbols may be
densely crowded in one region and sparsely placed in other regions. Instances
of the same symbol lay on, above or below staff lines. Thus, copies of the
same symbol may be affected by staff lines or may be isolated from staff lines
influence. A further difficulty is raised by irregular sizing and shaping of music
symbols. Music notation includes symbols of full range of size: starting from
small dot (staccato symbol or rhythmic value prolongation of a note or a rest)
and ending with page width arc or dynamic hairpin. Sophisticated shaping of
music symbols would be illustrated by clefs, rests, articulation markings, etc.

The structure of automated notation recognition process has two distin-
guishable stages: location of staves and other components of music notation
and recognition of music symbols. The first stage is supplemented by detect-
ing score structure, i.e. by detecting staves, barlines and then systems and
systems’ structure and detecting other components of music notation like ti-
tle, composer name, etc. The second stage is aimed on finding placement and
classifying symbols of music notation. The step of finding placement of mu-
sic notation symbols, also known as segmentation, must obviously precede
the step of classification of music notation symbols. However, both steps seg-
mentation and classification often interlace: finding and classifying satellite
symbols often follows classification of main symbols. In this section we briefly
discuss the process of music notation recognition.

Staff Lines and Systems Location

Music score is a collection of staves which are printed on sheets of paper,
c.f. [8]. Staves are containers to be filled in with music symbols. Stave(s)
filled in with music symbols describe a part played by a music instrument.
Thus, stave assigned to one instrument is often called a part. A part of one
instrument is described by one stave (flute, violin, cello, etc.) or more staves
(two staves for piano, three staves for organ).
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Staff lines location is the first stage of music notation recognition. Staff
lines are the most characteristic elements of music notation. They seem to be
easily found on a page of music notation. However, in real images staff lines
are distorted raising difficulties in automatic positioning. Scanned image of a
sheet of music is often skewed, staff line thickness differs for different lines and
different parts of a stave, staff lines are not equidistant and are often curved,
especially in both endings of the stave, staves may have different sizes, etc.,
c.f. [8] and Figure 9.1.

Having staves on page positioned, the task of system detection is per-
formed. Let us recall that the term system (at a page of music notation) is
used in the meaning of all staves performed simultaneously and joined together
by beginning barline. Inside and ending barlines define system’s structure. For
instance, in Figure 9.1 we can see two inside and ending barlines connecting
two lower staves of piano part and separated upper stave of violin part. Thus,
detection of systems and systems’ structure relies on finding barlines.

Fig. 9.1. Examples of real notations subjected to recognition
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Score Structure Analysis

Sometimes one stave includes parts of two instruments, e.g. simultaneous no-
tation for flute and oboe or soprano and alto as well as tenor and bass. All
staves, which include parts played simultaneously, are organized in systems.
In real music scores systems are often irregular, parts which not play may be
missing.

Each piece of music is split into measures which are rhythmic, (i.e. time)
units defined by time signature. Measures are separated each from other by
barlines.

The task of score structure analysis is to locate staves, group them into
systems and then link respective parts in consecutive systems. Location of
barlines depicts measures, their analysis split systems into group of parts and
defines repetitions.

Music Symbols’ Recognition

Two important problems are raised by symbol recognition task: locating and
classifying symbols. Due to irregular structure of music notation, the task
of finding symbol placement decides about final symbol recognition result.
Symbol classification could not give good results if symbol location is not well
done. Thus, both tasks are equally important in music symbols recognition.

Since no universal music font exits, c.f. Figure 9.1, symbols of one class
may have different forms. Also size of individual symbols does not keep fixed
proportions. Even the same symbols may have different sizes in one score.
Besides usual noise (printing defects, careless scanning) extra noise is gener-
ated by staff and ledger lines, densely packed symbols, conflicting placement
of other symbols, etc.

Music notation is built around staves. The position and size of symbols are
restricted and determined by the stave. Having staves and systems located,
automated recognition of music is run. Recognition is done for every stave and
then, after notation is recognized and analyzed for given stave, the acquired
music data pours internal format of music representation.

The first step of music symbols’ recognition - symbol location - is aimed
at preparing a list of located symbols of music notation and defining bound-
ing boxes embodying symbols of music notation. The process of symbols
location is based on analysis of vertical projection. First, vertical projection
of the whole region of given stave is analyzed. This analysis is mainly based
on processing of derivative of vertical projection and can be interpreted
as applyingextended and improved projection methods, c.f. [5]. Derivative
processing gives a horizontal approximation of object location. Then, for
every roughly located object, horizontal projection of local area is analyzed.
This analysis gives vertical location of the object and its improved horizontal
location. The most important difficulties are related to objects which cannot
be separated by horizontal and vertical projections. Also wide objects as slurs,
dynamic ‘hairpin’ signs, etc. are hardly located.
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The next step of recognition process is undertaken on the basis of a list
of located objects. This step, in fact, essentially has two permeating tasks:
feature extraction and classification of symbols. Both tasks are being done
simultaneously and it is not possible to separate them. Feature extraction step
starts from extracting the simplest and most obvious features as height and
width of the bounding box containing given object. Examining of such simple
features allows for classification only in a few cases. In most cases additional
features must be extracted and context analysis must be done. The extraction
of features is based on filtering of projections in the bounding box, analysis
of chosen columns and rows of pixels, etc. Several classification methods are
applied for final classification of symbols including context analysis, decision
trees, and syntactical methods.

A wide range of methods are applied in music symbol recognition: neural
networks, statistical pattern recognition, clustering, classification trees, etc.,
c.f. [1, 5, 10,15].

9.2.2 Automatic Conversion of MIDI to Notation

Braille Score program can acquire music information from MIDI files. MIDI file
is a container of music information itself. However, music information stored
in MIDI file is awkward to be used in music editing. Thus, MIDI file should be
converted to more suitable format. Braille Score program converts MIDI file
to BSF format. Both MIDI format and BSF format are container for music.
Yet, both formats are directed to different tasks. MIDI format is performance
and thus time oriented. Its main data inform about beginning and ending time
of notes. For instance, in MIDI format division of music to measures does not
explicitly exists, such a division could be concluded from other parameters of
MIDI format. BSF format is notation oriented. In BSF format measure is a
fundamental unit of data. MIDI to BSF conversion should reconstruct missing
data necessary to set up BSF format. Before MIDI is converted to BSF, MIDI
data must be ordered in order to adjust times (NoteOn, NoteOff, c.f. [20]) to
given quantization. This problem is observed for live recorded MIDI files.

MIDI to BSF conversion itself raises interesting algorithmic problems:
voice lines detection, flags/beams designation, measures detection, depict-
ing clefs and key signatures, splitting music to staves/systems, identifying
of rhythmic groupings, recognizing of articulation and ornamentation figures.

9.3 Representing Music Information

Acquired knowledge has to be represented and stored in a format understand-
able by the computer brain, i.e. by a computer program - this is a funda-
mental observation and it will be exploited as a subject of discussion in this
section. Of course, a computer program cannot work without low level sup-
port - it uses a processor, memory, peripherals, etc., but they are nothing
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more than only primitive electronic tools and so they are not interesting from
our point of view. Processing of such an acquired image of the paper doc-
ument is a clue to the paper-to-memory data transfer and it is successfully
solved for selected tasks, c.f. OCR technology. However, documents that are
more complicated structurally than linear (printed) texts raise the problem
of data aggregation into information units in order to form structured space
of information. Such documents raise the problem of acquiring of implicit in-
formation/knowledge that could be concluded from the relationships between
information units. Documents containing graphics, maps, technical drawings,
music notation, mathematical formulas, etc. can illustrate these aspects of
difficulties of paper-to-computer-memory data flow or MIDI-to-notation con-
versions. They are research subjects and still raise a challenge for software
producers.

Optical music recognition (OMR) is considered as an example of paper-
to-computer-memory data flow. This specific area of interest forces specific
methods applied in data processing but, in principle, gives a perspective on
the merit of the subject of knowledge processing. Data flow starts from a
raster image of music notation and ends with an electronic format represent-
ing the information expressed by a scanned document, i.e. by music notation
in our case. Several stages of data mining and data aggregation convert the
chaotic ocean of raster data into shells of structured information that, in ef-
fect, transfer structured data into its abstraction - music knowledge. This
process is firmly based on the nature of music notation and music knowledge.
The global structure of music notation has to be acquired and the local in-
formation fitting this global structure must also be recovered from low level
data. The recognition process identifies structural entities like staves, group
them into higher level objects like systems, than it links staves of consecutive
systems creating instrumental parts. Music notation symbols exist very rarely
as standalone objects. They almost exclusively belong to structural entities:
staves, systems, parts, etc. So that the mined symbols are poured into these
prepared containers - structural objects, cf. [1,4,8,19]. Music notation is a two
dimensional language in which the importance of the geometrical and logical
relationships between its symbols may be compared to the importance of the
symbols alone. This phenomenon requires that the process of music knowledge
acquisition must also be aimed at recovering the implicit information repre-
sented by the geometrical and logical relationships between the symbols and
then at storing the recovered implicit relationships in an appropriate format
of knowledge representation.

There are open problems of information gaining and representation like, for
instance, performance style, timbre, tone-coloring, feeling, etc. These kinds of
information are neither supported by music notation, not could be derived in
a reasoning process. Such kinds of information are more subjectively perceived
rather than objectively described. The problem of definition, representation
and processing of “subjective kinds of information” seems to be very inter-
esting from research and practical perspectives. Similarly, problems like, for
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instance, human way of reading of music notation may be important from
the point of view of music score processing, cf. [6,7]. Nevertheless, processing
of such kinds of information does not fit framework of the paper and is not
considered.

The process of paper-to-computer-memory music data flow is presented
from the perspective of a paradigm of granular computing, cf. [17]. The low-
level digitized data is an example of numeric data representation, operations
on low-level data are numeric computing oriented. The transforming of a raster
bitmap into compressed form, as e.g. run lengths of black and while pixels,
is obviously a kind of numeric computing. Numeric computing transfers data
from its basic form to more compressed data. However, the next levels of the
data aggregation hierarchy, e.g. finding the handles of horizontal lines, begins
the process of data concentration that become embryonic information units,
or even knowledge units, rather than more compressed data entities, cf. [8].

9.3.1 Staves, Measures, Systems

Staves, systems, measures are basic concepts of music notation, cf. Figure 9.2.
They define the structure of music notation and are considered as information
quantities included into the data abstraction level of knowledge hierarchy. The
following observations justify such a qualification.

system
system

system

measure split between systems

measures

Fig. 9.2. Structuring music notation - systems and measures
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A stave is an arrangement of parallel horizontal lines which together with
the neighborhood are the locale for displaying musical symbols. It is a sort
of vessel within a system into which musical symbols can be “poured”. Music
symbols, text and graphics that are displayed on it belong to one or more parts.
Staves, though directly supported by low-level data, i.e. by a collection of black
pixels, are complex geometrical shapes that represent units of abstract data.
A knowledge unit describing a stave includes such geometrical information
as the placement (vertical and horizontal) of its left and right ends, staff
lines thickness, the distance between staff lines, skew factor, curvature, etc.
Obviously, this is a complex quantity of data.

A system is a set of staves that are played in parallel; in printed music
all of these staves are connected by a barline drawn through from one stave
to next on their left end. Braces and/or brackets may be drawn in front of
all or some of them. Braces and brackets, if present, define internal system
structuring linking staves allocated for one instrument and linking staves of
similar instruments. For instance, both staves of piano part are indicated by
brace placed in front of their beginning. Similarly, staves of string quintet is
grouped with bracket facing beginning of staves.

A measure is usually a part of a system, sometimes a measure covers the
whole system or is split between systems, cf. Figure 9.2. A measure is a unit
of music identified by the time signature and rhythmic value of the music
symbols of the measure. Thus, like in the above cases, a measure is also a
concept of data abstraction level.

9.3.2 Notes, Chords, Vertical Events, Time Slices

Such symbols and concepts as notes, chords, vertical events, time slices are
basic concepts of music notation, cf. Figure 9.3. They define the local meaning
of music notation and are considered as information quantities included in
the data abstraction level of the knowledge hierarchy. Below a description
of selected music symbols and collections of symbols are described. Such a
collection constitutes a unit of information that has common meaning for
musician. These descriptions justify classification of symbols to a respective
unit of the data abstraction level of the music knowledge hierarchy.

Note - a symbol of music notation - represents basically the tone of given
time, pitch and duration. A note may consist of only a notehead (a whole note)
or also has a stem and may also have flag(s) or beam(s). The components of
a note are information quantities created at the data concentration and the
data aggregation stages of data aggregation process [8, 13]. This components
linked in the concept of a note create an abstract unit of information that is
considered as a more complex component of the data abstraction level of the
music knowledge hierarchy.

A chord is composed of several notes of the same duration with noteheads
linked to the same stem (this description does not extend to whole notes
due to the absence of a stem for such notes). Thus, a chord is considered as
dataabstraction.
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vertical events

vertical events

note head stem
chord

beamsnoterest

Fig. 9.3. Structuring music notation - symbols, ensembles of symbols

A vertical event is the notion by which a specific point in time is identified
in the system. Musical symbols representing simultaneous events of the same
system are logically grouped within the same vertical event. Common vertical
events are built of notes and/or rests.

A time slice is the notion by which a specific point in time is identified
in the score. A time slice is a concept grouping vertical events of the score
specified by a given point in time. Music notation symbols in a music repre-
sentation file are physically grouped by page and staff, so symbols belonging
to a common time slice may be physically separated in the file. In most cases
time slice is split between separated parts for the scores of part type, i.e. for
the scores with parts of each performer separated from others. Since barline
can be seen as a time reference point, time slices can be synchronized based
on barline time reference points. This fact allows for localizing recognition’s
timing errors to one measure and might be applied in error checking routine.

9.4 Approximated Data Structuring

The notion of understanding is regarded as the main feature of intelligent
communication and an important goal of the present paper. We would like
to characterize the meaning in which the word understanding is used in the
paper. Understanding is an ability to identify objects and sets of objects de-
fined by concepts expressed in a given language. The concept’s description in
a given language is what the syntax is. A mapping which casts the concepts’



9 Breaking Accessibility Barriers 219

description on the real world objects is what the semantics is. Ability to recog-
nize the semantics is the meaning of understanding. We reflect meanings of the
above notions in music notation seen as a language of natural communication.

9.4.1 Syntax

Syntactic approach is a crucial stage and a crucial problem in the wide spec-
trum of tasks as, for instance, pattern recognition, translation of programming
languages, processing of natural languages, music processing, etc. Syntactic
approach is generally based on the context-free methods which have been in-
tensively studied. Context-free methods have also been applied in practice for
the processing of artificial languages as, for instance, programming languages,
in technical drawings, etc. We can even say that application in this field has
been successful.

Unfortunately, natural communication between people, e.g. communica-
tion in a natural language or using music notation, is too complex to be
formalized in a context-free way, though it is clear that such communication
is rule-governed, cf. [2]. Even if there is a definite set of rules defining a lan-
guage of natural communication, the rules are much more complicated than
those describing artificial languages of formal communication. And such rules
can often be broken with little impact on communication. Thus, a descrip-
tion of such tools as a natural language or music notation must definitely be
highly flexible and deeply tolerant to natural anarchy of its subjects. With
all that in mind, the proposed approach to describing languages of natural
communication will rely on the sensible application of the proposed context-
free methods applied locally in the structured space of a language of natural
communication. Moreover, it is assumed that the context-free methods will
not be applied unfairly to generate incorrect constructions of them. Those
assumptions allow for a raw approximation of languages of natural commu-
nication as, for instance, natural language or music notation, which are far
more complex than a context-free tools utilized for such an approximation. Of
course, such assumptions are real shortcomings in accurate description of a
language of natural communication and in its processing. These shortcomings
must be solved by employing some other methods, perhaps not context-free.

Below, we present an approximated description of a local area of music
notation. This description is given in the form of context free grammar. For
more details on context free descriptions of music notation see [11,13].

<stave> → <beginning barline> <bl stave>
→ <bl stave>

<bl stave> → <key signature> <ks stave>
→ <ks stave>

<ks stave> → <time signature> <ts stave>
→ <ts stave>
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<ts stave> → <measure> <barline> <ts stave>
→ <measure> <barline>

<measure> → <change of k sign.> <ks measure>
→ <ks measure>

<ks measure> → <change of t sign.> <ts measure>
→ <ts measure>

<ts measure> → <vertical event> <ts measure>
→ <vertical event>

<vertical event> → <stem> <vertical event>
→ <stem>

<stem> → <beams> <note stem>
→ <flags> <note stem>
→ <note stem>

<stem> → <beams> <rhythm group> <note stem>
→ <flags> <rhythm group> <note stem>
→ <note stem> <rhythm group>

<beams> → left beam <beams>
→ right beam <beams>
→ right beam

<rhythm group> → left rh gr <rhythm group>
→ right rh gr <rhythm group>
→ 3

<flags> → flag <flags> | flag
<note stem> → note head <note stem>

→ note head stem

9.4.2 Semantics

As mentioned above, people use different tools for communication: natural
languages, programming languages, artificial languages, language of gesture,
drawings, photographs, music notation. All those tools could be seen as tools
used for describing a matter of communication and as information carriers.
We can observe that different tools can be used for encoding the same commu-
nication matter description. Immersing our deliberations into music notation
we should be aware that among different tools of natural communication,
natural languages are most universal. In general, they cover most parts of
information spaces spanned by other tools. Therefore, a natural language can
alternatively describe constructions of music notation. Interpreting this obser-
vation we can notice that, for instance, a given score can also be described in
Braille Music [14], MusicXML [3] or other formats or even, e.g., in the English
language. Moreover, all such descriptions carry similar information space.

Likewise, a description of a subject (a thing, a thought, an idea, etc.) may
be prepared in different natural languages. Such descriptions approximate the
subject bringing its projection onto the language used for description. And
such a description could be translated to other natural language without a
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significant lost of information. This means that the subject being described
could be seen as a meaning of a description. So, a study on a subject described
in a natural language (or even in any language of natural communication) may
supplement the study on descriptions themselves. In other words, syntactic
analysis of language descriptions may be supplemented by a semantic analysis
of description’s subject.

In this study music notation, as a language of natural communication, cast
onto a space of communication subjects (i.e. onto musical scores, as texts of the
language of natural communication) is understood as the semantic approach
to music information processing. Formally, the mapping V describes semantics
of the music notation description:

V : L → M

where: L is a music notation lexicon, M is music notation.
The mapping V assigns objects of a given musical score M to items stored

in the corresponding lexicon L. The lexicon L is a set of local portions of the
derivation tree of the score. For details see [11].

9.5 Men-machine Communication as an Intelligent
Information Exchange

As mentioned before, communication is understood as a presentation or an
exchange of information between two (or more then two) objects of communi-
cation. Essential feature communication is understanding information being
exchanged. Understanding requires exact description of relations between in-
formation entities, what is done in the form of syntactic and semantic struc-
turing integrated in frames of information granulation paradigm.

9.5.1 Syntactic Analysis - a Tool Describing Communicated
Information

Syntactic analysis is a tool used for data space structuring. As discussed above,
syntactic methods cannot be used for full structuring of complex data spaces
as, for instance, for structuring music information. Thus, it is used for ap-
proximation of data structuring. Such an approximation is often sufficient for
revealing structures of data that could be extracted form the data space and
possibly subjected to further processing.

Syntactic analysis is a suitable tool for acquiring user’s choice of data.
Selection tool is usually used to define user’s choice. A selection done by user
could either be interpreted at the lowest level of data structures, or may be
performed to a part of structured data space. In Figure 9.4 we have two
rectangle selections. These selections could be interpreted as numerical data
representing raster bitmaps which have nothing common with displayed music
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Fig. 9.4. Examples of blocks selections: two measures in a system and two measures
in a stave

notation. On the other hand these selections could be understood as a part
of music notation, namely: two measures in a system and two measures in
a stave. In case of Figure 9.5 selections shown as grayed symbols of music
notation cannot be interpreted as a raw numerical data. These selections are
parts of the structured data space.

Syntactic analysis allows for immersion of user’s selection into structured
information space. Syntactic interpretation of user’s selection of data gives the
first significant raise leading to full identification of information intended to
be communicated by men. It needs to be mentioned that, in this discussion,
we drop a category of technical details like, for instance, which programming
tools are used to point out desired objects at a computer screen and how to
indicate options of a selection.

Let us look at the selection of two measures in the stave. It is defined
as a part of derivation tree in a grammar generating the score (part of this
grammar is outlined in section 9.4.1). This selection corresponds to paths from
the root to two indicated vertexes <measure> of the part of derivation tree
shown in Figure 9.6. The selection of two triplets in lower part of Figure 9.6 is
described by the indicated vertex <ts measure>, which is also taken as one
vertex path. Description of voice line selection cannot be described as easily
as other selections, it requires context analysis.
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Fig. 9.5. Examples of selections: lower voice line in first two measures and triplets
on sixteens

9.5.2 Semantic Mapping as Identification of Communicated
Information

Syntactic descriptions of information entities is a basis for identification of
relevant area of information space. This identification is done by casting the
lexicon of a given score, i.e. the space syntactic granules, onto the space of
objects of sematic granules of the score. Semantic granules are subjects of
understanding and of possible processing.

The meaning of paths from the root to two indicated vertexes <measure>
(being syntactic granules) is defined as follow. It is the crop of all subtrees
of derivation tree, which include both paths together with subtrees rooted in
vertexes ending both paths. The structure of symbols of music notation that
are included into selected two measures corresponds to this meaning.

On the other hand, crops of all subtrees of the derivation tree in Figure 9.6,
which are equal to the subtree defined by the indicated vertex <ts measure>,
is the meaning of syntactic granules (in this case, the subtree has excluded its
part denoted by indicated multidots vertex).
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Fig. 9.6. Derivation tree of the first triplet marked at Figure 9.5

It is worth to notice that the description of the first semantic granule is a
special case of the the description of the second semantic granule. Having a
path, which begins in the root of derivation tree, we can find only one subtree
equal this path with subtree rooted in its ending vertex.

Semantic granules define meaning of information being exchanged and
allow for responding to requests. Such responses are outlined in Figure 9.7.
Its upper part shows original score. two other parts illustrate transposition
performed on recognized notation. The middle parts shows three voice lines.
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Fig. 9.7. Examples of transpositions: original score, automatic recognition of the
original score, upper voice line moved one octave up and lower voice line moved one
octave down, third measure transposed from D to G

The upper voice line was subjected to transposition by one octave up. The
lower voice line was subjected to transposition by one octave up. The third
part of shows transposition of the third measure from D to G.

9.5.3 Granulation as a Form of Understanding

Information exchanged in communication is materialized in the form of texts
of a language of natural communication. Thus, the term text spans not only
over texts of natural languages, but also over constructions like, for instance,
musical scores, medical images, etc. (we can also apply this term to con-
structions of languages of formal communication, e.g. to computer programs).
Revealing recent sections let us say that a study on how texts are con-
structed is what we mean as syntax. A matter described by such a text is
what is understood as semantics. Integrating syntax and semantics leads to
information granulation and identification of relations between granules of in-
formation, c.f. [13, 18]. Discovering relations between both aspects is seen as
understanding.
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The description of music notation as well as music notation itself could
be innately subjected to the paradigm of granular computing elucidation.
As stated in [17], granular computing as opposed to numeric computing is
knowledge-oriented. Information granules exhibit different levels of knowledge
abstraction, what strictly corresponds to different levels of granularity. De-
pending upon the problem at hand, we usually group granules of similar size
(i.e. similar granularity) together into a single layer. If more detailed (and
computationally intensive) processing is required, smaller information gran-
ules are sought. Then, those granules are arranged in another layer. In total,
the arrangement of this nature gives rise to the information pyramid. In the
granular processing we encounter a number of conceptual and algorithmic
layers indexed by the size of information granules. Information granularity
implies the usage of various techniques that are relevant for the specific level
of granularity.

The meaning of granule size is defined accordingly to real application
and should be consistent with common sense and with the knowledge base.
Roughly speaking size of syntactic granules is a function of of depth of the syn-
tactic structure. Size of the syntactic granule <score><score part><page>
<system> is smaller then size of the syntactic granule <score><score part>
<page><system><stave> which, in turn, is smaller then size of the syntactic
granule <score><score part><page><system><measure>, c.f. Figure 9.8.

On the other hand, we can define size of semantic granule. It is defined
as a quantity of real world objects or a length of continue concept. Size of
the semantic granule V (<score><score part><page><system>) is greater

<page>
<system>

<score>
<s.p.>

<system>
<stave>

<score>
<s.p.>
<page>

<system>
<stave>
<measure>

<score>
<s.p.>
<page>

<system>
<stave>
<measure>
<vertical_event>
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<s.p.>
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<stave>
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<vertical_event>
<stem>

<score>
<s.p.>
<page>
<system>

low granularity high granularity

pyramid of semantic granulespyramid of syntactic granules

Fig. 9.8. Duality of syntax and semantics for music notation. Relevance of syntactic
and semantic granules’ pyramids
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than size of V (<score><score part><page><system><stave>), which, in
turn, is greater then V (<score><score part><page><system><stave>
<measure>). Amazingly, greater size of syntactic granule correspond to
smaller size of respective semantic granule. The relevance between syntactic
and semantic granules is shown in Figure 9.8. And, as in music notation case,
this relevance is a manifestation of duality phenomenon in syntax-semantic
related spaces.

9.6 Braille Score

Braille Score is a project developed and aimed on blind people. Building in-
tegrated music processing computer program directed to a broad range of
blind people is the key aim of Braille Score, c.f. [16]. The program is built
around methods of computational intelligence discussed in this paper. The
use of computational intelligence tolls improves the program part devoted to
recognition and processing of music notation. The attention is focused on user
interface with special interest given to communication of the program with
blind user.

The program is mastered by a man. Both the man and computer pro-
gram create an integrated system. The structure of the system is outlined in
Figure 9.9.

The system would act in such fields as:

– creating scores from scratch,
– capturing existing music printings and converting them to electronic ver-
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Fig. 9.9. The structure of Braille Score
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– converting music to Braille and printing it automatically in this form,
– processing music: transposing music to different keys, extracting parts

from given score, creating a score from given parts,
– creating and storing own compositions and instrumentations of musicians,
– a teacher’s tool to prepare teaching materials,
– a pupil’s tool to create their own music scores from scratch or adapt

acquired music,
– a hobby tool.

9.6.1 User Interface Extensions for Blind People

Braille Score is addressed to blind people, c.f [16]. Its user interface extensions
allow blind user to master the program and to perform operations on music
information. Ability to read, edit and print music information in Braille format
is the most important feature of Braille Score. Blind user is provided the
following elements of interface: Braille notation editor, keyboard as input tool,
sound communicator.

Blind people do not use pointing devices. In consequence, all input func-
tions usually performed with mouse must be mapped to computer keyboard.
Massive communication with usage of keyboard requires careful design of in-
terface mapping to keyboard, c.f. [16].

Blind user usually do not know printed music notation. Their perception
of music notation is based on Braille music notation format presented at
Braille display or punched sheet of paper, c.f. [14]. In such circumstances music
information editing must be done on Braille music notation format. Since
typical Braille display is only used as output device, such editing is usually
done with keyboard as input device. In Braille Score Braille representation of
music is converted online to internal representation and displayed in the form
of music notation in usual form. This transparency will allow for controlling
correctness and consistency of Braille representation, c.f. [16].

Sound information is of height importance for blind user of computer
program. Wide spectrum of visual information displayed on a screen for user
with good eyesight could be replaced by sound information. Braille Score pro-
vides sound information of two types. The first type of sound information
collaborates with screen readers, computer programs dedicated to blind peo-
ple. Screen readers could read contents of a display and communicate it to
user in the form of synthesized speech. This type of communication is sup-
ported by contemporary programming environments. For this purpose Braille
Score uses tools provided by Microsoft .NET programming environment. The
second type of sound information is based on own Braille Score tools. Braille
Score has embedded mechanism of sound announcements based on its own
library of recorded utterances.
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9.6.2 Braille Score Output

Interaction between computer and blind user cannot use standard display and
visual communication. Use of pointing devices is heavily restricted and must
be integrated with other then visual computer feedback to user action. Blind
users can fully operate typical keyboard to input data to computer. Of course,
a kind of acoustic feedback must be launched to communicate exceptions or
alerts. On the other hand, Braille displays are basic computer output for
blind users. Unfortunately, usage of Braille display is not effective for massive
communication.

Braille Score uses two online methods as its output, c.f. Figure 9.10. The
first one is based on Braille display. The second is based on acoustic commu-
nication. Braille Score also have two off line outputs: printing music notation
and punching its Braille version.

BSF format represents music notation which is a two dimensional lan-
guage. Printed music notation is direct image of BSF format. For instance,
note pitch and time are described by its placement on a stave: vertical place-
ment determines its pitch while horizontal placement - its beginning time.

A unified international Braille system of music notation, respective to clas-
sical music notation, was developed, c.f. [14]. Braille system is strictly linear.
Thus, representation of music notation must also be linear. This implies that
note pitch neither can be determined by its placement on a page, nor by
placement relative to other symbols. Anyway, Braille system of music nota-
tion uniquely determines features of music symbols and is useful and practical.
User of Braille system of music must employ more characters and more rules
in order to describe music symbols, c.f. [14].

In Braille Score both types of Braille outputs: online with Braille display
and offline with Braille printer are based on the unified system of Braille music
notation.

As it was mentioned earlier, acoustic output is very important for blind
people. This type of communication is faster then the one based on Braille

Computer
Format of

Music
Information

Fig. 9.10. Braille Score output
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display. Acoustic output integrated with keyboard shortcuts used for nav-
igation and editing provides very efficient tool for mastering Braille Score
Format.

And, finally, Braille Score is able to display music notation on computer
screen and to print it. These two outputs, though cannot be directly used by
blind people, are necessary in computer program even as a development tool.
Yet, these outputs help in mastering Braille Score by good eyesight users as,
for instance, music teachers to prepare class materials or to work together
with blind students.

9.7 Conclusions

The aim of this paper is a discussion on involvement of computational intelli-
gence methods in implementation of user friendly computer programs focused
on disabled people.

Optical music recognition has been intensively developed for last two
decades gaining promising results. However, practical realizations in this field
are still far from perfection. The field of music notation recognition is still open
for research and further improvements of OMR technology are still sought. In
Sections 2 and 3 of the paper a brief overview of OMR technology from the
perspective of pattern recognition paradigm is presented. Optical music recog-
nition (OMR) is considered as an example of paper-to-computer-memory data
flow. This specific area of interest forces specific methods to be applied in data
processing, but in principle, gives a perspective on the merit of the subject
of data aggregation. The process of paper-to-computer-memory music data
flow is presented from the perspective of the process of acquiring information
from plain low-level data. Three important aspects of recognition process are
distinguished: structure of music notation analysis, music symbol recognition
and context knowledge acquisition. The discussion outlines an interpretation
of this process as a metaphor of granular computing.

The new framework on men-machine intelligent communication is
presented in the Sections 4 and 5. The term intelligent communication is
understood as information exchange with identified structure of information,
which is presented by a side of communication to his/its partner(s) or is
exchanged between sides of communication. Of course, identification of infor-
mation structure is a natural feature of human’s side of such communication.
An effort is focused on automatic identification of information structure based
on syntax and semantics of information description. Syntactic and semantic
descriptions have dual structure revealing granular character of represented
information. Complementary character of both attempts allow for automa-
tion of information structuring and - in consequence - intelligent information
maintenance and processing, what is the basis of intelligent communication
in men-machine intelligent communication. In this paper the problem of men-
machine intelligent communication is reflected in the area of music notation
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treated as a language of natural communication. However, reflection of this
problem in natural language as a language of natural communication give
similar conclusions, c.f. [9]. Thus, we can expect that integrated syntactic and
semantic data structuring guides to rational interpretation of men-machine
communication in many areas of human activity. This framework permits for
better understanding of communication process as well as leads to practical
solutions.

In the paper we describe a concept of Braille Score the specialized com-
puter program which should help blind people to deal with music and music
notation. The program is built around methods of computational intelligence
discussed in this paper. The use of computational intelligence tolls improves
the program part devoted to recognition and processing of music notation.
The attention is focused on user interface with special interest given to com-
munication of the program with blind user.
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Summary. We have combined a bottom-up casuistry approach with a top-down
implementation of an ethical theory to develop a system that uses machine-learning
to abstract relationships between prima facie ethical duties from cases of particular
types of ethical dilemmas where ethicists are in agreement as to the correct action.
This system has discovered a novel ethical principle that governs decisions in a
particular type of dilemma that involves three potentially conflicting prima facie
duties. We describe two prototype systems in the domain of healthcare that use this
principle, one that advises human beings as to the ethically correct action in specific
cases of this type of dilemma and the other that uses this principle to guide its own
behavior, making it what we believe may be the first explicit ethical agent.

10.1 Introduction

A pressing need for personnel in the area of healthcare, caused in no small
part by the aging “baby boomer” population, has fueled interest in possible
technological solutions, including developing intelligent healthcare agents. Be-
fore such agents can be deployed, however, ethical concerns pertaining to their
use need to be addressed. Unfortunately, at the present time, there is no con-
sensus among ethicists as to the ideal ethical theory and few of the proposed
candidates obviously lend themselves to machine implementation. Although
more agreement exists among ethicists as to the correct action in biomedical
ethical dilemmas than in other areas of applied ethics, this agreement has yet
to be fully codified in such a way that it can be incorporated into a machine.
The new interdisciplinary research area of “Machine Ethics” is concerned with
solving this problem not only for dilemmas that an artificial agent might face
in healthcare, but in other areas as well.

The ultimate goal of machine ethics, we believe, is to create a machine
that itself follows an ideal ethical principle or set of principles, that is to say,
it is guided by this principle or these principles in decisions it makes about
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possible courses of actions it could take. To accomplish this goal, the ma-
chine ethics research agenda will involve testing the feasibility of a variety
of approaches to capturing ethical reasoning, with differing ethical bases and
implementation formalisms, and applying this reasoning in intelligent agents
engaged in ethically sensitive activities, such as healthcare. Machine ethics
researchers must investigate how to determine and represent ethically rele-
vant features of ethical dilemmas, discover and implement ethical principles,
incorporate ethical principles into an intelligent agent’s decision procedure,
make ethical decisions with incomplete and uncertain knowledge, provide ex-
planations for decisions made using ethical principles, and evaluate intelligent
agents that act upon ethical principles.

It might seem impossible to “compute” ideas that humans feel most
passionately about and have such difficulty codifying: their ethical beliefs.
Despite this, our interdisciplinary team of an ethicist and computer scien-
tist believe that it is essential that we try, since there will be benefits not
only in the domain of healthcare, but for the fields of Artificial Intelligence
and Ethics as well. We’ve been attempting to make ethics computable for
three reasons: First, to avert possible harmful behavior from increasingly au-
tonomous machines, we want to determine whether one can add an ethical
dimension to them. Second, we want to advance the study of ethical theory
by making it more precise. Finally, we want to solve a particular problem in
ethical theory—namely, to develop a decision procedure for an ethical theory
that involves multiple, potentially competing, duties.

Our research in machine ethics has been concerned with leveraging
machine learning techniques to facilitate the codification of ethics, biomedical
ethics in particular, and developing ethical healthcare agents whose actions
are guided by the principles resulting from this codification. In our work to
date in machine ethics [3,4] we have, at a proof of concept level, developed a
representation of ethically relevant features of ethical dilemmas that is needed
to implement a prima facie duty approach to ethical theory, discovered an
ethical principle that governs decisions made in a particular type of ethical
dilemma involving three prima facie duties, and implemented this principle
in prototype intelligent agent systems. In the following, we summarize this
work and present two proof-of-concept systems in the domain of healthcare:
MedEthEx [4], a system that uses a machine-discovered ethical principle to
resolve particular cases of a general type of biomedical ethical dilemma, and
EthEl, a prototype eldercare system that uses the same principle to provide
guidance for its actions. We believe that MedEthEx and EthEl demonstrate
the feasibility of developing systems governed by ethical principles and lend
credence to the view that intelligent agents can play an important role in the
domain of healthcare and do so in an ethically sensitive manner.
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10.2 One Approach to Computing Ethics

In our research, we’ve adopted the action-based approach to ethical theory,
where the theory tells us how we should act in ethical dilemmas. This approach
lends itself to machine implementation by giving the agent either a single
principle or several principles to guide its actions, unlike other approaches
(e.g. virtue-based ethics that emphasizes virtues that an ethical agent should
possess) that don’t clearly specify the correct action in an ethical dilemma. A
good action-based ethical theory should satisfy these criteria [2]:

• Consistency. The theory shouldn’t contradict itself by saying that a single
action in a given set of circumstances is simultaneously right and wrong.

• Completeness. It should tell us how to act in any ethical dilemma in which
we might find ourselves.

• Practicality. We should be able to follow it.
• Agreement with intuition. The actions it requires and forbids should agree

with expert ethicists’ intuition.

We started our project by programming the one action-based ethical
theory that clearly attempts to make ethics computable: Hedonistic Act
Utilitarianism (HAU). According to one of its creators, Jeremy Bentham,
HAU simply involves doing “moral arithmetic.” [7] HAU maintains that an
action is right when, of all the possible actions open to the agent, it will likely
result in the greatest net pleasure, or happiness, taking all those affected by
the action equally into account. HAU involves first calculating the units of
pleasure and displeasure that each person affected will likely receive from
each possible action. It then subtracts the total units of displeasure from the
total units of pleasure for each of those actions to get the total net pleasure.
The action likely to produce the greatest net pleasure is the correct one. If
the calculations end in a tie, where two or more actions are likely to result
in the same greatest net pleasure, the theory considers these actions equally
correct.

The program Jeremy [5] is our implementation of HAU with simplified
input requirements. Jeremy (fig. 10.1) presents the user with an input screen
that prompts for an action’s description and the name of a person that action
affects. It also requests a rough estimate of the amount (very pleasurable,
somewhat pleasurable, not pleasurable or displeasurable, somewhat displea-
surable, or very displeasurable) and likelihood (very likely, somewhat likely,
or not very likely) of pleasure or displeasure that the person would experience
from this action. The user enters this data for each person affected by the
action and for each action under consideration. When data entry is complete,
Jeremy calculates the amount of net pleasure each action achieves. (It as-
signs 2, 1, 0, −1, or −2 to pleasure estimates and 0.8, 0.5, or 0.2 to likelihood
estimates, and sums their product for each individual affected by each action.)
It then presents the user with the action or actions achieving the greatest net
pleasure.
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Fig. 10.1. Jeremy, a hedonistic act utilitarian advisor system

An ideal version of a system such as Jeremy might well have an advantage
over a human being in following HAU because you can program it to do the
arithmetic strictly (rather than simply estimate), be impartial, and consider
all possible actions. We conclude, therefore, that machines can follow HAU at
least as well as human beings and perhaps even better, given the same data
that human beings would need to follow the theory.

Even though HAU is consistent, complete, and can be made practical, most
ethicists believe that it fails the test of agreement with intuition. Despite John
Stuart Mill’s heroic attempt in chapter five of Utilitarianism to show that
considerations of justice can be subsumed under the utilitarian principle [16],
ethicists generally believe that HAU can allow for the violation of individual
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rights if this will likely result in the greatest net good consequences, taking
everyone affected into account. One could, for instance, construct a case to
show that HAU permits killing one unimportant person to save the lives of
five important persons. This violates the intuition that it’s wrong to kill one
person to save several persons.

We have, however, adopted one aspect of HAU in our current approach
to ethical decision-making. When applying an ethical duty to a particular
dilemma, we consider such factors as the duty’s intensity and duration and
the number of persons affected—which we have initially combined as the level
of satisfaction or violation of the duty involved.

10.3 A More Comprehensive Ethical Theory

In agreement with W.D. Ross [20], we believe that all single-principle, absolute
duty ethical theories (such as HAU and Kant’s Categorical Imperative, a
principle that requires you to act in a way that can be universalized) are
unacceptable because they don’t appreciate the complexity of ethical decision
making and the tensions that arise from different ethical obligations pulling
us in different directions.

Ross’s theory consists of seven prima facie duties. A prima facie duty is
an obligation that we should try to satisfy but that can be overridden on
occasion by another, currently stronger duty. Ross’s suggested list of prima
facie duties (which he says can be altered) captures the best of several single-
principle ethical theories, while eliminating defects by allowing for exceptions.
His suggested duties are those of

• fidelity—you should honor promises and live up to agreements that you’ve
voluntarily made,

• reparation—you should make amends for wrongs you’ve done,
• gratitude—you should return favors,
• justice—you should treat people as they deserve to be treated, in light of

their past behavior and rights they might have,
• beneficence—you should act so as to bring about the most amount of good,
• nonmaleficence—you should act so as to cause the least harm, and
• self-improvement—you should develop your talents and abilities to the

fullest.

The first four duties are Kantian in spirit. The next two duties—
beneficence and nonmaleficence—derive from the single utilitarian principle.
Ross maintains that one must separate the likely harm that can be caused
from the possible good consequences, rather than simply subtract the one
from the other, because the duty of nonmaleficence is generally stronger than
that of beneficence. This accounts for our intuition that it’s wrong to kill one
person to save five. Finally, the last duty, that of self-improvement, captures
the best of “ethical egoism” by acknowledging that we have a special duty to
ourselves that we don’t have to others.
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Ross’s prima facie duty approach to ethical theory incorporates the good
aspects of the rival teleological and deontological approaches to ethics (em-
phasizing consequences vs. principles), while allowing for needed exceptions
to adopting one or the other approach exclusively. It also has the advantage
of being better able to adapt to the specific concerns of ethical dilemmas in
different domains. There may be slightly different sets of prima facie duties
for legal ethics, business ethics, journalistic ethics and eldercare ethics, for
example.

While everyone agrees that Ross’s duties seem intuitively plausible, he
doesn’t tell us how to determine the ethically correct action when the duties
give conflicting advice, beyond saying that one should use one’s intuition to
resolve the conflict. Unfortunately, this would allow someone to rationalize
doing whatever he or she feels like doing, by maintaining that a duty that
supported that action is the most important one in the dilemma.

Without an objective decision procedure, furthermore, the theory can fail
all the requirements of an acceptable action-based ethical theory. In a given
ethical dilemma, one of Ross’s duties could tell us that a particular action is
right, while another could tell us that the same action is wrong, making the
theory inconsistent. By not giving us a single correct action in that dilemma,
we don’t know what we ought to do, so the theory could also be considered
incomplete and impractical. Finally, because you could rationalize doing an
action that an ethical expert, and most of us, would consider wrong, the theory
could fail the test of agreement with intuition.

We’ve concluded that the ideal ethical theory incorporates multiple prima
facie duties, like Ross’s theory, with some sort of a decision procedure to
determine the ethically correct action in cases where the duties give conflicting
advice.

10.4 A Decision Procedure for Competing Duties

We’ve formulated a method that could help make a multiple prima facie duty
theory, like Ross’s, workable. Our method essentially adopts John Rawls’ re-
flective equilibrium approach to creating and refining ethical principles, which
goes back and forth between particular cases and principles, generalizing from
particular cases and testing those generalizations on further cases [19]. First,
we find or create ethical dilemmas where tension exists between the prima
facie duties involved and where ethicists have reached a consensus as to the
correct action. We then use machine learning to abstract a general decision
principle from those cases. Finally, we test this principle on further cases and
refine it as needed to reflect ethicists’ intuitions about the correct action in
these other cases. (The system can learn a decision principle only to the extent
that ethical experts agree on the answers to particular dilemmas.)

Our method uses a trainer (fig. 10.2) to develop the decision principle. It
prompts an expert ethicist for an action’s description and an estimate of each
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Fig. 10.2. Developing a decision principle

of the affected duties’ satisfaction or violation level (very satisfied, somewhat
satisfied, not involved, somewhat violated, or very violated). The expert enters
this data for each action under consideration. When data entry is complete,
the trainer seeks the intuitively correct action from the expert. It combines
this information with the input case to form a new training example that
it stores and uses to refine the decision principle. After such training, the
decision principle can be used to provide the correct action for this case,
should it arise in the future, as well as for all previous cases encountered.
Furthermore, because the decision principle learned is the least-specific one
required to satisfy cases seen so far, it might be general enough to be used to
determine correct actions in previously unseen cases as well.

To capture expert ethical opinion, we use inductive-logic programming
(ILP) [14] to learn the relationships between the duties involved in a particular
dilemma. ILP is a machine learning technique that inductively learns relations
represented as first-order Horn clauses (i.e. universally quantified conjunctions
of positive literals Li implying a positive literal H : H ← (L1 ∧ · · · ∧ Ln)),
classifying positive and negative examples of a relation. To train a system
using ILP, one presents it with examples of the target relation, indicating
whether they’re positive (true) or negative (false). The object of training is
for the system to learn a new hypothesis that, in relation to all input cases, is
complete (covers all positive cases) and consistent (covers no negative cases).

We chose this machine learning technique for a number of reasons. First,
the properties of set of prima facie duties aren’t clear. For instance, do they
form a partial order? Are they transitive? Do subsets of duties have differ-
ent properties than other subsets? We have shown, previously, that simply
assigning linear weights to the duties isn’t sufficiently expressive to capture
the relationships between those duties [5]. ILP provides a rich representation
language that’s more likely to express potentially nonclassical relationships.
Furthermore, representing the relationships as Horn clauses lets us automat-
ically confirm a decision principle’s consistency regarding the relationships
between duties across all cases. Finally, ILP’s declarative representation lan-
guage lets us more readily express, consult, and update commonsense back-
ground knowledge regarding duty relationships.
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The decision principle learned is based on a predicate, supersedes(Action1,
Action2 ), that’s true when the first of the two actions that it is given is ethi-
cally preferable to the second. We represent each action as an ordered list of
values specifying the level of satisfaction or violation for each duty involved.
The selection of the range of possible satisfaction or violation levels of a par-
ticular duty should, ideally, depend upon how many gradations are needed to
distinguish between cases that are ethically distinguishable. We have chosen,
initially, the following range of values: −2 represents a serious violation, −1
represents a less serious violation, 0 indicates that the duty is neither satisfied
nor violated, +1 indicates minimal satisfaction, and +2 indicates maximal sat-
isfaction. Clauses in the supersedes predicate are represented as disjunctions
of lower bounds for differentials of these values between actions.

We believe it is likely that new duties will need to be added, as other
ethical dilemmas are considered, in order to make distinctions between ethi-
cally distinguishable cases that would otherwise have the same representation.
There is a clear advantage to an approach to ethical decision-making that can
accommodate changes to the range of satisfaction or violation of duties, as
well as the addition of duties, as needed.

We chose to develop a decision principle based upon Beauchamp’s and
Childress’ Principles of Biomedical Ethics (PBE) [6], a prima facie duty the-
ory having only four duties which include: The Principle of Respect for Au-
tonomy that states that the health care professional should not interfere with
the effective exercise of patient autonomy (reflecting the recent shift from a
paternalistic model of the healthcare worker-patient relationship to one giving
the patient a more active role). For a decision by a patient concerning his/her
care to be considered fully autonomous, it must be intentional, based on suf-
ficient understanding of his/her medical situation and the likely consequences
of foregoing treatment, sufficiently free of external constraints (e.g. pressure
by others or external circumstances, such as a lack of funds) and sufficiently
free of internal constraints (e.g. pain/discomfort, the effects of medication,
irrational fears or values that are likely to change over time) [15]. The Princi-
ple of Nonmaleficence requires that the health care professional not harm the
patient, while the Principle of Beneficence states that the health care profes-
sional should promote patient welfare. Finally, the Principle of Justice states
that health care services and burdens should be distributed in a just fashion.

We chose PBE and biomedical ethical dilemmas for five reasons: First,
PBE uses a more manageable total of four duties, instead of Ross’ seven.
Second, one member of our research team has a biomedical ethics background.
Third, healthcare workers will likely have the information needed to judge
whether a particular duty is involved in an ethical dilemma and to judge that
duty’s intensity. Fourth, there’s a pressing need for ethical advice in this area,
as biomedical research introduces new, challenging ethical dilemmas and as
baby boomers begin to age (many ethical dilemmas involve end-of-life care).
Finally, more agreement exists among biomedical ethicists as to the ethically
preferable action than in other areas of applied ethics.
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The field of Biomedical Ethics has arisen out of a need to resolve pressing
problems faced by health care workers, insurers, hospital ethics boards, and
biomedical researchers. As a result of there having been more discussion of
actual cases in this field, a consensus is beginning to emerge as to how to eval-
uate ethical dilemmas in this domain, leading to the ethically correct action
in many dilemmas. A further reason why there might be more of a consen-
sus in this domain than in others is because in the area of biomedical ethics
there is an ethically defensible goal (the best possible health of the patient),
whereas in other areas (e.g. business, law) the goal may not be ethically defen-
sible (make as much money as possible, serve the client’s interest even if she
is guilty of an offense or doesn’t deserve a settlement) and ethics enters the
picture as a limiting factor (the goal must be achieved within certain ethical
boundaries).

To begin to apply PBE, we chose a representative type of ethical dilemma
that health care workers often face that involves three of the four Principles of
Biomedical Ethics (Respect for Autonomy, Nonmaleficence and Beneficence):
A health care worker has recommended a particular treatment for her compe-
tent adult patient and the patient has rejected that treatment option. Should
the health care worker try again to change the patient’s mind or accept the
patient’s decision as final? The dilemma arises because, on the one hand, the
healthcare professional should not challenge the patient’s autonomy unneces-
sarily; on the other hand, the health care worker may have concerns about
why the patient is refusing the treatment, i.e. whether it is a fully autonomous
decision.

This dilemma is constrained to three of the four duties of PBE (nonmalef-
icence, beneficence, and respect for autonomy) and involves only two possible
actions in each case. We’ve drawn on the intuitions of Allen Buchanan and
Dan Brock [9] and our project’s ethicist (whose views reflect a general con-
sensus) to determine the correct actions in particular cases of this type of
dilemma.

In the type of dilemma we consider, we can assign specific meanings to
each duty’s possible values. For nonmaleficence,

• −2 means that this action will likely cause severe harm to the patient that
could have been prevented,

• −1 means that this action will likely cause some harm to the patient that
could have been prevented,

• 0 means that this action isn’t likely to cause or prevent harm to the patient,
• +1 means that this action will likely prevent harm to the patient to some

degree, and
• +2 means that this action will likely prevent severe harm to the patient.

For beneficence,

• −2 means that the other action would likely have improved the patient’s
quality of life significantly,
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• −1 means that the other action would likely have improved the patient’s
quality of life somewhat,

• 0 means that neither action is likely to improve the patient’s quality of
life,

• +1 means that this action will likely improve the patient’s quality of life
somewhat, and

• +2 means that this action will likely improve the patient’s quality of life
significantly.

For respect for autonomy,

• −1 means not immediately acquiescing to the patient’s wishes but trying
again to change the patient’s mind,

• +1 means that the healthcare worker acts according to the patient’s wishes
but believes that the patient’s decision isn’t fully autonomous, and

• +2 means that the healthcare worker acts according to the patient’s wishes
and believes that the patient’s decision is fully autonomous.

(Because this dilemma always involves autonomy, but never to the extent of
forcing a treatment on the patient, 0 and −2 aren’t options.)

As an example, consider a specific case of the type of dilemma we’re con-
sidering. A patient refuses to take an antibiotic that’s almost certain to cure
an infection that would otherwise likely lead to his death. He decides this on
the grounds of long-standing religious beliefs that forbid him to take medica-
tions. The correct action in this case is for the healthcare worker to accept
the patient’s decision as final because, although severe harm (his death) will
likely result, his decision can be seen as being fully autonomous. The health-
care worker must respect a fully autonomous decision of a competent adult
patient, even if he or she disagrees with it, because the decision concerns the
patient’s body and a patient should have control over what is done to his or
her body. This case appears as training case 1 in Table 10.1. In this case, the
predicate supersedes(Accept, Try Again) would be true and supersedes(Try
Again, Accept) would be false.

The chosen type of dilemma has only 18 possible cases where, given the
two possible actions, the first action supersedes the second (i.e. is ethically
preferable). Four of these were provided to the system as examples of when
the target predicate (supersedes) is true. Four examples of when the target
predicate is false (obtained by inverting the order of the actions where the
target predicate is true) were also provided. Positive training case 1 was just
described in the previous paragraph.

In training case 2, a patient won’t consider taking medication that could
only help alleviate some symptoms of a virus that must run its course. He re-
fuses the medication because he has heard untrue rumors that the medication
is unsafe. Even though the decision is less than fully autonomous, because it’s
based on false information, the little good that could come from taking the
medication doesn’t justify trying to change his mind. So, the doctor should
accept his decision.
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Table 10.1. The levels of duty satisfaction or violation for the two possible actions
in four MedEthEx training cases. A check mark indicates the ethically correct action
in each case.

Case no. & action Nonmaleficence value Beneficence value Autonomy value

Case 1
Try Again +2 +2 −1√

Accept −2 −2 +2
Case 2
Try Again 0 +1 −1√

Accept 0 −1 +1
Case 3√

Try Again +1 +1 −1
Accept −1 −1 +1
Case 4√

Try Again 0 +2 −1
Accept 0 −2 +1

In training case 3, a patient with incurable cancer refuses further chemo-
therapy that will let him live a few months longer, relatively pain free. He
refuses the treatment because, ignoring the clear evidence to the contrary,
he’s convinced himself that he’s cancer-free and doesn’t need chemotherapy.
The ethically preferable answer is to try again. The patient’s less than fully
autonomous decision will lead to some harm (dying sooner) and deny him
the chance of a somewhat longer life (a violation of the duty of beneficence),
which he might later regret.

In training case 4, a patient, who has suffered repeated rejection from oth-
ers due to a very large non-cancerous abnormal growth on his face, refuses to
have simple and safe cosmetic surgery to remove the growth. Even though this
has negatively affected his career and social life, he’s resigned himself to being
an outcast, convinced that this is his lot in life. The doctor is convinced that
his rejection of the surgery stems from depression due to his abnormality and
that having the surgery could vastly improve his entire life and outlook. The
doctor should try again to convince him because so much of an improvement
is at stake and his decision is less than fully autonomous.

Table 10.1 summarizes the levels of duty satisfaction or violation for both
of the possible actions in all four training cases and indicates the correct action
in each case.

We can more succinctly characterize the cases using the difference between
the values for duties in the ethically preferable action and the values for corre-
sponding duties in the less preferable action. For example, in training case 1,
the differences between the duties of the Accept and the Try Again actions are
−4, −4, 3. Positive differences signify duties that are favored in the ethically
preferable action (respect for autonomy in this example); negative differences
signify duties that are favored in the less preferable action (nonmaleficence
and beneficence in this example).
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∆nonmaleficence    −4   ∆beneficence   −4 ∆autonomy   3< <
<

∆nonmaleficence    −4   ∆beneficence   3 ∆autonomy   −2< <

∆nonmaleficence    −1   ∆beneficence   −3 ∆autonomy   −1<

<
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<

<

Fig. 10.3. The set of clauses defining the discovered supersedes predicate

The learning task is to find a set of clauses that covers all the posi-
tive training examples while not covering any negative training examples.
Figure 10.3 illustrates the set of clauses defining the supersedes(Action1,
Action2 ) predicate discovered by the system, where ∆ <duty> denotes the
difference between Action1 ’s <duty> value and Action2 ’s <duty> value.

Each clause specifies a lower bound for each of the three duty differentials
that must hold for that clause to be true. As each clause is joined to the
others disjunctively, any one true clause will cause the supersedes predicate
to be true. For example, the third clause states that in order for it to consider
Action1 ethically preferable to Action2,

• the value for nonmaleficence must be 1 or more in favor of Action1,
• the value for beneficence can be any value (as −4 is the lowest possible

bound), and
• the value for respect for autonomy can be in favor of Action2 by no more

than 2.

The system discovered a principle that provided the correct answer for
the remaining 14 positive cases, as verified by the consensus of ethicists ab-
stracted from a discussion of similar types of cases given by Buchanan and
Brock [9]. The complete and consistent decision principle that the system
discovered can be stated as follows: A healthcare worker should challenge a
patient’s decision if it is not fully autonomous and there is either any violation
of the duty of nonmaleficence or a severe violation of the duty of beneficence.
Although, clearly, this rule is implicit in the judgments of the consensus of
ethicists, we believe that this principle has never before been stated explic-
itly. This philosophically interesting result lends credence to Rawls’ “reflective
equilibrium” approach — the system has, through abstracting and refining a
principle from intuitions about particular cases, discovered a plausible princi-
ple that tells us which action is correct when specific duties pull in different
directions in a particular type of ethical dilemma. Furthermore, the discov-
ered principle supports an insight of Ross’ [19] that violations of the duty of
nonmaleficence should carry more weight than violations of the duty of benef-
icence. We offer this principle as evidence that making ethics more precise
will permit machine-learning techniques to discover philosophically novel and
interesting principles in ethics. It should also be noted that the learning sys-
tem that discovered this principle is an instantiation of a general architecture.
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With appropriate content, it can be used to discover relationships between
any set of prima facie duties where there is a consensus among ethicists as to
the correct answer in particular cases.

Once the decision principle is discovered, the needed decision proce-
dure can be fashioned. Given two actions, each represented by the satisfac-
tion/violation levels of the duties involved, values of corresponding duties are
subtracted (those of the second action from those of the first). The principle
is then consulted to see if the resulting differentials satisfy any of its clauses.
If so, the first action is considered to be ethically preferable to the second.

10.5 An Ethical Advisor System

A good first step toward the eventual goal of developing machines that can
follow ethical principles is creating programs that enable machines to act as
ethical advisors to human beings [5]. We begin this way for four pragmatic
reasons:

First, one could start by designing an advisor that gives guidance to a
select group of persons in a finite number of circumstances, thus reducing the
assignment’s scope.

Second, the general public will probably more easily accept machines that
just advise human beings than machines that try to behave ethically them-
selves. In the first case, it’s human beings who will make ethical decisions
by deciding whether to follow the machine’s recommendations, preserving the
idea that only human beings will be moral agents. The next step in the Ma-
chine Ethics project is likely to be more contentious: creating machines that
are autonomous moral agents.

Third, a problem for AI in general, and so for this project too, is how
to get needed data—in this case, the information from which to make ethical
judgments. With an ethical advisor, human beings can be prompted to supply
the needed data.

Finally, ethical theory hasn’t advanced to the point where there’s agree-
ment, even by ethical experts, on the correct answer for all ethical dilemmas.
An advisor can recognize this fact, passing difficult decisions that must be
made in order to act onto the human user.

Figure 10.4 depicts a general architecture for an ethical advisor system.
With appropriate data, it can be used to permit a user access to any de-
cision procedure, using any discovered principle. A user inputs details of a
particular case into the system and is presented with the ethically preferable
action in accordance with the decision principle. In order to permit a user
unfamiliar with the representation details required by the decision procedure,
a knowledge-based interface provides guidance in determining satisfaction or
violation levels of duties in particular cases. It 1) asks ethically relevant ques-
tions of the user, determining the ethically relevant features of the particular
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Fig. 10.4. An ethical advisor system architecture

case at hand, 2) transforms the answers to these questions into the appropri-
ate representations (in terms of the level of satisfaction/violation of the prima
facie duties for each action), 3) sends these representations to the decision pro-
cedure, and 4) presents the answer provided by the decision procedure, i.e.
the action that is considered to be correct (consistent with the system’s train-
ing), as well as an explanation of this answer to the user. The interface uses
knowledge derived from ethicists concerning the dimensions and duties of the
particular ethical dilemma. Knowledge is represented as finite-state automata
(FSA) for each duty entailed. Questions pertinent to the dilemma serve as
start and intermediate states, and intensities of duty satisfaction or violation
levels (as well as requests for more information) are final states. The input to
the interface is the user’s responses to the questions posed; the output is a case
with duty satisfaction or violation levels corresponding to these responses.

Given the details of the case from the knowledge-based interface, the de-
cision procedure consults the decision principle and determines whether one
action supersedes all others in the current case. If it discovers such an action,
it outputs that action as the ethically correct action in this case—that is, the
action that’s consistent with the system’s training.

MedEthEx1 [4], an instantiation of the general ethical advisor architec-
ture, uses the discovered principle to give advice to a user faced with a case
of the dilemma type previously described. To illustrate this system, consider
the following dilemma: A patient refuses to take an antibiotic that is likely to

1 For further exploration, the MedEthEx prototype can be accessed online at
http://www.machineethics.com.
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prevent complications from his illness, complications that are not likely to be
severe, because of long-standing religious beliefs that don’t allow him to take
medications.

When the system is consulted, it first seeks information to determine the
satisfaction/violation level of the duty of autonomy for each action. To do
so, it presents questions as required. The system first asks whether or not
the patient understands the consequences of his decision. If the health care
worker is not sure, she may need to seek more information from the patient
or, depending upon her answers to later questions, the system may determine
that this is not a fully autonomous decision. If we assume that the health care
worker believes that the patient does indeed know the consequences of his ac-
tion, the system then asks questions to determine if the patient is externally
constrained. The healthcare worker answers “no” because the reason why the
patient is refusing to take the antibiotic has nothing to do with outside forces.
Finally, it asks questions to determine if the patient is internally constrained.
Since the patient is not constrained by pain/discomfort, the effects of medica-
tion, irrational fears or values that are likely to change over time, the answer
is “no.” This is because the belief that has led to his refusing the antibiotic
is a long-standing belief of his. The answers provided to these questions have
the system conclude that the patient’s decision is fully autonomous, giving
the value +2 to the duty of autonomy for accepting the patient’s decision.
The value for challenging the patient’s decision is −1 because questioning the
patient’s decision, which challenges his autonomy, is not as strong as acting
against the patient’s wishes, which would have been a −2.

The system then seeks information to determine the satisfaction/violation
level of the duty of nonmaleficence for each action. To do so, it presents
questions concerning the possibility and severity of harm that may come to
the patient given his decision. As harm will likely result from the patient’s
decision, but it will not be severe, the system gives the value of −1 to the
duty of nonmaleficence for accepting the patient’s decision. Challenging the
patient’s decision could avoid this moderate harm, so a +1 to the duty of
nonmaleficence is assigned to this action.

The system then seeks information to determine the satisfaction/violation
level of the duty of beneficence for each action. To do so, it presents questions
concerning the possibility and level of improvement of quality of the patient’s
life that may result from accepting/challenging his decision. As the quality
of the patient’s life would worsen somewhat if the patient’s decision were
accepted and improve somewhat if not, the system gives the value of −1
to the duty of beneficence for accepting the patient’s decision and a +1 for
challenging it. The test case, then, is generated as:

Test Case Autonomy Nonmaleficence Beneficence

Try Again −1 +1 +1
Accept +2 −1 −1
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The system then consults the principle for both supersedes(try again, ac-
cept) and supersedes(accept, try again). It finds that the first is not covered
by the principle but the second is covered. As action 1 in this case is accept,
the system advises the user to accept the patient’s decision. This answer is
consistent with ethicists’ intuition. The healthcare worker should accept the
patient’s decision, since, as in Training Case 2, the decision appears to be a
fully autonomous one and with even less possible harm at stake.

10.6 An Ethical Eldercare System

Eldercare is a domain where we believe that, with proper ethical consider-
ations incorporated, robots can be harnessed to aid an increasingly aging
human population, with an expectation of a shortage of human caretakers
in the future. We believe, further, that this domain is rich enough in which
to explore most issues involved in general ethical decision-making for both
machines and human beings.

EthEl (ETHical ELdercare system) (fig. 10.5) is a prototype system in
the domain of eldercare that takes ethical concerns into consideration when
reminding a patient to take his/her medication. EthEl must decide how of-
ten to remind a patient to take a prescribed medication, when to accept a
patient’s refusal to take the medication that might prevent harm and/or pro-
vide benefit to the patient, and when to notify the overseer, if he/she continues
to refuse to take the medication. Whether to accept a patient’s refusal to take
the medication or notify an overseer is an ethical dilemma analogous to the
dilemma originally used to discover the previously stated decision principle in
that the same duties are involved (nonmaleficence, beneficence, and respect
for autonomy) and “notifying the overseer” in the new dilemma corresponds

Stored
Cases

Decision
Principle

Decision
Procedure

Fig. 10.5. EthEl, an ethical eldercare system prototype
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to “trying again” in the original. There is a further ethical dimension that is
implicitly addressed by the system: In not notifying the overseer – most likely
a doctor – until absolutely necessary, the doctor will be able to spend more
time with other patients who could be benefited, or avoid harm, as a result of
the doctor’s attending to their medical needs. Finally, we believe that there
is an ethical dimension to the scheduling of reminders itself, since too many
reminders is a challenge to patient autonomy and too few could lead to the
patient being harmed or losing a benefit from not taking the medication soon
enough.

Machines are currently in use that face this dilemma.2 The state of the
art in these reminder systems entails providing “context-awareness” (i.e. a
characterization of the current situation of a person) to make reminders more
efficient and natural. Unfortunately, this awareness does not extend to consid-
eration of ethical duties that such a system should observe regarding its pa-
tient. In an ethically sensitive eldercare system, both the timing of reminders
and responses to a patient’s disregard of them should be tied to ethical duties
involved. The system should challenge patient autonomy only when necessary,
as well as minimize harm and loss of benefit to the patient. The decision prin-
ciple discovered from the MedEthEx dilemma can be used to achieve these
goals by directing the system to remind the patient only at ethically justifiable
times and notifying the overseer only when the harm or loss of benefit reaches
a critical level. In the following, we describe EthEl, a reminder system that
follows this principle, in detail. To facilitate prototype implementation, rea-
sonable and liftable assumptions have been made regarding numeric values
and calculations.

EthEl receives initial input from an overseer (most likely a doctor) in-
cluding: what time to take a medication, the maximum amount of harm that
could occur if this medication is not taken (e.g. none, some or considerable),
the number of hours it would take for this maximum harm to occur, the max-
imum amount of expected good to be derived from taking this medication,
and the number of hours it would take for this benefit to be lost. The sys-
tem then determines from this input the change in duty satisfaction/violation
levels over time, a function of the maximum amount of harm/good and the
number of hours for this effect to take place.

The change in nonmaleficence equals the maximum harm that could occur
divided by the number of hours it would take for this harm to occur. The
change in beneficence equals the maximum good that could be gained divided
by the number of hours it would take for this benefit to be lost. The change
in respect for autonomy, if the maximum possible harm is greater than the
maximum possible good, is the same as the change in nonmaleficence. (The
principle states that it is twice as bad to ignore harm than to ignore bene-
fit, so suspected loss of autonomy should be keyed to change in harm when
this is greater than the amount of good involved.) Otherwise, the change in

2 For an example, see http://www.ot.utoronto.ca/iatsl/projects/medication.htm
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respect for autonomy equals the average of the changes in nonmaleficence and
beneficence, since both could be factors in satisfying the decision principle.
These values are used to increment, over time, duty satisfaction/violation lev-
els for the remind action and, when a patient disregards a reminder, the notify
action. They are used to decrement duty satisfaction/violation levels for the
don’t remind and don’t notify actions as well.

The starting values for the remind action duties are 0, 0,−1 (for nonmalef-
icence, beneficence, and respect for autonomy respectively) because as yet
there is no harm or loss of benefit and there is somewhat of a challenge to the
patient’s autonomy in giving a reminder. Nonmaleficence and/or beneficence
values (at least one of these duties will be involved because the medication
must prevent harm and/or provide a benefit or it would not be prescribed)
will be incremented over time because reminding will increasingly satisfy the
duties not to harm and/or benefit the patient as time goes by. Respect for
autonomy will not increase over time because reminding is consistently a min-
imal challenge to patient autonomy (unlike notifying the overseer which would
be a serious violation of respect for patient autonomy).

For the don’t remind action, the starting values are 0, 0, 2 because as
yet there is no harm or loss of benefit and patient autonomy is being fully
respected in not reminding. Nonmaleficence and/or beneficence are gradually
decremented over time because there is more harm and/or loss of benefit
(negative effects) for the patient as time goes by. Autonomy decreases as well
over time because as more and more harm is caused and/or benefit is lost, the
fact that the patient has chosen to bring this harm upon his or herself and/or
forgo the benefits, in not taking the medication, raises increasing concern over
whether the patient is acting in a fully autonomous manner.

For the notify action, the starting values are 0, 0,−2 because as yet there is
no harm or loss of benefit and there is a serious challenge to the patient’s au-
tonomy in notifying the overseer immediately. Nonmaleficence and/or benef-
icence will be gradually incremented because the duties not to harm and/or
benefit the patient will become stronger since, as time goes by, there is in-
creasing harm and/or loss of benefit. Autonomy will increase from −2 (the
worst it could be) because, as time goes by and the harm increases and/or
more and more benefits are being lost, the suspicion that the patient is not
making a fully autonomous decision in not taking the medication increases,
so there is less of a violation of the duty to respect patient autonomy.

For the accept action, the starting values are 0, 0, 2 because as yet there
is no harm or loss of benefit and full patient autonomy is being respected
in accepting the patient’s decision. Nonmaleficence and/or beneficence are
gradually decremented because, as time goes by, there is more harm and/or
loss of benefit (negative effects) for the patient. Autonomy decreases as well,
as time goes by, because as more and more harm is caused and/or benefit is
lost, the fact that the patient has chosen to bring this harm upon his or her
self and/or forgo the benefits, in not taking the medication, raises increasing
concern over whether the patient is acting in a fully autonomous manner.
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Fig. 10.6. EthEl flow of control

Beginning with the time that the patient is supposed to take the
medication, EthEl (fig. 10.6) follows the overseer’s orders and reminds
the patient to take the medication. If the patient refuses to take the medica-
tion, and it is ethically preferable to accept this refusal rather than notify the
overseer at that point, EthEl considers whether to remind again or not in five
minute intervals. Another reminder is issued when, according to the principle,
the differentials between duty satisfaction/violation levels of the remind/don’t
remind actions have reached the point where reminding is ethically preferable
to not reminding. Similarly, the overseer is notified when a patient has disre-
garded reminders to take medication and the differentials between the duty
satisfaction/violation levels of the notify/don’t notify actions have reached
the point where notifying the overseer is ethically preferable to not notifying
the overseer.

The number of reminders, when they should be offered, and when to
contact the overseer are all keyed to possible harm and/or loss of benefit
for the patient, as well as violation of the duty to respect patient autonomy.
There are three categories of cases for determining number of reminders:

1. When neither the amount of harm nor loss of benefit is expected to reach
the threshold required to overrule autonomy. (According to the principle
discovered, the threshold is reached only when some harm results or maxi-
mum benefit is lost.) Since notifying the overseer would never be triggered,
the number of reminders should be minimal.

2. When either the harm caused or loss of benefit is expected to reach the
threshold necessary to overrule autonomy. Since either value would be
sufficient to trigger notifying the overseer, reminders should occur more
often.

3. When there is maximum harm to the patient at stake, if the patient does
not take the medication. Since the amount of possible harm to the patient
is twice what would trigger notifying the overseer, assuming the autonomy
condition is satisfied (that is, the patient’s decision to forgo taking the
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medication is considered to be less than fully autonomous), reminders are
critical and should be given often to prevent harm and avoid notifying
overseer.

Given current possible satisfaction/violation values, the following seems
to be a reasonable first pass at capturing the relationship between the above
categories: if there is no harm to be expected from not taking the medication,
give the amount of good to be expected +1 reminders; else give the amount of
harm to be expected +2 reminders. These values are used to scale the changes
in duty satisfaction/violation values of the remind/don’t remind actions over
time in such a way that they move toward their critical thresholds at a faster
rate than these values in the notify/accept actions. Such scaling permits the
principle to adjudicate between actions of differing ethical relevance.

Given, as an example, a starting time of 12:00 p.m. and six hours for
both maximum harm and maximum loss of benefit to occur, figure 10.7 illus-
trates the behavior of the system when the patient repeatedly refuses to take
his/her medication under a variety of values for nonmaleficence (harm) and
beneficence (benefit). Given maximum possible harm and benefit, the system
responds by frequently reminding the patient and finally contacting the over-
seer well before the maximum harm occurs. When there is some harm, not the
maximum, at stake and maximum possible benefit, fewer, more widely spaced
reminders are given. The overseer is notified later than in the previous case,
but still in advance of the attainment of maximal harm and maximal loss of
benefit. When there is both some (less than maximum) harm and benefit at
stake, the same number of reminders given in the previous case are spread
further apart and notification of the overseer only occurs when the maximum
for either one has been reached. Lastly, when there is no possible harm and
only some (less than maximum) benefit at stake, a reminder is given only
when the benefit from taking this medication will be lost. Since in this case
there is no harm involved, the overseer is never contacted.
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Fig. 10.7. EthEl system behavior with a start time of 12:00 and 6 hours for
maximum harm and loss of benefit, both
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In designing a reminding system for taking medications, there is a
continuum of possibilities ranging from those that simply contact the overseer
upon the first refusal to take medication by the patient to a system such
as EthEl that takes into account ethical considerations. Clearly, systems
that do not take ethical considerations into account are less likely to meet
ethical obligations to their charges (and, implicitly, to the overseer as well).
Systems that choose a less ethically sensitive reminder/notification schedule
for medications are likely to not remind the patient often enough or notify
the overseer soon enough, in some cases, and remind the patient too often or
notify the overseer too soon in other cases.

EthEl uses an ethical principle learned by a machine to determine re-
minders and notifications in a way that is proportional to the amount of
maximum harm to be avoided and/or benefit to be achieved by taking a par-
ticular medication, while not unnecessarily challenging a patient’s autonomy.
EthEl is an explicit ethical agent (in a constrained domain), according to
Jim Moor’s [18] definition of the term: A machine that is able to calculate
the best action in ethical dilemmas using an ethical principle, as opposed to
having been programmed to behave ethically, where the programmer is fol-
lowing an ethical principle. We believe that EthEl is the first system to use
an ethical principle to determine its actions.

10.7 Related Research

Although many have voiced concern over the impending need for machine
ethics (e.g. [10, 13, 23]), there have been few research efforts towards accom-
plishing this goal. Of these, a few explore the feasibility of using a particular
ethical theory as a foundation for machine ethics without actually attempting
implementation: Christopher Grau [11] considers whether the ethical theory
that most obviously lends itself to implementation in a machine, Utilitari-
anism, should be used as the basis of machine ethics; and Tom Powers [19]
assesses the viability of using deontic and default logics to implement Kant’s
categorical imperative.

Efforts by others that do attempt implementation have been based, to
greater or lesser degree, upon casuistry—the branch of applied ethics that,
eschewing principle-based approaches to ethics, attempts to determine correct
responses to new ethical dilemmas by drawing conclusions based on parallels
with previous cases in which there is agreement concerning the correct re-
sponse. Rafal Rzepka and Kenji Araki [22], at what might be considered the
most extreme degree of casuistry, are exploring how statistics learned from
examples of ethical intuition drawn from the full spectrum of the World Wide
Web might be useful in furthering machine ethics in the domain of safety
assurance for household robots. Marcello Guarini [12], at a less extreme de-
gree of casuistry, is investigating a neural network approach where particu-
lar actions concerning killing and allowing to die are classified as acceptable
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or unacceptable depending upon different motives and consequences. Bruce
McLaren [16], in the spirit of a more pure form of casuistry, uses a case-based
reasoning approach to develop a system that leverages information concerning
a new ethical dilemma to predict which previously stored principles and cases
are relevant to it in the domain of professional engineering ethics.

Other research of note investigates how an ethical dimension might be
incorporated into the decision procedure of autonomous systems and how
such systems might be evaluated. Selmer Bringsjord, Konstantine Arkoudas,
and Paul Bello [8] are investigating how formal logics of action, obligation, and
permissibility might be used to incorporate a given set of ethical principles into
the decision procedure of an autonomous system, contending that such logics
would allow for proofs establishing that such systems will only take permissible
actions and perform all obligatory actions. Colin Allen, Gary Varner, and
Jason Zinser [1] have suggested that a “moral Turing test” might be used to
evaluate systems that incorporate an ethical dimension.

10.8 Future Directions

We plan to investigate the learned decision principle further to see if it can
be applied to other dilemmas involving the same three duties. Also, it will
be interesting to add the fourth duty from the PBM, justice, to see to what
extent there’s a consensus among bioethicists in cases where this duty is in-
volved from which we can abstract a decision principle. There’s disagreement
about what is just among those working in ethics in other domains, but there
might not be disagreement among bioethicists. Furthermore, we would like to
see if our approach to learning decision principles will prove viable for other
sets of duties, including sets of higher cardinality, and in other domains. It’s
reasonable to believe that each specific applied ethics domain (legal ethics,
business ethics, journalistic ethics, and so on) involves juggling a set of prima
facie duties that’s specific to that domain. In each case, there will be the
problem of abstracting a decision principle to determine the correct action
when the duties conflict. We plan, therefore, to look at other domains to see
whether our approach to creating an ethical-advisor system might be helpful
in solving ethical dilemmas for those who work in those domains.

We further plan to investigate systems that follow ethical principles them-
selves. We believe, though, that the first step in the development of machine
ethics must be to work on making ethics computable. If that task can’t be
accomplished, at least to the extent to which ethics experts are in agreement
as to what’s ethically right, then creating a machine that behaves ethically
will be impossible. Creating ethical-advisor systems lets us explore the extent
to which ethics can be computed in specific domains. Once ethics experts
are comfortable with the results, then an ethical dimension can, at least in
principle, be incorporated into machines, like EthEl, that function in those
domains. This should not only avert unethical behavior on the part of ma-
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chines, but also allow them to do tasks that we would have previously thought
only human beings should do.

The process of making an ethical theory precise enough to be computed
will likely lead to a sharpening and revision of the theory itself. This research
provides an opportunity for applying AI techniques in a new domain, devel-
oping new areas of applied ethics, as well as making a contribution to ethical
theory itself.

Our results demonstrate that a problem in ethical theory—devising a deci-
sion procedure for an ethical theory involving multiple prima facie duties—can
be solved at least in a constrained domain and that AI techniques can help
solve it. So, we believe that not only is it possible to train a machine to make
ethical decisions, but also that machines can help human beings codify the
principles that should guide them in ethical decision making.

In our preliminary research, we committed to a specific number of particu-
lar prima facie duties, a particular range of duty satisfaction/violation values,
and a particular analysis of corresponding duty relations into differentials. To
minimize bias in the constructed representation scheme, we propose to lift
these assumptions and make a minimum epistemological commitment: Ethi-
cally relevant features of dilemmas will initially be represented as the degree
of satisfaction or violation of at least one duty that the agent must take into
account in determining the ethical status of the actions that are possible in
that dilemma. A commitment to at least one duty can be viewed as simply a
commitment to ethics – that there is at least one obligation incumbent upon
the agent in dilemmas that are classified as ethical. If it turns out that there
is only one duty, then there is a single, absolute ethical duty that the agent
ought to follow. If it turns out that there are two or more, potentially com-
peting, duties (as we suspect and have assumed heretofore) then it will have
been established that there are a number of prima facie duties that must be
weighed in ethical dilemmas, giving rise to the need for an ethical decision
principle to resolve the conflict.

We envision a general system that will incrementally construct, through an
interactive exchange with experts in ethics, the representation scheme needed
to handle the dilemmas with which it is presented and, further, discover prin-
ciples consistent with its training that lead to their resolution. Such a dynamic
representation scheme is particularly suited to the domain of ethical decision-
making, where there has been little codification of the details of dilemmas
and principle representation. It allows for changes in duties and the range of
their satisfaction/violation values over time, as ethicists become clearer about
ethical obligations and discover that in different domains there may be dif-
ferent duties and possible satisfaction/violation values. Most importantly, it
accommodates the reality that completeness in an ethical theory, and its rep-
resentation, is a goal for which to strive, rather than expect at this time. The
understanding of ethical duties, and their relationships, evolves over time.
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