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Summary. Organic computing calls for efficient adaptive systems in which flex-
ibility is not traded in against stability and robustness. Such systems have to be
specialized in the sense that they are biased towards solving instances from certain
problem classes, namely those problems they may face in their environment. Ner-
vous systems are perfect examples. Their specialization stems from evolution and
development. In organic computing, simulated evolutionary structure optimization
can create artificial neural networks for particular environments. In this chapter,
trends and recent results in combining evolutionary and neural computation are
reviewed. The emphasis is put on the influence of evolution and development on
the structure of neural systems. It is demonstrated how neural structures can be
evolved that efficiently learn solutions for problems from a particular problem class.
Simple examples of systems that “learn to learn” as well as technical solutions for
the design of turbomachinery components are presented.

7.1 Introduction

Technical systems that continuously adapt to a changing natural environment
and act (quasi-) autonomously have not been designed so far. Several funda-
mental challenges have to be met. First, more flexibility is required on the
software and possibly even on the hardware level. Second, this flexibility must
not be traded in against system stability and robustness. Minimal performance
must be guaranteed under all circumstances and degradation must be gradual
and controlled. Third, the system must be expandable and sustainable.

Biological neural systems usually have such properties while their technical
counterparts do not yet meet these requirements. Nevertheless, we believe
that artificial neural networks (NNs) provide a computing paradigm whose
potential has not yet been fully exploited. Our approach to address the above-
mentioned challenges and to tap the potential of artificial neural systems is
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to tune them for particular classes of problems and particular patterns of
processing.

In nature, such specialization stems from evolution and develop-
ment. Both design and shape structures ready to accommodate learn-
ing and self-organizing processes, which we see as the driving forces
behind the capability of neural systems, see figure 7.1. We think
that understanding the biological “design techniques” for nervous sys-
tems – evolution, development, and learning – paves the way for
the design of artificial adaptive systems competitive with humans.

learning

evolutiondevelopment

Fig. 7.1. Dimensions of natural design.

When designing adaptive sys-
tems, appropriate specialization
(bias) and invariance properties
are important, partially conflicting
objectives. The “No-free-lunch theo-
rems” for learning and optimization
imply that it is fruitless to try to
build universal adaptive systems.
All systems have to be biased
towards particular problem classes.
This bias can be induced by evolved
structures, on which learning and
self-organizing processes operate.
In this chapter, we review trends
and recent results in combining
evolutionary and neural computation. We will highlight synergies between
the two fields beyond the standard examples and emphasize the influence of
evolution and development on the structure of neural systems for the purpose
of adaptation. We demonstrate how neural structures can be evolved that
efficiently learn particular problem classes. We present simple examples of
systems that “learn to learn” as well as technical solutions for the design of
turbomachinery components.

The next section provides some background in artificial NNs and evo-
lutionary algorithms (EAs). We put an emphasis on theoretical limitations
and perspectives of these computing paradigms. We briefly describe simple
NNs based on integrate-and-fire neurons, introduce EAs in the framework of
stochastic search, and summarize the No-free-lunch theorems for learning and
optimization. In section7.3, we discuss evolutionary structure optimization of
neural systems and review some more recent trends in combining EAs and
neural systems. Finally, we demonstrate how neural structures can be evolved
that efficiently learn solutions for problems from a particular problem class.
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7.2 Background

In this section, we provide short introductions to NNs and EAs and review
“No-free-lunch” results for learning and optimization.

7.2.1 Neural computation

In the following, we briefly introduce basic ideas of NNs on the basis of the
simple rate-coded leaky integrator neuron model. A detailed introduction to
the broad field of neural computation is far beyond the scope of this article.
A good starting point for reading is [5], recommendable introductory books
on NNs for technical applications are [8, 33, 9] and on modeling nervous
systems [17].

Neural systems can be described on different levels of abstraction. Many
models, including those usually adopted for technical applications, can be de-
rived from the leaky integrator neuron. This model is based on the assumption
that the basic units of computation in nervous systems are single neurons. A
model neuron i is situated in time t and its state is described by the membrane
potential ui(t) governed by the differential equation

τi
∂ui(t)

∂t
= −ui(t) +

∑
j

wijσj [uj(t)] +
∑

k

w′iksk(t) + θi

with time constant τi. The neuron computes a weighted linear sum of the
inputs it receives (see [55] for a review of more detailed models of single
neurons). The first sum runs over all neurons j providing input to i, the sec-
ond over all external inputs sk(t), which are gathered in the vector s(t), to
the system. The weights wij and w′ik describe the strengths of the synaptic
connections. In the absence of input the membrane potential relaxes to the
resting level θi. It is assumed that the only communication in a network of
these units is through spikes of electrical activity traveling between the neu-
rons. A neuron emits a spike when its membrane potential exceeds a certain
threshold. Real spikes are discrete events, but in the model a rate code de-
scribing the average spiking frequency is assumed to capture the essence of
the signals. This rate can either be viewed as an ensemble average across a
population of neurons with the same properties, or as the frequency of spikes
of a single neuron in some time interval. The activation function σi, which
is usually sigmoidal (i.e., nondecreasing and bounded), maps the membrane
potential ui to the corresponding spiking frequency. Forward Euler approxi-
mation, ∂ui(t)/∂t ≈ (ui(t + Δt) − ui(t))/Δt, with Δt = τi = 1, leads to the
basic discrete-time equation ui(t + 1) =

∑
j

wijσj [uj(t)] +
∑

k

w′iksk(t) + θi.

The structure or architecture of the NN can be described by a graph in
which the nodes correspond to the neurons and there is an edge from i to
j if neuron j gets input from neuron i. If the network graph contains no
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Fig. 7.2. Simple computational model of a single neuron, left, and a neural network
graph, right.

cycles, we speak of a feed-forward NN. If we number the neurons such that
node i only receives input from units j with j < i and update the neurons in
increasing order, the discrete-time network equation can be written as a static
function ui(s) =

∑
j<i

wijσj [uj ]+
∑

k

w′iksk +θi. Often, some of the neurons are

dedicated output neurons whose spike rates are gathered in the vector o(t) and
the neural system can be viewed as a functional mapping input sequences s(t)
to output sequences o(t). In case of a feed-forward NN, the mapping reduces
to a static function assigning an output o to an input s, see figure 7.2.

Models of NNs based on leaky integrator neurons, in principle exhibit
universal approximation and computation properties under mild assumptions
(see, e.g., [87, 89, 91]). However, the general question of how to design an
appropriate neural system efficiently for a given task remains open and com-
plexity theory reveals the need for using heuristics (see, e.g., [88]) — here these
heuristics are the major organization principles of biological NNs, evolution,
development, and learning.

Supervised learning of an NN means adapting the weights wij , w
′
ik such

that, given some input s(t), the output neurons show a predefined behavior
y(t), which is described by sample (training) input-output sequences. A feed-
forward NN learns a static function h based on sample input-output patterns
{(s1,y1), . . . , (s�,y�)}. This is usually done by gradient-based minimization
of the (squared) differences between the targets yi and the corresponding
outputs oi of the NN given the input si. The ultimate goal is not to simply
memorize the training patterns, but to find a statistical model for the underly-
ing relationship between input and output data. Such a model will generalize
well, that is, it will make good predictions for cases other than the training
patterns. Therefore, a critical issue is to avoid overfitting during the learning
process: The NN should just fit the signal and not the noise. This is usually
achieved by restricting the effective complexity of the network, for example
by regularization of the learning process [3].

In the context of feed-forward NNs, generalization can for example be for-
malized in the framework of statistical learning theory as follows. Let the goal
be to learn a function from some input space S to some output space Y and
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let h : S → Y be the function realized by the NN. Based on some input-
output patterns drawn independently from the same distribution P on S×Y ,

the goal of generalization is to minimize
∫

S×Y

P (s,y)L(h(s),y)dsdy, where

L : Y × Y → R
+
0 denotes a loss function. The distribution P is usually un-

known and defines the learning problem at hand. The value L(a, b) quantifies
the cost or regret of predicting a instead of b and returns zero if its arguments
are equal. For example when learning a one-dimensional real-valued function,
S = Y = R and L(a, b) = (a − b)2 is a typical choice.

In this chapter, we focus on the architecture of feed-forward neural net-
works, however, most of our findings and discussions apply equally well to
recurrent neural systems, which also have been used successfully in applica-
tions in the past (in particular for time series prediction, e.g., [93, 61]).

7.2.2 Evolutionary computation

Evolutionary algorithms can be regarded as a special class of global random
search algorithms. Let the search problem under consideration be described
by a quality function f : G → Y to be optimized, where G denotes the search
space (i.e., the space of candidate solutions) and Y the (at least partially)
ordered space of cost values. The general global random search scheme can be
described as follows:

� Choose a joint probability distribution P
(1)

Gλ on Gλ. Set t ← 1.

� Obtain λ points g(t)
1 , . . . ,g(t)

λ by sampling from the distribution P
(t)

Gλ . Eval-
uate these points using f .

� According to a fixed (algorithm dependent) rule construct a new proba-
bility distribution P

(t+1)

Gλ on Gλ.
� Check whether some stopping condition is reached; if the algorithm has

not terminated, substitute t ← t + 1 and return to step �.

Random search algorithms can differ fundamentally in the way they describe
(parameterize) and alter the joint distribution P

(t)

Gλ , which is typically repre-
sented by a semi-parametric model. The scheme of a canonical EA is shown
in figure 7.3. In evolutionary computation, the iterations of the algorithm are
called generations. The search distribution of an EA is given by the parent pop-
ulation, the variation operators, and the strategy parameters. The parent pop-
ulation is a multiset of μ points g̃(t)

1 , . . . , g̃(t)
μ ∈ G. Each point corresponds to

the genotype of an individual. In each generation, λ offspring g(t)
1 , . . . ,g(t)

λ ∈ G
are created by the following procedure: Individuals for reproduction are cho-
sen from g̃(t)

1 , . . . , g̃(t)
μ . This is called mating selection and can be deterministic

or stochastic (where the sampling can be with or without replacement). The
offspring’s genotypes result from applying variation operators to these se-
lected parents. Variation operators are deterministic or partially stochastic
mappings from Gk to Gl, 1 ≤ k ≤ μ, 1 ≤ l ≤ λ. An operator with k = l = 1
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Fig. 7.3. Basic EA loop. The numbers indicate the corresponding steps in the
random search scheme. When optimizing adaptive systems, the local search usually
corresponds to some learning process.

is called mutation, whereas recombination operators involve more than one
parent and can lead to more than one offspring. Multiple operators can be
applied consecutively to generate offspring. For example, an offspring g(t)

i can
be the product of applying recombination orec : G2 → G to two randomly
selected parents g̃(t)

i1
and g̃(t)

i2
followed by mutation omut : G → G, that is,

g(t)
i = omut

(
orec

(
g̃(t)

i1
, g̃(t)

i2

))
. Evolutionary algorithms allow for incorpora-

tion of a priori knowledge about the problem by using tailored variation
operators combined with an appropriate encoding of the candidate solutions.

Let P
(t)

Gλ (g(t)
1 , . . . ,g(t)

λ ) = PGλ

(
g(t)

1 , . . . ,g(t)
λ | g̃(t)

1 , . . . , g̃(t)
μ ;θ(t)

)
be the

probability that parents g̃(t)
1 , . . . , g̃(t)

μ create offspring g(t)
1 , . . . ,g(t)

λ . This
distribution is additionally parameterized by some external strategy param-
eters θ(t), which may vary over time. In some EAs, the offspring are cre-
ated independently of each other based on the same distribution. In this
case, the joint distribution P

(t)

Gλ can be factorized as P
(t)

Gλ (g(t)
1 , . . . ,g(t)

λ ) =

P
(t)
G (g(t)

1 ) · . . . · P (t)
G (g(t)

λ ).
Evaluation of an individual corresponds to determining its fitness by as-

signing the corresponding cost value given by the quality function f . Evolu-
tionary algorithms can — in principle — handle optimization problems that
are non-differentiable, non-continuous, multimodal, and noisy. They are easy
to parallelize by distributing the fitness evaluations of the offspring. In single-
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objective optimization, we usually have Y ⊂ IR, whereas in multi-objective
optimization, see section 7.3.2.1, vector-valued functions (e.g., Y ⊂ IRk, k > 1)
are considered. In co-evolution (see section 7.3.2.2), individuals interact to af-
fect each other’s adaptations. Therefore, the fitness values are not determined
for each individual in isolation, but in the context of the current population
(i.e., a more appropriate description of fitness assignment is f : Gλ → Yλ or
even f : Gλ+μ → Yλ+μ if the parents are also involved in the fitness calcu-
lation). The interaction of individuals may be competitive or cooperative. As
the fitness function is not fixed, co-evolution allows for “bootstrapping” the
evolutionary process and “open-ended” evolution.

Updating the search distribution corresponds to environmental selection
and sometimes additional strategy adaptation of external strategy parameters
θ(t+1). The latter is extensively discussed in the context of optimization of
NNs in [40, 45]. A selection method chooses μ new parents g̃(t+1)

1 , . . . , g̃(t+1)
μ

from g̃(t)
1 , . . . , g̃(t)

μ and g(t)
1 , . . . ,g(t)

λ . This second selection process is called
environmental selection and may be deterministic or stochastic. Either the
mating or the environmental selection must be based on the objective function
values of the individuals and must prefer those with better fitness — this is
the driving force of the evolutionary adaptation process.

It is often argued that evolutionary optimization is not well understood
theoretically — ignoring the tremendous progress in EA theory during the
last years. Although there are only a few results for general settings (e.g.,
convergence [76]), there exist rigorous expected runtime analyses of simpli-
fied algorithms on restricted, but important classes of optimization problems,
see [46, 20] and references therein. The article [7] provides a good starting
point for reading about EA theory.

7.2.3 The need for specialization: No-free-lunch

It is not only intuitive, but also proven that it is not possible to design an
universal adaptive system that outperforms other systems across all possible
problems. This is formally expressed by the No-free-lunch (NFL) theorems go-
ing back to the work of Wolpert and Macready [104, 105]. Coarsely speaking,
the NFL theorems for learning state that without an assumption of how the
past (training data) is related to the future (test data), prediction is impossi-
ble. In other words, without an a priori restriction of the possible phenomena
that are expected, it is impossible to generalize and thus no algorithm is su-
perior to another. Even worse, any consistent algorithm (i.e., any algorithm
converging to the Bayes optimal classifier almost surely when the number of
training patterns, drawn independently from the distribution describing the
problem, approaches infinity) can have arbitrarily poor behavior when given
a finite, incomplete training set [104, 19, 10].

These results carry over to general search and optimization algorithms.
The NFL theorem for optimization formalizes that averaged over the set F
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of all possible objective functions defined between a finite search space X
and a finite set Y of cost values all optimization algorithms have the same
performance. It is assumed that the algorithms never visit a search point twice
and that the performance measure just depends on the objective function
values of the visited search points [20, 105, 82, 42, 43, 106]. More generally,
the following holds for any probability distribution P over F . If and only if
F =

⋃
i

Fi, every Fi is closed under permutation, and f, g ∈ Fi implies that

f and g have the same probability P (f) = P (g) to be the objective function,
then all optimization algorithms have the same performance averaged over
F w.r.t. P [43]. Closure under permutation of a set Fi means that for every
bijective function π : X → X it holds that f ∈ Fi implies f ◦ π ∈ Fi.
These assumptions for an NFL result to hold are rather strict, and fortunately
problem classes relevant in practice are likely to violate them [42, 43].

Nonetheless, only if we consider restricted problem classes, in which the
assumptions of the NFL theorems are not fulfilled, we can design efficient
adaptive systems. It is important to make this bias towards a problem class
explicit in the design process. In nature, such a bias stems from the evolved
structures on which learning and self-organizing processes operate. In organic
computing, simulated evolutionary structure optimization can create systems
biased towards relevant problem classes.

7.3 Evolutionary computation and neural systems

Both artificial evolution and artificial neural systems have long histories, which
in many respects resemble each other. In their beginnings, both were met with
considerable skepticism from the biological as well as from the technologi-
cal communities. For the first, their simplifications and abstractions meant
throwing over board years of carefully accumulated details on how biological
systems operate, develop, learn, and evolve. For the second the new type of
distributed, stochastic, and nonlinear processing was equally hard to accept.
During their maturation both fields met a couple of times, but not as often as
one might expect bearing in mind that their philosophies to extract principles
of biological information processing and apply them to technical systems are
so similar.

Although not directly aimed at the formation of neural systems, the design
of intelligent automata was among the earliest applications of EAs and may be
traced back to the 1950s, see [22]. However, it took another 30 years until first
papers were published describing explicitly the application of EAs to NNs
and in this context — albeit more hesitantly — to learning [52, 63]. Then
the subject quickly received considerable interest and several articles were
published in the early nineties concentrating on optimization of both the net-
work architecture and its weights. Although nowadays NNs and EAs are used
frequently and successfully together in a variety of applications, the desired
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breakthrough, that is, the evolution of neural systems showing qualitatively
new behavior, has not been reached yet. The complexity barrier may have been
pushed along but it has not been broken down. Nevertheless, many important
questions on the architecture, (e.g., modularity) the nature of learning, (e.g.,
nature vs. nurture) and the development of neural systems (e.g., interactions
between levels of adaptation) have been raised and important results have
been obtained.

There are still only few works connecting current brain research with evo-
lutionary computation, but first attempts have been promising, as we will see
in section 7.3.2.5. Here, on a more general note, we argue that combining evo-
lutionary development with brain science is more than just optimizing models
of biological neural systems. The brain is a result of the past as much as of
the present. That means that learning (the present) can only operate on an
appropriate structure (the past). The current structure reflects its history as
much as its functionality. Flexibility and adaptability of the brain are based
on its structural organization, which is the result of its ontogenetic develop-
ment. The brain is not one design but many designs; it is like a cathedral
where many different parts have been added and removed over the centuries.
However, not all designs are capable of such continuous changes and the fact
that the brain is, is deeply rooted in its structural organization.

In this section, we discussed selected aspects of combining neural and evo-
lutionary computing. More comprehensive surveys, all having slightly different
focuses, can be found in [65, 71, 83, 107].

7.3.1 Structure optimization of adaptive systems

Although NNs are successfully applied to support evolutionary computation
(see section 7.4.2), the most prominent combination of EAs and NNs is evo-
lutionary optimization of adaptive neural systems.

In general, the major components of an adaptive system can be described
by a triple (S,A,D), where S stands for the structure or architecture of the
adaptive system, A is a learning algorithm that operates on S and adapts
flexible parameters of the system, and D denotes sample data driving the
adaptation. We define the structure as those parts of the system that cannot
be changed by the learning/self-adaptation algorithm. Given an adaptation
rule A, the structure S determines

• the set of solutions that can be realized,
• how solution changes given new stimuli/signals/data, partial failure, noise,

etc.,
• the neighborhood of solutions (i.e., distances in solution space),
• bias (specialization) and invariance properties.

Learning of an adaptive system can be defined as goal-directed, data-
driven change of its behavior. Examples of learning algorithms for technical
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NNs include gradient-based heuristics (see section 7.2.1) or quadratic pro-
gramming. Such “classical” optimization methods are usually considerably
faster than pure evolutionary optimization of these parameters, although they
might be more prone to getting stuck in local minima. However, there are
cases where “classical” optimization methods are not applicable, for example
when the neural model or the objective function is non-differentiable (e.g., see
section 7.3.2.2). Then EAs for real-valued optimization provide a means for
adjusting the NN parameters. Still, the main application of evolutionary op-
timization in the field of neurocomputing is adapting the structures of neural
systems, that is, optimizing those parts that are not altered by the learning
algorithm. Both in biological and technical neural systems the structure is
crucial for the learning behavior — the evolved structures of brains are an
important reason for their incredible learning performance: “development of
intelligence requires a balance between innate structure and the ability to
learn” [6]. Hence, it appears consequential to apply evolutionary methods to
structure adaptation of neural systems for technical applications, a task for
which usually no efficient “classical” methods exist.

A prototypical example of evolutionary optimization of a neural architec-
ture on which a learning algorithm operates is the search for an appropriate
topology of a multi-layer perceptron NN, see [103, 36, 29] for some real-world
applications. Here, the search space ultimately consists of graphs, see sec-
tion 7.2.1. When using EAs to design NN graphs, the key questions are how
to encode the topologies and how to define variation operators that act on
this representation. In the terminology of section 7.2.2, operators and repre-
sentation both determine the search distribution and thereby the neighbor-
hood of NNs in the search space. Often an intermediate space, the phenotype
space P, is introduced in order to facilitate the analysis of the problem and
of the optimization process itself. The fitness function can then be written
as f = f ′ ◦ φ, where φ : G → P and f ′ : P → Y. The definition of the
phenotype space is to a certain degree arbitrary. The same freedom exists in
evolutionary biology [60] and is not restricted to EAs. The probability of
a certain phenotype p ∈ P to be created from a population of phenotypes
strongly depends on the representation and the variation operators. When
the genotype-phenotype mapping φ is not injective, we speak of neutrality,
which may considerably influence the evolutionary process (see [41] for an ex-
ample in the context of NNs). We assume that P is equipped with an extrinsic
(i.e., independent of the evolutionary process) metric or at least a consistent
neighborhood measure, which may be defined in relation to the function of
the individual. In the case of NNs, the phenotype space is often simply the
space of all possible connection matrices of the networks. Representations for
evolutionary structure optimization of NNs have often been classified in “di-
rect” and “indirect” encodings. Roughly, a direct encoding or representation
is one where (intrinsic) neighborhood relations in the genotype space (induced
by PGλ) broadly correspond to extrinsic distances of the corresponding phe-
notypes. Note that such a classification only makes sense once a phenotype
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space with an extrinsic distance measure has been defined and that it is only
valid for this particular definition. (This point has frequently been overlooked
because of the implicit agreement on the definition of the phenotype space,
e.g., the graph space equipped with a graph editing distance). This does not
imply that both spaces are identical. In an indirect encoding the genotype
usually encodes a rule, a program or a mapping to build, grow or develop
the phenotype. Such encodings foster the design of large, modular systems.
Examples can be found in [54, 32, 25, 83, 84].

7.3.2 Trends in combining EAs and neural computation

In the following, we review some more recent trends in combining neural and
evolutionary computing. Needless to say that such a collection is a subjective,
biased selection.

7.3.2.1 Multi-objective optimization of neural networks

Designing a neural system usually requires optimization of several, often con-
flicting objectives. This includes coping with the bias-variance dilemma or
trading classification speed against accuracy in real-time applications. Al-
though the design of neural systems is obviously a multi-objective problem, it
is usually tackled by aggregating the objectives into one scalar function and
applying standard methods to the resulting single-objective task. However,
this approach will in general fail to find all desired solutions [16]. Further-
more, the aggregation weights have to be chosen correctly in order to obtain
the desired result. In practice, it is more convenient to make the trade-offs be-
tween the objectives explicit (e.g., to visualize them) after the design process
and select from a diverse set of systems the one that seems most appropri-
ate. This can be realized by “true” multi-objective optimization (MOO, [48]).
The MOO algorithms approximate the set of Pareto-optimal tradeoffs, that
is, those solutions that cannot be improved in any objective without get-
ting worse in at least one other objective. From the resulting set of systems
the final solution can be selected after optimization. There have been con-
siderable advances in MOO recently, which can now be incorporated into
machine learning techniques. In particular, it was realized that EAs are very
well suited for multi-criterion optimization and they have become the MOO
methods of choice in the last years [13, 18]. Recent applications of evolu-
tionary MOO to neural systems address the design of multi-layer perceptron
NNs [1, 2, 49, 103, 29, 11, 48] and support vector machines (SVMs) [39, 97].

7.3.2.2 Reinforcement learning

In the standard reinforcement learning (RL) scenario [100, 95, 74], an agent
perceives stimuli from the environment and decides which action to take based
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on its policy. Influenced by the actions, the environment changes its state and
possibly emits reward signals. The reward feedback may be sparse, unspecific,
and delayed. The goal of the agent is to adapt its policy, which may be repre-
sented by (or be based on) a NN, such that the expected reward is maximized.
The gradient of the performance measure with respect to NN parameters can
usually not be computed (but estimated in case of stochastic policies, e.g.,
see [96, 56]).

Evolutionary algorithms have proved to be powerful and competitive meth-
ods for solving RL problems [64, 38, 72]. The recent success of evolved NNs
in game playing [12, 23, 59, 94] demonstrates the potential of combining
NNs and evolutionary computation for RL. The possible advantages of EAs
compared to standard RL methods are that they allow — in contrast to
the common temporal difference learning methods — for direct search in the
space of (stochastic as well as deterministic) policies. Furthermore, they are
often easier to apply and more robust with respect to the tuning of the meta-
parameters (learning rates, etc.). They can be applied to non-differentiable
function approximators and even optimize their underlying structure.

Closely related is the research area of evolutionary robotics devoted to
the evolution of “embodied” neural control systems [66, 57, 70, 101]. Here
promising applications of the principle of co-evolution can be found.

7.3.2.3 Evolving network ensembles

Ensembles of NNs that cooperatively solve a given task can be preferable to
monolithic systems. For example, they may allow for task decomposition that
is necessary for efficiently solving a complex problem and they are often eas-
ier to interpret [85]. The population concept in EAs appears to be ideal for
designing neural network ensembles, as, for example, demonstrated for clas-
sification tasks in [58, 11]. In the framework of decision making and games,
Mark et al. [62] developed a combination of NN ensembles and evolutionary
computation. Two ensembles are used to predict the opponent’s strategy and
to optimize the own action. Using an ensemble instead of a single network en-
sures to be able to maintain different opponent experts and counter-strategies
in parallel. The EA is used to determine the optimal input for the two network
ensembles. Ensembles of networks have also turned out a superior alternative
to single NNs for fitness approximation in evolutionary optimization. In [51]
network ensembles have been optimized with evolution strategies and then
used as metamodels in an evolutionary computation framework. Beside the
increase in approximation quality an ensemble of networks has the advantage
that the fidelity of the networks can be estimated based on the variance of
the ensemble.

7.3.2.4 Optimizing kernel methods

Adopting the extended definition of structure as that part of the adaptive sys-
tem that cannot be optimized by the learning algorithm itself, model selection
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of kernel-based methods is a structure optimization problem. For example,
choosing the right kernel for an SVM [14, 15, 81] is important for its perfor-
mance. When a parameterized family of kernel functions is considered, kernel
adaptation reduces to finding an appropriate parameter vector. These “hy-
perparameters” are usually determined by grid search, which is only suitable
for the adjustment of very few parameters, or by gradient-based approaches.
When applicable, the latter methods are highly efficient albeit susceptible to
local optima. Still, the gradient of the performance criterion w.r.t. the hy-
perparameters can often neither be computed nor accurately approximated.
This leads to growing interest in applying EAs to model selection of SVMs.
In [26, 77, 39, 97], evolution strategies (i.e., EAs tailored for real-valued op-
timization) were proposed for adapting SVM hyperparameters, in [21, 27]
genetic algorithms (EAs that represent candidate solutions as fixed-length
strings over a finite alphabet) were used for SVM feature selection.

7.3.2.5 Computational neuroscience and brain-inspired
architectures

There are only a few applications of evolutionary computation in brain sci-
ence [4, 80, 92, 44, 75], although evolutionary “analysis by synthesis” guided
by neurobiological knowledge may be a powerful tool in computational neu-
roscience. The challenge is to force artificial evolution to favor solutions that
are reasonable from the biological point of view by incorporating as much
neurobiological knowledge as possible in the design process (e.g., by a deliber-
ate choice of the basic system structure and constraints that ensure biological
plausibility).

In the field of brain-inspired vision systems [28, 102] EAs have been used to
optimize the structure of the system (i.e., feature banks or hierarchical layers)
and to determine a wide variety of parameters. Evolutionary algorithms have
been successfully applied to the Neocognitron structure [98, 68, 86], which
was one of the first hierarchical vision systems based on the structure of its
biological counterpart [28]. More recent work employed evolution strategies
to optimize the nonlinearities and the structure of a biologically inspired vi-
sion network, which is capable of performing a complex 3D real world object
classification task [78, 79]. The authors used evolutionary optimization with
direct encoding that performed well in an 1800-dimensional search space. In a
second experiment evolutionary optimization was successfully combined with
local unsupervised learning based on a sparse representation. The resulting
architecture outperformed alternative approaches.

7.4 Networks that learn to learn

The ability to learn (online) is one of the most distinguishing features of artifi-
cial NNs. The idea behind the “learn to learn” concept discussed in this section
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Fig. 7.4. Evolutionary structure optimization for problem classes. Left: Methods to
achieve first and second order generalization in neural network learning and evolu-
tion (structure optimization). Right: Standard neural network learning (a), parallel
switching between problems (b) and sequential switching (c). EANN denotes a neu-
ral network optimized by an evolutionary algorithm.

is that the goal of evolutionary NN structure optimization should be the abil-
ity to efficiently learn new related problems during operation, see [34, 37].
Here “efficient” means fast and based on incomplete data. The term “new
related problems” is more difficult to define. The problems must have some
common structure that can be captured by the EA and reflected in the NN
architecture. Learning a different problem class goes beyond standard gener-
alization. The latter means generalizing from a finite set of training samples to
arbitrary samples drawn from the same distribution as, for example, formally
defined at the end of section 7.2.1. Facing a different problem from the same
class means that the underlying distribution has changed while belonging to
the set of distributions which define the class and which have some common
features that can be represented by the structure.

Therefore we speak of “second order generalization” for the ability to ef-
ficiently switch between problems, see figure 7.4 (left). In the notation intro-
duced by Thrun and Pratt [99], this ability belongs to the area of representa-
tions and functional decompositions. However, in the evolutionary approach,
this functional decomposition is self-organized during the evolutionary pro-
cess. There are basically two different ways in which second order generaliza-
tion can be achieved and used: the parallel and the sequential way. In figure 7.4
(right, a) the standard approach to learn one problem with an NN is shown.
In part (b), the parallel approach is shown. The network is optimized during
evolution in order to learn one of a number of possible problems. The actual
decision is made after the network’s structure has been fixed by evolutionary
search. However, during the search the network’s structure must be optimized
in order to cope with any of the possible problems. Thus, each structure is ap-
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Fig. 7.5. Evolving networks that “learn to learn.” During evolution the network
structures adapt to a special problem class. This specialization leads to a reduced
time for learning a new instance of the problem class, see left plot. Since the class in
this example consists of separable problems, the degree of modularity of the network
structures increases over time, as shown in the right plot (cf. [35]).

plied to all problems (or a random subset of problems of the respective class).
For each problem the weights are newly initialized. The fitness of the network
is determined by the mean (or median or weighted sum) of the networks’ indi-
vidual performances. In figure 7.4 (right, c), the network has to learn a number
of problems one after the other during operation. The network’s structure has
been optimized in such a way that switching from problem to problem can be
achieved most efficiently in the above sense. The weights are not randomly
initialized (like in (b)), but averaged Lamarckian inheritance [36] is used to
exploit information on previous problems for the next problem belonging to
the same class. Again, the fitness of the network is determined by the mean
(or median or weighted sum) of the networks’ individual performances.

From the NFL theorems (see section 7.2.3) we conclude that adaptive
systems have to be specialized towards a particular problem class to show
above average performance. Second order generalization can be viewed as
such a specialization.

7.4.1 Modularity

A simple example of how to build NNs that “learn to learn” was given
in the study [35], where Hüsken et al. considered feed-forward NNs that
had to learn binary mappings {0, 1}6 → {0, 1}2 assigning target values
y = (y1, y2)′ ∈ {0, 1}2 to inputs s = (s1, . . . , s6)′ ∈ {0, 1}6. The class of
mappings was restricted to those which are separable in the strict sense that
y1 only depends on the inputs s1, . . . , s3 and y2 only on s4, . . . , s6. The map-
pings changed over time and a simple EA was employed to create feed-forward
network structures that quickly learn a new instance of the problem class. The
fitness of an NN structure was determined by the time needed to learn a ran-
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Fig. 7.6. Although the approximation errors of the neural network models are
quite high, the optimization based on the approximation models leads to the desired
optimum of the fitness under rank-based selection.

domly chosen problem instance, that is, the sequential switching approach
depicted in figure 7.4 was used.

After a few generations, the networks adapted to the special, restricted
problem class and the learning time decreased drastically, see figure 7.5. In
this toy example, it is obvious that NN structures that are modular in the
sense that they process the inputs s1, . . . , s3 and s4, . . . , s6 separately without
interference are advantageous. When measuring this special kind of modular-
ity during the course of evolution, it turned out that the modularity indeed
increased, see figure 7.5, right plot.

In [53] modularity is analyzed in the context of problem decomposition
and a novel modular network architecture is presented. Modularity is related
to multi-network systems or ensembles for which a taxonomy is presented. A
co-evolutionary framework is used to design modular NNs. The model con-
sists of two populations, one consisting of a pool of modules and the other
synthesizing complete systems by drawing elements from the first. In this
framework, modules represent parts of the solution which co-operate with
each other to form a complete solution. Using two artificial tasks the authors
demonstrate that modular neural systems can be co-evolved. At the same
time, the usefulness of modularity depends on the learning algorithm and the
quality function.

7.4.2 Real-world application

Evolutionary algorithms combined with computational fluid dynamics (CFD)
have been applied successfully to a large variety of design optimization prob-
lems in engineering (e.g., [90, 24, 67]). The fluid-dynamics simulations neces-
sary to determine the quality of each design are usually computationally ex-
pensive, for example the calculation of the three-dimensional flow field around
a car takes between 10-30 hours depending on the required accuracy. There-
fore, metamodels or surrogates are used during the search to approximate the
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Fig. 7.7. The flow field of a turbine blade cascade for a gas turbine engine shown
on the right.

results of the CFD simulations. Although first approaches to combine fitness
approximation with EAs are relatively old [31], it is only in the last couple of
years that the field has received wider attention, see [47] for a review. It has
been revealed that the strategy to keep the update of the metamodel and the
optimization process separate is not advisable, since the optimization is easily
misled if the modeling quality is limited (which is often the case in practical
applications). Jin et al. [50] have suggested to use the metamodel alongside
the true objective function to guarantee correct convergence. Furthermore,
the use of NNs as models is particularly advantageous because of their online
learning ability. Thus, the approximation quality of NNs can be continuously
improved during the optimization process when new CFD data is available
(e.g, [50, 73, 69, 30]). It is interesting to note that the standard mean squared
error measure of NNs is not necessarily the best means to determine the qual-
ity of NNs that are employed as surrogates. Figure 7.6 shows why this is the
case. During evolutionary search, the absolute error of the NN is of no con-
cern, as long as the model is able to distinguish between “good” and “bad”
individuals.

7.4.2.1 Evolution of the metamodel

Neural networks that are used as metamodels during evolutionary search
should have the best possible architecture for the approximation task. There-
fore, EAs are employed to determine the structure of the networks offline,
for example using data from previous optimization tasks. Weight adaptation
is conducted during the evolutionary design optimization whenever new data
are available.

This framework has been employed in [36] for the optimization of turbine
blades of a gas turbine engine. The flow field around a turbine blade and the
engine are shown in figure 7.7. Navier-Stokes equations with the (k-ε) tur-
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Fig. 7.8. Results normalized to the number of generations where the CFD sim-
ulations have been used. ApxNN(1)denotes a fully connected neural network, for
ApxNN(2)the network structure has been evolutionarily optimized and for ApxNN(3)the
network has been optimized to switch between different design domains (problem
classes) most efficiently.

bulence model were used for the two dimensional CFD simulations. During
optimization the pressure loss was minimized subject to a number of geomet-
rical and functional constraints, in particular the target outflow angle α was
set to 69.70 deg. The turbine blades were represented by 26 control points of
non-uniform rational B-splines. The (x, y)-coordinates of the control points
were optimized using a (2,11)-evolution strategy, further details can be found
in [36].

The results of the optimization are given in figure 7.8. The average pressure
loss and outflow angle are shown that have been reached in the evolutionary
design optimization of the turbine blade. The three curves represent three
different strategies to define the architecture of the NN that has been used
as a metamodel during search. The model of the first type (ApxNN(1)) uses a
fully connected architecture. The weights are initialized by means of offline
learning, using training data collected in a comparable blade optimization
trial (e.g., different initialization but the same number of control points of
the spline and the same fitness function). The second type of network model
(ApxNN(2)) was optimized offline with an EA using data generated in a previous
optimization run. The third approach will be discussed in the next section. It
is evident that the evolutionarily optimized NN structure clearly outperforms
the fully connected model in the practical application.

7.4.2.2 Learn surrogates to learn CFD

We already discussed the idea to evolve the architecture of NNs not just for
one specific problem but instead to optimize the network so that it is able to
quickly adapt to problems belonging to one class. We can transfer this idea
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Fig. 7.9. Evolutionary structure optimization for problem classes with averaged
Lamarckian inheritance, where the Pi denote the different problems belonging to
one class and NNi the network after learning Pi. The symbol wi,j denotes the set of
weights of the ith network after learning the jth problem, w′

i refers to the weights
of the ith network after learning all ν problems. Averaged Lamarckian evolution
is used to take the different problem characteristics into account for determining
the set w′

i, details can be found in [36]. The symbol ai denotes the architecture or
structure of the neural network, which is not changed during the sequential learning
of problems 1 . . . ν.

to the problem domain of surrogates for approximation during evolutionary
design optimization by sub-dividing the CFD samples into groups (problems)
belonging to one and the same class namely the approximation of CFD data
for evolutionary search. This is a reasonable approach because we do not
expect to evolve a network that approximates the CFD results well for the
whole optimization. Instead, since the surrogate and the original CFD simula-
tion are mixed during search, new data samples are available and the network
can be adapted online. Thus, the best network is the one that is particularly
well suited to continuously and quickly learn new CFD approximations dur-
ing the evolutionary design optimization. In figure 7.9 the framework for the
evolutionary optimization of the NN for problem classes is shown. To avoid
confusion, we point out that the evolutionary optimization of the architecture
is still decoupled from the evolutionary design optimization, where the best
network is used as a surrogate.

The results for the network that has been evolved to quickly adapt to
problems from one and the same class are shown as ApxNN(3) in figure 7.8.
We observe that during the first generations ApxNN(3)scores much better than
ApxNN(1)(the fully connected NN) and similar to ApxNN(2)(the network whose
structure was optimized using a standard evolutionary approach to minimize
the approximation error for all data offline). However, in later generations,
the performance of ApxNN(3)deteriorates and becomes unstable. Although this
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behavior is not yet fully understood, we believe that one reason might be the
different update frequencies between the offline problem class training and the
online design optimization. The update frequency denotes how often the orig-
inal CFD simulation is called within a certain number of generations. As this
frequency is adapted depending on the fidelity of the approximation model, it
changes differently during offline structure optimization of the NN and online
application of the network as a surrogate for the design optimization. There-
fore, the definition of the problem class might change, which is difficult to
cope with for the network.

7.5 Conclusion

Organic computing calls for adaptive systems. In order to be efficient and
robust, these systems have to be specialized to certain problem classes com-
prising those scenarios they may face during operation. Nervous systems are
perfect examples of such specialized learners and thus are prime candidates
for the substrate of organic computing.

Computational models of nervous systems like artificial neural networks
(NNs) have to be revisited in the light of new adaptation schemes that focus
on the structure of the system and address issues like modularity, second-order
generalization and learning efficiency.

At the same time, we promote the combination of evolutionary algorithms
(EAs) and NNs not just because of an appealing metaphor, but also and fore-
most because EAs have proved to be well suited to solve many of the difficult
optimization problems occurring when designing NNs, especially when higher
order optimization methods cannot be applied. The field of evolutionary neu-
ral systems is expanding in many different directions as we have shown in this
chapter. We have demonstrated how NNs can be evolved that are specialized
to certain problem classes. Although still in its beginnings, this second order
learning is not restricted to toy problems but has already found real-world
technical applications.

Still, much is left to do to establish the design triangle learning–
development–evolution of neural systems in such a way that they can demon-
strate their full potential. Results from brain science highlight the importance
of architecture and of the way the architecture is constructed during ontoge-
nesis. Although the incorporation of evolution and development into compu-
tational neuroscience is still in its beginning, we believe that this will be a
promising approach to organic computing.
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