
6

Evolutionary Design of Emergent Behavior

Jürgen Branke, Hartmut Schmeck

Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany.
branke@aifb.uni-karlsruhe.de, schmeck@aifb.uni-karlsruhe.de

Summary. Most technical systems envisioned in organic computing are assumed to
be complex, consisting of a large number of interacting components, self-organizing
and exhibiting emergent behavior. As is argued in this chapter, a system’s emergent
properties surface only after realization or during a simulation of all interacting
components. Thus, the usual “top-down” and “bottom-up” design paradigms have
severe limitations when it comes to emergence. Instead, the use of evolutionary
computation is advocated for the automated, simulation-based design of organic
computing systems with emergent behavior.

Key words: Emergence, organic computing, evolutionary computation, design
principles

6.1 Introduction

As a result of the continuing technological and scientific progress, the systems
created by engineers, computer scientists and others become larger and larger,
consisting of more and more highly interconnected and heterogeneous com-
ponents. In short, they become ever more complex. On the other hand, the
demand for reliability, adaptability and cost effectiveness remains or even in-
creases. Being able to design and control such complex systems thus becomes
a competitive necessity.

The organic computing initiative envisions computer systems of the future
to be more flexible and adaptive, more autonomous, and with a stronger focus
on user needs. In short, organic computers are self-organizing systems, able to
dynamically adapt to a changing environment. They exhibit the so-called “self-
x” properties, including self-organization, self-configuration, self-healing, self-
adaptation, and self-protection. To achieve these goals, a life-like structure is
envisioned, with many interacting, more or less autonomous subsystems, self-
organizing into a coherent global system. This can be viewed to be analogous
to complex natural systems, as e.g. societies of ants, termites, or wasps. An

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,

doi: 10.1007/978-3-540-77657-4 6, © Springer-Verlag Berlin Heidelberg 2008

124 Jürgen Branke, Hartmut Schmeck

observer-controller structure [63, 22] is supposed to supervise and control the
overall system.

On the one hand, such a structure relieves the designer from the need to
foresee all possible events and rigidly program all system responses in every
detail, as for example small faults can be self-repaired, the system can self-
adapt to a variety of environments and users, and self-protect even against
threats not yet existing at design time. On the other hand, the emergent
behavior of such collections of interacting, self-adapting components poses
new challenges to the designer.

Usually, emergence is defined as some global behavior of the overall system
that can not be observed, and often not even deduced, from looking at the
components individually, see, e.g., [46, 28]. Examples include traffic jams,
the finding of shortest paths by ants, or the complex functionality of the
brain consisting of many rather simple interconnected neurons. Note that
the emergent behavior may be desired, as in the example of the brain, or
undesired, as in the example of traffic jams.

Since emergent behavior only occurs if components are working together,
the system’s characteristics can not be derived by analyzing the individual
parts, and analytical models of such complex systems usually don’t exist1.
But this also means that the usual “top-down” design principle is no longer
appropriate. It is by definition impossible to know how design choices made on
the component level affect the overall system behavior. Therefore, designing
a set of interacting subsystems such that they generate a desired emergent
global behavior , while preventing undesired emergent behavior, is a very
challenging task.

This predicament has been discussed also by others, see e.g. [29, 34, 5, 53].
Most researchers agree that the design of complex, self-organizing systems
with emergent properties is necessarily an iterative, step-wise refinement pro-
cess, with extensive use of simulations and experiments. In fact, simulation
seems to be the only practicable method of developing an understanding of the
properties of organic systems, and we therefore conjecture that any promis-
ing design process has to involve simulation to evaluate a system’s quality.
Some tools have been proposed to support such a process, see, e.g., [9]. Nev-
ertheless, the proper design methodology is still a heavily debated research
issue. Eventually, the design process is often driven by trial-and-error and the
intuition and ingenuity of an engineer. For inspiration, people often turn to
principles from nature when designing self-organizing systems, see [57, 54] for
compilations of such principles.

In this paper, we argue that simulation-based design, in its extreme form,
basically corresponds to a black box search in the design space, using simu-
lation to evaluate solutions. Although many real-world problems may not be

1 Exceptions are perhaps physical systems, where the global behavior can be de-
scribed by appropriately chosen differential equations

6 Evolutionary Design of Emergent Behavior 125

a complete black box, there are powerful black box optimization algorithms
that could be used to automate simulation-based design of complex systems.

Design and optimization based on simulation have become practical only
recently due to the immense increase in computational power. In the realm
of simulation, entire complex systems can now be modeled realistically to
the point of allowing accurate conclusions about the real world. And in the
realm of design and optimization, it allows to develop and run iterative nature-
inspired metaheuristics like evolutionary algorithms (EAs), which have proven
to be successful in a wide variety of problem domains. Together, this provides,
for the first time, a means to automatically optimize and design complex
systems despite of the appearance of emergent phenomena.

Simulation-based design, however, poses a number of challenges:

1. Evaluating a solution is time consuming. Because simulating a com-
plex organic system usually involves the simulation of a large number of
interacting components, such a simulation is time consuming and compu-
tationally expensive.

2. Evaluation is stochastic. In many cases, a complex system contains
some random component, be it only the environment it interacts with. As a
consequence, the simulations used for evaluating complex systems involve
a pseudo random number generator, and thus the observed performance
is stochastic and depends on the random number seed. Such uncertainty
in evaluation is a major challenge for design and optimization.

3. Typical applications involve multiple objectives. Although this as-
pect is not restricted to organic systems, many practical complex systems
are supposed to satisfy a multitude of usually conflicting criteria. Since
no single system is optimal with respect to all criteria, a compromise so-
lution has to be found, which represents a proper trade-off of the different
objectives.

Nature-inspired metaheuristics form one group of optimizers able to suc-
cessfully tackle black box optimization problems. Nature-inspired optimiza-
tion is a very active field of research, encompassing a number of different
optimization approaches inspired by different natural phenomena. Among the
most prominent representatives are simulated annealing [1], evolutionary algo-
rithms [32], ant colony optimization [12], tabu search [40], or particle swarm
optimization [33]. Their suitability for black box optimization alone would
make them promising candidates for the design and optimization of complex
systems. But, as will be demonstrated in this chapter, EAs are also able to
address all the other challenges involved in the design and optimization of
complex organic systems.

As a closely related field, simulation-based optimization has received in-
creasing interest over the past years, good overviews can be found e.g.
in [39, 67, 43]. So far, however, the area has been mostly concerned with
the uncertainty of evaluations. A typical representative would be stochastic
approximation [66], which is a variant of gradient search explicitly taking into

126 Jürgen Branke, Hartmut Schmeck

account stochastic evaluation functions. Here, we will show how EAs can be
adapted to handle such problems, and will additionally look at all the other
aspects mentioned above and considered important when designing or opti-
mizing complex organic systems.

This chapter is structured as follows. The next section will provide a brief
introduction to EAs. Then we discuss the different challenges with respect
to the optimization of complex organic systems, and how EAs can address
them. First, in section 6.3, we discuss ways to run the algorithm in reasonable
time despite of the usually large time to evaluate a single solution. In par-
ticular, we discuss parallelization and the use of approximate models. Then,
Section 6.4 looks at ways to allow EAs to cope with stochastic evaluations.
The consideration of multiple objectives and the algorithm’s ability to focus
on the most interesting solutions is treated in Section 6.5. Section 6.6 briefly
describes two exemplary applications. The chapter concludes with a summary
and some ideas for future work.

6.2 A brief introduction to evolutionary computation

A detailed description of evolutionary algorithms is out of the scope of this
chapter, and the interested reader is referred to, e.g., [32, 35]. However, a brief
outline of the algorithms’ main features shall be provided here.

Evolutionary algorithms are randomized heuristic search methods based
on the principles of natural evolution, or more specifically, on Darwin’s theory
of the survival of the fittest. The two driving forces of EAs are selection and
diversification. Starting with a set of candidate solutions (population), in each
iteration (generation), new individuals are created based on the current popu-
lation (diversification). The two primary construction operators are crossover,
which combines information from two solutions to form a new solution, and
mutation, which modifies an existing solution locally. In the next step, out
of this larger set of parents and offspring, the new set of individuals allowed
to reproduce is selected. By continually selecting good solutions for reproduc-
tion and then creating new solutions based on the knowledge represented in
the selected individuals, the solutions “evolve” and become better and better
adapted to the problem to be solved, just like in nature, where the individuals
become better and better adapted to their environment through the means of
evolution.

There are four different main streams of evolutionary computation that
have originally been developed independently and focused on different aspects,
namely genetic algorithms [42], evolution strategies [58, 64], evolutionary pro-
gramming [38], and genetic programming [50]. While all can be used for design
and optimization, the latter may be particularly interesting for open-ended
design, because it allows for variable-length descriptions of solutions, e.g. in
the form of LISP-expressions, i.e. it imposes fewer restrictions on the search
space.

6 Evolutionary Design of Emergent Behavior 127

As all metaheuristics, EAs are more or less black box optimization tech-
niques and thus don’t impose any constraints on the optimization problem,
e.g., the fitness function need not be differentiable.

6.3 Timely execution despite expensive evaluations

If during the course of optimization, many candidate solutions have to be eval-
uated, and each evaluation involves a time-consuming simulation, the overall
time required for optimization may be excessively long. Therefore, methods
are needed to speed up the optimization.

We consider here two fundamental ways to achieve that goal: either the
execution itself is accelerated, or the algorithm is modified such that it can
work with fewer evaluations (and thus requires fewer simulation runs). The
former can be achieved by, e.g., parallelization, the latter by replacing the
time-consuming simulation with approximate evaluations. These aspects are
discussed in the following subsections.

6.3.1 Parallelization

Parallelization can be implemented on different levels: The lowest level is the
level of a single evaluation or simulation. However, parallelization on this level
is very problem specific and, in particular, if the interaction between system
components is not restricted locally, could turn out to be quite challenging.

The highest level would be to run several instances of the EA in parallel on
different processors. Since EAs are randomized search algorithms, they would
generate different solutions when started with different random seeds on the
different processors. The final solution would then be the best solution found
by either of the parallel runs. Although that sort of high level parallelization
would be very easy to realize, intuitively, it is not very efficient, as the different
runs don’t exchange any information.

Parallelizing a single run on the algorithm level seems most promising.
Luckily, EAs are relatively easy to parallelize, since the time consuming eval-
uation of a solution can be done in parallel and independently for different
solutions, for surveys see, e.g., [3, 26, 61].

Clearly, all individuals created in one generation can be evaluated inde-
pendently on different processors. Also, mutation and crossover could be done
in parallel. Only for selection, a solution’s quality has to be judged relative to
to the quality of all other solutions in the population, and thus global knowl-
edge is required. This can be achieved in a master-slave fashion, where the
master process maintains the population and selects parents, but sends out
the parents for crossover, mutation and evaluation to the slave processes. This
very straightforward parallelization scheme incurs significant communication
overhead, as individuals have to be sent out and recollected in every itera-
tion. Therefore, the EA community has developed algorithmic variants with

128 Jürgen Branke, Hartmut Schmeck

a more local selection, alleviating the need for global control. Most promi-
nent among those are the island model and the diffusion model. In the is-
land model, the population is divided into a number of subpopulations, which
can run independent EAs on different processors. Only at regular intervals
the subpopulations exchange some (usually the best) individuals with their
neighbors in a so-called migration step. Communication is thus reduced to
occasional migration. In the diffusion model, individuals are distributed spa-
tially. In every generation, each individual selects a mating partner from its
local neighborhood. The model is called diffusion model because the neigh-
borhoods are overlapping, and a very good individual can spread only slowly
(diffuse) from one local neighborhood to the next. The island model is ideally
suited for workstation clusters with powerful processors and slow communica-
tion. The diffusion model with a local interaction structure is particularly well
suited for massively parallel computers with a very fast local interconnection
network.

Either model localizes selection, thereby creating temporary niches, in
which also inferior individuals have a chance to survive for some time. As
experience has shown, this effect is so beneficial that many people today ac-
tually implement either the island or the diffusion model even on a single
processor.

All the approaches above more or less assume a dedicated parallel com-
puter with equally powerful processors. However, in recent years, computer
grids, i.e., the combination of available computers connected via Internet to
form a virtual supercomputer, became a much cheaper and more accessible
alternative. The power of computer grids has been demonstrated, e.g., by
the project [65], which connected thousands of computers to search for ex-
traterrestrial life, and companies like [56] or [74] commercialize the idea of
networked computing. Clearly, computer grids have the potential to resolve
the problem of high computer resources required by EAs, and will help pave
the way to their still more widespread use.

However, the above parallelization schemes have to be adapted to a het-
erogeneous computer architecture with processors of vastly different power
(with processor power actually varying over time, as only the computers’ idle
cycles are utilized), and slow and unreliable communication, see [20] for first
steps in this direction.

6.3.2 Use of approximate models

Another way to reduce computational complexity and to speed up the pro-
cedure is to replace the usual evaluation by an approximate one. Such an
approximate evaluation can be obtained through, e.g., response surface mod-
eling. In the simplest case, methods from experimental design are used to
determine a suitable set of potential solutions, called design points, that are
evaluated and then used to construct a metamodel, a simple approximate

6 Evolutionary Design of Emergent Behavior 129

model of the true evaluation function. Typical types of approximation models
include regression, kriging, or artificial neural networks.

Given such a metamodel, the application of EAs is straightforward. How-
ever, such a two-step process of first constructing a metamodel and then using
it for optimization assumes that a good solution with respect to the metamodel
also represents a good solution with respect to the true evaluation. The valid-
ity of this assumption clearly depends on the quality of the metamodel. The
dilemma is that constructing an accurate metamodel for the whole search
space may require even more evaluations than running the optimizer directly
on the original evaluation function.

A promising alternative to that two-step process is to interweave model
construction and optimization: in the beginning of the optimization process,
a rather crude model may be sufficient, and later on, information from the
optimization run can be used to identify the most promising regions of the
search space, where the model can be repeatedly refined. In most cases so-
lutions are generated by the optimizer and evaluated using the metamodel.
Then, it is decided which of the solutions should be evaluated accurately, and
finally, the information gained by evaluating some solutions accurately is used
to update the metamodel. EAs are particularly suitable for combination with
approximation models because they are black box optimizers (and thus the
accurate evaluation can easily be exchanged with an approximate model on a
solution-by-solution basis), and because they repeatedly resample promising
regions of the search space, thereby gathering information over time in the
most interesting regions, which can be used to refine the model exactly there.
Comprehensive overviews of this rather large research area can be found e.g.
in [48, 47].

The use of a metamodel is particularly helpful in the context of applica-
tions with noisy evaluation functions, or when searching for robust solutions.
In those cases, in order to obtain sufficiently accurate estimates of a solu-
tion’s quality, repeated evaluation of each solution is required, which makes
optimization particularly costly. Here, metamodels can help reduce the num-
ber of evaluations per solution, see, e.g., [25, 55, 59]. These issues are discussed
in more detail in the following section.

6.4 Stochastic fitness

EAs rely on an appropriate balance between exploration and exploitation,
i.e., between testing new regions of the search space and concentrating the
search on the most promising regions. The primary operator for exploitation is
selection, which is a prerequisite for the advancement of search. In EAs, there
are two potential selection steps: Good individuals have a higher probability to
be selected as parents (parent selection), and bad individuals are removed from
the population to make way for new individuals (usually termed environmental
selection).

130 Jürgen Branke, Hartmut Schmeck

Selection implies the ability to discriminate alternative solutions accu-
rately by their quality, in order to separate the good from the bad. However,
as has been stated above, when designing complex organic systems, evaluation
is done by randomized simulation, and thus selection is subject to uncertainty.
This obviously impacts the algorithm’s ability to select. Many authors have
addressed this issue, and, in this section, we discuss ways that allow nature-
inspired metaheuristics to work despite the noise.

There are a number of reasonable optimization goals in the presence of
uncertainty, ranging from worst case performance over expected performance
to the probability of being above a specified level. The by far most thoroughly
studied and arguably most important criterion is expected performance, which
will be assumed for the remainder of this section.

In most of the literature, the issue of uncertain evaluation is divided into
two categories:

1. Noisy evaluation generally assumes an underlying objective function
f(x), which is unknown and disturbed by additive noise, i.e., the observed
fitness function can be described as F (x) = f(x) + δ, with δ a random
variable (usually normally distributed with zero mean). In this case the
expected fitness is the underlying (unknown) function: E(F (x)) = f(x).

2. Search for robust solutions usually assumes that the underlying objec-
tive function f(x) can be accurately evaluated during optimization, but
the final solution is subject to noise when it is implemented, and the fit-
ness obtained is thus F (x) = f(x + δ). Such a setting is typical in the
case of, e.g., manufacturing tolerances. However, even if the probability
distribution of δ is assumed to be known, it is not possible to calculate the

expected fitness E(F (x)) =
∫ +∞

−∞
f(x + δ)p(δ)dδ, because an analytically

closed form of the underlying fitness function is not available.

The above categorization makes sense, as it addresses different applica-
tion areas, but the border between the categories is blurred, and very similar
techniques have been successfully applied for both scenarios. The main dif-
ferences are that, in the case of noisy evaluation, the noise is assumed to be
uncontrollable, and it is impossible to evaluate without noise, while in the
case of searching for robust solutions, the disturbances applied during opti-
mization can be chosen deliberately, and only the final solution is subject to
uncontrollable noise. Controllability allows for the use of statistical variance
reduction techniques. Furthermore, the distribution of fitness values for a par-
ticular solution is often assumed normally distributed in noisy optimization,
while it is usually quite irregular (skewed and non-normal) when searching for
robust solutions (because the noise enters the fitness function). In the follow-
ing, we will discuss the issue of uncertain evaluation in general, and specify
the assumptions underlying all approaches. For a survey see, e.g., [48].

6 Evolutionary Design of Emergent Behavior 131

6.4.1 Multiple samples

The simplest way to reduce uncertainty is by evaluating a solution repeatedly
and using the average as an estimate for the true mean fitness. Sampling n
times reduces a random variable’s standard deviation by a factor of

√
n, but

on the other hand increases the computation time by a factor of n. This is
a generally perceived trade-off: either one can use relatively exact estimates
but evaluate only a small number of individuals (because a single estimate
requires many evaluations), or one can let the algorithm work with relatively
crude fitness estimates and allow for more evaluations (as each estimate re-
quires less effort). For examples of papers using this simple approach see, e.g.,
[44, 75, 71]. Depending on the application, variance reduction techniques like
common random numbers or Latin hypercube sampling can help improving
the estimates [15].

6.4.2 Implicit averaging

Instead of removing the noise by averaging over multiple samples, one might
just let the algorithm cope with the uncertainty. Already many years ago, re-
searchers have argued that EAs should be relatively robust against noise, see
e.g., [37], and recently a number of publications have appeared which support
that claim at least partially [6, 7, 8]. In [52] it is shown that for infinite pop-
ulation size proportional2 selection is not affected by noise. Similarly, in [73]
it was shown that a genetic algorithm with random perturbations applied to
the design variables behaves identically to a genetic algorithm working on the
expected fitness values if the population size is infinite.

The reason is that promising areas of the search space are sampled re-
peatedly by the EA, and the population usually contains many similar so-
lutions. When the population is large, the noise in evaluating an individual
is very likely compensated by that of a similar individual. This effect has
been termed “implicit averaging” [48]. A natural question is whether explicit
averaging in the form of re-sampling or implicit averaging in the form of a
larger population size would be more efficient, given a fixed total number of
fitness evaluations per generation. Conflicting conclusions have been drawn
in different investigations [37, 10, 45]. In [51] and [52], some simplified the-
oretical models are developed, which allow to simultaneously optimize both
population and sample size.

6.4.3 Response surface modeling

Instead of implicitly averaging over neighboring solutions, one can explicitly
exploit information about previously evaluated similar solutions. And since
2 With proportional selection, an individual’s probability to be selected is propor-

tional to its quality relative to the sum of qualities of all other individuals in the
population.

132 Jürgen Branke, Hartmut Schmeck

nature-inspired optimization heuristics repeatedly sample promising regions
of the search space, such data is usually available. In the simplest case of
noise applied to the decision variables, neighboring solutions can be regarded
as samples, and a weighted average over neighboring individuals can approx-
imate the integral over possible disturbances [13]. Assuming a locally smooth
fitness landscape, this idea has recently been extended in [55], where local
metamodels are constructed based on previous evaluations in the neighbor-
hood. Then, numerical integration over the metamodel can be used to approx-
imate the expected fitness. In the case of noise applied to the fitness values,
smooth metamodels, which average out the noise, can also be applied. In [25],
we have successfully used local regression for that purpose, similar ideas can
also be found in [59, 60]. Such techniques improve the fitness estimates without
requiring additional samples.

6.4.4 Statistical ranking and selection techniques

The probability of erroneous selection depends not only on the uncertainty,
but more on the signal-to-noise ratio, i.e., fitness difference relative to fitness
variance. If the signal-to-noise ratio is large, selection is unlikely to make
any errors. If it is rather small, selection is very uncertain. Thus, it seems
promising to adapt the effort spent reducing the noise by repeated sampling
to the uncertainty in a particular selection decision, rather than using a fixed
number of samples. Consequently, it has been suggested to use a higher sample
size for individuals with higher estimated variance [2]. Similarly, [68] bases the
sample size on an individual’s probability to be among the best (and thus to
survive to the next generation).

While these attempts certainly represent improvements over the simple
strategy of sampling each solution a constant number of times, they ignore
the huge and well-developed field of statistically sound ranking and selection
techniques. The primary difference between ranking and selection procedures
and optimization procedures is that the former assume a given, usually small
set of systems that are exhaustively examined, while the latter attempt to
search efficiently through a search space too large for exhaustive search. But
selection among a given small set of alternatives is done in every iteration of
nature-inspired optimization, namely when the memory is updated. A sur-
vey of the most important selection techniques, together with an extensive
comparison and demonstration of the respective strengths and weaknesses is
provided in [16]. They are all based on the idea of sequential sampling, i.e.,
they take some samples, and then iteratively decide which systems should be
sampled next until a termination criterion is met. One first effort to integrate
methods from ranking and selection into EAs can be found in [11], where
sequential sampling techniques are used to divide the individuals in the pop-
ulation into groups of similar quality, which then receive the same probability
to be selected as parents.

6 Evolutionary Design of Emergent Behavior 133

In [24], we have integrated a selection technique, KN++ [49], into an
EA’s tournament selection. Also, we have shown how to numerically derive
an even better selection procedure tailored to a specific noise level. In our test
environment, both approaches, KN++ as well as our new procedure, showed
approximately the same performance as the standard procedure, but required
only half the number of samples.

6.4.5 Noise-adapted selection

In [23], we followed a completely different approach based on the observation
that many standard EA variants include a form of randomized selection. For
example, in rank-based selection, the probability to select an individual as
parent is proportional to its rank in the population. In stochastic tournament
selection, two individuals are compared and the better one is selected with a
probability p > 50%. Randomized selection is usually motivated by the wish
to maintain diversity and to escape local optima. Noise has a similar effect
as stochastic selection, namely that the inferior solution is selected with some
probability. Thus, it should be possible to accept the noise inherent in the op-
timization problem and to use it to (at least partially) replace the randomness
in the optimization algorithm. This has been achieved with our noise-adjusted
tournament selection (NATS) presented in [23]. In NATS, the probability to
accept a solution depends on the observed fitness difference between the two
solutions. We used bootstrapping to generate suitable acceptance probabilities
such that the expected acceptance rate is as close as possible to the desired
acceptance rate.

6.4.6 Further issues

In [2] it was probably first suggested that the sample size, and thus the accu-
racy of evaluation, should be increased over the run. [14] looks at this problem
more closely, and, in an extensive computational study, observes that it is best
to have high accuracy in the beginning of a run (presumably because in that
phase, the algorithm selects a subregion of the search space to work on), and
towards the end of the run (when local fine-tuning and selection of the final
solution require more precision). [4] look at a slightly different problem, but
also conclude that the sample size should increase over the run.

For the case of multiple uncertain objectives, [70] modifies the usual Pareto
dominance criterion to take uncertainty into account.

6.5 Multiple objectives

Design and optimization of complex organic systems often involves the con-
sideration of multiple, usually conflicting objectives. There is usually not one

134 Jürgen Branke, Hartmut Schmeck

solution which is optimal with respect to all objectives, but a set of alternative
solutions with different trade-offs. These solutions are generally called Pareto
optimal or efficient whenever it is impossible to improve on such a solution
in any criterion without suffering in at least one other criterion. Which of
these solutions is the desired one depends on the preferences of the decision
maker (DM). If these were known beforehand, e.g. in the form of a weighted
combination of the objectives, the problem could be transformed into a single
objective problem and solved in a standard way. However, very often the DM
is unable to specify his or her preferences before the alternatives are known.
It is therefore very convenient to have an optimization method capable of
generating the whole set of Pareto-optimal solutions and to allow the DM to
select among those afterwards.

EAs are population-based methods and thus capable of searching for all or
a representative subset of the Pareto-optimal solutions in one run. In recent
years, the field of evolutionary multi-objective optimization (EMO) has seen
a dramatic rise in interest with thousands of papers published, a dedicated
conference, and several books. For a comprehensive survey on the field, the
reader is referred to [31]. An extensive and frequently updated repository of
references can be found online [36].

The application of EAs to multi-objective problems is more or less straight-
forward. The main challenges are

1. to ensure convergence towards better solutions, and
2. to maintain a representative set of good alternatives.

To ensure convergence, one has to be able to determine when one solution
should be preferred over another. Here, most approaches rely on the concept
of non-dominance. A solution A is said to dominate a solution B, if A is at
least as good as B in all objectives, and better in at least one objective. To
ensure diversity along the front, among the non-dominated solutions, those in
sparse areas are favored over those in crowded areas.

While generating the whole front of Pareto-optimal solution ensures that
a DM’s preferred solution is part of the solution set, such a solution set can
contain a large number of alternative solutions, and selecting one may be
tedious. Generating so many solutions is usually also time-consuming and
would require rather large populations.

If we assume that for practical reasons the number of generated solu-
tions should be small, one immediate question is how they should be selected
from the large set of Pareto-optimal solutions, and whether the search can
be focused on the most interesting solutions from the beginning. Most multi-
objective approaches assume that the best representative set is equally dis-
tributed along the Pareto-optimal front. But although usually the DM can
not a priori specify his or her preferences completely, some vague information
is often available. Integrating this information into the optimization

and thereby biasing search towards the most interesting solutions holds the
promise of reducing computation time and generating more relevant solutions.

6 Evolutionary Design of Emergent Behavior 135

There have been several attempts in this direction, see, e.g., [30, 21, 17].
Furthermore, it is possible to interactively learn user preferences during the
optimization run, see, e.g., [72].

But even if no information about the DM’s preferences is available, some
solutions are more likely to be useful to the DM than others. In [18], we have
proposed to evaluate solutions according to their expected marginal utility
to a virtual DM. That is, we calculate how much additional value a solution
provides according to a DM’s utility function, averaged over an assumed dis-
tribution of possible utility functions. As a result, the algorithm using this
diversity preservation mechanism exhibits a clear bias towards “knees”, i.e.,
regions of the Pareto-optimal front with strong curvature. It has been ar-
gued before that these solution have particularly high practical relevance [27]
because even a small improvement in either objective requires a significant
worsening of the other objectives.

6.6 Exemplary applications

In this section, we will briefly discuss two exemplary applications where EAs
have been successfully used to design complex systems.

The first example is the design of en-route caching strategies. In the In-
ternet, document requests are routed from the requesting node point-to-point
through the network to the node storing the document, then the document
is sent all the way back to the requesting node. When hubs in the network
become over-utilized, slowdowns and timeouts can disrupt the process. It is
thus worthwhile to think about ways to minimize these effects. Caching, i.e.,
storing replicas of previously-seen objects for later reuse, has the potential to
generate large bandwidth savings and in turn a significant decrease in response
time. With en-route caching, each router in the network is equipped with a
cache and may opt to store copies of some documents for future reuse [69].
The rules used for such decisions are called “caching strategies”. Designing
such strategies is a challenging task, because the different nodes interact, re-
sulting in a complex dynamic system. The quality of a caching strategy can
only be determined by simulation. [19] have demonstrated that genetic pro-
gramming can be used successfully to design new effective caching strategies.
The newly discovered caching strategy significantly outperformed all other
state-of-the-art caching strategies tested.

Another example is the design of traffic light controllers. For simple con-
trollers, where different phases are given fixed time intervals, theoretical anal-
ysis may still be possible. However, for adaptive controllers that adjust the
signals based on traffic sensor data, a rigorous analysis does not seem to be
possible and traffic planners usually rely on simulation to evaluate the quality
of a traffic light controller. Goldate [41] has used EAs and traffic simulation
to design a traffic light controller in a multi-objective setting, attempting to
minimize travel time as well as the number of stops. Although his diploma

136 Jürgen Branke, Hartmut Schmeck

thesis can only be seen as a feasibility study, the resulting adaptive controller
outperformed a controller designed by a human expert. The nature-inspired
design of traffic light controllers is now explored with more rigor in the DFG
project on “Organic Traffic Control”3, including aspects like dynamic adap-
tation to changing (macro-)traffic patterns and interplay between the traffic
light controllers of neighboring crossroads.

6.7 Conclusion

Organic computer systems with life-like structure are advocated as a way to
handle the increasingly complex adaptive systems created by engineers and
computer scientists. Consisting of a large number of dynamically interacting
components, these systems exhibit emergent global behavior, which is not
deducible from the local actions of a single component. Organic Computing
thus calls for a methodology to determine appropriate local actions leading to
the desired global behavior. Another major challenge for the design of organic
systems is to control this emergent global behavior such that undesired effects
of emergence can be prevented. In this chapter, we have argued that due to
the emergent behavior, simulation seems to be required to evaluate a system’s
quality, which makes simulation a central component of design.

As has been demonstrated, EAs are particularly suitable for simulation-
based design and optimization for the following reasons:

• The quality of a complex adaptive system can usually only be evaluated
by simulation, as no closed analytical description is available. Since EAs
are black box optimization heuristics, they do not impose any restrictions
on the fitness function and naturally satisfy this requirement.

• EAs can be run efficiently in parallel, even on heterogeneous hardware
platforms like computer grids. Furthermore, it is possible to partly substi-
tute costly simulations by approximate models that are easier to compute.
These two aspects allow to significantly reduce the running time if neces-
sary.

• Even standard EAs can cope well with uncertainty in evaluation (e.g.
due to stochastic simulations). Furthermore, they can be enhanced with
advanced statistical methods from, e.g., ranking and selection to perform
even better.

• EAs maintain a population of solutions throughout the run. As such, they
are particularly suitable to handle multiple objectives and uncertainty
about user preferences by searching for different trade-offs in parallel.

However, even though the suitability of this methodology has been demon-
strated in several exemplary applications, more work is needed to further
refine the methods and to make them ready for widespread easy use. Also,

3 The project is part of the DFG priority program SPP 1183

6 Evolutionary Design of Emergent Behavior 137

while most of the above aspects have been examined independently so far,
integrating them into one method seems a natural next step.

Finally, it seems promising to integrate the engineer’s knowledge more
closely into the process, e.g., by using interactive EAs [5].

Acknowledgments

The authors gratefully acknowledge the funding of their research on organic
computing by the German Science Foundation (DFG) under SCHM752/12-1
and SCHM752/14-1.

References

1. E. Aarts and J. Korst. Simulated annealing and Boltzmann machines. Wiley,
1989.

2. A. N. Aizawa and B. W. Wah. Scheduling of genetic algorithms in a noisy
environment. Evolutionary Computation, pages 97–122, 1994.

3. E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–461, 2002.

4. L. A. Albert and D. E. Goldberg. Efficient evaluation genetic algorithms under
integrated fitness functions. Technical Report 2001024, Illinois Genetic Algo-
rithms Laboratory, Urbana-Champaign, USA, 2001.

5. C. Anderson. Creation of desirable complexity: strategies for designing self-
organized systems. In D. Braha et al., editors, Complex Engineered Systems,
pages 101–121. Springer, 2006.

6. D. V. Arnold and H.-G. Beyer. Efficiency and mutation strength adaptation of
the (μ/μi, λ)-ES in a noisy environment. In Schoenauer et al. [62], pages 39–48.

7. D. V. Arnold and H.-G. Beyer. Local performance of the (μ/μi, λ)-ES in a noisy
environment. In W. Martin and W. Spears, editors, Foundations of Genetic
Algorithms, pages 127–142. Morgan Kaufmann, 2000.

8. D. V. Arnold and H.-G. Beyer. A comparison of evolution strategies with other
direct search methods in the presence of noise. Computational Optimization and
Applications, 24:135–159, 2003.

9. C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard. Tools for self-organizing
applications engineering. In G. D. Serugendo et al., editors, Engineering Self-
Organizing Systems, volume 2977 of LNAI, page 283.298. Springer, 2004.

10. H.-G. Beyer. Toward a theory of evolution strategies: Some asymptotical results
from the (1 +, λ)-theory. Evolutionary Computation, 1(2):165–188, 1993.

11. J. Boesel. Search and Selection for Large-Scale Stochastic Optimization. PhD
thesis, Northwestern University, Evanston, Illinois, USA, 1999.

12. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: From natural
to artificial systems. Oxford University Press, 1999.

13. J. Branke. Creating robust solutions by means of an evolutionary algorithm.
In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature, volume 1498 of LNCS, pages 119–128. Springer,
1998.

138 Jürgen Branke, Hartmut Schmeck

14. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer, 2001.
15. J. Branke. Reducing the sampling variance when searching for robust solu-

tions. In L. S. et al., editor, Genetic and Evolutionary Computation Conference
(GECCO’01), pages 235–242. Morgan Kaufmann, 2001.

16. J. Branke, S. Chick, and C. Schmidt. Selecting a selection procedure. Technical
report, Fontainebleau, 2005.

17. J. Branke and K. Deb. Integrating user preferences into evolutionary multi-
objective optimization. In Y. Jin, editor, Knowledge Incorporation into Evolu-
tionary Algorithms, pages 461–478. Springer, 2004.

18. J. Branke, K. Deb, H. Dierolf, and M. Osswald. Finding knees in multi-objective
optimization. In Parallel Problem Solving from Nature, number 3242 in LNCS,
pages 722–731. Springer, 2004.

19. J. Branke, P. Funes, and F. Thiele. Evolving en-route caching strategies for the
internet. In Genetic and Evolutionary Computation Conference, volume 3103
of LNCS, pages 434–446. Springer, 2004.

20. J. Branke, A. Kamper, and H. Schmeck. Distribution of evolutionary algo-
rithms in heterogeneous networks. In Genetic and Evolutionary Computation
Conference, volume 3102 of LNCS, pages 923–934, 2004.

21. J. Branke, T. Kaußler, and H. Schmeck. Guidance in evolutionary multi-
objective optimization. Advances in Engineering Software, 32(6):499–508, 2001.

22. J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F. Rochner,
and H. Schmeck. Organic computing - addressing complexity by controlled self-
organization. In International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation. ACM, 2007.

23. J. Branke and C. Schmidt. Selection in the presence of noise. In E. Cantu-
Paz, editor, Genetic and Evolutionary Computation Conference, volume 2723 of
LNCS, pages 766–777. Springer, 2003.

24. J. Branke and C. Schmidt. Sequential sampling in noisy environments. In X. Yao
et al., editor, Parallel Problem Solving from Nature, volume 3242 of LNCS, pages
202–211. Springer, 2004.

25. J. Branke, C. Schmidt, and H. Schmeck. Efficient fitness estimation in noisy en-
vironments. In L. Spector et al., editors, Genetic and Evolutionary Computation
Conference, pages 243–250. Morgan Kaufmann, 2001.

26. E. Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer,
2000.

27. I. Das. On characterizing the ’knee’ of the pareto curve based on normal-
boundary intersection. Structural Optimization, 18(2/3):107–115, 1999.

28. T. De Wolf and T. Holvoet. Emergence versus self-organization: Different con-
cepts but promising when combined. In S. A. Brueckner et al., editors, Engi-
neering Self-Organising Systems: Methodologies and Applications, number 3464
in LNCS, pages 1–15. Springer, 2005.

29. T. De Wolf and T. Holvoet. Towards a methodology for engineering self-
organising emergent systems. In H. Czap et al., editors, Self-Organization and
Autonomic Informatics, pages 18–34. Springer, 2005.

30. K. Deb. Solving goal programming problems using multi-objective genetic al-
gorithms. In Congress on Evolutionary Computation, volume 1, pages 77–84.
IEEE, 1999.

31. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
2001.

6 Evolutionary Design of Emergent Behavior 139

32. K. A. DeJong. Evolutionary Computation. MIT Press, 2002.
33. R. C. Eberhart and Y. Shi. Swarm Intelligence. Morgan Kaufmann, 2001.
34. B. Edmonds. Using the experimental method to produce reliable self-organised

systems. In S. Brueckner et al., editors, Engineering Self-Organising Systems,
volume 3464 of LNAI, pages 84–99. Springer, 2005.

35. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

36. Repository on multi-objective evolutionary algorithms. online, http://www.

lania.mx/\simccoello/EMOO/.
37. J. M. Fitzpatrick and J. J. Grefenstette. Genetic algorithms in noisy environ-

ments. Machine Learning, 3:101–120, 1988.
38. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Sim-

ulated Evolution. John Wiley, 1966.
39. M. C. Fu. Optimizationn for simulation: Theory vs. practice. INFORMS Journal

of Computing, 14(3):192–215, 2002.
40. F. Glover. Tabu search - part I. ORSA Journal of Computing, 1(3):190–206,

1989.
41. P. Goldate. Optimierung einer Ampelsteuerung mit Hilfe von evolutionären

Algorithmen. Master’s thesis, Institute AIFB, University of Karlsruhe, 76128
Karlsruhe, Germany, August 2003.

42. D. E. Goldberg. Genetic Algorithms. Addison-Wesley, 1989.
43. A. Gosavi. Simulation-based optimization. Kluwer Academic, 2003.
44. H. Greiner. Robust optical coating design with evolutionary strategies. Applied

Optics, 35(28):5477–5483, 1996.
45. U. Hammel and T. Bäck. Evolution strategies on noisy functions, how to improve

convergence properties. In Y. Davidor, H. P. Schwefel, and R. Männer, editors,
Parallel Problem Solving from Nature, volume 866 of LNCS. Springer, 1994.

46. J. Holland. Emergence - From chaos to order. Addison-Wesley, 1998.
47. Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing, 9:3–12, 2005.
48. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments – a

survey. IEEE Transactions on Evolutionary Computation, 9(3):303–317, 2005.
49. S.-H. Kim and B. Nelson. A fully sequential procedure for indifference-zone se-

lection in simulation. ACM Transactions on Modelin and Computer Simulation,
11(3):251–273, 2001.

50. J. R. Koza. Genetic Programming. MIT Press, 1991.
51. B. L. Miller. Noise, Sampling, and Efficient Genetic Algorithms. PhD thesis,

Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1997.
available as TR 97001.

52. B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes, and
the varying effects of noise. Evolutionary Computation, 4(2):113–131, 1996.

53. A. A. Minai, D. Braha, and Y. Bar-Yam. Complex engineered systems: A new
paradigm. In D. Braha et al., editors, Complex Engineered Systems, pages 1–21.
Springer, 2006.

54. R. Nagpal. A catalog of biologically-inspired primitives for engineering self-
organization. In G. D. Serugendo et al., editors, Engineering Self-Organizing
Systems, volume 2977 of LNAI, pages 53–62. Springer, 2004.

55. I. Paenke, J. Branke, and Y. Jin. Efficient search for robust solutions by means
of evolutionary algorithms and fitness approximation. IEEE Transactions on
Evolutionary Computation, 10(4):405–420, 2006.

140 Jürgen Branke, Hartmut Schmeck

56. Parabon Inc. Company homepage. Online. http://www.parabon.com.
57. H. V. D. Parunak. ”go to the ant”: Engineering principles from natural multi-

agent systems. Annals of Operations Research, 75:69–101, 1997.
58. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipen der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.
59. Y. Sano and H. Kita. Optimization of noisy fitness functions by means of genetic

algorithms using history of search. In Schoenauer et al. [62], pages 571–580.
60. Y. Sano and H. Kita. Optimization of noisy fitness functions by means of

genetic algorithms using history of search with test of estimation. In Congress
on Evolutionary Computation, pages 360–365. IEEE Press, 2002.

61. H. Schmeck, U. Kohlmorgen, and J. Branke. Parallel implementations of evo-
lutionary algorithms. In A. Zomaya, F. Ercal, and S. Olariu, editors, Solutions
to Parallel and Distributed Computing Problems, pages 47–66. Wiley, 2000.

62. M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P.
Schwefel, editors. Parallel Problem Solving from Nature, volume 1917 of LNCS.
Springer, 2000.

63. T. Schöler and C. Müller-Schloer. An observer/controller architecture for adap-
tive reconfigurable stacks. In M. Beigl and P. Lukowicz, editors, International
Conference on Architecture Of Computing Systems, volume 3432 of LNCS, pages
139–153. Springer, 2005.

64. H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis,
Technische Universität Berlin, Germany, 1975.

65. Seti@home. Project homepage. Online. http://setiathome.ssl.berkeley.edu/.
66. J. C. Spall. Multivariate stochastic approximation using a simultaneous per-

turbation gradient approximation. IEEE Transactions on Automatic Control,
31:332–341, 1992.

67. J. C. Spall. Introduction to stochastic search and optimization. John Wiley and
Sons, 2003.

68. P. Stagge. Averaging efficiently in the presence of noise. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Na-
ture V, volume 1498 of LNCS, pages 188–197. Springer, 1998.

69. X. Tang and S. T. Chanson. Coordinated en-route web caching. IEEE Trans-
actions on Computers, 51(6):595–607, 2002.

70. J. Teich. Pareto-front exploration with uncertain objectives. In E. Zitzler,
K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors, Evolutionary Multi-
Criterion Optimization, volume 1993 of LNCS, pages 314–328. Springer, 2001.

71. A. Thompson. On the automatic design of robust elektronics through artificial
evolution. In M. Sipper, D. Mange, and A. Peres-Urike, editors, International
Conference on Evolvable Systems, pages 13 – 24. Springer, 1998.

72. D. S. Todd and P. Sen. Directed multiple objective search of design spaces using
genetic algorithms and neural networks. In W. B. et al., editor, Genetic and
Evolutionary Computation Conference, pages 1738–1743. Morgan Kaufmann,
San Francisco, California, 1999.

73. S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution searching
scheme. IEEE Transactions on Evolutionary Computation, 1(3):201–208, 1997.

74. United Devices. Company homepage. Online. http://www.ud.com.
75. D. Wiesmann, U. Hammel, and T. Bäck. Robust design of multilayer optical

coatings by means of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 2(4):162–167, 1998.

	6Evolutionary Design of Emergent Behavior
	6.1 Introduction
	6.2 A brief introduction to evolutionary computation
	6.3 Timely execution despite expensive evaluations
	6.3.1 Parallelization
	6.3.2 Use of approximate models

	6.4 Stochastic fitness
	6.4.1 Multiple samples
	6.4.2 Implicit averaging
	6.4.3 Response surface modeling
	6.4.4 Statistical ranking and selection techniques
	6.4.5 Noise-adapted selection
	6.4.6 Further issues

	6.5 Multiple objectives
	6.6 Exemplary applications
	6.7 Conclusion
	Acknowledgments
	References

