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Summary. Classically, programs are written with specific applications in mind.
Organic computing will be based on a general architecture, which apart from libraries
of standard algorithms will consist of generic mechanisms of organization. Users can
then create specific applications by defining goal hierarchies, by instruction and
the pointing out of examples. Systems will respond to these influences by adapting
control parameters so as to direct the ontogenetic process of self-organization and
by organizing sample material.

2.1 Introduction

We are all expecting great things to happen in information technology. The
main theme may be the integration of information pools, the very essence of
organization. When I drive my car through the countryside I expect my nav-
igation system not only to lead me to my goal fast, given the current traffic
pattern – updated minute by minute in the light of the movements of all the
other cars with navigation systems –, but also to help me define my goal by
providing information on food and gas and events, with opening times, prices,
menus etc. We want our cars to become autonomous organisms, actively di-
agnosing and regulating themselves and adapting to traffic situations and to
our personal needs. Augmented reality will glue important annotations to the
things we see through our windshields or spectacles, telepresence will let us
share in a meeting with others, eye contact and all, over thousands of miles.
We expect our information technology to organize networking on a large scale,
making, for instance, our digital identity portable, so that wherever we touch
a keyboard and look onto a screen we are recognized and have immediate ac-
cess to out digital belongings, down to customized key definitions. We would
like our systems to be secure, conforming tightly to legal rights of access and
monetary obligation. We would like our systems to be situation-aware, rec-
ognizing and modeling our needs and intentions, just as, or better than, the
clerk at the check-in counter at the airport. We would like machines to be
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able to see and hear and to understand natural language. In short: we want
our information technology to become intelligent if not conscious.

Originally, the word computing referred to nothing but numerical calcula-
tion. We now apply it in a much broader sense, circumscribed perhaps as data
organization. Although for certain applications we have a direct interest in the
algorithms to be executed, in most cases we care only for the final outcome
and not for the underlying processes. Although algorithmic computing in the
narrow sense will continue to play an important role, my discussion here is
concerned with the broader field of data organization.

2.2 Computing power

Moore’s law has for decades doubled the complexity of computing chips every
18 months, giving us very powerful computers on our desks or laps or palms
indeed. This is to be multiplied with the number of computing chips being
installed (19 out of 20 of which are actually embedded and invisible), resulting
in humongous computing power available worldwide. Pushing forward VLSI
technology to ever smaller dimensions has been expensive, but even more
expensive was and is management of the growing complexity of processor
chips. All their parts must work for the whole to work, creating a terrible
yield problem, and, worse, making design and testing a nightmare. As a result,
Moore’s law may now be coming to a halt for economic reasons, and we
may be entering a new era where chip complexity is no longer being pushed.
As the price of high-end computing chips was determined mainly by their
development cost, this can now be written off by mass production on a new
scale, making computing chips dirt-cheap. That could finally lead to what has
been predicted numerous times before (and has been prevented so far by the
“killer micros” — single processor speed as the cheapest means to get faster):
massively parallel systems, composed of thousands or even scores of thousands
of cheap processors communicating with each other.

Today such systems already exist, but they are rare for two reasons. First,
the hardware required to link that many chips is expensive, and, second,
usage of these systems is restricted to problems of specific, explicitly data-
parallel structure. In contrast, all of the above application domains require
the integration of many heterogeneous and intensely communicating subpro-
cesses. If these problems can be overcome, another “Moore era” may ensue,
with systems combining large numbers of processors of limited complexity on
homogeneous, cheap to produce physical platforms, the equivalent of wafer-
scale integration, and based on a programming technology that manages to
be data-parallel on its lowest level in spite of the heterogeneity of processes
on a higher level. Nano-scale or molecular computing may then become a re-
ality [7], leading to personal computers with the processing power of human
brains.
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2.3 Necessity of a new style of computing

To realize broad application of systems composed of large numbers of limited-
complexity processing elements a new style of programming will be necessary,
able to implement heterogeneous domains of data and processes in massively
parallel systems, able to sustain faults in the system, and, above all, able to
deal with complexity beyond the imagination of systems designers.

Random faults may be an inevitable consequence of pushing electronic
technology down to molecular dimensions (although error-correction tech-
niques may be able to shield us from that problem), but, more importantly,
none of the assumptions made at system design time about an application
domain and its data structures may be reliably met at execution time. The
combinatorics of violated assumptions create complexity that grows exponen-
tially with system size (and what is to be called a system has to span all the
subsystems to be integrated with each other!), forcing the system designer to
give up explicit consideration of modes of fault and to handle the problem in a
generic way. The way to go may be to give up deterministic control altogether
and formulate systems as probabilistic processes, such as modeled in belief
propagation networks, for instance.

The classical computing model rests entirely on the insight of the program-
mer into the specific application of the program written. The programming
paradigm of the future will be characterized by a total loss of such insight. The
same way that programming the nodes of a communication system doesn’t
need any insight into the contents of the data streams to be handled, the
future programmer will have to handle the organization of computation on
an abstract level, without any detailed insight into the specific subject matter
being processed.

2.4 The complexity barrier of computing

The computing power worldwide that is installed now or will be soon is arous-
ing expectations as to what to do with it, creating tremendous market pull
for complex software. Historically, the number of command lines in any large
software venture, such as space programs, telephone exchanges, enterprise
software, search engines etc., has been growing exponentially. New software
projects often set themselves tasks that evidently are too complex to manage,
leading to project failures, such as the American FAA Air Control project,
the Denver Airport luggage handling system, the US’s IRS or German Fed-
eral Tax software projects, which all failed without any tangible result. It is
easy (and probably correct) to blame these failures on human management
insufficiencies. But that only hides the fact that our computing paradigm is
no longer adequate in view of the demands we put on it. The pool of available
relevant human talent is already stretched to its limit.



10 Christoph von der Malsburg,

The applications spoken of in the introduction may require for their real-
ization an increase in the complexity of software by an order of magnitude. It
is unimaginable that the existing workforce in the system development sector
will be able to handle this complexity with present methods, or even given
the pace at which these methods are currently evolving. Even if the growth in
software productivity should have been 20% per year in the past — the most
optimistic view I ever heard of — this would not be sufficient to handle that
complexity increase, resulting only in a factor of 6 in 10 years, opening the
scissor between supply and demand wider and wider. What we need is a new
programming paradigm that leads to a quantum leap in productivity.

2.5 The classical programming paradigm

To understand the issue, we need to take a look at the classical paradigm
of programming. It is based on detailed algorithmic control. This rests on a
division of labor between human and machine, see figure 2.1. The machine is
deterministic and blindingly fast, but is considered as totally clueless. Only
the human programmer is in possession of all creative infrastructure, in the
form of goals, methods, interpretation, world knowledge and diagnostic abil-
ity. In order to control the process in the machine, the human programmer
needs detailed communication, the ability to look into the machine process,
sometimes down to the switching of single bits. Modern computing systems
have very ingenious means to make this detailed communication possible,
involving, for instance, symbolic debuggers that permit the examination of
individual processing steps in relation to the high-level language structures
that gave rise to them. This requirement of detailed communication between
domains so vastly different as the human mind and the digital process in the
machine — different in speed by orders of magnitude, for instance — comes
at a tremendous price and is a millstone around the neck for the computing
process in the machine.

Also, detailed communication is made more and more difficult with grow-
ing system complexity. An illustrative case in point concerns heterogeneous
parallel programming. It is notoriously difficult to know the actual execution
times of programming steps. This isn’t a problem when there is only one
processing thread, but it is very much so when many different heterogeneous
threads need to exchange data. One bad consequence of that is that pro-
cesses start waiting around for data, and the potential efficiency of a parallel
system is wasted. The solution for this must be to optimize the placement
of processes in the network of communicating processors, presumably in a
situation-dependent way. Software can still be designed for programmers to
keep track of this relocation, in order to keep up detailed communication, but
this will make the system even more complex and difficult to work with. The
only natural way to solve this difficulty is to let the system autonomously
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Fig. 2.1. Classic algorithmic computing entails a division of labor between man and
machine. Creative infrastructure resides mainly in the human domain (upper box),
the machine (lower box) blindly following commands. The two domains are coupled
by detailed communication so that the programmer can inspect, understand and
control the process in the machine in detail.

organize its internal structure, give up detailed communication and accept
loss of insight.

In order to do that, we will have to endow systems with their own creative
infrastructure enabling them to autonomously organize themselves, effectively
creating their own programs. Our present style of programming sits on one
side of a potential mound, the realm of algorithms; we need to get to the other
side, where our systems become electronic organisms, see figure 2.2. What we
have to achieve is the automation of automation. The millionfold execution
of a few typed commands constitutes automation; when, however, the typing
of commands itself becomes an excessive burden we need to automate even
that.

Classically, the computer is programmed inside-out: we type imperative
commands and then test what global, externally observable, behavior results.
Anyone who has ever programmed knows that this process is fraught with
surprises, and it often takes many iterations of debugging before the desired
global behavior is achieved. We need to invert the process (as do declarative
languages on a small scale) and limit ourselves to specifying the global behav-
ior of the system, letting the system itself figure out how to achieve it — a
process akin to education, which relies on example and encouragement instead
of attempting to tamper with detailed brain mechanisms. Let the machine do
the iterative debugging and automatically run the test cycles that it takes to
align system details behind the set goals, see figure 2.3. The only component
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Fig. 2.2. To reach the realm of organic computing, a potential mound has to be
crossed. Classically, software has to be simple in order to be intelligible by the human
programmer, and it may be simple, containing little or no creative infrastructure.
Electronic organisms contain much creative infrastructure and consequently have
to be complex, but they may well be complex, autonomously regulating their inner
structure without reliance on detailed communication with human programmers.

of the creative infrastructure that we humans want to hold onto (except in
genuinely algorithmic applications) is setting the goals for our systems see
figure 2.3.

Setting goals, devising contradiction-free task descriptions, is itself not a
simple matter. It is common advice that any software project should start
with an intensive goal definition phase, complete with (computer-simulated!)
testing of all imaginable specific situations and weeding-out of design flaws on
that abstract level, before even writing the first line of target code. Many large
projects stumble apparently because this stage is not paid sufficient attention
to. The pool of human intelligence involved with computing today will not
become unemployed if code generation is automated, all brains being required
to design clear abstract task descriptions. That workforce will become only
that much more creative and potent.

Before going on I should admit here that the picture I am painting is all
black-and-white. In reality, five decades of development in computer science
have put the equivalent of a lot of creative infrastructure into the computer,
see the section on architecture below. For many purposes we are already able
to “program” on a high, abstract level. However, the systems permitting this
had themselves to be programmed and debugged with the help of detailed
communication and, above all, with the help of detailed planning of the kinds
of tasks that the user will later be allowed to invoke. This style is extremely
expensive, and permits only variations on a theme defined at system pro-
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Fig. 2.3. In organic computing, the only task humans hold on to is the setting
of goals. As the machine is autonomously organizing, detailed communication be-
tween programmer and machine is restricted to the fundamental algorithm, which
is realizing system organization. Application-oriented mechanisms lose the status of
algorithm and are treated as data, in analogy to the transcription factors in the
ontogenetic toolbox.

gramming time. What is required now is to automate system development,
invoking rather general mechanisms of search, pattern recognition, evolution
and self-organization, such that the distinction between programmer and user
will all but disappear.

2.6 Organic Computing

Let me summarize what I have said so far. We should take note that usage
of the word computing has expanded by now and is embracing a wide range
of applications characterized by data organization, erstwhile the exclusive do-
main of animals. We are heading for information technological applications
that require no less than intelligence in the machine. Systems are becom-
ing too complex to be programmed in detail any longer. The principles with
which programmers formulate programs in their head have to be installed in
the computer, so that it can program itself such as to conform to abstract,
human-defined tasks.

No doubt this isn’t just a pipe dream. Living systems, cells, organisms,
brains, ecosystems and society are showing us the way. Living cells are not
digital, are not deterministic, are not algorithmically controlled, yet are flex-
ible, robust, adaptable, able to learn, they are situation-aware, evolvable and
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self-reproducing. Organic computing advocates a view according to which or-
ganisms are computers and computers should be organisms. Realizing Organic
Computing necessitates a broad research agenda. There are a number of fields
that are already engaged in relevant activities, among them artificial life, ar-
tificial intelligence, belief propagation, Bayesian estimation, evolutionary and
genetic programming, neural networks, fuzzy systems, machine learning and
robotics. These fields need to be emboldened and coordinated. They need to be
advanced from their peripheral position within departments to center stage,
core courses and all, need to be forged into one coherent research venture.
Moreover, the rich sources of relevant scientific information in the biological
sciences and especially the neuro- and cognitive sciences need to be tapped,
by the founding of interdisciplinary initiatives bringing together and develop
the science of organization that is called for here and for understanding Life
and human organization.

2.7 General aspects of organizing systems

Let me go over some of the themes that I believe will have to be developed in
this context.

2.7.1 Architectures

In both the biosphere and in technology, specific systems are generally de-
signed in two stages. First, an architecture is established that sets up a com-
paratively narrow universe of form, then in a second stage a specific structure
is singled out from this universe. A prime example is the genetic toolkit that
is widely shared in the animal kingdom. Relatively little information in the
regulatory network of gene activation is able to select a specific animal species
from the universe of forms defined by the bulk of the genetic machinery. An-
other example, in fact the one from which the name architecture derives, is
the technology for creating buildings, where the universe of possible struc-
tures is defined by materials, design patterns and professional builders’ skills,
from which architects can select specific structures. VLSI is an architecture
defining a range of electronic circuits, including digital computers, e.g., of von
Neumann architecture. The generation of complex software systems is made
possible by architectural frameworks including programming languages and
structured and object-oriented programming. Also the neural and humoral
machinery of our brain constitutes an architecture, defining the universe of
mind functions and patterns.

Successful architectures manage to avoid the two dangers of bias and vari-
ance [3], of being too narrow or being too wide. The universe of processes
defined by universal Turing machines is certainly wide enough, nobody be-
ing able to point out a specific bias that would exclude interesting processes
from it, but on the other hand it contains too much variance and is so wide
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that armies of programmers haven’t been able yet to single out intelligent
structures within it. On the other hand, artificial neural networks, as long as
they are insisting on replacing programming with self-organization and learn-
ing, seem to fall prey to bias, defining too narrow a universe of patterns and
processes. There is the so-called no-free-lunch theorem [14], which seems to
suggest that there is no architecture fit to serve all structures of interest. This
raises the question whether the application domain of intelligence is homoge-
neous enough to be captured by one coherent architecture.

There is reason to believe that the bias-variance dilemma and no-free-lunch
theorems paint too pessimistic a view. They both rely on a rather narrow range
of mechanisms used to single out specific structures from the originally defined
universe, based on statistical estimation and optimization. Should there be
more potent mechanisms of structure selection, the original architecture could
be wider and still permit to define the structures of interest efficiently. The
powers of self-organization haven’t been sufficiently tapped to this purpose,
especially for learning and adaptation.

2.7.2 Self-organization

A snow crystal constitutes a globally ordered structure both in terms of its
microscopic molecular lattice and its overall dendritic shape. The forces that
generate it are elementary interactions between molecules. In general, self-
organization is the process by which a large number of simple elements interact
by simple, naturally given forces, and out of a long and initially chaotic process
of iterated interaction global order grows as a pattern of maximal harmony be-
tween these forces. Other often-cited examples of self-organization are regular
convective cells, soap bubbles, the laser or self-assembled viruses [6, 9, 4, 12].

A self-organizing system defines an architecture, a universe of forms, plus
a mechanism to select and create specific structures as attractor states. Such
universes can still be very wide; the tremendous variety of solid materials
demonstrates the richness of the universe created by atomic species and their
interactions. Our goal in the context of organic computing is to define an
architecture of data elements and their interactions, to be implemented in ar-
rays of digital processors, so that iteration of the interactions lets the system
gravitate towards (sequences of) globally ordered states. The challenge is to
define this architecture on a very general level, without explicit reference to
specific problems and applications. The latter is then to be achieved by in-
stallation in the system of appropriate initial states, an endowment of useful
algorithms, and exposure to specific input patterns. The architecture, initial
state and library of algorithms constitute the innate structure, based on which
the exposure to specific input in education and learning prepares for specific
tasks to be performed.

Self-organization is particularly important in noise-prone systems, such as
the living cell or human brain or, in fact, the analog computer. The latter
was brought down by the difficulty that when many elementary steps are
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chained up, each one subject to some level of inaccuracy, the end result of
a long computation is totally dominated by noise and useless. How does the
cell or the brain avoid this error catastrophe? It all depends on the nature of
the system dynamics realized by the interactions. If this dynamics is of the
chaotic type, where small differences in initial state lead to large differences
in final state, the system will be drowned in noise. If, on the other hand, the
dynamics is of attractor type, such that sets of similar initial states lead to the
same final state, then the error catastrophe is averted. The globally ordered
states of self-organizing systems are attractor states. The task ahead of us in
the present context is to define an architecture, a set of fundamental rules of
interaction of active data elements, that turn functionally desirable system
states into attractor states.

2.7.3 Cooperating pathways

Given the reliability and determinism of the digital machine, computation
is customarily staged as a single sequence of transitions from initial to final
state. The advantage of this is efficiency. The disadvantage is that definition
of the pathways leading from problems to solutions has to come from outside
the system, from a human programmer. If, on the other hand, we want the
architecture of the system and the processes of self-organization to find those
pathways without the benefit of a human programmer as deus ex machina to
set it all right, we have to define good pathways in a principled way.

A general relevant principle is based on cooperative pathways. A result is a
useful one if there are several mutually supportive ways to derive it. When we
do mental calculation we routinely check the result by additional reasoning,
like estimating the order of magnitude, or by comparison with previous calcu-
lations. In fact, whole mathematical systems, like Euclidean geometry or the
natural number system, derive their absolute certainty from the mutual coop-
erativity – consistency – of all possible pathways of reasoning connecting facts.
Even the rules of deduction derive their authority from their consistency with
others and with facts. (It is remarkable to what extent mathematics ignores
this background of its formal systems.)

An organized system, then, is to be seen as a large network of nodes
and links, the nodes representing data items, the links interactions between
them. Each data item is stabilized by the combined effect of a multiplicity of
interactions, or lines of deduction, impinging on it. The system reorganizes
its pathways and configurations of data elements such as to optimize the
mutual consent or consistency between them. The quality of a given pathway
is measured by its success in predicting or affecting its target data element,
in which it succeeds only by cooperating and agreeing with other pathways.

Similarly, the decisions taken by a data element lead to consequences down-
stream of the pathways emanating from it, consequences that come back to
either reinforce or contradict the original decision. There will in general be
nested sets of such feedback loops of different length. On several time scales,
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the system will thus organize configurations of pathways and data that are
cooperative and mutually consistent in the way described. It is much more
than a metaphor that societal decisions very explicitly are of this nature, in-
dividual decisions having to live with their own results down the line. As the
saying goes, what goes around comes around.

Production systems [13] are a kind of declarative, non-imperative, pro-
gramming languages, which are formulated in terms of rules or productions,
each of which defines a firing condition and an action. Productions continu-
ally examine the content of a working memory, and when a rule recognizes
the pattern defined in its firing condition to be present in the working mem-
ory it “fires” and performs its action. The neurons of the brain can actually
be seen as the productions of such a system: when a neuron recognizes the
pattern of activity impinging on its dendritic tree it fires its action, which con-
sists of a pattern of excitation or inhibition on other neurons. (The working
memory in this case is identical with the firing state of all the rules.) Pro-
duction systems never became very popular, presumably because they were
unable to overcome the problems surrounding the issue of conflict resolution
— several rules firing simultaneously but contradicting each other. The ner-
vous system obviously overcomes these problems by following multiple action
pathways simultaneously and selecting successful ones, in the short run by
letting contradiction annihilate itself by negative interference and consistency
of alternate pathways prevail by positive interference, and in the long run by
adaptively favoring such productions – neurons that are successful.

Let it be remarked that this style of computation is very wasteful in terms
of processor cycles. If each result is the effect of 10 redundant pathways and
has to wait for 10 iterations to be stabilized, a hundred elementary steps
have gone into a calculation that could have been performed in one. I think
we will have to live with this level of inefficiency as the price to be paid for
autonomous system organization. What is expensive about computing, these
days, is anyway no longer the computing power to realize it but the human
effort going into its design. Moreover, once a successful computational struc-
ture has been found by self-organization, it can be simplified, by abolishing
redundant pathways originally necessary to single out the correct ones, and
by ceasing to wait for long feedback loops to come around. We observe this
simplification and speed-up in our brain. Processes are first very slow, vari-
able and unreliable when dealing with a new problem, but in long learning
curves they become very efficient, reliable and fast. What we are observing
is the gradual organismic growth of the (more or less distant) equivalent of
algorithms.

2.7.4 Management of uncertainty

Computer science cannot deny being a child of mathematical logic. Mathe-
matics is a world of absolute certainty. Let a single false statement creep in,
and the whole edifice comes crashing down. In real life, all presumed facts
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are uncertain. This is a problem for chains of logical deduction, for it means
that uncertainty has to be propagated through them to be able to judge the
reliability of conclusions. In consequence, the application of logic to real life
is difficult. This may be the reason we usually avoid following long chains of
explicit logical deduction (or when we do we easily fall into traps), although
there is good reason to believe that implicitly our brain has mechanisms to
handle uncertainty very well. For single, linear threads of reasoning uncer-
tainty cannot but grow, and only by using meshes of interlocking and mutually
supportive arguments can any reliability of conclusion be reached.

The currently active fields of Bayesian estimation and belief propaga-
tion are active at developing methodology to handle uncertainty. There are,
though, serious problems still to be solved. One is to let a system figure out
for itself what evidence to invoke for a given task. Another, how to estimate
probability density functions, unavoidable in the absence of exhaustive obser-
vation. Still another, to learn more about appropriate structures of interlock-
ing arguments; these are bound to contain loops, creating the problem how
to avoid the pitfalls of logical circularity. Progress on this front is very impor-
tant to the creation of systems that can autonomously operate in a world of
uncertainty.

2.7.5 Differentiation

It is impossible to organize a system with a large number of degrees of freedom
all changing at the same time, each guided only by a small number of neigh-
boring ones, as dictated by the elementary interactions. The system would
just be caught in local optima, with small collections of elements in mutual
harmony within but discord between, if it converged at all. This happens
when you rapidly cool a liquid below the freezing point and crystallization
starts in many places simultaneously. The result is a large array of crystal-
lites, small domains with different molecular lattice orientation. A recipe for
getting global order is to start by organizing a few degrees of freedom, and let
the order thus created spread to the rest of the system gradually, involving
only a small number of degrees of freedom at a time. To get a globally ordered
monocrystal, make sure that crystallization can start in only one place, at a
nucleation seed, by suppressing nucleation centers anywhere else. The nucle-
ation seed spreads its order, letting crystallization happen only at its surface,
eventually incorporating all of the liquid in one coherent crystal order.

Embryogenesis starts with an egg that is small enough to be initially
spanned by the organizing forces (to a large extent based on reaction-diffusion,
see [10]). The first decisions taken establish global coordinate systems in the
form of embryo-spanning chemical gradients, which act as signals control-
ling further processes, typically subdividing the embryo into smaller domains.
These then undergo further differentiation into even smaller domains, and so
on. The embryo gradually outgrows the range of the elementary interactions
(or these are shrunk in relation to the embryo), such that more and more
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degrees of freedom are opened, but they are fixated by self-organization as
quickly as they arise [4]. The organic growth of companies can be described
similarly: they start small and undifferentiated, the founder functioning in
many roles initially. When the company grows beyond a certain size, it forms
departments, which in turn may spawn subunits, and so on. This style is usu-
ally also realized in classical software development. The original idea, arising
in one mind, is simple and coherent, and with time and growth, subproblems
are spawned, giving work to more and more programmers.

Organic growth of a structure through differentiation ideally knows no
backtracking. The sequence of decisions that fixate degrees of freedom form a
tree that is traversed just once. This correspondingly is a very efficient pro-
cess. Should, however, the final result not be successful, there is no rescue and
the whole sequence has to be started over, the worst type of backtracking. In
the course of evolution, Life creates an endless sequence of new organisms.
Technology is driving its own version of evolution, spawning thousands of
types of cars or computers, together paving the road to ever better products.
Software technology will have to come round to adopt the same style. The
labor-intensive way in which it is produced presently, line-by-line, makes it
very painful to give up a software system once it has developed to some vol-
ume, forcing the mending of flaws and adaptation to new needs with the help
of patches and compromises. This is what makes a software system gradu-
ally complicated, irrational, self-contradictory and incomprehensible, all due
to the misadaptation of the original design to the final needs. This unsatis-
factory state of affairs can only be overcome if growing a complex mature
software system becomes easy, painless, fast and efficient. If the ontogenesis
of organisms is any guide here, we will have to develop the equivalent of the
genetic toolkit, which comprises general mechanisms to generate the coher-
ent layout of an organism, plus a repertoire of morphogenetic mechanisms
for the growth of particular tissues and appendages and of specific molecular
functions which can be switched on where needed. On the basis of this archi-
tecture, Life is able to change an ape into a human quickly (on an evolutionary
time scale), changing just a few control functions. The genome of the chim-
panzee is said to be 98.5% identical to that of man. Likewise, a well-designed
organic computing architecture should make it possible to create entirely new
software systems by relatively light touches to the control of the process of
differentiation.

2.7.6 Learning and instruction

The lion’s share of information in my brain presumably is acquired by learning.
Our whole genome (of which only a small part is specific to the brain) contains
1 GByte of information. Savants, who can absorb whole telephone books by
leafing through them, put in evidence the enormous memory capacity of our
brain. Normal humans’ brains with all likelihood absorb as much information,
although not normally being able to index it that explicitly. Research makes
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it more and more clear that vision and language comprehension work by
applying vast databases of acquired patterns. It is likely that this extensive
reliance on learning is fundamental for brain function in general.

Information technology will be fundamentally transformed once the mech-
anisms of learning are understood and implemented. In spite of all efforts and
claims made in various fields of study this has not been achieved yet. Input
patterns beyond a size of a couple of hundred bits of information let learning
times in terms of numbers of required examples grow astronomically. This
problem is exacerbated if the input patterns are not all of the same context
or the same learnable structure. Animals and especially humans make it clear
that learning is possible from perceptual input fields (retina, cochlea etc.) in
which patterns and pattern sequences contain hundreds of thousands of bits
of information, sequenced hodgepodge from moment to moment. On the other
hand, both animals and humans are restricted in their learning ability and
can readily absorb only certain things[2].

Without this being the place to go into details, I would like to claim that
the first step in any learning experience is a step of recognition. I first have
to recognize a coherent pattern in my perceptual input in order to do two
things: first, shut out the rest of the perceptual pattern as irrelevant for the
moment, and second, categorize the input pattern so that I know where in my
memory domain I can lay it down. This will then immediately permit me to
find in my memory other, previously acquired patterns of the same sort and
bring the newly acquired one in registry with them, part matching onto corre-
sponding part. These corresponding parts of the same type can then form the
ensembles of small patterns that are required as input to current statistical
learning systems. An animal detects significant patterns in its environment
with the help of abstract schematic descriptions, generated by evolution or
by previous experience, which are mapped into the input by the recognition
mechanism. Let’s call this schema-based learning. A perhaps typical exam-
ple is the schematic description of the human face infants seem to be born
with [5], attracting their eyes to the mother’s face minutes after birth, allow-
ing them to quickly learn to recognize their mother, her mood and her focus
of attention [1]. The necessity to prepare learning with the help of evolved
schemas explains the restrictions of learning in animals to specific topics [2].

Let’s assume the learning problem can be solved the way I just indicated.
We could then program application systems by defining for them schematic
descriptions of patterns that are significant for a given task. Only a very basic
set of such patterns need to be programmed in any literal sense. If there is a
sufficient critical mass of them, more could be created by human system in-
structors by pointing out examples that are simple enough and central enough
to a theme so they can drive schema-based learning.
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2.7.7 Abstraction – instantiation

It may well be that the centerpiece of intelligence is the brain’s ability to
establish and maintain the relationship between concrete, detailed situations
and abstract, schematic descriptions of situations. Faced with a problem in
a new situation I recognize in the situation a general pattern that relates it
to situations I have seen before, and while modeling the situation at hand as
a concrete instantiation of that pattern I can complement it with additional
elements that constitute a solution. The main point on which humans are
ahead of animals may be possession of a richer, higher and more abstract
level of representation, most or all of it acquired culturally.

The abstraction-instantiation relationship is certainly central to comput-
ing. My high-level program is a relatively abstract description of the machine
code that eventually is executed. The block diagrams with which I might start
planning a program intend to be abstract descriptions of the concrete code I
eventually write. Computing is based to a large extent on the mechanisms for
traveling between abstraction levels. Many of these operations are performed
automatically by appropriate algorithms, such as compilers or debuggers. But
the majority of these operations are still going on only in the heads of people,
such as applying general methods to concrete problems, or recognizing that a
particular object class is appropriate to represent a particular problem.

The challenge to be met is to automate the processes of abstraction and
instantiation by mechanisms that are general enough to work in new, unfore-
seen situations. Let’s assume the abstract schemas to be applied are already
resident in the system (generation of new abstract schemas is a very com-
plicated issue in itself). Abstraction then amounts to a recognition process,
recognition that the concrete situation contains a subset of elements that map
to elements of the abstract schema under preservation of relations. In instan-
tiation the challenge is to select for each of the elements or subpatterns of
the abstract schema a concrete role filler from among a multiplicity of stored
candidates, and to make all those choices in a coherent fashion so that the
relations dictated by the abstract schema are actually realized in the instan-
tiation. It is a complex and very important research subject to create an
architecture whose initial configurations and mechanisms of self-organization
can implement the processes of abstraction and instantiation on the very ab-
stract level described just now, endowing the system with the ability to learn
from examples to better and better navigate the abstraction hierarchy. Chil-
dren demonstrate the feasibility of this, learning the skill after being taught
abstract schemas together with a few relevant examples.

It is often predicted that we will be able to communicate with our comput-
ers by speaking to them. The difficulty of this is not the recognition of words
from sound patterns. Although this is not a very easy task, it is routine by now.
Apart from the difficulty of parsing and understanding complex sentences, a
big problem is that natural language expresses things on a very abstract level.
My car’s navigation system is very good at turning maps of street arrange-
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ments in front of me into coherent commands in natural language, but just
think of the converse, me ordering my car to turn into the driveway to the
right after the next intersection. Mapping that abstract description into the
visual scene and into motor commands is quite a challenge.

2.7.8 Goal representation

As stated earlier, systems should be designed merely by the definition of goals.
Definition of goals is a very complex business and must take place on as
abstract a level as possible. Our task cannot be to tell the machine what to
do in every possible concrete situation. Progress in programming efficiency has
been very much progress in being able to formulate larger and larger classes
of situations on an abstract level so as to treat them with one program. This
trend will simply have to be accelerated decisively.

Again, Life will have to show us the way. Animals are born with drives
and instincts to direct them purposefully through life. Ethologists have worked
out a number of specific cases and have especially spent effort on finding out
the innate patterns defining behavioral drives. It turns out that these innate
patterns seem to be formulated schematically on a rather abstract level. The
gosling is programmed to trust and follow mother goose, and its first task after
hatching is to find out who mother goose is. According to Konrad Lorenz, the
description of her is so abstract that he could imprint goslings to follow his
yellow Wellington boots trough all their youth. The innate abstract pattern is
just good enough to be triggered in one or several scenes, upon which learning
mechanisms pick up more concrete details from those scenes, replacing or
enriching and differentiating the original schema. Education is the process by
which such learning experiences are chained up to map the originally very
abstract definitions of innate behavioral patterns into real life situations.

We are animated by many goals, and they are related to each other in
complex ways, being dependent on or in conflict with each other, and we
spend a good part of our life doing nothing but sorting out what we like and
want and should or should not do. Asimov originally believed the relationship
of robots to people could be regulated by just three simple rules, but he later
had to realize that those rules were by far not sufficient to deal with all the
vicissitudes into which robots and people are likely to stumble. We will have
to spend enormous amounts of effort to teach computers to behave, but in
doing so we should not be bogged down with their digital details, any more
than we ever lose time on the neural details of our children’s’ cortical gyri.

2.8 Conclusion

What I have called Aspects here is indeed to be realized simultaneously as
different aspects of one fundamental system design. Thus, the recognition and
pattern completion inherent in abstraction and instantiation are to be realized
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as processes of self-organization that realize the required fine-grained homo-
morphic mappings between instance and abstract schema, developing from
coarse to fine in a differentiating sequence. The data-and-process architecture
of the system must naturally reflect and implement the structure of the or-
ganic world of which computing is to be an integral part and parcel. Learning
and the implementation of goals are realized by one and the same mecha-
nism of schema recognition, which focuses attention on significant segments
of scenes.

My own interest is in understanding the brain, and it is my conviction that
the best way to do so is by replicating one of its functions paradigmatically
in the computer, that is, by acting as an engineer. We know the brain is
realized as a network of simple elements, neurons, and their communication
via electrical and chemical signals. Artificial neural networks (ANNs) attempt
to model the brain’s architecture. Taken as digital switches, as formulated
in [8], they are a universal medium but don’t self-organize. In analog form
they can be made to learn and self-organize, but then they fall very short of
anything to be called universal. The dynamic link architecture (DLA) [11] is
an attempt to realize all the aspects of organic computing discussed here, and
I am in the process of realizing one paradigmatic brain function on its basis,
visual object recognition. Although much work is still to be done to reach full
functionality and to take away all algorithmic crutches, no serious hurdle is
in sight for this venture.

Organic computing may or may not be able to get off the ground in direct
competition with solidly established software applications such as operating
systems or enterprise software, and it may have to prove itself in novel fields
that are too expensive to develop in classical programming style. Vision is such
a field. Four decades of frustration made it clear that replicating vision on the
computer is a very complicated thing, both in terms of processes and data.
Mankind will never muster the resources to generate it while programming
line-by-line. Full-fledged computer vision will only be realized with the help
of organic growth, learning and instruction, that is, by organic computing.

In 20 years’ time, large new information systems will be generated by
starting with a widely adopted fundamental algorithm that defines the data-
and-process architecture of an electronic organism, the equivalent of the ge-
netic toolkit of animals. An initial state will be generated that defines basic
schemas that implement goals, (thus directing the system towards a specific
application field) and lay the groundwork for learning, and then a period of
education and instruction will adapt the organism to the intended type of
environment. Finally, users will train the system on particular jobs. This de-
velopment will completely blur the distinction between natural and artificial
systems.
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