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15.1 Introduction

Human-computer interaction (HCI) is entering our everyday life. We are
welcomed by robot guide-bots in Japan [2] and play computer games us-
ing Nintendo’s nunchucks [1]. Nevertheless, the revolution is not finished and
computer vision is still under development [21]. In this paper we present an
organic computing approach to the recognition of gestures performed by a
single person in front a monocular video camera.

Visual gesture recognition has to deal with many well-known problems of
image processing, like camera noise, object tracking, object recognition and
the recognition of a dynamic trajectory. Thus, a gesture recognition system
has to show robust feature extraction and adaptation to a flexible environ-
ment and signer. It requires properties of an organic computing system, with
different autonomous modules cooperating to solve the given problem.

Sign language is a good playground for gesture recognition research be-
cause it has a structure, which allows to develop and test methods on sign
language recognition first before applying them on gesture recognition. Thus,
here we restrict ourselves to working on signs of the British Sign Language
(BSL) and concentrate on their manual part.

We have to consider that the projection of the 3D scene onto a 2D plane
results in loss of depth information and therefore the reconstruction of the 3D-
trajectory of the hand is not always possible. Also the position of the signer
in front of the camera may vary. Movements like shifting in one direction or
rotating around the body axis must be kept in mind, as well as the occlusion
of some fingers or even a whole hand during signing.

Despite its constant structure each sign shows plenty of variation in time
and space. Even if the same person performs the same sign twice, small
changes in speed and position of the hand will occur. Generally, a sign is
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affected by the preceding and subsequent sign, an effect called coarticulation.
Part of the coarticulation problem is that the system has to be able to detect
sign boundaries automatically, thus the user is not required to segment the
sign sentence into single signs.

Our approach follows the principles of organic computing [10]. We di-
vide problems into different subtasks that are solved by autonomous subsys-
tems. All subsystems are working on-line and therefore can help each other
or can flexibly adapt to new situations. Integrating information from different
sources, like hand shape, position and their temporal development present,
beside the coordination of these processes, the main challenge for creating
a recognition system. Our subsystems will autonomously solve part of the
problem using organically inspired techniques like democratic integration for
information merging, bunch graph matching for face/object recognition and
a modified parallel hidden Markov model (HMM) for the recognition of the
dynamic trajectories. Each of these techniques learns its knowledge from ex-
amples according to the organic computing approach. We explicitly separate
gesture recognition into two main processes: feature extraction, which includes
localization and tracking of body parts and the recognition process, which uses
the selected features. Both processes will be performed during the performance
of the sign.

To realize different autonomous units, their environment and communica-
tion between them in a software framework we designed a multi-agent system
(MAS). Agents show self-x properties like dynamical adaptation to a changing
environment (self-healing), perception of their environment and the capability
to rate their action (self-reflection).

The structure of the paper is as follows: Section 15.2 gives an overview
of previous work in the field of sign language recognition and motivates our
ambition to use organic computing. The following section 15.3 describes the
multi-agent system architecture, in particular the constructed agents and their
use of organic computing methods. Visual tracking is presented in section 15.4
and our approach to sign language recognition in section 15.5. A description
of the experiments undertaken and their results can be found in section 15.6.
Finally, in section 15.7 conclusions are drawn and future work is outlined.

15.2 Related work

Sign languages, designed to be used by deaf people, are visual languages.
They can be characterized by manual (hand shape, hand orientation, location
and motion) and non-manual (trunk, head, gaze, facial expression, mouth)
parameters. In this work, we concentrate on manual features and investigate
one-handed signs performed by the dominant hand only, and two-handed signs,
which can be performed symmetrically or non-symmetrically.

Sign language recognition (SLR) has to solve three problems, first the
reliable tracking of the hands, second robust feature extraction, and third the
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interpretation of the temporal feature sequence. In the following we present
the approaches to these problems that have inspired our work.

Starner and Pentland [13] analyze sign gestures performed by one signer
wearing colored gloves. After color segmentation and the extraction of position
and shape of the hands their recognition is based on a continuous sequence of
signs that are bound to a strict grammar using trained hidden Markov mod-
els. Bauer and Krais [3] introduce an HMM-based continuous sign language
recognition system by splitting the signs into subunits to be recognized. Im-
age segmentation and feature extraction are simplified by using colored gloves
with different colors for fingers and palm. The extracted sequence of feature
vectors reflects the manual sign parameters. The same group has built an-
other recognition system that works with skin color segmentation and builds
a multiple tracking hypothesis system [24, 20]. They are using HMM as well
and extract geometric features like axis ratio, compactness and eccentricity of
the hands segmented by skin color.

Instead of colored gloves Vogler and Metaxas [18] use 3D electrical track-
ing of the wrists. They propose a parallel HMM algorithm to model gesture
components and recognize continuous signing sentences. Shape, movement,
and location of the right hand along with movement and location of the left
hand are represented by separate HMM channels, which are trained with rel-
evant data and features. For recognition, individual HMM networks are built
in each channel and a modified Viterbi decoding algorithm searches through
all the networks in parallel. Path probabilities from each network that went
through the same sequence of words were combined. Tanibata et al. [14] pro-
posed a similar scheme where output probabilities from HMMs modeling the
gesture data from right and left hand, were multiplied together for isolated
word recognition in the Japanese Sign Language.

The group around Richard Bowden [4, 11, 7] structures the classification
mode around a linguistic definition of signed words. This enables signs to be
learned reliably from just a handful of training examples. Their classification
process is divided into two stages. The first stage generates a description of
hand shape and movement using skin color detection. This level of feature
is based directly upon those used within sign linguistics to document signs.
Its broad description supports generalization and therefore significantly re-
duces the requirements of further classification stages. In the second stage,
Independent Component Analysis (ICA) is used to separate the channels of
information from uncorrelated noise. Their final classification uses a bank of
Markov chains to recognize the temporal transitions of individual words/signs.

All the presented work is very inspiring and has different interesting ap-
proaches to the problems of sign language recognition. Most of these systems
are working offline, meaning they collect the feature sequence and do their
recognition when the gesture is already performed.

In our approach we divide the problems into different subtasks that are
solved by autonomous subsystems. Instead of color tracking we use self-
organizing multi-cue tracking for the different body parts. Like in the pa-
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Fig. 15.1. An agent is based on three modules provided with as much flexibility as
possible. The interface to the environment and the communication are included in
the agent class. There is one cueIntegrator, a module that integrates and interprets
the information provided by the sensors.

pers above we use an HMM approach for the temporal recognition, but we
extended the idea of HMM by introducing self-organization properties.

15.3 System architecture

Organic computing systems consist of autonomous and cooperating subsys-
tems. We build on a multi-agent system (MAS) developed earlier [9] as a
framework for our task. The system consists of three base classes of objects,
the environment, the blackboard, and the agent. While environment and
blackboard are realized as singleton objects [5], there can be a multitude
of different agents. These agents handle tasks ranging from coordination of
subprocesses, tracking of an image point, up to the recognition of human
extremities.

The information about the world is supplied by the environment. Based
on the desired functionality of visual tracking and recognition, the environ-
ment provides access to image sequences, e.g., the current original color image
and its processed versions, the gray value image and the difference image be-
tween two consecutive video frames.

Communication within the system is done via the blackboard. A mes-
sage can be quite complex (e.g. carry an image) and has a defined lifetime.
Each agent can write messages onto the blackboard and read the messages
other agents have posted. Thus, the message handling allows the creation of
new agents with specific properties, the change of properties and also the
elimination of agents during run-time.

The agent is the most interesting entity, it shows the following self-x prop-
erties. Agents are autonomous and aware of their state. They perceive their
surrounding, to which they can adapt and they communicate with other en-
tities. To implement this behavior, agents have three layers, see figure 15.1.
The top layer, called agent handles the communication, the fusion center,
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called cueIntegrator, merges the information supplied by one or more sensors.
Perception of the surrounding is twofold. On the one hand there is message
handling via the blackboard, on the other hand an agent can receive infor-
mation from its sensors, which filter incoming data. Based on the obtained
information the agent reaches a decision about further actions.

Gesture recognition is split into the subproblems of object tracking and
recognition (object and gesture). Each subproblem is solved by one or more
agents. Hence teamwork and a observer/controller architecture are essential.
There are three main classes of agents, tracking agents, agents for recognition
and agents for control.

We designed tracking agents whose task is to follow an object. These
agents merge different visual cues like color, texture, movement, etc. Cue
fusion is done using democratic integration [16]. This technique offers a self-
organized, flexible and robust way of tracking and will be explained in sec-
tion 15.4. Agents that provide world knowledge stored in the system are called
recognition agents. This includes knowledge for face recognition and static
hand gesture recognition. Training the recognition agents, i.e. learning world
knowledge from examples is also a crucial task requiring organic computing
methods see [23]. As the system should act independently from user interac-
tion controlling agents are responsible for solving the conflicts that might
occur during execution.

15.4 Visual tracking

Visual tracking of head, left and right hand is done by a cooperation of glob-
ally and locally acting agents that are organized in a hierarchical network [9].
A global working agent scans the image for regions of interest, defined by
skin colored and moving blobs. A controlling agent supervises the tracking.
It collects the region of interest messages, checks whether they are already
tracked and if not instantiates a new tracking agent. The visual appearance
of the hand is a function of several factors, which hand classifier and track-
ing agents have to take into account, including pose, lighting, occlusion and
intra/inter-signer variations.

Object tracking is performed by tracing an image point on the object.
Tracking agents take on this task by scanning on the new frame the local
surrounding of the last target position of the previous image. Hence they are
called local agents. Due to lack of robustness of single cues, tracking should
not rely on a single feature, thus each tracking agent integrates the results
of four different information sources, namely pixel template, motion, motion
prediction, and color, each realized in a sensor. The agent’s cueIntegrator
calculates the result as a weighted average of saliency maps derived from the
different sensors. The result is fed back to the sensors and serves as the basis for
two types of adaptation. First, the weights of the sensor are adapted according
to their agreement with the overall result. Second, sensors are allowed to
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Fig. 15.2. In this tracking sequence head and hands were found. The identity of the
objects is visualized by the gray value of the rectangles, which delineate the search
region of each tracking agent. Moving skin color in the background is ignored.

adapt their internal parameters in order to have their output better match
the determined collective result. This integration scheme is called democratic
integration [16] and will be explained below.

After tracking the object on the current frame, the tracking agent evaluates
its success and posts a message containing the actual position, the contour and
an image of the target. This information is passed to the recognition agents
trying to identify the object. The face recognition agent, for instance, performs
face detection using bunch graph matching [22]. Once a face has been found
left and right hands are determined via their position relative to the face. The
tracking agent adds its identification to its messages, see figure 15.2. To further
support identification we added two recognition agents to identify the static
hand gesture. The first recognition agent matches a gallery of learned bunch
graphs on the image to identity the texture of the static hand gesture [17];
the second one matches the contour against a gallery of learned contours.

Since there might be skin colored moving blobs in the background of a
real-world setting, which are not connected to a hand or the head, agents
that track an unknown object over a period of time will delete themselves.
This self-healing of the global system is also enforced if the agent is not content
with its tracking results. After this analysis the tracking continues.
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Fig. 15.3. Tracking agent in use, on the left we see the tracking result marked with
the circle. The rectangle shows the border of the agent’s search region. On the right
we see the similarity maps created by the different sensors, from left to right: color,
motion, motion prediction and pixel template. The fusion center shows the result of
the information integration.

Using democratic integration the different cues, namely color, motion, mo-
tion prediction and pixel template, are integrated to agree on one result. After
this decision each cue adapts toward the result agreed on. In particular, dis-
cordant cues are quickly suppressed and re-calibrated, while cues having been
consistent with the result in the recent past are given a higher decision weight
in future.

Integrating information using democratic integration relies on two assump-
tions. First, the cues must be statistically dependent, otherwise there is no
point in trying to integrate them. Second, the environment must exhibit a
certain temporal continuity. Without that, any adaptation would be useless.

As shown in figure 15.3 all cues are working on the two dimensional search
region of the agent. Each sensor i provides a similarity map Mi(x, t) at time
t, that shows the image similarity at each coordinate x with an agent-specific
and adaptable prototype template Pi(t). To integrate the similarity maps to
an overall map R(x, t), they are weighted and summed up

R(x, t) =
∑

i

ri(t)Mi(x, t), (15.1)

The weights ri(t) are part of the self-controlling of each sensor and
will further be called reliability. The reliabilities are normalized such that∑

i

ri(t) = 1. The target position x̂(t) is found by scanning the overall simi-

larity map for the maximal entry

x̂(t) = arg max
x

{R(x, t)} . (15.2)

To rate its action each tracking agent analyzes the similarity value at the
target position x̂(t). If the value is above a threshold, the image point has
been found, otherwise, the tracking agent has failed to track it. Using the
information of the similarity value and the target position each sensor is able
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to update its reliability and to adapt its prototype to the new situation. The
adaptation depends on the tracking result — if the target was found in the
image the prototype adapts towards the actual parameters at the target po-
sition x̂(t). Otherwise it adapts towards its initial values. We refer to [16] for
a complete description of the update strategies.

Equation (15.2) has proven to work well on small objects [16, 8] with a
unimodal similarity map. Larger objects can create a multimodal similarity
map with more than one peak. Hence we modified the search of the target
position by thresholding the map and from the remaining peaks we calculate
the center of gravity. The new target position might be located outside the
object or might be a bad point to track, but our experiments showed that this
was not the case for different tracking scenarios and that tracking became
more stable.

15.5 Recognition

In the previous section we presented the MAS system for visual tracking of
head and hands. Tracking agents provide position and static hand gesture
information of the object for nearly each frame. In this section we describe
the subsystem that collects the information about the trajectory of left and
right hand and the corresponding static hand gesture. The information for sign
language recognition is merged by using an extended self-organizing hidden
Markov model architecture. Recognition needs to be stable and robust enough
tho deal with the changes in speed and position of a hand, which will even
occur if the same person is performing the same sign twice. Hidden Markov
models (HMMs) can solve these problems. Their ability to compensate time
and amplitude variations of signals has been amply demonstrated for speech
and character recognition. Before we discuss our approach to recognition using
an extension to HMM we review the aspects of HMM theory relevant to this
paper.

15.5.1 Theory of hidden Markov models

This section briefly discusses the theory of hidden Markov models (see fig-
ure 15.4 as an example of a left-right architecture). It follows the classic paper
by Rabiner [12], which we recommend for a more detailed description of this
topic. A hidden Markov model is characterized by the following:

1. N , the number of states in the model. We denote the individual states as
S = {S1, S2, . . . , SN}, and the state at time t as qt.

2. M , the number of distinct observation symbols per state, i.e. the discrete
alphabet size. The observation symbols correspond to the physical output
of the system being modeled. We denote the individual symbols as V =
{v1, v2, . . . , vM}. If the observation is in a continuous space, M is replaced
by an interval of possible observations.
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Fig. 15.4. HMM with the left-right (Bakis) topology, typically used in gesture
and speech recognition. The solid lines denote the transition probabilities and set
aij = 0 ∀ j < i ∧ j > i+2. The dotted line connects a continuous observation
distribution to the belonging state (circle).

3. The transition probability distribution A = {aij} where

aij = P (qt+1 = Sj | qt = Si) , 1 ≤ i, j ≤ N (15.3)

and ∑
j

aij = 1. (15.4)

Assuming that the state transition probability aij from state Si to state
Sj only depends on the preceding state (first order Markov process). For
the special case that any state can reach any other state in a single step,
we have aij > 0, for all i, j. For other types of HMM, we would have
aij = 0 for one or more i, j pairs.

4. The observation probability distribution B = {bj(k)} in state j, where

bj(k) = P (vk at t | qt = Sj) , 1 ≤ j ≤ N, 1 ≤ k ≤ M (15.5)

and ∑
k

bj(k) = 1. (15.6)

The observation probability distribution can be discrete or continuous.
5. The initial distribution π = {πi} where

πi = P (q1 = Si) , 1 ≤ i ≤ N. (15.7)

A complete specification of a HMM consists of two model parameters
(N and M), the specification of observation symbols, and the specification
of the three probabilistic measures A,B and π. For convenience, we use the
compact notation

λ = (π,A,B) (15.8)

to indicate the complete parameter set of the model.
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Due to their doubly stochastic nature HMMs are very flexible and became
quite famous in the gesture recognition community (section 15.2). The art of
HMM design lies in the specification of their topology of allowed transitions,
and the features to be observed. There are three basic problems of interest
that must be solved for the HMM to be useful in real-world applications:

Evaluation problem: Given the observation sequence O = O1, O2, . . . , OT ,
and the model λ = (π,A,B), how do we efficiently compute P (O | λ),
the probability of generating the observation sequence given the model?

Decoding problem: Given the observation sequence O = O1, O2, . . . , OT , and
the model λ, how do we choose a corresponding state sequence Q =
q1, q2, . . . , qT which is meaningful in some sense (i.e., best “explains” the
observations)?

Estimation problem: How do we train the HMM by adjusting the model pa-
rameters λ = (π,A,B) to maximize P (O | λ)?

The standard way to recognize a gesture out of a set G is to train a HMM λg

for every single gesture g ∈ G and after the observation sequence is recorded,
start the calculation of P (O | λg) for every HMM λg (see section 15.5.3.1).
The solution of the evaluation problem is used for recognition where the model
λg which produces the highest probability of describing the observation se-
quences

g = arg max
g

P (O | λg) (15.9)

is deemed to be the recognized gesture.

15.5.2 Organic modification of the hidden Markov model

The topology of our HMMs is an extension of the Bakis model as seen in
figure 15.4 and will be further explained in section 15.5.3.1.

The observed features (which we will call observations from now on) are
provided by the tracking module described in section 15.4, namely position,
texture and contour of left and right hand. Each kind of observation has a
particular degree of uncertainty, the position can vary on the object, texture
and contour might not be accurately determined due to blurring or erroneous
segmentation. Thus, we use the organic computing principle that distributed
information is advantageous for robustness and split the observations into
different channels. This parallel HMM (PaHMM) structure had been used by
Vogler [18] and Tanibata [14], who divided the observations for left and right
hand and trained a HMM for each hand. The independence of the channels
has been demonstrated in [19]. Consequently, we go one step further give the
system better generalization power if every observation has its own HMM,
instead of putting them into one observation vector. Therefore, in our system
a gesture g will be represented by six channels that separate the position
y relative to the head, texture τ and contour c for left and for right hand.
Another point is that if we assume that parallel HMMs model the parallel
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Fig. 15.5. Layout of the recognition agent. It is hierarchically organized, at the
bottom we have the HMM sensor modules, four of them for each gesture. They collect
the information and calculate their observation probability. The HMM sensor results
are merged in the Gesture HMM Integration modules, of which there is one for each
learned gesture. The Decision Center decides about the most probable gesture.

processes independently, they can also be trained independently, and do not
require consideration of the different combinations at training time.

15.5.3 The HMM recognition agent

Administration of gesture recognition is hosted in the recognition agent. Dur-
ing a recognition cycle the agent starts collecting the observations. Gesture
recognition is done from bottom to top (see figure 15.5 and algorithm box 1).
Layer one consists of the trained HMM channels for each gesture. In terms
of our MAS they are called HMM Sensors. They independently calculate the
actual observation probability and pass this information to layer two. The Ges-
ture HMM Integration modules in layer two represent the learned gestures.
Each module fuses the information of its channels to compute a decision about
the probability that the performed gesture is similar to the one represented by
the Gesture HMM Integration module. Finally, in the Decision Center of layer
three, the results of the Gesture HMM Integration modules are compared to
determine which gesture is the most probable.

15.5.3.1 Layer one: modified HMM

Starting at the sensor layer we are mainly interested in solving the evaluation
problem mentioned above. Before we present our extensions of the HMM idea,
we want to outline the Forward-Backward approach to calculate P (O | λ) and
motivate our modifications.



332 Maximilian Krüger, Christoph von der Malsburg, and Rolf P. Würtz

Forward-backward algorithm

The forward-backward algorithm [12] solves the evaluation problem by calcu-
lating the P (O | λ) using the forward variable αt(j), which is defined as

αt(j) = P (O1, O2, . . . , Ot, qt = Sj | λ), (15.10)

the probability of the partial observation sequence O1, O2, . . . , Ot and state
Sj at time t, given the model λ. The forward variable is solved inductively,
as follows:

1. Initialization:
α1(j) = πjbj(O1), 1 ≤ j ≤ N. (15.11)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1 1 ≤ j ≤ N. (15.12)

3. Termination:

P (O | λ) =
N∑

i=1

αT (i). (15.13)

The backward variable βt(i) is calculated in a similar manner and is defined
as the probability of the partial observation sequence t + 1 to the end, given
state Si at time t. Each of these variables or a combination of them can be
used to solve the evaluation problem.

Using the forward-backward algorithm and especially the multiplication
of probabilities in equation (15.12), recognition would not be robust to:

1. a missing observation,
2. a wrongly classified static hand gesture that was not in the training data1,
3. the observation sequence taking longer than the learned ones.

Problem one can be solved by having perfect tracking and perfect classification
of static hand gestures. The other two problems become less crucial when
collecting more training data. But it is our aim to develop a system that works
robustly in a self-organized way under real-world conditions, the conditions
of sparse data.

HMM sensor

The flexibility of the HMM depends on the training data, which determines the
transition probabilities aij and the observation probability distributions B =
{bj(k)} of the model. Under real world conditions the HMM will be confronted
with unknown, not learned, observations or variations in the dynamics caused
1 Using a discrete observation distribution, a zero will be returned for the observa-

tion probability of a symbol that has not been learned for the particular state.



15 Self-organized Evaluation of Dynamic Hand Gestures 333

by, e.g., missing tracking information, blurring, etc. To face these problems
we split up the doubly probabilistic method of the HMM by introducing a
self-organized transition between the states. In our approach we are using a
strict left-right model with π1 = 1, πi = 0 for i �= 1 and aij = 1 if j = i + 1,
aij = 0 else. The number of states N is equal to the longest learning sequence
of the gesture’s training set. Instead of the transition probability matrix A
where the transitions are learned, the aij are replaced by a weighting function
wt(u). Equation (15.12) will become

αt+1(j) = αt(i) aij︸︷︷︸
=1

wt(u)bj(Ot+1), (15.14)

and therefore equation (15.13) becomes

P (O | λ) = αT (N). (15.15)

Equation (15.14) allows the HMM to perform on-line gesture recognition and
computes its probability on every frame.

The weighting function of each channel is Gaussian

w(u) = exp
(
−u2

2σ

)
, (15.16)

where u = [0,∞] is a measure of uncertainty. Starting with a maximal cer-
tainty of u = 0 at the beginning of the recognition, the modified HMM
(mHMM) checks whether the received observation Ot is presented in the obser-
vation distribution bi(Ot) of the actual state i. If the result is not satisfactory,
i.e., below a recognition threshold, the mHMM can pass the observation to
the next state i+1, check again, and pass it further to state i+2 if necessary.
If the observation does not even match at state i + 2 it will be ignored. Each
of these transitions is punished by increasing the uncertainty u and thus low-
ering the weighting function. To reinstall its certainty, the mHMM recovers
with every recognized observation by decreasing u. If the observation has been
recognized the system switches to the next state.

To come back to our HMM recognition agent, the task of the HMM sensor
(layer one in figure 15.5) is to calculate its weighted observation probability
wt(u)bj(Ot) for the actual frame.

15.5.3.2 Layer two: gesture HMM integration

Each learned gesture g has a Gesture HMM Integration unit in layer two. By
merging the information of its six sensors the Gesture HMM Integration unit
computes the quality Qg of the gesture g matching the observation sequence.

Due to the nature of the observation, the HMM sensors have different
probability distributions. The position information is stored in a continuous
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Algorithm 1: Recognition is hierarchically organized using three layers.
The characteristic of each layer is its information integration. Layer one,
the HMM Sensor, compares the received observation with its observation
probability function. Layer two comprise the HMM Integration unit of
each learned gesture and integrates the information received from layer
one. The top layer compares the results from the HMM Integration units.
The Decision Center determines the most probable gesture and manages
the inhibition.

while not at end of gesture sequence do1

/* ********************************************************* */

/* Layer one: HMM sensor */

/* ********************************************************* */

foreach HMM sensor do2

calculate observation probabilities;3

end4

/* ********************************************************* */

/* Layer two: HMM Integration unit */

/* ********************************************************* */

foreach HMM Integration unit do5

compute � to fuse the information of position, texture and contour;6

calculate the actual quality Qa;7

update the overall quality Qg;8

control the activation using Qg, ξstart and ξstop ;9

end10

/* ********************************************************* */

/* Layer three: Decision Center */

/* ********************************************************* */

if ∃ HMM Integration unit that reached its ζmin then11

choose HMM Integration unit with highest Qg12

as current winner;13

end14

if ζwinner == 1 then15

reset all HMM Integration units;16

end17

else18

/* inhibit all gestures */

search for the maximal quality Qmax;19

foreach HMM Integration unit do20

subtract Qmaxfrom Qg;21

end22

end23

end24

Result: last winner will be chosen as recognized gesture.
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distribution using Gaussian mixtures. The information of the static hand ges-
ture, the identified most similar contour and bunch graph, are stored sepa-
rately using a discrete probability distribution, which is realized as histogram
based on the appearance of the elements of the contour alphabet or bunch
graph alphabet, respectively.

The continuous distribution offers a more flexible way to evaluate the
observation, as we have a Euclidean distance for our position observations.
In our discrete feature space the concept of similarity, or distance, cannot
be assumed to be Euclidean. Therefore, we use position as the basis for our
recognition. The aim of sensor integration is the computation of the overall
quality Qg for the single gesture g. At the beginning or after a reset (see
below), the Qg is initialized with zero. To get rid of possible multiplications
with small numbers when estimating αt+1(j) using equation (15.14), we will
work with the logarithms of the probabilities sent by the sensors and therefore
obtain:

αt+1(j) = αt(i) + log(wt(u)bj(Ot+1)). (15.17)

Thus, for every frame we receive the log probability l of the left hand
position llh(y), left hand contour llh(c) , left hand texture llh(τ ) and right
hand lrh(y), lrh(c), lrh(τ ). To calculate the actual gesture quality Qa of the
current frame, we first weight the position probabilities of the two hands and
add them to Qa

Qa = wlhllh(y) + wrhlrh(y). (15.18)

Thereby we focus on the dominant hand by setting wrh = 0.7 and wlh = 0.3.
Although position is already a good observation for gesture recognition we
have to add the static hand gesture information to obtain better results. But
as mentioned above, recognition of the static hand gesture might not be stable
on every frame, especially when the hand is moving. Hence, we decided to
integrate the bunch graph and contour information using a rewarding function
�. This function rewards only if position and static hand gesture information
are correlated. Correlation does not necessarily mean that the mHMMs have
to be in the same state i. For each hand the l(c) and l(y) or l(τ ) and l(y)
just have to be above a threshold θ. The reward is linked to the probability
for the static hand recognition l(c), l(τ ) respectively

�(x) = (x − θ)H(x − θ) ; H : Heaviside step function (15.19)

and will be added to Qa. After computing Qa we update the Qg by adding
Qa. Without the static hand gesture information the Qg would decrease with
increasing gesture length. By introducing � we allow the Qa and Qg to become
positive and therefore Qg cannot be transferred into a probability again.

Each Gesture HMM Integration unit has two states, active and inactive.
In the active state the gesture is certain that it could match the data and
by increasing the states of the HMM Sensor the recognition is continuously
following the incoming observations. Increase of the state of the HMM Sensor
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is a cue for the similarity of the learned gesture to the performed sign. A
gesture becomes active if the Qa of the first state is above the threshold
ξstart. Otherwise, the gesture is inactive, which means that all the connected
HMM Sensors are set to their initial state and all the parameters like the
uncertainty u of each sensor and the Qg are reset to zero. An active gesture
can become inactive if the Qg drops below a threshold ξstop. ξstart and ξstop

have global values and allow the system to reset a gesture autonomously to
restart the recognition during the performance of the sign. We developed
this active/inactive mode to handle the problem of coarticulation (the frames
between two gestures) and the case where we have similar beginning for one
or more gestures and only the following frames will decide which gesture is
performed.

15.5.3.3 Layer three: decision center

Only active gestures will receive the attention of the Decision Center in layer
three. The Decision Center compares the results of the Gesture HMM Inte-
gration units and determines which gesture is the most probable so far.

The autonomy of the Gesture HMM Integration units in choosing a start-
ing time prohibits the Decision Center from using equation (15.9) directly
and declare the gesture g with the highest value of Qg the recognized one. In
that case the Decision Center would wrongly favor gestures that just started
over gestures that already accumulated similarity. Thus, we coupled the recog-
nition to the progress, the actual state, of the HMM Sensor by means of a
confidence value ζ, which is computed by the ratio of the actual state of the
sensor to the maximal number of states N of the mHMM. This confidence
value is a measure of certainty. Only gestures that are above a threshold of
ζmin will be handled by the Decision Center. This minimal confidence ζmin

is individual for each gesture and is computed as the ratio of its shortest to
its longest sequence in the training set. Out of the gestures that reached their
ζmin the Decision Center chooses the one with the highest Qg to be the most
probable gesture that represents the observation sequence so far. This method
favors short gestures that only need a small amount of recognized frames to
reach their ζmin. Therefore, all gestures are inhibited by the gesture with the
highest Qg to become inactive before they reach the needed confidence value.
If a gesture reaches a confidence value of one, it is deemed recognized already
before termination of the sequence, and a reset signal is sent to all connected
Gesture HMM Integration units.

15.6 Experiments and results

15.6.1 Sign language data

Our training and testing data consist of signs of the British Sign Language
(BSL) that were kindly provided by Richard Bowden. The data is a continuous
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Fig. 15.6. Recognition started with the beginning of the gesture. The histogram
shows the result for the experiment using only position and contour information
in light color and in dark color the result when integrating position, contour and
texture information.

movie with ground truth information about the beginning and the end of
each gesture. We have 91 different signs performed with 10 repetitions by one
signer, a total of 29219 images to be processed. The sequence length ranges
from 11 to 81 frames for the gestures and even within the gestures the sequence
length shows differences of around 50 percent, e.g., the length of gesture “live”
ranges from 18 to 41 frames. The signer is wearing colored gloves, hence for
training the exact position of the hand (the center of gravity), the texture and
the shape contour could be automatically determined. To calculate relative
positions for the hands a bunch graph face detection was run on the images.
The segmented hands allow the automatic creation of bunch graphs for left
and right hand for each frame. They where clustered by matching each bunch
graph on the other images and adding the image if the matching similarity
was above a certain threshold. The extracted contours were clustered using
standard vector quantization as described in Gray [6] to gain an alphabet of
representative hand shapes. As a result we obtain observation sequences for
relative hand position and static hand gesture, which are used to train the
mHMM.
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Fig. 15.7. Recognition started 10 frames in front of the the beginning of the ges-
ture to examine the effect of coarticulation. The histogram shows the result for the
experiment using only position and contour information in light color and in dark
color the result when integrating position, contour and texture information

15.6.2 Experiments

The recognition experiments were performed using a leave-one-out procedure,
where for the testing gesture all sequences excluding the one that is tested were
used to build the mHMMs. Therefore, we perform ten recognition experiments
per gesture. At the end of each performance, the final most likely gesture is
deemed to be the overall recognized gesture.

We tested our system in two sets of recognition experiments. In the first
set recognition starts at the known beginning of the sign, while in the second
recognition experiment we included the coarticulation of a previous gesture.
To simulate coarticulation we started the recognition 10 frames before the
ground truth starting time.

On both sets we tested the benefit of multi-cue integration and the stability
of of the system concerning missing data by running each set two times.
In the first run we integrated position, contour and texture information for
recognition and then we dropped the texture information and only integrated
position and contour information in the second run.

The distribution of the recognition rates is shown in figure 15.6 for the
given start of the gesture and figure 15.7 for the coarticulation. The results
are presented in histogram style, where we plotted the recognition rate (light
bars for the recognition experiment applying only position and dark bars for
adding texture information) against the number of recognized gestures. For
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Fig. 15.8. The trajectories and static hand gestures of the signs “excited interested”
(left) and “live” (right) are very similar. Therefore, the shorter sign live dominates
the recognition of the excited interested performance. The integration of non-manual
observation like a grammar or facial expression should help to differentiate between
similar signs.

example, using figure 15.6 we have recognized eight gestures with a recognition
rate of 70% when only using position and contour information.

Given the start of the gesture we achieve an average recognition rate of
90% if we integrate position contour and texture. The mean recognition rate
is reduced to 84% if we exclude the texture information. Taking the first
run we receive a mean recognition rate of 90% and higher for over the half
of our gestures. By analyzing the gestures with lower recognition rates of
0 to 10%, these gestures were mainly dominated by a very similar gesture that
have a lower sequence length. For example the “excited interested” gesture is
dominated by the shorter “live” gesture, that shows a very similar trajectory
and similar static hand gestures as can be seen in figure 15.8. The difference
of the trajectories is small compared to the inter-sign variations that can
occur in other sign like the “different” and the “bat” gesture trajectories that
are plotted in figure 15.9. This misclassification trap is caused by the self-
organizing property of the system. All known gestures are in a loop and are
waiting to become active by passing the activation threshold ξstart. Therefore
as seen for the low recognized gestures they are likely to be dominated by
similar shorter gestures and this might be a good reason to include grammar
or other non-manual observation like facial expression to future systems.

The benefit of this autonomy to start the recognition becomes obvious in
our second set. Running the experiment with the same data and parameters
we achieve a mean recognition rate of 85% or 78% respectively for the second
run. The recognition system shows just a 5% difference between a fixed and
a self-organized start of the recognition.

Comparing recognition rates for sign language recognition is a difficult
task, because every group has its own data. Nevertheless we have to admit that
our recognition rates are below the results of von Agris et al [20] with 97.9%
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Fig. 15.9. The signs “different” (left) and “bat” (right) shown with the trajectory
differences of ten repetitions by the same signer.

for a database of 153 isolated signs and Kadir et al [7] who have a recognition
rate of 92% for a lexicon of 164 words. The strength of our system is the
autonomy of the recognition process to handle the effect of coarticulation,
which have not been investigated by von Agris and Kadir.

15.7 Conclusion

We have presented an approach to gesture recognition by organic computing
technology. We built a software framework to design and test multi-agent sys-
tems. The characteristics of a multi-agent system are autonomous and coop-
erating units. Organic computing principles like divide and conquer, learning
from examples and self-control have been used for object tracking and sign
language recognition. Both systems are running simultaneously.

For gesture recognition we modified a standard HMM architecture by in-
troducing two types of information, a more reliable channel as a basis and a
weaker one. Both are integrated by using a correlation and rewarding scheme.
Another innovation is the competition of the learned gestures during the recog-
nition process. In addition to satisfying recognition results the autonomy of
the system allows to handle the problem of coarticulation.

Only simple features like the position, contour and texture of the hands
have been applied, we resigned to grammar or a high level description. To
learn a grammar or a high level description would be an interesting challenge
for future projects. In the near future we plan to integrate facial expression
recognition of Tewes et al [15] as a new HMM sensor and to run the system
on more data to examine its signer independence ability.
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