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Summary. The turn to nature has brought us many unforeseen great concepts
and solutions. This course seems to hold on for many research domains. In this
article, we study the applicability of biological mechanisms and techniques in the
domain of communications. In particular, we study the behavior and the challenges
in networked embedded systems that are meant to self-organize in large groups of
nodes. Application examples include wireless sensor networks and sensor/actuator
networks. Based on a review of the needs and requirements in such networks, we
study selected bio-inspired networking approaches that claim to outperform other
methods in specific domains. We study mechanisms in swarm intelligence, the artifi-
cial immune system, and approaches based on investigations on the cellular signaling
pathways. As a major conclusion, we derive that bio-inspired networking techniques
do have advantages compared to engineering methods. Nevertheless, selection and
employment must be done carefully to achieve the desired performance gains.
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13.1 Introduction

The proliferation of wireless sensor networks (WSN) and similar ad hoc net-
works based on huge amounts of spontaneously interacting nodes is changing
the world of telecommunications. In addition to the increasing number of
communicating nodes, node mobility is an issue as addressed, for example, in
sensor/actuator networks (SANET). Previously, controllability and determin-
ism were the keywords during protocol development and network research.
Based on the primary objectives of WSN, nodes communicate using a ra-
dio interface, they are battery-driven, small, and cover only few resources.
Therefore, new key factors have been identified for developing communication
methods. Above all, scalability of the employed mechanisms is required.

Researchers anticipate self-organization methods as the general solution
to the depicted communication issues in WSN and SANET. Centralized
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Fig. 13.1. The changing world: centralized systems, decentralized control, and self-
organization [13].

management and optimized control will be replaced by methodologies that fo-
cus on local knowledge about the environment and adequate decision making
processes. Similar problems are known and well-studied in nature. Therefore,
such biological solutions should be analyzed for adaptation to the communi-
cation in ad hoc networks and WSN.

The goal of this article is to provide an overview of some bio-inspired net-
working mechanisms and to introduce the underlying biological functionality
as well as the adaptation to technical processes. Even though it is not intended
as a general review, it summarizes the best-known approaches and explains
selected mechanisms in more detail.

13.2 Networked embedded systems

Networked embedded systems are used in many application scenarios. Above
all, wireless sensor networks (WSN) are widely studied [3, 6]. Sensor networks
consist of multiple, usually hundreds or even thousands of sensor nodes. Such
networks do not have a predominant topology but are created dynamically, ad
hoc on demand. The nodes themselves can be of any size. Nevertheless, most
publications understand sensor nodes as small, battery-driven devices with
limited processing power and memory, radio communication, and sensors to
measure physical parameters such as the temperature.

Similarly, sensor/actuator networks (SANET) extend the idea of wireless
sensor networks to mobile actuation systems, e.g. robot-like systems. In gen-
eral, such SANET are built of cooperating mobile autonomous systems that
allow some kind of actuation, e.g. handling, mobility [2].
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With WSN and SANET, new issues appeared that are not covered by ex-
isting communication methods and protocols. Some of these issues are inher-
ent in the idea of interconnecting thousands of networked embedded systems,
others evolve based on particular application scenarios of WSN:

Node mobility: In general, sensor networks are believed to be stationary, i.e.,
to have a fixed topology – at least in terms of node location. Admittedly,
node mobility is becoming a major concern of new application scenarios
such as logistics. SANET, on the other hand, inherently include location
dynamics and mobility.

Network size: In contrast to other networks, the number of nodes that are
building a network on demand can be very high. Structured networks such
as the Internet benefit from a hierarchical organization and a centralized
management of subnetworks. WSN and SANET are infrastructureless net-
works facing scalability problems if too many nodes are concerned.

Deployment density: Depending on the application scenario, the node density
in a WSN can be very high. This may break existing medium access control
protocols and lead to energy exhaustion just for neighborhood detection.

Energy constraints: Instead of having unlimited energy for computation and
communication, energy constraints are much more stringent than in fixed
or cellular networks. Usually, sensor nodes are battery operated and in
certain cases, recharging of the energy source is impossible. We distinguish
replenishable power sources, e.g., for wearable sensors, non-replenishable
power sources, e.g. for sensors deployed in remote, hazardous terrain, and
regenerative power sources.

Data / information fusion: Limited bandwidth as well as the mentioned
power constraints demand aggregation techniques. Each data packet that
has to be transported through a WSN is expensive. Aggregated data re-
duce energy consumption and provide higher usefulness.

In summary, it can be said that self-organization mechanisms are needed
for higher scalability in WSN/SANET communication [12]. The basic mech-
anisms available include neighborhood discovery, topology (re-)organization,
and probabilistic approaches. Since optimization on a global level is no longer
possible, there is always a discrepancy between multiple objectives. For ex-
ample, the latency of path-finding with on-demand routing protocols may be
too high and periodic routing overhead in a table-driven routing protocol may
consume a significant amount of bandwidth [1]. On the other hand, the prob-
ability of successful transmission might be too low for stateless approaches.
Therefore, hybrid architectures may improve the scalability and optimize the
network behavior depending on the application scenario.

Figure 13.1 illustrates the control and management of systems consisting
of multiple subsystems. Centralized control is primarily used to operate in an
environment consisting of a few nodes. Using centralized information about
all systems, optimized solutions for communication and task allocation can be
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Fig. 13.2. Antagonism between determinism/controllability vs. scalability in system
management and control [13].

derived. Examples are perfect schedules for medium access and real-time fail-
ure detection and repair. Distributed control allows to manage larger numbers
of systems in a scalable way by preserving most systems characteristics such
as controllability. Nevertheless, optimization becomes harder and predictabil-
ity is reduced. Finally, self-organizing systems should help to overcome all
scalability problems.

Unfortunately, determinism and controllability of the overall system are
reduced. The relation between determinism and scalability is depicted in fig-
ure 13.2. Another issue is the challenge of programming such less predictable
systems showing emergent behavior.

Referring to networked embedded systems and their management and con-
trol, self-organization mechanisms are needed in order to support a large
amount of simultaneously intercommunicating nodes. In WSN and SANET,
we need new methods to identify available communication paths, nodes, and
their capabilities and resources. Additionally, data handling including storage,
aggregation, and distribution must be changed and adapted to the new re-
quirements. All mentioned operations should be possible without knowledge
about the current network topology, available nodes, their addresses, their
location, and others.

13.3 Self-organization: “from nature to engineering”

The turn to nature for solutions to technological problems has brought us
many unforeseen great concepts. This encouraging course seems to hold on
for many aspects in technology. First studies on biological self-organization
and its possible adaptation to technical solutions date back to the 1960ies. Von
Foerster [30] and Eigen and Schuster [16] proposed to employ self-organization
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Fig. 13.3. System control using positive and negative feedback loops.

methods as known from many areas in biology. He saw the primary application
in engineering in general. Nevertheless, it has been shown that communica-
tions can benefit from biologically inspired mechanisms as well.

13.3.1 Basic principles of self-organization

There are three major principles of self-organization mechanisms: feedback
loops, local state evaluation, and interaction between individuals. Addition-
ally, probabilistic methods that provide scalability and some degree of pre-
dictability can be found in nature and adapted to technology. This process
needs careful consideration to prevent mistakes due to limited knowledge
about the biological processes or due to the lack of correlation between the
natural and the technical models [12].

Figure 13.3 depicts a system that employs all three principles. The main
system is performing some action on a source to provide an outcome. Based
on this system, the mentioned mechanisms for self-organization need to be
discussed in more detail:

Feedback loops: One major component in understanding the interaction of
components producing a complex pattern are positive and negative feed-
back loops. Positive feedback acts as an amplifier for a given effect. In
order to prevent overreaction and misregulation, negative feedback is used
to efficiently control the system behavior. An example for a positive feed-
back loop is depicted in figure 13.3, the activation of the processing step.
Additionally, a negative feedback loop is included. The outcome directly
suppresses an environmental reaction and, therefore, reduces the activa-
tion capabilities, i.e., the level of the system’s inherent ability to become
activated due to observed effects.
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Local state: The second ingredient is the local state. This means that all sub-
systems are acquiring and acting upon locally stored information. Any
global control or dependency is prevented in order to enable fully au-
tonomous behavior embedded into a global context. The idea of using
local state only is depicted in our example by missing external control
processes.

Interactions: Information transfer between individuals is necessary to update
the local state. There are two ways to conduct such interactions: direct
interaction or communication between related subsystems and indirect
information exchange by interacting with the environment. This process is
also known as stigmergic [9]. The example in figure 13.3 includes stigmergic
interactions. The system influences the environment (it produces some
effect). This effect can be measured and directly increases or decreases
the activation capabilities to the system behavior.

Probabilistic methods: In order to prevent synchronization problems and to
increase the variety of application domains scalability is often achieved by
random selection.

13.3.2 Bio-inspired techniques in technical systems

The development in the area of bio-inspired engineering is relying on vari-
ous research fields including swarm intelligence, the artificial immune system,
evolutionary and genetic algorithms, and cell and molecular biology based
approaches. Some of the best known approaches should be summarized here
whereas selected methods are depicted in more detail in the following section.

The behavior of large groups of interacting small insects such as ants and
bees builds the basis for the field of swarm intelligence . Simple and seem-
ingly unrelated, autonomously working individuals are considered to compose
complex cooperative tasks. Similar actions are required in various areas of
engineering and computer science. Thus, swarm intelligence is forming a basis
for building self-organizing systems [5, 19]. The focus lies on the formation of
groups or clusters that allow efficient task allocation mechanisms. Successful
application of swarm intelligence methods has been demonstrated in task allo-
cation and control of multi-robot systems [24]. Recently, similar applicability
has been shown in sensor networks [26].

The immune system of mammals builds the basis for research on the ar-
tificial immune system (AIS). The reaction of the immune system, even
to unknown attacks, is a highly adaptive process. Therefore, it seems obvious
to apply the same mechanisms for self-organization and self-healing opera-
tions in computer networks. In the last decade, several architectures for an
AIS have been proposed [20, 17]. Application examples include autonomous
communication [29] as well as ad hoc networking [27] Additionally, security
scenarios including virus and intrusion detection already benefited from AIS
approaches [22, 23].
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Fig. 13.4. The emergent collective intelligence of groups of simple agents [5].

Evolutionary algorithms (EA) are self-manipulating mechanisms. The
evolution in nature is the basis for such methodologies. In particular, there are
multiple ways for organisms to learn. A natural selection process (survival of
the fittest) is going on letting only the optimal prepared organisms to survive
and to reproduce. Changes appear for example by mutations. An overview to
evolutionary algorithms is provided for example in [4, 7].

An emerging research area looks for cell and molecular biology based
approaches. All organisms are built in the same way. They are composed of
organs, which consist of tissues and finally of cells. This structure is very
similar to computer networks, and so are the cellular signaling pathways.
Therefore, research on methods in cell and molecular biology promises high
potential for computer networking in general and adaptive sensor networks
and network security in particular [14, 25].

While many advantages can be identified that make the use of bio-inspired
techniques successful, we also need to comment the limitations of bio-inspired
mechanisms. Biology always makes compromises between different goals and
it is well known that biology sometimes fails. Additionally, some natural mech-
anisms are not well understood and well-defined problems may be solved by
other means.

13.4 Bio-inspired networking

Primarily, the goal of this section is to demystify the concepts of bio-inspired
networking. Based on selected approaches, the objectives and solution paths
of biologically inspired methods are depicted in more detail.

13.4.1 Swarm intelligence

The collaborative work of a multitude of individual autonomous systems is
necessary in many areas of engineering. Swarms of small insects such as bees
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Fig. 13.5. Simulation setup for evaluation of the attractor based task allocation
and routing.

or ants address similar issues. For example, ants solve complex tasks by simple
local means. There is only indirect interaction between individuals through
modification of the environment, e.g., pheromone trails are used for efficient
foraging. Finally, the productivity of all involved ants is better than the sum of
their single activities and ants are “grand masters” in search and exploration.

The basic principles are simple. All individuals – the systems that collab-
orate on an overall task – follow simple rules that lead to impressive global
behavior, which emerges based on the simple rules and interactions between
the systems, either directly or indirectly via the environment. An example is
described in figure 13.4. The foraging algorithm used by termites to collect
wood chips is shown on the left hand side. Using a simulation model, the over-
all visible behavior was studied [5]. Quickly, the chips are heaped together and
structures emerge from the scene as shown on the right hand side.

Attractor-based routing and task allocation

As a specific example to demonstrate the capabilities of swarm intelligence
methods in networking, we chose an attractor scheme for routing and task
allocation [26]. In sensor networks supported by mobile robots, routing de-
cisions usually need to be taken on demand because the network topology
changes over time. Additionally, multiple tasks may be needed to be executed
by different systems in the network. Usually, static programming or complex,
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auction-based task allocation strategies are used, whereas those approaches
fail in large scale and highly dynamic scenarios. The algorithm described here
is based on the AntHocNet approach that enables self-organized routing con-
trol in ad hoc networks [10]. The pheromone trail mechanism is exploited
to search for optimal paths through ad hoc networks. After a short learn-
ing phase, the optimal solution can be derived from messages transmitted
previously over suboptimal paths.

The new approach is based on a probabilistic scheme. Each node performs
a local decision process that provides the basis for task allocation and routing
decisions. The basic idea is as simple as powerful. If a node successfully per-
formed a particular task (whether forwarding a packet or anything else), its
probability to perform this task again is increased. Similarly, the probability
is decreased if the node failed for a particular task. Additionally, each node
observes the behavior of the surrounding nodes to update its local behavior
accordingly.

More formally, this algorithm can be written as follows. Each node n as-
sociates to a task Ti to an attractor τi with i ∈ T . At the moment of selecting
a task to perform, the node computes a probability for choosing task Ti as
follows:

P (i) =
τβ
i∑

k∈T

τβ
k

(13.1)

The parameter β was introduced to increase the exploitation of good paths.
Each node initializes τ i with τ init. If the node successfully performed the given
task i, τi is recalculated as follows: τi = min{τmax, τi + Δτ}. Similarly, τi is
reduced for unsuccessful operations: τi = max{τmin, τi − Δτ}.

The complete algorithm, the corresponding calculations, and an in-depth
evaluation can be found in [26]. In that paper, a set of experiments was per-
formed to demonstrate the advantages of the attractor scheme. The simulation
setup is shown in figure 13.5. 25 nodes were places in a grid on a playground
of 500m×500m. Four different tasks were defined to be performed by all these
nodes. Disregarding task allocation, we focus on the associated route selection
in this network.

Figure 13.6 shows selected simulation results. On the left hand side, we
show a typical snapshot of the distribution of tasks in the network. The plot
refers to task T3. It can be seen that when a node had high probability of
performing T3, its neighbors were likely to have a low one. The routes that
were used to send the data to the base host are depicted in the same figure on
the right. The network was split in two halves: there were few links between the
top right triangle and the bottom left triangle. This figure does not represent
the steady state of the network. The network reached a dynamic equilibrium,
where things continually changed. This is especially true for the depicted
routes, since the routing table entries were removed after a while, and new
discoveries took place.
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Fig. 13.6. Simulation results [26]. Left: Distribution of task T3 among the nodes.
The darker the circle, the higher is the probability that an agent performs T3. Right:
Routes to deliver the output of T3 to the base host (in the upper left corner). The
arrows show the known next hops for every node. Their thickness is proportional to
the probability of choosing a node as next hop.

This example illustrates an architecture for attractor-based task allocation
and routing. The nodes make use of solutions inspired by ants’ behavior. The
control architecture is based on strong interlayer and interagent interactions.
The latter are local, meaning that they occur only between agents within a
given range, smaller than the experimental area. The architecture is based on
probabilistic decisions. During the lifetime of the network, the nodes adapt
their probability to execute one task from a given set. The architecture exploits
the interactions between agents, but only within a limited range. The local
interactions are, however, sufficient to induce a global pattern, i.e., to provide
a self-organizing behavior. No particular knowledge of the environment or of
the other nodes’ activity is required. Moreover, the architecture is based on
a cross-layer design, in which application and network layers collaborate on a
common objective.

13.4.2 Artificial immune system

Artificial immune systems are computational systems inspired by theoretical
immunology and observed immune functions, principles and models, which
are applied to complex problem domains [8]. The primary goal of an artificial
immune system (AIS) is to efficiently detect changes in the environment or
deviations from normal system behavior. The most impressing capabilities of
the immune system are its recognition capabilities (anomaly detection, noise
tolerance), its robustness, diversity, the capability of reinforcement learning,
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and the possibility to memorize observations. These features allow to build
self-optimizing and self-learning processes.

The role of the mammalian immune system can be summarized as follows.
It should protect the body from infections. For this, two immune responses
were identified. The primary one is to launch a response to invading pathogens
leading to an unspecific response (using leucoytes). In contrast, the secondary
immune response remembers past encounters, i.e., it represents the immuno-
logic memory. It allows a faster response the second time around showing a
very specific response (using B-cells and T-cells).

The immune recognition is based on the complementarity between the
binding region of a receptor and a portion of an antigen called epitope. An-
tibodies have a single type of receptor, while antigens might show several
epitopes. This means that different antibodies can recognize a single antigen.
The immune system needs to be able to differentiate between self and non-
self cells. Antigenic encounters may result in cell death; therefore, the immune
system establishes some kind of positive and negative selection.

The scope of AIS is widespread. There are applications for fault and
anomaly detection, data mining (machine learning, pattern recognition),
agent-based systems, control, and robotics. In the mammalian immune sys-
tem, the shape of the molecules defines the degree of binding. In an AIS,
a similar distance measure is needed. Typically, antigens and antibodies
are described in form of vectors, i.e. Ab = 〈Ab1, Ab2, . . ., AbL〉 and Ag =
〈Ag1, Ag2, . . ., AgL〉. Different shape spaces can be used depending on the
current environment:

Real-valued shape space: the attribute strings are real-valued vectors.
Integer shape space: the attribute strings are composed of integer values.
Hamming shape space: composed of attribute strings built out of a finite

alphabet of length k.
Symbolic shape space: usually composed of different types of attribute

strings, such as a ‘name’, a ‘color’, etc.

Based on this definition, the matching of antigens to antibodies can be de-
scribed using their affinity. The affinity is related to the distance. For example,
the Euclidean distance can be used:

D =

√√√√ L∑
i=1

(Abi − Agi)2 (13.2)

Other distance measures such as Hamming or Manhattan can be used as
well. The main application in computer science and engineering is anomaly
detection. The normal behavior of a system is often characterized by a series of
observations over time. The problem of detecting novelties, or anomalies, can
be viewed as finding deviations of a characteristic property in the system. For
computer scientists, the identification of computational viruses and network
intrusions is considered one of the most important anomaly detection tasks.
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One of the first AIS was presented in [20]. Based on this work, misbehavior
detection and attack or intrusion detection systems were developed according
to the working principles of the natural immune system [22, 23, 27]. Besides
network security applications, the operation and control of multi-robot sys-
tems was addressed by AIS approaches. The collaborative behavior of robots
collecting objects in an environment is difficult to optimize without central
control. It was shown that an emerging collective behavior through commu-
nicating robots using an AIS overcomes some of the problems. The immune
network theory was used to suppress or encourage robots behavior [28].

Misbehavior detection in mobile ad hoc networks

In ad hoc networks, each node serves as both an end system and a router.
This allows to build dynamic on demand network topologies supporting mo-
bile systems as well. Various routing protocols for mobile ad hoc networks
have been proposed focusing on the efficiency in terms of route detection and
maintenance (time, overhead, etc). This dynamic behavior allows – on the
one hand – to enable sophisticated mobile applications. On the other hand,
such dynamics also open ways to attack the network on the routing protocol
layer. Such attacks might be initiated for denial of service reasons as well as
for taking over the ad hoc network for private services. A third reason for
misbehavior in ad hoc networks is the occurrence of faulty nodes. Either the
system might be erroneous or the routing protocol might be incorrectly imple-
mented. A misbehavior detection scheme using an artificial immune system
has been developed [27], which works for DSR (dynamic source routing), a
particular ad hoc routing protocol. The goal was to build a system that, like
its natural counterpart, automatically learns and detects new misbehavior. It
employs negative selection, an algorithm used by the natural immune system.
In the original paper, the mapping of the natural immune system concepts
such as self, antigen and antibody to a mobile ad hoc network is defined and
the resulting algorithm for misbehavior detection is presented. The following
elements have been defined:

Body: the entire mobile ad-hoc network.
Self-Cells: well behaving nodes.
Non-Self Cells: misbehaving nodes.
Antigen: Sequence of observed DSR protocol events recognized in sequence

of packet headers. Examples of events are “data packet sent”, “data packet
received”, “data packet received followed by data packet sent”, “route
request packet received followed by route reply sent”.

Antibody: A pattern with the same format as the compact representation
of antigen

Negative Selection: Antibodies are created during an offline learning
phase. In a deployed system this would be done in a testbed with nodes
deployed by an operator.
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Fig. 13.7. Impact of misbehavior and parameter tuning [27]: Probability of correct
detection of misbehaving nodes (true positive) and erroneous detection of well be-
having nodes (false positive) vs. misbehavior probability for the misbehaving node
(left) and number of self antigens collected for learning (right).

Since antigens represent traces of observed protocol events, such sequences
would become very long in a short period of time. Therefore, all traces need
to be limited by a time limit Δt for the observation interval. A typical se-
quence (the letters represent different protocol events) would look like this:
l1 = (EAFBHHEDEBHDHDHDHD. . .). Then, a number of “genes” are
defined. A gene is an atomic pattern used for matching. Typical examples
are g1=#E in sequence or g2=#(H*D) in sequence. With this information, l1
can be mapped to an antigen like this: l2=(3 2 7 6). Finally, the antigens are
encoded in binary representation. The numeric range of antigens is split into
several intervals and the bit in the representation is set to one if the antigen
belongs to this particular interval: l3=(0000000010 0000000010 0000001000
0000001000).

As previously described, a matching function must be defined to associate
antigens to antibodies. Antibodies have the same format as antigens (such
as l3), except that they may have any number of nucleotides equal to 1. An
antibody matches an antigen if the antibody has a 1 in every position where
the antigen has a 1. This approach has already been successfully demonstrated
in [21]. It is used in this paper as a method that allows a detection system to
have good coverage of a large set of possible non-self antigens with a relatively
small number of antibodies. Antibodies are created randomly, uniformly over
the set of possible antibodies. During negative selection, antibodies that match
any self antigen are discarded.

The primary evaluation criteria for such detection approaches are the true
positive detection rate and the false positive detection rate, i.e., the number
of successfully identified misbehaving nodes and the number of accidentally
mis-identified nodes, respectively. As shown in figure 13.7, the approach yields
quite encouraging results.
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Fig. 13.8. Overview of the regulation of signaling cascades responsible for regulating
the blood pressure [15].

13.4.3 Intercellular information exchange

Regarding efficient networking, investigations into the structure and organi-
zation of intercellular communication seem to be valuable. Molecular biology
is the basis of all biological systems and features high specificity of informa-
tion transfer. Interestingly, we find many similar structures in biology and
in technology, especially in computer networking [25]. The primary concepts
are intra- and intercellular signaling pathways and diffuse communication in
large-scale structures. Considering the knowledge about molecular biology and
its similarity to communication networks [14], it is possible to extract the fol-
lowing principles: efficient response to a request, shortening of information
pathways, and directing of messages to an applicable destination.

The information pathways can be distinguished into local and remote.
Local: a signal reaches only cells in the neighborhood. The signal induces a
signaling cascade in each target cell resulting in a very specific response, which
vice versa affects neighboring cells. Remote: a signal is released into the blood
stream, which carries it to distant cells and induces a response in these cells,
which then passes on the information or can activate helper cells (e.g. the
immune system). Signals can appear in the form of particles, i.e., proteins
and hormones, as well as of environmental conditions that can be observed
and changed, e.g. the calcium concentration.

Inhibitors and promoters forming efficient feedback loops

An example for successful application of the described communication method
in WSN is the feedback loop mechanism [15]. Here, the Angiotensin-based
regulation process for the blood pressure was used to model the control loop
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for an efficient regulatory process in an organism. In the case of decreasing
arterial blood pressure, the kidney starts to produce a specific protein, renin.
This protein initiates a cascade of conversions and activations, respectively. So
it promotes the conversion of another protein (angiotensinogen) to a shorter
one (now called angiotensin I), which is finally translated to angiotensin II.
This protein represents the final response, which now has many effects on
different cells in different organs in order to increase the blood pressure to
its normal level. At the same time, a molecular negative feedback mechanism
finishes the whole cellular reaction. If all receptor are bound by angiotensin
II, the reaction is blocked, which in turn also blocks the primary conversion
of angiotensinogen to angiotensin II in the way that the initial renin secretion
is blocked. This process is shown in figure 13.8.

This process was adapted to work in a sensor network by using the follow-
ing two concepts:

1. The density of the sensor network allows for alternative feedback loops
via the environment: directly via the physical phenomena to be controlled
by the infrastructure.

2. Indirect communication allows for more flexible organization of au-
tonomous infrastructures and reduces the number of control messages.

In a sensor network, the control of activities requires information exchange
between multiple nodes in the network. Such communication is needed for
at least two reasons. First, the control information must be transported to
the appropriate destination and, second, the destination must respond to the
request by confirming the instructions. All conventionally designed network
protocols for such a function follow the same principles. Transmission of a
data packet destined for the particular target is initiated. State information
is accumulated at several points in the network until a response packet is
received which confirms the transaction. The paradigms for data transport
in sensor networks are already changing. Directed diffusion, which was in-
troduced in [18], has some interesting features: data-centric dissemination,
reinforcement-based adaptation to the empirically best path, and in-network
data aggregation and caching. Similar changes are expected for the control
information flow which we are focusing on.

As learned from biology, a diffuse communication principle has been pro-
posed [11, 15]. Each message to be sent is given a priority, which reflects
the importance of achieving the particular task. Based on this priority, the
message is sent to a percentage of the direct neighbors and an even lower
percentage of remotely accessible nodes. This process is repeated until the
desired job is confirmed running or the job is canceled globally. Thereby, a
random factor is applied to the dispersion of information or, in particular,
to the distribution of tasks. The benefit lies in better system efficiency and
reliability, especially in unreliable multihop ad hoc wireless sensor networks.
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13.5 Conclusion

In conclusion, it can be said that many approaches for bio-inspired network-
ing have been studied and we can already see first impressive solutions and
applications. Basically, the following mechanisms have been adapted to solve
open issues in networking: feedback loops, i.e. positive feedback to initiate
actuation or data aggregation, and negative feedback for network congestion
control and smooth regulation; local state information for efficient data fusion,
energy control, and clustering; and weighted probabilistic approaches for task
allocation, controlled communication and congestion control. Finally, we are
facing a multi-objective optimization process that balances between overhead
(latency vs. energy) vs. predictability.

Self-organization mechanisms for communication and coordination be-
tween networked embedded systems need further research and development.
There are many objectives and many directions, but similar solutions can be
derived. Bio-inspired networking is a powerful approach among several others.
Ongoing research objectives include efficient data dissemination, handling and
storage in WSN as well as task allocation schemes and distributed control in
SANET.
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