
12

An Artificial Hormone System for
Self-Organizing Real-Time Task Allocation
in Organic Middleware

Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

University of Karlsruhe, Bldg. 40.28, Engler-Bunte-Ring 8, 76131 Karlsruhe,
Germany.
brinks@ira.uka.de, pacher@ira.uka.de, renteln@ira.uka.de

Summary. This article presents an artificial hormone system for a completely de-
centralized realization of self-organizing task allocation. We show that tight upper
bounds for the real-time behavior of self-configuration, self-optimization and self-
healing can be given. We also calculate the communication load produced by the
hormone system and find it acceptable.

Key words: Decentralized control loops , real-time task allocation, task clustering,
hormone simulator

12.1 Introduction

Today’s computational systems are growing increasingly complex. They are
built from large numbers of heterogeneous processing elements with highly
dynamic interaction. Middleware is a common layer in such distributed sys-
tems, which manages the cooperation of tasks on the processing elements and
hides the distribution from the application. It is responsible for seamless task
interaction on distributed hardware. Like shown in figure 12.1, all tasks are
interconnected by the middleware layer and are able to operate beyond pro-
cessing element boundaries as if residing on a single hardware platform. To
handle the complexity of today’s and even more tomorrow’s distributed sys-
tems, self-organization techniques are necessary. These systems should be able
to find a suitable initial configuration by itself, to adapt or optimize itself to
changing environmental and internal conditions, to heal itself in case of sys-
tem failures or to protect itself against attacks. These so-called self-x features
are essential for the idea of Organic Computing. Middleware is well-suited to
realize such self-x features. By autonomously choosing an initial task alloca-
tion, which means finding the best initial processing element for each task,
middleware can configure the distributed system. By changing the task allo-
cation, middleware can optimize the system in case of changing environmental

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,

doi: 10.1007/978-3-540-77657-4 12, © Springer-Verlag Berlin Heidelberg 2008

262 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

Processing Element Processing Element

Task . . .

Task

Processing Element

. . .

Middleware

Task . . .

Task

Task . . .

Task

Fig. 12.1. Middleware in a distributed system.

conditions and heal it in case of processing element or task failures. Especially
for self-healing, it is important that these organic features are decentralized
to avoid single points of failure. This work presents an artificial hormone sys-
tem for task allocation to heterogeneous processing elements. The proposed
approach has the following properties:

• It is completely decentralized. There are no central decision making
instances to determine the task allocation. Each processing element (PE)
in the heterogeneous distributed system decides which tasks to take on the
basis of simple local rules and information received from other processing
elements.

• It is self-organizing. There is no external organization instance which
influences the task allocation. This is done by the interaction of the PEs
only.

• It is self-configuring. The presented approach determines an initial task
allocation, which takes into account the capabilities (e.g. computational
power, memory, etc.) and the state (e.g. operation temperature, energy
level, etc.) of the heterogeneous PEs.
The artificial hormone system is also able to respect related tasks (which
often have a high communication rate) in order to cluster them close to-
gether, thus forming “organs”.

• It is self-optimizing. The task allocation autonomously adapts to chang-
ing environmental conditions and states of the PEs (e.g. decreasing energy
level, increasing temperature) during operation. Self-optimization also in-
cludes the assignment of newly arriving tasks to PEs.

• It is self-healing. Due to the lack of central instances and due to the
capability of self-optimization the presented approach automatically com-
pensates the effects of failing tasks or PEs by reordering the task allocation.

• It is real-time capable. There are tight upper time bounds for self-
configuration and self-optimization. This bounds are partially valid for
self-healing, too.

• It produces limited communication overhead, which is reasonable for
embedded applications.

12 Artificial Hormone System 263

The term “artificial hormone system” was chosen because our approach
was highly inspired by the hormone system of higher animals. There are sev-
eral comparable properties between the hormone system in biology and our
technical system:

• In biology, chemical signals called messengers or hormones are unspecif-
ically spread to certain regions of the body or the whole body to cause
some effects. The messengers (or hormones) of our artificial hormone sys-
tem are also not addressed to a specific processing element (PE); rather
they are spread in the neighborhood of a processing element or over the
whole processor grid.

• The reaction of a cell to a hormone depends on the cell itself. In the same
way, the reaction of a PE to a messenger in our system depends only on
the specification of the PE itself (see properties mentioned above).

• A PE is able to react to a received messenger in different ways: It starts,
stops, continues or quits the execution of a task. In reaction to this, the
PE itself is also able to spread messengers over the system establishing a
closed control loop, which stabilizes the system. Such loops can also be
found in nature: the hormones T3 and T4 of the thyroid implement a
closed loop controlling the body temperature.

• Like in the biological hormone system, these closed loops are completely
decentralized. As for cells, removing PEs from the loop does not harm the
system as long as there are enough PEs left to execute tasks and send or
receive messengers.

• The hormones of higher animals are reduced by their metabolism, so they
are not effective after some time (unless new ones are produced). In our
implementation of the artificial hormone system, the effectiveness of the
messengers is bounded by time stamps. If not renewed the messengers of
our system expire, too.

It has to be stated that our “artificial hormone system” is not a copy of
the biological hormone system, but it has been inspired by nature and its
strategies. In biology, hormones are chemical objects transmitted via chemical
processes and reactions. In our approach, the messengers are bits and bytes
transferred via communication links. However, the effects and principles are
similar. This is why we have called our messengers hormones as well.

In the following we will present our approach in detail and we will discuss
and prove the enumerated properties.

12.2 An artificial hormone system for a decentralized
realization of the self-x-properties

For task allocation, three types of hormones are used:

Eager value: This hormone determines how well a PE can execute a task.
The higher the hormonal value the better the task is suited for the PE.

264 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

For i,
received

suppressors
Si

For i,
received

accelerators
Ai Local

eager value
Ei

 -

+ +

Modified
eager values

Emi
send by i,

For i,
received

eager values
Emi

a > b
?

Take task Ti on
PE

Suppressors
Si

sent by i,

Accelerators
Ai

sent by i,

Task Ti on PE

a

b

Fig. 12.2. Hormone-based control loop.

Suppressor: A suppressor represses the execution of a task on a PE. Sup-
pressors are subtracted from eager values. They can be used to limit task
execution and to indicate a degrading PE state.

Accelerator: An accelerator favors the execution of a task on a PE. Accel-
erators are added to eager values. They can be used to cluster related or
cooperating tasks in the neighborhood (thus forming organs) or to indicate
an improved PE state.

Figure 12.2 sketches the basic control loop used to assign a task Ti to a
processing element. The notation scheme is as follows: Hiγ means a hormone
for task Ti executed on PEγ and Hiγ means a hormone from task Ti executed
on PEγ . Latin letters are task indices and Greek letters are processing element
indices. This closed control loop is executed for every task on every processing
element. Based on the level of the three hormone types it determines if a task
Ti is executed on a processing element PEγ or not. The local static eager
value Eiγ indicates how well task Ti executes on PEγ . From this value, all
suppressors Siγ received for task Ti on PEγ are subtracted and all accelerators
Aiγ received for task Ti on PEγ are added. The result of this calculation is
a modified eager value Emiγ for task Ti on PEγ . The modified eager value
is sent to all other PEs in the system and compared to the modified eager
values Emiγ received from all other PEs for this task. If Emiγ is greater
than all received eager values Emiγ , task Ti will be taken by PEγ (in case of
equality a second criterion, e.g. the position of a PE in the grid, is used to get
an unambiguous decision). Now, task Ti on PEγ sends suppressors Siγ and
accelerators Aiγ to the others. This procedure is repeated periodically.

At this point we emphasize that the initial strength of the hormone values
is set by the applicants wanting to influence task allocation. The organic
middleware evaluates the hormones to allocate the different tasks, but it does
not set their initial strength.

12 Artificial Hormone System 265

12.2.1 Notation

Now we will define some basic indices and sets, which will be used frequently
in the following sections. To allow an easy distinction, we use Latin lower
case letters for task indices and Greek lower case letters for processing ele-
ment indices (like already done in figure 12.2). Accordingly, we use upper case
Latin letters for task sets and upper case Greek letters for sets of processing
elements.
Let

Ω be the set of all processing elements in the system.
ω be the number of all processing elements in the system.

ω = |Ω|
IΩ be the set of indices of all processing elements.

IΩ := {1, ..., ω}
Thus, we obtain the set of all processing elements as

Ω = {PE1, ..., PEω} = {PEγ | γ ∈ IΩ}.
Φγ be the set of processing elements which are neighbored to processing ele-

ment PEγ . Notice that this relation is reflexive.
Neighbored processing elements are able to communicate directly (hop
count=0 or 1).

Φγ := {PEδ | δ ∈ IΩ and PEδ neighbored to PEγ}
ϕγ be the number of processing elements neighbored to PEγ .

ϕγ := |Φγ |
M be the set of all tasks in the system.
m be the number of all tasks in the system.

m := |M |
IM be the set of indices of all tasks.

IM := {1, ...,m}
Thus, we obtain the set of all tasks in the system as

M = {T1, ..., Tm} = {Ti | i ∈ IM}.
Vi be the set of all tasks related to task Ti. Related tasks work on common

problems and therefore have to cooperate closely.

Vi := {Tj | j ∈ IM and Tj related to Ti}

266 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

vi be the number of all tasks related to task Ti.

vi := |Vi|
Eγ be the set of tasks executed on processing element PEγ .

Eγ := {Tj | Tj ∈ M and Tjexecuted by PEγ}
eγ be the number of all tasks executed on PEγ .

eγ := |Eγ |
In the following sections, we describe the hormones in more detail. Several

kinds of eager values, suppressors and accelerators have to be distinguished.
Therefore, we extend the notation from figure 12.2 to specify the hormones:

Hjδ
iγ : Hormone from task Ti running on PEγ to be sent to task Tj running

on PEδ.

Hormones can be also sent to several tasks or PEs simultaneously. In that
case, indices are replaced by the associated sets, e.g.:

HMΩ
iγ : Hormone from task Ti executed on PEγ to be sent to all tasks on each

processing element.

12.2.2 Different kinds of hormones

Using the notation introduced above we now describe the used hormones and
their function in detail and start by explaining the eager values:

Local eager value Eiγ : This value states the initial suitability of PEγ for task
Ti. It assures that task allocation is adapted to the capabilities of the PEs.

Modified eager value EiΩ
iγ : This value is calculated by adding the received ac-

celerators for task Ti on PEγ and subtracting the received suppressors for
task Ti on PEγ from the local eager value Eiγ . It is sent to task Ti on all
other PEs.

We used the following suppressors for the artificial hormone system:

Acquisition suppressor SaiΩ
iγ : This suppressor is sent to task Ti on all other

PEs in the system, as soon as PEγ has taken task Ti. Therefore, this
suppressor determines how often task Ti will be allocated in the overall
system. A very strong acquisition suppressor enforces that task Ti is taken
only once, while a weaker suppressor enables multiple allocation of this
task.

Load suppressor SlMγ
iγ : This suppressor is sent only locally to that PEγ which

has taken task Ti. It affects not only task Ti, but all tasks on this PE.
Thereby it determines how many tasks can be taken by a PE. A very
strong load suppressor enforces, that a PE can take only one task, while
a weaker one allows multiple tasks to be allocated on this PE.

12 Artificial Hormone System 267

Monitoring suppressor SmMγ
Mγ : This suppressor is sent locally to a PE by local

monitoring and affects all tasks on this PE. Thereby, the common state
of a PE influences task allocation. E.g., the lower the energy level or the
higher the temperature of a PE, the stronger this suppressor becomes.

We also used different kinds of accelerators for the artificial hormone system:

Organ accelerator Ao
ViΦγ

iγ : This accelerator is sent to all tasks Vi related to
task Ti on the PEs Φγ neighbored to PEγ , if PEγ has taken task Ti.
Thereby, this accelerator attracts tasks related to task Ti to settle on
the same or neighbored PEs. The stronger the accelerator the stronger
is the attraction. The basic idea behind this is that related tasks work
on common problems and have to communicate frequently, making short
communication distances useful. Related tasks form a kind of virtual or-
gan, which works on a bigger problem.

Stay accelerator Asiγ
iγ : As soon as PEγ has taken task Ti, this assignment is

initially fixed. This leads to stable task allocation in the context of self-
configuration. But to allow self-optimization, the possibility of changes
in task allocation is necessary. Therefore, a task assigned to a PE can
offer itself periodically for reallocation. To achieve this, the task suspends
the transmission of its acquisition suppressor SaiΩ

iγ and starts sending its
modified eager value EiΩ

iγ again. This enables other PEs to take this task,
if they are now more suitable. Such a task migration introduces costs
expressed by the stay accelerator by means of favoring the stay of task Ti

on PEγ . It is sent from task Ti on PEγ to itself (i, γ). The stronger the
stay accelerator, the better another PE must be suited for task Ti to be
able to take it from PEγ .

Monitoring accelerator AmMγ
Mγ : This accelerator is sent locally to a PE by

local monitoring and affects all tasks on the PE. It is the opponent of the
monitoring suppressor. Therefore, the local monitoring can strengthen a
PE if it is currently very powerful, e.g. due to a high energy level (solar
cell in plain sun).

The described approach is completely decentralized, each PE is responsible
for its own tasks, the communication to other PEs is realized by a unified
hormone concept. Furthermore, it realizes the described self-x properties:

• The approach is self-organizing, because no external influence controls
task allocation.

• It is self-configuring, as an initial task allocation is found by exchang-
ing hormones. The self-configuration is finished as soon as all modified
eager values become zero meaning no more tasks want to be taken. This is
done by sending suppressors. Of course, the suppressors have to be chosen
strong enough to inhibit an infinite task assignment (the suppressors must
be stronger then the accelerators), otherwise the system would become
instable.

268 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

send
hormones

(S)
decide

(D) tSD

TDS

Fig. 12.3. Hormone cycle.

• The self-optimization is done by offering tasks. The point of time for
such an offer is determined by the task or by the PE itself. It can be
done periodically or at a point in time when the task or the PE is idle.
Furthermore, an offered task continues its operation on the old PE as long
as it is not taken by a new PE.

• The approach is self-healing. In case of a task or PE failure all related
hormones are no longer sent, especially the acquisition suppressors. This
initiates automatic reassignment of the task to the same PE (if it is still
active) or another PE. The only additional requirement is a hormone Hjδ

iγ

sent from task Ti on PEγ to task Tj on PEδ with an expiration time. If
task Tj on PEδ receives no new hormone value within this expiration time,
the old value is discarded. This enables detection of missing hormones after
the expiration time.

A detailed discussion of the real-time behavior, especially of upper time
bounds for self-configuration, self-optimization, and self-healing can be found
in the following sections. The communication overhead introduced will be
analyzed there, too.

12.3 Dynamics of the artificial hormone system

In this section, the dynamics of the artificial hormone system and the condi-
tions and rules for its correct operation will be presented. Figure 12.3 shows
the cyclic sequence of sending out hormones and deciding on task allocation.
The sequence starts with ”send hormones” (S) to create the knowledge base
for the first decision. At least the eager values need to be available. At time
tSD after sending the hormones, a decision (D) to allocate tasks is made based
on the received hormones. This process is repeated after a time of tDS .

12.3.1 Dynamics of task allocation

Let PEγ be a processing element willing to run a task Ti. We need to distin-
guish three cases:

12 Artificial Hormone System 269

tK tK

tDS

tSD
PEγ

PEδ

. . .

. . .

. . .

. . .

tK : communication time
PEδ allocates task Ti
possibly based on

i
iActive Em γ i

iSa δ

i
iPast Em γ

S D

S D

Fig. 12.4. Worst-case timing scenario of the hormone exchange for task allocation

Case 1: All eager values EmiΩ
iγ of all processing elements PEγ ∈ Ω for task

Ti are constant and spread over the entire system. Thus, the system is in
a steady state and all PEs make their decisions based on up-to-date and
constant values. Then, PEγ can allocate a task if it has the highest eager
value or, in the case of equal eager values, a higher priority.

Case 2: The eager value EmiΩ
iγ of processing element PEγ for task Ti declines

(e.g. by suppressor influence), i.e. ActiveEmiΩ
iγ < PastEmiΩ

iγ . In this case
PEγ may allocate the task Ti if the declined eager value ActiveEmiΩ

iγ is
still sufficient. All the other PEs will not allocate the task, as they know
either ActiveEmiΩ

iγ or PastEmiΩ
iγ , and PEγ wins with both values.

Case 3: The eager value EmiΩ
iγ of the processing element PEγ for task Ti

increases (e.g. by accelerator influence), i.e. ActiveEmiΩ
iγ > PastEmiΩ

iγ .
This case is critical if PEγ becomes the winner by the increased eager value
ActiveEmiΩ

iγ , because other PEs might not yet know this increased eager
value and therefore decide wrongly. Thus, PEγ may only allocate the task
Ti after the new eager value ActiveEmiΩ

iγ has successfully been submitted to
all PEs and until PEγ itself has received a possible acquisition suppressor
SaiΩ

iδ from another PEδ (γ �= δ), which allocated the task Ti based on the
old, lower eager value PastEmiΩ

iγ .
But how long is the waiting time for PEγ? Figure 12.4 shows the worst-
case scenario, in which PEδ allocated the task Ti just before the new eager
value ActiveEmiΩ

iγ from PEγ has been received. PEγ may not come to a
decision until it has received the possibly incoming suppressor SaiΩ

iδ from
PEδ. The communication time tK needed by a hormone to spread the
whole system is very important. It is possible to establish the following
rule for task allocation for increasing eager values as well as conditions for
the times tDS and tSD.
Rule: If a processing element PEγ is able to allocate a task Ti only by the

increased eager value ActiveEmiΩ
iγ then it may not decide before the

next communication cycle to allow the new eager value ActiveEmiΩ
iγ to

270 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

spread and to wait for potentially incoming suppressors. This is true
if (follows directly from figure 12.4):

tSD ≥ tDS + 2tK

Thus, the cycle time results in:

tC = tSD + tDS

Of course, the cycle time should be kept at a minimum, therefore
1) tDS should be as small as possible, ideally 0.
2) tSD ≥ tDS + 2tK , ideally with tDS = 0: tSD ≥ 2tK

Conclusion: For the allocation of a task Ti by a processing element PEγ the
following cases can be distinguished:

1) PastEmiΩ
iγ = ActiveEmiΩ

iγ : The task can be allocated, if PastEmiΩ
iγ =

ActiveEmiΩ
iγ qualifies the processing element.

2) PastEmiΩ
iγ > ActiveEmiΩ

iγ : The task can be allocated, if ActiveEmiΩ
iγ qual-

ifies the processing element.
3) PastEmiΩ

iγ < ActiveEmiΩ
iγ : The task can be allocated, if PastEmiΩ

iγ qualifies
the processing element. Otherwise the decision has to be postponed until
the following cycle.

�

12.3.2 Self-configuration: worst case timing behavior

Figure 12.5 shows the detailed cycle of the hormone distribution and interpre-
tation based on figure 12.3. First the hormones (eager values, suppressors and
accelerators) for all tasks PEγ is interested in are emitted by PEγ . Therefore,
we define

Mγ := {Tj | Tj ∈ M and PEγ is interested in Tj}
After waiting the time tSD, the decision for a task Ti ∈ Mγ is made. Af-
terwards i is incremented and the next cycle starts (tDS = 0). This way, in
each cycle the hormones for all relevant tasks are emitted and the decision
for exactly one task is made. To decide on only one task per cycle allows the
hormones to take effect. If task allocation took place all at once for all avail-
able tasks, the accelerators emitted when a task is allocated would not have
a chance to make an impact as all the tasks would already be allocated in the
first cycle.

To calculate the worst case timing behavior of this allocation process,
we make the following basic assumption: All tasks (m tasks) have to be
distributed on all PEs and all PEs are interested in all tasks.

First we make a further assumption to simplify the scenario: Let all eager
values be constant, i.e., there are no accelerators and suppressors. Then, all

12 Artificial Hormone System 271

send hormones
for all tasks Tj
∈ Mγ relevant

for PEγ

wait (tSD)

tDS = 0

decide on
task Ti

i:= i+1

Fig. 12.5. Cycle of the hormone distribution and decision by PEγ

tasks have been handled by all PEs and have been allocated after m cycles
and it follows:

Worst Case Timing Behavior = m cycles (12.1)

�

In the following we remove the simplifying assumption of constant eager
values and allow accelerators and suppressors. Now some tasks may not have
been allocated after m cycles. This can be caused by accelerators and sup-
pressors as shown in the following examples. In the first example three PEs
are checking one after another the possibility to allocate task Ti. While PEγ

and PEδ are checking, PEε still is the winner. After PEδ has checked, it
increases its eager value caused by a received accelerator. If afterwards PEε

checks for allocation, PEδ becomes the winner. However, PEδ will not check
again for allocation within the next m cycles. The second example shows a
similar scenario, this time caused by an eager value decreased by a suppressor.

Example 1: Delay of task allocation caused by accelerators

PEγ checks allocation of task Ti, winner is PEε

PEδ checks allocation of task Ti, winner is PEε

PEε checks allocation of task Ti, winner is PEδ

←− PEδ in-
creases its ea-
ger value for Ti

caused by a re-
ceived accelera-
tor

�

t

272 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

Example 2: Delay of task allocation caused by suppressors

PEγ checks allocation of task Ti, winner is PEε

PEδ checks allocation of task Ti, winner is PEε

PEε checks allocation of task Ti, winner is PEδ

←− PEε de-
creases its ea-
ger value for Ti

caused by a re-
ceived suppres-
sor

�

t

At worst in both cases task Ti will not be re-checked until a complete cycle
of all other tasks, thus after m cycles. Afterwards, the same scenario could
occur again. However, the maximal number of cycles is limited: A change of
the eager value by suppressors or accelerators only takes place if a task has
been allocated somewhere in the system (Assumption: Monitoring accelerators
and suppressors are constant during the initial self-configuration). It follows
that in each allocation cycle at least one task will be allocated. Thus, in the
case of a variable eager value we get the following worst case timing behavior
for the self-configuration:

Worst Case Timing Behavior = m2 cycles (12.2)

�

12.3.2.1 Improvement of the worst case timing behavior

By refining the algorithm presented in figure 12.5 it is possible to improve the
timing behavior of the worst case scenario.

Refinement 1: If a PEγ sends an eager value for a task Tk which was increased
by an accelerator and this increased eager value is higher than all other
values received for task Tk so far, then PEγ exits the regular sequential
decision cycle and checks for Tk instead.1

By using this refinement the following timing behavior results for the eager
values increased by accelerators:

The worst case scenario is as follows: Assume, task Ti would be allocated
by processing element PEγ at the mth cycle. Exactly in this cycle, the corre-
sponding eager value EmiΩ

iγ is incremented by an accelerator of another task.

1 This is conform to the rule from section 12.3, that an interval of tSD ≥ tDS +2tK

will be waited between sending and decision making.

12 Artificial Hormone System 273

Send hormones
for all tasks

Tj ∈ Mγ relevant
for PEγ

wait (tSD)

tDS = 0

Decide on
task Ti

i:= i+1

Send increased
eager value for

task Tk; Tk may be
winner?

Decide on
task Tk

No

Yes

Fig. 12.6. Cycle of the hormone distribution and decision making for a PEγ using
the first refinement.

One of m − 1 other tasks may be responsible for sending this accelerator by
being allocated somewhere. As a result, Ti will not be allocated on PEγ and
will be re-checked in cycle m + 1.

Further delay will arise if another accelerator is be sent in cycle m+1 and
the eager value EmiΩ

iγ for task Ti will be increased another time. Now, m− 2
tasks may be responsible, one of which has been allocated. It follows that all
tasks are assigned no later than m + (m − 1) = 2m − 1 cycles, which is also
shown in the following scheme:

Cycle 1 : T1 T2 ... Tm−2 Tm−1 Tm

Cycle 2 : T1 T2 ... Tm−2 Tm−1 Tm

...

...

Cycle m : T1 T2 ... Tm−2 Tm−1 Tm ← Tm assigned, accelerator sent

Cycle m + 1 : T1 T2 ... Tm−2 Tm−1 ← Tm−1 assigned, accelerator sent

Cycle m + 2 : T1 T2 ... Tm−2 ← Tm−2 assigned, accelerator sent

...

...

Cycle 2m − 2 : T1 T2 ← T2 assigned, accelerator sent

Cycle 2m − 1 : T1 ← T1 assigned, accelerator sent

As a conclusion, we notice assuming that refinement 1 holds:

Worst Case Timing Behavior = 2m − 1 cycles (12.3)

�

Now we define a similar refinement for delays caused by suppressors:

Refinement 2: If a PEγ receives an eager value for a task Tk which was de-
creased by a suppressor and therefore the own eager value is higher than

274 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

Send hormones
for all tasks

Tj ∈ Mγ
relevant for

PEγ

wait (tSD)

tDS = 0

Decide on
task Ti

i:= i+1

Received
decreased eager
value for task Tk,

Tk may be winner?
Decide on

task Tk

No

Yes

Fig. 12.7. Cycle of the hormone distribution and decision making for a PEγ using
the second refinement.

all other values received for task Tk so far, then PEγ exits the regular
sequential decision cycle and checks for Tk instead.

As a suppressor (similar like an accelerator) results from a task which has been
allocated, the same worst-case timing behavior of 2m−1 cycles will result from
the same consideration as before. It should be noted that in our application
refinement 2 can be omitted, because suppressors only affect the same tasks
that created them. Therefore, a suppressor for a task is only emitted if this
task has already been taken somewhere and need not be taken in the same
cycle again.

12.3.2.2 Further improvements

Consequently, we narrow the scenario to the influence of accelerators on timing
behavior and the worst-case timing behavior can be specified more precisely:

An accelerator is only sent to related tasks. Therefore a task Ti can not
receive an accelerator from all the other m − 1 tasks but only from the vi

tasks it is related to (vi ≤ m− 1). Then, task allocation will be completed at
the latest after

m + vi ≤ 2m − 1 cycles.

Considering all tasks we get the following result:

Worst Case Timing Behavior = m + vmax cycles (12.4)

where

vmax := max
Ti∈M

{vi}, the largest number of related tasks.

�

12 Artificial Hormone System 275

Example 3: Differences caused by the improvements
We assume there are 10 tasks to be distributed in the system:

10 tasks: T1 ... T10, thus m = 10
Related tasks: T1 ... T4 and T5 ... T10, thus

vmax = max{v1, ..., v10} = max{4, 4, 4, 4, 6, 6, 6, 6, 6, 6} = 6

The result is

• with 2m − 1 = 20 − 1 = 19 cycles as an upper limit for the self-
configuration (without any assumption about the largest number of
related tasks).

• with m + vmax = 10 + 6 = 16 cycles as an upper limit for the self-
configuration (including the information about the largest number of
related tasks).

• Furthermore it may happen that not all PEs apply for all tasks, but
e.g. PE1 and PE2 for T1 ... T5 and PE3 and PE4 for T6 ... T10. Then

mmax = max{m1, m2, m3, m4} = {5, 5, 5, 5} = 5

Then, the upper limit for the self-configuration is

mmax + vmax = 5 + 6 = 11 cycles.

Further reductions of the worst-case timing behavior may take place, if
not all PEs apply for all m tasks. If we release this basic assumption, the
following timing behavior results for a PEγ applying for a task Ti: The task
allocation is finished at the latest after

mγ + vi cycles

where

mγ = |Mγ |, the number of tasks for which PEγ applies.

Extending this result to all tasks we obtain:

Worst Case Timing Behavior = mmax + vmax cycles (12.5)

where

mmax := max
PEγ∈Ω

{mγ}, the largest number of tasks a PE is applying for.

�
Example 3 illustrates the differences of these improvements.

276 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

12.3.3 Self-optimization: worst case timing behavior

Self-optimization means the relocation of a task Ti from a processing element
PEγ to another processing element PEδ. This relocation takes place only if
PEγ currently executing Ti offers this task. Thus, PEγ chooses the point in
time for the optimization, e.g., periodically or when Ti is idle. Additionally,
PEγ operates the task until it is completely transferred to PEδ. Notice that
even γ = δ is possible, which means the task execution is continued on PEγ .
This has the following consequences:

• There is no blackout time (except the time used to transfer the task state).
• Real-time behavior is guaranteed.

The time interval from offering the task until to the completion of the transfer
is bounded. Thus, the time for self-optimization is also bounded.

In the worst case, all processing elements offer all tasks for self-
optimization, which leads to the same time bounds like for self-configuration.

Worst Case Timing Behavior = mmax + vmax cycles (12.6)

�

Notice that there is no interruption in task execution because relocated
tasks are operated by the previous PEs until completely transferred to the
new PEs.

If we assume that only one task is offered per cycle the time for self-
optimization is decreased considerably. Let’s assume PEγ would offer Ti for
self-optimization. Then, the eager value EmiΩ

iδ would increase on all processing
elements PEδ ∈ Ω applying for Ti as the acquisition suppressor SaiΩ

iγ would
be dropped. If we use refinement 1 (see section 12.3.2.1) all eligible processing
elements check for Ti in the next cycle. Assuming that only one task is offered
in this cycle there are no further modifications of the eager values. Thus, Ti

is assigned to a new processing element PEδ in the next cycle.

Worst Case Timing Behavior = 1 cycle ≡ const. (12.7)

�

12.3.4 Self-healing: worst case timing behavior

In case of processing element failure, the execution of its tasks fails until they
are reassigned. The point in time when the processing element fails is not
predictable. Therefore, we only obtain limited real-time behavior. Neverthe-
less, we are able to compute time bounds for this case. The worst case is
that all processing elements are failing simultaneously, which means there is
no chance for self-healing. Thus, we exclude this case and assume that there
are still enough processing elements operational to execute all tasks. Then,

12 Artificial Hormone System 277

almost the same upper bound as for self-optimization holds. We only have to
add the time the operational processing elements need to recognize that other
processing elements failed by the expiration of the hormones.

Worst Case Timing Behavior = mmax + vmax + a cycles (12.8)

where a: number of cycles after which a not updated hormone is considered to
be too old and thus not valid any longer (expiration time, see section 12.2.2). �

If only one PEγ fails and there is no self-optimization in parallel, the tasks
Ti ∈ Eγ running on PEγ will be reassigned due to their vanishing acquisition
suppressors. If we use refinement 1 and consider the emission of accelerators
when a task is taken, we obtain

Worst Case Timing Behavior = eγ + max
Ti∈Eγ

{vi} + a cycles (12.9)

where

max
Ti∈Eγ

{vi} : greatest number of related tasks to the tasks running on PEγ .

�

12.4 Communication load introduced by the artificial
hormone system

Now, we calculate the communication load introduced by the artificial hor-
mone system. A processing element PEγ is sending per cycle:

Broadcast to all other PEs : 1 modified eager value EmjΩ
jγ for each task Tj

PEγ applied for

1 acquisition suppressor SaiΩ
iγ for each task Ti

PEγ has taken

Multicast to neighbors : 1 organ accelerator Ao
ViΦγ

iγ for each task related
to a taken task Ti

All other kinds of hormones are sent or used locally (see section 12.2).
We also need to know the sender information additionally to the eager

values, suppressors and accelerators to be able to refresh the hormone values
of a sender. Thus, we propose the following structure for a sent hormone:

Type of hormone︸ ︷︷ ︸
Eager value, accelerator, suppressor

,PE-identification, Task-identification︸ ︷︷ ︸
Sender information

,Value

278 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

12.4.1 Hormone communication load per processing element

Each PEγ causes the following hormone communication load:

Broadcast to all other processing elements:

Dbγ = De ∗ kγ + Ds ∗ eγ (12.10)

where

Dbγ : broadcast data load caused by PEγ

De : data load to send an eager value
Ds : data load to send a suppressors

kγ : number of tasks PEγ applied for, which are not yet com-
pletely taken in the system

Multicast to neighbors:

Dmγ = Da ∗
∑

Ti∈Eγ

vi (12.11)

where

Dmγ : multicast data load caused by PEγ

Da : data load to send an accelerator

Following from this, we obtain the hormone communication load from
any processing element PEγ at the beginning of the task allocation (self-
configuration) and in the steady state (all tasks are allocated, only self-
optimization and self-healing take place):

StartDbγ = De ∗ kγ

StartDmγ = 0

⎫⎪⎬
⎪⎭ eγ = 0 at the start (12.12)

and

EndDbγ = Ds ∗ eγ

EndDmγ = Da ∗
∑

Ti∈Eγ

vi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ kγ = 0 at the end (12.13)

�

12 Artificial Hormone System 279

12.4.2 Overall hormone communication load

The overall hormone communication load introduced by the artificial hor-
mones at any processing element PEγ results from the sum of the multicasts
to its neighbors and the sum of broadcasts of all processing elements:

Dγ =
∑

PEδ∈Ω

Dbδ +
∑

PEδ∈Φγ

Dmδ

where Dγ : overall communication load of PEγ

(12.14)

As a result, we can compute the overall communication load at any processing
element PEγ at the beginning of the task allocation and in the steady state:

StartDγ =
∑

PEδ∈Ω

StartDbδ +
∑

PEδ∈Φγ

StartDmδ

=
∑

PEδ∈Ω

De ∗ kδ

(12.15)

and

EndDγ =
∑

PEδ∈Ω

EndDbδ +
∑

PEδ∈Φγ

EndDmδ

=
∑

PEδ∈Ω

Ds ∗ eδ + Da ∗
∑

PEδ∈Φγ

∑
Ti∈Eδ

vi

(12.16)

Now, we can calculate an upper bound for the overall communication load
at any processing element at the beginning of the task allocation and in the
steady state. We estimate the sums of the individual communication load by
multiplying the maximal communication load with the number of assigned
processing elements.

Considering the broadcast, we estimate the sum of individual broadcast
communication load by multiplying the greatest existing broadcast communi-
cation load of all processing elements with the number of processing elements.

Considering the multicast, we estimate the sum of the individual multicast
communication load of neighbored processing elements by multiplying the
greatest existing multicast communication load with the greatest number of
neighbors existing in the scenario. We obtain for each PEγ ∈ Ω:

StartDγ ≤ ω ∗ max
PEδ∈Ω

{StartDbδ}
= ω ∗ De ∗ kmax

(12.17)

and for each PEγ ∈ Ω holds:

EndDγ ≤ ω ∗ max
PEδ∈Ω

{EndDbδ} + max
PEδ∈Ω

{ϕδ} ∗ max
PEδ∈Ω

{EndDmδ}
≤ ω ∗ Ds ∗ emax + ϕmax ∗ Da ∗ emax ∗ vmax

(12.18)

280 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

where

kmax := max
PEδ∈Ω

{kδ}, maximum of all kδ

emax := max
PEδ∈Ω

{eδ}, maximum of all eδ

vmax := max
Ti∈M

{vi}, greatest number of related tasks, see section 12.3.2.2

ϕmax := max
PEδ∈Ω

{ϕδ}, greatest number of all neighbored processing
elements.

�

12.4.3 Example

In this section, we calculate the data load introduced by the artificial hormones
in a concrete scenario. First, we define the structure of the hormones and the
resulting data load.

Eager values,
suppressors 2 bit for the type of hormone

4 bit x-coordinate of PE

4 bit y-coordinate of PE

}
(ID of PE (256 PEs at
maximum))

7 bit for the task ID (128 tasks at maximum)

7 bit value (128 nuances of a hormone)

∑
24 bit

Thus, it follows:
De = Ds = 24 bit

Accelerators 2 bit for the type of hormone

4 bit x-coordinate of PE

4 bit y-coordinate of PE

7 bit for the task ID

7 bit for the ID of related tasks

7 bit value

}
(repeated vi times)

∑
17 + vi ∗ 14 bit

To calculate the worst case, we assume vi = vmax. Thus, it follows:

Da = 17 + vmax ∗ 14 bit

12 Artificial Hormone System 281

Now, we define the values for the number of processing elements, tasks and
so on:

ω := 64 (Number of processing elements)
ϕmax := 9 (Number of PEs neighbored to a PE)
kmax := 32 (Maximal number of tasks a PE applied for)
emax := 2 (Maximal number of tasks taken by a PE)
vmax := 8 (Maximal number of tasks related to a task)

Using these values, we obtain for each PEγ ∈ Ω:

StartDγ ≤ 64 ∗ 24 ∗ 32 bit = 49152 bit = 6144 bytes (12.19)

EndDγ ≤ 64 ∗ 24 ∗ 2 + 9 ∗ 2 ∗ (17 + 8 ∗ 14) bit = 674.25 bytes (12.20)

Let’s assume a cycle time of 100 ms (tSD + tDS). Then, we can compute the
maximal data load caused by the artificial hormones for each PEγ ∈ Ω:

StartDSγ ≤ 10 ∗ 6144 bytes/sec = 60 kBytes/sec (12.21)

EndDSγ ≤ 10 ∗ 674.25 bytes/sec ≈ 6.58 kBytes/sec (12.22)

As it can be seen, the data load caused by the artificial hormones is signifi-
cantly higher at the beginning than in the steady state. However, there is only
a small amount of user data to be sent at the beginning because the tasks are
not yet assigned. In the steady state, there is more user data to be sent and
the data load caused by the artificial hormones is small. In the best case, both
effects eliminate each other thus resulting in a constant data load caused by
the artificial hormones.

12.5 Related work

There are several approaches for task allocation in middleware. In [2], the
authors present a scheduling algorithm distributing tasks onto a grid. It is im-
plemented in the Xavantes Grid Middleware and arranges the tasks in groups.
This approach is completely different from ours because it uses central ele-
ments for the grouping: The Group Manager (GM), a Process Manager (PM)
and the Activity Managers (AM). Here, the GM is a single point of failure
because, if it fails there is no possibility to get group information from this
group anymore. In our approach there is no central task distribution instance
and therefore no single point of failure can occur.

Another approach is presented in [7]. The authors present two algorithms
for task scheduling. The first algorithm, Fast Critical Path (FCP) makes sure

282 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

time constrains to be kept. The second one, Fast Load Balancing (FLB) sched-
ules the tasks so that every processor will be used. Using this strategy - espe-
cially the last one - it is not guaranteed that related tasks are scheduled nearby
each other. In contrast to our approach, these algorithms do not include the
failing of processing elements.

In [6], a decentralized dynamic load balancing approach is presented. Tasks
are considered as particles which are influenced by forces like e.g. a load
balancing force (results from the load potential) and a communication force
(based on the communication intensities between the tasks). In this approach,
the tasks are distributed according to the resultant of the different types of
forces. A main difference to our approach is that we are able to provide time
bounds for the self-configuration. Besides our approach covers self-healing,
which is absolutely not considered by this decentralized dynamic load balanc-
ing.

[8] presents a load balancing scheme for task allocation based on local
workpiles (of PEs) storing the tasks to be executed. The authors propose to
execute a load balancing algorithm between two PEs to balance their work-
load. The algorithm is executed with a probability inversely proportional to
the length of the workpile of a PE. Although this approach is distributed it
does not consider aspects like self-healing and real-time constraints.

Other approaches of load balancing are presented in [1, 3, 4, 5, 9]. None
of them cover the whole spectrum of self-x-properties, task clustering, and
real-time conditions like our approach.

12.6 Conclusion and further work

We presented an artificial hormone system to assign tasks to processing el-
ements within a processor grid. The assignment is completely decentralized
and holds self-x features. Besides, we showed that we can guarantee tight up-
per bounds for the real-time behavior of the artificial hormone system as well
as for the data load induced by the artificial hormones.

We implemented a simulator including the presented algorithms and as
future work, we will evaluate the time bounds received by the theoretical
examinations of the hormone system.

Furthermore, we will investigate additional quality properties of the artifi-
cial hormone system like stability of the task assignment and rules for selecting
the level of hormone values to, e.g., obtain organs. Another question in this
scope is how to find an optimal task assignment (if it exists) by the artificial
hormone system.

We will also investigate the artificial hormone system in the scope of a
practical example, the DoDORG project, which deals with a grid of process-
ing elements to be organized by an organic middleware using the artificial
hormone system.

12 Artificial Hormone System 283

References

1. W. Becker. Dynamische adaptive Lastbalancierung für große, heterogen konkur-
rierende Anwendungen. Dissertation, Universität Stuttgart, Fakultät Informatik,
Dezember 1995.

2. L. F. Bittencourt, E. R. M. Madeira, F. R. L. Cicerre, and L. E. Buzato. A path
clustering heuristic for scheduling task graphs onto a grid. In 3rd International
Workshop on Middleware for Grid Computing (MGC05), Grenoble, France, 2005.

3. T. Decker, R. Diekmann, R. Lüling, and B. Monien. Universelles dynamisches
task-mapping. In Konferenzband des PARS’95 Workshops in Stuttgart, PARS-
Mitteilung 14, pages 122–131, 1995.

4. J. Finke, K. M. Passino, and A. Sparks. Cooperative control via task load balanc-
ing for networked uninhabited autonomous vehicles. In 42nd IEEE Conference
onDecision and Control, 2003. Proceedings, volume 1, pages 31 – 36, 2003.

5. J. Finke, K. M. Passino, and A. Sparks. Stable task load balancing strategies for
cooperative control of networked autonomous air vehicles. In IEEE Transactions
on Control Systems Technology, volume 14, pages 789– 803, 2006.

6. H.-U. Heiss and M. Schmitz. Decentralized dynamic load balancing: The parti-
cles approach. In Proc. 8th Int. Symp. on Computer and Information Sciences,
Istanbul, Turkey, November 1993.

7. A. Radulescu and A. J. C. van Gemund. Fast and effective task scheduling
in heterogeneous systems. In IEEE Computer - 9th Heterogeneous Computing
Workshop, Cancun, Mexico, 2000.

8. L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for
task allocation in parallel machines. In ACM Symposium on Parallel Algorithms
and Architectures, pages 237–245, 1991.

9. C. Xu and F. Lau. Decentralized remapping of data parallel computations with
the generalized dimension exchange method. In Proceedings of Scalable High-
Performance Computing Conference, pages 414 – 421, 1994.

	12 An Artificial Hormone System for Self-Organizing Real-Time Task Allocationin Organic Middleware
	12.1 Introduction
	12.2 An artificial hormone system for a decentralized realization of the self-x-properties
	12.2.1 Notation
	12.2.2 Different kinds of hormones

	12.3 Dynamics of the artificial hormone system
	12.3.1 Dynamics of task allocation
	12.3.2 Self-configuration: worst case timing behavior
	12.3.2.1 Improvement of the worst case timing behavior
	12.3.2.2 Further improvements

	12.3.3 Self-optimization: worst case timing behavior
	12.3.4 Self-healing: worst case timing behavior

	12.4 Communication load introduced by the artificialhormone system
	12.4.1 Hormone communication load per processing element
	12.4.2 Overall hormone communication load
	12.4.3 Example

	12.5 Related work
	12.6 Conclusion and further work
	References

