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Preface

In a nutshell, Organic Computing is a research field emerging around the
conviction that problems of organization in complex systems in computer
science, telecommunications, neurobiology, molecular biology, ethology, and
possibly even sociology can be tackled scientifically in a unified way, by means
of which progress in understanding aspects of organization in either field can
be fruitful in the others. From the computer science point of view, the apparent
ease with which living systems solve computationally difficult problems makes
it inevitable to adopt strategies observed in nature for creating information
processing machinery.

As an idea whose time simply has come, Organic Computing is growing
from multiple roots. In November 2001, a Symposium “Organic Computing –
Towards Structured Design of Processes” was held at the Heinz Nixdorf Mu-
seum in Paderborn, Germany, bringing together computer scientists and biol-
ogists to pursue the idea. Independently, the Technical Informatics Branch of
the German Computer Science Society (GI) developed the concept in a series
of workshops in 2002. The scope was broadened by the Organic Computing
Initiative of GI at a workshop in Hannover in 2003, which outlined the scope
of today’s Organic Computing research. As a third root on the industrial side,
Forrester Research presented a study in 2002, which proposed Organic IT as
a strategy for information systems infrastructure.

In the meantime, Organic Computing is a powerful driving force for a
whole spectrum of research. Most visibly in terms of academic funding, in fall
2004, the DFG issued a call for proposals for a priority program on Organic
Computing, which started with 18 projects in August 2005 and is currently in
its second phase. In January 2006, there was a first Dagstuhl seminar, which
also attracted participants from overseas, a second one is scheduled for the
spring of 2008.

In this book the major ideas behind Organic Computing are delineated, to-
gether with a sparse sample of computational projects undertaken in this new
field. Many more can be found at the homepage of the Deutsche Forschungs-
gemeinschaft (DFG) priority research program 1183 “Organic Computing” at
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http://www.organic-computing.de/spp and the rapidly growing literature list
at http://kbs.cs.tu-berlin.de/∼parzy/oclc/.

To set the stage for the chapters to come I give an incomplete list of biolog-
ical metaphors used in Organic Computing and show for each chapter which
ones are applied and what applications are tackled. These metaphors include
evolution, neural networks, gene-regulatory networks , networks of brain mod-
ules, hormone system, insect swarms, and ant colonies.

Chapter 1 is an introduction to goals and ideas, chapters 2 through 5 lay
the theoretical foundations of Organic Computing. Chapter 6 describes the im-
portance of the evolutionary metaphor together with modern developments in
evolutionary optimization. Chapter 7 combines evolutionary approaches with
neural network learning. Chapters 8 and 9 build on ontogenesis for system
construction, with cross-references to neural networks. Chapters 10 and 11
use metaphors of insect swarms for applications in networking. Chapters 12
and 13 use procedures gleaned from the workings of the hormone system for
networking applications. Finally, chapters 14 and 15 look at neural networks
and interaction of modules in the mammalian brain for applications in com-
puter vision.

Thanks go to the DFG for research funding in the priority program, the
IEEE task force on Organic Computing for moral support, and to the Volks-
wagenstiftung for funding the website http://organic-computing.org.

I would like to thank all authors for their excellent contributions. Special
thanks go to those who submitted early for their patience and those with very
heavy schedules for finally submitting the missing articles.

Last not least, I thank my colleagues at the Institute for Neurocomputing
and my wife and son for tolerating my negligence of other matters during the
work on this book.

Bochum, November 2007 Rolf Würtz
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Introduction: Organic Computing

Rolf P. Würtz

Institut für Neuroinformatik, Ruhr-Universität, 44780 Bochum, Germany.
rolf.wuertz@organic-computing.org, rolf.wuertz@neuroinformatik.rub.de

Complexity is observed everywhere. When we look around us, we see many
systems that are mind-bogglingly complex. But as human beings we pro-
foundly dislike complexity. We thrive in environments whose important traits
are widely predictable, and we go to great lengths to prepare our environments
precisely to that end. The most important way to do so is technologically
and, despite occasional disappointments, this has been very successful. The
complexity of Nature can be borne with humility as long as the preparation
against the pitfalls of the natural environment can be carried out to relative
satisfaction.

To make matters worse, the late twentieth century has seen the rise
of difficult-to-handle complexity in artifacts. This means that the struggle
against complexity has to cope with a new front brought about precisely by
the methods devised to fight it in the first place. This kind of undesired arti-
ficial complexity is a real insult to engineers and technocrats and, at second
glance, a true challenge.

In modern artifacts the highest complexity is in an embedded computer
and the accompanying software. For practical purposes, the complexity such
systems can attain is unlimited. I am typing this on a universal machine,
which can do all sorts of information processing tasks a machine can possibly
do (notwithstanding its finiteness, which infrequently causes trouble that can
somehow be helped with hardware extension). This is good because it has
been relatively expensive and I will not need a different one for a slightly
different purpose. On the other hand, it means that my machine is capable of
a huge universe of possible behaviors. The overwhelming majority of them I
will never be willing to experience.

In the terms defined by von Foerster (e.g., [13]), we have come to the
point where we are capable of building truly nontrivial machines. He defined
a trivial machine as one showing a simple predictable response as opposed
to a nontrivial machine with internal state, which also changes in response
to conditions in the environment. My desktop computer periodically talks to
other machines somewhere in the world to change its behavior according to

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,
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the latest threats of infectious code floating around on the communication
lines.

It is only a couple of years ago that rebooting would have put this machine
into a reproducible and desirable state. Reverting to a defined previous state
is still possible — but completely useless if the machine is supposed to be
connected to the Internet, in which case the (formerly) desirable state will
be corrupted to unusable or worse within hours if not minutes. Thus, all
networked computers in the world are now bound to the wheel of progress
in order to remain as useful as they used to be, and much more so if new
functionality is required. And we have already passed the line, where the
same becomes true for conceptually much simpler things such as telephones.

In this situation, our artifacts become conspicuously comparable to living
beings. They are complex in themselves and have to cope with a complex,
unpredictable, and in substantial parts malicious environment. Their inter-
activity may potentially even require computing models beyond the Turing
machine. The classical computing models proceed from fixed input data to
a fixed output. Although interrupts of any kind are causing their share of
trouble in everyday computer use they do not seem to be properly reflected
in theoretical computer science. One of several approaches to better account
for this is given in [14].

Robotics and artificial intelligence are other domains of engineering where
the interaction with the environment is infamously difficult. And indeed, for
a household robot to be of any use it must be highly complex in order to be
able to deal with commonplace difficulties like cluttered floors. But their user
interface may not be very complex. It should be enough to advise a robot to
“clean up that mess over there” and leave it to the machine to figure out the
details. So the task for an engineer is to build highly nontrivial machines and
trivialize their interfaces as best as possible.

The hope that this is possible rests on the observation that such systems
exist around us. Our fellow humans, for example, can be advised very simply
to do tasks like the one above, and the possible difficulties encountered can be
overcome in various ways. It is therefore worthwhile to learn from the natural
sciences, and especially biology, in order to build such machines.

In nature, things usually get the more complex the closer we look. In the
history of physics, the closeness of look went from rigid bodies over indivisible
atoms to a whole zoo of elementary particles. Still, there is hope that going
to still higher energies, or looking even closer, will end the complexity and
simplicity will prevail at the end of the endeavor. In biology, complexity is
observed on all levels. The behavior of plants and simple animals is relatively
predictable most of the time. By looking closer it is revealed that myriads of
processes interact in very complex manners to keep the whole system stable
and predictable. A rough but workable theory of how a bacterium will react
qualitatively in many situations is relatively simple; a good theory of how the
details of its cell work to produce this behavior is a very distant dream.
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At this point, some clarification of the term “Organic Computing” is useful.
The adjective “organic” has several meanings, Collin’s dictionary lists eight
of them. All somehow refer to living organisms, but the one relevant here
is the most abstract one: “of or characterized by the coordination of integral
parts; organized”. As such the word is used in the collocation of organic unity,
according to Encyclopædia Britannica “in literature, a structural principle,
first discussed by Plato (in Phaedrus, Gorgias, and The Republic) and later
described and defined by Aristotle. The principle calls for internally consistent
thematic and dramatic development, analogous to biological growth, which is
the recurrent, guiding metaphor throughout Aristotle’s writings”. Another
use, also from literature theory is organic form, “the structure of a work
that has grown naturally from the author’s subject and materials as opposed
to that of a work shaped by and conforming to artificial rules”. These are
directly relevant to Organic Computing, because of the demand that artifacts
should be structured according to a biological paradigm and in their final form
resemble the high degree of integration observed in living beings.

Within biology, the closest term to Organic Computing is organicism.
Again, according to Encyclopædia Britannica, organicism is a branch of nat-
ural philosophy that “in biology, the theory that life and living processes are
the expression of an activity that is possible only by virtue of of the living
system rather than because of its individual components. As such, it is di-
rectly opposed to vitalism and mechanism”. The latter distinction is a subtle
one. On the one side, no special vital force is required for explanation, on the
other, while reduction to physical laws may in principle be possible, higher
levels of organization obey their own laws.

A central assumption of Organic Computing is that it is scientifically fruit-
ful to interpret complex systems of interacting processes as computational
systems and to study them as such. Consequently, they can in principle be
reduced to or simulated by Boolean operations, but the study of their or-
ganizational structure should be carried out on a higher level. The second
assumption, which is the computer science point of view, states that it is
technically useful to apply the lessons learned from the study of natural sys-
tems to build computational systems with desired properties — complex in
their inner structure, but relatively straightforward to interact with.

It is very clear that no magic is to be expected from Organic Computing in
solving computational problems. Rather, the principles that guide the organic
functioning of organisms must be known well enough to be applicable to the
design of computing systems. At the current state of the art, this knowledge
is rudimentary. This should not be seen as prohibitive, because it opens the
possibility that lessons learned in the construction of well-organized machines
have direct impact on biological theories.

From the incompleteness of biological theory it follows that computational
principles derived from biology can not simply simulate life “as it is”. There-
fore, simplified metaphors are generally used. The most successful principle
known in biology, in terms of the relation of explanatory power and com-
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plexity of the principle itself, is of course Darwinian evolution. The most
fascinating example of self-organization is the development of organisms from
single cells, ontogenesis. In the life of higher organisms with a central nervous
system, much of their information processing capabilities is acquired or re-
fined by learning. These examples emphasize that self-organization happens
concurrently on very different time scales.

Perhaps the most striking feature of these processes is that the systems
show organized behavior by themselves, without any obvious planning or ex-
ternal control. Central to Organic Computing research are therefore phenom-
ena of self-organization, accompanied by a set of effects known under the
name self-x properties. The index of this book gives an impression of the
formidable range this “x” can acquire. The focus on these properties is shared
with autonomic computing [10, 6], which uses the autonomic nervous system
as a metaphor and applies similar techniques and ideas to the organization of
information systems.

For self-organization to be possible, the systems must contain ways of
assessing themselves and modify their behavior or parameters, according to
metrics, which measure the desirability or utility of a certain state. On a
global level, such metrics can only be set by humans, because only those can
set the goals for the machine and constrain its behavior. But the effect of hu-
man planning is very limited in complex systems, and therefore, performance
metrics have to be applied on much lower levels, where they are not at all
obvious. In the long run, these metrics must be also subject to evolution and
learning. The hope here is to be able to find rather general meta-algorithms
that can pick up even these evaluation metrics from the environment in a
useful way.

There is currently no satisfactory theory for this sort of system behavior.
The existing theory of self-organization, the study of certain types of nonlinear
dynamical systems is comparable to the above described computational model
in that it explains the development of static ordered structures from initial
conditions. Such a dynamical system is comparable to a computing algorithm,
which derives desired results from initial states. Like with computational mod-
els, this is too narrow to describe the self-organization of interacting processes.
Here is a wide field for future research. The importance of creating and un-
derstanding networks of processes rather than static structures is stressed by
Bellman et al in section 3.2.1.

The construction of nontrivial machines with trivial interfaces encounters
more of these pairs of competing if not contradictory requirements. Machines
must show as much autonomy as possible while not losing their controllability
in important aspects. The same goes for robustness vs. sensitivity. Many di-
mensions of environmental parameters should be ignored, the systems should
be robust against their change, or, in neural networks terms, generalize over
them. It is still very difficult to design the dimensions of robustness or gener-
alization into systems at will. Much more research and good theory is required
to achieve this.
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As the goals stated here are very general it is no surprise that Organic
Computing is not monolithic and clearly separated from other fields but has
significant overlap with many of them. To conclude, I shall list the most
important ones with some pointers to the literature. By its goals as well as
the systemic and organizational thinking, it is clear that Organic Computing is
deeply rooted in cybernetics [15], and cybernetic terms and ways of reasoning
actually permeate this book without being mentioned explicitly. On a more
general level, ideas from general system theory [12] are used and lessons for
general systems are hoped to be learned from studies in Organic Computing.

Biological metaphors like artificial neural networks [7, 3] and evolutionary
algorithms [4, 11] are used as standard techniques and sources of inspiration
and are also further developed in Organic Computing research. Within biology,
there is the rapidly growing field of systems biology [9], which partly deals
with similar problems as Organic Computing in studying the natural systems
themselves. On the boundary between understanding natural systems and
creating artficial ones is theoretical neuroscience [1], which sheds light on the
adaptive and perceptual capabilities desired for artificial systems.

Computational intelligence [5] encompasses many of the heuristic tech-
niques used in Organic Computing. The robotics-oriented branches of Organic
computing overlap with cognitive systems and behavior-based robotics [2]. The
idea of decentralized control ist most prominent in multi-agent systems [8].

Organic Computing builds on results from all of these disciplines and tries
to add to the understanding of complex systems and their organization. The
following chapters provide examples for this.
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Summary. Classically, programs are written with specific applications in mind.
Organic computing will be based on a general architecture, which apart from libraries
of standard algorithms will consist of generic mechanisms of organization. Users can
then create specific applications by defining goal hierarchies, by instruction and
the pointing out of examples. Systems will respond to these influences by adapting
control parameters so as to direct the ontogenetic process of self-organization and
by organizing sample material.

2.1 Introduction

We are all expecting great things to happen in information technology. The
main theme may be the integration of information pools, the very essence of
organization. When I drive my car through the countryside I expect my nav-
igation system not only to lead me to my goal fast, given the current traffic
pattern – updated minute by minute in the light of the movements of all the
other cars with navigation systems –, but also to help me define my goal by
providing information on food and gas and events, with opening times, prices,
menus etc. We want our cars to become autonomous organisms, actively di-
agnosing and regulating themselves and adapting to traffic situations and to
our personal needs. Augmented reality will glue important annotations to the
things we see through our windshields or spectacles, telepresence will let us
share in a meeting with others, eye contact and all, over thousands of miles.
We expect our information technology to organize networking on a large scale,
making, for instance, our digital identity portable, so that wherever we touch
a keyboard and look onto a screen we are recognized and have immediate ac-
cess to out digital belongings, down to customized key definitions. We would
like our systems to be secure, conforming tightly to legal rights of access and
monetary obligation. We would like our systems to be situation-aware, rec-
ognizing and modeling our needs and intentions, just as, or better than, the
clerk at the check-in counter at the airport. We would like machines to be
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able to see and hear and to understand natural language. In short: we want
our information technology to become intelligent if not conscious.

Originally, the word computing referred to nothing but numerical calcula-
tion. We now apply it in a much broader sense, circumscribed perhaps as data
organization. Although for certain applications we have a direct interest in the
algorithms to be executed, in most cases we care only for the final outcome
and not for the underlying processes. Although algorithmic computing in the
narrow sense will continue to play an important role, my discussion here is
concerned with the broader field of data organization.

2.2 Computing power

Moore’s law has for decades doubled the complexity of computing chips every
18 months, giving us very powerful computers on our desks or laps or palms
indeed. This is to be multiplied with the number of computing chips being
installed (19 out of 20 of which are actually embedded and invisible), resulting
in humongous computing power available worldwide. Pushing forward VLSI
technology to ever smaller dimensions has been expensive, but even more
expensive was and is management of the growing complexity of processor
chips. All their parts must work for the whole to work, creating a terrible
yield problem, and, worse, making design and testing a nightmare. As a result,
Moore’s law may now be coming to a halt for economic reasons, and we
may be entering a new era where chip complexity is no longer being pushed.
As the price of high-end computing chips was determined mainly by their
development cost, this can now be written off by mass production on a new
scale, making computing chips dirt-cheap. That could finally lead to what has
been predicted numerous times before (and has been prevented so far by the
“killer micros” — single processor speed as the cheapest means to get faster):
massively parallel systems, composed of thousands or even scores of thousands
of cheap processors communicating with each other.

Today such systems already exist, but they are rare for two reasons. First,
the hardware required to link that many chips is expensive, and, second,
usage of these systems is restricted to problems of specific, explicitly data-
parallel structure. In contrast, all of the above application domains require
the integration of many heterogeneous and intensely communicating subpro-
cesses. If these problems can be overcome, another “Moore era” may ensue,
with systems combining large numbers of processors of limited complexity on
homogeneous, cheap to produce physical platforms, the equivalent of wafer-
scale integration, and based on a programming technology that manages to
be data-parallel on its lowest level in spite of the heterogeneity of processes
on a higher level. Nano-scale or molecular computing may then become a re-
ality [7], leading to personal computers with the processing power of human
brains.
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2.3 Necessity of a new style of computing

To realize broad application of systems composed of large numbers of limited-
complexity processing elements a new style of programming will be necessary,
able to implement heterogeneous domains of data and processes in massively
parallel systems, able to sustain faults in the system, and, above all, able to
deal with complexity beyond the imagination of systems designers.

Random faults may be an inevitable consequence of pushing electronic
technology down to molecular dimensions (although error-correction tech-
niques may be able to shield us from that problem), but, more importantly,
none of the assumptions made at system design time about an application
domain and its data structures may be reliably met at execution time. The
combinatorics of violated assumptions create complexity that grows exponen-
tially with system size (and what is to be called a system has to span all the
subsystems to be integrated with each other!), forcing the system designer to
give up explicit consideration of modes of fault and to handle the problem in a
generic way. The way to go may be to give up deterministic control altogether
and formulate systems as probabilistic processes, such as modeled in belief
propagation networks, for instance.

The classical computing model rests entirely on the insight of the program-
mer into the specific application of the program written. The programming
paradigm of the future will be characterized by a total loss of such insight. The
same way that programming the nodes of a communication system doesn’t
need any insight into the contents of the data streams to be handled, the
future programmer will have to handle the organization of computation on
an abstract level, without any detailed insight into the specific subject matter
being processed.

2.4 The complexity barrier of computing

The computing power worldwide that is installed now or will be soon is arous-
ing expectations as to what to do with it, creating tremendous market pull
for complex software. Historically, the number of command lines in any large
software venture, such as space programs, telephone exchanges, enterprise
software, search engines etc., has been growing exponentially. New software
projects often set themselves tasks that evidently are too complex to manage,
leading to project failures, such as the American FAA Air Control project,
the Denver Airport luggage handling system, the US’s IRS or German Fed-
eral Tax software projects, which all failed without any tangible result. It is
easy (and probably correct) to blame these failures on human management
insufficiencies. But that only hides the fact that our computing paradigm is
no longer adequate in view of the demands we put on it. The pool of available
relevant human talent is already stretched to its limit.
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The applications spoken of in the introduction may require for their real-
ization an increase in the complexity of software by an order of magnitude. It
is unimaginable that the existing workforce in the system development sector
will be able to handle this complexity with present methods, or even given
the pace at which these methods are currently evolving. Even if the growth in
software productivity should have been 20% per year in the past — the most
optimistic view I ever heard of — this would not be sufficient to handle that
complexity increase, resulting only in a factor of 6 in 10 years, opening the
scissor between supply and demand wider and wider. What we need is a new
programming paradigm that leads to a quantum leap in productivity.

2.5 The classical programming paradigm

To understand the issue, we need to take a look at the classical paradigm
of programming. It is based on detailed algorithmic control. This rests on a
division of labor between human and machine, see figure 2.1. The machine is
deterministic and blindingly fast, but is considered as totally clueless. Only
the human programmer is in possession of all creative infrastructure, in the
form of goals, methods, interpretation, world knowledge and diagnostic abil-
ity. In order to control the process in the machine, the human programmer
needs detailed communication, the ability to look into the machine process,
sometimes down to the switching of single bits. Modern computing systems
have very ingenious means to make this detailed communication possible,
involving, for instance, symbolic debuggers that permit the examination of
individual processing steps in relation to the high-level language structures
that gave rise to them. This requirement of detailed communication between
domains so vastly different as the human mind and the digital process in the
machine — different in speed by orders of magnitude, for instance — comes
at a tremendous price and is a millstone around the neck for the computing
process in the machine.

Also, detailed communication is made more and more difficult with grow-
ing system complexity. An illustrative case in point concerns heterogeneous
parallel programming. It is notoriously difficult to know the actual execution
times of programming steps. This isn’t a problem when there is only one
processing thread, but it is very much so when many different heterogeneous
threads need to exchange data. One bad consequence of that is that pro-
cesses start waiting around for data, and the potential efficiency of a parallel
system is wasted. The solution for this must be to optimize the placement
of processes in the network of communicating processors, presumably in a
situation-dependent way. Software can still be designed for programmers to
keep track of this relocation, in order to keep up detailed communication, but
this will make the system even more complex and difficult to work with. The
only natural way to solve this difficulty is to let the system autonomously
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Fig. 2.1. Classic algorithmic computing entails a division of labor between man and
machine. Creative infrastructure resides mainly in the human domain (upper box),
the machine (lower box) blindly following commands. The two domains are coupled
by detailed communication so that the programmer can inspect, understand and
control the process in the machine in detail.

organize its internal structure, give up detailed communication and accept
loss of insight.

In order to do that, we will have to endow systems with their own creative
infrastructure enabling them to autonomously organize themselves, effectively
creating their own programs. Our present style of programming sits on one
side of a potential mound, the realm of algorithms; we need to get to the other
side, where our systems become electronic organisms, see figure 2.2. What we
have to achieve is the automation of automation. The millionfold execution
of a few typed commands constitutes automation; when, however, the typing
of commands itself becomes an excessive burden we need to automate even
that.

Classically, the computer is programmed inside-out: we type imperative
commands and then test what global, externally observable, behavior results.
Anyone who has ever programmed knows that this process is fraught with
surprises, and it often takes many iterations of debugging before the desired
global behavior is achieved. We need to invert the process (as do declarative
languages on a small scale) and limit ourselves to specifying the global behav-
ior of the system, letting the system itself figure out how to achieve it — a
process akin to education, which relies on example and encouragement instead
of attempting to tamper with detailed brain mechanisms. Let the machine do
the iterative debugging and automatically run the test cycles that it takes to
align system details behind the set goals, see figure 2.3. The only component
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Fig. 2.2. To reach the realm of organic computing, a potential mound has to be
crossed. Classically, software has to be simple in order to be intelligible by the human
programmer, and it may be simple, containing little or no creative infrastructure.
Electronic organisms contain much creative infrastructure and consequently have
to be complex, but they may well be complex, autonomously regulating their inner
structure without reliance on detailed communication with human programmers.

of the creative infrastructure that we humans want to hold onto (except in
genuinely algorithmic applications) is setting the goals for our systems see
figure 2.3.

Setting goals, devising contradiction-free task descriptions, is itself not a
simple matter. It is common advice that any software project should start
with an intensive goal definition phase, complete with (computer-simulated!)
testing of all imaginable specific situations and weeding-out of design flaws on
that abstract level, before even writing the first line of target code. Many large
projects stumble apparently because this stage is not paid sufficient attention
to. The pool of human intelligence involved with computing today will not
become unemployed if code generation is automated, all brains being required
to design clear abstract task descriptions. That workforce will become only
that much more creative and potent.

Before going on I should admit here that the picture I am painting is all
black-and-white. In reality, five decades of development in computer science
have put the equivalent of a lot of creative infrastructure into the computer,
see the section on architecture below. For many purposes we are already able
to “program” on a high, abstract level. However, the systems permitting this
had themselves to be programmed and debugged with the help of detailed
communication and, above all, with the help of detailed planning of the kinds
of tasks that the user will later be allowed to invoke. This style is extremely
expensive, and permits only variations on a theme defined at system pro-
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Fig. 2.3. In organic computing, the only task humans hold on to is the setting
of goals. As the machine is autonomously organizing, detailed communication be-
tween programmer and machine is restricted to the fundamental algorithm, which
is realizing system organization. Application-oriented mechanisms lose the status of
algorithm and are treated as data, in analogy to the transcription factors in the
ontogenetic toolbox.

gramming time. What is required now is to automate system development,
invoking rather general mechanisms of search, pattern recognition, evolution
and self-organization, such that the distinction between programmer and user
will all but disappear.

2.6 Organic Computing

Let me summarize what I have said so far. We should take note that usage
of the word computing has expanded by now and is embracing a wide range
of applications characterized by data organization, erstwhile the exclusive do-
main of animals. We are heading for information technological applications
that require no less than intelligence in the machine. Systems are becom-
ing too complex to be programmed in detail any longer. The principles with
which programmers formulate programs in their head have to be installed in
the computer, so that it can program itself such as to conform to abstract,
human-defined tasks.

No doubt this isn’t just a pipe dream. Living systems, cells, organisms,
brains, ecosystems and society are showing us the way. Living cells are not
digital, are not deterministic, are not algorithmically controlled, yet are flex-
ible, robust, adaptable, able to learn, they are situation-aware, evolvable and
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self-reproducing. Organic computing advocates a view according to which or-
ganisms are computers and computers should be organisms. Realizing Organic
Computing necessitates a broad research agenda. There are a number of fields
that are already engaged in relevant activities, among them artificial life, ar-
tificial intelligence, belief propagation, Bayesian estimation, evolutionary and
genetic programming, neural networks, fuzzy systems, machine learning and
robotics. These fields need to be emboldened and coordinated. They need to be
advanced from their peripheral position within departments to center stage,
core courses and all, need to be forged into one coherent research venture.
Moreover, the rich sources of relevant scientific information in the biological
sciences and especially the neuro- and cognitive sciences need to be tapped,
by the founding of interdisciplinary initiatives bringing together and develop
the science of organization that is called for here and for understanding Life
and human organization.

2.7 General aspects of organizing systems

Let me go over some of the themes that I believe will have to be developed in
this context.

2.7.1 Architectures

In both the biosphere and in technology, specific systems are generally de-
signed in two stages. First, an architecture is established that sets up a com-
paratively narrow universe of form, then in a second stage a specific structure
is singled out from this universe. A prime example is the genetic toolkit that
is widely shared in the animal kingdom. Relatively little information in the
regulatory network of gene activation is able to select a specific animal species
from the universe of forms defined by the bulk of the genetic machinery. An-
other example, in fact the one from which the name architecture derives, is
the technology for creating buildings, where the universe of possible struc-
tures is defined by materials, design patterns and professional builders’ skills,
from which architects can select specific structures. VLSI is an architecture
defining a range of electronic circuits, including digital computers, e.g., of von
Neumann architecture. The generation of complex software systems is made
possible by architectural frameworks including programming languages and
structured and object-oriented programming. Also the neural and humoral
machinery of our brain constitutes an architecture, defining the universe of
mind functions and patterns.

Successful architectures manage to avoid the two dangers of bias and vari-
ance [3], of being too narrow or being too wide. The universe of processes
defined by universal Turing machines is certainly wide enough, nobody be-
ing able to point out a specific bias that would exclude interesting processes
from it, but on the other hand it contains too much variance and is so wide
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that armies of programmers haven’t been able yet to single out intelligent
structures within it. On the other hand, artificial neural networks, as long as
they are insisting on replacing programming with self-organization and learn-
ing, seem to fall prey to bias, defining too narrow a universe of patterns and
processes. There is the so-called no-free-lunch theorem [14], which seems to
suggest that there is no architecture fit to serve all structures of interest. This
raises the question whether the application domain of intelligence is homoge-
neous enough to be captured by one coherent architecture.

There is reason to believe that the bias-variance dilemma and no-free-lunch
theorems paint too pessimistic a view. They both rely on a rather narrow range
of mechanisms used to single out specific structures from the originally defined
universe, based on statistical estimation and optimization. Should there be
more potent mechanisms of structure selection, the original architecture could
be wider and still permit to define the structures of interest efficiently. The
powers of self-organization haven’t been sufficiently tapped to this purpose,
especially for learning and adaptation.

2.7.2 Self-organization

A snow crystal constitutes a globally ordered structure both in terms of its
microscopic molecular lattice and its overall dendritic shape. The forces that
generate it are elementary interactions between molecules. In general, self-
organization is the process by which a large number of simple elements interact
by simple, naturally given forces, and out of a long and initially chaotic process
of iterated interaction global order grows as a pattern of maximal harmony be-
tween these forces. Other often-cited examples of self-organization are regular
convective cells, soap bubbles, the laser or self-assembled viruses [6, 9, 4, 12].

A self-organizing system defines an architecture, a universe of forms, plus
a mechanism to select and create specific structures as attractor states. Such
universes can still be very wide; the tremendous variety of solid materials
demonstrates the richness of the universe created by atomic species and their
interactions. Our goal in the context of organic computing is to define an
architecture of data elements and their interactions, to be implemented in ar-
rays of digital processors, so that iteration of the interactions lets the system
gravitate towards (sequences of) globally ordered states. The challenge is to
define this architecture on a very general level, without explicit reference to
specific problems and applications. The latter is then to be achieved by in-
stallation in the system of appropriate initial states, an endowment of useful
algorithms, and exposure to specific input patterns. The architecture, initial
state and library of algorithms constitute the innate structure, based on which
the exposure to specific input in education and learning prepares for specific
tasks to be performed.

Self-organization is particularly important in noise-prone systems, such as
the living cell or human brain or, in fact, the analog computer. The latter
was brought down by the difficulty that when many elementary steps are
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chained up, each one subject to some level of inaccuracy, the end result of
a long computation is totally dominated by noise and useless. How does the
cell or the brain avoid this error catastrophe? It all depends on the nature of
the system dynamics realized by the interactions. If this dynamics is of the
chaotic type, where small differences in initial state lead to large differences
in final state, the system will be drowned in noise. If, on the other hand, the
dynamics is of attractor type, such that sets of similar initial states lead to the
same final state, then the error catastrophe is averted. The globally ordered
states of self-organizing systems are attractor states. The task ahead of us in
the present context is to define an architecture, a set of fundamental rules of
interaction of active data elements, that turn functionally desirable system
states into attractor states.

2.7.3 Cooperating pathways

Given the reliability and determinism of the digital machine, computation
is customarily staged as a single sequence of transitions from initial to final
state. The advantage of this is efficiency. The disadvantage is that definition
of the pathways leading from problems to solutions has to come from outside
the system, from a human programmer. If, on the other hand, we want the
architecture of the system and the processes of self-organization to find those
pathways without the benefit of a human programmer as deus ex machina to
set it all right, we have to define good pathways in a principled way.

A general relevant principle is based on cooperative pathways. A result is a
useful one if there are several mutually supportive ways to derive it. When we
do mental calculation we routinely check the result by additional reasoning,
like estimating the order of magnitude, or by comparison with previous calcu-
lations. In fact, whole mathematical systems, like Euclidean geometry or the
natural number system, derive their absolute certainty from the mutual coop-
erativity – consistency – of all possible pathways of reasoning connecting facts.
Even the rules of deduction derive their authority from their consistency with
others and with facts. (It is remarkable to what extent mathematics ignores
this background of its formal systems.)

An organized system, then, is to be seen as a large network of nodes
and links, the nodes representing data items, the links interactions between
them. Each data item is stabilized by the combined effect of a multiplicity of
interactions, or lines of deduction, impinging on it. The system reorganizes
its pathways and configurations of data elements such as to optimize the
mutual consent or consistency between them. The quality of a given pathway
is measured by its success in predicting or affecting its target data element,
in which it succeeds only by cooperating and agreeing with other pathways.

Similarly, the decisions taken by a data element lead to consequences down-
stream of the pathways emanating from it, consequences that come back to
either reinforce or contradict the original decision. There will in general be
nested sets of such feedback loops of different length. On several time scales,
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the system will thus organize configurations of pathways and data that are
cooperative and mutually consistent in the way described. It is much more
than a metaphor that societal decisions very explicitly are of this nature, in-
dividual decisions having to live with their own results down the line. As the
saying goes, what goes around comes around.

Production systems [13] are a kind of declarative, non-imperative, pro-
gramming languages, which are formulated in terms of rules or productions,
each of which defines a firing condition and an action. Productions continu-
ally examine the content of a working memory, and when a rule recognizes
the pattern defined in its firing condition to be present in the working mem-
ory it “fires” and performs its action. The neurons of the brain can actually
be seen as the productions of such a system: when a neuron recognizes the
pattern of activity impinging on its dendritic tree it fires its action, which con-
sists of a pattern of excitation or inhibition on other neurons. (The working
memory in this case is identical with the firing state of all the rules.) Pro-
duction systems never became very popular, presumably because they were
unable to overcome the problems surrounding the issue of conflict resolution
— several rules firing simultaneously but contradicting each other. The ner-
vous system obviously overcomes these problems by following multiple action
pathways simultaneously and selecting successful ones, in the short run by
letting contradiction annihilate itself by negative interference and consistency
of alternate pathways prevail by positive interference, and in the long run by
adaptively favoring such productions – neurons that are successful.

Let it be remarked that this style of computation is very wasteful in terms
of processor cycles. If each result is the effect of 10 redundant pathways and
has to wait for 10 iterations to be stabilized, a hundred elementary steps
have gone into a calculation that could have been performed in one. I think
we will have to live with this level of inefficiency as the price to be paid for
autonomous system organization. What is expensive about computing, these
days, is anyway no longer the computing power to realize it but the human
effort going into its design. Moreover, once a successful computational struc-
ture has been found by self-organization, it can be simplified, by abolishing
redundant pathways originally necessary to single out the correct ones, and
by ceasing to wait for long feedback loops to come around. We observe this
simplification and speed-up in our brain. Processes are first very slow, vari-
able and unreliable when dealing with a new problem, but in long learning
curves they become very efficient, reliable and fast. What we are observing
is the gradual organismic growth of the (more or less distant) equivalent of
algorithms.

2.7.4 Management of uncertainty

Computer science cannot deny being a child of mathematical logic. Mathe-
matics is a world of absolute certainty. Let a single false statement creep in,
and the whole edifice comes crashing down. In real life, all presumed facts



18 Christoph von der Malsburg,

are uncertain. This is a problem for chains of logical deduction, for it means
that uncertainty has to be propagated through them to be able to judge the
reliability of conclusions. In consequence, the application of logic to real life
is difficult. This may be the reason we usually avoid following long chains of
explicit logical deduction (or when we do we easily fall into traps), although
there is good reason to believe that implicitly our brain has mechanisms to
handle uncertainty very well. For single, linear threads of reasoning uncer-
tainty cannot but grow, and only by using meshes of interlocking and mutually
supportive arguments can any reliability of conclusion be reached.

The currently active fields of Bayesian estimation and belief propaga-
tion are active at developing methodology to handle uncertainty. There are,
though, serious problems still to be solved. One is to let a system figure out
for itself what evidence to invoke for a given task. Another, how to estimate
probability density functions, unavoidable in the absence of exhaustive obser-
vation. Still another, to learn more about appropriate structures of interlock-
ing arguments; these are bound to contain loops, creating the problem how
to avoid the pitfalls of logical circularity. Progress on this front is very impor-
tant to the creation of systems that can autonomously operate in a world of
uncertainty.

2.7.5 Differentiation

It is impossible to organize a system with a large number of degrees of freedom
all changing at the same time, each guided only by a small number of neigh-
boring ones, as dictated by the elementary interactions. The system would
just be caught in local optima, with small collections of elements in mutual
harmony within but discord between, if it converged at all. This happens
when you rapidly cool a liquid below the freezing point and crystallization
starts in many places simultaneously. The result is a large array of crystal-
lites, small domains with different molecular lattice orientation. A recipe for
getting global order is to start by organizing a few degrees of freedom, and let
the order thus created spread to the rest of the system gradually, involving
only a small number of degrees of freedom at a time. To get a globally ordered
monocrystal, make sure that crystallization can start in only one place, at a
nucleation seed, by suppressing nucleation centers anywhere else. The nucle-
ation seed spreads its order, letting crystallization happen only at its surface,
eventually incorporating all of the liquid in one coherent crystal order.

Embryogenesis starts with an egg that is small enough to be initially
spanned by the organizing forces (to a large extent based on reaction-diffusion,
see [10]). The first decisions taken establish global coordinate systems in the
form of embryo-spanning chemical gradients, which act as signals control-
ling further processes, typically subdividing the embryo into smaller domains.
These then undergo further differentiation into even smaller domains, and so
on. The embryo gradually outgrows the range of the elementary interactions
(or these are shrunk in relation to the embryo), such that more and more
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degrees of freedom are opened, but they are fixated by self-organization as
quickly as they arise [4]. The organic growth of companies can be described
similarly: they start small and undifferentiated, the founder functioning in
many roles initially. When the company grows beyond a certain size, it forms
departments, which in turn may spawn subunits, and so on. This style is usu-
ally also realized in classical software development. The original idea, arising
in one mind, is simple and coherent, and with time and growth, subproblems
are spawned, giving work to more and more programmers.

Organic growth of a structure through differentiation ideally knows no
backtracking. The sequence of decisions that fixate degrees of freedom form a
tree that is traversed just once. This correspondingly is a very efficient pro-
cess. Should, however, the final result not be successful, there is no rescue and
the whole sequence has to be started over, the worst type of backtracking. In
the course of evolution, Life creates an endless sequence of new organisms.
Technology is driving its own version of evolution, spawning thousands of
types of cars or computers, together paving the road to ever better products.
Software technology will have to come round to adopt the same style. The
labor-intensive way in which it is produced presently, line-by-line, makes it
very painful to give up a software system once it has developed to some vol-
ume, forcing the mending of flaws and adaptation to new needs with the help
of patches and compromises. This is what makes a software system gradu-
ally complicated, irrational, self-contradictory and incomprehensible, all due
to the misadaptation of the original design to the final needs. This unsatis-
factory state of affairs can only be overcome if growing a complex mature
software system becomes easy, painless, fast and efficient. If the ontogenesis
of organisms is any guide here, we will have to develop the equivalent of the
genetic toolkit, which comprises general mechanisms to generate the coher-
ent layout of an organism, plus a repertoire of morphogenetic mechanisms
for the growth of particular tissues and appendages and of specific molecular
functions which can be switched on where needed. On the basis of this archi-
tecture, Life is able to change an ape into a human quickly (on an evolutionary
time scale), changing just a few control functions. The genome of the chim-
panzee is said to be 98.5% identical to that of man. Likewise, a well-designed
organic computing architecture should make it possible to create entirely new
software systems by relatively light touches to the control of the process of
differentiation.

2.7.6 Learning and instruction

The lion’s share of information in my brain presumably is acquired by learning.
Our whole genome (of which only a small part is specific to the brain) contains
1 GByte of information. Savants, who can absorb whole telephone books by
leafing through them, put in evidence the enormous memory capacity of our
brain. Normal humans’ brains with all likelihood absorb as much information,
although not normally being able to index it that explicitly. Research makes
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it more and more clear that vision and language comprehension work by
applying vast databases of acquired patterns. It is likely that this extensive
reliance on learning is fundamental for brain function in general.

Information technology will be fundamentally transformed once the mech-
anisms of learning are understood and implemented. In spite of all efforts and
claims made in various fields of study this has not been achieved yet. Input
patterns beyond a size of a couple of hundred bits of information let learning
times in terms of numbers of required examples grow astronomically. This
problem is exacerbated if the input patterns are not all of the same context
or the same learnable structure. Animals and especially humans make it clear
that learning is possible from perceptual input fields (retina, cochlea etc.) in
which patterns and pattern sequences contain hundreds of thousands of bits
of information, sequenced hodgepodge from moment to moment. On the other
hand, both animals and humans are restricted in their learning ability and
can readily absorb only certain things[2].

Without this being the place to go into details, I would like to claim that
the first step in any learning experience is a step of recognition. I first have
to recognize a coherent pattern in my perceptual input in order to do two
things: first, shut out the rest of the perceptual pattern as irrelevant for the
moment, and second, categorize the input pattern so that I know where in my
memory domain I can lay it down. This will then immediately permit me to
find in my memory other, previously acquired patterns of the same sort and
bring the newly acquired one in registry with them, part matching onto corre-
sponding part. These corresponding parts of the same type can then form the
ensembles of small patterns that are required as input to current statistical
learning systems. An animal detects significant patterns in its environment
with the help of abstract schematic descriptions, generated by evolution or
by previous experience, which are mapped into the input by the recognition
mechanism. Let’s call this schema-based learning. A perhaps typical exam-
ple is the schematic description of the human face infants seem to be born
with [5], attracting their eyes to the mother’s face minutes after birth, allow-
ing them to quickly learn to recognize their mother, her mood and her focus
of attention [1]. The necessity to prepare learning with the help of evolved
schemas explains the restrictions of learning in animals to specific topics [2].

Let’s assume the learning problem can be solved the way I just indicated.
We could then program application systems by defining for them schematic
descriptions of patterns that are significant for a given task. Only a very basic
set of such patterns need to be programmed in any literal sense. If there is a
sufficient critical mass of them, more could be created by human system in-
structors by pointing out examples that are simple enough and central enough
to a theme so they can drive schema-based learning.
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2.7.7 Abstraction – instantiation

It may well be that the centerpiece of intelligence is the brain’s ability to
establish and maintain the relationship between concrete, detailed situations
and abstract, schematic descriptions of situations. Faced with a problem in
a new situation I recognize in the situation a general pattern that relates it
to situations I have seen before, and while modeling the situation at hand as
a concrete instantiation of that pattern I can complement it with additional
elements that constitute a solution. The main point on which humans are
ahead of animals may be possession of a richer, higher and more abstract
level of representation, most or all of it acquired culturally.

The abstraction-instantiation relationship is certainly central to comput-
ing. My high-level program is a relatively abstract description of the machine
code that eventually is executed. The block diagrams with which I might start
planning a program intend to be abstract descriptions of the concrete code I
eventually write. Computing is based to a large extent on the mechanisms for
traveling between abstraction levels. Many of these operations are performed
automatically by appropriate algorithms, such as compilers or debuggers. But
the majority of these operations are still going on only in the heads of people,
such as applying general methods to concrete problems, or recognizing that a
particular object class is appropriate to represent a particular problem.

The challenge to be met is to automate the processes of abstraction and
instantiation by mechanisms that are general enough to work in new, unfore-
seen situations. Let’s assume the abstract schemas to be applied are already
resident in the system (generation of new abstract schemas is a very com-
plicated issue in itself). Abstraction then amounts to a recognition process,
recognition that the concrete situation contains a subset of elements that map
to elements of the abstract schema under preservation of relations. In instan-
tiation the challenge is to select for each of the elements or subpatterns of
the abstract schema a concrete role filler from among a multiplicity of stored
candidates, and to make all those choices in a coherent fashion so that the
relations dictated by the abstract schema are actually realized in the instan-
tiation. It is a complex and very important research subject to create an
architecture whose initial configurations and mechanisms of self-organization
can implement the processes of abstraction and instantiation on the very ab-
stract level described just now, endowing the system with the ability to learn
from examples to better and better navigate the abstraction hierarchy. Chil-
dren demonstrate the feasibility of this, learning the skill after being taught
abstract schemas together with a few relevant examples.

It is often predicted that we will be able to communicate with our comput-
ers by speaking to them. The difficulty of this is not the recognition of words
from sound patterns. Although this is not a very easy task, it is routine by now.
Apart from the difficulty of parsing and understanding complex sentences, a
big problem is that natural language expresses things on a very abstract level.
My car’s navigation system is very good at turning maps of street arrange-
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ments in front of me into coherent commands in natural language, but just
think of the converse, me ordering my car to turn into the driveway to the
right after the next intersection. Mapping that abstract description into the
visual scene and into motor commands is quite a challenge.

2.7.8 Goal representation

As stated earlier, systems should be designed merely by the definition of goals.
Definition of goals is a very complex business and must take place on as
abstract a level as possible. Our task cannot be to tell the machine what to
do in every possible concrete situation. Progress in programming efficiency has
been very much progress in being able to formulate larger and larger classes
of situations on an abstract level so as to treat them with one program. This
trend will simply have to be accelerated decisively.

Again, Life will have to show us the way. Animals are born with drives
and instincts to direct them purposefully through life. Ethologists have worked
out a number of specific cases and have especially spent effort on finding out
the innate patterns defining behavioral drives. It turns out that these innate
patterns seem to be formulated schematically on a rather abstract level. The
gosling is programmed to trust and follow mother goose, and its first task after
hatching is to find out who mother goose is. According to Konrad Lorenz, the
description of her is so abstract that he could imprint goslings to follow his
yellow Wellington boots trough all their youth. The innate abstract pattern is
just good enough to be triggered in one or several scenes, upon which learning
mechanisms pick up more concrete details from those scenes, replacing or
enriching and differentiating the original schema. Education is the process by
which such learning experiences are chained up to map the originally very
abstract definitions of innate behavioral patterns into real life situations.

We are animated by many goals, and they are related to each other in
complex ways, being dependent on or in conflict with each other, and we
spend a good part of our life doing nothing but sorting out what we like and
want and should or should not do. Asimov originally believed the relationship
of robots to people could be regulated by just three simple rules, but he later
had to realize that those rules were by far not sufficient to deal with all the
vicissitudes into which robots and people are likely to stumble. We will have
to spend enormous amounts of effort to teach computers to behave, but in
doing so we should not be bogged down with their digital details, any more
than we ever lose time on the neural details of our children’s’ cortical gyri.

2.8 Conclusion

What I have called Aspects here is indeed to be realized simultaneously as
different aspects of one fundamental system design. Thus, the recognition and
pattern completion inherent in abstraction and instantiation are to be realized
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as processes of self-organization that realize the required fine-grained homo-
morphic mappings between instance and abstract schema, developing from
coarse to fine in a differentiating sequence. The data-and-process architecture
of the system must naturally reflect and implement the structure of the or-
ganic world of which computing is to be an integral part and parcel. Learning
and the implementation of goals are realized by one and the same mecha-
nism of schema recognition, which focuses attention on significant segments
of scenes.

My own interest is in understanding the brain, and it is my conviction that
the best way to do so is by replicating one of its functions paradigmatically
in the computer, that is, by acting as an engineer. We know the brain is
realized as a network of simple elements, neurons, and their communication
via electrical and chemical signals. Artificial neural networks (ANNs) attempt
to model the brain’s architecture. Taken as digital switches, as formulated
in [8], they are a universal medium but don’t self-organize. In analog form
they can be made to learn and self-organize, but then they fall very short of
anything to be called universal. The dynamic link architecture (DLA) [11] is
an attempt to realize all the aspects of organic computing discussed here, and
I am in the process of realizing one paradigmatic brain function on its basis,
visual object recognition. Although much work is still to be done to reach full
functionality and to take away all algorithmic crutches, no serious hurdle is
in sight for this venture.

Organic computing may or may not be able to get off the ground in direct
competition with solidly established software applications such as operating
systems or enterprise software, and it may have to prove itself in novel fields
that are too expensive to develop in classical programming style. Vision is such
a field. Four decades of frustration made it clear that replicating vision on the
computer is a very complicated thing, both in terms of processes and data.
Mankind will never muster the resources to generate it while programming
line-by-line. Full-fledged computer vision will only be realized with the help
of organic growth, learning and instruction, that is, by organic computing.

In 20 years’ time, large new information systems will be generated by
starting with a widely adopted fundamental algorithm that defines the data-
and-process architecture of an electronic organism, the equivalent of the ge-
netic toolkit of animals. An initial state will be generated that defines basic
schemas that implement goals, (thus directing the system towards a specific
application field) and lay the groundwork for learning, and then a period of
education and instruction will adapt the organism to the intended type of
environment. Finally, users will train the system on particular jobs. This de-
velopment will completely blur the distinction between natural and artificial
systems.
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Summary. The term “emergence” is usually used to mean something surprising
(and often unpleasant) in the behavior of a complex system, without further qualifi-
cation. Designers of OC systems want to manage emergence in complex engineered
systems so that it can contribute to, or even perhaps enable, accomplishing the sys-
tem’s performance goals. That is, OC designers aim to construct systems that are
more flexible and adaptable in complex environments, to gain some of the advan-
tages in robustness and adaptability that biological systems seem to gain from these
phenomena. In this chapter we suggest some principles that we believe underlie the
enormous flexibility and opportunistic adaptability of biological systems. We show
how these principles might map to systems engineering concepts when they do, and
what to do instead when they don’t. We then describe five specific challenges for
the engineering of OC systems, and how we think they might be addressed. We also
discuss the key role played by language and representation in this view of designing
and deploying an OC system. Finally, we describe our progress and prospects in
addressing these challenges, and thus in implementing systems to demonstrate the
capabilities that we have identified as essential for successful OC systems.

Key words: Biologically-inspired system architectures, computational reflection,
layers of symbol systems, representational mechanisms, self-modeling systems, sys-
tems engineering

3.1 Introduction

Organic Computing (OC) would like to take advantage of one of the key
attributes of biological systems; they adapt and change on multiple time scales
as they evolve, develop, and grow, and they do so without external direction
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or control. However, such self-design and self-organization is at variance with
any of our current engineering methods for designing and controlling complex
systems. One of the central challenges to OC systems is that not only do we
want somehow to create the foundations for biological-like system properties,
but also that we must do so in a manner that allows us to monitor continually,
manage and even further develop such systems while they are in operation.
Hence, we can learn from biological systems, but in fact OC systems face a
unique challenge: OC systems must remain closely linked to us, their designers,
builders, and users. This chapter addresses the challenge of how OC systems
engineering can be accomplished by providing specific capabilities that enable
the system and its human developers and systems engineers to jointly shape
system goals and behaviors.

In this chapter, we start with an emphasis on certain characteristics of
biological systems and describe how such characteristics – if they were to be
imitated in engineered systems – lead to several striking new challenges for
the human systems engineer. These difficult tasks include how to share control
with a somewhat autonomous system and how to change the traditional role
of the systems engineer from attempting to determine and build all system
characteristics to a new role of carefully building in key interaction points for
evaluating, shaping, guiding, deterring, or preventing certain system behav-
iors. This new style of interaction between the human engineer and the system
implies that there is also a fundamental shift in what we as the engineers be-
lieve we can design the system to do, and in how we evaluate what acceptable
solutions are. This new methodology changes our notions of sufficiency, op-
timality and any other evaluation criteria we attempt to apply to the design
and the performance of the engineered OC system. Furthermore, since any
evaluation criteria will partly develop along with system capabilities, we must
design a system that does not have elegant predefined responses, but rather
can generate reasonable solutions on-the-fly.

Learning how to effectively share control between humans and partially
autonomous systems is already familiar to the research community; it is just
made more difficult by the degree of self-modification and self-organization
in an OC system. After all, OC is a continuation of automation, except that
instead of just responding autonomously, the OC system is able to self-design
some of its response capabilities to the world, maybe even including its own
sensory as well as “action” capabilities.

To be a systems engineer for a system with the resources to adapt over
its operational life requires a redefinition of the concept of “optimal” that
has driven traditional design. Specifically, the OC systems we are proposing
must contain components and processes that are not optimized for the narrow
a priori definition of system specifications that has traditionally formed the
basis for design and validation. For example, new emergent features enable
new strategies, and therefore by necessity will fall outside the specifications
previously defined for the system. Therefore, we have to evaluate the systems
design and performance, which includes developing new metrics, as well as
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design the system components and processes so that they can be used and
evaluated under unexpected – even unintended – circumstances in a moni-
torable way.

To be a systems engineer for any partly or fully automated system capa-
ble of adaptation and reconfiguration of its components and processes requires
sharing control with that automated system, and hence a negotiation between
the local and even private requirements of the autonomous system and the
often more global perspective and requirements imposed by the system de-
veloper or user. These differences are not only in viewpoint (for example,
how information is locally or globally understood and determined), but in the
contexts for requirements and system capabilities. For example, the system
developer may need to consider not only the system’s operational context,
but also legal, political, social and indeed moral contexts for potential uses of
the system. Therefore, the human developers and the system may have very
different purposes and goals. For example, immediate costs to the autonomous
system may bias its reasoning processes and therefore its developmental pro-
cesses, to the detriment of necessary long-term goals hoped for by the system
developers and expected by the system users or owners. These negotiations
between human system developer and partly self-determining OC systems
lead to a number of distinct challenges for the human system developers and
systems engineers.

In the sections that follow, we discuss many of the processes that are
central to OC system capabilities. However, before we do so it is worth em-
phasizing here that there are three classes of processes that we discuss: first are
those processes that we believe underlie the distinctive and remarkable prop-
erties of biological systems, for which we discuss how we might build analogs
appropriate for OC systems; second are those processes that may or may not
exist in biological systems, but certainly are critical to OC systems in order
to make use of the biological-like processes; third are OC processes that are
critical to our ability, as the human engineers, managers, users, and owners,
to communicate with the OC system, to manage and to share control with
it, and possibly to repurpose it. Because of the importance of system-human
communication, we argue that meaningful and context-specific communica-
tion between the system and its designers, developers, and users is essential
to this endeavor, and that therefore, the creation and use of appropriate and
sharable language is fundamental to its success.

In section 3.2 we discuss such biological characteristics as permissive
growth and development, how biological systems achieve controlled sources
of variation, and the opportunistic nature of biological processes and systems.
We close by emphasizing several differences between biological systems and
engineered systems that will drive the challenges for systems engineers.

In section 3.3 we examine the systems engineering challenges of developing
the above capabilities, focusing on five specific challenges. The first of these
challenges is to create generative processes. That is, although traditional de-
sign methods include tools for adjusting an operating point within a known
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parameter space, we will also need to develop processes for our OC systems
that can efficiently create new and very different possibilities for the system.
Secondly, because OC systems will adapt and change, the instrumentation
that provides information about the system’s current internal state will also
need to rapidly adjust in a number of ways to the system’s increasing com-
plexity. This challenge also implies that we will also need to develop tools
for creating evaluative processes that express the results of measurements in
ways that are useful and understandable to both the system and its engineers,
developers and users. The next challenge that we address is how to build the
capabilities for reflection and direction that enable an OC system to iden-
tify and assess possible responses, and choose, implement, and adjust them
as its context and understanding shift. Our fourth challenge is to enable our
OC systems to utilize a portion of their resources to “actively experiment”,
discovering properties, relationships, attributes, and limitations of both their
own capabilities and their ability to operate within different environments.
The final engineering challenge is to combine the capabilities resulting from
the previous four challenges to enable our OC systems to build models of their
changing environment, and to use those models to identify unusual features
of their situation. That is, we suggest that an OC system must achieve a sit-
uational awareness capability that directs its resources toward the aspects of
its environment and internal state that present, at the current time, the most
important threats or opportunities.

In section 3.4 we discuss processes that enable the OC system to share
information and control with its human developers and managers. In order to
build the basis for shared control, the system and the human must be able to
communicate about system state and control decisions, and also to negotiate
plans and goals. Hence we consider the difficult problem of developing shared
representations and languages. We also discuss our progress and prospects
along these lines.

In section 3.5, we wonder aloud if we could perhaps take advantage of
some of the biological principles suggested in this chapter to better organize
our own discovery processes as a community of OC researchers and to leverage
off of each other’s work as we together confront the challenges of achieving
the potential of OC systems.

3.2 Key biological principles for an OC system

One of the fundamental goals for OC is to develop systems with key biological-
like capabilities to adapt and change on multiple time scales, and to evolve,
develop, and grow on their own in response to their current state, their context
(including the goals and purposes of their designers, owners, and users), and
their history. This goal is motivated by the astonishingly wide variability of
responses that are observed in biological systems, as well as their remarkable
robustness in responding to sudden large changes in their environment.
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In this section we focus our attention on several principles that we be-
lieve are essential to providing the foundations of biological-like adaptation
and robustness: building processes rather than building components, “per-
missiveness”, generative processes and controlled sources of variation, and
“opportunistic” processes.

Hence, in section 3.2.1, we emphasize that one of the most important as-
pects of biological processing may be, in fact, that biological systems build the
processes that create and maintain biological structures, rather than building
structures per se. Instead of attempting to achieve a particular structure or
a particular result, the emphasis is instead on building processes which are
analogs of factory floors or assembly lines, an image easily extended to cellular
and genetic lines. As we discuss in this section, this approach means that basic
elements are constantly rebuilt and renewed, which allows points of entry for
all sorts of adaptive possibilities.

In section 3.2.2, we describe how the “assembly lines” of nature do not
reproduce the precisely-constrained products that we strive for in engineered
systems. Rather, numerous observations of variation of biological components
and their further differentiation into new types point to a type of widespread
permissiveness. The “permissiveness principle” allows all interactions, rela-
tionships, variations, actions and results unless any of these are shown to be
deleterious or harmful. One could only use such a principle if there are meth-
ods for monitoring and discovering the results and effects of such variations.
Clearly one can only follow such permissive strategies in the context of pop-
ulations of elements. The building processes noted above provide both the
populations of elements or events and many of the means for changing those
elements or events.

The permissiveness principle results in the occurrence of many different
kinds of unintended interactions, resulting in turn in side-effects and emer-
gent phenomena (section 3.2.3). These sources of variation and of novelty
are critical to enabling the types of changes in a biological system that, if
used correctly, can become the basis for adaptive responses over the life of
an individual cell or organism or, on a different time scale, over the evolution
of a species. However, even though permissive processes provide many novel
kinds of variations and occurrences, biological systems have found that the
“hit-or-miss” quality of changes and variations stemming from emergence and
side-effects is not persistent or consistent enough to meet the requirements for
controlled sources of variation required by many adaptive processes. There-
fore, biological systems have somehow created active processes that generate
variations. In this section, we describe two qualitatively different types of
generative processes: ones that create relatively well-defined, persistent, and
constrained sources of variation and ones that change the nature of the solu-
tion space.

As clearly indicated by the above arguments, the resulting broad range of
possible system behaviors could be exploited by adaptive processes. We call
such processes “opportunistic” because they are designed to notice and then
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take advantage of variations and events occurring due to emergence, side-
effects or controlled sources of variations. In section 3.2.4, we present some
examples of “opportunistic processes” in animal systems and describe some
of the capabilities of biological systems that enable these processes.

Lastly, in section 3.2.5, we discuss the differences between OC processes
and biological processes that we contend are essential because OC systems are
artificial, engineered constructs rather than the result of the evolution of an
entire ecology. Even with appropriate analogs of all these biological principles,
an OC system requires additional capabilities and processes in order for us, the
human developers and users, to monitor, shape, and negotiate with it. This
last topic will lead us directly into section 3.3, which presents the challenges
for OC systems engineering that we deduce from these biological principles.

3.2.1 Build processes not structures

One of the obvious properties of biological systems is that they grow and they
develop. Growth and development are at once adaptive advantages for an or-
ganism because it can respond to its changing environment with its growth
and development, and a necessary result of life: since there is no external de-
signer and developer of a biological system, it must “bootstrap” itself into
existence by this growth and development. This then is the essential reason
for the principle that biological systems in fact build the processes that create
and maintain biological structures, rather than building a structure directly.
Any system that self-organizes and self-designs will require some bootstrap-
ping processes. The interesting question here is whether the bootstrapping
processes of our artificial systems will need to use the same biological strat-
egy of building up a family of related elements that can then be differentiated
and used by the system.

We begin by considering how biological systems emerged from a less differ-
entiated universe of matter and energy in the first place. Without speculating
about this evolution in detail, we draw three important ideas from such imag-
inings.

First, when persistent biological structures emerge from the dynamics of
physical systems, they are indeed persistent and separate, but only in a relative
sense. This is because they are created out of the same materials — and
therefore share in many ways the same fundamental parameters at some basic
level — as their surroundings. A cell wall is semi-permeable; a brain region is
a recognizable region with sloppy boundaries and extents, and so it goes. One
of the implications of this view is that the boundaries of a biological structure
are always leaky and somewhat continuous with the world around it.

Another implication, emphasized below, is that because these structures
share so much in common with their surroundings they continue to exist
only because of active building and maintenance processes. Unlike algorithms
or transistors, which one can consider to be “permanent” when viewed in
terms of the operational lifetime of the system, there are many examples in
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biological systems where biological “components” such as cell walls, muscle, or
neural pathways go away or change if active maintenance processes change. A
good example is what happens to bone and heart muscles in the zero-gravity
environment of space [63, 15, 64].

Not only are there many biological examples of components disappear-
ing upon disuse, but there are also many examples where biological systems
appear to make use of these active building and maintenance processes to sup-
port crucial flexibility in systems. This “flexible modularity” is seen clearly in
language and movement. As Bellman and Walter [13] state,

We have overused the idea of built-in structures by being overly de-
pendent on prewired patterning. This concept places the emphasis
on the coherence and the “fixedness” of the assemblages. It largely
ignores the means of introducing flexibility and variability into the
combinations of elements used in assemblages. Yet the ability to re-
combine relatively independent elements and hence to decompose the
assemblages is an equally important and complementary process to
our ability to form those assemblages. Any word or movement can
potentially be combined with a very large number of other words or
movements to form a large number of sentences or acts. Hence, both
language and movement are structurally coherent in the assemblages
and are also generative. We use the word generative because it puts
the emphasis on producing and originating new forms that conform
to a body of rules. We also think of this generative quality as being
acted out in an “on-line” fashion. That is, the animal is constantly
generating new assemblages as it acts or speaks and as it adjusts for
and monitors the context. Many of these assemblages could be tem-
porarily formed for the moment’s purpose, which places the emphasis
on the processes that combine elements and not on the fixedness of
the combinations.

In section 3.2.3.2 we discuss in more detail the types of adaptive behavior
supported by such generative processes. Here we simply want to emphasize
that structures and behaviors within an OC system will be more like these
biological “assemblages”. That is, active processes will continually recruit the
necessary components, build useful assemblages, and maintain those assem-
blages, often doing so only for the duration of a specific current context.

The second key idea about the evolution of biological structures is that
biological systems continue to use the dynamics among emerged structures to
create and maintain new structures, hence building up many layers of struc-
tures with complex interactions. One of the results of the above viewpoint is
that the emerged structure does not have to be made to fit with its surround-
ings. Rather, because it has emerged at all, it is ipso facto viable within its
surroundings. In that sense there is a continual validation – in engineering
terms – of the interface (but not necessarily validation of the performance or
the functions of that component or set of relationships).
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Another result is that the boundaries of the emerged structures may be
less distinguishable from the rest of the system and its external environment
than we might expect or desire. But since the boundaries are in our termi-
nology more “leaky”, they share more properties with the other parts of the
system, including many layers of the system at once. Such shared parameters
could, through “opportunistic processes”, become the means by which the sys-
tem both integrates across different system elements and adaptively controls
parameters that have been found to vary meaningfully with critical differ-
ences in system behavior and the accomplishment of different system goals.
This property results in complex side effects, but also provides tremendous
opportunity for the use of shared characteristics in adaptive and integrative
processes. Our design problem, described in section 3.3, is to help develop the
types of discovery processes in the OC system so that it finds the ones that
are most useful for our purposes.

As an example, an important characteristic often observed in biological
systems is that a single control element such as a “master gene” or neurotrans-
mitter can have multiple, diverse, and widely distributed impacts throughout
the system’s levels and processes. In a system whose structures are continu-
ously maintained, created, and modified by processes that use the same basic
raw materials, this distributed effectiveness of a control element allows local
adaptations while helping to provide a basis for system-wide integration. In a
system with leaky layers, one could imagine how serendipitous combinations
of side-effects, if properly captured, could result in such wide-spread effects
and help provide the basis for integrating across diverse kinds of elements and
layers of elements. Thus, a third key concept we can learn from biology is that
as increasingly complex processes and structures are developed some common
control elements link them. Often these shared control elements are really
families of elements related through the history of their development through
common “building processes” and through retained common features. How-
ever, there will also be differences among the control elements within a family
due to local specialization. That is, because many of these building processes
are distributed throughout the entire biological system, their assembly lines
can be impacted and specialized to local conditions. Hence the fact that there
are building processes is key to both providing the similarities among families
of elements and the “entry points” for the adaptations that will occur because
of local requirements.

One of the most important consequences of shifting from building struc-
tures to building processes is that a system will have a much broader range of
possibilities. The continual renewal of processes and structures gives the sys-
tem a “safe” region of its “possibility space” within which it is relatively free
to adjust, because its existing processes and structures are known to be suc-
cessful in at least some “nearby” portions of its possibility space. At the same
time, because these processes are shared and distributed across many parts of
the system’s hierarchy, some of the integrated responses can also enable “long
leaps”. This means that local adaptation at one level can have widespread
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effects across the hierarchies of emerged structures and components. These
long leaps also enable the recruitment of far-ranging and diverse components.

The biological style offers a very rich set of control options that include
both controlling for processes and for outcomes. In cybernetic terms, Kreit-
man’s conjecture [36], states that in an environment of arbitrary disturbances,
at any particular time one can control for either the process or the outcome,
but not both. Biology does both, though clearly at different times. There is a
first emphasis on building processes that generate populations of imprecisely
replicated and varying elements. In section 3.3.4 we discuss the other neces-
sary processes where, through feedback and selection mechanisms of several
sorts, the system refines and modulates these processes to get desired results.
When these building processes operate in a permissive biological environment
they produce a wealth of interactions and emergent structures that will be
utilized by the biological system.

3.2.2 Permissive growth and development

In this section, we explore the implications of the “permissiveness principle”,
which we consider a fundamental biological principle, one that helps separate
biological from engineered behaviors and capabilities. In order to introduce
it, we will first start with a brief description of classical systems engineering,
and then contrast that with biological “permissiveness”.

Systems engineering for traditionally-constructed systems defines and
locks in the performance requirements for the system and the interfaces among
its components. During the early design and specification stage, often called
conceptual design, the foundational mappings of functions onto specific com-
ponents are identified. These choices become the basis for specifying the rest of
the system, so that consideration of alternatives is often frozen out of the en-
suing design process. This approach helps to organize and manage the design
process, which is focused on the familiar and extremely useful representation
of a system as a block diagram that details both the individual subsystems and
their allowed interactions. However, the choices of the contents of the boxes
(i.e., what hardware and operational capabilities will be grouped together)
and the interfaces between them (i.e., what symbols they will exchange and
in what directions) can have profound influence on the functionality of the
final product. Hence, the concept of a system organizing itself seems not only
foreign, but perhaps also a bit dangerous, especially given that unanticipated
behaviors of these traditionally-designed systems often result in catastrophic
failures.

The challenge for systems engineers in the traditional approach can thus
be seen as one of finding the best partition of the system; that is, to define the
blocks and their interfaces. However, a focus on the contents of the boxes and
on their designed-in interfaces leads us to ignore a wide variety of small inter-
actions with the expectation that they will not contribute to the behavior of
the system as a whole. In the context of a system made of a very large number



34 Kirstie L. Bellman, Christopher Landauer, and Phyllis R. Nelson

of elements (for example, cutting-edge microprocessor designs have over 700
million transistors in an area less than 0.5 cm2), there is an increasing po-
tential for “small” interactions to lead to emergent behavior with unintended
impacts, some immediately observable as detrimental; some detrimental over
much longer time frames.

Let us now consider qualitatively how biological systems differ from this
classic style of engineering a system, in which one specifies and designs specific
components, engineered to be as uniform as possible, and specific interfaces
with other components so that the system controls as much as possible the
interactions among components and hence any side-effects. Although there
are many critical biological processes for shaping, refining, and controlling the
system’s dynamics through monitoring, regulatory and feedback processes of
many types, biological systems allow a great deal of variability and imprecision
in their components.

Similarly, we already mentioned that there is a great deal of leakiness
among biological components and between levels of components. One impor-
tant aspect of biological leakiness and variability is that many – perhaps even
most – of the system’s interactions and structures aren’t controlled for di-
rectly. In fact, unlike engineered systems, multiple parallel and overlapping
processes and structures exist in biological systems. These parallel and over-
lapping pathways are another manifestation of the permissiveness principle.

Biological systems appear to be deeply permissive at all levels of orga-
nization. That is, anything goes so long as the organism or system hasn’t
learned (e.g., over evolution in populations of organisms or by feedback in
terms of a single organism) that there is a harmful or deleterious effect. Thus,
in a biological system anything that is not physically impossible can become
part of its behavioral repertoire or feature set unless it is explicitly disallowed
or prevented by processes within the organism. This permissiveness princi-
ple will produce a large number of unregulated features and relationships,
some of which will be noticed at any time by monitoring and regulatory pro-
cesses. Regulation could eventually decrease those features and relationships
that negatively impact the system’s viability and functioning and by the same
mechanisms preserve and even enhance ones that support system’s viability
and functioning.

Permissiveness could be one of the essential principles that allows a system
to generate emergent phenomena and side-effects and the processes that utilize
them. That is, some of these serendipitous combinations of effects relating
families of distributed command elements, described before, will later be the
basis of the opportunistic processes that are able to make use of such emergent
phenomena.

3.2.3 Emergence, side-effects, and controlled sources of variation

In the classic view of adaptive control, a system equipped with its unique
combination of sensor, behavioral, and feedback processes assesses its current
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state and the relevant features of its operational environment, decides what
courses of actions are feasible, and then selects, plans and executes the needed
control adjustments and behavioral actions. Sensors, feedback, control adjust-
ments and actions all presuppose that the system is able to vary any aspect
of itself as a response to its plans or to events in the environment. Those at-
tributes a system is able to change are limited and shaped by its physical and
intellectual capabilities. Together these form a space of possible variations,
which we call the “possibility space.” Any selection of control adjustments,
sensor tasking, actions or plans will be a subset of this space. In this sec-
tion, we suggest that the permissiveness principle creates the proper milieu
for emergence and side-effects, and that these, in turn, are critical sources of
variation that are captured and made use of by adaptive systems to extend
their possibility spaces.

Although permissive processes provide many novel kinds of variations and
occurrences, biological systems have found that the “hit-or-miss” quality of
changes and variations stemming from emergence and side-effects is not per-
sistent or consistent enough to provide the controlled sources of variation
required by many adaptive processes. Therefore, somehow biological systems
have created active processes that generate variations. In this section, we de-
scribe two qualitatively different types of generative processes: ones that are
relatively well-defined, constrained sources of variation that are persistently
produced and maintained, and a second type which changes the possibility
space and expands the design envelope in unexpected ways.

3.2.3.1 Emergence and side effects

We leave to others the challenge of characterizing emergent phenomena3 and
developing methods for predicting emergence in complex systems. Instead, we
accept that side-effects and emergence are known to be possible, and go on to
consider how a complex system could develop processes that take advantage
of such phenomena when they occur, and make use of them to be more robust
and adaptive.

Although emergence and other side-effects continue to plague human-
engineered systems, in biological systems it is clear that emergence and other
unexpected phenomena are utilized by the system to provide needed sources of
change and novelty. We believe that permissive processes promote emergence,
since they allow unexpected or unplanned coincidences to reinforce each other.

Cellular automata and other dynamical explorations demonstrate that sta-
ble, long-lived structures can emerge from stochastically-generated initial con-
ditions in a “flat” rule space [27]. Although such demonstrations are very

3 We find the following working definition of emergence by Christian Müller-Schloer
to be useful: “Emergent phenomena is where collections of individuals interact,
without central control, to produce results that are NOT explicitly ’programmed’
and which are perceived as ‘orderly.’ ” [69]
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important for developing our understanding of emergence, the conditions in
many of them are quite different from the conditions for emergence in biolog-
ical systems. By examining biological systems, we may learn new strategies
for the management and utilization of emergence. Emergence in biological
systems 1) does not start with a uniform distribution of identical elements;
2) involves a system with goals, intentions, and learning; 3) must be observed
from inside the system by the system. That is, in dynamics demonstrations,
the observer is outside the system, but in biology the system itself must be
the observer.

In biological systems, emergence occurs in a system that has lots of existing
structures, which embody the history of both the individual and its species.
These structures and processes can be recruited to support an emerging be-
havior or structure. Unlike the homogeneous elements of many dynamical
models that were used valuably to prove the existence of emergence from very
simple and uniformly distributed elements, biological systems have heteroge-
neous components at many different functional layers. Such existing structures
mean that across the biological system there will be regions with quite dif-
ferent ongoing dynamical processes. These existing structures both constrain
and shape the dynamics that may lead to emergence and at the same time,
become the basic components of a different level of dynamics in the system.
For example, the human nervous system has meaningful dynamics occurring
at the molecular, cellular, and organ levels, all of which may lead to emergent
structures and behaviors with impacts across the different levels.

The second major difference in biological emergence is that biological sys-
tems have goals and intentions; they plan and learn on their own and from
others. Hence the emergence of new patterns resulting from unexpected dy-
namics and the side-effects of widely distributed relationships among compo-
nents both impacts and is impacted by the existence of purposive behavior in
biology. In this sense, the central challenge of OC research is also the central
challenge of biological systems: how to combine unanticipated patterns and
events with intended patterns and events.

Emergence can appear very differently when viewed from inside the system
or by an external observer. The whole emergent pattern may never be seen
as such from the vantage point of internal observation, but instead look like a
set of correlated differences or changes distributed throughout different locally
monitored regions. Ian Stewart [81] presents many interesting points about
the problems faced by a participant in a dynamical system. These include
observing patterns and making decisions based on limited information from
within the system and attempting to abstract decision rules from the behavior
of the system. Some of these problems can be demonstrated with Langton’s
ant. These simulations have two simple rules assuming an initially all-white
grid. Step into a square; paint the square you came from black if it was white
and white if it was black; if the current square is white, turn right and if it is
black, turn left.
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Stewart describes the patterns generated by simulations of Langton’s ant
as first “symmetric”, then “chaotic”, and then the ant “builds a highway
forever” in about ten thousand steps. If the simulation starts with a pattern
rather than all white squares, apparently it still ends up in a “highway.”
Stewart’s conclusion is that one cannot predict this pattern, but rather only
do the simulation: there is no possibility to shortcut the process, which he
considers a key characteristic of emergence. Furthermore he considered the
calculation of the rules for the behavior as intractable. In his analogs of the ant
game, there can be several billion steps before something interesting happens.
And then such analogs cannot tell you why or even how such patterns came
to be. There are many points in this work that should be considered by those
of us building OC systems. However, biological systems may have sidestepped
some of these difficulties because they have found ways to utilize emergence
without having to perceive the whole pattern or predict the endpoints in some
emerging process.

In biological systems, the local-only perceptions and decisions of Langton’s
ant can have far-ranging effects because of the shared assembly lines and com-
mon control elements noted earlier. Furthermore, biology has also developed
strategies to combine and coordinate the perception, learning, and decisions
of a community of players through diverse memory and communication pro-
cesses.

Biological systems have developed communication methods that allow
them to share their experiences and viewpoints. This is discussed further in
section 3.4. The importance here is that, although this does not change the in-
tractability of perceiving the end points in their own evolution, it may change
the ability of a biological system to track its own long-term and emergent
patterns because other members of its species can observe it from the outside
and communicate those observations. For example, if one animal even at a
simple level can inform another that it is too close to a dangerous situation,
that can motivate that perceived system to discover what changes or clues in
its environment or self it ignored and allow it to correct those insufficiencies.
Parents, of many species, constantly do that with their offspring.

Recent work in distributed optimization and market-like decision processes
also show that if the decision game is set up correctly – including the topol-
ogy of the relationships among participating decision elements – then local
decision-making elements can not only come up with coherent and useful
global decisions and effects but, under many conditions, optimal ones [71].

As an example that summarizes all the points we have made here, consider
walking. The biological system starts with a number of built-in structures,
such as neural pattern generators that contribute to the timing of the gait
and successful configurations among muscles, tendons, and bones that con-
tribute to walking for that individual or species. However, the system does
not have to predict or lay out the values of all of these muscles and neurons
to walk. Rather, it appears to launch the behavior with some rather stereo-
typic gait patterns and an abstract goal of intended place or direction. It then
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uses self-monitoring, feedback, reflection and other opportunistic processes to
dynamically recruit and organize its components. It constantly adjusts for ex-
ternal conditions, e.g., the slight shifts in ground, and for that system’s own
performance capabilities. For example, fatigue will impact how high it lifts its
limbs or the speed of its gait. Parents help train and shape their offspring in
the important movement patterns of their species — and the offspring clearly
learns as well through trial and error. The resulting walking pattern details
and path could not have been predicted ahead of time and therefore in accor-
dance with Stewart’s definition are emergent. However, it was not important
to the biological system to know in advance that level of detail in its planning
or to predict such details.

Clearly a system’s measurement capabilities are critical to its ability to
self-monitor and therefore to respond opportunistically to emergent processes.
If the appropriate opportunistic processes are available, and if they are cou-
pled with sufficient instrumentation, then neither a system nor its engineers,
developers, and users need to distinguish between emergence and other ef-
fects. Instead, all of the permissively-attempted paths, together with their
results, become available for use in achieving the purposes and goals set for
the system.

3.2.3.2 Generative processes

Permissiveness alone may not be enough for a biological system to be able
to adapt to changing contexts because the needed amplitudes and types of
variations may not be available. Hence, biology has developed generative pro-
cesses. Some of these produce relatively well-defined and constrained sources
of variation that are persistently produced and maintained; these are like the
volume knobs or the tuners on a stereo. In some sense, they embody a param-
eterization of some key characteristics of the system that can be controlled by
the system. A second type of generative processes change the nature of the
possibility space. They are likely to be much rarer in occurrence and more
often fatal to the system. However, a few will survive the test of viability with
the rest of the system to provide very new attributes, and can be picked up
by the system in surprising ways. Some of these changes could lead to very
different ways of doing things and eventually, in higher cognitive processing,
to very different choice and decision processes.

There are many examples of processes in biological systems that first gen-
erate new combinations of elements and then, after evaluation, incorporate
the successful ones into some more persistently available form. Examples of
these generative processes occur at all levels of biological systems. At the
genetic level, we observe that both meiosis (the normal reshuffling of genes
from both parents) and mutations (the “errors” resulting from the imprecise
and inefficient genetic replication processes) provide variation in a population
that is acted upon by natural selection to create species that are adapted
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to an environmental niche and also robust enough to handle many unantici-
pated environmental stresses. Meiosis is a dependable source of variation in
the well-defined space of current genes. Mutations are rarer, mostly delete-
rious or lethal, but once in a while, greatly successful. Meiosis gives rise to
variations within a local safe region of the possibility space for the species,
while mutation is a source of long leaps to possible new regions.

At the cellular level, neurophysiologists have studied and speculated on
the “helpfulness” of variations to allow more resilient pattern generation and
to prevent perseveration or over-recruitment among cells. A special case is the
ability to generate variations that act like noise generators. As an example,
Garfinkel [28] studied the use of such noise generation in the regulation of
heart patterns and recovery from abnormalities,

The extreme sensitivity to initial conditions that chaotic systems dis-
play makes them unstable and unpredictable. Yet that same sensi-
tivity also makes them highly susceptible to control, provided that
the developing chaos can be analyzed in real time and that analysis
is then used to make small control interventions. This strategy has
been used here to stabilize cardiac arrhythmias induced by the drug
ouabain in rabbit ventricle. By administering electrical stimuli to the
heart at irregular times determined by chaos theory, the arrhythmia
was converted to periodic beating.

An example of generative processes at the behavioral level is behavioral
merging. Behavioral merging is not only an example of generative processes
but also an example of the way in which the resulting new combinations and
variations in behavioral elements can be used to handle adaptively a common
control problem. It demonstrates the resolution of conflict between competing
goals, tasks, or requirements, and the ability to map actions to goals in highly
flexible ways. As described by Bellman and Walter [13],

A given instance of behavior can reflect several motivations and work
toward several goals at once. Contrary to the usual emphasis in behav-
ioral studies, in which an animal must choose between mutually exclu-
sive acts, an animal in nature is rarely in the situation where it must
engage in one behavior to the exclusion of other behaviors. Rather, an
animal’s movement frequently shows “behavioral merging,” in which
several motivational goals and action patterns are combined into one
coherent pattern. In studying the merging of feeding and aggression
behaviors in the lizard, an animal noted for the rigidity of its behavior
patterns, Bellman found that when elements of feeding and aggression
conflicted, other elements were selected and substituted, so that, over-
all, both feeding and aggressive patterns were combined into one fluid
behavioral sequence.
The behavioral sequence resulting from merging points to a particular
type of flexibility in a movement system. A specific movement pattern
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can subserve a number of goals. If this is so, then a specific movement
pattern is not necessarily linked to one goal any more than to any
other goals (although there may be some kind of weighting, so that a
given behavior is most often associated with one particular goal). This
implies that a movement is not “released” as a necessary consequence
of the occurrence of a particular motivational goal; rather it is “re-
cruited” to serve that goal. Furthermore, from behavioral merging, we
see that a whole action pattern need not be recruited but only those
elements best fitting the circumstances.

This last point reinforces the importance of building processes, which pro-
vide the biological system with many points of entry for adaptive responses.
These include the ability to drop steps in its processes if existing components
of the system or features of the external operational environment permit it.

Lastly, in human language we clearly see generative processes that produce
a large variety of phrases and patterns, while remaining consistent with both
grammatical and semantic rules. This last example brings to the fore that
these generative processes operate not only on physical and behavioral prop-
erties of the system, but also on the symbolic and representational capabilities
of the system that underlies its cognitive and communicative capabilities.

Generative processes result in many different combinations of processes,
structures, and symbols that can accomplish a particular outcome when com-
bined with methods that build up or emphasize some relationships, processes,
or symbols while de-emphasizing others. Such a variety of choices enables
a system or structure to substitute for a “broken” method or less effective
method, an ability that is at the core of the robustness of biological systems.
Compare this to the usual engineered system, which carefully specifies and
engineers away all sources of variation and interactions among components,
and which is brittle in the sense that it usually “breaks” if presented with
unanticipated contexts or interactions.

3.2.4 Opportunistic processes

As clearly indicated by the above arguments, the resulting broad range of
possible system behaviors could be exploited by adaptive processes. We call
such processes “opportunistic” because they are designed to notice and then
take advantage of variations and events occurring due to emergence, side-
effects, or controlled sources of variations.

One of the classic attributes of adaptive behavior in animals is their ability
to take advantage of whatever is in the environment in order to accomplish
their goals. Even simple creatures, known for rigid behavioral patterns, usually
are able to break their behavioral patterns if something in the environment
has made those parts of the behavior unnecessary. 4 Hence if a suitable hole
4 Konrad Lorenz had some notable exceptions such as the egg rolling behavior of

the gray goose or the nut storing behavior of the red squirrel, but such rarer
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exists, the organism will not dig it, if a suitable object is nearby the organism
will not go further to move another object, and so forth. In more advanced
animals this ability to take advantage of aspects of the environment is ex-
tended into sophisticated problem-solving capabilities that allow the animal
to make use of objects in novel ways. An early example comes from the famous
“insight experiments” of the German psychologist Köhler, who demonstrated
the ability of apes to use objects in the laboratory in novel ways [35]. One
such experiment required the apes to reach a desired banana by discovering
that they could link several sections of a pole together. 5

Jakob von Uexküll, the prolific and observant German ethologist, was one
of the first to consider the qualities that go into adaptive and opportunistic
biological systems. Especially important was his insight that an animal’s per-
ceptions are deeply affected by its effectors (its capabilities to move and do
things with some given object or within some given ecosystem). One of his
early stories is a description of how a hermit crab’s motivational state affects
its perception of an empty shell [83, 75]. When the crab was molting and vul-
nerable, it backed into the shell for protection. When the crab was hungry, it
approached the shell displaying hunting behavior. When the crab was mating,
it approached the same shell as a potential competitor and showed aggressive
displays.

This type of opportunism and adaptiveness appears to occur even in the
behavior of single-cell animals. As Jennings [30] observed, unicellular animals
are capable of many of the complex and adaptive behaviors of multicellular
animals. They respond to the same classes of stimuli to which humans do,
they have specialized receptive areas (although not yet specialized for differ-
ent senses), and they frequently have specialized contractile parts whose ac-
tion is coordinated. They exhibit spontaneous behavior, early trial-and-error
behavior, habituation, and context-dependent responsiveness to stimuli. As
Jennings concludes, “We do not find in the nervous system specific qualities
not found elsewhere in protoplasmic structures. The qualities of the nervous
system are the general qualities of protoplasm.” [30, page 263]

Jennings provides several fascinating examples of the ability of single-cell
animals to interact with the environment and with each other. One exam-
ple is the predator-prey relationships among infusoria such as Didinia and
Paramecia [30, page 186].

examples are usually understandable in light of the criticality of that behavior to
the animal’s survival: one could say that nature in that case has over-engineered
the response.

5 Parenthetically, the apes in this case, claims Köhler, devised a smarter solution
than his. Instead of the apes using the extended pole to knock the banana down,
they used the extended pole to polevault their way to the banana. The impor-
tance of this observation is that the possibility space is determined partly by
the animal’s unique capabilities. Clearly, Köhler was not agile or light enough to
polevault, so he did not recognize this possibility.
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His observations demonstrated several startling, adept adaptive capabili-
ties, including the ability for a hunter to cease its hunt of one highly-elusive
target and turn to a better target, even though the first target was still visible
and potentially available. The hunter subsequently caught the second prey. It
did not cease its chase of the first target because it was no longer hungry,
or because it was too tired to continue, or because the target was out of the
scope of its sensors. Rather, it apparently stopped because it had not been
successful enough within a certain amount of time and effort.

These biological examples are behavioral, and hence observable to scien-
tists, but there is no reason to suppose that this opportunistic style of pro-
cessing is not carried out at all levels of biological systems. In fact we contend
that they are. Although we can only touch on a few illustrative examples here,
we also believe that it is instructive for OC researchers to study the myriad
ways in which different biological systems adapt. Such examples can inform
as well as inspire the OC field on the style and power of the opportunistic
processes we would like to develop for our artificial systems.

One of the first things that is evident from these biological examples is
how critical generalization, differentiation, and learning processes are to the
ability of the system to notice, capture, incorporate, and adaptively control
the co-occurrences and interactions among a rich set of different types of
components. Babies demonstrate wonderful examples of opportunistic devel-
opmental processes that are tempered by discrimination and learning. At first,
a baby attempts to fit anything and everything into its known behaviors and
goals. Everything it can grasp goes into the mouth, is picked up, is dropped,
and so forth. Gradually, through refinement, differentiation, and learning pro-
cesses, the baby learns what is too hot, too acrid, too heavy or just right. Its
explorations are carefully constrained by concerned parents.

Opportunistic processing will critically depend on the instrumentation
available to the system, which will determine what variations it can perceive,
capture and incorporate into its repertoire of repeatable capabilities or re-
producible states. Again, at all levels of the system, from genetic, cellular
to behavioral and cognitive, we see very different means by which correla-
tions and co-occurrences are retained and eventually culled until the correct
aspects of some complex set of events has been retained by the system for
future manipulations.

The building processes discussed earlier enable several of these opportunis-
tic strategies. For example, the observation that animals can take advantage
of the existence of structures or events in their environment or in their own
metabolic pathways happens partly because in the building processes one has
developed a set of feedback and monitoring processes that support a sequence
of operations by having a large number of steps that are initiated or not, de-
pending upon the occurrence of pre-conditions such as chemical precursors or
trigger events. In addition, permissiveness will guarantee a large number of
relationships and side-effects, creating the very good chance that the system
will often stumble on “shortcuts” in its sequencing of events.
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Just as combinatorial processes can be taken advantage of, so can pro-
cesses that appear to be oppositional. In this case, the manipulation of op-
posing effects results in good solutions. Examples of this are the ways that
combinations of neurotransmitters with opposing effects combine to provide
the desired states, as well as a means to modulate such states with very small
adjustments. Similar examples occur in the tensions between flection and ex-
tension muscle groups for limb movement, as well as the balance between
excitatory and inhibitory neural pathways. In all these cases, the benefits
of such an arrangement seem to rest on the ease with which small control
adjustments of either opposing effect can lead to big changes in the states.

The opportunistic processes feed a number of critical processes that eval-
uate, reflect on, and utilize the information that has been gathered about
correlated states to drive the behaviors of the system. However, opportunistic
processes cannot just depend on the co-occurrences resulting from external
events to drive their opportunities for correlating, refining, and differentiating
the drivers for complex states. Hence they also need to drive their exploration
of correlates. In section 3.3 we examine how active experimentation is used by
the system to constantly learn more about how its own components interact
and affect each other.

3.2.5 Critical distinctions between biological processes
and OC processes

It is tempting to concentrate only on those processes that enable the biological-
like characteristics that interest us, e.g., those processes that can generate
novel behaviors and responses, those that contribute to the discovery and uti-
lization of emergent patterns, etc.. However, in OC systems it is also essential
to consider what other capabilities and processes must be added in order to
allow human engineers, managers, users, and owners to communicate with
and guide the OC system not only during the initial design phase, but also
throughout its operational life. Such considerations are especially important
for large and costly systems that will experience shifting contexts during their
design and life-cycle.

There are two driving differences between the needs of biological systems
in general and OC systems. The first is a result of the essentially “alien”
nature of the OC system we noted in the beginning of this section. Biological
systems are not only somewhat continuous with their environment, but are
also part of a complete ecosystem; that is, in collaboration and competition
with other systems, all of which are linked to and part of a larger whole. In
contrast, the very concept of engineering a system leads it to be disconnected
and “alien”; it is developed by us, usually with materials very different from
those in its operational environment, doing functions that may have little to
do with those of any other system in the operational environment.

In addition, because the biological system is continually renewed and recre-
ated from the raw materials of its surroundings, it may more readily adjust its
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structure and composition because of small shifts in the available materials or
the current conditions. Engineered systems on the other hand have predefined
form and substance. Of course, this can have some advantages in an environ-
ment that suddenly no longer feeds the building processes of the biological
system. However, it will not have the opportunities described above for adap-
tation through growth and development, and there will be no biological-like
renewal of composition and structure.

One result of this is that OC systems require much more work in defining
appropriate and deep enough context models of the operational environment,
and in ensuring that there are appropriate interfaces for noticing all the needed
attributes of the environment in coordination with the system’s own sensing
behavior and actions. One cannot depend on the “natural” shared parameters
based on the physics and natural history of an ecological niche that occur with
biological systems.

The second major requirement of OC systems that is different from bio-
logical systems is the need of the OC system to always remain tethered to us.
They must always be monitored for and shaped by our goals and purposes.
This does not mean that the OC system will not be able to act somewhat
independently of us; in fact, we argue later that one of the chief modes of
interaction with the OC system will be through negotiation and not through
the usual fixed control methodologies used in other engineered systems. In
so far as an OC system is self-organizing, it will in fact be one of the de-
velopers and one of the systems engineers of itself, in coordination with the
human development team. But this need for entrée into the internal state of
the OC system’s sensors, effectors, and decision processes leads to the need
for sufficient instrumentation, reflection and reasoning, and communication
capabilities to work with us. As we discuss in section 3.4, the language of this
collaboration and negotiation needs to be co-developed from the experience
base of the OC system. We will require these systems to inform us of their
state and intentions. Thus, an OC system must not only create appropriate
symbols for its own use, but must also be able to explain them to us.

Whether structures, processes, and representations emerge or whether they
are supplied at the beginning by the designers, what is important to us as OC
systems engineers is to build in mechanisms for recognizing new possibilities,
and for guiding the development process to some extent based on our (and the
system’s) growing understanding of the application problem domain and the
processes and structures that have developed within the system in response
to it. As much as possible, we also want to keep some of the means to “know”
and to “find purpose or meaning” retained by the system, since the design
engineers are unlikely to be available for the entire lifetime of the system.
Thus, unlike a biological organism, an OC system will always retain a special
type of differentiation from its surroundings in that it is deployed into an
operational context to achieve purposes other than its own survival.
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3.3 Systems engineering challenges

Our biological analogies have led us to suggest that OC system engineers will
need to provide certain key capabilities that we believe enable the adapt-
ability, opportunism, and robustness of biological systems. However, doing so
presents significant challenges precisely because these capabilities require a
radically different approach to engineering design, in which the processes that
constantly rebuild, renew and expand the system, rather than the system’s
components and their interactions, are the central focus. Unlike the processes
and resulting structures that we observe in nature, those created or managed
by engineers will of necessity be artificial, if only because they are deployed
to accomplish externally defined goals and purposes, and hence are in an im-
portant sense alien to their environment rather than having evolved as part
of a complete ecology. Because we want biological capabilities in systems that
have “non-organic” origins, we the developers will have to provide the means
for detailed interactions with its operational environment and the starting
structures and processes usually provided by evolution.

This means that a number of approaches and designs for such systems
cannot work, because some basic assumptions and other design crutches are
no longer available, no longer implicit in the approach. Instead, a new set of
systems engineering methods and attitudes is needed, and this section begins
our exploration of these issues.

The specific engineering challenges we will consider in this chapter are:

• creating appropriate generative processes (section 3.3.1);
• inventing appropriate instrumentation and evaluation processes (sec-

tion 3.3.2);
• providing the capability for the system to analyze and reflect on the infor-

mation it has gathered (section 3.3.3);
• enabling the system to actively experiment so that it improves its (and

our) representations and models (section 3.3.4); and
• providing methods for the system to refine the symbols, representations,

and models of both the system and its context, to create a kind of “situa-
tional awareness” (section 3.3.5).

We now discuss each of these challenges, as well as their implications, in more
detail.

3.3.1 Creating generative processes

By generative processes we mean something much more interesting and much
more challenging to construct than search processes, because the latter search
a fixed and given space using predetermined parameters, whereas the former
actively create both the parameterizations and the search space as they pro-
ceed. The additional capabilities of these generative processes as compared to
traditional techniques are expected to yield some surprising results, desired
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and undesired, that the system can discover, evaluate, and choose to exploit
or suppress, as well as new possibilities that offer increased effectiveness in
controlling for processes and qualities that support the system’s purposes and
goals. These generative processes thus need to be able to efficiently create
new and very different possibilities for the system, as well as to discover and
describe linkages that couple processes and symbols, enabling coordinated re-
sponses among multiple processes and functional units at lower levels of the
system’s hierarchy.

Designing generative processes thus means developing capabilities to rec-
ognize and coordinate coherent activity among subsets of the processes that
build functional units, as well as methods for describing this coherence by cre-
ating new symbols or variables. Such an approach is fundamentally different
from the traditional conception of searching a predefined space using prede-
fined variables and predefined criteria for success. For example, in computing
algorithms we usually assume a predetermined basis set of characteristic and
well-behaved variables, write a generic search through a large space chosen
because it is easy to describe in terms of those variables, and then apply the
success constraints to eliminate large portions of the space. An alternative ap-
proach, which seems to be more like what humans do, is to create the search
space and new characteristic descriptions of it as we go along. We start with
the construction of the search space from the viewpoint of our purposes or
goals, which lets us incorporate many of the constraints into the construction
itself, so that we automatically avoid consideration of large but uninterest-
ing portions of a generic search space, and concentrate on those regions that
seem interesting or useful, even if the resulting possibility space is made up of
disconnected and oddly-shaped portions of what would have been the generic
search space, and even though the resulting space would have been difficult
to describe in terms of a set of predetermined variables. We also organize our
understanding of this search space by making up new interpretable descrip-
tions of the various options we discover, a form of reparameterization that
allows us to more easily use these new possibilities in other contexts.

The previous example suggests that purposes and goals are central to the
efficient construction of generative processes, since they provide a ranking
of high-level criteria for success. We saw many examples of this continuous
mapping between the goals and the generative processes in the biological
examples described in section 3.2.3.2.

When we humans solve problems we actually seem to use two basic strate-
gies: we start with familiar possibilities and search for relevant or useful com-
binations, but we also use long leaps to radically different possibilities. This
example of human problem-solving illustrates the two types of capabilities
that we include in the overall description of “generative processes”. One is
more local and continuous, resembling refinement or “pushing the envelope”,
while the other involves disconnected leaps. In section 3.2.1, we speculated
on how the assembly lines and building processes support these long leaps
by producing families of distributed control elements that share features and
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whose domains of action include simultaneously different levels of modules
or components in the system. Generative processes as we conceive of them
must thus include some methods that are able to efficiently “leap to” and
evaluate regions of the system’s possibility space that are “far” from those
it has already experienced, as opposed to only searching for a new combi-
nation of established parameters. Although these exploratory leaps could be
accomplished by random variation of basic units, such a random combinatorial
search is not sufficiently efficient in terms of resources and time even at fairly
modest levels of complexity. In fact, the size-, context-, and time-dependent
structure of these possibility spaces makes it impossible even in principle for
random searching to explore the space in any useful amount of time.

We envision the following characteristics for “leaps”. They will produce rel-
atively large changes from the current state, frequently “land” in “useful” final
states, utilize previous discoveries of successful strategies, be closely coupled to
evaluative, reflective and directive processes that result in the depreciation or
elimination of unsuccessful results and the reinforcement of interesting ones,
and be strongly context-dependent.

We suggest that generative processes in OC systems are likely to be based
on the “modularity” of the higher-level processes and structures that the
system knows so far, and perhaps even more particularly to be based on
the representations of those processes and structures. Biology seems to take
advantage of modularity to achieve many of those characteristics that we
desire in our artificial systems. Deem [23] has described biological modularity,
as well as the hierarchy of complexity that accompanies it, as follows.

A modular structure to the molecules of life allows biological infor-
mation to be stored in pieces. The existence of this modularity means
that evolution need not proceed just by changes of one base of the ge-
netic code or movement of one atom or amino acid at a time; rather,
functional units can be exchanged among living organisms. For exam-
ple, [. . . ] proteins often comprise almost independent modules, and
the genetic information that codes for those modules may be trans-
mitted through evolution. The modular structure of proteins is hi-
erarchical, with identifiable elements at the levels of atoms, amino
acids, secondary structures, and domains. Hierarchical elements con-
tinue through the levels of proteins, multiprotein complexes, pathways,
cells, organs, individuals, and species.

Thus, one way to produce both meiosis- and mutation-like generative pro-
cesses is to mix previously-created and relatively high-level functional units
in new ways (perhaps by rearrangement or reuse in a new internal context),
because existing functional units embody known successful strategies. The re-
sults of such operations with higher-level units of the system hierarchy not
only provide methods for expansion of the system’s possibility space, but do
so in a way that ties to methods of building new descriptive terms based on
existing ones. Another way to understand the potential of modularity is to
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recognize that the building processes that continually rebuild and renew the
system’s components and structures are also in a sense modular, with vari-
ous entry points depending on context. This means that these same processes
can be recombined in new ways using a context-dependent combination of
sequences of entry points.

One potentially valuable way to model these effects may be the class of
small world effect models currently studied in network science [84, 2]. These
models are used to study the impacts of having local neighborhoods of links
interspersed with a few long links.

Modularity-based approaches are likely to be much more efficient than
those that modify or combine low-level processes and structures. If given suf-
ficient resources, searches based on low-level components will certainly eventu-
ally discover not only the same “reshufflings” and “leaps” as modular schemes,
but potentially much other useful information as well. However, we contend
that approaches based on low levels of a system’s hierarchy will generate many
more unsuccessful proposals because they largely ignore the knowledge of the
possibility space and trajectories through it that are represented by previous
successful discoveries embodied in the modules.

Since search processes need a space to search in, part of the problem here
is to construct that search space in a sufficiently flexible way to also allow
sufficiently fast searching. We specifically do not use the term “efficient” here,
since efficiency is the opposite of the robustness we want the system to exhibit.
The modules themselves are like safe regions; that is, safe configurations with
local allowable variation. The combination of modules is a way of combining
disconnected safe regions in the possibility space for constructing a search
space.

We have been discussing the advantages of modularity; this is one of the
chief legacies that biological systems get from their evolution. That is, there
will be many side-effects that are at best neutral or, as in the case of ge-
netic mutation, largely deleterious. It takes a special narrow combination of
constraints and coincidental events to show the benefits of an effect. One of
the ways that a biological system benefits from being a member of a family
of biological systems is the leverage of many failed possibilities being con-
strained away before it comes into existence. Many of the partial structures
and properties of the biological system are in fact the embodied memory of
these constraints now physically imposed by genetics, the structure of its phys-
ical and cognitive components. We as the human systems engineer working
with the developing OC system will play the role of evolution through sim-
ulation and our experience across families of like systems. Providing some of
this experience base and the constraints is in fact one of the chief jobs of the
systems engineer for OC systems.

The ability of an OC system to create its own languages and represen-
tations is an important key to achieving the efficiency of modularity-based
generative processes in part because these internally-produced symbols can
be exchanged with other processes and structures both within a single system
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and across multiple realizations of a system. Such exchanges of symbols in
effect disseminate the knowledge of processes and structures that have been
proven to succeed in at least some part of the system’s possibility space, a
point to which we will return in section 3.3.4.

All types of generative processes that we advocate are powerful tools for
building adaptive systems, but they are not themselves sufficient to produce
adaptability, robustness, opportunism, and other biological-like characteris-
tics that we want in OC systems. The results of these generative “experi-
ments”, both those operating within a search space and those violating its
boundaries, must be measured and then evaluated in terms of the symbols
and languages known to the system (section 3.3.2).

The system and its engineers must also be able to reflect on the results
of measurements, comparing them to models of internal operation and exter-
nal context. These comparisons involve the critical (and difficult) ability to
compare models and results on the fly, adjusting the models to fit new, and
especially novel, results. In addition, the capability for reflection (which takes
place at many levels of the system hierarchy) is needed to identify possible
responses and project their consequences into the future. At any given time,
the system must choose how it will respond. We call this “direction.”

Coupling generative processes to instrumentation, evaluation, reflection,
and direction in a strongly permissive milieu gives the system an ability to
actively experiment (section 3.3.4) when the resources to do so are avail-
able. We contend that generative processes play an essential role in enabling
effective active experimentation, and conversely, devising and evaluating ac-
tive experiments is essential for the creation of effective generative processes.
Therefore, because of these mutually enabled roles, we believe that research on
strategies for designing these processes is essential to progress in engineering
OC systems.

A final challenge related to developing generative processes is that, in ad-
dition to supplying the original generative processes, the raw materials which
they manipulate must be built as part of the engineering process. We make
no assumptions here about where these beginnings come from, but we expect
that a lot of it will be imposed from the outside, by the designers, who will
be making decisions concerning the raw materials, initial conditions and pro-
cesses, basic symbols, evaluation and validation criteria, and other starting
points.

3.3.2 Instrumentation and evaluation

The traditional block diagram view of a control system as shown in figure 3.1
implicitly assumes the ability to measure values of the reference input, actu-
ating signal, manipulated variable, controlled variable, and feedback signal.
The instrumentation for these measurements is implicit in the diagram, since
each block uses one or more of these variables as its input. In this section we
consider the challenge of implementing appropriate instrumentation in OC
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Fig. 3.1. Feedback control system block diagram

systems, where the system will need to adjust and even perhaps create its
instrumentation in response to its changing processes, structures, symbols,
representations, languages, models, and context. We also consider the closely
related challenge of evaluation, which is the capability to use measurements
obtained from the system’s instrumentation, together with models of its state
and trajectory, to achieve its purposes and goals.

Although the approach represented in figure 3.1 has supported an immense
body of successful engineering analysis and design, the sense of simplicity and
comfort we perceive from these successes is tempered by the knowledge that
some engineered systems demonstrate complex and challenging phenomena
such as bifurcation, chaos, and emergence. One of the goals for OC systems
is to enable our engineered systems to recognize and, where possible, make
use of these phenomena to achieve their purposes and goals. We are thus led
to the questions of what to measure and how to measure in order to give our
systems the information that enables this capability.

These instrumentation questions are not unique to OC systems. In fact,
they resemble both theoretical and experimental challenges in physics having
to do with modeling and measurement of systems that are discrete at the
lowest scale but also have average effects at higher scales such as pressure and
temperature that are usually sufficient to describe the collective behavior of
a large number of these discrete elements in a particular region. Pippard [74]
has captured one version of the physicist’s view as follows:

Can it be that the systematic reduction of complex processes to their
basic constituents, obeying laws of marvelous simplicity, has left us
with a body of knowledge whose usefulness is rather problematical?
It has been the habitual claim of physicists that they could make
predictions whose verification underpinned the laws and conferred on
science a validity that no other branch of learning could aspire to.
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Was this a delusion? Of course not, but the claim may have been
overoptimistically expressed.
It was always recognized that complexity might preclude detailed pre-
diction — no one ever hoped to follow the motion of each molecule
in a gas. But long before statistical mechanics provided a theoreti-
cal foundation, it was clear that the average properties of pressure,
velocity, temperature, etc., obeyed quite straightforward laws of ther-
modynamics and hydrodynamics. Straightforward though they were,
the equations expressing them were still capable of yielding highly ir-
regular solutions, and this time there is no molecular complexity to
explain turbulence away — it is intrinsic to the equations. This should
have been enough to alert us to the potential in almost any non-linear
differential equation to surprise us by the diversity of its solutions.

The difficulties of predicting physical phenomena such as phase transi-
tions and the turbulence transition in fluid flow, and especially the challenge
of recognizing such changes in global behavior in real time from a set of local
measurements made inside the medium, give us a concrete analogy for consid-
ering instrumentation and measurement in the context of complex systems,
and particularly in OC systems.

Basically, we need to answer two questions: “How much instrumentation
or information is good enough?” and “What kind of instrumentation or in-
formation is good enough?” In the examples that phase transitions and fluid
dynamics demonstrate, instrumenting every process and structure down to
the equivalent of the discrete molecules in a fluid does not necessarily ensure
that our instrumentation or the information it produces is “good enough” in
the sense that we can link it to useful descriptions, parameterizations and
models, and, ultimately, to purposes and goals, even when the “molecules”
have fixed properties.

Instrumenting everything is also not a useful approach for other reasons.
For example, too much instrumentation may fundamentally alter what we
instrument, or the instrumentation and measurement may consume so much
of the available resources that it overwhelms the capability to process it,
meaning that it is impossible to make use of the resulting data. For example,
in wireless networks, as the number of mobile nodes increases the messages
tracking their location can overwhelm the capacity of the network, precluding
its ability to accomplish its goal of transmitting content messages.

Also, if we measure all the details then we need models at the same level
of complexity. (Otherwise we might as well focus our measurement efforts on
determining averages at appropriate scales.) Our notion of “particularity” is
useful here. The enormous amount of detail that can be relevant in a complex
dynamic environment for any system means that the system needs a lot of help
in observing and describing it. Any proposed modeling method will suffer from
the complete inability to reach a “critical mass” of information until there is
enough descriptive detail, since the important interactions may include what
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would otherwise seem to be minor effects, but which can sometimes combine
to be dominant. However, the more detailed the model the more information
it may require before the remaining uncertainties are small enough that the
results are useful. What this means to us is that the system that is attempting
to survive in and interact with its environment needs multiple methods in
addition to multiple resolutions for describing it, and that verification and
validation are essential (i.e., every hypothesis is tested, and every conclusion
is provisional).

In fact, because there are very good higher-level continuum models that
are almost always adequate for describing the overall state and trends of the
system’s operation, it seems far more useful to implement almost all instru-
mentation at levels of the system’s hierarchy that inform these “continuum”
models. This leaves the question of how to recognize those cases where these
models are inadequate, which we address by implementing and exploiting the
use of reflection and situational awareness, a topic to which we return in sec-
tion 3.3.3 and 3.3.5. Notice how this instrumentation and these models will
correspond to modules.

Another way to approach the question of designing instrumentation is to
ask if there are characteristic scales that are especially significant for recog-
nizing emergent phenomena. Again, to take the physicist’s view,

We know now that the invisible hand that creates divergences in some
theories is actually the existence in these theories of a no man’s land
in the energy (or length) scales for which cooperative phenomena can
take place, more precisely, for which fluctuations can add up coher-
ently. In some cases, they can destabilize the physical picture we were
relying on and this manifests itself as divergences. [24]

This conception that there may be some appropriate scale at which emer-
gent phenomena first become significant gives hope that it could be possible
to build instrumentation that identifies at least some emergent phenomena.
Additionally, the modularity-based approaches we have suggested as a basis
for generative processes may be helpful in addressing this challenge. As gen-
erative processes develop new possibilities for the system they in effect “pa-
rameterize” their descriptions of those possibilities to give new higher-level
descriptions that are exactly correlated with useful regions of the system’s
possibility space, and include to some degree this sense of scale. From this
view, the challenge of instrumentation can be restated as how to describe the
disjoint regions of possibility space that have been found to be interesting,
and how to represent the possibilities within each of those regions. Just as
generative processes offer enormous advantages for simplifying the process
of finding “good enough” strategies quickly, we suggest that instrumentation
that is linked to the structure of the system’s evolving set of possibilities will
leverage the same simplifications.

Linking instrumentation to the modularity of processes and structures is
particularly significant in the kinds of OC systems we are advocating because
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their processes and structures are not fixed. Unlike the clearly delineated
blocks, interface protocols, and variables of the system in figure 3.1, we ex-
pect that OC systems will have multiple and interacting processes using and
affecting the same measured variables, precisely because these variables are
linked to the structure of the system’s possibility space. Thus, in OC systems
as in biological ones, the same variables may be used in multiple models at
various scales of resolution (levels of the system’s hierarchy). Since we ex-
pect that OC systems will be used in changing contexts, they will also face
measurement challenges related to resolution and dynamic range, as the re-
quired granularity of analysis depends on the operating context. It is therefore
necessary to consider very carefully the problem of how the system gains its
knowledge of internal and external events and processes, which leads us di-
rectly to instrumentation issues.

Instrumenting an OC system is in our view especially challenging because
it is critically interdependent with the capability to continuously evaluate the
measurements produced by that instrumentation. However, we see opportu-
nity for addressing these very significant questions in both this interdepen-
dence and in the biological paradigm of introducing processes that create
structures. The layered hierarchy and leaky, overlapping processes and struc-
tures of biological systems, together with the foundational concept that the
system’s structures are built from processes rather than being fixed for life as
in figure 3.1 means that the system has the capability to adjust its instrumen-
tation, or even to create new instrumentation, in response to changing needs.
That is, such an approach satisfies the need for multiple descriptions coupled
to verification and validation.

Such self-modification of instrumentation requires the capability to evalu-
ate the available data to determine the system’s position and trajectory within
its possibility space. More specifically, we must invent new types of models
that are able to continuously accept measurement data, identify and rank
the importance of sources of uncertainty, and propose changes to the instru-
mentation that can reduce those uncertainties. This concept of dynamically
integrating instrumentation and evaluation has been considered in the NSF
Dynamic Data Driven Applications Systems (DDDAS) program.

DDDAS is a paradigm whereby application/simulations and measure-
ments become a symbiotic feedback control system. DDDAS entails
the ability to dynamically incorporate additional data into an execut-
ing application, and in reverse, the ability of an application to dynam-
ically steer the measurement process. Such capabilities promise more
accurate analysis and prediction, more precise controls, and more re-
liable outcomes. The ability of an application/simulation to control
and guide the measurement process, and determine when, where and
how it is best to gather additional data, has itself the potential of en-
abling more effective measurement methodologies. Furthermore, the
incorporation of dynamic inputs into an executing application invokes
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new system modalities and helps create application software systems
that can more accurately describe real-world complex systems. This
enables the development of applications that adapt intelligently to
evolving conditions, and that infer new knowledge in ways that are
not predetermined by startup parameters. [22]

The phrase “adapt intelligently” is significant here because it ties the changes
in the system to purposes and goals. Thus, a strong guiding principle for
instrumentation is that it supplies information in terms of representations of
the state of the system that can be related to purposes and goals. It is this
relationship of instrumentation, representations and models to purposes and
goals that allows the system to evaluate their effectiveness and make choices
of alternatives and refinements.

To summarize, we believe that we need to develop new types of models
that support evaluative methods and processes for the OC system and the OC
system engineer to shape, control, divert, and correct the generative processes
through reflection on the information produced by feedback and instrumenta-
tion. We expect that multiple measurement and evaluative processes will be
in operation at all times at various levels of the hierarchy of an OC system.
Then reflection is used to analyze the effectiveness of the system’s own pro-
cesses in context, by continuously comparing these evaluations with models
to estimate possible trajectories in the system’s possibility space, ultimately
resulting in the system choosing some combination of actions or directions
that are expected to support achieving its goals and purposes.

3.3.3 Reflection and direction

Like others, we [49, 50] have argued that self-perception and self-monitoring
are critical features for goal-oriented autonomous systems in order for them to
move around their environments. In other words, one can imagine designing
an organism or a robot with bumper-car feedback that hits a wall and stops or
turns. In many ways, that can suffice for certain types of simple activities in
very constrained environments like a room with four rectangular walls and a
hard floor. But even in elementary creatures, such as crabs, lizards and cray-
fish, we see much more sophisticated adaptive mechanisms [13, 83]. Animals
are very competent at knowing how high they can leap, how fast they can run,
and what hiding places they can enter. This knowledge is only partly about
their own capabilities, but more importantly about how their capabilities map
into their environment. As Churchland said [18, page 74], “self-consciousness
on this view is just a species of perception [. . . ] self-consciousness is thus no
more (and no less) mysterious than perception generally.” He goes on to em-
phasize the considerable variety of “self-monitoring” [p. 185] that occurs at
different levels. Recognition and perception of what is “oneself” and what is
not oneself are difficult processes, but we readily can identify their occurrence
in a number of biological systems, from single cells in immune systems [73] to
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mammals. It is easy to imagine mechanisms that could make those perceptions
available to higher level and more cognitive systems.

Self-monitoring capabilities are not the same as “self-reflection”. For exam-
ple, the means to monitor internal state and respond to that internal state are
available to a thermostat. Ironically, although we have indisputable evidence
for self-reflection in humans, our most concrete definitions of self-reflection ca-
pabilities come from the world of computer programs. Patti Maes [65] defines
reflection as “the process of reasoning about and/or acting upon oneself.”
Practically speaking, in computers, computational reflection means having
machine-interpretable descriptions of the machine’s resources. We have found
in our approach [42] that it is extremely useful to have not only state in-
formation available but also general meta-knowledge about the limitations
and required context information for all the system’s resources. There are
then processes that can act on this explicit knowledge about capabilities and
state in order to better control the system in its performance and mainte-
nance [12, 42, 45]. It is clear from Damasio’s discussions [19] that he is think-
ing of his “third type of image” as being available for both self-monitoring
and self-reflection in a sense compatible with the ideas described here.

The engineering challenges we have considered so far will give us systems
that discover new options (generative processes), and also measure and model
their current state (instrumentation and evaluation). The next challenge that
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we consider is how to implement processes that generate, identify, and evaluate
possible responses based on the system’s reflective capabilities. These reflective
capabilities will explicitly reason about what relevant information and what
relevant resources the system currently has, the effectiveness of the current
strategies and approaches to reaching goals, and the current shortfalls in both
capabilities and information. Then other processes can, DDDAS-like, task
sensors to collect additional information or creatively use combinations of
existing resources, or replan current approaches.

As we have discussed in the previous section, our proposed OC systems
implement instrumentation and evaluation at multiple resolutions in possibil-
ity space and in time and at multiple levels of their hierarchy, and reflection
and direction must be implemented over these diverse scales as well. To use a
biological analogy, reflexes supply rapid responses in situations that are likely
to be critical to an organism’s survival. Our systems will undoubtedly need
this same “rapid response” capability, as well as a means to identify the con-
ditions that should trigger these responses. At the same time, just as with
biological systems, OC systems will need to adjust their original responses
as they obtain and evaluate more information. This continual reflection at
different time scales and levels results in multiple responses to a particular
situation. In addition, these responses may have different levels of complexity
and sophistication, as well as being operative over different time scales.

A fully reflective system has processes that collectively and cooperatively
manage all of the resources, including the models, processes, and their interac-
tions; it has processes that manage all of the interactions, including system to
environment and resource to resource, at multiple time, space, and conceptual
scales; and it has processes that manage all of the models, including those of
the environment, the resources, and their interactions [61]. These processes
are illustrated in one way in figure 3.2, and again in figure 3.3 on page 57.

The reflective capabilities provide a great deal of the information and pro-
cesses that will be needed by the human developers for their monitoring and
evaluation of the OC system, including relatively detailed models of what the
system perceives and knows about its goals, state, environment, and options.

3.3.4 Active experimentation

Traditional engineered systems are designed to respond to changes in condi-
tions, but biological systems exhibit a much more active style. For example,
engineered systems often take advantage of relatively stable conditions by
shutting off many of their subsystems to conserve energy. Biological systems,
on the other hand, present a much more complex approach to the utilization
of their resources: they devote some of their capacity to actively experiment
with their environment, their capabilities, and their limitations. That is, bi-
ological systems perform a much more complex overall optimization strategy
in choosing how to respond that recognizes the potential of self-modifying
systems to find new or alternative strategies that expand its possibilities so
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that it will have more options in the next “emergency”. Also, if the system is
already active, it may have some operating processes that can be adjusted to
provide a very rapid response while other capabilities are recruited and the
overall response is adjusted on a longer time scale. That is, if the system is
already active, it doesn’t have to start its response from scratch.

Active experimentation can be seen in part as a calibration effort in the
sense that the system chooses to repeat previous actions in what it hypothe-
sizes are similar conditions, or to perform similar actions in what it hypoth-
esizes are the same conditions, evaluating the results in order to search for
correlations and differences. Such active experimentation also provides oppor-
tunities to test the limitations of capabilities in safe situations (e.g., animal
play) so that emergency responses can whenever possible be accomplished
within those limitations.

Another use of active exploration is to improve models of the local condi-
tions. Examples of this type of active exploration are well documented in the
ethological literature, where an animal essentially moves randomly about its
environment, discovering and building a cognitive map of features of that en-
vironment that are relevant to its size, abilities, etc.. These features can later
become vital for rapid responsiveness. For example, we may observe that a
lizard darts into a hole at our approach. The speed of this response is possible
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because of the lizard’s prior knowledge of the location of the hole and that it
is of appropriate size and shape for a refuge.

In another application of active experimentation, which we have called con-
tinual contemplation, the same approach is applied to the mapping and orga-
nization of the internal states and capabilities of a system. We have previously
described continual contemplation as “continual exploratory data analysis not
only on external or domain knowledge introduced to the system through sen-
sors or data sources, but also continual exploratory data analysis on the sys-
tem’s own state and its own use of its resources as it attempts to support user
requests and to solve problems.” [9]

Finally, active experimentation can be applied to all levels of system pro-
cesses, up to and including its language and reasoning levels. These experi-
ments make use not only of its own capabilities, but artifacts that it may have
built in its environment. For example, human beings are using computer sys-
tems to expand our possibility space by leveraging the particular capabilities
of computers to perform certain kind of operations faster, more uniformly, or
more often than we do.

Each of the previous engineering challenges yields system capabilities that
are utilized in active experimentation: the permissive application of gener-
ative processes, the ability to measure and evaluate in new ways, reflection
that gives the system access to its own structure, language processes that
can express and interpret new models, variables, and control strategies, and
the ability to implement multiple responses at various scales and hierarchical
levels. Biological systems seem to demonstrate that using these capabilities
even when they are not immediately needed to respond to current conditions
has long-term advantages. That is, the potential future efficiencies gained
from discovering alternative strategies, testing correlations and limits, map-
ping and synthesizing information on local conditions and system capabili-
ties, and shaping operating processes rather than starting new processes in
response to an emergency all seem to give biological systems an overall benefit
that outweighs the additional expenditure of resources.

3.3.5 Situational awareness and context modeling

Because reactive planning and response is not always fast enough, the system
can gain a great advantage by advance planning. It must be remembered that
almost all advance planning is not used, although it is clearly not useless
because planned and rehearsed responses are much faster than new reactions.
This means that a lot of advance planning is needed, much more than reactive
planning, with the corresponding advantage in viability. However, in order
to do advance planning, it is necessary to construct rich enough models of
the “niche” for the system, or in our case, the operational context of the
performing OC system. Because the OC system is not really built from the
dynamics of the world, but through our view of it, it is not sufficient only
to give it models and model-building capabilities based on our current view
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of the environment and the composition of the system. Rather, the system
will critically depend on the instrumentation we discussed earlier, as well
as reflection, evaluation, and active experimentation capabilities that test the
adequacy of its models within the current environment. One of the challenges,
clearly exemplified by von Uexküll’s story of the crab discussed earlier, is
that under different modes of operation and with different goals, the same
environment may in fact mean very different things.

Thus the context models for the operational environment are not com-
pletely predetermined but must rather be constructed with more attention
paid to those parts of the environment needed for a given activity and with
the appropriate “hooks” for monitoring the essential parameters determinable
from that particular environment and relevant for the system at that time.
In other words, as part of an action plan in its operational environment, a
system will be dynamically recruiting not just the components to do things,
but also the sensors that can provide the feedback, the analysis processes that
can assess the feedback within its operational context, and the processes that
reason about the feedback for its implications on the world and on the goals
or performance of the system.

3.4 Representation and language

The ability of a system to use representations or even systems of representa-
tions, such as language, provides enormous advantages to the system in its
capabilities. As we will show these advantages are so profound that one sees
the use of representations occurring very very early in the development of
living organisms. In this part of the chapter, we will first describe this early
development of representation in biological systems, and then relate the use
of representations and language to several critical capabilities within an OC
system, e.g., representing goals and negotiation with other reasoning systems.
In the last part of this section, we will describe how an OC system might
start to build up its own set of representations and meaningful terminology,
drawing on early work in Artificial Intelligence and describe why these ca-
pabilities are so critical to allowing us, the developers and users of an OC
system, to continually monitor and shape the behavior, goals, and results of
an OC system.

3.4.1 Representation in biological systems

It has not been widely appreciated in the computing community until recently
just how complex biological systems are [4, 13]. In this subsection, we replay
a compelling (at least for us) argument [10] that representations are the key
to biological flexibility, and that they occur starting with the very smallest of
animals.
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Earlier, we presented evidence that unicellular animals have a rich reper-
toire of behaviors resulting from the coordination of body parts and internal
structures. This internal coordination requires communication among the in-
ternal structures. Tomkins’s [82] model of biological regulation assumes the
use of internal symbols in unicellular and multicellular animals. If we ignore for
a moment the biochemical details, his argument on the evolution of biological
regulation is elegantly straightforward: even “ancient molecular assemblages”
possessed cellular properties capable of self-replication. Nucleic acid and pro-
tein synthesis are endergonic reactions; hence primordial cells were required
to capture energy from the environment. However, changes in the environ-
ment that diminished the supply of monomeric units necessary to polymer
synthesis or altered the formation of adenosine tri-phosphate (ATP, an essen-
tial component of energy management and metabolism) were probably lethal.
Therefore, survival would require regulatory mechanisms that maintain a rel-
atively constant intracellular environment.

Tomkins divides this biological regulation into two modes. In simple regu-
lation there is a direct chemical relationship between the “regulatory effector
molecules” and their effects. As examples, he cites enzyme induction, feedback
inhibition of enzyme activity, and the repression of enzyme biosynthesis. The
critical point here is that in simple regulation, the control of the internal envi-
ronment is tenuous at best, since the regulatory molecules are themselves im-
portant metabolic intermediaries. Therefore the animal’s internal environment
is still closely tied to the availability of essential nutrients. In complex regu-
lation, there are metabolic “symbols” and “domains”. To quote Tomkins [82,
page 761], “The term symbol refers to a specific intracellular effector molecule
which accumulates when a cell is exposed to a particular environment.” As
two examples, he cites adenosine 3’5’- cyclic monophosphate (cAMP), which in
most microorganisms is a symbol of carbon source depletion, and guanosine 5’-
diphosphate 3’- diphosphate (ppGpp), which is a symbol of nitrogen or amino
acid deficiency. Importantly, “metabolic symbols need bear no structural rela-
tionship to the molecules that promote their accumulation in a nutritional or
metabolic crisis ... cyclic AMP is not a chemical analog of glucose.” [82, page
761] Tomkins also points out that metabolic lability is another attribute of
intracellular symbols that allows their concentrations to fluctuate quickly in
response to environmental changes. However, note that this lability is different
from the troublesome lability of the simple regulation mechanisms. In the case
of simple regulation, since the regulatory molecules are themselves metabolic
intermediaries, they (and hence the internal environment) will fluctuate in a
direct manner according to the supply of external nutrients and conditions.
However, in the case of complex regulation, the symbols will respond rapidly
to the external environment, leaving protected for some time the metabolic
processes they control. This protected time is exactly the time in which the
organism has the chance to make some adaptive response to the environment
(e.g., swim away from the carbon-depleted region), and this, it turns out, is ex-
actly what bacteria do. For example, carbon-starved Escherichia coli develop
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flagella, which allow the bacteria to be motile; cAMP is critical to the devel-
opment of flagella. By incorporating a symbol “level” the animal gains time
in which it can protect its metabolic processes from external conditions. In
Tomkins’s examples of the necessity of cAMP to the development of flagella
in E.coli, we see that the effects controlled by the symbol are not all metabolic
but also include adaptive behavioral responses that will protect the metabolic
processes. He also points out that many symbols may share in the control of
a given process.

Later he extends his argument from single cells to multicellular animals
and uses the slime mold, Dictyostelium discodium, as a model of transition
of intracellular symbols to intercellular symbol use. In the slime mold, the
cells exist as independent myxamoebas until starved. At this point, cAMP
accumulates in the cells, similarly to E.coli, as a symbol of carbon depletion,
but unlike E.coli, it is also released from the cells into the external medium
where it acts as the attractant that causes myxamoebas to aggregate into one
multicellular slime mold. As Tomkins states [82, page 762], “Cyclic AMP thus
acts in these organisms both as an intracellular symbol of starvation and as a
hormone which carries this metabolic information from one cell to another.”
But, as noted earlier, cAMP is labile and therefore, Tomkins argues, is not
suitable for the long distance required for intercellular communication in large
metazoa. He proposes that hormones, more stable chemical compounds, took
over the role. As he emphasizes, the process in intercellular communication
always begins and ends in the internal primary codes of individual cells.

Just as in the case of internal communication processes of unicellular ani-
mals, the intercellular communication processes of multicellular organisms are
symbol-based. Note how these internal communication processes, in both uni-
cellular and multicellular animals, make possible behavior or coordinated goal-
directed movements. Movement is fundamentally a cooperative phenomenon,
requiring communication among the organism’s parts. As we saw in the ex-
ample of motility in E.coli, even the most primitive movement is controlled
and mediated by the use of symbols.

In other words, in the unicellular animal, we have a collection of symbols,
like cAMP, which together with the way they affect the processes under their
control and the way this collection of symbols affect each other, constitutes a
primitive brain without nerves. This primitive brain without nerves is elab-
orated in multicellular animals in two ways. (1) The labile symbols of the
unicellular animal are replaced by hormones, which are more stable chemical
symbols, and by nerves, which provide more specific routes of information
than chemical diffusion. (2) Layers of symbols develop to the point that “do-
main” (in Tomkin’s sense) becomes not a set of body processes but rather a
set of brain processes.

As stated in [10, page 918],

An increased use of symbols disassociates the intracellular processes of
unicellular organisms from the environment. This means that an event
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which occurs in the receptive space of the organism does not produce
an immediate response. What it produces is an internal reaction that
symbolizes the event in the environment. These symbols of external
events then become part of the internal processes of the organism. The
more an organism has the ability to symbolize external events and the
greater its capacity to manipulate those symbols internally, the more
it is freed from non-adaptive, direct responses to fluxes in the energy
and matter surrounding it. It begins to have the capability to organize
delayed actions, which give it the freedom to plan, simulate, and act
when its own internal processes deem it appropriate; such actions can
take place at greater and greater distances in time and space from the
initial external event.

This “disassociation” is critical to representation, but also to the reflective
processes described earlier. The separation enabled by the disassociation of
symbols allows the time and the freedom from external “realities” within
which the system can essentially “simulate” or do what-ifs and other types
of reasoning about possibilities, e.g., different behaviors, different contexts,
different results, before committing itself to the actual energy to perform
actions.

Clearly, there is a careful and context-dependent trade-off between the
timeliness of rapid responsiveness and the timelessness permitted by repre-
sentation for reasoning and reflection. Biological systems typically begin to
address this trade-off by taking advantage of the multiple layers of their re-
sponsiveness; while some layers of a system are doing immediate actions, other
layers are doing longer term reasoning processes. This is clearly seen in the
crayfish emergency “tail flip”, which is one of the most rapid responses known:
it is just 10 ms from the stimulation of the flight response to an undirected flip.
Meanwhile, a slower system within the crayfish is carefully figuring out a tra-
jectory for swimming away from the possible threat that led to the emergency
response.

This trade-off between timeliness and timelessness is also seen in the gen-
erative processes, discussed in section 3.2.3.2, where reasoning and reflection
are part of the system’s ability to assess and alter its rapid construction and
maintenance of current configurations or assemblages of components. That is,
the generation of assemblages does not have to be perfect, but rather because
of adaptive processes can be generated and then fine-tuned rapidly, depend-
ing on the changing circumstances and changing needs of the system. These
adaptive processes clearly require reflection and reasoning. This point is espe-
cially relevant to “substitutability”, which is the ability of a system to rapidly
adapt by changing the processes and structures used to accomplish a given
purpose or goal.

This brings us to the key topic of representing purpose, goals and meaning
in OC systems. These terms are not intended to imply anything about con-
sciousness or even awareness on the part of the OC system. Rather, through
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explicit or implicit means the system must represent goals in order to evaluate
the results of actions.

3.4.2 Purpose, goals and meaning

Part of the adaptive behavior of biological systems is seen in the sophisticated
capabilities that animals have for developing and encoding “meaningful” rep-
resentations about their environment and their own states, and for developing
processes using these representations to plan actions that achieve desirable
states. These “desirable states” will always be situated. In other words, they
will always include a combination of features in the world in relationship to
features exhibited within the biological system. For example, in Tomkins’ ex-
amples above the feature of carbon availability in the external world was being
represented in single-cell animals, as well as their own state of energy avail-
ability. These desirable states are the lowest level of “purpose” and “goals”,
and as pointed out in the section above, like other representations can be-
come increasingly separated in time and space from external events. That is
they can become increasingly “abstract”, and with abstraction, impact more
diverse parts of the total system.

Animals show sophisticated abilities to represent and process the actions
needed to support diverse goals. One such ability is to satisfy multiple goals
with a single course of action. This is called merging and was studied by one
of the authors because of its possible use as a source of variation to help
explain the amazing flexibility of responsiveness in biological systems. But it
also has profound implications for the underlying adaptive decision processes
available to animal systems and the way that goals are represented. One of
the consequences of merging is that there can be multiple goals for any action
and multiple actions for any goal. A given instance of behavior can reflect
several motivations and work toward several goals at once.

Contrary to the usual emphasis in behavioral studies, in which an an-
imal must choose between mutually exclusive acts, an animal in nature is
rarely in the situation where it must engage in one behavior to the exclusion
of other behaviors. Rather, an animal’s movement frequently shows “behav-
ioral merging”, in which several motivational goals and action patterns are
combined into one coherent pattern. In studying the merging of feeding and
aggression behaviors in the lizard [4], an animal noted for the rigidity of its
behavioral patterns, Bellman found that when elements of feeding and aggres-
sion conflicted, other elements were selected and substituted, so that, overall,
both feeding and aggressive patterns were combined into one fluid behavioral
sequence. The behavioral sequence resulting from merging points to a particu-
lar type of flexibility in a movement system. A specific movement pattern can
subserve a number of goals. If this is so, then a specific movement pattern is
not necessarily linked to one goal any more than to any other goal (although
there may be some kind of weighting, so that a given behavior is most often
associated with one particular goal). This implies that a movement is not
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“released” as a necessary consequence of the occurrence of a particular mo-
tivational goal; rather it is “recruited” to serve that goal. Furthermore, from
behavioral merging, we see that a whole action pattern need not be recruited
but only those elements best fitting the circumstances.

Clearly, these abilities have advantages both in terms of expended effort
and in terms of rapidity of response. However, as in many other qualities of
biological systems, it is efficiency of a peculiar type. It is highly efficient in
allowing future adaptiveness and in robustness, but not efficient or optimal
for any single given set of actions. Part of the reason for this style of efficiency
may have much to do with the type of complex multi-criterion optimization
within a rapidly changing environment required by biological systems. That
is, in conventional man-made systems, which are engineered to optimize their
performance within carefully specified environments, one can develop planning
processes that optimize the performance given a fairly fixed set of criteria.
The emphasis can thus be on the efficiency of the fixed course of action. In
biological systems, and in the systems we are trying to invent in OC, the
complexity of the system’s interactions and requirements and the changing
environment require an emphasis on the ability to rapidly adapt and hence
to change course or replan. This adaptiveness requires all sorts of properties
that in single-purpose systems are redundant or excessive.

We have already noted in this paper many capabilities which support
the ability of a system to change course and replan, including generative
and opportunistic processes, reflection, and active experimentation. However,
in order to develop appropriate evaluation methods for choosing the best
solutions among combinatorial possibilities and to deal with the synthesis
of the information we will have in the necessarily explicit models of an OC
system, we will also need many new ideas on what we mean by optimization or
even satisficing in these systems. As difficult as it will be to represent goals,
it is even more difficult to state the evaluation criteria that will determine
“goodness” and “fitness” for the OC system.

One shift will be away from any long-term or overall optimization or satis-
ficing and toward strategies of local and short-term optimization with methods
designed to rapidly capture and summarize the wide-spread impact of deci-
sions. Having layers of relationships will help because small continuous change
at one layer can have much wider and diverse impacts that can be monitored
for from the standpoint of different levels of recruited modules.

It should be noted here that adaptation is not like optimization, and is not
usefully implemented by optimization. It is always just satisficing, not opti-
mizing, and usually the time constraints on decision making mean that even
formal satisficing is not possible either, so some combination of experience
and guessing is needed.
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3.4.3 Negotiation with other reasoning systems

So far we have been emphasizing the importance of representations in the
ability of animal systems to regulate themselves and then as a continuation
of that self-regulation, to represent and reason about their goals and to adap-
tively plan actions in a dynamic environment. As is hinted at in Tomkins’s
examples of the slime mold, the same set of internal self-regulatory symbols
that are used intercellularly to coordinate the actions of populations of cells
can also be, by many mechanisms, made visible to other organisms in order to
coordinate their behavior at the population level. Hence the symbols excreted,
secreted, vocalized, enacted, etc., allow animals to coordinate their mating,
hunting, fighting for territory, learning, and many many other types of needs
for communication and coordination. That the animal kingdom displays such
diversity in the types of symbols, the reasons for symbols, and the mech-
anisms for conveying symbols speaks to the enormous importance of shared
representation in adaptive complex systems. Interestingly, in the animals with
increasingly complex reasoning capabilities there is a correspondingly increas-
ing complexity of communication capabilities, including those displaying the
nuances of emotional state (which contains a wealth of information about the
motivational state and likely goals and intentions) and social needs for nego-
tiation and coordination. It is our belief that OC systems, because of their
complexity and because of our need to monitor and shape their behaviors,
require similarly sophisticated negotiation and coordination capabilities.

As we describe the needs of representation and communication in OC
systems, it is important to note that in a complex system:

• there is a time delay, both for making up or choosing the information
to convey, and for getting the information out; hence the need for some
autonomy, and

• there is often a difficulty in characterizing complex states; think for a
moment of how difficult it is for you, as a human, to describe your unob-
servable symptoms to a medical doctor.

These delays are one source of emergence: if there are arbitrary time delays
in a communication process, or other feedback process, then that process can
exhibit instabilities and emergences. However, communication is so important
to both the individual and the group that there are multiple, overlapping, and
even redundant symbols, representations, and modalities in order to ensure
that critical information is conveyed.

One of the advantages we have in biological systems is the situatedness
of our systems in the physics of the world and the common evolution among
members of a species and even among all mammals. We understand because
we are. Much of our ability to reason from the outside about another human’s
state and meanings has a lot to do with our commonalities as humans. For
example, consider the deep problems that autistics have in communicating
as an example of how even minor human variations can have vast impact
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on our abilities to negotiate and communicate. On the other hand, there are
some vocalizations that, like reflexes, act as immediate emergency responses:
it is a curious feature, especially in mammals, that distress calls and other
broadcasts are occasionally so important that they can be recognizable across
species.

In OC systems we will be building an “alien” system with no shared evo-
lution, with little shared constraining world (the dynamics, etc., will be dif-
ferent), and, potentially, little overlap in our operating environments. As we
develop and use language in an OC system, we might want to consider how to
develop co-evolutionary strategies, recognizing that both we and our systems
will be changed by that co-evolution.

The important question here is how we will create livable systems. We
certainly need to understand how an OC system negotiates with its human
engineers and builds up a common set of symbols, etc., so that its communi-
cation may be understood and its effects will be appropriate. Here there are
two meanings of “livable”: for the system to be able to live in its environment
and for us to be able to live with it. We mean both.

3.4.4 Use of language

An OC system needs to model its surroundings and its own behavior for self-
assessment and self-improvement. Since the designers cannot know everything
about the system’s environment and development, the system will have to
create new models or modify existing ones. It will therefore have to have ways
to assess the efficacy of its models, and change them as it deems necessary.

More fundamentally, the languages in which the models are written may
not be adequate for all development paths, so the system will also have to
create new kinds of models and new languages in which to define them, and
sometimes re-express its older models and processes in the new language.

We write “languages” in the plural because we do not believe that any one
modeling language or paradigm can be sufficient, even in principle, to model
all relevant or important aspects of a complex environment [14]. We therefore
advocate the use of a collection of “little languages”, instead of trying to fit
everything into one big one. Of course, the collection of “little languages”
has multiple underlying assumptions, and this multiplicity requires some in-
tegration process, but we have developed an integration mechanism that is
well-suited to complex system integration, called “Wrappings”, described in
section 3.4.6 below.

We have argued here that the creation and use of language internal to the
system is fundamental to the success of OC systems in complex environments.
The study of this symbolic aspect of systems design and operation is called
“Computational Semiotics”, and it lies at the intersection of the edges of
mathematics, linguistics, philosophy, logic, and computation [43, 44]. It is
about the creation and use of symbol systems by constructed complex systems,
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but we are trying to push it much farther in the direction of interaction with
human language, since the system has to tell us about itself.

A nice introduction to the general topic can be found in [25] (if you can
ignore the intrusions of justifiably annoyed comments about transformational
grammar), with some comparisons to the early writings in language [76] and
philosophy [85, 86]. There are also other approaches based in logic [79] and
computation [70]. Another description from a different viewpoint can be found
in [17].

Our attention to the use of language includes whatever programming or
specification notations are to be used, since they are almost always too precise
for what the designer knows about a system, so they require the designers to
make too many decisions before it is possible to know enough to make those
decisions properly [77].

We intend that the system will help the designers create the language, by
operating for a while, so that the system can know enough to make some good
choices, and that it can present enough information to the designers so that
they can make other good choices.

In the most general terms, we can describe the operation of such a system
as follows:

• system observes external and internal behavior
– developers must provide initial languages
– system use languages to record these observations
– system assesses the adequacy of its own languages
– system changes the languages or invents new ones as necessary
– the process cycles back to the system’s use of languages

• system creates models
– developers must provide initial notations
– system uses notations to record these models
– system assesses the adequacy of the notations
– system changes the notations or invents new ones as necessary
– the process cycles back to the system’s use of notations

• system inherits or creates goals
– developers must provide initial goals
– system reasons about the models in pursuit of its goals
– system assesses the adequacy and consistency of the goals
– system changes or replaces the goals as necessary, according to the

results of negotiations with developers
– the process cycles back to the system’s use of goals

To describe these processes in more detail, and to explain how we expect
these systems to work, we start with our emphasis on context, then proceed
to symbol systems, language, and models. We end with a discussion of our
progress and prospects for OC systems.
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3.4.4.1 Communication and cooperation

A significant aspect of how we will cooperate with our complex computing
systems is our ability to communicate with them and their ability to commu-
nicate with us. To that end, and since we are no longer expecting to design
every aspect of these systems, they will have to be able to use symbols of
their own devising, created to represent some meaning significant to them,
which must also be conveyed to us. There are examples of early artificial in-
telligence systems that generate symbols to represent things that they have
learned about the world and their own internal states [31, 72].

These systems will have to make new models of both their environment
(context) and their internal processes and states, evaluate the effectiveness of
those models, and revise them or build new models again as necessary. These
systems will also have to communicate their internal models to us, so we can
monitor their actions and predict their expected activity to ensure it is in line
with our intentions for the system.

This is why we emphasize the semiotics of these systems; if we can un-
derstand enough about the processes of language formation and use, we can
design systems that will be able to explain themselves to us. To do that, we
need to understand the symbol systems, what they are used for, how they are
defined (whether by the designer or internally), how a system can evaluate
them in the context in which they are being used, and how a system can
change its symbols appropriately and tell us what it did.

3.4.5 Symbol systems and representational mechanisms

We start with a description of our approach to representational systems, and
show how engineered systems can be expected to create and use them.

It may seem as though we are starting from “too far back” in the design
process, namely before the domain is well understood, but in our opinion we
must start there, because the different philosophy on adaptation that we have
developed above requires fundamental changes in the nature of our computing
systems and devices, and the development processes that lead to them.

Besides, it is our opinion that every complex system design process actually
starts (and usually finishes) before the domain is well understood, often long
before, even though that fact is not generally known in advance (though we
claim that it could and should be expected).

For us, a representational mechanism is the same as a modeling mecha-
nism. That is, any computational scheme that derives a computationally ac-
cessible object (or process) to represent some phenomenon of interest (either
external to the system or internal) is a representational mechanism.

The modeling scheme is better if the model is better. The better models
capture more properties of the phenomenon (or at least more of the properties
important to the modeler), and the representational mechanism is better when
it can represent more phenomena of interest to the system.
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There must be processes that identify the phenomena and create the mod-
els, processes that can transport the resulting models in time (memory) or
space (communication), and processes that analyze the models for making
decisions or convert them to other forms for further analysis (translation).

Symbol systems are one kind of representational mechanism, chosen for
simplicity and ease of computation. A symbol system consists of a finite set
of basic symbols and a finite set of combination methods. The analogue is a
phrase-structure grammar with constraints [26].

There may be different types of symbols and structures, and different kinds
of combination methods, but it is important that they be finitary, which means
that each combination method can only combine a fixed number of structures
at each use (each combination method can have various kinds of restrictions on
what structures it can combine, which we take to have the power of context-
sensitive grammars). All structures in a symbol system can be pictured as
finite trees, and the combination methods are ways to combine trees into
larger ones.

The “get-stuck” theorems tell us that the systems need to be able to
evaluate and adjust not only their models, but their basic symbol systems
and modeling mechanisms [53, 47]. Basically, for any given symbol system, we
can compute the maximum number of expressions of each length, and then
argue that adequate modeling of more complex environments eventually leads
to expressions that are too large to process quickly enough: the system “gets
stuck”, and the only way out is to change the symbol system.

We also want to make it very clear that symbol systems are just one kind
of representational mechanism, one that we have chosen because they are easy
to use and analyze, not because they are necessarily the only or even the best
choice for all modeling problems.

3.4.5.1 Language formation

As the system operates in a complex environment, it gathers information
about what choices it has made and what activities it has seen in the envi-
ronment and in its own internal operation. It is our intention to have these
systems create private descriptive language for their own use, and explain
it to their human users. To that end, the systems have to have many more
empirical modeling capabilities than usual. As a first step, one can do very
simple, straightforward syntactic analyses of language and language use [38].
With such methods, we have shown how language formation might occur, with
identifying common or replicated patterns in the structures, the processes, or
in the relationships [48].

Here the system can do some empirical invention. It can accumulate com-
monalities and replications of structure and process, in context. It can accu-
mulate commonalities and replications of descriptions and relationships, and
it can assign symbols to those clusters and recognize them when they occur
again, gradually describing more over time.
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Digital computers can only do three things: move and copy data, compare
data, and interpret limited range models of arithmetic (computers do not do
arithmetic). All of these operations are entirely syntactic. In a sense, we are
trying to make these devices compute with semantics, which means defining
syntactic representations of semantics relationships, and computing up the
meaning hierarchy from data through information to knowledge [39].

For example, there is a kind of abstraction that is part of “continual con-
templation” in reflective systems [46]. Any process or any structure can be
decomposed, the parts abstracted with an attached context of their use in the
combination, and then reassembled and reintegrated computationally. The
parts then become process or structure components that can be put together
in other ways, with other components, according to their Wrappings. This
kind of abstraction occurs very often in mathematics, as proof steps become
methods and sometimes subjects in their own right.

3.4.5.2 Model evaluation

After a system has built models, then it needs methods to assess them, and, if
necessary, replace them. In particular, a system needs to be able to determine
that a model is inadequate.

This process is called model-deficiency analysis, and it proceeds from two
sources of information: intentional goals and observed behaviors, and most
particularly, from places in which the behaviors do not match the goals. These
will be described in terminology that is internal to the system, which also
means that the language used must be adequate to describe them. This is
another force towards development by the system of multiple little languages
and also of better languages.

The notion of allowable variation, when applied to language, means to us
that the system should use several different sets of foundations simultaneously,
that is that the internal languages occur at different resolutions, with different
local contexts and different interactions, so that their efficacy for particular
problems can be compared. This choice is already known to be important
to simulation systems [20, 68], at least at the level of temporal and spatial
resolution. We assert that it is equally important in other domains.

Computational reflection offers important advantages in the evaluation of
models. However, because reflection will explicitly represent system processes
and structures, we encounter an interesting dualism. As soon as processes are
made explicit, they become descriptive structures, and as soon as structures
have interpreters, they become processes. This dual view allows both kinds of
things, that is, both descriptive structures and processors, to be processed in
different ways for different purposes.
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3.4.6 Progress and prospects

In this subsection, we describe what we can do now in terms of realizing
our (admittedly extremely ambitious) concepts for representations, symbol
systems, languages, and model construction and evaluation.

Once we find the right mechanisms, we can implement these systems us-
ing our Wrapping approach to integration infrastructure. Wrappings also pro-
vide several useful notions for implementing and combining the little lan-
guages noted above. The Problem Posing programming paradigm [51] sep-
arates the information service requests in a program from the information
service providers. It is always clear which is intended, and the distinction
is known to the compilers and interpreters of the notation. We have shown
that it applies to programming notations from all of the major program-
ming paradigms: imperative, declarative, relational (constraint), functional
(applicative), object (message), and others.

For example, function definitions are information service providers and
function calls are information service requests. We normally associate the two
by using the same name, but the names are in completely different name
spaces. The Problem Posing interpretation allows us to break the direct as-
sociation and reconnect them in much more interesting and flexible ways.
We define problems as information service requests, and resources as infor-
mation service providers, so that we can treat them separately. In particular,
we can then study the notion of a problem space as an explicit representa-
tion of the goals and purposes of various processes in a particular application
domain, without needing to specify a priori how those problems are to be
addressed [14, 54].

One of the more interesting ways to connect problems to resources is with
Knowledge-Based Polymorphism, that is, with a knowledge base that maps
problems into resource uses in context. Our Wrapping approach to integration
infrastructure takes this mapping as fundamental.

We start with the widely observed notion that declarative knowledge has
the advantage of being analyzable. But declarative knowledge does not do
anything; it needs an interpreter, and we need to make those interpreters
explicit for study. The Wrapping approach is based on these two fundamental
aspects of computation in constructed complex systems, the descriptions and
the interpreters:

• Wrapping Knowledge Bases (WKBs) describe the uses of all resources, not
just how, but also whether, when, and why to use a particular resource in
a particular context.

• Problem Managers (PMs) interpret the WKBs to select and apply re-
sources. PMs are also resources, are also Wrapped, and therefore also se-
lectable.

Such a system has no privileged resources at all. Any part of the system
can be replaced (actually superseded) by a corresponding provided part. This
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flexibility allows all of the integration processes to be studied in the same
system.

We mentioned above in the language summary that we expect the OC sys-
tem to use a multiplicity of languages, and hence the Wrappings will have to
integrate a multiplicity of languages. What is needed is to interpret the models
or other situations in which language fragments are used as problems requiring
certain semantic information, and the language fragments as resources pro-
viding some semantic information, and the Wrappings as a knowledge-based
connection from needed to provided semantics.

We have described a Wrapping-based architecture for systems that have
models of themselves [52, 61], which they can use to examine and change their
own behavior. These systems have descriptive models of every process in them,
and interpreters to produce that process behavior from the descriptions. The
interpreters are also processes, and also have descriptions, so the system is
completely self-describing.

We have built systems using Wrappings for small but difficult integrations,
as well as for larger systems. One example was a system with 48 resources
for evaluating the effects of new technology insertion into a situation manage-
ment and rapid response system. The general point being made here is that
even fairly complicated systems can be put together rapidly with Wrappings,
provided that they and their expected behavior are well-understood. We have
also built systems with models of (some of) their own behavior, and systems
that create their own symbol systems (a word identification program using
grammatical inference [3]), but not (yet) reflective ones. We have built sys-
tems that re-express parts of themselves, but so far only the descriptions, not
(yet) the processes.

These applications lead us to believe that we can implement some of the
appropriate computational resources for OC systems, including some version
of the following capabilities, which will allow systems to

• manage their own computational processes. Wrappings identify the re-
sources they have and the classes of problems they address.

• manage their own modeling processes [5, 41].
• are partially self-modeling and self-modifying, as shown in the previous

section.
• manage their own symbol systems and invent new ones.

The hardest part of this approach is the symbol creation necessary for
this kind of constructive semantics, that is, how a system can represent the
connections between purely syntactic data (which is all that computers can
contain) and semantic meanings (connections to the phenomena).

That boundary is the fundamental phenomenon in the use of symbols,
often called the symbol grounding problem [29], which has generated a large
amount of discussion, including claims that it is already solved [80]. In our
view, for OC systems, the designers make the first choices of symbols, and
that reduces the importance of this problem.
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In any case, this is where all symbolic processing starts: feedback loops
and other stable structures and correlations lead to symbols, e.g., a system
moves and it sees a motion, or it speaks and it hears a sound, or any of a
number of connections from simple outputs to multiple inputs.

In the absence of a good solution for this (hard) problem, all is not lost. We
can still proceed under the assumption that our system has a fairly limited set
of different kinds of actions that it can perform, and a limited set of different
kinds of events or activities that it can recognize.

We will not expect the system to create new kinds of external interfaces,
though it may be able to create new instances of many kinds of interface.
We will expect the developers to provide a rich set of initial interfaces, so
that the system has enough information to study its environment and enough
capability to affect it appropriately.

The key to building these linguistically capable systems is to provide the
right set of language producing and modifying mechanisms. Empirical statis-
tics has discovered a large set of notations and methods that are useful in this
regard, for representing and understanding large sets of correlated time series,
and we expect each application domain to have its own special methods also.
More methods and more different kinds of methods are needed, though, and
we expect that developing the new methods needed for this detailed level of
language use within the system is still hard. Integrating these methods is a
challenge well addressed by Wrappings, and model-deficiency analysis holds
great promise for future developments.

3.5 Conclusions

In this chapter we considered three major and mutually reinforcing types of
developments in a successful adaptive system: The first is creating the “pos-
sibility space”. This possibility space includes much more than the history
and development of an individual or even a population of individuals; in fact,
for biological systems the possibilities start in the physics of the environment
which will become the system’s ecological niche. The second set of develop-
ments could be thought of as creating processes that both enlarge and con-
strain the shape of this possibility space. The last set of developments is the
more traditional concern of adaptive systems research: the control processes
that enable the system to navigate through the possibility space. That is,
given its goals and its current state within the possibility space, what exactly
can the system perceive (of its possibilities), what can the system control, and
what can it do.

In the case of each of these major sets of developments, we first described
what we consider to be biological versions of these processes, and then what
that might imply in terms of engineering OC analogs of such processes. But
in addition to creating analogies to existing biological processes, we also dis-
cussed some unique challenges for OC systems; the greatest of which is that
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these systems must always be accessible, monitorable and coordinated with
our goals and intentions for the systems. This implied to us that OC systems
require sophisticated instrumentation, self-monitoring and reflection capabil-
ities as well as the ability to represent their states to us, communicate and
negotiate with us, and hence share the development of its control and orga-
nization with us.

Aside from the small progress we have made, particularly on reflective
processes described in the previous section, we feel that OC in order to make
progress critically needs to develop several capabilities as a community of OC
researchers. That is, in the systems engineering challenges we discussed the
issues involved in exploring the possibility space in OC systems, and some
of the strategies that a biological system uses to do its explorations. Two
of the foremost strategies of biological systems are 1) to use a population
of individuals to explore formidably large possibility spaces and do so with
active experimentation, and 2) provide the means for communication and
coordination among the entire group so that the perceptions and experience
of individuals can be combined. So can we not in fact treat the community
as a population of organisms determined to explore the possibility space of
OC systems? And could we not, with coordinated efforts, act like an active
experimentation process, carefully correlating across our different experiences?
Of course in order to do this we need to deal with the reproducibility of our
results within OC systems and we will need to work very hard on building up
much better models of the goals and operational contexts for our individual
demonstrations. Lastly, we would all, as a community of researchers, benefit
from whatever methods are developed to give us overviews in many different
ways of these complex systems.
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institute in Hamburg”, Sign System Studies, Vol. 32, Nos. 1/2, pp. 35-72 (2004)

76. Ferdinand de Saussure, Cours de linguistique générale, Payot, Paris (1916),
translated by W. Baskin as A Course in General Linguistics, Fontana/Collins,
Glasgow (1977)

77. Mary Shaw, William A. Wulf, “Tyrannical Languages still Preempt System
Design”, pp. 200-211 in Proceedings of ICCL’92: The 1992 International Con-
ference on Computer Languages, 20-23 April 1992, Oakland, California (1992);
includes and comments on Mary Shaw, William A. Wulf, “Toward Relaxing
Assumptions in Languages and their Implementations”, ACM SIGPLAN No-
tices, Volume 15, No. 3, pp. 45-51 (March 1980)

78. Brian Cantwell Smith, “Varieties of Self-Reference”, In J.Y. Halpern (Editor),
Reasoning about Knowledge, Proceedings of TARK 1986, AAAI Publication,
pp. 19-43 (1986)

79. John Sowa, Knowledge Representation, Morgan Kaufmann (1999)
80. Luc Steels, “The symbol grounding problem is solved, so what’s next?”, in

M. De Vega, G. Glennberg and G. Graesser (eds.), Symbols, embodiment and
meaning, Academic Press, New Haven (2007)

81. Ian Stewart and Jack Cohen, Figments of Reality: The Evolution of the Curious
Mind, Cambridge University Press (1999)

82. G. M. Tomkins, “The Metabolic Code”, Science 189: 760-763, 1975.
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Summary. Admiration of nature’s ability to develop robust self-organizing and
complex structures showing emergent behavior was the starting point for the Or-
ganic Computing (OC) endeavor. Although the concepts of self-organization and
emergence have been subject to extensive investigations and discussions for more
than 100 years, soon it became clear that we lack a quantitative assessment of these
concepts as a basis for an implementation in technical systems. The main questions
to be answered in this context are: Can we define emergence and self-organization
(or sub-concepts thereof) compatible with a quantitative, experimental, and objec-
tifiable method as required in natural science? Can we control self-organization and
emergence without forcing their meaning? Are there generic architectures generally
applicable to technical systems serving this purpose? In this chapter, we will try
to give some answers to these questions. After an introduction and specification of
the problem we will review some recent approaches to a definition of emergence and
assess them with respect to their usability in our technical context. We will then
introduce an architectural template, the Observer/Controller architecture, which
seems to be a key feature in most OC systems. In addition to the general pat-
tern – essentially constituting a higher-level control loop – this Observer/Controller
architecture will be developed in some detail as a framework for own implemen-
tations. We present a quantitative approach for a technically relevant definition of
emergence and self-organization, and propose a systematic approach to a ranking of
various Observer/Controller architectures.

4.1 Introduction

Emergence and self-organization have been discussed extensively in the liter-
ature. In the context of Organic Computing (OC) we are mainly interested in
a technical utilization of these concepts. At least in the context of intelligent
technical systems, emergence is mostly the result of a self-organizing bottom-
up process, which seems to be responsible for its fascination: Without external
interference, a system is able to develop some higher form of order. But exactly
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this phenomenon makes emergent self-organizing processes somewhat suspect
from a traditional engineering viewpoint. Engineers are used to setting an
objective (a specification), starting a development process, and making sure
that the specification is met. Hence, at the heart of Organic Computing we
have to solve the problem of “controlled emergence”, a seeming essential con-
tradiction between bottom-up self-organized freedom and top-down enforced
compliance with a preset specification [14].

Two steps are necessary to solve the problem: First we have to under-
stand more deeply the phenomena of emergence and self-organization. Given
the extensive covering of these terms in the literature, we do not claim to
come up with a generally applicable, new definition. We rather want to re-
strict ourselves to certain aspects necessary for the technical utilization of
these two concepts. This means, above all, that we are mainly interested in
quantitative aspects of emergence and self-organization, moreover, only in
those quantitative aspects that are accessible to an automatic evaluation in a
(computer-based) system.

This leads to the second step: We have to investigate how emergence and
self-organization can be fostered or even designed in a technical system while,
at the same time, they are kept under control. We want to allow a maximum of
“freedom” and “creativity” of the system itself, but only within a certain, well-
defined area. For this purpose we have to define architectural superstructures
that are able to keep emergent systems under control and guide them towards
the desired objectives.

Organic Computing is inspired by nature. But this does not mean that OC
tries to copy nature. We borrow certain – especially organizational – concepts
from complex natural systems such as the brain, companies, or societies. One
of those concepts is the Observer/Controller structure that can be found in
many functioning (hence ordered) natural systems. For example, the brain
seems to consist of a huge amount of control “circuitry” serving just the pur-
pose of checking and double-checking the function of the acting subsystems.
Although we try to learn from nature, we realize that within the foreseeable
future we will not be able to come close to its complexity, functionality, and
efficiency.

In section 4.2 of this chapter, we will review some of the more important
concepts of emergence developed in the philosophy of mind. We will also take a
look at various new definitions or notions of emergence in intelligent technical
systems (e.g., multi-agent systems) and discuss whether they could be useful
from our viewpoint. Then we will briefly introduce the generic architectural
template of Observer/Controller architectures (section 4.3). In section 4.4 we
will discuss an approach to a quantitative analysis of emergence. Section 4.5
offers an approach to a quantitative analysis of self-organization, again with
respect to technical applications. In section 4.6 we will resume the discussion
of Observer/Controller architectures begun in section 4.3 but now with the
focus on different ways of an architectural implementation. In particular we
are interested in the distribution of such architectures. This discussion leads
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to a taxonomy or roadmap, which could help to classify OC architectures.
Section 4.7 will summarize the major findings.

4.2 Emergent behavior of intelligent technical
systems – an analysis of related work

In this section, we will analyze various definitions of emergence. Initially, we
will take a look at philosophical notions of emergence and discuss whether
they are useful for OC. Then, some very recent definitions of emergence are
reviewed, published by Abbott, Stephan, Fromm, Gabbai et al., di
Marzo Serugendo et al., and de Wolf et al. (see [14] for a more
detailed discussion of some of the publications). We have selected newsworthy
publications (2005 or later) that have a close relationship to technical systems
(and, therefore, OC).

4.2.1 The notion of emergence in philosophy of mind

In philosophy of mind, the emergent behavior of more or less complex “sys-
tems” (being either natural, supernatural, or artificial) has been investigated
for more than a hundred years and definitions of “weak emergentism” and
“strong emergentism”, for instance, have been provided (see [22] for a com-
prehensive review).

Weak emergentism is based on the three theses of (1) physical monism,
(2) systemic (collective) properties, and (3) synchronous determinism. From
a viewpoint of technical (i.e., artificial) systems, only the thesis of systemic
(collective) properties is relevant. Basically, it says: “Emergent properties are
collective (systemic), i.e., the system as a whole has this property but single
components do not have properties of this type.” Often, this sentence is cited
this way: “The whole is more than the sum of its parts.” But the meaning
of these two sentences is significantly different; the former has much stronger
requirements. Examples for systems that have emergent properties in such a
weak sense are artificial neural networks (i.e., combinations of simple nodes
and connections that are used for pattern matching), flocks or swarms of
artificial animals (e.g., bird swarms that are able to avoid obstacles), or robots
(e.g. playing soccer or building heaps of collected items). We can notice that
terms at the component level are not sufficient to describe properties that
arise at the system level, for example: “Rules”, “patterns”, “classes” are terms
that are not used at the level of synapses or neurons. The thesis of systemic
(collective) properties claims that single components do not have properties
of the same type as the overall system. Therefore, the weight of a car – being
the sum of the weights of its components – is not an emergent property in
this sense. From the viewpoint of OC, weak emergence is certainly a necessary
pre-condition, but not a sufficient one. There are many OC systems that are
emergent in a weak sense but their emergent properties are not interesting.
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A notion of emergence that adds very stringent requirements to weak emer-
gence is strong emergence. Strong emergentism is based on the thesis of ir-
reducibility that addresses the question why a system has a certain property.
Basically, it says: “The macro-behavior of a system can in principle not be
explained knowing the micro-behavior of components, their interaction rules,
etc.” A reductive explanation aims at explaining properties of a system using
descriptions of components of a system, their properties, their arrangement,
etc.

An example where we do not have an emergent behavior in the strong
sense is car behavior: We can explain a car’s drivability in bends because
we know the properties of component parts and their interactions. All the
examples mentioned in the previous paragraph are, therefore, not emergent
in this strong sense. Moreover, there are no artificial (including OC) systems
that can be termed to be emergent in this sense as they are all subject to
the laws of nature. However, there is often an explanatory gap: Either we do
not have the knowledge to explain expected behavior in advance or we did
not specify the components or systems that we investigate in a sufficiently
detailed way. Admittedly, it is mind-boggling whenever a complex behavior
on the system level results from very simple rules on the component level but
lack of knowledge alone should not qualify a phenomenon as emergent.

Altogether, from the viewpoint of OC, historical, philosophical definitions
of emergence are either too weak or too strong. The former means that too
many systems are termed emergent, the latter implies that no artificial (techni-
cal) systems are emergent. We need a technology-oriented notion of emergence
(more than weak emergence) possibly depending on the type of OC systems
we investigate and the type of questions we ask. In this sense, a system may
be regarded as being emergent concerning one (objective) aspect and being
non-emergent with respect to another.

4.2.2 Novel, technology-oriented notions of emergence

In his approach to explain emergence [1], Abbott defines emergence as a
relationship between a phenomenon and a model, where a model is a collec-
tion of elements with certain interrelationships. Central to his definition of
emergence is the concept of epiphenomena. An epiphenomenon is defined “as
a phenomenon that can be described (sometimes formally but sometimes only
informally) in terms that do not depend on the underlying phenomena from
which it emerges” (cf. thesis of systemic properties). A phenomenon is called
emergent over a given model if it is epiphenomenal with respect to that model.
An emergent behavior is called static if its implementation does not depend
on time. Thus, hardness as a property of a material (and not a property of
isolated atoms) or the resonant frequency of a resonant circuit (and not of its
components) could be attributed to this variety of emergence. In contrast, an
emergent behavior is regarded as dynamic if it is defined “in terms of how
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the model changes (or doesn’t change) over some time”. Dynamically emer-
gent phenomena can additionally be subdivided into non-stigmergic dynamic
phenomena and stigmergic dynamic phenomena. The former can be described
by means of continuous equations, the latter involve autonomous entities with
discrete states. As OC systems are artificial technical systems that are termed
to be “intelligent” (i.e., able to adapt to a dynamic environment; cf. [4]), we
are mainly interested in stigmergic, dynamic emergence.

In his work on emergentism [22], Stephan focuses on definitions of emer-
gence that distinguish various causes for emergent behavior. His definitions
see emergence

1. as a consequence of collective self-organization (i.e., interesting properties
at the system level are realized by an interaction of identical or very similar
components),

2. as a consequence of non-programmed functionality (i.e., systems interact-
ing with their environment show a certain goal-oriented, adaptive behavior
that is not a result of dedicated control processes or explicit program-
ming),

3. as a consequence of interactive complexity (i.e., systemic properties, pat-
terns, or processes are the result of a complex interaction of components;
cf. [3]),

4. in the sense of incompressible development (i.e., a macro-state of a system
with a certain microdynamics can be derived from the microdynamics and
the system’s external conditions, but only by simulation), and, finally,

5. in the sense of structure-unpredictability (i.e., the formation of new prop-
erties, patterns, or structures follows the laws of deterministic chaos).

All these types of emergence actually occur in OC systems, and sometimes
it depends on the type of the posed question which of those definitions of
emergence one should use in a certain context.

In contrast to Stephan’s cause-oriented approach, Fromm sees emergence
from a largely modeling-oriented viewpoint (focusing on multi-agent systems;
cf. [8, 9]). The following – somehow recursive – definition is used as a starting
point: “A property of a system is emergent, if it is not a property of any
fundamental element, and emergence is the appearance of emergent proper-
ties and structures on a higher level of organization or complexity.” The four
ordered types or classes of emergence are nominal, weak, multiple, and strong
emergence (where “weak” and “strong” are not equivalent to the correspond-
ing terms used in philosophy of mind!). The four classes differ mainly in the
type of the system (e.g., closed with passive components, open with active or
multiple levels, or new levels), the roles of the components (e.g., fixed, flexible,
or fluctuating), and the feedback mechanisms between components or levels
(e.g., top-down feedback or multiple feedback). In particular the classes of
weak and multiple emergence definitely can be found in many OC systems.

In the opinion of Gabbai et al. – who study emergence in the con-
text of multi-agent systems [10] – “emergence is a sometimes negative phe-
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nomenon found in complex systems, which can also be positively exploited
to varying degrees. The full, or ultimate, positive exploitation of emergence
is self-organization; a system aligns itself to a problem and is self-sustaining,
even when the environment changes.” Gabbai et al. explicitly regard self-
organization as a specific form of emergence. While we do not agree with this
constricted viewpoint (limited by the specific application field), we want to
emphasize an important side note which can be found in [10]: Entropy could
be utilized to measure order, which emerges, e.g., due to self-organization,
and, hence, to measure emergence.

The need “to find new principles, theories, models, mechanisms and
methodologies to engineer self-organizing systems with or without emergent
phenomena” is also recognized by di Marzo Serugendo et al. in [7]. They
focus on the design of multi-agent systems applying various self-organization
mechanisms. Their viewpoint is that of neo-emergentism which distinguishes
itself from the historical (i.e., philosophical) proto-emergentism by being less
“miraculous”. That is, an artificial system can be regarded as emergent even
if its behavior can be understood and reproduced at least to a certain degree
(i.e., if it is not a “black box”). In their opinion, designable emergence occurs
in a narrow “space lying between conditions that are too ordered and too
disordered.” Again, order is mentioned as an important criterion.

In [5], De Wolf and Holvoet discuss the relationship of emergence and
self-organization. They introduce the noun emergent for the result of a pro-
cess – in contrast to the process itself – which leads to a certain macroscopic
pattern: “A system exhibits emergence when there are coherent emergents
at the macro-level that dynamically arise from the interactions between the
parts at the micro-level. Such emergents are novel w.r.t. the individual parts of
the system.” Properties, behavior, structure, or patterns, for instance, can be
emergent. Self-organization is defined as “. . . a dynamical and adaptive process
where systems acquire and maintain structure themselves, without external
control.” Structure can be spatial, temporal, or functional. Self-organization
and emergence are seen as emphasizing different characteristics of a system.
Both can, according to the authors, exist in isolation or together. From an OC
viewpoint, these two concepts seem to be highly related: In intelligent techni-
cal systems, emergence typically is the result of an adaptive and self-organizing
(in the broadest sense) process with many components. Self-organization with-
out emergent behavior is possible, e.g. as the result of a predefined interaction
of only a few components. In [6], De Wolf et al. describe an industrial ap-
plication example of a self-organizing emergent system – an automated guided
vehicle warehouse transportation system – where (amongst others) an entropy
measure is applied to measure the system-wide behavior of a self-organizing
emergent system.

While all these cause-oriented, process-oriented, or modeling-oriented con-
cepts are valuable from the OC viewpoint, one important aspect has been
neglected until recently: the measurement-oriented view. In our opinion, it
is a must to reconceive emergence considering the analysis of OC systems.
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Fig. 4.1. Observer/Controller architecture.

It must be shown, for example, how the following types of emergence could
be quantified: emergence due to interactive complexity (Stephan), multiple
emergence (Fromm), or stigmergic dynamic emergence (Abbott). In OC
systems, we want to “do” (design or allow) emergence but must, at the same
time, keep it under control. That is, the emergent behavior of OC systems
must be achieved by a balanced approach where the emergent processes are
kept within pre-defined boundaries by certain control mechanisms. However,
the other viewpoints have certainly to be considered when appropriate mea-
sures are defined, selected, or combined. A measurement-oriented notion of
emergence (cf. section 4.4) may coexist with most of the existing definitions
of emergence (in particular the definitions of “weak” and “strong” emergence
used in philosophy of mind). It must be technically realizable and allow to
determine a “degree” of emergence. Finally, it must definitely be objective,
i.e., independent from the knowledge of the observer or the measurement
techniques. We expect that there will be a variety of measures for different
emergent phenomena and different system objectives, resulting in a collec-
tion of emergence “detectors”. For each application we must determine the
appropriate attributes that characterize emergence, e.g., measures for order,
complexity, information flow, etc.

4.3 Observer/controller-architecture

OC systems consist of possibly large numbers of interacting and cooperating
subsystems. Each of these subsystems might be relatively autonomous, pur-
suing its own goals. In order to assess the behavior of such a system and – if
necessary – for a regulatory feedback to control its dynamics, we assume that
a generic Observer/Controller architecture (O/C architecture) is required as
depicted in figure 4.1 [14, 17, 20].3

3 A similar architecture is used in IBM’s Autonomic Computing project with the
four steps Monitor, Analyze, Plan, and Execute (MAPE).
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Fig. 4.2. Observer architecture.

The productive system, also called system under observation and control,
does the “actual” work, i.e., it transforms the sensory input via fixed algo-
rithms into appropriate output actions. Traditionally, how this task is per-
formed by the production system remains unchanged over the lifetime of the
system. In OC systems, however, the internal mechanisms of the production
system can be adapted according to the current context. A higher-level au-
thority is needed to make these changes. We call them observer and controller.
They are responsible for an appropriate surveillance and feedback.

In [18] we have proposed a generic O/C architecture (O/C for ob-
server/controller). The observer collects and aggregates information from the
production system. The aggregated values (system indicators) are reported
to the controller, who takes appropriate actions to influence the production
system. The observer contains several specialized detectors to calculate the
system indicators from the observed raw data (figure 4.2). The collection of
attribute emergence values (the emergence fingerprint) is a part of the obser-
vation result as determined by the observer. The observer model influences
the observation procedure, e.g., by selecting certain detectors or certain at-
tributes of interest. The feedback from the controller to the observer directs
attention to certain observables of interest in the current context.

It is important to mention that an organic system continues to work and
does not break down if observer and controller stop working. In comparison
to a classical system design, OC systems have the ability to adapt and to
cope with emergent behavior for which they have not been programmed in
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detail. The goal of OC is to build systems that perform their tasks by using
(controlled) self-organization. However, this is independent of using central-
ized or decentralized observer/controller architectures, since the elements of
the system work autonomously and the controller affects some local control
parameters only and does not control single elements in detail.

We cannot discuss all the aspects of O/C architectures here in detail and
refer instead to the literature. We will return to the aspects of distribution of
observers and controllers in section 4.6.

4.4 Quantitative emergence

4.4.1 The measurement of order

The meaning of order as perceived by a human4 observer is not clear without
ambiguity. A homogeneous mixture of two liquids can be regarded as “orderly”
(figure 4.3, right). Applying the concept of thermodynamic entropy, however,
will result in low entropy values (i.e., higher order) for the left example of
figure 4.3. Apparently, order depends on the selection of certain attributes by
the (human) observer. If we are interested in the spatial structure we have to
base our measurement on the positions of the molecules (figure 4.3, left), if
we are interested in homogeneity we can use the relative distances between
the molecules (figure 4.3, right). The emergence definition presented in this
chapter is based on the statistical definition of entropy (which essentially can
be explained as counting events or occurrences).

The computation of the entropy of a system S with N elements ei is done
as follows:

1. Select an attribute A of the system elements of S with discrete, enumerable
values aj .

2. Observe all elements ei and assign a value aj to each ei. This step corre-
sponds to a quantization.

3. Transform into a probability distribution (by considering the relative fre-
quency as a probability) over the attribute values aj (i.e., a histogram)
with pj being the probability of occurrence of attribute aj in the ensemble
of elements ei.

4. Compute the entropy according to Shannon’s definition

HA = −
N−1∑
j=0

pj log2 pj (4.1)

4 Currently the only observers who make these decisions are human designers and
researchers, but eventually one could in fact imagine a system that could make
these decisions based on knowledge bases and experiments with a target system
(e.g. trying out a set of likely candidate attributes etc.).



90 Christian Müller-Schloer and Bernhard Sick

Fig. 4.3. Order perception: Both pictures could be perceived as high order (left:
more structure, right: more homogeneity) depending on the objective of the observer.

If the attribute values are equally distributed (all pj equal) we will obtain the
maximum entropy. Any deviation from the equal distribution will result in
lower entropy values (i.e., higher order). In other words: The more structure
is present (unequal distribution), the more order is measured. The unit of
measurement is bit/element. Thus, the entropy value can be interpreted as
the information content necessary to describe the given system S with regard
to attribute A. A highly ordered system allows a simpler description than a
chaotic one.

4.4.2 Observation model

The resulting entropy value depends on two decisions taken by the observer:
Which attribute A is measured? With what resolution (or quantization) is it
measured? The quantization determines the information content of the sys-
tem description but it is not a property of the system. Neither is the selection
of a certain attribute A a system property. This means that a measured en-
tropy value is only meaningful if we know the exact observation context. This
context is subsumed by the observation model.

This reflects the fact that order is not an intrinsic property of the system.
Perceived order depends on subjective decisions or capabilities of the observer.
In living systems, the sensory equipment limits the selection of observable at-
tributes and the resolution of the measurement. In addition, the brain directs
attention to certain observables, which are relevant in the present situation,
and masks other attributes or registers them with lower effort, i.e., lower res-
olution. Hence, order results from an interaction between the observer and
the observed system guided by the observation model. The observation model
depends on the capabilities of the sensory equipment and the utility of certain
observations with regard to the purpose.
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An observer might be interested in more than one attribute. In this case,
we obtain a vector of entropy values (HA, HB , HC , . . . ) with respect to
attributes A,B,C, . . . We could add them into a total system entropy HS .
HS denotes the information content of the total system description under the
given observation model. It has the drawback of hiding or averaging the single
attribute entropies. Therefore we prefer the single entropy values (“emergence
fingerprint”).

4.4.3 Emergence

Entropy is not the same as emergence. Entropy decreases with increasing
order while we aim at an emergence value, which increases with order. As a
first try we define emergence as the difference ΔH between the entropy at the
beginning of some process and at the end:

ΔH = Hstart − Hend (4.2)

In case of an increase of order this results in a positive value of ΔH. A process
is called emergent if (1) ΔH > 0 and (2) the process is self-organized. This
definition has two problems:

1. The measurement of H depends on the observation model (e.g. the ab-
straction level). An observation on a higher abstraction level will lead to
a lower entropy value H even when there is no change of S in terms of
self-organized order.

2. Since the start condition of the system is arbitrary, ΔH represents only
a relative value for the increase of order. It would be preferable to have a
normalized emergence measure.

The first problem can be solved by determining the portion of ΔH, which is
due to a change of abstraction level (ΔHview), and subtracting it.

ΔH = Δ Hemergence + Δ Hview (4.3)

Δ Hemergence = ΔH − Δ Hview (4.4)

An example for an effect, which changes ΔH without an underlying emergent
process (ΔHemergence = 0), would be the measurement of a coordinate with
a lower resolution. If we first observe with a 32-bit resolution and later with
a 2-bit resolution, this results in a reduction of description complexity by 30
bit, which is, however, not due to a self-organization process (ΔHview = 0). In
other words: Equation (4.2) holds only if we have not changed the abstraction
level or if ΔHview can be determined and subtracted.

The second problem is solved by definition of an absolute reference as
starting condition. Obviously, this starting condition could be the state of
maximum disorder with an entropy of Hmax. Hmax corresponds to the equal
probability distribution. This leads to the following definition of emergence:
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M = Δ Hemergence = Hmax − H − Δ Hview (4.5)

Absolute emergence is measured through the increase of order due to self-
organized processes between the elements of a system S in relation to a start-
ing condition of maximal disorder. The observation model used for both ob-
servations must be the same (ΔHview = 0) or ΔHview must be determined
and subtracted.

4.4.4 Limitations and challenges

From our technical point-of-view emergence loses some of its philosophical
connotation. We realize that our model does not cover the “strong emergence”
definition, which demands that emergence is an in principle unexplainable
phenomenon . But this definition is inapplicable in the domain of engineering
and computer science. On the contrary, we are only interested in a quantifiable
phenomenon resulting in a (self-organized) increase of order. We define as
emergence what we can measure. If this definition is too restrictive, excluding
some unexplainable emergent effects, we could accept that what we measure
with our method is termed just “quantitative emergence” and constitutes only
a certain form of emergence meaningful in intelligent technical systems. This
definition leaves room for wider definitions of emergence in a more general
sense.

Our quantitative definition of emergence is based on the assumption that
emergent phenomena can always be observed in terms of patterns (observable,
e.g., in space and/or time) consisting of large ensembles of elements. The reso-
nance frequency of a resonant circuit does not constitute an emergent pattern
but is rather a property of such a pattern. Order can also be determined in the
time or frequency domain. Therefore, we can apply our emergence definition
to the resonance frequency example if we observe the system behavior after
a Fourier analysis. This extends the above definition of the observer model:
Any type of preprocessing can also be a part of the observer model. This cor-
responds quite well to the operation of the animal (and human) perception5.
The reader interested in a more detailed discussion is referred to [13].

4.5 Quantitative self-organization

There is a variety of definitions of self-organization. We start with the following
one6: “Self-organization is a process in which the internal organization of a
system, normally an open system, increases in order without being guided or
managed by an outside source” [23]. The term self-organization is frequently

5 In the cochlea, the sound moves hair bundles, which respond to certain frequen-
cies. The brain therefore reacts to preprocessed signals [9].

6 The original term “complexity” has been replaced by “order”.
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Fig. 4.4. Monolithic and structured productive systems, which can be defined by
changing the system configuration SC.

used in a somewhat “magical” sense implying that something unknown within
a black box happens, which leads to a certain kind of order. We want to take
a pragmatic and more technical viewpoint and analyze the process of self-
organization by asking who organizes whom (remembering that there is no
effect without a cause, even if this cause might be distributed).

Organization is a process as well as the result of a process. To avoid confu-
sion, let us call the result of an organization process a “system” (in a certain
current state which can change over time). A system can be described in terms
of structure and behavior. To change a system we can change its elements or
their relationships (or both) by (re-)defining its structural description (e.g. a
VHDL description of an integrated circuit). We can also modify its behavior
by changing parameters (e.g. the threshold value for temperature control).
In any case, to change a system, some active entity must be able to change
structure and/or behavior of the system. This system might be active in its
role as a productive system (e.g. transforming sensory inputs into control out-
puts according to a built-in algorithm) but it is passive under the aspect of
changing its own structure and behavior.

In order for a system to be (re-)organized, it must be adaptable, i.e. it
must allow for changes of its structure and/or behavior. In technical systems
this means that certain control parameters must be visible and changeable
at the outside of the system. Let us call the set of these parameters system
configuration SC (figure 4.4). SC is a bit string and might be as short as
one bit (to change the working mode) or as long as a full system description
(a program or a VHDL file). Each (legal) value of SC defines a point in the
system’s configuration space. The configuration space comprises all possible
configurations of the system. Further, we can define the size of the configu-
ration space, its variability, as the number of bits of SC. Systems with only
a few possible configurations (“modes”) are called monolithic because they
do not display structure to the outside world. In general, SC can define the
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Fig. 4.5. A productive system is controlled by a system-internal active entity (con-
troller) constituting self-control. The controller itself is controlled by high-level con-
trols (high level configuration space). In addition there might be control signals
acting directly upon the productive system (direct control).

constitutive elements and their relationships (“structured system”) as well as
parameters influencing the system’s behavior.

Whether we can call a system self-organizing or not then depends on where
the active entity sits that changes SC. The traditional way to control SC is
from the outside by an engineer or a designer at design time. In Organic
Computing , apparently the active entity must be part of the system itself
because changes are made at run time. We can assign this role of active run
time control of the system configuration SC to the controller (who needs some
sensory input – provided by the observer – in order to make decisions).

The definition of self -organization as opposed to outside organization then
boils down to the trivial statement that a self-organizing system contains
active components or mechanisms that change the system’s structure and/or
behavior. Whether this active component is just one entity as depicted in
figure 4.5 or distributed over many elements is open at this point and will
be discussed in section 4.6. The term “self” is just a matter of definition: A
controller inside the system is part of the system itself (intrinsic control), an
outside controller would constitute extrinsic control.

It might be argued that this definition of self-organization includes also
primitive cases such as the setting of just one bit to switch a system configu-
ration between two modes, which will hardly be accepted as self-organization.
Self-organization in the commonly accepted sense seems to imply larger num-
bers of elements rearranging themselves. This is certainly true but it makes
just a quantitative difference. A system switching modes by itself would then
be just a marginal case of a more general multi-element system modifying its
structure and behavior.
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Fig. 4.6. O/C building blocks (a) vertically stacked, (b) cooperating horizontally
in a fully distributed architecture, (c) in a mixed horizontal/vertical architecture.

In general, SC can at the same time be controlled from the outside and
from the inside. We call the control inputs applied from the inside (i.e., by
the controller) “self-control” (defining the self-configuration space). Since the
controller itself must be controlled (or guided) as well, we need also high-level
controls applied from the outside (defining the high-level configuration space,
see figure 4.5). In addition there might be control signals acting directly upon
the productive system (direct control). The notion of configuration spaces al-
lows us to formulate self-organization quantitatively in terms of a degree of
autonomy. If we measure the variability of the high level configuration space as
VHL (high-level control) and the variability of the internal configuration space
(i.e. the variability of the productive system) as VP , self-organization will al-
ways result in a complexity reduction R = VP − VHL > 0. A self-organizing
system will switch autonomously between configurations of its internal con-
figuration space displaying a smaller configuration space (lower complexity,
smaller variability) to the outside. We can define the ratio of R and VP as the
(static) degree of autonomy S:

S =
R

VP
. (4.6)

Without complexity reduction there is no autonomy. Providing no external
control (VHL = 0) results in full autonomy (S = 1). S and VP span a diagram
(figure 4.7) illustrating the trend of OC system development: We will witness
an increasing complexity of productive systems (higher variability VP ), which
makes it increasingly challenging to reach large complexity reduction R and
hence high degree of autonomy S. We will use this diagram in section 4.6 to
position different O/C architectures.
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Fig. 4.7. Degree of self-organization S as a function of the variability of the pro-
ductive system, VP .

Looking more closely, however, it becomes clear that due to its static
nature the above definition of S is not yet adequate to characterize the self-
organizing and autonomous behavior of a system. The variability measures
the size of a configuration space but makes no statement about the frequency
of control interactions to change the configuration. Therefore it seems more
adequate to measure the flow of control information over a certain period of
time t2 – t1. This results in a dynamic definition of the degree of autonomy s
(now in lower case). Let h(t) and l(t) be the high-level and low-level flow of
control information, respectively, then we can define the dynamic complexity
reduction r over the time window t2 − t1 as

r =

t2∫
t1

(l − h) dt (4.7)

and the dynamic degree of autonomy s as

s =

t2∫
t1

(l − h) dt

t2∫
t1

l dt

(4.8)

A high degree of dynamic autonomy s means that over a period of time only
a small amount of control information h needs to be fed into the system
from the higher level: The manager needs to interfere only occasionally if the
system runs smoothly. This does not preclude the internal self-organization
mechanisms (the controller) to adapt the system frequently if necessary.

The above definition (static as well as dynamic) still has a practical
drawback: The description complexity is not well-defined since descriptions
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Fig. 4.8. Adaptive gearbox (multi-mode system).

can contain redundant information. Therefore we require minimal description
length7.

4.6 Towards an OC roadmap

4.6.1 The arrangement of O/C building blocks

It is an apparent shortcoming of the above discussion that it seems not to cover
truly distributed self-organizing systems, the prototypes of self-organizing
(and emergent) systems. In this section, we will show that our systematic
approach towards self-organization, which has been exemplified with a single
O/C, can be extended to a multitude of architectural options.

The Observer/Controller/Productive-system loop constitutes a basic
building block of OC systems. This building block has all four character-
istic properties of a holon (as defined by Koestler [24]), i.e., it is (1) a
self-contained autonomous unit, (2) communicates with other holons on the
same level of order (3) to build higher level “organs”, which in turn have the
properties of a holon. Their constituent holons can stop cooperating which
(4) leads to their decay.

As shown in figure 4.6, these building blocks can be arranged in different
architectures. We can

1. stack O/C levels vertically in a hierarchical manner, where the higher-level
O/C observes and controls the next lower level, decreasing in the level of
detail as we go to higher levels,

7 In a subsequent paper [15] we differentiate the notions of autonomy (as defined
in this chapter) and the more architectural aspect of self-organization. There we
introduce also a degree of self-organization taking into account the distribution
of self-control mechanisms.
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Fig. 4.9. Reconfigurable system.

2. juxtapose the building blocks horizontally to form a fully distributed O/C
structure, or

3. mix these methods, e.g., to span a cluster of juxtaposed O/Cs with one
or more higher-level O/Cs.

In the following, we want to illustrate this O/C architecture with a
few existing or hypothetical technical examples. We will denote each vari-
ant with a tuple of identifiers O/C(h, v), where h = {single,multiple} and
v = {1, 2, 3. . .} denote the stacked O/C levels, not counting the productive
system P . The four examples can be arranged in increasing order with respect
to their degree of autonomy S and variability VP :

1. Multi-mode system: O/C(single, 1)
2. Reconfigurable system: O/C(multiple, 1)
3. Brokered system: O/C(multiple, 2)
4. Distributed system: O/C(multiple, 3)

4.6.2 Multi-mode system

A multi-mode system is exemplified by an adaptive gearbox (cf. figure 4.8).
The productive system has a few working modes (such as economy, sport,
winter, etc.). The observer is a simple monitor collecting external sensor data
and the driver’s behavior, classifies these inputs and derives a situation indi-
cator. The controller works as a modus selector setting the gearbox into the
desired mode. Since we have one productive system and one level of O/C, this
is a system of type O/C(single, 1).

4.6.3 Reconfigurable system

A reconfigurable system is exemplified by a system on a chip (SoC) such as the
experimental system developed by Herkersdorf and Rosenstiel [2] (fig-
ure 4.9). It displays a number of subsystems such as CPUs, peripheral units,
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Fig. 4.10. Brokered system.

or memory modules that can be rearranged by switching some of them off or
on. It allows for the parameterization of buses adapting the bandwidth to the
present needs. The productive system (called functional layer in figure 4.9)
is monitored and controlled by an O/C layer (called autonomic layer). The
observer not only monitors load data but it has to aggregate these data over
time in order to determine the load situation. The controller works as a config-
urator changing directly the working modes of the subsystems. It could even
redefine whole subsystems by loading FPGA data into the circuit. In contrast
to the multi-mode systems coexisting without interaction, the subsystems are
closely connected. This system can be classified as O/C(multiple, 1).

4.6.4 Brokered system

A Brokered System consists of semi-autonomous elements such as controllers
in an automotive electronics architecture, where each controller is responsible
for a certain function. To build a higher-level function, an active agent with the
“idea” of this function in “mind” searches for cooperation partners, assesses
their capabilities, makes a contract, and supervises their performance. Such
an architecture has been proposed by Hofmann (Evoarch [11]) and further
developed on the basis of ontologies by Mahmoudi [12].

The broker plays the role of a central matching and assessment service
enabling a marketplace mechanism. It might be implemented as a central-
ized or a distributed entity. It monitors the agents, aggregates their states
and predicts future demands. From this, a viable solution (optimal under
the given circumstances, fulfilling at least the minimum requirements) is de-
rived and set into action (figure 4.10). This OC system can be classified as
O/C(multiple, 2).

4.6.5 Autonomous self-organizing agents

A decentralized traffic control system (cf. figure 4.11) as developed by
Rochner, Prothmann et al. [19] consists of cooperating and learning



100 Christian Müller-Schloer and Bernhard Sick

Fig. 4.11. Autonomous self-organizing agents, cooperating in a distributed traffic
control system.

traffic light controllers. Each controller is built as an O/C(single, 2) system.
I.e., a traditional traffic light controller – as the productive system – is con-
trolled and modified by a rule-based level-1 O/C, which in turn receives new
rules from a level-2 model-based O/C (figure 4.11a).

While the single node controller has already been implemented in a pro-
totypical version, the cooperation of the single node controllers is still subject
of research. It is planned to realize a distributed scheme of data exchange
between the nodes with a locally limited horizon (figure 4.11b). The level-3
O/C can be a physically centralized entity as shown in figure 4.11c or par-
tially or fully distributed over the nodes. It has the task to monitor, aggregate,
and predict the collective behavior of all traffic light controllers, assess their
proper function and intervene, whenever necessary. The fully implemented
architecture will be of type O/C(multiple, 3).

4.6.6 Roadmap

We can use the (S, V ) diagram to sketch a roadmap for the future development
of OC systems (figure 4.12, with the example architectures discussed above).
The variability of the systems will grow with the degree of distribution. This
means at the same time that the task to control them will become increasingly
difficult. The only possibility to manage this complexity will be a hierarchical
approach with multiple levels of O/Cs, each of them responsible for its local
or regional subsystem. As we climb up to higher O/C levels their tasks will
become less intervening and more guarding, correcting, and limiting – very
much like the high-level management of a company that normally will not
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Fig. 4.12. (S, V ) diagram as a roadmap for future OC systems, with the example
architectures discussed above.

interfere with low-level decisions, as long as they conform to the high-level
directives.

4.7 Summary and conclusion

In this chapter we have discussed various historical and recent technical con-
cepts of emergence, have described a generic architectural template for the ob-
servation and control of adaptable systems, and have proposed a possibility for
a quantitative assessment not only of emergence but also of self-organization.
We can state that our technology-oriented notion of neo-emergence [7] is com-
patible with existing definitions: It is somewhere between weak and strong
emergence in the sense of philosophy of mind. It is typically due to a self-
organizing process [5] with various reasons [21, 22], is either weak or multiple
in the sense of Fromm [8], and can be measured by means of order [10]. With
the measures for emergence and self-organization proposed in this chapter it
becomes possible to formulate a roadmap for the future development of OC
systems and to classify them according to a simple description scheme. Future
research will focus on the practical implications of these concepts.
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Summary. Complex computing systems begin to overwhelm the capacities of soft-
ware developers and administrators. Self-organization has been a successful strategy
of evolution to handle the increasing complexity of organisms with the emergence
of novel structures and behavior. Thus, self-organization and emergence are funda-
mental concepts of organic computing. But these concepts are often used in a more
or less intuitive manner. In the theory of complex systems and nonlinear dynamics,
self-organization and emergence can be mathematically defined. Actually, these con-
cepts are independent of biological applications, but universal features of dynamical
systems. We get an interdisciplinary framework to understand self-organizing com-
plex systems and to ask for applications in organic computing. In technology, the
emergence of order and structures displays desired and undesired synergetic effects.
Thus, controlled emergence is a challenge of computational systems simulating self-
organizing organic systems of evolution. The question arises how far can we go in
simulating high dimensional complex systems and avoiding uncontrolled risks.

Key words: Complex systems, nonlinear dynamics, controlled emergence, self-
organization, computational dynamics

5.1 From linear to nonlinear dynamics

A dynamical system is a time-depending multi-component system of elements
with local states determining a global state of the whole system. In a planetary
system, for example, the state of a planet at a certain time is determined by
its position and momentum. The states can also refer to moving molecules in
a gas, the excitation of neurons in a neural network, nutrition of organisms in
an ecological system, supply and demand of economic markets, the behavior
of social groups in human societies, routers in the complex network of the In-
ternet, or units of a complex electronic equipment in a car. The dynamics of a
system, i.e. the change of the system’s states depending on time, is represented
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by linear or nonlinear differential equations. In the case of nonlinearity, sev-
eral feedback activities take place between the elements of the system. These
many-bodies problems correspond to nonlinear and non-integrable equations
with instabilities and sometimes chaos [9].

From a philosophical point of view, mathematical linearity means a strong
concept of causality with similar causes or inputs of a dynamical system lead-
ing to similar effects or outputs: small changes in the parameters or small
perturbations added to the values of the variables produce small changes in
subsequent values of the variables. Further on, composed effects of linear sys-
tems can be reduced to the sum of more simple effects. Therefore, scientists
have used linear equations to simplify the way in which we think about the
behavior of complex systems. The principle of superposition has its roots in
the concept of linearity. But, in the case of nonlinearity, similar causes lead to
exponentially separating and expanding effects: small changes in the param-
eters or small perturbations added to the values of the variables can produce
enormous changes in subsequent values of the variables because of the sensi-
tivity to initial conditions. In this case, the whole is more than the sum of its
elements.

The mathematical theory of nonlinear dynamics distinguishes different
types of time-depending equations, generating different types of behavior,
such as fixed points, limit cycles, and chaos. In a top-down approach of model
building, we start with an assumed mathematical model of a natural or tech-
nical system and deduce its behavior by solving the corresponding dynamical
equations under certain initial conditions. The solutions can be represented
geometrically as trajectories in the phase space of the dynamical system and
classified by different types of attractors. But, in practice, we often must
take the opposite way of a bottom-up approach. Physicists, chemists, biol-
ogists, physicians, or engineers start with data mining in an unknown field
of research. They only get a finite series of measured data corresponding to
time-depending events of a dynamical system. From these data they must re-
construct the behavior of the system in order to guess its type of dynamical
equation. Therefore, the bottom-up approach is called time series analysis. In
many cases, we have no knowledge of the system from which the data came.
Time series analysis then aims to construct a black box, which take the mea-
sured data as input and provides as output a mathematical model describing
the data [13]. In practice, the realistic strategy of research is a combination
of the top-down approach with model building and the bottom-up approach
with time series analysis of measured data.

In classical measurement theory, measurement error is analyzed by sta-
tistical methods, such as correlation coefficient and autocorrelation function.
But these standard procedures are not able to distinguish between data from
linear and nonlinear models. In nonlinear data analysis, the measured data
are used in a first step to reconstruct the dynamics of the system in a phase
space. Nonlinear dynamical systems generating chaos must be determined by
at least three equations. For example, a three-dimensional attractor is gen-
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erated in a phase space with three coordinates x(t), y(t), and z(t), which
are determined by three time-depending nonlinear differential equations. But,
in practice, it is often difficult to distinguish several variables of a system.
Nevertheless, if only one variable can be measured, an attractor with a finite
number of dimensions can be reconstructed from the measured time series
with great similarity to the original attractor of the system. We must only
assume that we can also measure the derivative of that variable, and further
higher order derivatives up to some finite level d. Then, if the dimension of the
system is less than d, we have enough information to completely describe the
system with d differential or difference equations d derivatives is equivalent
to measuring the system at d different time intervals. Therefore, according to
Taken’s theorem, the measured time series of a variable can be embedded in a
reconstructed phase space with d dimensions. The sequence of points created
by embedding the measured time series is a reconstructed trajectory of the
original system, generating an attractor with great similarity to the original
one of the system.

In practice, decisions about chaotic dynamics are rather difficult. How can
we decide that a time series of measured data is not generated by noisy ir-
regularity but by highly structured chaotic attractors? A chaotic attractor is
determined by a trajectory in a bounded region of a phase space with aperi-
odic behavior and sensitive dependence on initial conditions. These criteria –
determinism, boundedness, aperiodicity, and sensitivity – can be checked by
several techniques of time series analysis. In the case of noise, the trajectories
spread unbounded all over the phase space. A chaotic attractor is finite and
always bounded in a certain region of the phase space. Aperiodicity means
that the states of a dynamical system never return to their previous values.
But values of states may return more or less to the vicinity of previous values.
Thus, aperiodicity is a question of degree which can be studied in recurrence
plots of measured points. Such plots depict how the reconstructed trajectory
recurs or repeats itself. The correlation integral defines the density of points
in a recurrence plot where the measured time series are closer than a certain
degree of distance.

If a time series is generated by a chaotic system, the trajectory of the
time series, which is reconstructed from the measurement data of embedding,
has the same topological properties as the original attractor of the system,
as long as the embedding dimension is large enough. Taken proved a method
for finding an appropriate embedding dimension for the reconstruction of an
attractor. But this method yields no procedure for finding a chaotic attractor,
because its existence has been already assumed in order to determine its
dimension from the measurement data.

Another way to characterize chaotic dynamics is to measure the strength
of their sensitive dependence on initial data. Consider two trajectories start-
ing nearly the same initial data. In chaotic dynamics only a tiny difference
in the initial conditions can result in the two trajectories diverging exponen-
tially quickly in the phase space after a short period of time. In this case,
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it is difficult to calculate long-term forecasts, because the initial data can
only be determined with a finite degree of precision. Tiny deviations in digits
behind the decimal point of measurement data may lead to completely dif-
ferent forecasts. This is the reason why attempts to forecast weather fail in
an unstable and chaotic situation. In principle, the wing of a butterfly may
cause a global change of development. This “butterfly effect” can be measured
by the so-called Lyapunov exponent. A trajectory x(t) starts with an initial
state x(0). If it develops exponentially fast, then it is approximately given by
|x(t)| ∼ |x(0)|eλt. The exponent is smaller than zero if the trajectory is
attracted by attractors, such as stable points or orbits. It is larger than zero
if it is divergent and sensitive to very small perturbations of the initial data.

An attractor is typically finite in the phase space. Sensitivity to initial
conditions means that any nearby points on the attractor in the phase space
diverge from each other. They cannot, however, diverge forever, because the
attractor is finite. Thus, trajectories from nearby initial points on the attrac-
tor diverge and are folded back onto the attractor, diverge and are folded
back, etc. The structure of the attractor consists of many fine layers, like an
exquisite pastry. The closer one looks, the more detail in the adjacent layers
of the trajectories is revealed. Thus, the attractor is fractal. An attractor that
is fractal is called strange. There are also chaotic systems that are only ex-
ponentially sensitive to initial conditions but not strange. Attractors can also
be strange (fractal), but not chaotic. The fractal dimension of an attractor is
related to the number of independent variables needed to generate the time
series of the values of the variables. If d is the smallest integer greater than
the fractal dimension of the attractor, then the time series can be generated
by a set of d differential equations with d independent variables. For example,
a strange attractor of fractal dimension 2.03 needs three nonlinear coupled
differential equations generating its trajectory.

In summary, dynamical systems can be classified by attractors with in-
creasing complexity from fixed points, periodic and quasi-periodic up to
chaotic behavior. This classification of attractors can be characterized by dif-
ferent methods, such as typical patterns of time series, their power spectrum,
phase portraits in a phase space, Lyapunov exponents, or fractal dimensions.
A remarkable measure of complexity is the KS (Kolmogorov-Sinai) entropy,
measuring the information flow in a dynamical system [3, 9]. A dynamical
system can be considered an information processing machine, computing a
present or future state as output from an initial past state of input. Thus,
the computational efforts to determine the states of a system characterize the
computational complexity of a dynamical system. The transition from regular
to chaotic systems corresponds to increasing computational problems, accord-
ing to the computational degrees in the theory of computational complexity.
In statistical mechanics, the information flow of a dynamical system describes
the intrinsic evolution of statistical correlations between its past and future
states. The KS-entropy is an extremely useful concept in studying the loss
of predictable information in dynamical systems, according to the complex-
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ity degrees of their attractors. Actually, the KS-entropy yields a measure of
the prediction uncertainty of a future state provided the whole past is known
(with finite precision).

In the case of fixed points and limit cycles, oscillating or quasi-oscillating
behavior, there is no uncertainty or loss of information, and the prediction of
a future state can be computed from the past. Consequently, the KS-entropy
is zero. In chaotic systems with sensitive dependence on the initial states,
there is a finite loss of information for predictions of the future, according
to the decay of correlations between the past states and the future state
of prediction. The finite degree of uncertainty of a predicted state increases
linearly to its number of steps in the future, given the entire past. In the
case of chaos, the KS-entropy has a finite value (larger than zero). But in the
case of noise, the KS-entropy becomes infinite, which means a complete loss
of predicting information corresponding to the decay of all correlations (i.e.,
statistical independence) between the past and the noisy state of the future.
The degree of uncertainty becomes infinite.

5.2 Self-organization and controlled emergence in nature

How can the knowledge of chaos be applied in order to avoid or control risky
situations? This question will be a challenge for organic computing. It seems
to be paradoxical that chaotic systems, which are extremely sensitive to the
tiniest fluctuations, can be controlled. But nowadays the control of chaos
has been realized in chemical, fluid, and biological systems. In technology,
for example, the intrinsic instability of chaotic celestial orbits is routinely
used to advantage by international space agencies that divert spacecraft to
travel vast distances using only modest fuel expenditures. All techniques of
chaos control make use of the fact that chaotic systems can be controlled if
disturbances are countered by small and intelligently applied impulses. Just
as an acrobat balances about an unstable position on a tightrope by the
application of small correcting movements, a chaotic system can be stabilized
about any of an infinite number of unstable states by continuous application
of small corrections.

Two characteristics of chaos make the application of control techniques
possible. First, chaotic systems alternatively visit small neighborhoods of an
infinite number of periodic orbits. The presence of an infinite number of pe-
riodic orbits embedded within a chaotic trajectory implies the existence of
an enormous variety of different behaviors within a single system. Thus, the
control of chaos opens up the potential for a great flexibility in operating
performance within a single system.

A second characteristic of chaos important for control applications is its
exponential sensitivity. It follows that the state of chaotic system can be
drastically altered by the application of small perturbations. Therefore, un-
controlled chaotic systems fluctuate wildly. But, on the other side, controlled
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chaotic systems can be directed from one state to a very different one using
only very small controls. Obviously, controlling strategies require that the sys-
tem state lie close to the desired state. In such a case, the system dynamics
can be linearized, making control calculations rapid and effective. In chaotic
systems, ergodicity ensures that the system state will eventually wander arbi-
trarily close to the desired state. But in higher-dimensional or slowly varying
systems, the time taken for the state to move on its own from one state to
another can be prohibitive. In this case, fully nonlinear control strategies have
been devised that use chaotic sensitivity to steer the system state from any
given initial point to a desired state. Since chaotic systems amplify control
impulses exponentially, the time needed to steer such a system can be quite
short. These strategies have been demonstrated both in systems in which a
large effect is desired using very modest parameter expenditures (e.g., energy
and fuel) and in systems in which rapid switching between states is needed
(e.g., computational and communication applications).

Nonlinear dynamics does not only yield chaos and noise, but also order.
The emergence of order and structures in nature can be explained by the
dynamics of attractors in complex systems [9]. They result from collective
patterns of interacting elements in the sense of many-bodies problems that
cannot be reduced to the features of single elements in a complex system.
Nonlinear interactions in multicomponent (“complex”) systems often have
synergetic effects, which can neither be traced back to single causes nor be
forecast in the long run or controlled in all details. Again, the whole is more
than the sum of its parts. This popular slogan for emergence is precisely
correct in the the sense of nonlinearity.

The mathematical formalism of complex dynamical systems is taken from
statistical mechanics. If the external conditions of a system are changed by
varying certain control parameters (e.g., temperature), the system may un-
dergo a change in its macroscopic global states at some critical point. For
instance, water as a complex system of molecules changes spontaneously from
a liquid to a frozen state at a critical temperature of zero degrees Celsius.
In physics, those transformations of collective states are called phase transi-
tions. Obviously they describe a change of self-organized behavior between
the interacting elements of a complex system.

According to E. Landau, the suitable macrovariables characterizing the
change of global order are denoted as “order parameters”. For example, the
emergence of magnetization in a ferromagnet is a self-organized behavior of
atomic dipoles that is modeled by a phase transition of an order parameter,
the average distribution of microstates of the dipoles, when the system is an-
nealed to the Curie-point. The concept of order parameters can be generalized
for phase transitions when the system is driven away from equilibrium by in-
creasing energy. If, for example, the fluid of a stream is driven further and
further away from thermal equilibrium, by increasing fluid velocity (control
parameter), then fluid patterns of increasing complexity emerge from vortices
of fixed points, periodic oscillations to chaotic turbulence. Roughly speaking,
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we may say that old structures become unstable, broken down by changing
control parameters, and new patterns and attractors emerge.

More mathematically, nonlinear differential equations are employed to
model the dynamics of the system. At first, we study the behavior of the
elements on the microlevel in the vicinity of a critical point of instability.
In a linear stability analysis, one can distinguish stable and unstable modes
which increase to the macroscopic scale, dominating the macrodynamics of the
whole system. Thus, some few unstable modes become the order parameters
of the whole system. From a methodological point of view, the introduction
of order parameters for modeling self-organization and the emergence of new
structures is a giant reduction of complexity. The study of, perhaps, billions
of equations, characterizing the behavior of the elements on the microlevel,
is replaced by some few equations of order parameters, characterizing the
macrodynamics of the whole system. Complex dynamical systems and their
phase transitions deliver a successful formalism to model self-organization and
emergence. Further on, the knowledge of characteristic order parameters and
critical values of control parameters open a chance to influence the whole dy-
namics and to create desired states of technical systems by self-organization.
The formalism does not depend on special, for example, physical laws, but
must be appropriately interpreted for biological and technical applications.

According to the general scheme of nonlinear dynamics, biological organ-
isms function on many levels that have emerged step by step during evolution.
It is a question of granulation how “deep” we like to lay the initial layer of
microdynamics. As far as we know at least atomic dynamics influence states of
living organisms. During prebiotic evolution, interacting atoms and molecules
created complex biomolecules (e.g., proteins) by catalytic and autocatalytic
processes which are the building blocks of cells. Interacting cells achieved
complex cellular systems like organs or organisms which are elements of pop-
ulations. Further on, interacting populations became elements of ecological
networks as examples of complex systems. Thus, from the nonlinear dynam-
ics at each level, there emerge new entities that are characterized by order
parameters. Examples of order parameters are characteristic macroscopic fea-
tures of phenotypes which are determined by the genotype of an organism on
the microlevel. The macrodynamics of these order parameters determine the
microdynamics of the new entities, providing the basis of macrodynamics on
the following level. In principle, the dynamics of each level can be modeled
by appropriate nonlinear differential equations. In this case, the succeeding
hierarchical level can be mathematically derived from the previous one by a
linear stability analysis.

How can order be regulated and controlled in living organisms? This is
a key-question for applications in organic computing. Bio-oscillators are an
important example since they can be considered order parameters of life. Na-
ture abounds with rhythmic behavior that closely intertwines the physical
and biological sciences. The diurnal variations in dark and light give rise to
circadian physiological rhythms. But the rhythmic nature of biological pro-
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cesses is not only controlled by external processes. It often arises from the
intrinsic dynamics of complex nonlinear networks. Since all biological systems
are thermodynamically open to the environment they are dissipative, that is,
they dispense energy to their surroundings in the form of heat. Thus, for the
oscillator to remain periodic, energy must be supplied to the system in such a
way as to balance the continual loss of energy due to dissipation. If a balance
is maintained, then the phase space orbits become a stable limit cycle, that is,
all orbits in the neighborhood of this orbit merge with it asymptotically. Such
a system is called a bio-oscillator, which left to itself begins to oscillate without
apparent external excitation. The self-generating or self-regulating features of
bio-oscillators depend on the intrinsic nonlinearity of the biological system.

How can perturbations of such systems be used to explore and control their
physiological properties? This question does not only inspire new therapeutic
methods in medicine, but also technical applications in organic computing. An
example of a complex cellular system is the heart, which can be considered a
bio-oscillator [1]. In the simple case of an embryonic chick heart, a cardiac os-
cillator can be described by a system of ordinary differential equations with a
single unstable steady state and displaying an asymptotically stable limit cy-
cle oscillation that is globally attracting. After short perturbations, the pulses
return quickly to the limit cycle. The dynamics can be studied in the corre-
sponding time series of ECG-curves. The dynamics of a mammalian heart is
much more complex. The question arises if observed fluctuations are the result
of the oscillations being unpredictably perturbed by the cardiac environment,
or are a consequence of cardiac dynamics given by a chaotic attractor, or both.
In healthy patients, the heart rate is modulated by a complex combination
of respiratory, sympathetic, and parasympathetic regulators. For ill patients,
the ideas of chaos control can be incorporated into therapeutic situations.
Control is attempted by stimulating the heart at appropriate times. Repeated
intervention prevents the rhythm from returning to the chaotic mode.

Obviously, the total and global chaos of a system is dangerous. But local
chaotic fluctuations are physiologically advantageous. Sustained periodicities
are often unhealthy. To maintain health, the variables of a physiological system
must be able to extend over a wide range to provide flexible adaptation.
Healthy people have greater variability in their heart rates than those with
heart disease. Thus, local chaotic fluctuations may provide the plasticity to
cope with the exigencies of an unpredictable and changing environment.

Chaotic systems can be controlled more finely and more quickly than linear
systems. In linear systems, the response of the output depends linearly on
the input. Small changes in a parameter of a linear system produce only
small changes in the output. The variable controlling a chaotic physiological
response may need to change only a small amount to induce the desired large
change in the physiological state. Moreover, a chaotic physiological system
can switch very rapidly from one physiological state to another. Natural self-
control and self-organization of complex physiological systems open a wide
range of medical and engineering applications.
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The traditional notion of health is one of homeostasis and is based on
the idea that there exists an ideal state in which the body is operating in
a maximally efficient way. In this opinion, illness is considered to be the de-
viation of the body from this state, and it is the business of the physician
to assist the patient in regaining this state again. The nonlinear dynamics
of biological systems suggest to replace homeostasis by homeodynamics al-
lowing a more flexible view of how the systems work and making room for
the concept of systems with complex responses, even to the point of inherent
instability. The mammalian organism is composed of multiple nested loops
of nonlinear interacting systems on the physiological level. How much greater
are the possibilities for complex behavior at the psychic levels of the brain.

The coordination of the complex cellular and organic interactions in an
organism needs a new kind of self-organizing controlling. That was made pos-
sible by the evolution of nervous systems that also enabled organisms to adapt
to changing living conditions and to learn from experiences with its environ-
ment. The hierarchy of anatomical organization varies over different scales of
magnitude, from molecular dimensions to that of the entire central nervous
system (CNS). The research perspectives on these hierarchical levels may
concern questions, for example, of how signals are integrated in dendrites,
how neurons interact in a network, how networks interact in a system like
vision, how systems interact in the CNS, or how the CNS interact with its
environment. Each stratum may be characterized by some order parameters
determining its particular structure, which is caused by complex interactions
of elements with respect to the particular level of hierarchy.

In order to model the brain and its complex abilities, it is quite adequate
to distinguish the following categories. In neuronal-level models, studies are
concentrated on the dynamic and adaptive properties of each nerve cell or
neuron, in order to describe the neuron as a unit. In network-level models,
identical neurons are interconnected to exhibit emergent system functions. In
nervous-system-level models, several networks are combined to demonstrate
more complex functions of sensory perception, motor functions, stability con-
trol, etc. In mental-operation-level models, the basic processes of cognition,
thinking, problem-solving, etc. are described.

In the complex systems approach, the microscopic level of interacting neu-
rons should be modeled by coupled differential equations modeling the trans-
mission of nerve impulses by each neuron. The Hodgkin-Huxley equation is an
example of a nonlinear reaction-diffusion equation with an exact solution of a
traveling wave, giving a precise prediction of the speed and shape of the nerve
impulse of electric voltage. In general, nerve impulses emerge as new dynami-
cal entities like ring waves in BZ-reactions or fluid patterns in nonequilibrium
dynamics. In short: they are the “atoms” of the complex neural dynamics. On
the macroscopic level, they generate a cell assembly whose macrodynamics is
dominating order parameters. For example, a synchronously firing cell assem-
bly represents some visual percept of a plant, which is not only the sum of its
perceived pixels, but characterized by some typical macroscopic features like
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form, background or foreground. On the next level, cell assemblies of several
percepts interact in a complex scenario. In this case, each cell assembly is a
firing unit, generating an assembly of cell assemblies, whose macrodynamics is
characterized by some order parameters. The order parameters may represent
similar properties between the perceived objects.

In this way, we get a hierarchy of emerging levels of cognition, starting with
the microdynamics of firing neurons. The dynamics of each level is assumed
to be characterized by differential equations with order parameters. For ex-
ample, on the first level of macrodynamics , order parameters characterize a
visual percept. On the following level, the observer becomes conscious of the
percept. Then the cell assembly of perception is connected with the neural
area that is responsible for states of consciousness. In a next step, a conscious
perception can be the goal of planning activities. In this case, assemblies of
cell assemblies are connected with neural areas in the planning cortex, and so
on. They are represented by coupled nonlinear equations with firing rates of
corresponding cell assemblies. Even high-level concepts like self-consciousness
can be explained by self-reflections of self-reflections, connected with a per-
sonal memory, which is represented in corresponding cell assemblies of the
brain. Brain states emerge, persist for a small fraction of time, then disappear
and are replaced by other states. It is the flexibility and creativeness of this
process that makes a brain so successful in animals for their adaptation to
rapidly changing and unpredictable environments.

5.3 Self-organization and controlled emergence in
computational, information, and communicating systems

Organic Computing applies principles of natural dynamical systems to tech-
nical systems. Dominating principles in the complex world of evolution are
self-organization and self-control. How can they be realized in technical sys-
tems? Computational automata are a nice test bed for all kinds of technical
systems. There is a precise relation between self-organization of nonlinear sys-
tems with continuous dynamics and discrete cellular automata. The dynamics
of nonlinear systems is given by differential equations with continuous vari-
ables and a continuous parameter of time. Sometimes, difference equations
with discrete time points are sufficient. If even the continuous variables are
replaced by discrete (e.g., binary) variables, we get functional schemes of au-
tomata with functional arguments as inputs and functional values as outputs.
There are classes of cellular automata modeling attractor behavior of nonlin-
ear complex systems, which is well-known from self-organizing processes. But
in many cases, there is no finite program, in order to forecast the development
of random patterns. Thus, pattern emergence of cellular automata cannot be
controlled in any case.

Cellular automata (CA) are only a theoretical concept of computational
dynamics. In electrical engineering, information and computer science, the
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concept of cellular neural networks (CNN) has recently become an influen-
tial paradigm of complexity research and is being realized in information and
chip technology [2, 9]. CNNs has been made possible by the sensor revolu-
tion of the late 1990s. Cheap sensors and MEMS (micro-electro-mechanical
system) arrays have become popular as artificial eyes, noses, ears, taste and
somatosensory devices. An immense number of generic analog signals have
been processed. Thus, a new kind of chip technology, similar to signal pro-
cessing in natural organisms, is needed. Analog cellular computers are the
technical response to the sensor revolution, mimicking the anatomy and phys-
iology of sensory and processing organs. A CNN is their hard core, because it
is an array of analog dynamic processors or cells.

In general, a CNN is a nonlinear analog circuit that processes signals in
real time. It is a multi-component system of regularly spaced identical units,
called cells that communicate directly with each other only through their near-
est neighbors. The locality of direct connections is a natural principle which is
also realized by brains and cellular automata (CA). Total connectivity would
be energetically too expensive with the risk of information chaos. Therefore,
it was selected by evolution of the brain and not applied in technology. Unlike
conventional cellular automata, CNN host processors accept and generate
analog signals in continuous time with real numbers as interaction values.
The dynamics of a cell’s state are defined by a nonlinear differential equa-
tion (CNN state equation) with scalars for state, output, input, threshold,
and coefficients, called synaptic weights, modeling the intensity of synaptic
connections of the cell with the inputs and outputs of the neighbor cells. The
CNN output equation connects the states of a cell with the outputs.

CNN arrays are extremely useful for standards in visual computing. Ex-
amples are CNNs that detect patterns in either binary (black-and-white) or
grayscale input images. An image consists of pixels corresponding to the cells
of CNN with binary or grayscale. From the perspective of nonlinear dynamics,
it is convenient to think of standard CNN state equations as a set of ordinary
differential equations. Contrary to the usual CA approach with only geometric
pattern formation of cells, the dynamical behavior of CNNs can be studied
analytically by nonlinear equations. Numerical examples deliver CNNs with
limit cycles and chaotic attractors. For technical implementations of CNNs,
such as silicon chips, complete stability properties must be formulated, in or-
der to avoid oscillations, chaotic, and noise phenomena. These results also have
practical importance for image processing applications of CNNs. As brains and
computers work with units in two distinct states, the conditions of bistability
are studied in brain research, as well as in chip technology.

CNNs are optimal candidates to simulate local synaptic interactions of
neurons generating collective macro phenomena. Hallucinations, for example,
are the results of self-organizing phenomena within the visual cortex. This
type of pattern perception seems to be similar to pattern formation of fluids
in chemistry or aerodynamics. Pattern formation in the visual brain is due
to local nonlinear coupling among cells. In the living organism, there is a
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spatial transformation between the pattern perception of the retina and the
pattern formation within the visual cortex of the brain. First simulations of
this cortico-retinal transformation by CNNs generate remarkable similarities
with pattern perceptions that are well-known from subjective experiences of
hallucinations. Perceptions of a spiraling tunnel pattern have been reported
by people who were clinically dead and later revived. The light at the end of
the tunnel has sometimes been interpreted as religious experience.

CNNs with information processing in nanoseconds and even at the speed
of light seem to be optimal candidates for applications in neurobionics. Ob-
viously, there are surprising similarities between CNN architectures and, for
example, the visual pathway of the brain. An appropriate CNN approach is
called the “Bionic Eye”, which involves a formal framework of vision models
combined and implemented on the so-called CNN universal machine. Like a
universal Turing machine, a CNN universal machine can simulate any special-
ized CNN and is technically constructed in chip technology. Visual illusions
which have been studied in cognitive psychology can also be simulated by a
universal CNN chip. The same architecture of a universal machine can not
only be used to mimic the retinas of animals (e.g., of a frog, tiger salamander,
rabbit, or eagle) but they can also be combined and optimized for technical
applications. The combination of biological and artificial chips is no longer
a science fiction-like dream of cyborgs, but a technical reality with inspiring
ramifications for robotics and medicine.

In epileptology, clinical applications of CNN chips have already been envis-
aged. The idea is to develop a miniaturized chip device for the prediction and
prevention of epileptic seizures. Nonlinear time series analysis techniques have
been developed to characterize the typical EEG patterns of an epileptic seizure
and to recognize the phase transitions leading to the epileptic neural states.
These techniques mainly involve estimates of established criteria such as cor-
relation dimension, Kolmogorov-Sinai-entropy, Lyapunov exponents, fractal
similarity, etc. Implantable seizure prediction and prevention devices are al-
ready in use with Parkinson patients. In the case of epileptic processes, such a
device would continuously monitor features extracted from the EEG, compute
the probability of an impending seizure, and provide suitable prevention tech-
niques. It should also possess both high flexibility for tuning to individual pa-
tient patterns and high efficacy to allow the estimation of these features in real
time. Eventually, it should have low energy consumption and be small enough
to be implemented in a miniaturized, implantable system. These requirements
are optimally realized by CNNs , with their massive parallel computing power,
analog information processing, and capacity for universal computing.

In complex dynamical systems of organisms monitoring and controlling are
realized on hierarchical levels. Thus, we must study the nonlinear dynamics
of these systems in experimental situations, in order to find appropriate order
parameters and to prevent undesired emergent behavior as possible attractors.
From the point of view of systems science, the challenge of organic computing
is controlled emergence.
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A key-application is the nonlinear dynamics of brains. Brains are neural
systems which allow quick adaptation to changing situations during the life-
time of an organism. In short: They can learn, assess and anticipate. The
human brain is a complex system of neurons self-organizing in macroscopic
patterns by neurochemical interactions. Perception, emotions, thoughts, and
consciousness correspond to these patterns. Motor knowledge, for instance, is
learned in an unknown environment and stored implicitly in the distribution
of synaptic weights of the neural nets. Technically, self-organization and pat-
tern emergence can be realized by neural networks, working like brains with
appropriate topologies and learning algorithms. A simple robot with diverse
sensors (e.g., proximity, light, collision) and motor equipment can generate
complex behavior by a self-organizing neural network. In the case of a colli-
sion with an obstacle, the synaptic connections between the active nodes for
proximity and collision layer are reinforced by Hebbian learning: A behavioral
pattern emerges, in order to avoid collisions in future [12]. In the human or-
ganism, walking is complex bodily self-organization, largely without central
control by brain and consciousness: It is driven by the dynamical pattern of
a steady periodic motion, the attractor of the motor system.

What can we learn from nature? In unknown environments, a better strat-
egy is to define a low-level ontology, introduce redundancy – there is a lot in
the sensory systems, for example – and leave room for self-organization. Low-
level ontologies of robots only specify systems like the body, sensory systems,
motor systems, and the interactions among their components, which may be
mechanical, electrical, electromagnetic, thermal etc. According to the complex
systems approach, the components are characterized by certain microstates
generating the macrodynamics of the whole system.

Take a legged robot. Its legs have joints that can assume different angles,
and various forces can be applied to them. Depending on the angles and the
forces, the robot will be in different positions and behave in different ways.
Further, the legs have connections to one another and to other elements. If a
six-legged robot lifts one of the legs, this changes the forces on all the other legs
instantaneously, even though no explicit connection needs to be specified. The
connection is implicit: They are enforced through the environment, because
of the robot’s weight, the stiffness of its body, and the surfaces on which it
stands. Although these connections are elementary, they are not explicit and
included if the designer wished. Connections may exist between elementary
components that we do not even realize. Electronic components may interact
via electromagnetic fields that the designer is not aware of. These connections
may generate adaptive patterns of behavior with high fitness degrees (order
parameter). But they can also lead to sudden instability and chaotic behavior.
In our example, communication between the legs of a robot can be implicit.
In general, much more is implicit in a low-level specification than in a high-
level ontology . In restricted simulated agents, only what is made explicit
exists, whereas in the complex real world, many forces exist and properties
obtain, even if the designer does not explicitly represent them. Thus, we must
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study the nonlinear dynamics of these systems in experimental situations, in
order to find appropriate order parameters and to prevent undesired emergent
behavior as possible attractors.

But not only “low level” motor intelligence, but also “high level” cogni-
tion (e.g., categorization) can emerge from complex bodily interaction with
an environment by sensory-motor coordination without internal symbolic rep-
resentation. We call it “embodied cognition”: An infant learns to categorize
objects and to build up concepts by touching, grasping, manipulating, feeling,
tasting, hearing, and looking at things, and not by explicit representations.
The categories are based on fuzzy patchworks of prototypes and may be im-
proved and changed during life. We have an innate disposition to construct
and apply conceptual schemes and tools.

Moreover, cognitive states of persons depend on emotions. We recognize
emotional expressions of human faces with pattern recognition of neural net-
works and react by generating appropriate facial expressions for non-verbal
communication. Emotional states are generated in the limbic system of the
brain, which is connected with all sensory and motor systems of the organ-
ism. All intentional actions start with an unconscious impulse in the limbic
system, which can be measured before their performance. Thus, embodied
intentionality is a measurable feature of the brain [4]. Humans use feelings to
help them navigate the ontological trees of their concepts and preferences, to
make decisions in the face of increasing combinatorial complexity: emotions
help to reduce complexity.

The embodied mind is obviously a complex dynamical system acting and
reacting in dynamically changing situations. The emergence of cognitive and
emotional states is made possible by brain dynamics, which can be modeled by
neural networks. According to the principle of computational equivalence [9],
any dynamical system can be simulated by an appropriate computational sys-
tem. But, contrary to Turing’s AI-thesis, that does not mean computability
in every case. In complex dynamical systems, the rules of locally interact-
ing elements (e.g., Hebb’s rules of synaptic interaction) may be simple and
programmed in a computer model. But their nonlinear dynamics can gener-
ate complex patterns and system states which cannot be forecast in the long
run without increasing loss of computability and information. Thus, artifi-
cial minds could have their own intentionality, cognitive and emotional states
which cannot be forecast and computed like in the case of natural minds.
Limitations of computability are characteristic features of complex systems.

In a complex dynamical world, decision making and acting is only possible
under conditions of bounded rationality. Bounded rationality results from limi-
tations on our knowledge, cognitive capabilities, and time. Our perceptions are
selective, our knowledge of the real world is incomplete, our mental models are
simplified, our powers of deduction and inference are weak and fallible. Emo-
tional and subconscious factors effect our behavior. Deliberation takes time
and we must often make decisions before we are ready. Thus, knowledge rep-
resentation must not be restricted to explicit declarations. Tacit background
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knowledge, change of emotional states, personal attitudes, and situations with
increasing complexity are challenges of organic computing.

In a dramatic step, the complex systems approach has been expanded from
neural networks to global computer networks like the Worldwide Web. The In-
ternet can be considered as a complex open computer network of autonomous
nodes (hosts, routers, gateways, etc.), self-organizing without central mecha-
nisms. Routers are nodes of the network determining the local path of each
information packet by using local routing tables with cost metrics for neigh-
boring routers. These buffering and resending activities of routers can cause
congestions in the Internet. Congested buffers behave in surprising analogy to
infected people. There are nonlinear mathematical models describing true epi-
demic processes like the spread of malaria as well as the dynamics of routers.
Computer networks are computational ecologies.

However, complexity of global networking does not only mean increasing
numbers of PCs, workstations, servers, and supercomputers interacting via
data traffic in the Internet. Below the complexity of a PC, low-power, cheap,
and smart devices are distributed in the intelligent environments of our ev-
eryday world. Like GPS in car traffic, things in everyday life could interact
remotely controlled by sensors. The real power of the concept does not come
from any one of these single devices. In the sense of complex systems, the
power emerges from the collective interaction of all of them. For instance, the
optimal use of energy could be considered as a macroscopic order parameter
of a household realized by the self-organizing use of different household goods
according to confine consumption of electricity during special time-periods
with cheap prices. The processors, chips, and displays of these smart devices
don’t need a user interface like a mouse, windows, or keyboards, but just a
pleasant and effective place to get things done. Wireless computing devices on
small scales become more and more invisible to the user. Ubiquitous comput-
ing enables people to live, work, use, and enjoy things directly without being
aware of their computing devices.

A challenge of the automobile industry is the increasing complexity of elec-
tronic systems. If we consider the electronic cable systems of automobiles from
the beginning through to today, there will be a surprising similarity to neural
networks of organisms which increase in complexity during evolution. Con-
trary to biological evolution, electronic systems of today are rigid, compact,
and flexible. In an evolutionary architecture (EvoArch) the nervous system of
an automobile is divided into autonomous units (carlets) which can configure
themselves into cooperative functions, in order to solve intelligent tasks [5].
They are the macroscopic features realized by interacting units in a complex
system. Examples are the complex functions of motor, brake, and light, wire-
less guidance systems like GPS, smart devices for information processing, and
the electronic infrastructure of entertainment. In EvoArch, there are several
“self-x-features” with great similarity to self-organizing organic systems in bi-
ological evolution: Self-healing demands self-configuration and self-diagnosis.
Self-diagnosis means error recognition and self-reflection, etc.
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5.4 Perspectives of organic computing

Organic computing aims at the construction of self-organizing computing sys-
tems that display desired emergent behavior like organisms in natural evolu-
tion [6, 7, 11]. Emergence refers to a property of a system that is not contained
in any of its parts. In the sense of nonlinear dynamical systems, the whole
is more than the sum of its parts. In robotics, it concerns behavior resulting
from the agent-environment interaction whenever the behavior is not prepro-
grammed. It is thus not common to use the term if the behavior is entirely
prespecified like a trajectory of a hand that has been precalculated by a plan-
ner. Agents designed using high-level ontologies have no room for emergence,
for novel behaviors. A domain or high-level ontology consists of a complete
representation of the basic vocabulary, the primitives that are going to be used
in designing the system. These are the only components that can be used: ev-
erything is built on top of these basic elements. The domain ontology remains
constant for an extended period of time, often for the entire life of the system.
A well-known example is the bounded knowledge representation of an expert
system. High-level ontologies are therefore used whenever we know precisely
in what environments the systems will be used, for traditional computational
systems as well as for factory robot systems. In unknown environments, a
better strategy is to define a low-level ontology and to introduce redundancy
with a great variety of self-organization.

In the dynamical systems approach, we first need to specify what sys-
tem we intend to model and then we have to establish the differential or
difference equations. Time series analysis and further criteria of data mining
help to construct the appropriate phase spaces, trajectories, and attractors.
In organic computing, one approach would be to model an agent and its envi-
ronment separately and then to model the agent-environment interaction by
making their state variables mutually dependent [12]. The dynamical laws of
the agent A and the environment E can be described by simplified schemes
of differential equations dxa/dt = A(xa, pa) and dxe/dt = E(xe, pe), where x
represents the state variables, such as angles of joints, body temperature, or
location in space, and p parameters like thresholds, learning rates, nutrition,
fuel supply and other critical features of change. Agents and environment can
be coupled by defining a sensory function S and a motor function M . The
environment influences the agent through S. The agent influences its environ-
ment through M . S and M constitute the agent-environment coupling, i.e.
dxa/dt = A(xa, S(xe), pa) and dxe/dt = E(xe,M(xa), pe), where pa and pe

are not involved in the coupling. Examples are walking or moving robots in
environments with obstacles. In this case, the basic analysis problem can be
stated in the following way: given an environment dynamics E, an agent dy-
namics A, and sensory and motor functions S and M , explain how the agent’s
observed behavior is generated.

One of the controllers of the dynamics evolves when the agent’s angle
sensors are turned off and cannot sense the position of its legs. In this case, the
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activation levels of the neurons exhibit a limit cycle that causes the agent’s
single leg to stand and swing rhythmically. By that, it causes the robot to
walk. The system’s state repeatedly changes from the stance phase with the
foot on the ground to the swing phase with the foot in the air and back.
This example illustrates that the dynamical systems approach can be applied
in a synthetic way in order to to design and to construct robots and their
environments. But, in general, the dynamical systems approach is used in an
analytical way: it starts from a given agent-environment interaction, which is
formalized in terms of differential equations. The complex variety of behavior
can be analyzed by solving, approximating, or simulating the equations, in
order to find the attractors of dynamics. The dynamical attractors of the
interacting system can be used to steer an agent or to let it self organize in a
desired way.

Obviously, self-organization leads to the emergence of new phenomena on
sequential levels of evolution. Nature has demonstrated that self-organization
is necessary to manage the increasing complexity on these evolutionary lev-
els [8]. But nonlinear dynamics can also generate chaotic behavior, which
cannot be predicted and controlled in the long run. In complex dynamical
systems of organisms monitoring and controlling are realized on hierarchical
levels. There is still no final and unified theory of organic computing. We only
know parts of biological, neural, cognitive, and social systems in the frame-
work of complex dynamical systems. But even in physics, we have no unified
theory of all physical forces. Nevertheless, scientists work successfully with an
incomplete patchwork of theories. In order to know more about it, we need
an interdisciplinary cooperation of technical, natural, computer, and cognitive
science, and last but not least the humanities. The goal of organic computing
is the construction of self-organizing computing systems as service for peo-
ple, in order to manage a world of increasing complexity and to support a
sustainable future of human infrastructure.
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Summary. Most technical systems envisioned in organic computing are assumed to
be complex, consisting of a large number of interacting components, self-organizing
and exhibiting emergent behavior. As is argued in this chapter, a system’s emergent
properties surface only after realization or during a simulation of all interacting
components. Thus, the usual “top-down” and “bottom-up” design paradigms have
severe limitations when it comes to emergence. Instead, the use of evolutionary
computation is advocated for the automated, simulation-based design of organic
computing systems with emergent behavior.

Key words: Emergence, organic computing, evolutionary computation, design
principles

6.1 Introduction

As a result of the continuing technological and scientific progress, the systems
created by engineers, computer scientists and others become larger and larger,
consisting of more and more highly interconnected and heterogeneous com-
ponents. In short, they become ever more complex. On the other hand, the
demand for reliability, adaptability and cost effectiveness remains or even in-
creases. Being able to design and control such complex systems thus becomes
a competitive necessity.

The organic computing initiative envisions computer systems of the future
to be more flexible and adaptive, more autonomous, and with a stronger focus
on user needs. In short, organic computers are self-organizing systems, able to
dynamically adapt to a changing environment. They exhibit the so-called “self-
x” properties, including self-organization, self-configuration, self-healing, self-
adaptation, and self-protection. To achieve these goals, a life-like structure is
envisioned, with many interacting, more or less autonomous subsystems, self-
organizing into a coherent global system. This can be viewed to be analogous
to complex natural systems, as e.g. societies of ants, termites, or wasps. An
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observer-controller structure [63, 22] is supposed to supervise and control the
overall system.

On the one hand, such a structure relieves the designer from the need to
foresee all possible events and rigidly program all system responses in every
detail, as for example small faults can be self-repaired, the system can self-
adapt to a variety of environments and users, and self-protect even against
threats not yet existing at design time. On the other hand, the emergent
behavior of such collections of interacting, self-adapting components poses
new challenges to the designer.

Usually, emergence is defined as some global behavior of the overall system
that can not be observed, and often not even deduced, from looking at the
components individually, see, e.g., [46, 28]. Examples include traffic jams,
the finding of shortest paths by ants, or the complex functionality of the
brain consisting of many rather simple interconnected neurons. Note that
the emergent behavior may be desired, as in the example of the brain, or
undesired, as in the example of traffic jams.

Since emergent behavior only occurs if components are working together,
the system’s characteristics can not be derived by analyzing the individual
parts, and analytical models of such complex systems usually don’t exist1.
But this also means that the usual “top-down” design principle is no longer
appropriate. It is by definition impossible to know how design choices made on
the component level affect the overall system behavior. Therefore, designing
a set of interacting subsystems such that they generate a desired emergent
global behavior , while preventing undesired emergent behavior, is a very
challenging task.

This predicament has been discussed also by others, see e.g. [29, 34, 5, 53].
Most researchers agree that the design of complex, self-organizing systems
with emergent properties is necessarily an iterative, step-wise refinement pro-
cess, with extensive use of simulations and experiments. In fact, simulation
seems to be the only practicable method of developing an understanding of the
properties of organic systems, and we therefore conjecture that any promis-
ing design process has to involve simulation to evaluate a system’s quality.
Some tools have been proposed to support such a process, see, e.g., [9]. Nev-
ertheless, the proper design methodology is still a heavily debated research
issue. Eventually, the design process is often driven by trial-and-error and the
intuition and ingenuity of an engineer. For inspiration, people often turn to
principles from nature when designing self-organizing systems, see [57, 54] for
compilations of such principles.

In this paper, we argue that simulation-based design, in its extreme form,
basically corresponds to a black box search in the design space, using simu-
lation to evaluate solutions. Although many real-world problems may not be

1 Exceptions are perhaps physical systems, where the global behavior can be de-
scribed by appropriately chosen differential equations
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a complete black box, there are powerful black box optimization algorithms
that could be used to automate simulation-based design of complex systems.

Design and optimization based on simulation have become practical only
recently due to the immense increase in computational power. In the realm
of simulation, entire complex systems can now be modeled realistically to
the point of allowing accurate conclusions about the real world. And in the
realm of design and optimization, it allows to develop and run iterative nature-
inspired metaheuristics like evolutionary algorithms (EAs), which have proven
to be successful in a wide variety of problem domains. Together, this provides,
for the first time, a means to automatically optimize and design complex
systems despite of the appearance of emergent phenomena.

Simulation-based design, however, poses a number of challenges:

1. Evaluating a solution is time consuming. Because simulating a com-
plex organic system usually involves the simulation of a large number of
interacting components, such a simulation is time consuming and compu-
tationally expensive.

2. Evaluation is stochastic. In many cases, a complex system contains
some random component, be it only the environment it interacts with. As a
consequence, the simulations used for evaluating complex systems involve
a pseudo random number generator, and thus the observed performance
is stochastic and depends on the random number seed. Such uncertainty
in evaluation is a major challenge for design and optimization.

3. Typical applications involve multiple objectives. Although this as-
pect is not restricted to organic systems, many practical complex systems
are supposed to satisfy a multitude of usually conflicting criteria. Since
no single system is optimal with respect to all criteria, a compromise so-
lution has to be found, which represents a proper trade-off of the different
objectives.

Nature-inspired metaheuristics form one group of optimizers able to suc-
cessfully tackle black box optimization problems. Nature-inspired optimiza-
tion is a very active field of research, encompassing a number of different
optimization approaches inspired by different natural phenomena. Among the
most prominent representatives are simulated annealing [1], evolutionary algo-
rithms [32], ant colony optimization [12], tabu search [40], or particle swarm
optimization [33]. Their suitability for black box optimization alone would
make them promising candidates for the design and optimization of complex
systems. But, as will be demonstrated in this chapter, EAs are also able to
address all the other challenges involved in the design and optimization of
complex organic systems.

As a closely related field, simulation-based optimization has received in-
creasing interest over the past years, good overviews can be found e.g.
in [39, 67, 43]. So far, however, the area has been mostly concerned with
the uncertainty of evaluations. A typical representative would be stochastic
approximation [66], which is a variant of gradient search explicitly taking into
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account stochastic evaluation functions. Here, we will show how EAs can be
adapted to handle such problems, and will additionally look at all the other
aspects mentioned above and considered important when designing or opti-
mizing complex organic systems.

This chapter is structured as follows. The next section will provide a brief
introduction to EAs. Then we discuss the different challenges with respect
to the optimization of complex organic systems, and how EAs can address
them. First, in section 6.3, we discuss ways to run the algorithm in reasonable
time despite of the usually large time to evaluate a single solution. In par-
ticular, we discuss parallelization and the use of approximate models. Then,
Section 6.4 looks at ways to allow EAs to cope with stochastic evaluations.
The consideration of multiple objectives and the algorithm’s ability to focus
on the most interesting solutions is treated in Section 6.5. Section 6.6 briefly
describes two exemplary applications. The chapter concludes with a summary
and some ideas for future work.

6.2 A brief introduction to evolutionary computation

A detailed description of evolutionary algorithms is out of the scope of this
chapter, and the interested reader is referred to, e.g., [32, 35]. However, a brief
outline of the algorithms’ main features shall be provided here.

Evolutionary algorithms are randomized heuristic search methods based
on the principles of natural evolution, or more specifically, on Darwin’s theory
of the survival of the fittest. The two driving forces of EAs are selection and
diversification. Starting with a set of candidate solutions (population), in each
iteration (generation), new individuals are created based on the current popu-
lation (diversification). The two primary construction operators are crossover,
which combines information from two solutions to form a new solution, and
mutation, which modifies an existing solution locally. In the next step, out
of this larger set of parents and offspring, the new set of individuals allowed
to reproduce is selected. By continually selecting good solutions for reproduc-
tion and then creating new solutions based on the knowledge represented in
the selected individuals, the solutions “evolve” and become better and better
adapted to the problem to be solved, just like in nature, where the individuals
become better and better adapted to their environment through the means of
evolution.

There are four different main streams of evolutionary computation that
have originally been developed independently and focused on different aspects,
namely genetic algorithms [42], evolution strategies [58, 64], evolutionary pro-
gramming [38], and genetic programming [50]. While all can be used for design
and optimization, the latter may be particularly interesting for open-ended
design, because it allows for variable-length descriptions of solutions, e.g. in
the form of LISP-expressions, i.e. it imposes fewer restrictions on the search
space.
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As all metaheuristics, EAs are more or less black box optimization tech-
niques and thus don’t impose any constraints on the optimization problem,
e.g., the fitness function need not be differentiable.

6.3 Timely execution despite expensive evaluations

If during the course of optimization, many candidate solutions have to be eval-
uated, and each evaluation involves a time-consuming simulation, the overall
time required for optimization may be excessively long. Therefore, methods
are needed to speed up the optimization.

We consider here two fundamental ways to achieve that goal: either the
execution itself is accelerated, or the algorithm is modified such that it can
work with fewer evaluations (and thus requires fewer simulation runs). The
former can be achieved by, e.g., parallelization, the latter by replacing the
time-consuming simulation with approximate evaluations. These aspects are
discussed in the following subsections.

6.3.1 Parallelization

Parallelization can be implemented on different levels: The lowest level is the
level of a single evaluation or simulation. However, parallelization on this level
is very problem specific and, in particular, if the interaction between system
components is not restricted locally, could turn out to be quite challenging.

The highest level would be to run several instances of the EA in parallel on
different processors. Since EAs are randomized search algorithms, they would
generate different solutions when started with different random seeds on the
different processors. The final solution would then be the best solution found
by either of the parallel runs. Although that sort of high level parallelization
would be very easy to realize, intuitively, it is not very efficient, as the different
runs don’t exchange any information.

Parallelizing a single run on the algorithm level seems most promising.
Luckily, EAs are relatively easy to parallelize, since the time consuming eval-
uation of a solution can be done in parallel and independently for different
solutions, for surveys see, e.g., [3, 26, 61].

Clearly, all individuals created in one generation can be evaluated inde-
pendently on different processors. Also, mutation and crossover could be done
in parallel. Only for selection, a solution’s quality has to be judged relative to
to the quality of all other solutions in the population, and thus global knowl-
edge is required. This can be achieved in a master-slave fashion, where the
master process maintains the population and selects parents, but sends out
the parents for crossover, mutation and evaluation to the slave processes. This
very straightforward parallelization scheme incurs significant communication
overhead, as individuals have to be sent out and recollected in every itera-
tion. Therefore, the EA community has developed algorithmic variants with
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a more local selection, alleviating the need for global control. Most promi-
nent among those are the island model and the diffusion model. In the is-
land model, the population is divided into a number of subpopulations, which
can run independent EAs on different processors. Only at regular intervals
the subpopulations exchange some (usually the best) individuals with their
neighbors in a so-called migration step. Communication is thus reduced to
occasional migration. In the diffusion model, individuals are distributed spa-
tially. In every generation, each individual selects a mating partner from its
local neighborhood. The model is called diffusion model because the neigh-
borhoods are overlapping, and a very good individual can spread only slowly
(diffuse) from one local neighborhood to the next. The island model is ideally
suited for workstation clusters with powerful processors and slow communica-
tion. The diffusion model with a local interaction structure is particularly well
suited for massively parallel computers with a very fast local interconnection
network.

Either model localizes selection, thereby creating temporary niches, in
which also inferior individuals have a chance to survive for some time. As
experience has shown, this effect is so beneficial that many people today ac-
tually implement either the island or the diffusion model even on a single
processor.

All the approaches above more or less assume a dedicated parallel com-
puter with equally powerful processors. However, in recent years, computer
grids, i.e., the combination of available computers connected via Internet to
form a virtual supercomputer, became a much cheaper and more accessible
alternative. The power of computer grids has been demonstrated, e.g., by
the project [65], which connected thousands of computers to search for ex-
traterrestrial life, and companies like [56] or [74] commercialize the idea of
networked computing. Clearly, computer grids have the potential to resolve
the problem of high computer resources required by EAs, and will help pave
the way to their still more widespread use.

However, the above parallelization schemes have to be adapted to a het-
erogeneous computer architecture with processors of vastly different power
(with processor power actually varying over time, as only the computers’ idle
cycles are utilized), and slow and unreliable communication, see [20] for first
steps in this direction.

6.3.2 Use of approximate models

Another way to reduce computational complexity and to speed up the pro-
cedure is to replace the usual evaluation by an approximate one. Such an
approximate evaluation can be obtained through, e.g., response surface mod-
eling. In the simplest case, methods from experimental design are used to
determine a suitable set of potential solutions, called design points, that are
evaluated and then used to construct a metamodel, a simple approximate
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model of the true evaluation function. Typical types of approximation models
include regression, kriging, or artificial neural networks.

Given such a metamodel, the application of EAs is straightforward. How-
ever, such a two-step process of first constructing a metamodel and then using
it for optimization assumes that a good solution with respect to the metamodel
also represents a good solution with respect to the true evaluation. The valid-
ity of this assumption clearly depends on the quality of the metamodel. The
dilemma is that constructing an accurate metamodel for the whole search
space may require even more evaluations than running the optimizer directly
on the original evaluation function.

A promising alternative to that two-step process is to interweave model
construction and optimization: in the beginning of the optimization process,
a rather crude model may be sufficient, and later on, information from the
optimization run can be used to identify the most promising regions of the
search space, where the model can be repeatedly refined. In most cases so-
lutions are generated by the optimizer and evaluated using the metamodel.
Then, it is decided which of the solutions should be evaluated accurately, and
finally, the information gained by evaluating some solutions accurately is used
to update the metamodel. EAs are particularly suitable for combination with
approximation models because they are black box optimizers (and thus the
accurate evaluation can easily be exchanged with an approximate model on a
solution-by-solution basis), and because they repeatedly resample promising
regions of the search space, thereby gathering information over time in the
most interesting regions, which can be used to refine the model exactly there.
Comprehensive overviews of this rather large research area can be found e.g.
in [48, 47].

The use of a metamodel is particularly helpful in the context of applica-
tions with noisy evaluation functions, or when searching for robust solutions.
In those cases, in order to obtain sufficiently accurate estimates of a solu-
tion’s quality, repeated evaluation of each solution is required, which makes
optimization particularly costly. Here, metamodels can help reduce the num-
ber of evaluations per solution, see, e.g., [25, 55, 59]. These issues are discussed
in more detail in the following section.

6.4 Stochastic fitness

EAs rely on an appropriate balance between exploration and exploitation,
i.e., between testing new regions of the search space and concentrating the
search on the most promising regions. The primary operator for exploitation is
selection, which is a prerequisite for the advancement of search. In EAs, there
are two potential selection steps: Good individuals have a higher probability to
be selected as parents (parent selection), and bad individuals are removed from
the population to make way for new individuals (usually termed environmental
selection).
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Selection implies the ability to discriminate alternative solutions accu-
rately by their quality, in order to separate the good from the bad. However,
as has been stated above, when designing complex organic systems, evaluation
is done by randomized simulation, and thus selection is subject to uncertainty.
This obviously impacts the algorithm’s ability to select. Many authors have
addressed this issue, and, in this section, we discuss ways that allow nature-
inspired metaheuristics to work despite the noise.

There are a number of reasonable optimization goals in the presence of
uncertainty, ranging from worst case performance over expected performance
to the probability of being above a specified level. The by far most thoroughly
studied and arguably most important criterion is expected performance, which
will be assumed for the remainder of this section.

In most of the literature, the issue of uncertain evaluation is divided into
two categories:

1. Noisy evaluation generally assumes an underlying objective function
f(x), which is unknown and disturbed by additive noise, i.e., the observed
fitness function can be described as F (x) = f(x) + δ, with δ a random
variable (usually normally distributed with zero mean). In this case the
expected fitness is the underlying (unknown) function: E(F (x)) = f(x).

2. Search for robust solutions usually assumes that the underlying objec-
tive function f(x) can be accurately evaluated during optimization, but
the final solution is subject to noise when it is implemented, and the fit-
ness obtained is thus F (x) = f(x + δ). Such a setting is typical in the
case of, e.g., manufacturing tolerances. However, even if the probability
distribution of δ is assumed to be known, it is not possible to calculate the

expected fitness E(F (x)) =
∫ +∞

−∞
f(x + δ)p(δ)dδ, because an analytically

closed form of the underlying fitness function is not available.

The above categorization makes sense, as it addresses different applica-
tion areas, but the border between the categories is blurred, and very similar
techniques have been successfully applied for both scenarios. The main dif-
ferences are that, in the case of noisy evaluation, the noise is assumed to be
uncontrollable, and it is impossible to evaluate without noise, while in the
case of searching for robust solutions, the disturbances applied during opti-
mization can be chosen deliberately, and only the final solution is subject to
uncontrollable noise. Controllability allows for the use of statistical variance
reduction techniques. Furthermore, the distribution of fitness values for a par-
ticular solution is often assumed normally distributed in noisy optimization,
while it is usually quite irregular (skewed and non-normal) when searching for
robust solutions (because the noise enters the fitness function). In the follow-
ing, we will discuss the issue of uncertain evaluation in general, and specify
the assumptions underlying all approaches. For a survey see, e.g., [48].
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6.4.1 Multiple samples

The simplest way to reduce uncertainty is by evaluating a solution repeatedly
and using the average as an estimate for the true mean fitness. Sampling n
times reduces a random variable’s standard deviation by a factor of

√
n, but

on the other hand increases the computation time by a factor of n. This is
a generally perceived trade-off: either one can use relatively exact estimates
but evaluate only a small number of individuals (because a single estimate
requires many evaluations), or one can let the algorithm work with relatively
crude fitness estimates and allow for more evaluations (as each estimate re-
quires less effort). For examples of papers using this simple approach see, e.g.,
[44, 75, 71]. Depending on the application, variance reduction techniques like
common random numbers or Latin hypercube sampling can help improving
the estimates [15].

6.4.2 Implicit averaging

Instead of removing the noise by averaging over multiple samples, one might
just let the algorithm cope with the uncertainty. Already many years ago, re-
searchers have argued that EAs should be relatively robust against noise, see
e.g., [37], and recently a number of publications have appeared which support
that claim at least partially [6, 7, 8]. In [52] it is shown that for infinite pop-
ulation size proportional2 selection is not affected by noise. Similarly, in [73]
it was shown that a genetic algorithm with random perturbations applied to
the design variables behaves identically to a genetic algorithm working on the
expected fitness values if the population size is infinite.

The reason is that promising areas of the search space are sampled re-
peatedly by the EA, and the population usually contains many similar so-
lutions. When the population is large, the noise in evaluating an individual
is very likely compensated by that of a similar individual. This effect has
been termed “implicit averaging” [48]. A natural question is whether explicit
averaging in the form of re-sampling or implicit averaging in the form of a
larger population size would be more efficient, given a fixed total number of
fitness evaluations per generation. Conflicting conclusions have been drawn
in different investigations [37, 10, 45]. In [51] and [52], some simplified the-
oretical models are developed, which allow to simultaneously optimize both
population and sample size.

6.4.3 Response surface modeling

Instead of implicitly averaging over neighboring solutions, one can explicitly
exploit information about previously evaluated similar solutions. And since
2 With proportional selection, an individual’s probability to be selected is propor-

tional to its quality relative to the sum of qualities of all other individuals in the
population.
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nature-inspired optimization heuristics repeatedly sample promising regions
of the search space, such data is usually available. In the simplest case of
noise applied to the decision variables, neighboring solutions can be regarded
as samples, and a weighted average over neighboring individuals can approx-
imate the integral over possible disturbances [13]. Assuming a locally smooth
fitness landscape, this idea has recently been extended in [55], where local
metamodels are constructed based on previous evaluations in the neighbor-
hood. Then, numerical integration over the metamodel can be used to approx-
imate the expected fitness. In the case of noise applied to the fitness values,
smooth metamodels, which average out the noise, can also be applied. In [25],
we have successfully used local regression for that purpose, similar ideas can
also be found in [59, 60]. Such techniques improve the fitness estimates without
requiring additional samples.

6.4.4 Statistical ranking and selection techniques

The probability of erroneous selection depends not only on the uncertainty,
but more on the signal-to-noise ratio, i.e., fitness difference relative to fitness
variance. If the signal-to-noise ratio is large, selection is unlikely to make
any errors. If it is rather small, selection is very uncertain. Thus, it seems
promising to adapt the effort spent reducing the noise by repeated sampling
to the uncertainty in a particular selection decision, rather than using a fixed
number of samples. Consequently, it has been suggested to use a higher sample
size for individuals with higher estimated variance [2]. Similarly, [68] bases the
sample size on an individual’s probability to be among the best (and thus to
survive to the next generation).

While these attempts certainly represent improvements over the simple
strategy of sampling each solution a constant number of times, they ignore
the huge and well-developed field of statistically sound ranking and selection
techniques. The primary difference between ranking and selection procedures
and optimization procedures is that the former assume a given, usually small
set of systems that are exhaustively examined, while the latter attempt to
search efficiently through a search space too large for exhaustive search. But
selection among a given small set of alternatives is done in every iteration of
nature-inspired optimization, namely when the memory is updated. A sur-
vey of the most important selection techniques, together with an extensive
comparison and demonstration of the respective strengths and weaknesses is
provided in [16]. They are all based on the idea of sequential sampling, i.e.,
they take some samples, and then iteratively decide which systems should be
sampled next until a termination criterion is met. One first effort to integrate
methods from ranking and selection into EAs can be found in [11], where
sequential sampling techniques are used to divide the individuals in the pop-
ulation into groups of similar quality, which then receive the same probability
to be selected as parents.
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In [24], we have integrated a selection technique, KN++ [49], into an
EA’s tournament selection. Also, we have shown how to numerically derive
an even better selection procedure tailored to a specific noise level. In our test
environment, both approaches, KN++ as well as our new procedure, showed
approximately the same performance as the standard procedure, but required
only half the number of samples.

6.4.5 Noise-adapted selection

In [23], we followed a completely different approach based on the observation
that many standard EA variants include a form of randomized selection. For
example, in rank-based selection, the probability to select an individual as
parent is proportional to its rank in the population. In stochastic tournament
selection, two individuals are compared and the better one is selected with a
probability p > 50%. Randomized selection is usually motivated by the wish
to maintain diversity and to escape local optima. Noise has a similar effect
as stochastic selection, namely that the inferior solution is selected with some
probability. Thus, it should be possible to accept the noise inherent in the op-
timization problem and to use it to (at least partially) replace the randomness
in the optimization algorithm. This has been achieved with our noise-adjusted
tournament selection (NATS) presented in [23]. In NATS, the probability to
accept a solution depends on the observed fitness difference between the two
solutions. We used bootstrapping to generate suitable acceptance probabilities
such that the expected acceptance rate is as close as possible to the desired
acceptance rate.

6.4.6 Further issues

In [2] it was probably first suggested that the sample size, and thus the accu-
racy of evaluation, should be increased over the run. [14] looks at this problem
more closely, and, in an extensive computational study, observes that it is best
to have high accuracy in the beginning of a run (presumably because in that
phase, the algorithm selects a subregion of the search space to work on), and
towards the end of the run (when local fine-tuning and selection of the final
solution require more precision). [4] look at a slightly different problem, but
also conclude that the sample size should increase over the run.

For the case of multiple uncertain objectives, [70] modifies the usual Pareto
dominance criterion to take uncertainty into account.

6.5 Multiple objectives

Design and optimization of complex organic systems often involves the con-
sideration of multiple, usually conflicting objectives. There is usually not one



134 Jürgen Branke, Hartmut Schmeck

solution which is optimal with respect to all objectives, but a set of alternative
solutions with different trade-offs. These solutions are generally called Pareto
optimal or efficient whenever it is impossible to improve on such a solution
in any criterion without suffering in at least one other criterion. Which of
these solutions is the desired one depends on the preferences of the decision
maker (DM). If these were known beforehand, e.g. in the form of a weighted
combination of the objectives, the problem could be transformed into a single
objective problem and solved in a standard way. However, very often the DM
is unable to specify his or her preferences before the alternatives are known.
It is therefore very convenient to have an optimization method capable of
generating the whole set of Pareto-optimal solutions and to allow the DM to
select among those afterwards.

EAs are population-based methods and thus capable of searching for all or
a representative subset of the Pareto-optimal solutions in one run. In recent
years, the field of evolutionary multi-objective optimization (EMO) has seen
a dramatic rise in interest with thousands of papers published, a dedicated
conference, and several books. For a comprehensive survey on the field, the
reader is referred to [31]. An extensive and frequently updated repository of
references can be found online [36].

The application of EAs to multi-objective problems is more or less straight-
forward. The main challenges are

1. to ensure convergence towards better solutions, and
2. to maintain a representative set of good alternatives.

To ensure convergence, one has to be able to determine when one solution
should be preferred over another. Here, most approaches rely on the concept
of non-dominance. A solution A is said to dominate a solution B, if A is at
least as good as B in all objectives, and better in at least one objective. To
ensure diversity along the front, among the non-dominated solutions, those in
sparse areas are favored over those in crowded areas.

While generating the whole front of Pareto-optimal solution ensures that
a DM’s preferred solution is part of the solution set, such a solution set can
contain a large number of alternative solutions, and selecting one may be
tedious. Generating so many solutions is usually also time-consuming and
would require rather large populations.

If we assume that for practical reasons the number of generated solu-
tions should be small, one immediate question is how they should be selected
from the large set of Pareto-optimal solutions, and whether the search can
be focused on the most interesting solutions from the beginning. Most multi-
objective approaches assume that the best representative set is equally dis-
tributed along the Pareto-optimal front. But although usually the DM can
not a priori specify his or her preferences completely, some vague information
is often available. Integrating this information into the optimization

and thereby biasing search towards the most interesting solutions holds the
promise of reducing computation time and generating more relevant solutions.
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There have been several attempts in this direction, see, e.g., [30, 21, 17].
Furthermore, it is possible to interactively learn user preferences during the
optimization run, see, e.g., [72].

But even if no information about the DM’s preferences is available, some
solutions are more likely to be useful to the DM than others. In [18], we have
proposed to evaluate solutions according to their expected marginal utility
to a virtual DM. That is, we calculate how much additional value a solution
provides according to a DM’s utility function, averaged over an assumed dis-
tribution of possible utility functions. As a result, the algorithm using this
diversity preservation mechanism exhibits a clear bias towards “knees”, i.e.,
regions of the Pareto-optimal front with strong curvature. It has been ar-
gued before that these solution have particularly high practical relevance [27]
because even a small improvement in either objective requires a significant
worsening of the other objectives.

6.6 Exemplary applications

In this section, we will briefly discuss two exemplary applications where EAs
have been successfully used to design complex systems.

The first example is the design of en-route caching strategies. In the In-
ternet, document requests are routed from the requesting node point-to-point
through the network to the node storing the document, then the document
is sent all the way back to the requesting node. When hubs in the network
become over-utilized, slowdowns and timeouts can disrupt the process. It is
thus worthwhile to think about ways to minimize these effects. Caching, i.e.,
storing replicas of previously-seen objects for later reuse, has the potential to
generate large bandwidth savings and in turn a significant decrease in response
time. With en-route caching, each router in the network is equipped with a
cache and may opt to store copies of some documents for future reuse [69].
The rules used for such decisions are called “caching strategies”. Designing
such strategies is a challenging task, because the different nodes interact, re-
sulting in a complex dynamic system. The quality of a caching strategy can
only be determined by simulation. [19] have demonstrated that genetic pro-
gramming can be used successfully to design new effective caching strategies.
The newly discovered caching strategy significantly outperformed all other
state-of-the-art caching strategies tested.

Another example is the design of traffic light controllers. For simple con-
trollers, where different phases are given fixed time intervals, theoretical anal-
ysis may still be possible. However, for adaptive controllers that adjust the
signals based on traffic sensor data, a rigorous analysis does not seem to be
possible and traffic planners usually rely on simulation to evaluate the quality
of a traffic light controller. Goldate [41] has used EAs and traffic simulation
to design a traffic light controller in a multi-objective setting, attempting to
minimize travel time as well as the number of stops. Although his diploma
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thesis can only be seen as a feasibility study, the resulting adaptive controller
outperformed a controller designed by a human expert. The nature-inspired
design of traffic light controllers is now explored with more rigor in the DFG
project on “Organic Traffic Control”3, including aspects like dynamic adap-
tation to changing (macro-)traffic patterns and interplay between the traffic
light controllers of neighboring crossroads.

6.7 Conclusion

Organic computer systems with life-like structure are advocated as a way to
handle the increasingly complex adaptive systems created by engineers and
computer scientists. Consisting of a large number of dynamically interacting
components, these systems exhibit emergent global behavior, which is not
deducible from the local actions of a single component. Organic Computing
thus calls for a methodology to determine appropriate local actions leading to
the desired global behavior. Another major challenge for the design of organic
systems is to control this emergent global behavior such that undesired effects
of emergence can be prevented. In this chapter, we have argued that due to
the emergent behavior, simulation seems to be required to evaluate a system’s
quality, which makes simulation a central component of design.

As has been demonstrated, EAs are particularly suitable for simulation-
based design and optimization for the following reasons:

• The quality of a complex adaptive system can usually only be evaluated
by simulation, as no closed analytical description is available. Since EAs
are black box optimization heuristics, they do not impose any restrictions
on the fitness function and naturally satisfy this requirement.

• EAs can be run efficiently in parallel, even on heterogeneous hardware
platforms like computer grids. Furthermore, it is possible to partly substi-
tute costly simulations by approximate models that are easier to compute.
These two aspects allow to significantly reduce the running time if neces-
sary.

• Even standard EAs can cope well with uncertainty in evaluation (e.g.
due to stochastic simulations). Furthermore, they can be enhanced with
advanced statistical methods from, e.g., ranking and selection to perform
even better.

• EAs maintain a population of solutions throughout the run. As such, they
are particularly suitable to handle multiple objectives and uncertainty
about user preferences by searching for different trade-offs in parallel.

However, even though the suitability of this methodology has been demon-
strated in several exemplary applications, more work is needed to further
refine the methods and to make them ready for widespread easy use. Also,

3 The project is part of the DFG priority program SPP 1183
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while most of the above aspects have been examined independently so far,
integrating them into one method seems a natural next step.

Finally, it seems promising to integrate the engineer’s knowledge more
closely into the process, e.g., by using interactive EAs [5].
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Summary. Organic computing calls for efficient adaptive systems in which flex-
ibility is not traded in against stability and robustness. Such systems have to be
specialized in the sense that they are biased towards solving instances from certain
problem classes, namely those problems they may face in their environment. Ner-
vous systems are perfect examples. Their specialization stems from evolution and
development. In organic computing, simulated evolutionary structure optimization
can create artificial neural networks for particular environments. In this chapter,
trends and recent results in combining evolutionary and neural computation are
reviewed. The emphasis is put on the influence of evolution and development on
the structure of neural systems. It is demonstrated how neural structures can be
evolved that efficiently learn solutions for problems from a particular problem class.
Simple examples of systems that “learn to learn” as well as technical solutions for
the design of turbomachinery components are presented.

7.1 Introduction

Technical systems that continuously adapt to a changing natural environment
and act (quasi-) autonomously have not been designed so far. Several funda-
mental challenges have to be met. First, more flexibility is required on the
software and possibly even on the hardware level. Second, this flexibility must
not be traded in against system stability and robustness. Minimal performance
must be guaranteed under all circumstances and degradation must be gradual
and controlled. Third, the system must be expandable and sustainable.

Biological neural systems usually have such properties while their technical
counterparts do not yet meet these requirements. Nevertheless, we believe
that artificial neural networks (NNs) provide a computing paradigm whose
potential has not yet been fully exploited. Our approach to address the above-
mentioned challenges and to tap the potential of artificial neural systems is
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to tune them for particular classes of problems and particular patterns of
processing.

In nature, such specialization stems from evolution and develop-
ment. Both design and shape structures ready to accommodate learn-
ing and self-organizing processes, which we see as the driving forces
behind the capability of neural systems, see figure 7.1. We think
that understanding the biological “design techniques” for nervous sys-
tems – evolution, development, and learning – paves the way for
the design of artificial adaptive systems competitive with humans.

learning

evolutiondevelopment

Fig. 7.1. Dimensions of natural design.

When designing adaptive sys-
tems, appropriate specialization
(bias) and invariance properties
are important, partially conflicting
objectives. The “No-free-lunch theo-
rems” for learning and optimization
imply that it is fruitless to try to
build universal adaptive systems.
All systems have to be biased
towards particular problem classes.
This bias can be induced by evolved
structures, on which learning and
self-organizing processes operate.
In this chapter, we review trends
and recent results in combining
evolutionary and neural computation. We will highlight synergies between
the two fields beyond the standard examples and emphasize the influence of
evolution and development on the structure of neural systems for the purpose
of adaptation. We demonstrate how neural structures can be evolved that
efficiently learn particular problem classes. We present simple examples of
systems that “learn to learn” as well as technical solutions for the design of
turbomachinery components.

The next section provides some background in artificial NNs and evo-
lutionary algorithms (EAs). We put an emphasis on theoretical limitations
and perspectives of these computing paradigms. We briefly describe simple
NNs based on integrate-and-fire neurons, introduce EAs in the framework of
stochastic search, and summarize the No-free-lunch theorems for learning and
optimization. In section7.3, we discuss evolutionary structure optimization of
neural systems and review some more recent trends in combining EAs and
neural systems. Finally, we demonstrate how neural structures can be evolved
that efficiently learn solutions for problems from a particular problem class.



7 Genesis of Organic Computing Systems 143

7.2 Background

In this section, we provide short introductions to NNs and EAs and review
“No-free-lunch” results for learning and optimization.

7.2.1 Neural computation

In the following, we briefly introduce basic ideas of NNs on the basis of the
simple rate-coded leaky integrator neuron model. A detailed introduction to
the broad field of neural computation is far beyond the scope of this article.
A good starting point for reading is [5], recommendable introductory books
on NNs for technical applications are [8, 33, 9] and on modeling nervous
systems [17].

Neural systems can be described on different levels of abstraction. Many
models, including those usually adopted for technical applications, can be de-
rived from the leaky integrator neuron. This model is based on the assumption
that the basic units of computation in nervous systems are single neurons. A
model neuron i is situated in time t and its state is described by the membrane
potential ui(t) governed by the differential equation

τi
∂ui(t)

∂t
= −ui(t) +

∑
j

wijσj [uj(t)] +
∑

k

w′iksk(t) + θi

with time constant τi. The neuron computes a weighted linear sum of the
inputs it receives (see [55] for a review of more detailed models of single
neurons). The first sum runs over all neurons j providing input to i, the sec-
ond over all external inputs sk(t), which are gathered in the vector s(t), to
the system. The weights wij and w′ik describe the strengths of the synaptic
connections. In the absence of input the membrane potential relaxes to the
resting level θi. It is assumed that the only communication in a network of
these units is through spikes of electrical activity traveling between the neu-
rons. A neuron emits a spike when its membrane potential exceeds a certain
threshold. Real spikes are discrete events, but in the model a rate code de-
scribing the average spiking frequency is assumed to capture the essence of
the signals. This rate can either be viewed as an ensemble average across a
population of neurons with the same properties, or as the frequency of spikes
of a single neuron in some time interval. The activation function σi, which
is usually sigmoidal (i.e., nondecreasing and bounded), maps the membrane
potential ui to the corresponding spiking frequency. Forward Euler approxi-
mation, ∂ui(t)/∂t ≈ (ui(t + Δt) − ui(t))/Δt, with Δt = τi = 1, leads to the
basic discrete-time equation ui(t + 1) =

∑
j

wijσj [uj(t)] +
∑

k

w′iksk(t) + θi.

The structure or architecture of the NN can be described by a graph in
which the nodes correspond to the neurons and there is an edge from i to
j if neuron j gets input from neuron i. If the network graph contains no
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Fig. 7.2. Simple computational model of a single neuron, left, and a neural network
graph, right.

cycles, we speak of a feed-forward NN. If we number the neurons such that
node i only receives input from units j with j < i and update the neurons in
increasing order, the discrete-time network equation can be written as a static
function ui(s) =

∑
j<i

wijσj [uj ]+
∑

k

w′iksk +θi. Often, some of the neurons are

dedicated output neurons whose spike rates are gathered in the vector o(t) and
the neural system can be viewed as a functional mapping input sequences s(t)
to output sequences o(t). In case of a feed-forward NN, the mapping reduces
to a static function assigning an output o to an input s, see figure 7.2.

Models of NNs based on leaky integrator neurons, in principle exhibit
universal approximation and computation properties under mild assumptions
(see, e.g., [87, 89, 91]). However, the general question of how to design an
appropriate neural system efficiently for a given task remains open and com-
plexity theory reveals the need for using heuristics (see, e.g., [88]) — here these
heuristics are the major organization principles of biological NNs, evolution,
development, and learning.

Supervised learning of an NN means adapting the weights wij , w
′
ik such

that, given some input s(t), the output neurons show a predefined behavior
y(t), which is described by sample (training) input-output sequences. A feed-
forward NN learns a static function h based on sample input-output patterns
{(s1,y1), . . . , (s�,y�)}. This is usually done by gradient-based minimization
of the (squared) differences between the targets yi and the corresponding
outputs oi of the NN given the input si. The ultimate goal is not to simply
memorize the training patterns, but to find a statistical model for the underly-
ing relationship between input and output data. Such a model will generalize
well, that is, it will make good predictions for cases other than the training
patterns. Therefore, a critical issue is to avoid overfitting during the learning
process: The NN should just fit the signal and not the noise. This is usually
achieved by restricting the effective complexity of the network, for example
by regularization of the learning process [3].

In the context of feed-forward NNs, generalization can for example be for-
malized in the framework of statistical learning theory as follows. Let the goal
be to learn a function from some input space S to some output space Y and
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let h : S → Y be the function realized by the NN. Based on some input-
output patterns drawn independently from the same distribution P on S×Y ,

the goal of generalization is to minimize
∫

S×Y

P (s,y)L(h(s),y)dsdy, where

L : Y × Y → R
+
0 denotes a loss function. The distribution P is usually un-

known and defines the learning problem at hand. The value L(a, b) quantifies
the cost or regret of predicting a instead of b and returns zero if its arguments
are equal. For example when learning a one-dimensional real-valued function,
S = Y = R and L(a, b) = (a − b)2 is a typical choice.

In this chapter, we focus on the architecture of feed-forward neural net-
works, however, most of our findings and discussions apply equally well to
recurrent neural systems, which also have been used successfully in applica-
tions in the past (in particular for time series prediction, e.g., [93, 61]).

7.2.2 Evolutionary computation

Evolutionary algorithms can be regarded as a special class of global random
search algorithms. Let the search problem under consideration be described
by a quality function f : G → Y to be optimized, where G denotes the search
space (i.e., the space of candidate solutions) and Y the (at least partially)
ordered space of cost values. The general global random search scheme can be
described as follows:

� Choose a joint probability distribution P
(1)

Gλ on Gλ. Set t ← 1.

� Obtain λ points g(t)
1 , . . . ,g(t)

λ by sampling from the distribution P
(t)

Gλ . Eval-
uate these points using f .

� According to a fixed (algorithm dependent) rule construct a new proba-
bility distribution P

(t+1)

Gλ on Gλ.
� Check whether some stopping condition is reached; if the algorithm has

not terminated, substitute t ← t + 1 and return to step �.

Random search algorithms can differ fundamentally in the way they describe
(parameterize) and alter the joint distribution P

(t)

Gλ , which is typically repre-
sented by a semi-parametric model. The scheme of a canonical EA is shown
in figure 7.3. In evolutionary computation, the iterations of the algorithm are
called generations. The search distribution of an EA is given by the parent pop-
ulation, the variation operators, and the strategy parameters. The parent pop-
ulation is a multiset of μ points g̃(t)

1 , . . . , g̃(t)
μ ∈ G. Each point corresponds to

the genotype of an individual. In each generation, λ offspring g(t)
1 , . . . ,g(t)

λ ∈ G
are created by the following procedure: Individuals for reproduction are cho-
sen from g̃(t)

1 , . . . , g̃(t)
μ . This is called mating selection and can be deterministic

or stochastic (where the sampling can be with or without replacement). The
offspring’s genotypes result from applying variation operators to these se-
lected parents. Variation operators are deterministic or partially stochastic
mappings from Gk to Gl, 1 ≤ k ≤ μ, 1 ≤ l ≤ λ. An operator with k = l = 1
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loop

initialisation 

fitness evaluation
(possibly after local search)

recombination

[termination] mating selection

mutation

strategy adaptation

selection
(environmental)

fitness evaluation
(possibly after local search)

1

2

2

2

2

3

2

3

4

Fig. 7.3. Basic EA loop. The numbers indicate the corresponding steps in the
random search scheme. When optimizing adaptive systems, the local search usually
corresponds to some learning process.

is called mutation, whereas recombination operators involve more than one
parent and can lead to more than one offspring. Multiple operators can be
applied consecutively to generate offspring. For example, an offspring g(t)

i can
be the product of applying recombination orec : G2 → G to two randomly
selected parents g̃(t)

i1
and g̃(t)

i2
followed by mutation omut : G → G, that is,

g(t)
i = omut

(
orec

(
g̃(t)

i1
, g̃(t)

i2

))
. Evolutionary algorithms allow for incorpora-

tion of a priori knowledge about the problem by using tailored variation
operators combined with an appropriate encoding of the candidate solutions.

Let P
(t)

Gλ (g(t)
1 , . . . ,g(t)

λ ) = PGλ

(
g(t)

1 , . . . ,g(t)
λ | g̃(t)

1 , . . . , g̃(t)
μ ;θ(t)

)
be the

probability that parents g̃(t)
1 , . . . , g̃(t)

μ create offspring g(t)
1 , . . . ,g(t)

λ . This
distribution is additionally parameterized by some external strategy param-
eters θ(t), which may vary over time. In some EAs, the offspring are cre-
ated independently of each other based on the same distribution. In this
case, the joint distribution P

(t)

Gλ can be factorized as P
(t)

Gλ (g(t)
1 , . . . ,g(t)

λ ) =

P
(t)
G (g(t)

1 ) · . . . · P (t)
G (g(t)

λ ).
Evaluation of an individual corresponds to determining its fitness by as-

signing the corresponding cost value given by the quality function f . Evolu-
tionary algorithms can — in principle — handle optimization problems that
are non-differentiable, non-continuous, multimodal, and noisy. They are easy
to parallelize by distributing the fitness evaluations of the offspring. In single-



7 Genesis of Organic Computing Systems 147

objective optimization, we usually have Y ⊂ IR, whereas in multi-objective
optimization, see section 7.3.2.1, vector-valued functions (e.g., Y ⊂ IRk, k > 1)
are considered. In co-evolution (see section 7.3.2.2), individuals interact to af-
fect each other’s adaptations. Therefore, the fitness values are not determined
for each individual in isolation, but in the context of the current population
(i.e., a more appropriate description of fitness assignment is f : Gλ → Yλ or
even f : Gλ+μ → Yλ+μ if the parents are also involved in the fitness calcu-
lation). The interaction of individuals may be competitive or cooperative. As
the fitness function is not fixed, co-evolution allows for “bootstrapping” the
evolutionary process and “open-ended” evolution.

Updating the search distribution corresponds to environmental selection
and sometimes additional strategy adaptation of external strategy parameters
θ(t+1). The latter is extensively discussed in the context of optimization of
NNs in [40, 45]. A selection method chooses μ new parents g̃(t+1)

1 , . . . , g̃(t+1)
μ

from g̃(t)
1 , . . . , g̃(t)

μ and g(t)
1 , . . . ,g(t)

λ . This second selection process is called
environmental selection and may be deterministic or stochastic. Either the
mating or the environmental selection must be based on the objective function
values of the individuals and must prefer those with better fitness — this is
the driving force of the evolutionary adaptation process.

It is often argued that evolutionary optimization is not well understood
theoretically — ignoring the tremendous progress in EA theory during the
last years. Although there are only a few results for general settings (e.g.,
convergence [76]), there exist rigorous expected runtime analyses of simpli-
fied algorithms on restricted, but important classes of optimization problems,
see [46, 20] and references therein. The article [7] provides a good starting
point for reading about EA theory.

7.2.3 The need for specialization: No-free-lunch

It is not only intuitive, but also proven that it is not possible to design an
universal adaptive system that outperforms other systems across all possible
problems. This is formally expressed by the No-free-lunch (NFL) theorems go-
ing back to the work of Wolpert and Macready [104, 105]. Coarsely speaking,
the NFL theorems for learning state that without an assumption of how the
past (training data) is related to the future (test data), prediction is impossi-
ble. In other words, without an a priori restriction of the possible phenomena
that are expected, it is impossible to generalize and thus no algorithm is su-
perior to another. Even worse, any consistent algorithm (i.e., any algorithm
converging to the Bayes optimal classifier almost surely when the number of
training patterns, drawn independently from the distribution describing the
problem, approaches infinity) can have arbitrarily poor behavior when given
a finite, incomplete training set [104, 19, 10].

These results carry over to general search and optimization algorithms.
The NFL theorem for optimization formalizes that averaged over the set F
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of all possible objective functions defined between a finite search space X
and a finite set Y of cost values all optimization algorithms have the same
performance. It is assumed that the algorithms never visit a search point twice
and that the performance measure just depends on the objective function
values of the visited search points [20, 105, 82, 42, 43, 106]. More generally,
the following holds for any probability distribution P over F . If and only if
F =

⋃
i

Fi, every Fi is closed under permutation, and f, g ∈ Fi implies that

f and g have the same probability P (f) = P (g) to be the objective function,
then all optimization algorithms have the same performance averaged over
F w.r.t. P [43]. Closure under permutation of a set Fi means that for every
bijective function π : X → X it holds that f ∈ Fi implies f ◦ π ∈ Fi.
These assumptions for an NFL result to hold are rather strict, and fortunately
problem classes relevant in practice are likely to violate them [42, 43].

Nonetheless, only if we consider restricted problem classes, in which the
assumptions of the NFL theorems are not fulfilled, we can design efficient
adaptive systems. It is important to make this bias towards a problem class
explicit in the design process. In nature, such a bias stems from the evolved
structures on which learning and self-organizing processes operate. In organic
computing, simulated evolutionary structure optimization can create systems
biased towards relevant problem classes.

7.3 Evolutionary computation and neural systems

Both artificial evolution and artificial neural systems have long histories, which
in many respects resemble each other. In their beginnings, both were met with
considerable skepticism from the biological as well as from the technologi-
cal communities. For the first, their simplifications and abstractions meant
throwing over board years of carefully accumulated details on how biological
systems operate, develop, learn, and evolve. For the second the new type of
distributed, stochastic, and nonlinear processing was equally hard to accept.
During their maturation both fields met a couple of times, but not as often as
one might expect bearing in mind that their philosophies to extract principles
of biological information processing and apply them to technical systems are
so similar.

Although not directly aimed at the formation of neural systems, the design
of intelligent automata was among the earliest applications of EAs and may be
traced back to the 1950s, see [22]. However, it took another 30 years until first
papers were published describing explicitly the application of EAs to NNs
and in this context — albeit more hesitantly — to learning [52, 63]. Then
the subject quickly received considerable interest and several articles were
published in the early nineties concentrating on optimization of both the net-
work architecture and its weights. Although nowadays NNs and EAs are used
frequently and successfully together in a variety of applications, the desired
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breakthrough, that is, the evolution of neural systems showing qualitatively
new behavior, has not been reached yet. The complexity barrier may have been
pushed along but it has not been broken down. Nevertheless, many important
questions on the architecture, (e.g., modularity) the nature of learning, (e.g.,
nature vs. nurture) and the development of neural systems (e.g., interactions
between levels of adaptation) have been raised and important results have
been obtained.

There are still only few works connecting current brain research with evo-
lutionary computation, but first attempts have been promising, as we will see
in section 7.3.2.5. Here, on a more general note, we argue that combining evo-
lutionary development with brain science is more than just optimizing models
of biological neural systems. The brain is a result of the past as much as of
the present. That means that learning (the present) can only operate on an
appropriate structure (the past). The current structure reflects its history as
much as its functionality. Flexibility and adaptability of the brain are based
on its structural organization, which is the result of its ontogenetic develop-
ment. The brain is not one design but many designs; it is like a cathedral
where many different parts have been added and removed over the centuries.
However, not all designs are capable of such continuous changes and the fact
that the brain is, is deeply rooted in its structural organization.

In this section, we discussed selected aspects of combining neural and evo-
lutionary computing. More comprehensive surveys, all having slightly different
focuses, can be found in [65, 71, 83, 107].

7.3.1 Structure optimization of adaptive systems

Although NNs are successfully applied to support evolutionary computation
(see section 7.4.2), the most prominent combination of EAs and NNs is evo-
lutionary optimization of adaptive neural systems.

In general, the major components of an adaptive system can be described
by a triple (S,A,D), where S stands for the structure or architecture of the
adaptive system, A is a learning algorithm that operates on S and adapts
flexible parameters of the system, and D denotes sample data driving the
adaptation. We define the structure as those parts of the system that cannot
be changed by the learning/self-adaptation algorithm. Given an adaptation
rule A, the structure S determines

• the set of solutions that can be realized,
• how solution changes given new stimuli/signals/data, partial failure, noise,

etc.,
• the neighborhood of solutions (i.e., distances in solution space),
• bias (specialization) and invariance properties.

Learning of an adaptive system can be defined as goal-directed, data-
driven change of its behavior. Examples of learning algorithms for technical
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NNs include gradient-based heuristics (see section 7.2.1) or quadratic pro-
gramming. Such “classical” optimization methods are usually considerably
faster than pure evolutionary optimization of these parameters, although they
might be more prone to getting stuck in local minima. However, there are
cases where “classical” optimization methods are not applicable, for example
when the neural model or the objective function is non-differentiable (e.g., see
section 7.3.2.2). Then EAs for real-valued optimization provide a means for
adjusting the NN parameters. Still, the main application of evolutionary op-
timization in the field of neurocomputing is adapting the structures of neural
systems, that is, optimizing those parts that are not altered by the learning
algorithm. Both in biological and technical neural systems the structure is
crucial for the learning behavior — the evolved structures of brains are an
important reason for their incredible learning performance: “development of
intelligence requires a balance between innate structure and the ability to
learn” [6]. Hence, it appears consequential to apply evolutionary methods to
structure adaptation of neural systems for technical applications, a task for
which usually no efficient “classical” methods exist.

A prototypical example of evolutionary optimization of a neural architec-
ture on which a learning algorithm operates is the search for an appropriate
topology of a multi-layer perceptron NN, see [103, 36, 29] for some real-world
applications. Here, the search space ultimately consists of graphs, see sec-
tion 7.2.1. When using EAs to design NN graphs, the key questions are how
to encode the topologies and how to define variation operators that act on
this representation. In the terminology of section 7.2.2, operators and repre-
sentation both determine the search distribution and thereby the neighbor-
hood of NNs in the search space. Often an intermediate space, the phenotype
space P, is introduced in order to facilitate the analysis of the problem and
of the optimization process itself. The fitness function can then be written
as f = f ′ ◦ φ, where φ : G → P and f ′ : P → Y. The definition of the
phenotype space is to a certain degree arbitrary. The same freedom exists in
evolutionary biology [60] and is not restricted to EAs. The probability of
a certain phenotype p ∈ P to be created from a population of phenotypes
strongly depends on the representation and the variation operators. When
the genotype-phenotype mapping φ is not injective, we speak of neutrality,
which may considerably influence the evolutionary process (see [41] for an ex-
ample in the context of NNs). We assume that P is equipped with an extrinsic
(i.e., independent of the evolutionary process) metric or at least a consistent
neighborhood measure, which may be defined in relation to the function of
the individual. In the case of NNs, the phenotype space is often simply the
space of all possible connection matrices of the networks. Representations for
evolutionary structure optimization of NNs have often been classified in “di-
rect” and “indirect” encodings. Roughly, a direct encoding or representation
is one where (intrinsic) neighborhood relations in the genotype space (induced
by PGλ) broadly correspond to extrinsic distances of the corresponding phe-
notypes. Note that such a classification only makes sense once a phenotype
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space with an extrinsic distance measure has been defined and that it is only
valid for this particular definition. (This point has frequently been overlooked
because of the implicit agreement on the definition of the phenotype space,
e.g., the graph space equipped with a graph editing distance). This does not
imply that both spaces are identical. In an indirect encoding the genotype
usually encodes a rule, a program or a mapping to build, grow or develop
the phenotype. Such encodings foster the design of large, modular systems.
Examples can be found in [54, 32, 25, 83, 84].

7.3.2 Trends in combining EAs and neural computation

In the following, we review some more recent trends in combining neural and
evolutionary computing. Needless to say that such a collection is a subjective,
biased selection.

7.3.2.1 Multi-objective optimization of neural networks

Designing a neural system usually requires optimization of several, often con-
flicting objectives. This includes coping with the bias-variance dilemma or
trading classification speed against accuracy in real-time applications. Al-
though the design of neural systems is obviously a multi-objective problem, it
is usually tackled by aggregating the objectives into one scalar function and
applying standard methods to the resulting single-objective task. However,
this approach will in general fail to find all desired solutions [16]. Further-
more, the aggregation weights have to be chosen correctly in order to obtain
the desired result. In practice, it is more convenient to make the trade-offs be-
tween the objectives explicit (e.g., to visualize them) after the design process
and select from a diverse set of systems the one that seems most appropri-
ate. This can be realized by “true” multi-objective optimization (MOO, [48]).
The MOO algorithms approximate the set of Pareto-optimal tradeoffs, that
is, those solutions that cannot be improved in any objective without get-
ting worse in at least one other objective. From the resulting set of systems
the final solution can be selected after optimization. There have been con-
siderable advances in MOO recently, which can now be incorporated into
machine learning techniques. In particular, it was realized that EAs are very
well suited for multi-criterion optimization and they have become the MOO
methods of choice in the last years [13, 18]. Recent applications of evolu-
tionary MOO to neural systems address the design of multi-layer perceptron
NNs [1, 2, 49, 103, 29, 11, 48] and support vector machines (SVMs) [39, 97].

7.3.2.2 Reinforcement learning

In the standard reinforcement learning (RL) scenario [100, 95, 74], an agent
perceives stimuli from the environment and decides which action to take based
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on its policy. Influenced by the actions, the environment changes its state and
possibly emits reward signals. The reward feedback may be sparse, unspecific,
and delayed. The goal of the agent is to adapt its policy, which may be repre-
sented by (or be based on) a NN, such that the expected reward is maximized.
The gradient of the performance measure with respect to NN parameters can
usually not be computed (but estimated in case of stochastic policies, e.g.,
see [96, 56]).

Evolutionary algorithms have proved to be powerful and competitive meth-
ods for solving RL problems [64, 38, 72]. The recent success of evolved NNs
in game playing [12, 23, 59, 94] demonstrates the potential of combining
NNs and evolutionary computation for RL. The possible advantages of EAs
compared to standard RL methods are that they allow — in contrast to
the common temporal difference learning methods — for direct search in the
space of (stochastic as well as deterministic) policies. Furthermore, they are
often easier to apply and more robust with respect to the tuning of the meta-
parameters (learning rates, etc.). They can be applied to non-differentiable
function approximators and even optimize their underlying structure.

Closely related is the research area of evolutionary robotics devoted to
the evolution of “embodied” neural control systems [66, 57, 70, 101]. Here
promising applications of the principle of co-evolution can be found.

7.3.2.3 Evolving network ensembles

Ensembles of NNs that cooperatively solve a given task can be preferable to
monolithic systems. For example, they may allow for task decomposition that
is necessary for efficiently solving a complex problem and they are often eas-
ier to interpret [85]. The population concept in EAs appears to be ideal for
designing neural network ensembles, as, for example, demonstrated for clas-
sification tasks in [58, 11]. In the framework of decision making and games,
Mark et al. [62] developed a combination of NN ensembles and evolutionary
computation. Two ensembles are used to predict the opponent’s strategy and
to optimize the own action. Using an ensemble instead of a single network en-
sures to be able to maintain different opponent experts and counter-strategies
in parallel. The EA is used to determine the optimal input for the two network
ensembles. Ensembles of networks have also turned out a superior alternative
to single NNs for fitness approximation in evolutionary optimization. In [51]
network ensembles have been optimized with evolution strategies and then
used as metamodels in an evolutionary computation framework. Beside the
increase in approximation quality an ensemble of networks has the advantage
that the fidelity of the networks can be estimated based on the variance of
the ensemble.

7.3.2.4 Optimizing kernel methods

Adopting the extended definition of structure as that part of the adaptive sys-
tem that cannot be optimized by the learning algorithm itself, model selection
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of kernel-based methods is a structure optimization problem. For example,
choosing the right kernel for an SVM [14, 15, 81] is important for its perfor-
mance. When a parameterized family of kernel functions is considered, kernel
adaptation reduces to finding an appropriate parameter vector. These “hy-
perparameters” are usually determined by grid search, which is only suitable
for the adjustment of very few parameters, or by gradient-based approaches.
When applicable, the latter methods are highly efficient albeit susceptible to
local optima. Still, the gradient of the performance criterion w.r.t. the hy-
perparameters can often neither be computed nor accurately approximated.
This leads to growing interest in applying EAs to model selection of SVMs.
In [26, 77, 39, 97], evolution strategies (i.e., EAs tailored for real-valued op-
timization) were proposed for adapting SVM hyperparameters, in [21, 27]
genetic algorithms (EAs that represent candidate solutions as fixed-length
strings over a finite alphabet) were used for SVM feature selection.

7.3.2.5 Computational neuroscience and brain-inspired
architectures

There are only a few applications of evolutionary computation in brain sci-
ence [4, 80, 92, 44, 75], although evolutionary “analysis by synthesis” guided
by neurobiological knowledge may be a powerful tool in computational neu-
roscience. The challenge is to force artificial evolution to favor solutions that
are reasonable from the biological point of view by incorporating as much
neurobiological knowledge as possible in the design process (e.g., by a deliber-
ate choice of the basic system structure and constraints that ensure biological
plausibility).

In the field of brain-inspired vision systems [28, 102] EAs have been used to
optimize the structure of the system (i.e., feature banks or hierarchical layers)
and to determine a wide variety of parameters. Evolutionary algorithms have
been successfully applied to the Neocognitron structure [98, 68, 86], which
was one of the first hierarchical vision systems based on the structure of its
biological counterpart [28]. More recent work employed evolution strategies
to optimize the nonlinearities and the structure of a biologically inspired vi-
sion network, which is capable of performing a complex 3D real world object
classification task [78, 79]. The authors used evolutionary optimization with
direct encoding that performed well in an 1800-dimensional search space. In a
second experiment evolutionary optimization was successfully combined with
local unsupervised learning based on a sparse representation. The resulting
architecture outperformed alternative approaches.

7.4 Networks that learn to learn

The ability to learn (online) is one of the most distinguishing features of artifi-
cial NNs. The idea behind the “learn to learn” concept discussed in this section
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Fig. 7.4. Evolutionary structure optimization for problem classes. Left: Methods to
achieve first and second order generalization in neural network learning and evolu-
tion (structure optimization). Right: Standard neural network learning (a), parallel
switching between problems (b) and sequential switching (c). EANN denotes a neu-
ral network optimized by an evolutionary algorithm.

is that the goal of evolutionary NN structure optimization should be the abil-
ity to efficiently learn new related problems during operation, see [34, 37].
Here “efficient” means fast and based on incomplete data. The term “new
related problems” is more difficult to define. The problems must have some
common structure that can be captured by the EA and reflected in the NN
architecture. Learning a different problem class goes beyond standard gener-
alization. The latter means generalizing from a finite set of training samples to
arbitrary samples drawn from the same distribution as, for example, formally
defined at the end of section 7.2.1. Facing a different problem from the same
class means that the underlying distribution has changed while belonging to
the set of distributions which define the class and which have some common
features that can be represented by the structure.

Therefore we speak of “second order generalization” for the ability to ef-
ficiently switch between problems, see figure 7.4 (left). In the notation intro-
duced by Thrun and Pratt [99], this ability belongs to the area of representa-
tions and functional decompositions. However, in the evolutionary approach,
this functional decomposition is self-organized during the evolutionary pro-
cess. There are basically two different ways in which second order generaliza-
tion can be achieved and used: the parallel and the sequential way. In figure 7.4
(right, a) the standard approach to learn one problem with an NN is shown.
In part (b), the parallel approach is shown. The network is optimized during
evolution in order to learn one of a number of possible problems. The actual
decision is made after the network’s structure has been fixed by evolutionary
search. However, during the search the network’s structure must be optimized
in order to cope with any of the possible problems. Thus, each structure is ap-
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Fig. 7.5. Evolving networks that “learn to learn.” During evolution the network
structures adapt to a special problem class. This specialization leads to a reduced
time for learning a new instance of the problem class, see left plot. Since the class in
this example consists of separable problems, the degree of modularity of the network
structures increases over time, as shown in the right plot (cf. [35]).

plied to all problems (or a random subset of problems of the respective class).
For each problem the weights are newly initialized. The fitness of the network
is determined by the mean (or median or weighted sum) of the networks’ indi-
vidual performances. In figure 7.4 (right, c), the network has to learn a number
of problems one after the other during operation. The network’s structure has
been optimized in such a way that switching from problem to problem can be
achieved most efficiently in the above sense. The weights are not randomly
initialized (like in (b)), but averaged Lamarckian inheritance [36] is used to
exploit information on previous problems for the next problem belonging to
the same class. Again, the fitness of the network is determined by the mean
(or median or weighted sum) of the networks’ individual performances.

From the NFL theorems (see section 7.2.3) we conclude that adaptive
systems have to be specialized towards a particular problem class to show
above average performance. Second order generalization can be viewed as
such a specialization.

7.4.1 Modularity

A simple example of how to build NNs that “learn to learn” was given
in the study [35], where Hüsken et al. considered feed-forward NNs that
had to learn binary mappings {0, 1}6 → {0, 1}2 assigning target values
y = (y1, y2)′ ∈ {0, 1}2 to inputs s = (s1, . . . , s6)′ ∈ {0, 1}6. The class of
mappings was restricted to those which are separable in the strict sense that
y1 only depends on the inputs s1, . . . , s3 and y2 only on s4, . . . , s6. The map-
pings changed over time and a simple EA was employed to create feed-forward
network structures that quickly learn a new instance of the problem class. The
fitness of an NN structure was determined by the time needed to learn a ran-
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Fig. 7.6. Although the approximation errors of the neural network models are
quite high, the optimization based on the approximation models leads to the desired
optimum of the fitness under rank-based selection.

domly chosen problem instance, that is, the sequential switching approach
depicted in figure 7.4 was used.

After a few generations, the networks adapted to the special, restricted
problem class and the learning time decreased drastically, see figure 7.5. In
this toy example, it is obvious that NN structures that are modular in the
sense that they process the inputs s1, . . . , s3 and s4, . . . , s6 separately without
interference are advantageous. When measuring this special kind of modular-
ity during the course of evolution, it turned out that the modularity indeed
increased, see figure 7.5, right plot.

In [53] modularity is analyzed in the context of problem decomposition
and a novel modular network architecture is presented. Modularity is related
to multi-network systems or ensembles for which a taxonomy is presented. A
co-evolutionary framework is used to design modular NNs. The model con-
sists of two populations, one consisting of a pool of modules and the other
synthesizing complete systems by drawing elements from the first. In this
framework, modules represent parts of the solution which co-operate with
each other to form a complete solution. Using two artificial tasks the authors
demonstrate that modular neural systems can be co-evolved. At the same
time, the usefulness of modularity depends on the learning algorithm and the
quality function.

7.4.2 Real-world application

Evolutionary algorithms combined with computational fluid dynamics (CFD)
have been applied successfully to a large variety of design optimization prob-
lems in engineering (e.g., [90, 24, 67]). The fluid-dynamics simulations neces-
sary to determine the quality of each design are usually computationally ex-
pensive, for example the calculation of the three-dimensional flow field around
a car takes between 10-30 hours depending on the required accuracy. There-
fore, metamodels or surrogates are used during the search to approximate the
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Fig. 7.7. The flow field of a turbine blade cascade for a gas turbine engine shown
on the right.

results of the CFD simulations. Although first approaches to combine fitness
approximation with EAs are relatively old [31], it is only in the last couple of
years that the field has received wider attention, see [47] for a review. It has
been revealed that the strategy to keep the update of the metamodel and the
optimization process separate is not advisable, since the optimization is easily
misled if the modeling quality is limited (which is often the case in practical
applications). Jin et al. [50] have suggested to use the metamodel alongside
the true objective function to guarantee correct convergence. Furthermore,
the use of NNs as models is particularly advantageous because of their online
learning ability. Thus, the approximation quality of NNs can be continuously
improved during the optimization process when new CFD data is available
(e.g, [50, 73, 69, 30]). It is interesting to note that the standard mean squared
error measure of NNs is not necessarily the best means to determine the qual-
ity of NNs that are employed as surrogates. Figure 7.6 shows why this is the
case. During evolutionary search, the absolute error of the NN is of no con-
cern, as long as the model is able to distinguish between “good” and “bad”
individuals.

7.4.2.1 Evolution of the metamodel

Neural networks that are used as metamodels during evolutionary search
should have the best possible architecture for the approximation task. There-
fore, EAs are employed to determine the structure of the networks offline,
for example using data from previous optimization tasks. Weight adaptation
is conducted during the evolutionary design optimization whenever new data
are available.

This framework has been employed in [36] for the optimization of turbine
blades of a gas turbine engine. The flow field around a turbine blade and the
engine are shown in figure 7.7. Navier-Stokes equations with the (k-ε) tur-
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Fig. 7.8. Results normalized to the number of generations where the CFD sim-
ulations have been used. ApxNN(1)denotes a fully connected neural network, for
ApxNN(2)the network structure has been evolutionarily optimized and for ApxNN(3)the
network has been optimized to switch between different design domains (problem
classes) most efficiently.

bulence model were used for the two dimensional CFD simulations. During
optimization the pressure loss was minimized subject to a number of geomet-
rical and functional constraints, in particular the target outflow angle α was
set to 69.70 deg. The turbine blades were represented by 26 control points of
non-uniform rational B-splines. The (x, y)-coordinates of the control points
were optimized using a (2,11)-evolution strategy, further details can be found
in [36].

The results of the optimization are given in figure 7.8. The average pressure
loss and outflow angle are shown that have been reached in the evolutionary
design optimization of the turbine blade. The three curves represent three
different strategies to define the architecture of the NN that has been used
as a metamodel during search. The model of the first type (ApxNN(1)) uses a
fully connected architecture. The weights are initialized by means of offline
learning, using training data collected in a comparable blade optimization
trial (e.g., different initialization but the same number of control points of
the spline and the same fitness function). The second type of network model
(ApxNN(2)) was optimized offline with an EA using data generated in a previous
optimization run. The third approach will be discussed in the next section. It
is evident that the evolutionarily optimized NN structure clearly outperforms
the fully connected model in the practical application.

7.4.2.2 Learn surrogates to learn CFD

We already discussed the idea to evolve the architecture of NNs not just for
one specific problem but instead to optimize the network so that it is able to
quickly adapt to problems belonging to one class. We can transfer this idea
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Fig. 7.9. Evolutionary structure optimization for problem classes with averaged
Lamarckian inheritance, where the Pi denote the different problems belonging to
one class and NNi the network after learning Pi. The symbol wi,j denotes the set of
weights of the ith network after learning the jth problem, w′

i refers to the weights
of the ith network after learning all ν problems. Averaged Lamarckian evolution
is used to take the different problem characteristics into account for determining
the set w′

i, details can be found in [36]. The symbol ai denotes the architecture or
structure of the neural network, which is not changed during the sequential learning
of problems 1 . . . ν.

to the problem domain of surrogates for approximation during evolutionary
design optimization by sub-dividing the CFD samples into groups (problems)
belonging to one and the same class namely the approximation of CFD data
for evolutionary search. This is a reasonable approach because we do not
expect to evolve a network that approximates the CFD results well for the
whole optimization. Instead, since the surrogate and the original CFD simula-
tion are mixed during search, new data samples are available and the network
can be adapted online. Thus, the best network is the one that is particularly
well suited to continuously and quickly learn new CFD approximations dur-
ing the evolutionary design optimization. In figure 7.9 the framework for the
evolutionary optimization of the NN for problem classes is shown. To avoid
confusion, we point out that the evolutionary optimization of the architecture
is still decoupled from the evolutionary design optimization, where the best
network is used as a surrogate.

The results for the network that has been evolved to quickly adapt to
problems from one and the same class are shown as ApxNN(3) in figure 7.8.
We observe that during the first generations ApxNN(3)scores much better than
ApxNN(1)(the fully connected NN) and similar to ApxNN(2)(the network whose
structure was optimized using a standard evolutionary approach to minimize
the approximation error for all data offline). However, in later generations,
the performance of ApxNN(3)deteriorates and becomes unstable. Although this
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behavior is not yet fully understood, we believe that one reason might be the
different update frequencies between the offline problem class training and the
online design optimization. The update frequency denotes how often the orig-
inal CFD simulation is called within a certain number of generations. As this
frequency is adapted depending on the fidelity of the approximation model, it
changes differently during offline structure optimization of the NN and online
application of the network as a surrogate for the design optimization. There-
fore, the definition of the problem class might change, which is difficult to
cope with for the network.

7.5 Conclusion

Organic computing calls for adaptive systems. In order to be efficient and
robust, these systems have to be specialized to certain problem classes com-
prising those scenarios they may face during operation. Nervous systems are
perfect examples of such specialized learners and thus are prime candidates
for the substrate of organic computing.

Computational models of nervous systems like artificial neural networks
(NNs) have to be revisited in the light of new adaptation schemes that focus
on the structure of the system and address issues like modularity, second-order
generalization and learning efficiency.

At the same time, we promote the combination of evolutionary algorithms
(EAs) and NNs not just because of an appealing metaphor, but also and fore-
most because EAs have proved to be well suited to solve many of the difficult
optimization problems occurring when designing NNs, especially when higher
order optimization methods cannot be applied. The field of evolutionary neu-
ral systems is expanding in many different directions as we have shown in this
chapter. We have demonstrated how NNs can be evolved that are specialized
to certain problem classes. Although still in its beginnings, this second order
learning is not restricted to toy problems but has already found real-world
technical applications.

Still, much is left to do to establish the design triangle learning–
development–evolution of neural systems in such a way that they can demon-
strate their full potential. Results from brain science highlight the importance
of architecture and of the way the architecture is constructed during ontoge-
nesis. Although the incorporation of evolution and development into compu-
tational neuroscience is still in its beginning, we believe that this will be a
promising approach to organic computing.
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Summary. Exploding growth in computational systems forces us to gradually re-
place rigid design and control with decentralization and autonomy. Information
technologies will progress, instead, by“meta-designing” mechanisms of system self-
assembly, self-regulation and evolution. Nature offers a great variety of efficient
complex systems, in which numerous small elements form large-scale, adaptive pat-
terns. The new engineering challenge is to recreate this self-organization and let it
freely generate innovative designs under guidance. This article presents an original
model of artificial system growth inspired by embryogenesis. A virtual organism is a
lattice of cells that proliferate, migrate and self-pattern into differentiated domains.
Each cell’s fate is controlled by an internal gene regulatory network. Embryomorphic
engineering emphasizes hyperdistributed architectures, and their development as a
prerequisite of evolutionary design.

Key words: complex systems, artificial development, evolutionary computation,
systems design, embryomorphic engineering

8.1 Introduction: designing complexity

8.1.1 Toward decentralized, autonomous systems

Today’s information and communication systems are characterized by explod-
ing growth in the number of components and complexity of their interactions.
Systems engineers are confronted with an insatiable demand for functional
innovation, robustness, scalability and security. This upward trend is acceler-
ating at all levels of organization, whether hardware (integrated components),
software (program modules) or networks (applications and users). Famously
anticipated by Moore’s law, the number of transistors on a microprocessor has
climbed five orders of magnitude in the past 35 years. Similarly, operating sys-
tems and other very large computer programs commonly contain hundreds of

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,

doi: 10.1007/978-3-540-77657-4 8, © Springer-Verlag Berlin Heidelberg 2008



168 René Doursat

millions of source lines of code (SLOC). Over one billion people routinely use
the Internet, which connects half a billion hosts. In sum, an increasing num-
ber of users with greater mobility are constantly requiring more sophisticated
functionality from larger applications running on faster architectures.

Consequently, computer scientists and engineers are gradually led to re-
think the traditional perspective on systems design, i.e., the dogma of a total-
istic act of creation imposing order and organization exogenously. The growth
in complexity has already been accompanied by a de facto segmentation and
distribution of the traditionally centralized control over systems design. This
march toward decentralization is somewhat discernible in the fields of inte-
grated circuit design and software development, where engineers collaborate
in large teams around relatively independent components and modules. It
has become even more apparent with the advent of leaderless open source
communities, and most striking in the spontaneous growth of the Internet
and World-Wide Web. To some degree, information architects and engineers
are already beginning to lose grip on their creation, which exceeds the ca-
pacity of a single human mind. Therefore, rather than insisting on rigidly
designing computational systems or system parts in every detail, the trend
should be to “step back” even further and concentrate more on establishing
the generic conditions that will allow and encourage those systems to self-
assemble, self-regulate and evolve. In fact, future progress in information and
communication technologies could ultimately depend on our ability to foster
systems that endogenously grow, function, repair themselves and, more im-
portantly, adapt and improve. This need is probably most acute in software
development, which is currently less an exact science than a skillful art — the
accumulation by trial and error of a corpus of design patterns and numerical
recipes. Ironically, machines that are perfectly logical and regular still rely
entirely on intuitive and fallible human instructions. The burden is fully on
the side of our human cognitive system to instruct artificial systems, but this
ability is now reaching its limits with very large architectures, as attested by
the extremely high cost (in effort, time and money) devoted to source code
development, maintenance and debugging.

A major challenge will thus be for information systems to step beyond
their current state of heteronomy, where they are fully subjected to a de-
signer, toward states of increasing organizational and functional autonomy.
Biological organisms, which might give the illusion of deliberate design, are in
fact the product of undesigned evolution through random variation and non-
random natural selection, excluding the need to invoke any form of intelligent
design for them (which would also necessarily be, by recursive reasoning, of
a supernatural kind). By contrast, artificial structures will always possess a
causal design link originating from their human makers, while at the same
time this link promises to become less and less clear or direct. In the design
versus evolution spectrum (figure 8.1), classical engineering is currently set on
the “intelligent design” (ID) notch, with the opposite end occupied by biology
under “undesigned evolution” (UE). The expectation is that the engineering
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Fig. 8.1. Four stops and one brick wall on the design-evolution line (see text).

paradigm should progressively shift in the direction of biology through inter-
mediate stages, but without fully reaching UE. In a first stage that we could
refer to as “intelligent meta-design” (IMD), designers will focus on creating
generative mechanisms rather than the systems themselves (Table 8.1). If we
metaphorically imagined, on the contrary, biology drifting toward more de-
sign, ID would be the equivalent of directly assembling an animal’s organs
and limbs together, whereas IMD would correspond to creating the laws of
cellular development, preparing the zygote’s DNA and let it grow. Still closer
to UE, in a stage we could call “evolutionary meta-design” (EMD), an even
more disengaged meta-architect could also create the laws of variation and
selection, prepare some primitive ancestor system (in the reverse biological
metaphor, a prokaryote, for example) and step back to let evolution invent
the rest. Applied to artificial systems, this paradigm shift is the inspiration of
the present work. It emphasizes the importance of constituting fundamental
laws of development and developmental variations in the IMD stage, before
these variations can be selected upon in the EMD stage. In the framework of
genetic algorithms and evolutionary computation, this means an indirect or
implicit mapping (as opposed to direct or explicit) from genotype to pheno-
type.

8.1.2 Harnessing complex systems

Looking around, we observe an abundance of autonomous, emergent systems
in the environment, whether in nature (geological patterns, biological cells,
organisms, animal societies, ecosystems) or spontaneously emerging human
super-structures (cities, markets, the Internet). Naturally decentralized, un-
planned systems are robust and efficient, and constitute the overwhelming
majority of system types. It is our artificially centralized and planned systems
that are fragile, costly to build and rare, as they require a higher intelligence
to arise. Our cognitive viewpoint, accustomed to the illusion of a central con-
sciousness, traditionally refers to such decentralized systems as “complex”,



170 René Doursat

systems design systems “meta-design”

heteronomous order autonomous order

centralized control decentralized control

manual, extensional design automated, intentional design

the engineer as a micromanager the engineer as a lawmaker

rigidly placing components allowing fuzzy self-placement

tightly optimized systems hyperdistributed and redundant systems

sensitive to part failures insensitive to part failures

need to control prepare to adapt and self-regulate

need to redesign prepare to learn and evolve

Table 8.1. Some contrastive features of systems design and “meta-design”.

whereas in fact they might be simpler than our familiar contraptions with
their uniquely hierarchical arrangement.

Complex systems are composed of a great number of small, repeated ele-
ments that interact locally and produce collective behavior at a macroscopic
scale. They are characterized by a high degree of decentralization and self-
organization, exhibiting spontaneous pattern formation (self-assembly) and
homeostatic autonomy (self-regulation). Most complex systems are also adap-
tive, in the sense that they are able to learn and/or evolve through feedback
from their external fitness to their internal architecture. The elements com-
posing the system are themselves often internally structured as networks of
smaller entities at a finer scale. For example, one cell can be modeled as a self-
regulatory network of genetic switches, one social agent (insect) as a network
of decision rules, or one neural unit as a local assembly of neurons (oscillator
system). Conversely, agents can also interact collectively at the level of clusters
or subnetworks (organs, assemblies, cliques) to combine in a modular fashion
and form larger collectives. Thus, from both perspectives, complex systems
can often be described as “networks of networks” on several hierarchical lev-
els. The higher levels connecting elements or clusters of elements are generally
spatially extended (cell tissues, cortical areas, ant colonies), whereas the lower
levels inside elements are generally nonspatial (gene nets, neurons, rule sets).
Elements follow the dynamics dictated by their inner networks and also in-
fluence neighboring elements through the emission and reception of signals
(chemical, electrical). The attractors of the internal dynamics are fixed-point
states or limit cycles, and the behavior of the whole connected system can
be rephrased in terms of synchronization among autonomous dynamical sub-
systems. The work presented in this chapter is an instance of this paradigm
based on a 2-D lattice of coupled gene regulatory networks.

Such natural adaptive systems, biological or social, could become a new
and powerful source of inspiration for emerging information and communica-
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tion technologies in their transition toward autonomous systems. This joins
recent trends advocating and announcing the convergence of four scientific
disciplines: nanoscience, biotechnology, information technology and cognitive
science. Called NBIC in the US [2], these fields of investigation combine all
the components of bio-inspired complex systems engineering, i.e., swarms of
small components (Nano), biological complexity (Bio), systems design (Info)
and artificial intelligence (Cogno). Also described by the Future and Emerg-
ing Technologies (FET) program of the European Union [5], this scientific
perspective is close to several other initiatives, such as organic computing
([37], and this volume, in particular chapters 1 and 2), amorphous computing
[1, 25, 41], natural computation, e.g., [28], complex systems engineering [23],
ambient intelligence, and pervasive or ubiquitous computing [40].

As indicated above, however, a major difference with biological systems is
that human-made systems will (and hopefully should), by definition, always
remain under the guidance of a human designer to some degree, never breaking
the barrier to the absolute UE stage that characterizes biology (figure 8.1).
While we want to achieve meta-designing artificial systems that can grow
(IMD stage) and evolve (EMD stage), it is obviously our intent to keep a
partially “visible hand” on these systems, i.e., (a) some meta-control over
their execution and (b) certain requirements about their structure or function.
The important questions of control and optimization of complexity will be
respectively addressed in sections 8.3 and 8.4 below.

8.1.3 Artificial development

The field of Artificial Life (AL) is chiefly concerned with the simulation of
life-like or organismal processes through computer programs or robotic de-
vices that generally are of a distributed nature and operate on a multitude
of interacting components. Researchers in AL attempt to design and con-
struct systems that have the characteristic of living organisms or societies of
organisms out of non-living parts, whether virtual (software agents) or phys-
ical (electromechanical components, chemical materials). AL is, therefore, a
“bottom up” attempt to recreate or synthesize biological phenomena with
the goal of producing adaptive and intelligent systems. In this sense, it can
be contrasted with the traditional “top down” analytical approach of Artifi-
cial Intelligence based on symbolic systems. Although not all AL systems are
“complex”, in the sense of a multitude of elements, AL is one of the most
important and rapidly developing domains within the federation of complex
systems research. In particular, it actively promotes biology-inspired engineer-
ing as a new paradigm complementing or replacing classical physics-based
engineering.

AL opens entirely new perspectives in software, robotic, electrical, mechan-
ical or even civil engineering. Can a sophisticated device or building architec-
ture construct itself from a large reservoir of small components? Can a robot
rearrange its parts and evolve toward better performance without explicit
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instructions? Can a swarm of software agents self-organize and collectively
innovate in problem-solving tasks? Among the great variety of biological sys-
tems that inspire and guide AL research, three broad areas can be identified
according to the scale of their elementary components: (a) molecular or cel-
lular systems, (b) anatomical or functional systems, and (c) individual or so-
cietal systems. Artificial molecular and cellular models find inspiration in the
spontaneous organization of complex chemical and organic structures, such as
protein self-assembly or organism development (e.g., [22], and chapter 9 of this
volume). Applications are linked to nanotechnologies for biomedical or inte-
grated electronic purposes (“smart materials”, mems). On the anatomical and
functional level, robotic parts (limbs, sensors, actuators) and local behavioral
modules are integrated and put in interaction to produce emergent action in a
single autonomous device, aiming toward adaptivity and nonsymbolic intelli-
gence. This is the scope of “reactive” or “embodied” robotics, exemplified by
insect-like robots and evolving mechanical morphologies (e.g., [20]). Finally,
entire colonies of virtual or robotic creatures also constitute important objects
of interest because of their unique properties of collective self-organization
and diversity-inducing evolution (e.g., [41]). Generically termed “swarm in-
telligence”, new methodologies such as ant colony optimization or particle
swarm optimization are derived from the observation of animal societies and
applied to problem-solving tasks.

The preferred computational tools of AL are cellular automata, multi-
agent networks and genetic algorithms. Complex networks form the natu-
ral structural backbone of AL models. Their topology can vary from regular
lattices with nearest neighbor connectivity (cellular automata) to irregular
graphs (random, small-world) containing long-range interactions. The first
kind is spatially extended, in 2-D or 3-D, while the second generally does
not rely on a background notion of space or Euclidean distance. This chapter
presents an original AL study of the spatially explicit kind. With respect to the
above classification, it addresses level (a) of system organization, specifically
the computational modeling and simulation of the fundamental principles of
self-patterning and self-assembly during embryogenesis. The development of
an entire organism from a single cell is the most striking example of self-
organization guided by information — in this case, genetic. In the present
model, a virtual organism is represented by a mass of cells that proliferate,
migrate and self-pattern into differentiated domains. Each cell contains an in-
ternal gene regulatory network and acquires a specific expression identity by
interaction with positional information transmitted through neighboring cells.
Different identities trigger different cell behaviors, which in turn induce new
identities. In sum, development is driven by only a few fundamental laws of
cell division and movement, propagation of genetic expression and positional
information. The final architecture of the organism depends on the detailed
interplay between the various rates of these processes.

Ultimately, on this score of “theme and variations” (laws and parame-
ters), evolution is the player. Most importantly, the link between the genetic
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parameters and the morphological features of the system is not arbitrary, as is
generally the case in many evolutionary algorithm techniques, but expresses
itself through a genuine developmental approach at the microscopic cellular
level. The phenotype is a macroscopic emergence of the unfolding genotype,
not an ad hoc one-to-one mapping. Possible future hardware applications of
this model include systems in which nano-units containing the same instruc-
tions are mass-produced at low cost and mixed in a homogeneous material,
where they self-organize without the need for reliability or precise arrange-
ment as in traditional VLSI [1, 25]. Software or network applications (servers,
security) could involve a swarm of small-footprint software agents that diver-
sify and self-deploy to achieve a desired level of functionality. In all cases,
embryo-inspired architectures suggest a “fine-grain” approach to systems de-
sign, i.e., one based on hyperdistributed collectives of a great number of very
simple and relatively ignorant, cloned elements. This approach is called here
embryomorphic engineering.

The remainder of the chapter is organized as follows. After preliminary
remarks on the genetic causality of biological development in section 8.2, a
virtual embryogenesis model, “the organic canvas”, is described in section 8.3
in four incremental steps. Section 8.3.1, “the self-painting canvas”, introduces
the concept of genetically guided self-patterning. Section 8.3.2, “the growing
canvas”, adds a multiscale and modular dimension to this pattern forma-
tion process. Section 8.3.3, “the deformable canvas”, brings in self-assembly
through three critical mechanisms of cell movement: adhesion, division and
migration. Finally, section 8.3.4, “the excitable canvas”, briefly explores the
possible computing capabilities of a fully developed organism. The purpose of
section 8.3 is, thus, to lay out the IMD foundations of the model, by showing
an example of lawmaking of artificial system development with inspiration
from biology. Section 8.4 then discusses the transition to the EMD stage, i.e.,
the role that evolution could play in shaping the genome at the basis of the
developmental process, and inventing new architectures. Specifically, it ad-
dresses the paradox of “planning the autonomy” at the center of the complex
systems engineering enterprise.

8.2 The genetic causality of biological development

8.2.1 Free versus guided morphogenesis

Complex patterns produced by nature have always been a source of great
fascination for philosophers and scientists. Ripples in sand dunes, spots in
animal coats, geometric figures in plants, and a multitude of meanders, spi-
rals, branches, lattices, and others, can be observed everywhere. Whether
inanimate structures or living organisms, all these processes are instances of
decentralized morphological self-organization and, as such, were not easily
amenable to analysis and explanation. For a long time, in fact, the old cross-
disciplinary and abstract problem of the “form” was deemed non-objective
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by mainstream physics and relegated to the phenomenological realm of ex-
perience. Only relatively recently was it revived as a valid object of scientific
inquiry, under rising needs for a better understanding, prediction and con-
trol of geophysical and biological systems. New computer technologies and
numerical simulations created dramatic new advances in the understanding of
objectively measurable complex forms and their emergent properties of order
and chaos.

A taxonomy of all emergent patterns would contain many dimensions: in-
ert vs. living, natural vs. human-induced, small-scale vs. large-scale, and so
on. The present study focuses on a major distinction between what will be
referred to as “free forms” and “guided forms” (figure 8.2). Free forms es-
sentially result from the amplification of unstable fluctuations, as proposed
by Turing in his now classical reaction-diffusion model of morphogenesis [35],
which was further developed and popularized by Gierer and Meinhardt [14]. A
pigmented medium, such as an animal coat, undergoes a symmetry-breaking
due to positive feedback based on the short-range diffusion of an activator
substance, reacting with negative feedback based on the long-range diffusion
of an inhibitor substance [44]. In 2-D domains, this typically generates spots
or stripes of alternating color (figure 8.2a-b). Setting aside questions about
the actual existence of activator and inhibitor “morphogen” agents, it remains
that the pattern formation phenomena covered by this model are fundamen-
tally random and unpredictable. Are there going to be four, five, or six spots?
Although the patterns are often statistically homogeneous and can be de-
scribed by a characteristic scale or order parameter (diameter of the spots,
width of the stripes), morphological details such as position, orientation and
number are not invariants of the system. Another example of free patterning
is given by convection cells in a heated fluid, such as the ones observed in the
well-known Rayleigh-Bénard instability. Given the temperature gradient and
other parameters of the fluid, it is possible to calculate the typical size of the
polygonal convection domains but, again, not their precise shape and spatial
arrangement.

Turing-like reaction-diffusion principles might be able to account for some
pattern formation effects in biological development, such as mammal coat [44],
butterfly wing spots [26], angelfish stripes [18], or seashell motifs [21], yet
these effects seem only secondary — literally “superficial” — compared to the
overall form of an organism. The precisely arranged body shape of animals,
made of articulated segments and subparts (figure 8.2c-d), is not the result of
free-forming random instabilities. It is a fundamentally guided morphogenesis
process that plays out under deterministic control from the genome. Except
for very rare cases of malformation, all members of a pentadactyl mammalian
species reliably develop five digits, not sometimes four or sometimes six. All
healthy embryos of Drosophila exhibit exactly seven bands of differentiated
gene expression along the anteroposterior axis, which then give rise to 14 seg-
ments. Each one of these mammal digits or insect segments is independently
controlled by a specific combination of genes. At every time step in the de-
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Fig. 8.2. Free vs. guided morphogenesis. A simple activator-inhibitor cellular au-
tomata model, such as Young’s [44], creates stripes (a) and spots (b) in variable
positions and unpredictable numbers. By contrast, the stripes (c) and spots (d) of
developing animal segments are tightly controlled by multiple sets of genes, leaving
very little room for chance arrangements.

velopment of an embryo, a homogeneous region of the overall embryo pattern
is defined as a local group of cells that have the same gene expression profile,
i.e., the same dynamic regime of RNA and protein concentrations.

In summary, biological forms are not statistically uniform. They are rich in
morphological information and cannot be reduced to one characteristic scale
like reaction-diffusion patterns. Some free pattern motifs (spots, stripes) can
be embedded in a guided form (leopard, angelfish). Conversely, a guided form
can be duplicated and distributed in free patterns (e.g., hundreds of copies
of the same flower shape on the branches of one tree). Biological forms can
thus combine a little free patterning with a lot of guided morphogenesis. It is
the latter kind that the present work aims at modeling and reproducing as a
possible paradigm of information-driven systems growth.

8.2.2 Development: the missing link of the modern synthesis

Darwin discovered the evolution of species, based on random variation and
nonrandom natural selection, and established it as a central fact of biology.
During the same period, Mendel brought to light the laws of inheritance of
traits. In the twentieth century, his work was rediscovered and became the
foundation of the science of genetics, which culminated with the revelation of
DNA’s role in heredity by Avery and its double-helix structure by Watson and



176 René Doursat

Crick. By integrating evolution and genetics together, the “modern synthe-
sis” of biology has demonstrated the existence of a fundamental correlation
between genotype and phenotype. Mutation in the first is causally related to
variation in the second. Yet, 150 years after Darwin’s and Mendel’s era, the
nature of the link from genes to organismal forms, i.e., the actual molecular
and cellular basis of the mechanisms of development, are still unclear. To
quote Kirschner and Gerhart [16, page ix]:

“When Charles Darwin proposed his theory of evolution by varia-
tion and selection, explaining selection was his great achievement. He
could not explain variation. That was Darwin’s dilemma [. . . ] To un-
derstand novelty in evolution, we need to understand organisms down
to their individual building blocks, down to their deepest components,
for these are what undergo change.”

Understanding variation by comparing the actual developmental processes
of different species is the primary concern of the field of evolutionary develop-
ment biology, or “evo-devo”. The genotype-phenotype link cannot remain an
abstraction if we want to unravel the generative laws of development and evo-
lution. The goal is to unify what Darwin called the “endless forms most beau-
tiful” of nature [7], and reduce them to variants around a common theme [39].
The variants are the specifics of genetic information; the common theme is
the developmental dynamics that this information guides. Modern synthesis
postulates this reduction in principle but has never truly explained it physi-
cally.

How does a static, nonspatial genome dynamically unfold in time and 3-D
space [13]? How are morphological changes correlated with genetic changes?
Looking at the full evolutionary and developmental picture should also be a
primary concern of systems engineering and computer science when ventur-
ing in the new arena of autonomous architectures. Optimization techniques
inspired by biology in its traditional modern synthesis form have principally
focused on evolution, giving rise to evolutionary computation and genetic
algorithms based on metaphorical “genes”, “reproduction”, “mutation” and
“selection”. However, the great majority of these approaches rely on a direct
mapping from artificial genomes to artificial phenotypes, which includes very
few or no elements of morphodynamics. The present work’s ambition is to con-
tribute to restore the balance between evo and devo by shifting the emphasis
on developmental meta-design as a prerequisite of evolutionary meta-design.

8.3 Description of the model: the organic canvas

This part describes a model of embryomorphic system development partly
introduced in [11].
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8.3.1 The self-painting canvas: gene-guided patterning

8.3.1.1 Gene regulatory networks

The central dogma of molecular biology states that a segment of DNA repre-
senting a gene is transcribed into messenger RNA, and then mRNA is trans-
lated into proteins by ribosomes and transfer RNA. The present model adopts
a highly simplified one-to-one view of the gene-protein processing chain, ig-
noring additional effects such as post-transcriptional RNA splicing or post-
translational protein modifications. However, it still retains and places at its
core the concept of gene regulation. DNA contains non-coding sequences that
play a critical regulatory role in the expression of genes. Various proteins can
selectively bind to regions of the DNA strand upstream of a gene domain and
interfere, positively or negatively, with the RNA polymerase responsible for
gene transcription. The two main classes of transcription factors are “activa-
tors” and “inhibitors” that respectively encourage and hinder gene expression.
In a binary view, the regulatory sites are “switches” that literally turn genes
on and off. Regulatory proteins bind to regulatory sites as keys fit into locks,
which can cluster and combine to form complex regulatory functions. Lock-key
pairs are reused for different genes or even the same gene at different times and
places of the developing organism. Since regulatory proteins are themselves
the product of gene expression, the cell’s total biosynthetic activity can be
approximately represented by a gene regulatory network (GRN), where pro-
teins are considered hidden variables (figure 8.3a,b,e). In sum, gene expression
is controlled by regulatory switches, which are themselves controlled by gene
expression.

8.3.1.2 Patterning from gene regulation in embryo space

How does this complex web of many-to-many regulatory interactions unfold in
3-D space and time to create pattern formation? The pattern domains of em-
bryogenesis are differentiated regions of gene expression, or identity domains.
They represent the “hidden geography” of the embryo [9]; at any period of its
development, the organism is segmented into multiple compartments of ap-
proximately homogeneous gene expression levels (see figure 8.4 for a preview).
These compartments can be visualized, for example, by in situ hybridization
methods (i.e., complementary RNA strands that recognize specific mRNA
and are labeled with fluorescent or radioactive compounds). Based on these
facts, simple recursive reasoning yields the following patterning rule. First, it
is assumed that gene expression levels in each cell (or, equivalently, mRNA
or protein concentration levels) can be represented by quasi-static variables,
because their reaction kinetics quickly converges to constant attractor val-
ues. Then, the combined regulatory action of three genes A, B, and C upon
one gene I can be denoted by I = f(A,B,C), where I, A, B, and C rep-
resent the stable expression levels of those four genes within a given time
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interval (figure 8.3b). Denoting by r = (x, y, z) the coordinates of a cell, I(r)
represents the spatial landscape of gene I’s expression level across the em-
bryonic cell population. Therefore, through the dependency in f , the basic
patterning rule states that a gene landscape I(r) results from a geometric
interaction between several earlier gene landscapes A(r), B(r), and C(r) (fig-
ure 8.3c,d,g). Typically, in a simplified binary format, gene levels are coded
by two values, 1 for “high” and 0 for “low”, and I(r) defines a geometrical
domain DI such that r ∈ DI ⇔ I(r) = 1. In this case, function f has a
logical type, e.g., I = (¬A ∧ B ∧ C) = (1 − A)BC, and the domain of high I
expression is simply the intersection of high B, high C and low A expression,
i.e., DI = (D − DA) ∩ DB ∩ DC , where D denotes the entire domain of the
organism.

Thus, combinations of switches can create new patterns by union and inter-
section of precursor patterns. This principle was demonstrated in the periodic
striping of the Drosophila embryo along its anteroposterior (A/P) axis. The
dorsoventral (D/V) and proximodistal (P/D) axes are also segmented into
distinct bands or layers and, by intersection with the A/P stripes, give rise
to smaller domains such as the organ primordia and “imaginal discs”. These
groups of cells mark the location and identity of the fly’s future appendages
(legs, wings, antennae). Going back in time, the whole process starts with
the establishment of concentration gradients due to the diffusion of various
maternal proteins across the initial cluster of cell nuclei, the syncytium. These
gradients are the functional equivalent of a coordinate system. The particular
combination of protein concentration in each point becomes the first regula-
tory trigger in a cascade of gene expression. Let X, Y and Z represent the
concentration levels of three hypothetical proteins that vary anisotropically
along the three dimensions of an abstract embryo. For example, assuming uni-
form gradients ∇X = (α, 0, 0), ∇Y = (0, β, 0) and ∇Z = (0, 0, γ), we obtain
three linear concentration landscapes X(r) = α(x − x0), Y (r) = β(y − y0)
and Z(r) = γ(z − z0). The first set of genes will be expressed in domains
defined by regulatory functions of the type A(r) = g(X(r), Y (r), Z(r)), and
B(r) = h(X(r), Y (r), Z(r)), etc. Then, these primary domains will intersect to
give rise to secondary domains such as I(r) = f(A(r), B(r), C(r)), etc., as ex-
plained above. In summary, embryogenesis consists of a cascade of morphologi-
cal refinements supported by a cascade of gene regulation reactions. Molecular
gradients provide positional information [43] that is integrated along several
spatial dimensions, in each cell nucleus, through a chain reaction of keys and
locks.

8.3.1.3 The positional-boundary-identity gene network model

The principle of recursive morphological refinement suggests that, despite nu-
merous feedback loops and an overall complex topology, developmental GRNs
seem to be broadly organized in successive gene groups that correspond to
successive growth stages and anatomical modules of the embryo. The early
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Fig. 8.3. Principles of spatial patterning from a lattice of positional-boundary-
identity (PBI) gene networks. (a) Schematic top-down view of gene regulatory in-
teractions on DNA strands. Proteins X and Y combine to promote the transcription
of genes A and B by binding to their upstream regulatory sites, which produces pro-
teins A and B (assuming a simple one gene-one protein relationship). Thereafter,
A promotes, but B represses, the synthesis of I. (b) Formal bottom-up view of the
same GRN. (c) Variation of expression levels on one spatial axis, construed as a
chain of GRNs. The concentration of X follows a gradient created by diffusion. This
gradient triggers a gain response in A and B at two different thresholds, thus creates
boundaries at two different x coordinates (for a given Y level). These domains in
turn define the domain of identity gene I, where A levels are high but B levels are
low. (d) Same spatial view in 2-D. The domain of I covers the intersection between
high A and low B. (e) Same type of PBI gene regulatory network as (a-b) with more
nodes, denoted by G. (f) Detailed view of the architecture underlying the 2-D pat-
terning of (d). Network G is repeated inside every cell of a lattice. (g) Local coupling
of positional nodes creates gradients that create patterning. While G’s structure and
weights are cloned, node activities vary from cell to cell.
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Fig. 8.4. Checkered self-patterning (top right) created by a simple 2P-3B-6I gene
regulatory network G (as in figure 8.3b) in a 200-cell oval-shaped embryo. Each
embryo view is selectively “dyed” for the expression map of one of the 11 genes, or
a partial combination of these genes. With X = x/xmax, Y = y/ymax, weights are
such that: B1 = σ(Y −1/2), B2 = σ(X−1/3), B3 = σ(X−2/3); I5 = B1B2(1−B3),
I6 = B1B3, etc.

striping process of Drosophila is controlled by such a regulatory hierarchy
containing five main tiers of genes [8]. The present model relies on a three-tier
caricature of the same idea, the positional-boundary-identity (PBI) network
(figure 8.3b,e). In a 2-D virtual embryo, the bottom layer contains two “po-
sitional” nodes, X and Y ; the middle layer, n “boundary” nodes {Bi}i=1...n;
and the top layer, m identity nodes {Ik}k=1...m. Variables X, Y , Bi and Ik

denote the gene expression levels of each of the 2 + n + m nodes. First, the
positional activities follow gradients across the embryo, e.g., X(r) = α(x−x0)
and Y (r) = β(y − y0) as above. Then, in each cell, the boundary nodes com-
pute linear discriminant functions of these positional nodes through the equa-
tion Bi = σ(Li(X, Y )) = σ(wixX + wiyY − θi), where {wix, wiy}i=1...n are
the regulatory weights from X and Y to Bi, parameter θi is Bi’s threshold
value, and sigmoid function σ is defined by σ(u) = 1/(1 + e−λu). The ef-
fect of a boundary node is, thus, to diagonally segment the embryo’s plane
into two half-planes of strong and weak expression levels (1 and 0). Finally,
the identity gene levels are given by logical combinations of the near-binary
expression levels of the boundary genes, for example, by calculating the prod-
ucts Ik =

∏
i
|w′ki|(w′kiBi + (1 − w′ki)/2), where w′ki ∈ {−1, 0,+1} represent

ternary weights from Bi to Ik. Thus, the contributing factor coming from Bi

can take three possible values: (1−Bi), 0, or Bi. In the PBI model, the “iden-
tity domains”, i.e., the regions of high I expression, are made of polygons at
the intersection of multiple straight boundary lines (figures 8.3g and 8.4).



8 Organically Grown Architectures 181

8.3.1.4 A lattice of gene regulatory networks

The full architecture of the virtual embryo is a network of networks. It con-
sists of a lattice of cells, where each cell contains a gene regulatory network
(GRN) [24, 30, 36] that can be, for example, of the PBI type just described
(figure 8.3f). This lattice, however, is not necessarily rectangular or even reg-
ular. In the most general case, it is a swarm of nodes c = 1 . . . N representing
the cells’ nuclei, with arbitrary coordinates {rc}c=1...N , where rc = (xc, yc)
for an embryo in 2-D space or rc = (xc, yc, zc) for one in 3-D space. The
nuclei are connected by edges that represent neighborhood relationships and
dynamic coupling between GRNs (figure 8.8). The existence of an edge be-
tween two nodes c and d is established with respect to their Euclidean distance
‖rc − rd‖, typically using a nearest-neighbor rule or the Delaunay triangula-
tion that avoids gaps and crossings. The cell membranes can be either round
or defined by their Voronoi region; in this model, no difference is made be-
tween a full cell volume and its nucleus. Denoting by Gc the GRN of cell c, a
macroscopic edge c ↔ d generally represents a complex coupling link between
multiple gene nodes of Gc and Gd. In the experiments presented here, the
embryo is a 2-D quasi-hexagonal Delaunay lattice and Gc is a PBI network.
Intercellular coupling is restricted to X and Y positional nodes, where cou-
pling strength between concentration levels Xc and Xd is symmetrical and
depends on only |xc −xd|, and similarly for Y and y. As described above, this
causes protein X to anisotropically diffuse on the x axis, following a gradient
X(rc) ∼= α(xc − x0), which is interpreted by the B and I layer inside each
cell c and creates a pattern of gene expression {Ik(rc)c=1...N}k=1...m on the
lattice (figure 8.3g). In the binary approximation, where Ik is a product of
near-binary Bi activities, the pattern consists of a patchwork of polygonal
domains {DIk}k=1...m that can be partially overlapping. The embryo’s parti-
tioning into DIk territories is similar to the colorful compartments between
lead cames in stained-glass works.

8.3.1.5 The feed-forward dynamics of gene network topology

In summary, under the simple feed-forward hypothesis, developmental genes
are roughly organized in tiers, or “generations”. Earlier genes map the way
for later genes, and gene expression propagates in a directed fashion. First,
positional morphogens create half-plane domains, and then domains intersect.
Naturally, this is a crude caricature of real developmental GRNs. Although bi-
ological research has not fully unraveled the complex webs of regulatory gene-
protein-gene interactions in any species, two important topological features of
these webs have long been recognized, namely: (1) the existence of recurrent
loops [15] and (2) gene multivalence. These features are not taken into account
in the feed-forward network model, but small improvements should suffice to
accommodate them. Concerning feature (1), recurrent loops and “feedback”
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interactions can be added within each layer, while keeping the general multi-
layered architecture and prohibiting feedback from a higher layer to a lower
layer. Feature (2) means that the same developmental genes can be reused
at different periods and locations in the organism. Such genes, also called
“toolkit genes”, are in fact triggered by different switch combinations (mul-
tiple clusters of upstream regulatory sites on the DNA). Therefore, they can
be formally represented by duplicate nodes placed in different tiers of the
feed-forward network. In graph topological formalism, toolkit genes look like
“hub” nodes that receive and send out numerous links. From the dynamical
and activity propagation viewpoint, however, this resemblance disappears by
segregating specific functional combinations of incoming and outgoing links
from each other and duplicating the node. This suggests that developmental
GRNs might not be so “complex” after all, in the scale-free [4] or small-world
sense [38], but might essentially retain a directed acyclic graph (DAG) topol-
ogy at the macroscopic level, filled with smaller cliques of recurrently con-
nected nodes at a finer level. A longer discussion about the realism of GRN
topology will not be pursued here. The main thrust of the present study is to
motivate new ways of designing artificial systems by drawing inspiration from
biological development, not to give a faithful account of biological reality.

8.3.2 The growing canvas: multiscale, recursive patterning

8.3.2.1 Hierarchical subpatterning

The primitive PBI network architecture used here is similar to the multilay-
ered “perceptron” model of artificial neural networks. Its generalization power,
i.e., ability to generate a wide variety of patterns, is problematic. A three-tier
perceptron is theoretically universal, as it can produce any desired segmenta-
tion of the input space — here, the 2-D space of the input nodes X and Y ,
respectively, equivalent to coordinates x and y. This is in contrast to a two-
tier PB perceptron without hidden layer, which can accomplish only linear
partitions. In 2-D, again by analogy with stained-glass techniques, it means
that any scene motif or embryo map in principle can be completely delineated
by boundary lines (the “hidden units”), however fine its details may be. The
homogeneous identity domains I (the “classes”) then appear at the intersec-
tion of the half-planes defined by the B lines. Additionally, other types of B
contours than straight lines can be employed; instead of the linear kernel Li

in Bi = σ(Li(X, Y )), the boundary discriminant functions can be polynomial
kernels Bi = σ(Pi(X, Y )) or other kernel types. However, an important ques-
tion remains about the cost of this versatility. How many boundary nodes
are necessary and sufficient to cover all the components of a segmentation
pattern? As long as the different identity domains are not too numerous and
remain reasonably connected, only a few B nodes are needed. On the other
hand, as the identity domains become smaller and more fragmented, the num-
ber of B nodes increases rapidly, eventually tending to infinity in the limit of
discontinuous points.
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Thus, although theoretically versatile, the PBI network is in practice lim-
ited by scaling. As discussed earlier, biological embryo patterns develop in
numerous incremental stages. An adult organism is produced through gradual
morphological refinement, following a cascade of gene expression regulation
from precursor gene tiers to secondary gene tiers, from secondary gene tiers
to tertiary gene tiers, and so on. To account for this effect, the present model
GRN is extended to include a pyramidal hierarchy of PBI networks, referred
to as H-PBI (figure 8.5) and denoted by Γ. A pattern is now generated in a
recursive fashion. First, the base PBI network G0 at the root of Γ establishes
the largest pre-identity domains (figure 8.5b). Then, in the next stage, another
set of PBI subnetworks G1, G2, etc., partition these pre-identity domains into
smaller identity compartments at a finer scale (figure 8.5c), and so on. The on-
set of a later PBI subnetwork Gμ′ = {X ′, Y ′, B′i′ , I

′
k′} is always controlled by

one or several of the I nodes of an earlier PBI subnetwork Gμ = {X, Y,Bi, Ik}.
Formally, this can be written: X ′(r) = α′(x − x′0)Ik(r), and same for Y ′. It
means that X ′ and Y ′ follow local gradients only inside, precisely, the domain
DIk delimited by one of the identity nodes Ik = 1, and that they are zero
everywhere else. This causal relationship is similar to the imaginal discs of
Drosophila; once a territory DIk has been marked to be the future site of a
leg or a wing (high Ik activity), a local coordinate system arises inside DIk in
the form of gradients (such as X ′ and Y ′), which then trigger the formation
of a new subpattern {I ′k′}k′=1...m′ inside this territory, and so on [8]. Form
details are added in a hierarchical or “fractal” fashion, analogous to the local
inclusion of small stained glass motifs into bigger ones. Fractal patterning has
also been explored in “map L-systems” [32], but using symbolic rules in an
explicit geometrical representation.

8.3.2.2 Expansion

Simultaneously, the embryo grows as cells continue to divide and proliferate
(figure 8.5a’-c’). Hence, multiscale patterning actually consists of two fun-
damental processes playing out in parallel: (1) the partitioning of identity
domains into smaller identity domains, and (2) the continuous expansion of
identity domains. During cell division or mitosis, the two daughter cells in-
herit the current expression state of the mother cell. Biologically, this state
corresponds to mRNA, protein and metabolic concentrations; in the present
model, it is represented by the set of values of the GRN nodes. Domains thus
preserve their identity during expansion (the I nodes of G0), while they are
also occupied by new local gradients of positional information, i.e., new re-
gional coordinate systems (X ′, Y ′) that activate the next PBI module in the
hierarchy (G1 or G2) Biologically, these new local gradients might emerge
from a diffusion process similar to the original diffusion of the global coordi-
nates X, Y . For example, during proliferation a small number of daughter cells
asymmetrically inherit more signaling proteins than their siblings, and then
these proteins start diffusing from one border of the domain where the cells
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Fig. 8.5. Static and growing multiscale canvas. On a 32 × 32 hexagonal lattice of
cells, an H-PBI gene network Γ gives rise to a “fractal” pattern in two steps: first,
the base subnet G0 (5B-12I) marks 12 rectangular segments (a) as in figure 8.4;
then, two secondary subnets G1 and G2 (3B-6I) triggered by I1 and I2 create local
gradients in two of those segments (b), subsegmenting them into six smaller domains
(c). An equivalent pattern is obtained by a cell mass uniformly expanding from 8×8
(a’) to 16× 16 (a”-b’) to 32× 32 cells (b”-c’), while patterns continue to form and
gradients continue to diffuse, as above.

gathered. However, in the present version, the gradients of P node activity are
not modeled as diffusion processes but directly calculated from the geometri-
cal shape of the identity domain boundaries according to X ′(r) = α′(x− x′0)
and Y ′(r) = β′(y − y′0). This shortcut is a slight violation of the localized
dynamics, and is only aimed at replacing the lengthy convergence process of
heat-like diffusion with its already-known final state (an approximately linear
gradient, depending on the boundaries).

In this section, it is also assumed that all cells divide equally and simulta-
neously, i.e., the medium expands uniformly according to a geometrical law.
For example, in a regular planar hexagonal lattice containing N cells, there
is an average of 3N intercellular edges. At each expansion step, one new cell
is added in the center of every c ↔ d edge, and edge lengths are doubled to
restore the original intercellular distance. The result is a new regular hexag-
onal lattice that has 4N cells and a surface area four times larger, but still
has the same shape as the previous lattice (figure 8.5a”, b”). Note that, since
the medium is expanding, at the same time as new gradients emerge and finer
details are added, the typical scale of patterning is not diminishing but in fact
remains approximately constant, being on the order of magnitude of an aver-
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age cell size. Following an artistic metaphor, the “growing canvas” continues
to paint itself using the same “brush size” [9].

8.3.2.3 Modularity

Ordering genes in a multiscale hierarchy of the H-PBI type is a convenient
way to guide self-patterning. Instead of trying to render all morphological
details at once, these details arise in successive waves of expression from the
broadest territories down to the finest patches. However, an even greater ben-
efit intrinsic to a hierarchical network is modularity. As soon as layers and
subnetworks have been defined, they can be reused as units of local computa-
tion. Modularity is a fundamental principle of genotype-phenotype economics
in development and evolution [31]. Biological organisms often contain numer-
ous repeated or “serially homologous” parts in their body plan [8]. This is
most striking in the segments of arthropods (several hundreds in millipedes)
or the vertebrae, teeth and digits of vertebrates. After duplication, these parts
tend to diversify and evolve more specialized structures (lumbar vs. cervical
vertebrae, canines vs. molars). Homology exists not only within individuals
but also between different species, as classically shown by comparing the fore-
limbs of tetrapods from the bat to the whale. Recently, genetic sequencing
has revealed that many stretches of DNA are in fact identical or highly sim-
ilar. This came to support the idea that homology is the evolutionary result
of duplication followed by divergence through mutation (and, sometimes, loss
again).

Beyond biology, modularity is also a pervasive trait of many other natural
complex systems [6]. In systems engineering, it means not only copying and
reusing a partial design in different locations of an architecture, but also being
able to independently modify these copies. In the present H-PBI model, this
corresponds to connecting several identity genes I1 . . . Ik of a base network G0

to a unique subnetwork G1 (figure 8.6a) or, alternatively, multiple copies of
the same subnetwork G1, G2, etc. (figure 8.6d). In the first case, the local pat-
tern generated by G1 is always identical in all primary domains DI1 . . . DIk,
whether appearing in its original form (the eight +-shaped subdivisions in
figure 8.6b) or in a mutated form (X-shaped subdivisions in figure 8.6c). In
the second case, the local pattern can be initially identical (as in figure 8.6b-
c), but then it has the possibility of evolving independently in each location
and produce dissimilar variants of itself (the miscellaneous inclination angles
θ of figure 8.6e). Additional mutations in the base network G0 can change the
whole body map (thinner center row d and thicker borders of figure 8.6f) with-
out affecting the individual motifs G1, G2, etc. Modularity therefore plays at
all levels of the GRN. The demonstration of figure 8.6 is similar to the “arthro-
morph” program [10] that generates chains of limbed segments representing
artificial arthropods. In that simulation, “genes” control mutations at three
levels: globally (same variation in all segments), in groups (same variation
in a few adjacent segments only) or individually (distinct variation in every
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Fig. 8.6. Modularity in a segmented embryo (see text). A cell mass uniformly grows
from 12×32 (inset) to 24×64 to 48×128. (a)-(c) A mutation in the unique subnet-
work G1 generates the same angle in all eight “limb” patterns. (d)-(e) Independent
mutations in duplicated subnetworks G1 . . . G8 create different angles. (f) A mu-
tation in the base network G0 modifies the limbs’ height, without affecting their
internal patterns.

segment). However, the virtual genes of arthromorphs code directly and arbi-
trarily for their macroscopic geometrical features. The example of figure 8.6
achieves a similar effect through the decentralized emergence of a myriad of
microscopic states in a multicellular developmental model.

8.3.3 The deformable canvas: cell adhesion, division and migration

The growing canvas model based on the hierarchical gene regulation network
H-PBI (section 8.3.2) is more powerful in generating a wide range of patterned
images than the fixed canvas using a single three-tier PBI (section 8.3.1).
With a growing canvas, it should be possible to meta-design a generative
algorithm that could reconstruct any given image in a multiscale, fractal-
like fashion. Such an algorithm would automatically “reverse compile” an
image to produce the correct pyramidal GRN to be placed in every cell of
the expanding lattice (figure 8.7). However, this is not the primary object of
this work. What was achieved so far is only a model of genetically guided
patterning, not morphogenesis in the sense of shape formation. The canvas’
growth presented in the previous section is geometrically homothetic, i.e.,
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Fig. 8.7. The universal growing canvas (conceptual illustration, not actual sim-
ulation). As in figure 8.5, a generalized hierarchical GRN (a) could in principle
reconstruct any image in a multiscale iterative fashion, in a fixed (b) or uniformly
expanding (b’) mass of cells (self-portrait metaphor after [9]).

an initial rectangular sheet of cells in 2-D remains roughly rectangular, even
though its internal patterning can become very intricate.

Continuing to explore the principles of multicellular development as an
inspiration for the self-organization of artificial systems, the model will be
further improved to incorporate elements of cellular biomechanics. What is
missing from the previous homothetic canvas is a topological deformation
dynamics, or “morphodynamics”, that can confer a nontrivial shape to the
organic system. To this purpose, three principles are added in schematic for-
mulations: (1) elastic cell rearrangement under differential adhesion, (2) in-
homogeneous cell division, and (3) tropic cell migration. Practically for the
model, all these mechanistic principles have the effect of varying the cells’ co-
ordinates in 2-D or 3-D space. Lastly and more importantly, we need to add
a rule that relates those principles to the original self-patterning process. In
this new “deformable canvas” model, a critical part of our meta-design effort
is the establishment of a functional dependency between cell identities and
mechanical cell behaviors. Just as the identity nodes Ik can propagate gene
expression activity into subordinate PBI modules to create local segmentation
patterns, the same Ik nodes now also trigger behavioral changes of the above
(1), (2), (3) types in the cells where they are highly active.

8.3.3.1 Differential cell adhesion and elasticity

Lattice edges connecting cell centers are modeled as springs with force con-
stant k and length r0. Viscous resistance is also included with coefficient η.
Thus, the equation of movement reads

m · r̈cd = −k

(
1 − r0

‖rcd‖
)

rcd − ηṙcd . (8.1)
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Fig. 8.8. Cell adhesion and elasticity. A simple mesh model illustrates the biome-
chanical behavior of a growing cell mass. No genetic network is used here; cells
have arbitrary colors. Lattice edges and polygons result from a Delaunay-Voronoi
tessellation (corrected on the periphery). (a) Isotropic “blob” of identical type-I
cells dividing at 1% rate, in which nearby daughter cells rearrange under elastic
forces (see text). (b) Anisotropic “limb” growth: from the initial 2-type cell sheet,
only the center domain DI2 and its offspring divide (upward stretch modeled by
2x:y anisotropic rescaling). The eight lateral cells have different identity I1 and no
adhesion to the I2 lineage.

Neglecting the effect of inertia, the coordinate update rule at each time step
Δt = 1 becomes:

Δrc = −Δrd =
Δrcd

2
= − k

2η

(
1 − r0

‖rcd‖
)

rcd . (8.2)

Under this simple model of elastic rearrangement, each cell tends to optimize
the distance ‖rcd‖ with its neighbors’ nuclei to reach r0, i.e., occupy a convex
volume of typical diameter r0 (figure 8.8). Biological cells also stick to each
other by means of adhesion proteins that cover their membrane. The great
diversity of adhesion proteins gives them the ability to selectively recognize
each other, thereby modulating the intercellular adhesion force or “stickiness”.
Some cells slide along one another without attaching, while other form tight,
dense clumps. In the elastic force model, differential adhesion can be modeled
by allowing the spring constant to vary from edge to edge, which means re-
placing k with kcd in the above equation. For the limb-like growth illustrated
in figure 8.8b), there is no adhesion between domains DI1 and DI2, so kcd = 0
between any cell c of identity I1 and any cell d of identity I2. In figure 8.9c’-d’,
adhesion is zero between either DI1 or DI2 and the rest of the embryo.
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8.3.3.2 Inhomogeneous cell division

This mechanism is similar to cell proliferation at the basis of the homothetic
expansion seen in section 8.3.2.2. The new aspect here is that cells divide ac-
cording to a non-uniform probability that essentially depends on their genetic
identity, i.e., the DI domains to which they belong (figure 8.9). This means
that the probability of division of cell c located in rc, denoted by p(rc), de-
pends at any time only on the current state of activity of the I nodes in the
cell’s H-PBI gene network: p(rc) = p(I1(rc), I2(rc), . . .).

Two daughter cells c and d resulting from the division of cell c under this
probability are initially positioned next to each other at a small distance δ
and a cleavage angle θ, also drawn at random (possibly from a non-uniform
distribution in the case of anisotropic proliferation). By denoting rcd = rc−rd

the vector on directed edge c ← d, this means rcd = (δ cos θ, δ sin θ). Then, the
positions of c, d and the cells in their neighborhood are rearranged under elas-
tic constraints implemented by the edges (explained in the previous section).
Differential proliferation rates based on genetic identities produce bulges and
deformations in the embryo shape, as some compartments expand faster than
others (figure 8.9a-d), resembling organogenesis. Using anisotropic cleavage
planes and anisotropic rescaling transformation x : y → ax : by, this model
can also generate directional offshoot akin to limb development (figures 8.8b
and 8.9a’-d’).

8.3.3.3 Tropic cell migration

A specificity of animal development, largely absent from plant development, is
cell migration. Individual cells or groups of cells burrow their way through the
cellular mass and extracellular matrix to colonize remote locations of the de-
veloping embryo. Depending on the adhesion properties of the migrating cells,
they can either globally preserve their neighborhood relationships by “flock-
ing” together or, on the contrary, detach from their immediate surroundings to
create new intercellular bonds elsewhere. In the first case, migration happens
en masse and takes the aspect of elastic sheet deformation. The most striking
example of collective crowd movement is gastrulation, a complex folding event
that forms the fundamental germ layers of the embryo in its earliest stages.
The second case is best illustrated by neural crest cells that leave the dorsal
neural tube to form other structures far from their source. However, it is of-
ten unclear which type of migration is predominant and most biomechanical
deformation processes involve a mix of collective and individual dynamics.
Often, an “active” group of cells entrains a more “passive” mass in its tra-
jectory, like a locomotive. The existence of cells that act like singularities
makes especially difficult a description purely based on continuous surfaces
and differential geometry and requires discrete multi-agent simulations. The
locomotion mechanisms responsible for cell migration are not fully under-
stood. Generally, a cell is motivated to migrate by attraction toward specific
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Fig. 8.9. “Organogenesis” by non-uniform cell proliferation. As in figure 8.5, a
checkered embryo emerges from an H-PBI gene regulatory network Γ. Here, new
cellular behavioral rules are added. Cells with high levels of identity genes I1 and I2

are prompted to further divide at the rate of 1% (c) (while others have stopped), be-
fore expressing subpatterns G1 and G2 in their newly formed anterior and posterior
territories (d). Different weights in base module G′

0 of Γ′ make a thicker central row
and place DI′1 and DI′2 on the dorsal and ventral sides (b’). Moreover, different
values of cleavage angles, anisotropic rescaling and adhesion coefficients (kcd = 0
between DI′1,2 and the rest) provoke I ′

1 and I ′
2 cells to grow “limbs” (c’), which are

also subpatterned by G′
1 and G′

2 (d’).
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Fig. 8.10. Cell migration. Using the same gene regulatory network Γ as figure 8.9,
the behavioral parameters of cells I1 are replaced with a migration rule. Before
proliferating, these cells push their way across the embryo toward increasing X
concentration (here, eastward). This is modeled by adding to Δr a bias u that
depends on genetic identity.

chemical signals that it recognizes (“chemotaxis”). These signals trigger its
motion and guide it on its route toward its target. In the present model,
this behavior can be simply implemented by adding an identity-dependent
bias vector uc = uc(I1(rc), I2(rc), . . .) to the Δrc equation of section 8.3.3.1
(figure 8.10).

8.3.4 The excitable canvas: organic computing

Meta-designing laws of artificial development with inspiration from biology,
as the present model attempts to demonstrate, is a challenging engineering
task. It combines schematic modeling of natural complex systems, such as
embryogenesis, and departure from the natural model toward free invention.
Yet, developmental modeling is only the first half of the IMD effort. Another
important problem is functional meta-design. Once an “organic system” is
mature, what could be its computing capabilities? What do the artificial cells
and organs (identity domains) of an embryomorphic system represent in prac-
tice?

In biology, it is difficult to establish a distinction between a purely de-
velopmental and a purely physiological regime. Real cells are already “func-
tional” as soon as they are produced by mitosis and this function partakes in
development. For example, the bioelectrical signals endogenously generated
by neurons play a critical role in establishing synaptic contacts in the brain.
While connectivity obviously supports the exchange of activity, there also
exists an important feedback from activity to connectivity dynamics. Nodes
start communicating before edges are fully built, leading to self-structuring of
the network [12].

In artificial embryomorphic computing systems, it is conceivable to keep
these two phases relatively separate by distinguishing between “activity for
development” and “activity for function”. The intercellular transmission of
positional information by regulatory coupling between genes (figure 8.3b) rep-
resents activity-for-development. Beyond a certain degree of maturity of the
growing system, this type of activity would gradually or abruptly diminish
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and give way to the other type of activity, serving a different purpose toward
functional computing. It does not mean that the system would entirely stop
developing; the morphodynamics would still be active, mostly to fulfill im-
portant self-repair tasks and provide robustness to perturbations. If one or
several cellular components fail, they could be quickly replaced by the still-
active growth potential of their neighbors. (Self-repair properties have not
been verified yet in the current embryomorphic model.) Yet developmental
activity would be mostly dormant during functional maturity.

Now, after finishing the self-assembling stage and while constantly under
self-repairing mode, what type of computation could be carried out by the em-
bryomorphic system? As a speculative proposal, by its very 2D or 3D spatial
nature, the organism could become the substrate of excitable media dynamics.
After creating slow, quasi-static developmental patterns, cells could form fast
and transient dynamical patterns. Depending on their identity domain, local
groups of cells would synchronize in different ways and enter various regimes
of collective spatiotemporal order (figure 8.11). Computation in the organic
canvas would consist of emerging patches of moving and shimmering spots,
stripes, target or spiral waves. We find again the types of reaction-diffusion
patterns of figure 8.2a, which played only a limited role in development, now
appearing and disappearing on the short time scale, and on top of genetically
guided development. These phenomena are common in nonlinear chemical re-
actions or multicellular structures [42, 34], such as slime mold aggregation,
heart tissue activity, neural networks, etc. These systems all have in com-
mon the ability to position themselves in a critical state, from which they can
rapidly bifurcate between chaos and order. In this perspective, the “self-made
tapestry” [3] would become a self-made screen or “sensitive plate” of coupled
oscillatory units in the sense that certain external patterns of initial conditions
can quickly trigger internal patterns of collective response from the units.

This is already the case in neural computation. New spiking network mod-
els that take into account the fine temporal structure of neural signals have
revealed a great diversity of collective spatiotemporal regimes: synchroniza-
tion and phase locking, delayed correlations and traveling waves, rhythms and
chaos. Through recurrent (and plastic) synaptic connections, neural cells tran-
siently interact as dynamical subnetworks that promise an immense richness
of coding expression and computational power, combining the discrete and
the continuous. What could still be missing from the current embryomorphic
model are long-range connections. The inspiration from embryogenesis is cur-
rently limited to geometrical 2-D or 3-D lattices but might be complemented
with complex “N -D” networks arising in ways similar to neurogenesis and
synaptogenesis.
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Fig. 8.11. The excitable canvas. A hypothetical view of an embryomorphic
system in which genetic identity domains (colored patches) could support ex-
citable media (zoom-in square insets), through coupling between quasi-oscillatory
units (example of one temporal signal in the rectangle inset). Various regimes of
dynamical activity could emerge on these substrates. Such spatiotemporal pat-
terns might hold a great potential for representational and computing proper-
ties. (The square insets are snapshots of simulations run on Tim Tyler’s demo
applet http://texturegarden.com/java/rd, which implements the Gray-Scott model
described in [29] under various sets of parameters.)

8.4 Discussion: planning the autonomy

At the core of the complex systems engineering enterprise lie paradoxical
objectives: How can decentralization be controlled? How can autonomy be
planned? How can we expect specific characteristics from systems that are
otherwise free to invent themselves? The challenge is not only to allow self-
organization and emergence but, more importantly, to guide them. First, it
consists of preparing the conditions and mechanisms favorable to a robust
and reproducible — as opposed to random — pattern formation process, un-
der genetic control (IMD). Second, it consists of steering this process toward
desired goals, while simultaneously leaving the door open to the spontaneous
generation of innovative designs by evolution of the genes (EMD).

8.4.1 Growth, function, evolution

When meta-designing an embryomorphic artificial system, the engineer faces
three main tasks: IMD1: How does the system grow? IMD2: How does the
system function? EMD: How does the system evolve? The goal of the IMD
phases is to define the developmental and computing mechanisms. The goal
of the EMD phase is to define the rules of their evolution by variation and
selection (section 8.4.2).



194 René Doursat

8.4.1.1 Developmental mechanisms

Growth results from a combination of elementary mechanisms, described and
elaborated in sections 8.2 and 8.3. At the microscopic level of the embryomor-
phic model, it is grounded in a repertoire of basic cellular behaviors: cells
change state (genetic expression), communicate (positional signals), cluster
or detach (differential adhesion), travel (migration), create offspring (mitosis)
or die (apoptosis). At the mesoscopic level of cell populations, several morpho-
genetic processes emerge: guided patterning through GRN-controlled expres-
sion maps, organogenesis through differential adhesion and domain-specific di-
vision rates, folding and deformation through elastic constraints and sculpting
through cell removal. Additionally, superficial free patterning (spots, stripes)
can also arise by reaction-diffusion (figure 8.2a). Starting from a single cell,
a complex and organized architecture develops through the repeated applica-
tion of a series of these principles, identically programmed inside each cell.
Task IMD1 consists of choosing among these principles and designing their
dynamics and parameters.

8.4.1.2 Functional mechanisms

Function roughly starts after growth (see section 8.3.4). Task IMD2 is about
defining the nature of the cells and the type of computation that they carry
out at the microscopic level. It also involves defining the range of macroscopic
abilities of the system and its input/output interfaces with the environment.
Do cells represent some kind of hardware components on a board, taking
part in global digital-analog electric or optical activity patterns? Are they
small modules of software logic that execute symbolic instructions on more
conventional architectures in a “virtual machine” fashion? Can they actually
be physical parts and blocks, joined together to support sensing, planning
and acting in a robot? Or are they even full-fledged robots that coordinate in
swarm formations for collective performance?

8.4.1.3 Evolutionary mechanisms

Evolution of both growth and function is the responsibility of the evolutionary
meta-designer (EMD), who must define how the system varies (randomly)
and how it is selected (nonrandomly). These points are discussed in the next
section.

8.4.2 Selection without expectations

Three degrees of constraints that drive the fitness criteria and the artificial
selection process can be identified, in decreasing intensity: (1) selecting for a
specific system architecture, (2) selecting for a specific system function, and
(3) selecting the unexpected.
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8.4.2.1 Selecting for architecture

On the first level, the EMD engineer imposes tight requirements to obtain par-
ticular organismal patterns and shapes from the development process. Here,
a reverse engineering problem must be addressed: Given a desired phenotype,
what should be the genotype that will reliably reproduce this phenotype? One
solution, if available, is the deterministic reverse compilation of the genotype
from the phenotype. This is what Nagpal [25] has achieved in her virtual
origami model. Given a macroscopic folding recipe (based on an ordered set
of lines), she can automatically generate the exact microscopic developmental
rules that each identical point of the medium must follow to reproduce the
shape (based on wave propagation and state change). It is possible that such
a method is also within reach in the present embryomorphic model, but this
has not been investigated to-date.

In most cases, however, it is safe to assume that no algorithm for the re-
verse compilation of the genotype from the phenotype is available. Depending
on the number of dimensions along which the system may vary, the search
in parameter space can then appear nearly impossible. In the embryomorphic
model presented in section 8.3, these parameters are the set of gene-to-gene
regulatory weights together with the local behavioral rates of division, mi-
gration, gradient diffusion, and so on. (typically, the Γ network of figure 8.9,
branching out like figure 8.7a). A naive fitness function rewarding only the
final shape would create one (or possibly several) “narrow” peaks limited
to local neighborhoods of those parameters, which would be unreachable for
all practical purposes. However, this is the fallacy of “Mount Improbable”
explained by Dawkins [10]. Biological evolution does not create complex or-
ganisms in one shot, but through a multitude of successive steps, randomly
generated and nonrandomly selected. Each favored step brings a small “im-
provement”, adding to the body plan a little more complexity, which gets
rewarded by successful interaction with the physical environment. A famous
example is how the eye has evolved multiple times from mere photosensitive
cells, through gradual inward curvature of the epithelial tissue, condensation
of the lens, etc. These changes were probably encouraged by an ever-increasing
quality of the projected image (hence, an increasing survival probability un-
der co-evolution pressure), as modeled by Nilsson and Pelger [27]. Behind the
daunting cliff of a high fitness peak, hides a long and gentle upward slope.

Similarly, in the artificial systems challenge, an evolutionary meta-designer
should also replace a jagged final-shape fitness landscape with a smooth
transitional-shape fitness landscape. The best method to accomplish this is
to define a score value or “distance” to the desired shape. This value must be
an increasing function of favorable mutations, i.e., mutations that bring the
developed system closer to the ideal template. It is conjectured here that this
well-known principle of gradual search might actually benefit, not suffer, from
the high parameter dimensionality offered by a true underlying embryomor-
phic model, such as the one presented in this chapter. A hierarchical gene
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regulatory network of the H-PBI type hyperdistributed in a large cell mass
might be in a better position to provide the necessary fine-grain mutations re-
quired by the gentle slope approach than the more direct genotype-phenotype
mapping of traditional genetic algorithms.

8.4.2.2 Selecting for functionality

Why make the effort to devise a sophisticated self-organizing system only
to force this system to produce a specific shape? Why not directly build
the final shape in the first place? One important benefit would be robust-
ness through homeostasis. Even though the final plan is known in advance,
a genuine developmental dynamics is also expected to be intrinsically “self-
repairing” (as mentioned in section 8.3.4). Nonetheless, requiring a specific
architecture somehow defeats the idea of “stepping back” and meta-designing.
Intervening in the microscopic placement of cells, whether by reverse compi-
lation or fine-tuning, literally reintroduces the micromanagement attitude of
classical systems design.

On the contrary, EMD engineers should abstract themselves even further
from structural details and concentrate on selecting for the functionality of
their system, otherwise leaving it complete freedom of morphology. Here, the
same gradual optimization strategy as described above can be employed, ex-
cept that the continuous distance quantity would not measure morphological
resemblance but rather the closeness of performance to predefined goals. Given
a task or repertoire of tasks to accomplish, it means ranking candidate systems
according to their partial success in fulfilling these tasks, then allowing the
most successful ones to reproduce faster and mutate, and so on. Afterwards,
it is always instructive for the meta-designer to open the “black box” of the
winning architectures and try to understand how they have come about and
which specific subsystems or modules related them to success. The solutions
“invented” by spontaneous evolution are often surprising and convoluted, in
other words, remote from what a human designer would have conventionally
designed.

Functional selection under free organization is the strategy adopted by
most evolutionary computation works that also contain elements of distributed
architectures or (small-size) complex systems. For example, this is the case of
the logical functions computed by randomly composed multi-instruction pro-
grams in Avida [19], the locomotion abilities created by randomly articulated
multi-segment robots in Golem [20] or Framsticks [17], or the shooting skills
of intelligent video game agents emerging from randomly assembled multi-
neuron networks in Nero [33]. Again, it is argued here, although not proven,
that an even larger number of agents, such as in multicellular embryogenesis,
would be even more favorable to a successful evolutionary search.
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8.4.2.3 Selecting the unexpected

The increase in system size, however, might also require the EMD engineer
to “let go” one step further and give up on specific selection requirements
altogether. In summary, it is likely that the ultimate reconciliation between
the antagonistic poles of planning and autonomy would be based on two com-
plementary aspects. In order for an evolutionary process to successfully find
“good” regions in systems state space, (a) the variation-by-mutation mecha-
nisms must be fine-grained and rich enough to offer a large number of search
paths (system size) and, at the same time, (b) the selection criteria must be
loose enough to allow a large number of fitness maxima (“letting go”). With
more search paths covering more fit regions, evolution is more likely to find
good matches. Point (a) concerns the intrinsic ability of complex systems to
create a solution-rich space [23] by combinatorial tinkering on highly redun-
dant parts. Variational power is the most critical aspect of evolutionary pro-
cesses; developmental systems made of a great number of small self-assembling
components have the unique ability among all systems to generate behavior-
rich variations. Point (b) concerns the ability of the meta-designers to relax
their specifications, within reasonable limits of what is permitted by the sys-
tem’s environment and the problem at hand, and accept to be surprised —
hopefully, in a pleasant way — by the outcome. Organic systems engineers
will probably need to learn how to greatly diversify their demands and rather
stand on the side, ready to harvest possibly “interesting” or “useful” organ-
isms from a free-range menagerie.
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198 René Doursat

4. A.-L. Barabási, and R. Albert. Emergence of scaling in random networks. Sci-
ence 286: 509-512, 1999.

5. Beyond the Horizon: Anticipating Future and Emerging Information Society
Technologies Final Report, ERCIM, FET, IST, EU, 2006.

6. W. Callebaut, and D. Rasskin-Gutman, eds. Modularity. The MIT Press, 2005.
7. S. B. Carroll. Endless Forms Most Beautiful: The New Science of Evo Devo and

the Making of the Animal Kingdom. W. W. Norton & Company, 2005.
8. S. B. Carroll, J. K. Grenier, and S. D. Weatherbee. From DNA to Diversity,

Blackwell Scientific (Malden, MA), 2001.
9. E. Coen. The Art of Genes. Oxford University Press, 2000.

10. R. Dawkins. Climbing Mount Improbable. W. W. Norton & Company, 1996.
11. R. Doursat. The growing canvas of biological development: Multiscale pattern

generation on an expanding lattice of gene regulatory networks. InterJournal:
Complex Systems 1809, 2006.

12. R. Doursat, and E. Bienenstock. Neocortical self-structuration as a basis for
learning. 5th International Conference on Development and Learning (ICDL),
Indiana University, Bloomington, Indiana, May 31-June 3, 2006.

13. G. M. Edelman. Topobiology: An Introduction to Molecular Emrbyology. Basic
Books, 1988.

14. A. Gierer, and H. Meinhardt. A theory of biological pattern formation, Kyber-
netik 12: 30-39, 1972.

15. S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology 22: 437–467, 1969.

16. M. W. Kirschner, and J. C. Gerhart. The Plausibility of Life: Resolving Darwin’s
Dilemma. New Haven and London: Yale University Press, 2005.

17. M. Komosinski, and S. Ulatowski. Framsticks: Towards a simulation of a nature-
like world, creatures and evolution. In D. Floreano, J.-D. Nicoud, and F. Mon-
dada, eds., 5th European Conference on Advances in Artificial Life (ECAL-99),
pp261-265, Lausanne, Sept. 13-17, 1999.

18. S. Kondo, and R. Asai. A reaction-diffusion wave on the skin of the marine
angelfish Pomacanthus. Nature 376: 765-768, 1995.

19. R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami. The evolutionary origin
of complex features. Nature 423: 139-144, 2003.

20. H. Lipson, and J. B. Pollack. Automatic design and manufacture of robotic
lifeforms. Nature 406: 974-978, 2000.

21. H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer-Verlag, 1998.
22. J. F. Miller, and W. Banzhaf. Evolving the program for a cell: from French flags

to Boolean circuits. In S. Kumar and P. J. Bentley, eds., On Growth, Form and
Computers. Academic Press, 2003.

23. A. A. Minai, D. Braha, and Y. Bar-Yam. Complex engineered systems. In D.
Braha, Y. Bar-Yam and A. A. Minai, eds., Complex Engineered Systems: Science
Meets Technology. Springer Verlag, 2006.

24. E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist model of development.
Journal of Theoretical Biology, 152: 429–453, 1991.

25. R. Nagpal. Programmable self-assembly using biologically-inspired multi-agent
control. 1st Int Conf on Autonomous Agents, Bologna, Italy, July 15-19, 2002.

26. H. F. Nijhout. A comprehensive model for colour pattern formation in butter-
flies. Proc. R. Soc. Lond. B 239: 81-113, 1990.

27. D. E. Nilsson, and S. Pelger. A pessimistic estimate of the time required for an
eye to evolve. Proceedings of the Royal Society of London B 256: 53-58, 1994.



8 Organically Grown Architectures 199

28. L. Nunes de Castro. Fundamentals of Natural Computing: Basic Concepts, Al-
gorithms, and Applications. Chapman & Hall/Crc Computer and Information
Sciences, 2006.

29. J. E. Pearson. Complex patterns in a simple system. Science 261: 189-192, 1993.
30. I. Salazar-Ciudad, J. Garcia-Fernández, and R. Solé. Gene networks capable of
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Summary. There is growing interest in the use of analogies of biological develop-
ment for problem solving in computer science. Nature is extremely intricate when
compared to human designs, and incorporates features such as the ability to scale,
adapt and self-repair that could be usefully incorporated into human-designed arti-
facts. In this chapter, we discuss how the metaphor of biological development can
be used in artificial systems and highlight some of the challenges of this emerging
field.

Key words: Developmental systems, genetic algorithms, pattern formation

9.1 Introduction

Organic processes can serve as inspiration for computational systems. The de-
sign and functionality of organic systems is both a challenge and an existence
proof of achievements of Nature posed to the human designer. In this context
it has turned out that the level of complexity commanded in the design of nat-
ural systems is still unparalleled. To put the scalability of biological systems
into perspective: Microsoft’s latest version of Windows has 106 lines of code,
some Linux distributions have 107 lines of computer code, but there are 1014

cells in the human body each much more complex than a line of code. Such
complexity would be out of reach of human designers, who even struggle to
keep the simplest designs and manufacturing processes defect-free. With the
increasing complexity of both hardware and software, there is growing need
for new design techniques that allow us to work with such complexity.

Evolutionary algorithms that mimic Darwinian evolution have provided
part of the answer to this problem. Algorithms such as genetic algorithms and
genetic programming [2, 7, 22] allow us to quickly search through vast search
spaces, finding novel solutions to our problems. However, there are limits to
how evolvable certain applications are, especially those that – with a näıve
implementation – would require long genotypes. Under such circumstances
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Fig. 9.1. Miller’s French Flag Problem

evolution can find it difficult to fine-tune the genotype — mutations are more
likely to be disruptive than beneficial and the combinatorics of search spaces is
prohibitive. It would be impossible to evolve a functioning computer program
with millions of lines of code, or a circuit with a hundred million components
with our present-day methods. So how does nature correctly assemble a system
containing trillions of cells?

Nature uses the process of development, by which a fertilized egg grows
into a fully mature individual. Here we shall discuss how one can grow compli-
cated programs and other structures by starting from an artificial zygote. For
example, figure 9.1 shows a single artificial cell developing into a predefined
pattern [21]. Each cell contains a computer program, discovered by evolution,
that when executed contains instructions for growing the virtual organism. In
this chapter, we shall provide a brief discussion of the biology of development,
and shall link it to artificial development. We will also present some ideas for
improving the current state of developmental models, in particular the use of
physical analogies.

9.2 Embryogenesis

Embryogenesis is the first stage of the developmental process by which the
embryo is formed. The development starts with the zygote, which is the fer-
tilized ovum. The zygote undergoes a process called cleavage, where mitosis
splits the cell into two (and later more) identical cells. Even at this stage,
spatial patterns are being produced. Egg cells are asymmetric, and the first
cleavage occurs along one axis, the second cleavage on an axis perpendicular
to it. The developing embryo receives a substantial amount of information in
the starting configuration from its zygote — this is called molecular prepat-
terning [23]. In insect ovaries, in addition to the egg, there are other cells, such
as nurse cells, which produce proteins required for growth, and pass these into
the egg cell. They contain maternal DNA that has an important role in the
embryo’s growth.

Mitosis repeats until 128 cells have been produced, at which point the next
phase of development, called blastulation, occurs. At this stage, the cells are
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still stem cells — they have yet to differentiate into a specialized cell type.
In mammals, the cells organize into a spherical structure called a blastocoele,
which subsequently develops into a blastocyst. The outer cells (called the
trophoblast) will go on to form the placenta, and the inner cells (called the
embryoblast) will form the embryo. Subsequently, the blastocoele forms three
layers, the ectoderm, endoderm, and mesoderm, that develop into the internal
organs of the animal.

The cells differentiate into their organ types, and groups form certain
physical shapes. Shapes themselves are the result of a small number of different
processes, governed by differences in cell adhesion and rates of differentiation.
The cells can form tubes or sheets, or condense into clusters. We further
discuss the role of physics in section 9.5.

Positional information, used by the genes of the embryo comes from chem-
ical gradients that are set up by proteins from the maternal RNA. These
divide the space inside the egg, and form the axes along which different de-
velopmental processes occur. In Drosophila, for example, nurse cells anchored
at one end of the egg contain a gene that produces a protein (Bicoid) that
diffuses across the egg, setting up a gradient. As a morphogen, the concentra-
tion of this protein determines whether certain other genes are expressed and
hence control the fate of cells: A high concentration results in the formation
of head and thorax. The embryo develops, however, without these features if
the gradient is artificially suppressed.

The genes in the embryo are responsible for the majority of the devel-
opmental processes. They produce proteins which not only build the cellular
structures, but also form part of the control process. The program stored in
genes is the aspect typically replicated by evolved programs in artificial de-
velopmental processes. The genes form networks of interactions, where the
behavior of one gene represses or triggers the behavior of others. However
it is important to note that in addition there are maternal genes that sit at
the top of this complex hierarchy of gene interactions. Maternal genes influ-
ence the zygotic genes, which in this instance are labeled gap genes, since in
Drosophila a mutation in one of these genes results in a gap in the developing
body plan. These genes in turn influence other layers in the gene hierarchy
— at the bottom of this diagram are genes that influence the development of
the wings. Effectively, each layer in the hierarchy occurs at different stages in
the developmental cycle, with the lowest level occurring last, and interacting
the least with the maternal RNA.

Development is sensitive to its environmental conditions. Amounts of food,
water, sun and other resources play an important role in defining the growth
of an animal as well as do external signals. If any of these resources is deficient,
the body develops in a different way. For example, fish release hormones into
the water that prevent further growth if their concentration gets too high.
This prevents overuse of food resources in the wild, but also explains why the
size of fish held in captivity is dependent on their tank size. Plants grow to
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fit their containers — or their roots flow around rocks and other obstacles
underground.

In recent years, some researchers have started to look at embryogenesis as
an inspiration for the development of electronic circuits. This field of inquiry
has been named Embryonics [24].

9.3 Scalability, Plasticity and Robustness

Multicellular organisms start from a single cell, which develops into a com-
plete organism – potentially containing trillions of cells. Each cell contains the
genetic information, encoded in DNA, that controls its properties. However,
DNA does not directly specify these properties. Instead, it instructs the con-
struction and development of a cell, using as much environmental information
and material as possible. The human genome consists of about 3.2 · 109 base
pairs, coding for approximately 25,000 genes which in turn produce 1014 cells.
A large portion of the genome contains regulatory information.

9.3.1 Scalability

A good example of scalability in artificial development comes from neural
networks. Scalability in this context means that it is possible to grow more
neurons if they are needed in the neural net to solve harder problems. Spec-
ifying the properties of each cell would be computationally infeasible due to
combinatorics and training algorithms like back-propagation would be unsuit-
able. As a result, direct evolution of weights and topology of the net sooner or
later will encounter a size barrier, where training is no longer computationally
practicable.

Can we write a computer program that will grow an arbitrarily sized neural
net with the right properties? Is this easier than evolving the network directly?
Here we are combining evolution, development and learning. Could we make
the neural network perform difficult tasks? For example, say we want to write
a voice recognition program. The scalable approach would require that we
make it work satisfactorily on a cell phone processor, good on a desktop and
amazingly well on a supercomputer. In this example, growing would allow
the program to fit the processor and memory availability. Would we find that
evolution/development will discover unusual topologies that one would not
have considered otherwise?

Kitano was one of the first to use artificial development to produce neural
networks [17]. Kitano evolved L-system rules that produced the connection
matrix of neurons, specifying the network’s topology and their weights. He
found that, unlike conventional direct encoding, the developmental encoding
scaled well. Kitano developed a method for evolving the architecture of an
artificial neural network using a matrix re-writing system that manipulated
adjacency matrices [17]. According to his results, this method produced results
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superior to direct methods (i.e. a fixed architecture, directly encoded and
evolved). It was later claimed, however, that the two approaches were of equal
quality [28].

Gruau devised a graph re-writing method called cellular encoding [12].
Cellular encoding is a language for local graph transformations that controls
the division of cells growing into artificial neural networks. The cells, which
we can identify as nodes in the ANN, store connection strengths (weights) and
a threshold value. The cells also store a grammar tree that defines the graph
re-writing rules and a register that defines the start position in the grammar
tree. The grammar tree was evolved using an evolutionary algorithm and the
method was shown to be effective at optimizing both the architecture and
weights at the same time. It scaled better than direct encoding, where all the
weights had to be evolved independently [13].

Federici has successfully evolved spiking neural networks that are con-
structed with a developmental system [9]. Here the developmental system
outperformed direct encoding by a considerable margin. However, as the pa-
rameters of neither experiment were optimized, it may not be a fair test of
the algorithms’ ability.

Human designs are often limited by their ability to scale and adapt to
changing needs. Our rigid design processes often constrain the design to solv-
ing the immediate problem, with only limited scope for change. Organisms,
on the other hand, appear to be able to maintain functionality through all
stages of development, despite a vast change in the number of cells from the
embryo to a mature individual. It would be advantageous to empower human
designs with this on-line adaptability through scaling, whereby a system can
change complexity depending on conditions. We should expect organic com-
puting to solve a related problem: Adaptation of the complexity of algorithmic
approaches to problems of variable difficulty.

9.3.2 Plasticity

In nature we find that designs scale, as is evident from the growth of animals
after gestation: The various functions of the organism still work all the way
from infancy to adulthood. This gives organisms the plasticity to grow to
sizes that fit the environment, without sacrificing reproductive capability. The
hormones in the water already mentioned limit the growth of fish, and this
prevents fish from becoming too large if there is not enough room, and hence
allow the fish to survive with less competition for resources. Similar effects can
be found in artificial developmental systems. For example, in L-systems the
models of plants can be run to any size, and still retain the same morphology
or shape. L-systems were originally used to model the development of plants,
however they have also been used for producing neural networks [5], protein
structure prediction [8] and object design [16].

These results, both in natural and artificial contexts, give us some confi-
dence that if we wish to produce designs with a large, and potentially chang-
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ing, number of components, we should be able to utilize the developmental
approach. For example, if we wish to build a control system for a large plant,
such as a power station, the design should yield a stable, fail-safe control sys-
tem. As with all mechanical and electrical systems, faults develop over time.
It would be beneficial for the system to cope with component failure, and
the system should be able to maintain its function in the event that a sensor
fails. As the needs of the plant change, the system may be required to grow to
accommodate new features, perhaps a boiler would be added with new sen-
sors, actuators and terminals; could we use the principles of developmental
systems to allow the control system to automatically “grow” and adapt to
accommodate this? We may also find we have to deal with things that are
very biological – lag in signals, different rates of signal firing, different sensor
types. We therefore have to accommodate two types of change, one in the
physical structure and another in the amount and quality of information in
the system. By taking inspiration from the plasticity of biological systems, we
may be able to produce systems that can handle such changes effectively – a
task that is difficult for traditional approaches.

9.3.3 Robustness

Biological systems are remarkably tolerant to failure in individual components,
and this is clearly a desirable attribute for engineered systems. The ability to
regenerate lost or damaged limbs, tissues or organs is common in animals —
although the abilities vary. Some animals, such as newts have the ability to
re-grow entire limbs. Humans cannot regenerate limbs, however they can re-
grow ribs and fingertips. The liver is also able to regenerate, and the skin is
constantly being replaced.

The processes involved in development and regeneration are related. For
example, during the early development of a fetus it is possible for it to fully
recover from a deep cut. However, later during development the regrowth is
not as effective and the fetus becomes scarred. The self-repair of the newt
involves a layer of cells growing over the injured stump, which revert to stem
cells. These stem cells, like those in the developing embryo, can become any
cell type and allow the missing limb to re-develop.

Gerhart and Kirschner [11] describe four properties of cells that lead to
developmental flexibility: (i) The destruction of a small number of cells can
be tolerated, as there is enough redundancy that others in the group can
replace it. (ii) As all the cells in a group perform the same action, their
arrangement does not matter. (iii) Moving cells from one group to another
equivalent group is possible, as the cells can adapt to the local stimuli. (iv)
Finally, if an organizer, such as the bicoid gene described in section 9.2, is
moved then the cells respond to their new distance from the organizer.

Which of these features are relevant and appropriate to implement in ar-
tificial development? In conventional engineering, redundancy is the normal
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approach to implement fault tolerance and robustness. Although natural sys-
tems do have redundancy, for example the duplication of entire organs such
as eyes and lungs, they also have the ability re-grow anything from missing
cells to entire limbs. Current hardware technology does not allow a similar
feat.

However, perhaps we can look forward to the time when nanobots will
give hardware this ability. The application of developmental systems in pat-
tern formation for such systems is obvious — nanobots will have limited com-
putational and sensing abilities — much like real cells. Hence, this type of
approach could be applicable in these scenarios.

Bentley shows that inherently fault tolerant computer programs can be
evolved, i.e. one can damage bits of the code, and its behavior will degrade
gracefully [3]. As the author notes, it is difficult to test if development gives an
advantage in this case. The developmental program is longer, and hence may
be more susceptible to faults (for example from faulty memory) — however,
when the developmental program is corrupted, behavior degrades gracefully.
The developmental program also required more computation to execute, in
terms of the simulation of growing the artificial organism. Is this trade-off
ultimately worth it? Bentley believes that the fragility of the solutions may
be caused by the “conventional (brittle) nature of the programming language,
compiler and hardware”, and hence we may have to think differently about
the methods of implementing these computational systems. For example, if
we were to apply the cellular computing metaphor to hardware then so far
all attempts have required vast amounts of hardware relative to the size of
the problem being solved – and far in excess of what would be required from
traditional n-module redundancy. Perhaps one could get evolution to find
solutions that are more than the sum of their parts, which would gives us
back the advantage? Such a system may allow us to evolve circuits with high
component counts, that also have intrinsic fault tolerance – a task not yet
achieved with a purely evolutionary approach.

9.4 Evolvability and search spaces

Artificial developmental systems are an example of indirect genotype-to-
phenotype mapping. In development, genotypes are typically shorter than the
phenotypes they represent, which means that development can be viewed as
a decompression algorithm. This changes the way in which evolution tackles
the search space.

For some encodings, the genotype may only be able to map to a limited
part of the search space, as it may be the case that the number of states
potentially represented by a short genotype is lower than the number of states
in the phenotype space. For such systems, parts of the phenotype space are
ignored, which can potentially benefit evolution, although care needs to be
taken to ensure that potential solutions can be accessed.



208 Simon Harding, Wolfgang Banzhaf

Fig. 9.2. Direct encoding, (a), only tests the search space at a single point specified
by the genotype (shown as a star within the search space). A developmental encoding
(b) can travel through the search space when developing. A stochastic developmental
encoding (c) could take this further, and search a large area of the space, but still
be the result of a single genotype.

A stochastic genotype-phenotype mapping could be viewed as a lossy de-
compression algorithm. The benefit here is that it enables sampling from a
greater region of the phenotype space than a deterministic mapping. Natu-
ral systems are often subject to high levels of noise coming from a variety of
sources, from thermal noise at a small scale to unpredictable external factors.
Natural evolution has found mechanisms to cope with such noise, however in
artificial systems we tend to avoid this form of stochastic behavior. Artificial
evolution [30, 20, 14] shows that algorithms are not only capable of operating
in such situations, but actually benefit from the presence of noise. Artificial
chemistries [1] and esoteric programming languages such as “Whenever”, ex-
ecute program instructions in random orders - yet are still able to implement
a desired computation.

One potentially undesirable feature of stochastic mapping is that for fitness
evaluation each individual will need to be tested a number of times to ensure
that the fitness is an accurate sample of the phenotype space that the genotype
maps to. Another consequence is that it can no longer be guaranteed that a
particular genotype will produce a particular phenotype, which suggests that
such approaches would be most useful where a phenotype still adequately
performs even if it is imperfect. On the other hand, the degree of accuracy can
be graded by the amount of computational power invested into the mapping.

In a typical setting artificial development mimics the cellular structure
used by nature, where cellular modules cooperate to perform a particular
task. This approach has implications for the types of problems that we can
attempt to solve, as it may be that some problems are not easily mapped onto
this format. Indeed, human designers have difficulties in implementing such
systems, and this is particularly evident in programming parallel systems, or
indeed in defining rules for cellular automata. Miller reports that evolving the
developmental French Flags is hard - with very few runs being successful [21].
It is still unclear whether developmental systems are easier to evolve than
non-developmental systems. Although the genotype may be shorter - and
hence fewer variables have to be manipulated, development can be expected to
distort the fitness landscape. For example, in [15], the evolvability of a simple
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developmental encoding was investigated, and it was found that evolution was
less effective at finding solutions using development than with direct encoding.

Roggen and Federici compared evolving direct and developmental map-
pings for the task of producing specific two dimensional patterns of various
sizes (the Norwegian Flag and a pattern produced by Wolfram’s 1D CA rule
90) [27]. They showed in both cases that, as the pixel dimensions of the pat-
terns increased, the developmental methods outperformed the direct methods.
It is noteworthy that performance disparity was much more marked for the
relatively regular Norwegian flag pattern than for pattern generated by a
1D cellular automata. Hornby and Pollack evolved context free L-systems to
define three dimensional objects (table designs) [16]. They found that their
generative system could produce designs with higher fitness faster than direct
methods. They point out that generative or developmental systems will scale
better than direct methods when modularity is present. In furniture design,
for instance, if there is a module that is responsible for producing a table leg,
evolution only needs to alter and perfect one module rather than having to
independently adjust an arbitrary number of independent table leg producing
coding regions. A number of genotype-phenotype mappings on a problem of
creating a tessellating tile pattern were examined in [4]. The authors found
that an indirect developmental mapping (that they referred to as an implicit
embryogeny) could evolve tiling patterns much more quickly than a variety
of other representations (including direct) and further, that they could be
subsequently grown into much larger sized patterns.

One drawback that they reported was that implicit embryogeny tended to
produce the same types of pattern (i.e. of relatively low complexity). As we
will see later our results support this finding. In these applications, it appears
that development is satisfactory for low complexity problems, where there are
many regularities - possibly regardless of scale. Like direct encodings, their
behavior does deteriorate as the phenotype scales. One can speculate that this
is due to the decrease in the genotype-phenotype correlation with an increase
in complexity of the phenotype, which in turn reduces evolvability, as Lehre
and Haddow found [18].

Heritable information can also be passed on through mechanisms other
than the DNA, and this will affect evolvability and the developmental pro-
cesses. Such information is the subject of the field of Epigenetics [25]. It
includes the maternal influences described earlier and modifications to the
genome caused by the mother’s interaction with the environment. It appears
that in addition to the standard base pair encoding in DNA, the genome also
carries another code, the epigenetic code, attached to DNA, and that infor-
mation provided by this code affects the expression of certain genes. Heritable
epigenetic information alters the packing density of the DNA, changing the
likelihood of genes being expressed. For example, research comparing the de-
velopment of twins, shows that epigenetic codes may be more sensitive to
environmental influences than DNA [25], where it is reported that just by
making changes to the diet of a pregnant mouse, the coat color of pups can
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be changed. The role of epigenetics in nature is still controversial, but there
are a growing number of examples demonstrating how the environment alters
gene expression.

In addition to the effects on development, epigenetics also may affect the
evolvability of a species, as epigenetic information is somewhat heritable. Roe-
mer et al. showed that manipulations of epigenetic information in mice were
passed down to offspring [26], and comment that “If epigenetic inheritance
indeed exists, what is its evolutionary significance? The extent of its effects
will depend on the number of genetic loci in the genome that can be modified
epigenetically, and on the stability of the modifications. Whether ‘epimuta-
tions’ have any adaptive significance also remains to be established. It should
be emphasized that this type of inheritance is rooted firmly in Darwinian se-
lection, with selection possibly both for the modified locus and for the genes
that control epigenetic modifications.” The use of maternal effects has been
demonstrated in developmental neural networks. Matos et al. [19] found that
the use of the maternal genotype decreased evolvability. They speculate that
this may be due to lag from evolutionary momentum. In a second experi-
ment, they looked at how placental interaction with the mother affected the
evolvability of the neural networks. Here they found improvements over a
standard developmental approach. It is clear that maternal influences shape
developmental behavior, and developing suitable analogies may help artificial
development.

9.5 The role of physics

Development in the real world is not just the product of genes. There are
interactions with the environment, and in particular the limitations of bio-
logical chemistry and physics constrain what biological processes can do. It
is likely that primitive life forms relied more on the properties of matter,
such as viscoelasticity and chemical/mechanical excitation, rather than on
gene expression. Forgacs and Newman argue that such physical properties
are a “rough sort development”, and that we should not expect either genes
or physics to be sufficient on their own [10]. Earlier we discussed that the
shapes of forming organs are the result of a small number of processes. These
basic processes are determined by the physical properties of the cell namely
adhesion, diffusion and viscoelasticity — which, incidentally, are also found
in non-living systems and are not under any form of genetic control.

Early multicellular life consisted of cell aggregates. These cell aggregates
would have the ability to self-organize into patterns, based on the chemical ac-
tivity of each cell. Essentially, a cell aggregate would be an excitable medium.
The primary role for cell adhesion would be for tissue formation. Due to their
chemistries, biological cells have different rates of cell adhesion, which leads
to an interesting property during early stages of development. Mature tissues
have strong, long-lived links between the cells. Cell adhesion also allows for
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ions and small molecules to pass between neighboring cells – without allowing
other ions or molecules from the outside to get in.

During early development, however, cells are not joined in this way, but
move easily as if in a liquid. This, combined with differential adhesion, forces
the cells to become sorted as they move. Furthermore, some cells have adhesive
polarity, which causes certain patterns to be formed, since the cells wish to
reorganize themselves into a stable, low energy state. A striking example is
when a mixture of cells (in this instance from the endodermal and ectodermal
germ layers) from an organism called a hydra, are mixed together (producing
a random pattern): They will sort themselves into the precise arrangement
found in the original organism [29].

When cells evolved to have a variety of types, each with different adhesive
properties, these effects of cell sorting occurred and new spatial patterns were
constructed. As those properties were coupled with the evolution of polarized
cells, the cells could form lumens or elastic sheets. In artificial development,
we can use the properties of cell adhesion to generate some target patterns
without having to evolve a gene regulatory network (or equivalent). To illus-
trate this, we present in the following section a method for evolving patterns,
including the familiar French flag, using differential cell adhesion.

We would expect that using physical effects such as cell sorting would
have limited utility on its own. However, just like in nature, a combination of
inherent physical effects and control by a genotype might yield a high degree
of sophistication. One advantage of a strong bias toward the physical control
of development, compared to the genetic control, is that new cell formations
can be achieved through minute genetic change. This may be very important
for search algorithms, as one can explore the search space in unusual ways.
In effect, a combination of both physics and genetics, and different ratios
of the influence between these two factors may give a search heuristic that
contains two very different algorithmic aspects. Perhaps as in nature, the
balance between the responsibilities of each will be automatically optimized
by evolution.

In artificial development the constraints of reality provided by physics
do not exist. That means that their benefits, namely to guide and constrain
search, are lacking. Because it appears that physics is useful in natural sys-
tems, one should perhaps find an analogous artificial physics for artificial
development. At present, it is unclear what the artificial equivalents of cell
adhesion, surface tension, gravity and diffusion are. It is also unclear what the
relationship would be between developmental physics and the physics of the
hardware on which the artificial developmental system is implemented. Work
in evolvable hardware has shown that evolution is able to make use of the
physical properties of its environment, and perhaps we can expect the same
from development.
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Fig. 9.3. Target French flag pattern.

9.6 Results from a Cell Sorting Experiment

Our model for cell growth consists of a grid whose points can either hold
a cell or be empty. There are three different cell types (to map to the red,
white and blue fields of the flags) and each of them has its own adhesive
properties – to be determined by evolution. To simulate the flow of cells, we
employ a simple mechanism whereby cells that wish to move can jump into
a neighboring empty cell, or swap places with an existing neighboring cell.
When the simulation is run, a cell is picked and a calculation is performed
to see whether the entropy of the cell would drop if it were to swap with
any of its neighboring cells, as described in [10, chapter 4]. The energy of a
particular cell is calculated as the sum of the differences between the adhesion
coefficients of the center cell and its neighbors. If a suitable swap is found,
then cells swap position. This is repeated a number of times; the number of
cell swaps allowed is determined by evolution. We also allow the cells to split,
in order for the artificial embryo to grow. If there is an empty neighboring
cell, then a cell can divide into this gap and take on the same cell type as its
parent. The number of times cells are allowed to split is also determined by
evolution.

For these experiments we tried two different approaches to the evolutionary
system. In the first, we use two different chromosomes. In one, the chromosome
specifies the cell adhesion properties of all cell types, the maximum number
of swaps allowed and the maximum number of times cells are allowed to
split. The other chromosome type contains a list of cells and their positions,
in addition to the above properties. This list is used to define the starting
configuration of the developing embryo. These initial cell positions may be
analogous to the maternal influences described in section 9.2.

We also investigate the behavior without the evolved starting positions
but with a scaled down version of the target, defined by hand. Here only the
adhesion coefficients need to be evolved.

Adhesion coefficients are represented by floating point numbers. The cell
positions are stored as a variable-length list of coordinates and cell types. In
this model we ignore the possibility of cell polarization. Integers are used to
store the number of iterations the simulation runs, and how many cell divisions
are possible.
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Fig. 9.4. Target cell cluster

Fig. 9.5. Example of developing cell cluster, where the cell sorting moves the darker
cells to the middle of the cell mass.

Fig. 9.6. A second example of a developing cell cluster. Again a central dark mass
is formed, but here the outer cells produce a spaced pattern.

The fitness function determining the success of a solution counts the num-
ber of cells in resultant arrangements that were the same as in the target.

A basic evolutionary algorithm was used, consisting of a population of 50
individuals with tournament selection and elitism. In addition to mutation,
we employ a basic two-point crossover on the genotype. Evolution was allowed
to run for 5000 generations.

For these experiments, the target pattern was a cell cluster surrounded by
an outer cell layer. Figure 9.4 shows the target image, which has similar form
to some biological formations such as retinas ([10, page 93]).

Figures 9.5 and 9.6 shows two examples of evolved cell clusters, here evo-
lution was allowed to determine the starting configuration for the cells (top
left frame of each sequence). The behavior is similar to that created when the
initial target pattern was not specified by the chromosome, such as in runs
illustrated in the first ten frames of figure 9.7.
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Fig. 9.7. Running the cell sorting beyond the period specified by evolution results in
stable patterns. Here the first ten frames are from the period found during evolution
to produce maturity. The following frames show the effect of running the simulation
for additional time.

Figure 9.7 shows the effect of running a simulation for twice the period of
time specified by evolution. The first 10 frames show the sequence that was
used in fitness evaluation, and the following frames show what happens after
the embryo has reached “maturity”. We see that the general shape remains
consistent, and that the center of the cell continues to adjust until it finds a
point of minimum energy and stabilizes.

As in nature, embryos undergoing development are able to repair damage
to some extent. Figure 9.8 shows the same developing embryo as figure 9.7,
but this time the embryo is damaged by removing a band of cells. The embryo
remains disrupted, however it starts to reform into the target pattern. This
ability was not selected for during evolution, and is the result of the physics of
development being used for this secondary purpose. Differential cell adhesion
is not only responsible for sorting the cells into groups but also for bringing
different cell clusters together. This is likely to be one of the mechanisms used
for repair in the developing organism.

Other shapes can be produced by evolving the starting configurations,
and allowing cell growth and cell sorting to finalize the pattern. For example,
figure 9.9 shows an evolved French flag. In contrast to the previous French flag
patterns discussed here, this one did not require the evolution of a program
to control the behavior of the cells.

The final example is a complicated pattern, based on the types of behavior
seen during this artificial development. Figure 9.10 shows a checkerboard in
the shape of a triangle, attached to a basic two-color “flag”. The purpose of
these shapes is to demonstrate that we can evolve a variety of target patterns
that have rounded shapes, solid layered masses, shapes containing patterns of
empty space and regular structures with sharp edges. In nature there are a
limited number of forms that cell groups can form, and these basic patterns
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Fig. 9.8. An example of the regrowth of a damaged artificial embryo

Fig. 9.9. Two examples of a French Flag produced by cell sorting.

are used as building blocks for organs. Without differential cell adhesion we
found it impossible to get checkerboard patterns to evolve. The nearest that
could be obtained were three groups of cells with a large amount of mixing.
This demonstrates that cell movement can be a useful and important part of
developmental systems.

Figure 9.11 shows an interesting result observed during testing of the simu-
lation software. Here, each cell group has slightly different cell adhesion prop-
erties and the initial state is a randomized cell cluster. However, without any
guidance from evolution, a rough French flag pattern is produced. As in na-
ture, certain patterns are perhaps an inevitable consequence of the physical
properties of the cells that make them. If this is true, it is important to un-
derstand to what extent the patterns are restricted by biological development
and to draw conclusions for artificial development.
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Fig. 9.10. Target checker board and flag, and an example of a developing embryo
that forms this pattern.

Fig. 9.11. French flag emerging because of differential cell adhesion
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9.7 Conclusions

Developmental systems may prove to be a very useful technique in computer
science. The field is, however, still in its infancy, and it is difficult to see how
the developmental analogy can be applied to many of the typical problems
in computer science. Specifically, the challenge is to map development into a
computational domain. The applications described here have demonstrated its
utility in producing patterns, whether as abstract images or as topographies
for neural networks, but transforming these preliminary ideas into a more
generalized and practical computational system remains to be done. Downing
argues that this is “largely because embryogenesis evolved for the purpose
of synthesizing 3-dimensional structure from a linear code, not for growing
Universal Turing Machines” [6], and that while we can map problems onto a
developmental framework, it is unclear whether this is an inherently suitable
approach. Despite these issues, development has many features that are at-
tractive in artificial systems — and if we can get these ideas to work, we will
have another powerful, bio-inspired technique to apply.
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Summary. In this chapter a self-organized worker helper system is described, which
is part of an abstract Organic Computing system (OC system). It consists of nor-
mal worker components and helper components, and the workers need some service
from time to time in order to continue with their normal work. The service is done
by the helpers, which have reconfigurable hardware to perform the different service
tasks. The speed of service for a certain task depends on the amount of resources
configured for this task. Strategies are presented that can be used by the helpers to
decide whether to accept a service task and how to reconfigure themselves. It is also
described how the worker helper system can be organized without global knowledge
about the type of service requests and the set of available helper components. In or-
der to obtain a decentralized mechanism and to make it suitable for the paradigm of
OC a fully decentralized and dynamic clustering algorithm has been combined with
a self-organized task allocation system. Empirical results show that the described
worker helper system can adapt to dynamic situations with changing probabilities
for service, and that decentralized clustering is able to reduce the reconfiguration
cost significantly.

Key words: Task allocation, clustering, decentralized algorithms, reconfigurable
hardware, service tasks

10.1 Introduction

Intelligent components form an essential part of nearly all modern technical
systems, no matter whether they are used in fabrication sites, for transporta-
tion, for communication or in the household. The development of intelligent
components that can communicate with each other to exchange data, to coor-
dinate their actions, or to make common control decisions has led to systems
that become increasingly autonomous. Ideally, these systems can decide them-
selves about which tasks have to be executed next and what management tasks
are necessary.

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,
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Organic computing (e.g., [3, 10, 11]) is a new field of computer science
with the aim to design and understand computing systems with so-called
self-x properties, e.g., self-configurable, self-optimizing, self-healing, and self-
servicing systems. One aim of Organic Computing is to use principles of self-
organization in order to obtain such systems. An important source of inspira-
tion for OC are the principles of self-organization found in natural systems.
Examples for such principles are the task selection principle of social insects
or the principles used by the immune system to protect an organism from
infection by pathogens. Computing systems with self-x properties following
such design principles are called Organic Computing systems (OC systems).

Since am OC system should be highly self-manageable and will typically
consist of many autonomous components it is necessary that the system itself
provides various types of service tasks for its components. In this chapter we
describe how such a system can be designed, not by describing a system for a
particular application but by focusing on an abstract model of an OC system
to explain general principles of self-organization that can be used to execute
the service tasks efficiently. The contents of this chapter are based on work
(see [8, 9]) done in the project “Organization and Control of Self-Organizing
Systems in Technical Compounds”, which is part of the DFG priority program
on Organic Computing.

In the model OC system it is assumed that the service tasks are executed
by special helper components. The other components of the OC system that do
the “normal” work are called worker components. To provide enough flexibility
for an OC system that can adapt to the needs of the user or the environment
it is further assumed that the service tasks are executed on reconfigurable
hardware. Reconfigurable hardware (for example Field Programmable Gate
Arrays (FPGAs)) can adapt to a different tasks so that they can be executed
more efficiently.

In the first part of this paper we consider strategies for reconfiguring
the helper components and for distributing the service requests. To fit the
paradigm of OC central control mechanisms have to be avoided in the design
of the system. Instead each helper decides autonomously whether to execute
a service request from a worker and how to reconfigure itself. The considered
strategies will be evaluated under different assumptions about the time needed
for the execution of a service task. This time depends on the configuration of
the corresponding helper, the time necessary for reconfiguration of a helper
and the time needed for communication between a worker and a helper. Dif-
ferent strategies for reconfiguration can lead to different overall efficiencies of
the system. The reason is that spending more time for reconfiguration can
lead to helpers which are better adapted for the service request and therefore
can execute the corresponding service tasks faster. Hence, there is a trade-off
between the amounts of time spent for reconfiguration and for execution of
the service tasks.

Since the focus of the first part of this chapter is on the reconfiguration
strategies and the request acceptance strategies it is assumed that the service
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requests are already classified into different types. The type of a service re-
quest determines how the different parts of the helper hardware have to be
reconfigured so that the helper is able to execute the corresponding service
task. It is also assumed that a service request is always sent to a randomly
chosen helper. Both assumptions are dismissed in the second part of the chap-
ter, where we study how to organize the worker helper system without global
knowledge about the relative number of service requests with different types of
hardware requirements for the helpers. In particular, we describe a decentral-
ized system that classifies the service tasks. We also present strategies for the
helpers how to specialize to certain types of service tasks. A helper should not
satisfy just any service request because it might need much reconfiguration
before it can start performing a particular service task. When reconfiguration
costs are high this would lead to inefficient execution of service tasks. On the
other hand, due to the lack of a global view of the system, the helper can not
just chose only service tasks that are perfectly suitable for it and can be done
with a small amount of reconfiguration. When the helpers are too selective
some service tasks might never been taken by any helper, when they are not
selective enough their work becomes inefficient.

Some strategies for self-organization described in this chapter are inspired
by the principles of social insects to organize the work within a colony. The
service request acceptance strategy of the helpers is inspired by stimulus-
threshold models that are used by biologists to explain the self-organized
labor division in social insect colonies (see, e.g., [1, 2, 12]). In these models
each individual has a personal threshold value for each task, which determines
the its preference to work on that task. In addition, each task has a stimulus
value, which determines how necessary it is that individuals work on it. The
probability of an individual working on a task depends on the ratio of its
threshold value for the task and the stimulus value of the task. The lower the
threshold value and the higher the stimulus value the more likely the individ-
ual will work on the task. In this study we consider a basic scenario where
the workers might need only two different types of service. Different scenarios
with static or dynamically changing composition of the service tasks are con-
sidered. We compare the self-organized task allocation scheme with a fixed
allocation scheme where helpers accept any request and are reconfigured to
perform all service tasks equally fast. The method used to cluster the service
requests is based on decentralized algorithms proposed in [6, 7]. These algo-
rithms are inspired by an approach for ant clustering based on the chemical
recognition system of ants proposed in [4, 5]. In this approach the objects to
be clustered are considered artificial ants. Then an artificial odor is used that
is learned by the artificial ants and represents the odor of their nest (i.e., their
cluster).

The chapter is organized as follows. In the next section 10.2 we introduce
our model for the OC worker-helper system. The reconfiguration strategies
and the task allocation scheme are presented in section 10.3. Empirical results
are presented in section 10.4. The decentralized service task clustering and
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Helper I

Helper II Helper II

execution

reconfiguration

Fig. 10.1. A typical scenario in the worker-helper system: a worker has a service
request; the first helper contacted denies the request, because too few resources are
configured for the task type; the second helper contacted accepts the task, increases
the number of resources for the task type by reconfiguration, and executes the service
task.

allocation scheme is described in section 10.5. Corresponding empirical results
are described in section 10.6, and conclusions are given in section 10.7.

10.2 Model of the computing system

We now introduce an abstract model of an OC system, which is the basis
of the investigations of the first part of this chapter. The computing system
has two types of components or members, ordinary members called workers
and supporting members called helpers. Let m be the number of workers
and H1, . . . , Hn be the n helpers. Each helper has reconfigurable hardware
(e.g., a Field Programmable Gate Array (FPGA)), on which it performs the
service tasks. The hardware consists of q slices, which can be reconfigured
independently from each other (see figure 10.1 for an example). Each slice is
always configured to work for only one type of tasks (a total of two types of
tasks is assumed here). Different slices can be configured for different types
of tasks. A reconfiguration operation changes the type of task that can be
executed on the slice. During reconfiguration a helper can reconfigure any
number ≤ q of slices. The time to reconfigure all slices of a helper is tr > 0
and the time to reconfigure k slices is (tr/q) · k.

Each helper can work on at most one task per time step. The time it
takes to finish a task depends on the number of slices configured for the
corresponding task type. A helper H with a proportion of ≥ 1/2 of its slices
configured for tasks of type i is called specialized for tasks of type i. Let s(H) =
i if H is specialized to tasks of type i, i ∈ {1, 2}. H is fully specialized for tasks
of type i when all slices are reconfigured for this type of tasks. The degree of
specialization of a helper is the relative number of slices that are configured for
the type of tasks the helper is specialized to. Let sj , j ∈ {1, . . . , n} denote the
degree of specialization of helper Hj . Let sij , i ∈ {1, 2}, j ∈ {1, . . . , n} denote
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the relative number of slices that helper Hj has configured for task type i. It
is assumed that the execution time of a task is te · q/k, where te > 0 is the
execution time of a task on a fully specialized helper and k is the number of
slices working for the task.

At each time step a worker needs servicing (of either type 1 or type 2)
with some probability (called request rate) before it can continue its normal
work. The relative request rate pi ≥ 0 for task type i is the probability that a
service request is of type i. A worker that needs servicing of type i contacts a
randomly chosen helper and requests a service task of type i ∈ {1, 2}. If the
request is granted the service task is executed by the helper and the worker
can continue its normal work. If the request is not granted the worker contacts
another (randomly chosen) helper. The first request that a worker does when
it needs service is called initial request the other requests are called repeated
requests. A contact (communication) between a helper and a worker takes the
time tc ≥ 0.

10.3 Task allocation and reconfiguration strategy

The task acceptance strategies and the reconfiguration strategies for the
helpers are presented in this section.

10.3.1 Task allocation

A helper always accepts a servicing request when it has at least q/2 of its slices
configured for the corresponding type of task. Otherwise, the probability that
it accepts the request depends on the personal threshold value for this type of
task, a stimulus value for the task, the degree of specialization for this type
of task, and the relative request rate. The stimulus value for a type of task
is the number of tasks of this type minus the number of tasks of the other
type counting all tasks that are actually requested by the workers. Let Tij ,
i ∈ {1, 2}, j ∈ {1, . . . , n} denote the threshold of helper Hj for task type i
and Si the stimulus of task i ∈ {1, 2}. The probability that helper Hj accepts
a request for task i is defined as

p(pi,sj ,Si,Tij) :=

⎧⎪⎨
⎪⎩

min{1, f(pi, sj) +
S2

i

S2
i + T 2

ij

} if s(Hj) �= i

1 else
(10.1)

where the function f(pi, sj) is defined in the following.
As described in the last section a helper always accepts a request when

it has at least half of its slices configured for the corresponding type of task.
Otherwise it accepts with a probability determined by (10.1). In the following
we define the function f used in that formula. We first consider the case of a
single helper H and a static situation, assuming that the helper can not be
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reconfigured and the service requests arrive at constant rates for both types
of task. The motivation for the definition of f is that H should reject so many
tasks of the type is it not specialized for that it has an optimal configuration
for the resulting relative number of both task that it executes. Therefore
the first aim is to determine the optimal percentage of slices that should be
configured for type 1 tasks (the rest of the slices is configured for tasks of type
2 for given fixed relative request rates pi, i ∈ {1, 2}. Let us assume that the
(normalized) run time for a task on a fully specialized helper is te = 1). Then
the run time for a task of type i on a helper Hj with a fraction of sij of its
slices configured for i is 1/sij . The expected run time for a task on a helper H
with specialization level s and s(H) = i is pi/s+(1−pi)/(1−s). For this case
it can easily be shown that the optimal percentage g(pi) of slices configured

for task type i is g(pi) = (pi −
√

pi − p2
i )/(2pi − 1).

To define function f in (10.1) we consider a situation where the stimulus
value for both tasks is zero. A helper H is considered which rejects tasks
for which it is not specialized according to (10.1). Without loss of generality
we assume that these tasks are of type 2 and s(H) = 1. Since S2 = 0 it
follows from (10.1) that tasks of type 2 are rejected with probability f(p1, s).
The function f is now determined such that the relative rates of tasks of
different types that are accepted by H are optimal for its current degree of
specialization s if this is possible. Otherwise, the relative number of requests
for task 2 is too low for an optimal degree of specialization. In this case all
tasks of type 2 are accepted. Observe, that p1/(p1 + (1 − p1)f(p1, s)) is the
relative rate of tasks of type 1 that are accepted by H. Then f(pi, s) can be
determined as follows. Set g(pi/(pi+(1−pi)f(pi, s)) = s Then it can be shown
that f(pi, s) = min{1, (pi/(1 − pi)) · (s − 1)2/s2}. Clearly, our definition of f
is heuristic and not necessarily optimal for a computing system with several
helpers.

10.3.2 Reconfiguration strategies

The reconfiguration strategy of a helper determines how many slices are re-
configured for an accepted task. Two basic reconfiguration strategies are com-
pared here. One of them, called 1-slice reconfiguration strategy,is that a helper
performing a service task always performs a reconfiguration operation so that
the number of slices that can execute the corresponding type of service tasks
is increased by one (unless all slices have already been configured for the cor-
responding type of task). A possible problem of the 1-slice strategy is that
the execution time of a service task is very long when only a few slices can
execute it. Therefore, a variant called 1+half-slice reconfiguration strategy is
considered, which differs in the case that a request for service is accepted
when less than half of the slices are configured for the corresponding type of
task. In this case the helper reconfigures itself so that half of the slices are
configured for the accepted type before execution starts.
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Fig. 10.2. Relative throughput of the self-organized computing system. compared
to the static S-system

10.4 Empirical results I

Empirical results for the worker-helper system are presented in this section.

10.4.1 Notation and parameters

Unless stated otherwise the following parameter values have been used for
the simulation s. Two types of tasks have been used with an execution time
ofte = 100 and a communication cost of tc = 10. The number of workers
was set to m = 100 and the number of helpers is n = 10. Each helper has
q = 10 slices and the time to reconfigure all slices of a helper is tr = 1000.
For all tasks and helpers the same threshold value T := Tij = 100, i ∈ 1, 2,
j ∈ {1, . . . , 10} was used. All results are averaged over 20 runs. The standard
reconfiguration method is the 1-slice strategy.

We call S-system a simple system where the degree of specialization is fixed
to sj = 0.5 for each helper Hj and f(x) := 1 (where f is the function in (10.1)).
Note, that the S-system, which has a fixed parameter sj for each helper Hj ,
performs no reconfiguration operations and therefore has no reconfiguration
cost.

10.4.2 Static environment

In order to compare the influence of different reconfiguration heuristics simu-
lations have been made with systems where the helpers use the 1-slice strategy
and also with systems where helpers use the 1+half-slice strategy for recon-
figuration.

First we show that the communication costs tc are an important parameter
for the behavior of the system. Their influence on the throughput is shown for
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Fig. 10.3. Relative sojourn times of the self-organized computing system compared
to the static S-system.

the case that the relative request rates are the same for both types of tasks.
Figure 10.2 compares the throughput of a system with self-organized task al-
location (using the 1-slice reconfiguration strategy) with the S-system. Shown
is the relative performance difference (i.e., throughput of the self-organizing
system divided by the throughput of the S-system) of both reconfiguration
strategies and service probabilities in {0.001, 0.0005, 0.0002, . . . , 0.000001} and
relative communication costs tc/te ∈ {0.01, 0.02, . . . , 20}. It can be seen that
for high service probabilities and small values of tc/te (< 1), the throughput
of the self-organized system is almost twice as high as for the S-system. Only
in the case of small service probabilities and very high relative communication
costs (tc/te ≥ 2) the throughput of the S-system is better. The reason is that
in the self-organized system the requests are rejected with some probability,
which implies additional communication costs. For small service probabili-
ties and relative communication costs of tc/te ≤ 10 the performance of both
systems is similar.

Figure 10.3 compares the sojourn times of the self-organized system and
the S-system. The performance of both systems differs significantly for most
parameter combinations. For small values of tc/te (< 1) the sojourn times
of the self-organized computing system are smaller for all tested probabili-
ties of service. Note that for a small service probability (e.g. p = 10−7) both
systems have the same sojourn times for tc/te = 1. The reason is as fol-
lows: in the self-organizing system a worker needs approximately 2 requests
to find a fully specialized helper, in the S-system all requests are accepted,
but need twice the time to execute the task. For tc/te ≈ 1 this behavior.
Their influence on the throughput is shown for the case that the relative
request rates are the same for both types of tasks. Figure 10.2 compares
the throughput of a system with self-organized task allocation (using the
1-slice reconfiguration strategy) with the S-system. Shown is the relative per-



10 Self-adaptive Worker-Helper Systems 229

formance difference (i.e., throughput of the self-organizing system divided
by the throughput of the S-system) of both reconfiguration strategies and
service probabilities in {0.001, 0.0005, 0.0002, . . . , 0.000001} and relative com-
munication costs tc/te ∈ {0.01, 0.02, . . . , 20}. It can be seen that for high
service probabilities and small values of tc/te (< 1), the throughput of the
self-organized system is almost twice as high as for the S-system. Only in the
case of small service probabilities and very high relative communication costs
(tc/te ≥ 2) the throughput of the S-system is better. The reason is that in the
self-organized system the requests are rejected with some probability, which
implies additional communication costs. For small service probabilities and
relative communication costs of tc/te ≤ 10 the performance of both systems
is similar.

Figure 10.3 compares the sojourn times of the self-organized system and
the S-system. The performance of both systems differs significantly for most
parameter combinations. For small values of tc/te (< 1) the sojourn times of
the self-organized computing system are smaller for all tested probabilities of
service. Note that for a small service probability (e.g. p = 10−7) both systems
have the same sojourn times for tc/te = 1. The reason is as follows: in the
self-organizing system a worker needs approximately 2 requests to find a fully
specialized helper, in the S-system all requests are accepted, but need twice
the time to execute the task. For tc/te ≈ 1 this behavior leads to the same
sojourn times (≈ 2 · tc + te in the self-organized system and ≈ tc + 2 · te for
the S-system). For large service probabilities the self-organizing system has
smaller sojourn times even for larger relative communication costs. The reason
is that in an overloaded system the sojourn times can be approximated by the
throughput. If the communication costs are not too large and most of the time
all helpers are executing tasks, the throughput is twice as high for the self-
organized system. For tc = 10 and 100 workers the expected value of workers
requesting service is 100/tc = 10 in each iteration. In the self-organized system
the chance of being rejected is approximately the same as the probability of
being rejected in the S-system since the throughput is only half as high. For
even larger communication costs most of the helpers are not executing tasks.
As the average number of requests is ≈ 2 in the self organizing system and
≥ 1 in the S-system, the sojourn times are twice as high in the self-organizing
system (the execution time can be neglected in that case). Only for high
service probabilities and very high relative communication costs (tc/te ≥ 2)
the sojourn of the S-system are better.

In the following an oscillation effect is demonstrated that is typical for
many self-organized systems. This effect occurs even in a very simple system
with only one helper that has only one slice. For the simulation the probability
that a worker needs service is 0.0001, reconfiguration costs are tr = 1000 and
each threshold parameter Tij was set to 1000. Figure 10.4 shows the number
k1 and k2 of actual requests for tasks of type 1 and 2, respectively, over the
number of iterations. It can be seen, that the values are oscillating. The reason
for this is that a helper specializes for one type of tasks – say type 1 – and then
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Fig. 10.5. Self-organized computing system: throughput for different thresholds T
and different degrees of dynamics a; te = 100, tr = 1000 and tc = 10, number of
slices: 10 (left), 100 (right).

rejects requests for the other type. When the number of (waiting) requests
for type 2 increases, the corresponding stimulus value increases as well. This
leads to an increased probability that the helper executes tasks of type 2. The
reconfiguration operations in this case have the effect that the helper becomes
specialized for tasks of type 2. Compared to a simple S-system with one helper
the figure shows that the actual number k1 + k2 of requests that are waiting
is smaller in the self-organized system. It should be noted that an oscillating
behavior can also occur for more complex systems that have more than one
helper.

10.4.3 Environment with changing service probabilities

To investigate the behavior of the self-organized task allocation scheme in dy-
namic situations the case of changing request rates has been investigated. In
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the experiments the two request rates of 0.0004 and 0.0016 were exchanged
every a/te ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000} time steps. Obviously
the threshold parameter T = Tij has a strong influence on the adaptiveness of
the computing systems. For a high value for T it is unlikely that the helpers
reconfigure themselves (comp. (10.1)). In the experiments threshold values
T ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 10000} were used. For each combi-
nation of a/te and T the throughput within 3000 · te time steps was measured.
Note, that a/te = 2000 is a situation where the request rate is changed only
once over the considered time interval. The reconfiguration time was set to
tr = 1000 and a communication time of tc = 10 was used in the experiments.

The experimental results for the self-organized service system are depicted
in figure 10.5 for reconfiguration times of tr/te = 10, tc/te = 0.1 and number of
slices of q = 10 and q = 100. The throughput of the self-organized system has
to be compared to the average throughput of 14109 that is achieved by the S-
system. For very large values of T the self-organized service system is not very
adaptive. In all tested cases the best performance is achieved for the extreme
values of a/te = 10 or a/te = 2000. The reason is that using a/te = 2000 does
not require adaptiveness. When a/te = 10 is used the arrival rates change
so often that the situation becomes similar to one where the probabilities for
both types of service are identical and fixed. Such a situation does not require
adaptiveness and hence a high value of T leads to good performance. The
worst throughput is achieved in situations with many slices and a small value
for T . In such situations it is likely that a helper excepts a request, even when
it has a small degree of specialization for the corresponding type of task. This
can lead to very long execution times for the tasks (recall that using only 1 out
of k slices for a task increases the execution time by a factor of k compared
to execution with full specialization).

Figure 10.6 compares the results of the standard self-organized system
(using the 1-slice reconfiguration strategy) with one using the 1+half-slice re-
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configuration strategy. The idea behind the 1+half-slice reconfiguration strat-
egy is to make the system more easily adaptive for changes of the relative
request rates for different types of tasks. It can be seen in the figure that for
10 slices the 1+half-slice reconfiguration strategy obtains a higher throughput
for higher threshold values (and not too small values of a, recall that a/te ≤ 30
leads to a situation similar to the one with constant service probabilities). For
100 slices (where higher adaptivity is even more important) the 1+half-slice
reconfiguration strategy is better than the 1-slice strategy. Only for situations
with very high threshold values T > 5000 and very small values of a/te ≤ 30
the standard reconfiguration strategy is better.

10.5 Decentralized service task clustering and allocation

So far in this chapter it was assumed that the workers choose a helper to
ask for service randomly. But in systems with decentralized organization the
problem occurs that the workers and helpers might be connected via a network
without directly knowing from each other. Another problem in OC systems
is that clustering of the service requests according to their type might not
be available beforehand, e.g., when there is no global knowledge about the
possible service tasks. Both problems are addressed in this second part of the
chapter. We show how to organize the worker-helper system in a decentralized
way so that the service requests of the workers that are executed by a helper
are suitable for it.

Clearly, helpers should not satisfy just any service request because they
need much reconfiguration before they can start performing a service task
not fitting to their current configuration. On the other hand, they do not
have a global view of the system and should not chose only service tasks
that are suitable for them and can be executed with a very small amount of
reconfiguration. When the helpers are too selective some service tasks might
never been taken by any helper.

It is assumed here that each worker includes information about the re-
quired helper configuration into its request for service. The approach taken in
this chapter is to use a decentralized clustering scheme to cluster the service
request packets sent through a network with respect to their hardware require-
ments for the helper. Each helper might then specialize to service requests of
one cluster. Since the hardware resources needed for the service tasks within
one cluster are similar this will lead to small reconfiguration costs. Several
problems and questions that emerge for such a system are addressed in the
following.

10.5.1 Task allocation

A combination of a decentralized clustering algorithm and a self-organized
task allocation system is used to organize a worker-helper mechanism via the



10 Self-adaptive Worker-Helper Systems 233

network of an OC computing system. The network consists of routers and
helper nodes. To each service request corresponds a service packet that is sent
into the network. The resource demands for the corresponding service tasks
are specified in the packet. The number of service packets created per time
step is called the (packet) arrival rate.

The problem is to execute as many service tasks as possible and also to
have small reconfiguration costs for the helpers. It is assumed now that for each
service request packet the number of helpers visited by the packet (number of
hops) is counted. If a packet is rejected by a helper this counter is increased
by one. If the counter of a packet exceeds a threshold value TTL (time to
live) the service request packet is dropped. The fraction of dropped packets
(in relation to all packets) is called the (packet) drop rate. The main idea is
to group the service tasks into clusters which have similar hardware resource
demands and to let the helpers specialize by allowing them to execute only
the service tasks from one of the clusters. Since all tasks in one cluster are
similar with respect to their resource demands, the reconfiguration costs for
the helpers of switching between these tasks are relatively small.

To group the service requests a decentralized clustering algorithm is
used. Each service request packet is characterized by a vector (vi, ci) where
ci ∈ {1, . . . , nc} is the cluster number and vi is a vector that describes the
hardware resources needed for the corresponding service task, i.e., the helper
configuration required to execute it.

The clustering algorithm is similar to the one from [6, 7]. In these papers
decentralized packet clustering algorithms in networks have been investigated
for static and dynamic situations (i.e., the data vectors used for the clustering
may change over time). The corresponding clustering problem – called De-
centralized Packet Clustering Problem (DPC) – is to find for a set of packets
P = {P1, P2, . . . , Pn} sent through the network a good clustering, i.e., a par-
titioning C = {C1, . . . , C|C|} of P. Each packet Pi ∈ P contains a data vector
vi that is used for the clustering. In the dynamic version called d-DPC the
data vector of a packet can change at every time step.

A successful yet simple algorithm to solve the DPC problem is d-DPClustzc

– simply called d-DPClust in the following. For this algorithm each packet
Pi = (vi, ci) has a data vector vi and a cluster number ci. Each router r
stores a vector of estimated centroids Zr = (z1

r , . . . , z|C|r ). When a packet Pi

arrives in a router the centroid estimation for cluster ci is modified according
to zci

r = (1−β)·zci
r +β ·vi, where β, 0 < β < 1 is a parameter of the algorithm.

Thus, β determines the share that the data vector vi has of the new centroid
estimation. Then, the new cluster number for packet Pi is determined by using
the distances of its data vector vi to the estimated centroids zj

r , j = 1, . . . , |C|
that are stored in the router. The packet is assigned to the cluster for which
this distance is minimal, i.e. ci = argminj ||vi − zj

r ||.
Each helper node in the network has an associated cluster number. If the

cluster number of a service request packet received by a helper is identical
to its cluster number, then the helper is reconfigured to satisfy the resource
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Fig. 10.7. Drop rate/reconfiguration cost trade-off for different scenarios; left col-
umn: dots on lines correspond to number of clusters nc ∈ {1, . . . , 10} (from left to
right); numbers at dots indicate number of clusters used; right column: dots on lines
correspond to arrival rates of {5, 10, . . . , 50} (from left to right) packets per simula-
tion step; numbers at dots indicate arrival rate; number of service request classes: 2
(top) and 4 (bottom).

demands specified in the packet. The service task is executed by the helper
and the packet is deleted (this is done within one simulation time step). If
the helper’s cluster number is different from the packet’s cluster number, the
helper might change its cluster number to the cluster number of the packet.
The parameter p determines the probability for this to happen. If the helper
does not change its cluster number to the cluster number of the arriving service
request, then the service packet is rejected and sent to another node in the
network. Note, that a service request is also rejected if the helper is already
executing another service request at the same time step.
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10.6 Empirical results II

For the test runs it is assumed that vi is a three dimensional vector, i.e.,
vi = (v1, v2, 1 − v1 − v2) ∈ [0, 1]3, v1 + v2 ≤ 1. If a service task with data
vector (v1, v2, 1 − v1 − v2) is executed by a helper, then this helper node has
to be reconfigured so that the fraction v1 (respectively v2 and 1 − v1 − v2)
of its slices is configured in mode 1 (respectively mode 2 and mode 3). If a
helper is configured according to (v1, v2, 1−v1−v2) and has to be reconfigured
according to (w1, w2, 1 − w1 − w2), then the costs of this reconfiguration are
max(|w1 − v1|, |w2 − v2|, |(1 − w2 − w1) − (1 − v2 − v1)|).

All service requests in the test runs are from up to four different classes.
Note, that a partitioning of the service requests that leads to small costs
is not given in advance, as packets have random cluster identity when they
are created. Within each class of service requests the individual requests are
chosen as follows. Let (c1

j , c
2
j , 1 − c1

j − c2
j ) be the center of request class j, j ∈

{1, 2, 3, 4}. Then for a new service request with configuration
request vector (v1

i , v2
i , 1− v1

i − v2
i ) the value v1

i (respectively v2
i ) is chosen

randomly from the interval [c1
j −0.1, c1

j +0.1] (respectively [c2
j −0.1, c2

j +0.1]).
Requests for which 1−v1

i −v2
i is not in the interval [0.9− c1

j − c2
j , 1.1− c1

j − c2
j ]

are discarded. The center of request class 1 is (1/3, 1/3, 1/3), the center of
classes 2 (resp. 3 and 4) are (2/3, 1/6, 1/6) (respectively (1/6, 2/3, 1/6) and
(1/6, 1/6, 2/3)). Unless stated otherwise in each simulation time step 50 pack-
ets with service requests were sent into the network. 50 helpers and 50 routers
were used. The probability p that a helper changes its cluster was set to 0.01
(unless stated otherwise). Parameter β, which influences the update of the
centroid estimation in a router was set to 0.1. If a centroid estimation has not
changed by the last 100 packets that arrived at a router, the new centroid es-
timation is set to the corresponding configuration of the next arriving packet.
Each result given in the following is averaged over 10 simulation runs, i.e.,
each pair of cost/drop values is an average calculated from 10 independent
simulations. Each simulation was performed over 10000 steps. The reconfigu-
ration costs given in the figures are the overall reconfiguration costs spent by
the helpers when executing the service requests divided by the number of all
service requests created during a simulation run.

10.6.1 Number of clusters

The drop rate of the service request packets and the reconfiguration costs
are investigated for test runs with different number of service request classes.
Using 2 request classes (classes 3 and 4), or 4 request classes (all classes) the
number nc of clusters used by the decentralized clustering algorithm has been
varied, with nc ∈ {1, 2, . . . , 10}. The results are depicted in the left column of
figure 10.7 when using TTL∈ {1, 5, 10, 50}. There is a clear trade-off between
the drop rate and the reconfiguration costs. When using a larger TTL value,
the drop rate is reduced significantly. The reduction of the reconfiguration
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costs for increasing number of clusters nc depends strongly on the number
of request classes. A sharp bend in the curves can be seen, as the algorithm
utilizes its adaptability. When nc is smaller than the number of request classes,
then some helpers have to execute service requests of more than one class. This
leads to relatively high reconfiguration costs as can be seen in figures 7(a)
and 7(c), where packets from 2 or 4 service request classes were put into
the network. For example, when 2 request classes and a TTL of 5 are used,
the costs are reduced from 0.28 when using nc = 1 to 0.07 when nc = 2
is used. A further increase of nc (larger than the number of service request
classes) reduces the costs only slightly. The small reduction results from the
fact that the service requests within one class vary slightly with respect to
their resource requirements. Therefore, the reconfiguration costs of the helpers
can be reduced slightly when the service requests of one class are split into
several clusters. The disadvantage is that the packet drop rate increases with
a higher number of clusters.

10.6.2 Work load

To compare simulations of the computing system with different work loads
different arrival rates of {1, 5, 10, 15, . . . , 50} have been used. The number
of clusters for the decentralized clustering algorithm was set to nc = 4 and
similar to the preceding subsection the number of service request classes was
2 and 4. The results are depicted in in the right column of figure 10.7.

Obviously, when using a very small (and unrealistic) value of TTL= 1
the drop rate of the packets is very high (always larger than 0.69). But this
value is interesting because it shows the average fraction of packets that are
not executed by a single helper. The small number of service requests that
are executed produce only small reconfiguration costs. When using a higher
TTL the drop rate goes down significantly, e.g., for TTL= 5 it is less than
0.3 in all cases. The increase in reconfiguration costs is relatively small in this
case (less than 0.13 when using 4 service request classes and an arrival rate
of 10). When the value of TTL is 50 nearly no packets are dropped in all the
investigated scenarios. Also the reconfiguration costs are small in this case
(always < 0.13).

10.6.3 Dynamically Adding and Removing Request Classes

To show the adaptability of the worker-helper system a dynamic scenario
was investigated where the set of service request classes for which there are
packets in the network changes. Service classes represented by packets in the
network are added and deleted during a simulation run. Starting with only
one request class (class 1) we successively add classes 2, 3, and 4 every 1000
simulation steps (i.e., packets of the corresponding classes are sent in the
network). After that classes 2,3, and 4 were deleted successively every 1000
steps. In figure 10.8 the results are depicted for nc ∈ {1, 2, 4} clusters. When
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Fig. 10.8. Reconfiguration costs (top) and drop rate of packets (bottom) shown over
a simulation run where service request classes are added successively (simulation
steps 2000, 3000, and 4000) and then removed (simulation steps 5000, 6000, and
7000); initially (steps 0-999) only one service request class is used; results are given
for nc ∈ {1, 2, 4}.

only one cluster is used each additional request class increases the cost sig-
nificantly, as the helper units have to be reconfigured for different service
request classes very often. When using nc = 4 the average reconfiguration
costs are much smaller. The additional reconfiguration costs that occur after
a new class has been added are due to the fact, that request classes have to
be partitioned with fewer clusters (or are not partitioned at all). This leads to
higher intra-class reconfiguration costs. These reconfiguration costs are much
smaller than the inter-class reconfiguration costs. Also the drop rate is always
very small for nc = 4. This result clearly shows the fast adaptive behavior of
the decentralized clustering component based on DPClust.

10.7 Conclusion

A self-organized worker-helper system as part of an abstract Organic Com-
puting system (OC system) has been described. The OC computing system
consists of normal worker components and helper components where the work-
ers need some service from time to time in order to continue with their normal
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work. The service is done by the helpers,, which have reconfigurable hardware
to perform different service tasks. The speed of service for a certain task de-
pends on the amount of resources configured for this task.

In the first part of this chapter different strategies have been studied that
can be used by the helpers to decide whether they should accept a service task
and how they should reconfigure themselves. These strategies are inspired by
stimulus-threshold systems used in the literature to explain task allocation
in social insects. Empirical results show, for example, that the system can
adapt to dynamic situations with changing probabilities of service. A potential
problem is that these system can show oscillating behavior.

In the second part of this chapter the problem of organizing the worker-
helper system without global knowledge about the type of service requests
and the set of available helper components is addressed. In order to obtain
a decentralized mechanism and to make it suitable for the paradigm of OC
a fully decentralized and dynamic clustering algorithm was combined with a
self-organized task allocation system. The clustering algorithm is performed
by the routers in the network and classifies the service requests packets that
are sent through the network with respect to their hardware resource re-
quirements (which determine the ideal configuration of the helpers when they
execute the service task). Empirical results of simulations have shown that the
proposed system has a strong adaptive behavior in static and dynamic sce-
narios and that decentralized clustering is able to reduce the reconfiguration
costs significantly.
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Summary. Networked embedded systems which operate in unattended areas with
rare maintenance often make use of redundant resources for guaranteeing reliable
service. In this paper, we will present novel concepts for dynamically partitioning
and assigning functionality to software as well as hardware reconfigurable resources
in a network. As a result, self-adaptive and self-healing systems emerge with a good
tradeoff between redundancy and reliability. The proposed concepts are embedded
in a three step approach, which 1.) reestablishes the functionality after a resource
defect, 2.) optimizes the binding of the running tasks and 3.) creates new replicas
of the tasks in the network. In this contribution, we will give an overview over
all three parts, but focus on the second step. For this second step, called dynamic
hardware/software partitioning, we will present algorithms, theoretical optimality
bounds for workload distributions as well as experimental results.

Key words: self-adaptive, self-healing, fault tolerance, reliability, networks, em-
bedded systems

11.1 Introduction

Networked embedded systems, such as automotive networks, sensor networks
or networks in the field of industrial control automation are organized in a de-
centralized manner due to several aspects. In particular, they are distributed
in order to monitor, analyze and control complex environments or installations
over a large area and for a long period. They have to fulfill different criteria
concerning fault tolerance and reliability as well as flexibility for application
areas which demand functionality to vary over runtime. Moreover, networked
embedded systems, such as sensor or automotive networks, are usually de-
ployed in unattended areas where administration tasks should be kept at a
minimum. For this reason, we will present novel concepts for self-healing and
self-adaptive systems which have to fulfill the following constraints:

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,

doi: 10.1007/978-3-540-77657-4 11, © Springer-Verlag Berlin Heidelberg 2008



242 Thilo Streichert, Christian Haubelt, Dirk Koch, Jürgen Teich

Distributed computation: Due to fault tolerance requirements, the algo-
rithms should run in a distributed manner at the computational nodes.

Local knowledge: Gathering of data to obtain global knowledge produces
communication overhead and results in additional power consumption.
Thus, it is preferable to apply algorithms which can take decisions only
with local or restricted knowledge.

Up to now, several approaches have been presented for self-healing systems
which handle transient, permanent or both kinds of faults simultaneously. In
order to handle transient faults, concepts with temporal redundancy or spa-
tial [8] have been proposed. By (re-)executing tasks on the same or different
computational network nodes, faults can be detected and repaired. In the case
of intermittent faults, N-modular redundancy [10] is able to detect and handle
such faults by voting mechanisms. Also hybrid approaches of spatial and tem-
poral redundancy exist and have been investigated throughout the last years.
The other category of faults, called permanent faults, can be easily handled
with three types of redundancy: a) N-modular redundancy, b) dynamic re-
dundancy with hot and cold spares, and c) a hybrid approach of the previous
two redundancy types.

While self-healing networked systems can handle defects and reestablish
functionality if a link or node defect occurs, self-adaptiveness aims at optimiz-
ing the system’s state to changing execution conditions or varying demands.
This property ranges from integrating new tasks in a distributed system to
algorithmic self-adaptation if, e.g., the quality of sensor values degrades. Es-
pecially this algorithmic integration of new tasks will be a matter of this
chapter, while the algorithmic self-adaptation will be future work. Due to the
separation of functionality and structure or network topology, respectively,
we a) allow for exchanging tasks with functional alternatives, b) enable the
replication of tasks in the case of node defects, and c) dynamically bind tasks
to resources in the network.

Binding tasks to computational nodes has been investigated in many re-
search fields. While the offline approach for hardware/software partitioning
has been considered, e.g., in [9, 12], an interesting online approach has been
presented by Vahid et al. Based on a platform consisting of reconfigurable
hardware and a CPU [13], a profiler extracts critical code regions, decompiles
them and synthesizes them to hardware. Achieving an average speedup of
2.6 [17] for different benchmarks, this approach to dynamic hardware/software
partitioning shows the potential of dynamically assigning tasks to software or
hardware resources. But unfortunately, no straightforward extension to recon-
figurable networks exists.

In the context of wireless sensor networks, the so-called facility location
problem has been investigated throughout the last years. It is defined as fol-
lows: Facilities may be placed on a set of locations in a network and each
facility produces a cost. Each task making use of the facility produces a cost
which depends on the number of hops from the task to the facility location.
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The objective is to minimize the cost depending on the placement of facil-
ities and the number of each kind of facility. Among many algorithms for
solving this problem, one distributed solution exists [14]. In another solution
for binding functionality to computational nodes [18], a spanning tree is con-
structed and all nodes propagate their abilities to the root node of the tree.
This root node decides on the binding of the functionality. This distribution
of functionality is self-organizing and self-stabilizing [4, 5].

The remainder of this contribution is organized as follows: In section 11.2,
we first define our model for a network. Then, in section 11.3, we present our
two step approach, which consists of a fast repair phase and an optimiza-
tion phase. We focus on online hardware/software partitioning for networked
hardware/software reconfigurable controller architectures and present two dis-
tributed algorithmic solutions, one for tasks without data dependencies and
one for tasks with data dependencies.

11.2 System model

Our system model is specified by a network model, which separates functional-
ity from the network architecture. The network architecture is represented by
a topology graph and the entire functionality of the network system is spec-
ified with so-called sensor-controller-actuator chains. The third component
of the network model is the set of mapping edges, which denote the binding
possibilities of the tasks onto the network nodes. We assume that the topol-
ogy graph consists of hardware/software reconfigurable nodes, e.g., FPGAs
together with a CPU. These nodes may integrate tasks implemented in soft-
ware or hardware at run-time. Additionally, these FPGA-based nodes contain
dedicated analog hardware for driving sensors and actuators which leads to a
certain heterogeneity in the network.

Exemplarily, figure 11.1 shows a network topology with four computational
nodes ni ∈ N , sensors si ∈ S, actuators ai ∈ A, and communication links
represented by the edges between the nodes ni. The sensors and actuators
are not connected to all nodes in the network, but only to some. Thus, the
methodologies presented in section 11.3 must be able to bind functionality
to a heterogeneous network structure. Similar to the network structure, the
functionality is modeled by the sensor-controller-actuator chain graph and
distinguishes between sensor tsi , controller tci and actuator tasks tai . These
tasks might be replicated to achieve fault tolerance and are called replicas
t
′{s,c,a}
i . A replica takes over the functionality of a task in case of a node

defect. This technique is called passive replication [1]. While sensor tasks
produce data which is processed by one or more controller tasks, actuator tasks
consume data entities. In figure 11.1, such a sensor-controller-actuator chain
is represented by the gray nodes, which are connected by edges representing
data dependencies. Note that the edges between the tasks ti and replicas t′i
are necessary for keeping the state of a replica consistent.
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Fig. 11.1. Functionality is modeled by so-called sensor-controller-actuator chains.
This functionality together with its replicas will be bound onto the nodes of the
topology graph. The set of mapping edges (not shown here) denotes the binding
possibilities.

Due to the heterogeneity caused by the sensors si and actuators ai in
the network topology, the binding of sensor tasks tsi and actuator tasks tai is
restricted. In particular, a sensor task tsi is only allowed to be bound onto a
node nj ∈ N if si is a predecessor of nj . In contrast, an actuator task tai is
only allowed to be bound onto a computational node nj if a corresponding
actuator node ai is a successor of nj . We assume that all controller tasks tci
may run on each computational node nj . Considering figure 11.1, sensor task
ts1 may be bound onto n1, but not onto n2. Analogously, sensor task ts2 can run
on n1 or n4. For the controller tasks tc3, t

c
4, no binding restrictions exist. Thus,

they are able to run on all network nodes (n1, n2, n3, n4). For binding the
actuator task ta5 , only the nodes n3 and n4 can be considered. The equivalent
binding restrictions exist for the replicas t

′{s,c,a}
i .

The system model can be formally described as follows:

Definition 1 (Network Model). The entire network model M(Gtg, Gsca)
consists of a topology graph Gtg and a set of sensor-controller-actuator chains
Gsca.

Definition 2 (Topology Graph). The topology graph Gtg(Stg, Ctg,
Atg, Etg) consists of sensor nodes si ∈ Stg, computational nodes ni ∈ N tg

and actuator nodes ai ∈ Atg. The edges etg
i ∈ Etg ⊆ Stg ×N tg ∪N tg ×N tg ∪

N tg × Atg represent the connections between the nodes.

The nodes of the topology graph can be defined as follows:

Definition 3 (Computational Node). A computational node nj ∈ N has
ports pi ∈ P with |P | = dj + 1 and dj is the degree of node nj. While the
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ports pi : i = 1 . . . dj are dedicated for communication between sensor, com-
putational or actuator nodes, the port p0 is dedicated for node-internal com-
munication.

For modeling the functionality, we define so-called sensor-controller-actuator
chains.

Definition 4 (Sensor-Controller-Actuator Chain). The sensor-control-
ler-actuator chain Gsca(T s, T c, T a, Esca) consists of sensor tsi ∈ T s, controller
tci ∈ T c and actuator tasks tai ∈ T a. The edges esca

i ∈ Esca ⊆ T s × T c ∪ T c ×
T c ∪ T c × T a represent the data dependencies between the tasks.

Edges and nodes can be annotated with different parameters, which need not
be part of the model but can be application-specific.

Definition 5 (Binding Restrictions). Binding restrictions are represented
by binary variables bi,j. Sensor tasks tsi ∈ T s may only be bound onto compu-
tational nodes nj ∈ N tg iff it has a sensor si ∈ Stg as a predecessor:

bi,j =

{
1 : if (si, nj) ∈ Etg

0 : else

Actuator tasks tai ∈ T a may only be bound onto computational nodes nj ∈ N tg

iff it has an actuator ai ∈ Atg as a successor:

bi,j =

{
1 : if (nj , ai) ∈ Etg

0 : else

Computational tasks tci ∈ T c may be bound onto all computational nodes nj ∈
N tg.

Note that sensor and actuator tasks may only run on certain nodes because
they access dedicated interfaces. Also, additional binding restrictions may
occur during the hardware/software partitioning process due to attributes
annotated to edges or nodes in the graphs Gtg and Gsca.

Definition 6 (Binding). The binding β is defined as a triple (t{s,c,a}
i , nj , k),

where k denotes the implementation style of a task t
{s,c,a}
i which is executed

by node nj and can be either hardware (H) or software (S).

11.3 Self-healing and self-adaptiveness in networks

In the context of self-adaptiveness, we aim at integrating new tasks into a run-
ning system. These tasks can be either platform-independent, i.e., executable
on each node in the network or they can be executable only on a subset of
all nodes in the network due to, e.g., I/O-interfaces or some inhomogeneity.
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While self-adaptiveness treats changes in the entire functionality of a net-
work in general, self-healing treats the problem of assuring that all currently
running functionality keeps running correctly after topology changes in the
network. All in all, the treatment of these changes have to happen in limited
time. Thus, we propose a two-step strategy consisting of a so-called fast repair
phase and an optimization phase (see figure 11.2). In case of a node or link
defect, the fast repair phase activates replicated tasks and reestablishes the
communication between the tasks. If new tasks arrive and need to be bound
onto nodes in the network, the same strategy as used for placing replicas is
applied. Then, communication between all tasks in the network is established
if it does not exist yet. Afterwards, in the optimization phase, the problem
of online hardware/software partitioning is solved with respect to different
objectives. When the hardware/software partitioning phase finishes, replicas
need to be placed in order to tolerate future defects.

In the following sections, we will focus on the online hardware/software
partitioning part of the optimization phase. We will present two different
algorithmic approaches for distributing the functionality between the nodes of
the network: one which neglects data dependencies between tasks with the goal
to balance the load between the nodes almost equally, and one which optimizes
the task binding while respecting also inter-task communication. Moreover, we
will show how newly arriving tasks and replicas will be bound onto network
nodes. The explanations are based on the formal model introduced in the
previous section.

11.3.1 Hardware/software balancing between reconfigurable
network nodes

Our overall approach to online hardware/software partitioning tries to find a
binding that optimizes the current binding β such that the work load on the
resources is equally balanced. This goal has been chosen because of two main
aspects:

• Latency, Rate, Average Response Time Beside the latency of a task or the
execution rate in case of a periodic task, the average response time is an
essential criterion for the quality of a schedule or a service. This average
response time denotes the time interval from the arrival of a task until its
completion.

• Overhead Due to task scheduling overhead occurs, which is caused by
gathering task and system information, context switching as well as deter-
mination of a task schedule.

Therefore, we define the following three objectives for online hard-
ware/software-partitioning:

1. Load balance in the network: With this objective, the load in the network
is balanced between the nodes, whereby hardware and software tasks are
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Fig. 11.2. In case of topology changes, the fast repair phase activates replicated
tasks and communication between two tasks will be reestablished. If a new task
arrives at one node in the network, the network decentrally tries to bind the task
to one of its network nodes. The optimization phase optimizes the binding of tasks
and creates new replicas.

treated separately. We try to minimize LBN = max(max(wS
i )−min(wS

i ),
max(wH

i )−min(wH
i )) where wS

i , wH
i denote the software or hardware load

of node ni, respectively (see definitions 7 and 8). In order to minimize the
risk of generating an overload on a node, this balance becomes important.

2. Hardware/software load balance: Here, we want to find a bi-partition such
that the load is balanced between the hardware and software resources, i.e.

we minimize HSB =
∣∣∣ |N |∑

i=1

wS
i −

|N |∑
i=1

wH
i

∣∣∣. With this strategy, a subsequent

iterative diffusion [3] will then create most likely task assignments that
enable a good load reserve on each active node which is important with
respect to achieve fast repair times in case of unknown future node or link
failures.

3. Minimization of total load: If this objective is not taken into account, so-
lutions would be preferred which are optimal regarding objective 1 and 2,
but cause unnecessary high computational load in the network. Therefore,

we minimize MTL =
|N |∑
i=1

(wS
i + wH

i )
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In order to minimize these three objectives simultaneously, we propose an
online hardware/software partitioning strategy which is separated into a dis-
tributed load balancing phase and a bi-partitioning phase. While the load
balancing step tries to find good solutions with respect to the first objective,
the local bi-partitioning step searches for good solutions concerning the second
and third objective.

The load of a task is defined in the objectives as follows:

Definition 7 (Software Load). The software workload wS
i (tcj) on node ni

of task tcj implemented in software is the relation of its execution time to its
period. This definition can be used for independent periodic and preemptable
tasks. Buttazzo and Stankovic [2] proposed a load definition where the load is
determined dynamically at runtime.

Definition 8 (Hardware Load). The hardware workload wH
i (tcj) on node ni

is defined as a fraction of required area and maximal available area, respectively
logic elements for FPGA implementations.

Definition 9 (Overall HW/SW Load). The overall hardware/software
load on a node ni in the network is the sum of all loads of tasks bound onto
this node, i.e., wS

i =
∑

(tc
j ,ni,S)∈β

wS
i (tcj).

In this paper, we assume constant workload demands, i.e., ∀i = 1...|N | :
wS(tcj) = wS

i (tcj).

11.3.1.1 Load balancing

For the purpose of balancing the load of nodes, we propose a diffusion-based
algorithm, which moves load entities along the edges in the network to other
nodes. Characteristic to a diffusion-based algorithm, introduced first by Cy-
benko [3], is that iteratively, each node is allowed to move load of any size
to each of its neighbors. Communication is only allowed along edges e ∈ E.
The quality of such an algorithm may be measured in terms of the number
of iterations required to achieve a balanced state and in terms of the total
load moved over the edges of the graph. Diffusion algorithms have received
a considerable amount of attention throughout the last couple of years, see,
e.g., [6].

Definition 10. A local iterative load balancing algorithm performs iterations
on the nodes of n ∈ N tg determining load exchanges between adjacent compu-
tational nodes. On each computational node ni ∈ N tg, the following iteration
is performed:

yk−1
e = α(wk−1

i − wk−1
j ) ∀e = {ni, nj} ∈ E (11.1)

xk
e = xk−1

e + yk−1
e ∀e = {ni, nj} ∈ E

wk
i = wk−1

i −
∑

e={ni,nj}∈E

yk−1
e
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In the above definition, we first calculate a real-valued load entity yk
e in each

iteration k which is sent via edge e. This amount of load is a fraction α of the
load difference of two adjacent nodes connected by edge e. xk

e is the amount
of load sent via edge e until iteration k, and wk

i is the load of node i after
the k-th iteration. If arbitrary real-valued load portions may be sent at each
iteration k, then it has been shown in [3] that the iteration converges to the
average load w̄. The number of iterations needed to obtain a certain error
bound may be large and is in general not known a priori.

A slight modification of the above iteration scheme that works with chang-
ing values of α in each iteration k has shown that the convergence speed can

be drastically improved to exactly m−1 iterations [6]. Simply choose α =
1
λk

in the k-th iteration of equation (11.1), where λk, 1 ≤ k ≤ m − 1 denotes
an arbitrary numbering for the m non-zero eigenvalues of L. L is called the
Laplacian-matrix of the network and defined as L = D−B where D contains
the node degrees as diagonal entries and B is the adjacency matrix of the

network. Hence, α = αk =
1
λk

, and in each iteration k, a node ni adds a

flow of
1
λk

(wk−1
i − wk−1

j ) to the flow of edge {ni, nj}, choosing a different

eigenvalue for each iteration. We obtain an equally balanced load distribution
after exactly m − 1 iterations, while the created flow is also l2-optimal1.

Note that after each topology change the eigenvalues of the Laplacian-
matrix L have to be recalculated. This process is time consuming and may
lead to instabilities of the numerical approximation algorithm. Due to this
behavior, another diffusion scheme [15] called uniform diffusion replaces α

with
1

di + 1
which is the reciprocal of the degree of node ni increased by one.

To apply this diffusion algorithm in applications where we cannot migrate
a real-valued part of a task from one node to another, an extension is needed.
With this extension, we have to overcome two problems:

1. First of all, it is advisable not to split one task and distribute it to multiple
nodes. This might produce a lot of data traffic in the network in addition
to the inter-process communication.

2. Since the eigenvalue-based diffusion algorithm is an alternating iterative
balancing scheme, it could occur that negative loads are assigned to com-
putational nodes.

From now on, let ycontke be the real-valued continuous flow on edge e
as determined by the continuous diffusion algorithm in iteration k. Also, let
ydisck

e be the discrete flow on edge e determined by the discrete diffusion
algorithm. Analogously, all variables of the continuous diffusion algorithm are

1 The l2-norm is a vector norm defined by

√√√√m−1∑
k=1

∑
e∈E

(yk
e )2
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extended with the index cont and all variables of the discrete version are
extended with disc. Then, in each iteration k ∈ {1, ...,m − 1} the discrete
diffusion algorithm works as follows: In the first step of an iteration, the real-
valued continuous flow ycontke is computed on all edges for all nodes. In the
next step, each node tries to fulfill the resulting flow for its incident edges,
sending or receiving tasks, respectively. Here, we encounter the optimization
problem to choose number and size of tasks on each node in order to keep
the optimality of the real-valued flow. This is an instance of the knapsack
problem, which is known to be NP-complete. Therefore, we randomly choose
tasks to be sent via one edge as long as the discrete flow ydisck

e does not
exceed the continuous flow or no more tasks remain on the node:

ydisck
e ≤ ycontke + Δk−1

e with Δ0
e = 0 (11.2)

In this equation, we already respect the error Δk−1
e made in the previous

iteration by not fulfilling the optimality condition of the real-valued flow. The
error Δe

k that occurred in the current iteration step is calculated as follows:

Δe
k = ycontke + Δk−1

e − ydisck
e ∀e = {ni, nj} ∈ E (11.3)

In order to minimize the final error Δm
e , the error of the last iteration step

is considered in a last additional iteration step, see equation (11.4). From here
on, we start with a next iteration until the last iteration step m−1. After the
last iteration step, the remaining error Δm−1

e is minimized in one additional
adjustment step in which nodes exchange tasks according to the error after
m − 1 iterations:

Δm
e = Δm−1

e − yadj
e (11.4)

yadj
e denotes the flow in this adjustment step.

Now, we can compare the behavior of our discrete diffusion algorithm with
that of its continuous counterpart.

Theorem 1 The discrete diffusion algorithm based on eigenvalues requires m
steps.

Proof. We introduced just one single adjustment step after the load balancing
has completed. �

Theorem 2 The overall congestion caused by the discrete diffusion algorithm
is less than or equal to that caused by its continuous counterpart, which is
known to be l2-optimal.

Proof. Let xconte and xdisce denote the whole load transmitted via edge e
of the continuous and the discrete diffusion algorithm, respectively. Then we
first show that

xconte ≥ xdisce (11.5)

no matter what network, initial load and edge e. With
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xconte =
m−1∑
k=1

ycontke where ycontke ≥ 0 (11.6)

and

xdisce =
m−1∑
k=1

ydisck
e + yadj

e (11.7)

where yadj
e is the flow via edge e in the last adjustment step which is always

less than or equal to Δm−1
e , see equation 11.2:

Δm−1
e ≥ yadj

e (11.8)

Replacing ycontke in equation (11.6) with equation (11.3) leads to:

xconte =
m−1∑
k=1

(
Δk

e − Δk−1
e + ydisck

e

)
with Δ0

e = 0 (11.9)

Inserting xconte from equation (11.9) and xdisce from equation (11.7) in
equation (11.5) leads to:

m−1∑
k=1

(
Δk

e − Δk−1
e + ydisck

e

) ≥ m−1∑
k=1

ydisck
e + yadj

e (11.10)

⇔
m−1∑
k=1

(
Δk

e − Δk−1
e

) ≥ yadj
e (11.11)

⇔ Δm−1
e ≥ yadj

e (11.12)

With respect to equation (11.8), we have proven that the overall edge conges-
tion does not exceed the congestion of the continuous diffusion algorithm in
the network for each edge e. �

Theorem 3 The deviation of the discrete to the average load w̄ on node ni

is bounded by the product of the maximal load Smax of a task ts ∈ T s and the
node degree di = |Pi| − 1:

di · Smax > |w̄ − wm
i | (11.13)

Proof. With

w̄ = w0
i −

di∑
e=1

m−1∑
k=1

ycontke (11.14)
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and

wm
i = w0

i −
di∑

e=1

[
m−1∑
k=1

ydisck
e + yadj

e

]
(11.15)

we compute the average load w̄ and the discrete load wm
i after running the

discrete diffusion algorithm for m iterations. In equations (11.14) and (11.15),
we accumulate the flow on all edges of one node and add it to the load of
the node ni. We already mentioned the last adjustment step after the m − 1
iterations. After this adjustment step, we require the final error Δm

e to be less
than the maximal task size:

Δm
e < Smax (11.16)

Inserting equation (11.14) and (11.15) in (11.13) leads to:

di · Smax >

∣∣∣∣∣w0
i −

di∑
e=1

m−1∑
k=1

ycontke − w0
i +

di∑
e=1

[
m−1∑
k=1

ydisck
e + yadj

e

]∣∣∣∣∣ (11.17)

Replacing ydisck
e with the help of equation (11.3), results in:

di · Smax >

∣∣∣∣∣−
di∑

e=1

m−1∑
k=1

ycontke +
di∑

e=1

m−1∑
k=1

(
ycontke + Δk−1

e − Δk
e + yadj

e

)∣∣∣∣∣
⇔ di · Smax >

∣∣∣∣∣
di∑

e=1

[
m−1∑
k=1

(
Δk−1

e − Δk
e

)
+ yadj

e

]∣∣∣∣∣
⇔ di · Smax >

∣∣∣∣∣
di∑

e=1

−Δm−1
e + yadj

e

∣∣∣∣∣ (11.18)

with equation (11.4), we obtain:

⇔ di · Smax >

∣∣∣∣∣
di∑

e=1

−Δm
e

∣∣∣∣∣ (11.19)

According to equations (11.16) and (11.19), this assumption is correct. The
maximal deviation between the continuous and the discrete load optimum is
therefore smaller than the maximal size of a task times the degree of a node
ni, which is due to the nature of local iterative algorithms and thus, optimal
in the discrete case. �

After having balanced the load between the nodes in the network, a local
bi-partitioning phase on each single node ni ∈ N will determine the imple-
mentation style of each task.
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11.3.1.2 Local bi-partitioning

The local bi-partitioning algorithm first determines the load ratio between a
hardware and a software implementation for each new or arriving task ti ∈ T ,
i.e., wH(ti)/wS(ti). According to this ratio, the algorithm selects one task
and implements it either in hardware or software. We then calculate the total
software load and the total hardware load on each node. If the hardware
load is less than the software load, the algorithm selects a task which will be
implemented in hardware, and the other way round.

Due to these competing objectives, tasks with a ratio larger than one can
be assigned to hardware and tasks with a ratio less than one are assigned to
software. In the previous subsection, we mentioned that tasks which have to
be sent via one edge are chosen randomly. From now on, we introduce two pri-
ority lists, one for software tasks and one for hardware tasks. In these lists, we
collect all tasks in the reverse order of their assignment a hardware or software
resource, respectively. Thus, e.g., the last task assigned to software is the first
task to be diffused if the node has to send tasks via the network. Therefore,
poorly partitioned tasks will have a higher mobility, which leads to an im-
provement concerning convergence behavior. Note that the hardware/software
balance cannot be achieved by direct application of our discrete diffusion al-
gorithm. The diffusion algorithm balances only the load between nodes, but
as the load value of a task changes according to the assignment to hardware
or software, it is not able to balance the hardware/software load.

11.3.1.3 Experimental evaluation

For a detailed evaluation of our approach to online hardware/software par-
titioning, we simulated our approach with different problem instances and
scenarios. In total, nine different scenarios were generated each consisting of
a sensor-controller-actuator-chain and a network topology. Out of these nine
scenarios, three different scenarios were created with 40 tasks and 10 com-
putational nodes. The next three scenarios had 80 tasks and 20 nodes and
the last three scenarios had 200 tasks and 50 nodes. Our distributed ap-
proach started from an arbitrary initial binding of tasks to computational
nodes. For each scenario, 10 initial bindings were determined such that in
total 90 test cases were examined. Starting with an arbitrary binding of the
tasks to the computational nodes of the network topology, the nodes try to
improve the binding by executing the combined discrete diffusion and local
bi-partitioning algorithm. Under the assumption that the diffusion algorithm
runs synchronously on each node in the network and synchronously exchanges
load chunks between the nodes in each iteration k, we calculate after each it-
eration the objectives (LBN, HSB, MTL) defined in section 11.3.1. After the
load has been balanced between the nodes in the network, all nodes start the
local bi-partitioning in parallel. For our evaluation, we let each node perform
this bi-partitioning sequentially and calculate the objectives LBN, HSB and
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Fig. 11.3. ε-dominance and its standard deviation between a Pareto-optimal ref-
erence set R and the online partitioner over time.

MTL after each bi-partitioning. We compared the solutions si ∈ S of each
optimization run with a hardware/software partitioning algorithm based on
Evolutionary Algorithms (EA) [7] that incorporates global knowledge. Our
distributed algorithm tries to optimize the binding using only local knowl-
edge. The EA-based approach determines a reference set of Pareto-optimal
solutions R. For a comparison of the solutions s ∈ S, the ε-dominance ε(s)
[11] between each s ∈ S and R is calculated, which is defined as follows: A
point r weakly ε-dominates a point s (r �ε s) iff r � ε · s. By scaling a point
s by a factor ε, a point r is superior to point s. The ε-dominance, which is
normalized between one and two indicates a better solution for low values.
The ε-dominance and the standard deviation for the three different sizes of
the problem instances are shown in figure 11.3. There, the first iteration steps
lead to the highest improvement. The steps in the curves are caused by the
alternating phases, i.e., the diffusion phase and the bi-partitioning phase.

11.3.2 Communication-aware hardware/software partitioning

With the hardware/software-partitioning algorithm of the previous section it
is possible to balance the load between different network nodes. Unfortunately,
this load distribution does not consider the communication traffic created on
the links between the network nodes. Therefore, the minimization of compu-
tational load may lead to increased traffic in the network. Moreover, only one
load definition can be used for the balancing of hardware tasks and software
tasks. To solve this, we will present a generic task assignment protocol, which
calculates improvement values and migrates tasks to neighbors leading to the
highest overall improvement of the task binding. The following three improve-
ment values are calculated for the determination of the overall improvement:
a) communication improvement, that tries to cumulate functionality with data
dependencies, b) migration improvement, which reduces the overhead caused
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by task migration, and c) partitioning improvement, that tries to implement
a task according to its favorite implementation style.

Communication improvement: The communication improvement Icom
i,j is

defined as the improvement for task ti if it is migrated from node nm over
port pj to a neighboring computational node nj (j �= 0):

Icom
i,j =

dm∑
l=0

|T |∑
k=1

Ti,k · rk,l

with

rk,l =

{
−1 : if traffic Ti,k between ti and tk is routed via pl (l �= j)

1 : if traffic Ti,k between ti and tk is routed via pj

The outer sum over di + 1 terms considers not only the traffic over the
external ports but also the node-internal.
Considering figure 11.4 as an example of a binding where the commu-
nication improvement Icom

1,3 for migrating task t1 over port p3 should be
computed, we obtain: Icom

1,3 = −80 − 20 + 10 + 100.
Afterwards, the communication improvement Icom

i,j has to be normalized.
For this normalization, the maximal absolute value of Icom

i,j of all tasks ti
will be computed if migrated over a certain port pj :

Icom
max = max

∀ti at nm,∀pj∈P
|Icom

i,j |

Migration improvement: For the determination of the migration improve-
ment Imig

i , the size Mi of the bit-stream and binary of task tci which needs
to be migrated is required. Then, the migration improvement for migrat-
ing task tci over a port pj is simply defined as:

Imig
i = Mi

Note that this is not really an improvement of the task binding. It just
avoids transferring huge data entities over the network’s communication
channels. Again the improvement Imig

i needs to be normalized:

Imig
max = max

∀tc
i at cm

|Imig
i |

Partitioning improvement: Consideration of partitioning improvement
Ipar
i,j is finally required for optimizing the implementation style (hard-

ware/software) of a task tci . For certain applications, e.g., video stream
processing, it might be desirable to implement a task in hardware while
alternatively, a state-machine might be efficiently executed in software.
However, assuming that each task tci has a favorite implementation style,
a likelihood value li ∈ R with 0 ≤ li ≤ 1 will be defined at design time.
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The decision whether a task is better implemented in hardware or soft-
ware can be taken based on resource utilization or a quality of service.
The resulting improvement Ipar

i,j will be defined as:

Ipar
i,j = li · qi,j

with

qi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 : if tci was implemented in its non-favorite style and can be
implemented in its favorite style after migration over pj

−1 : if tci was implemented in its favorite style and can only be
implemented in its non-favorite style after migration over
pj

0 : else

The resulting improvement Ii,j for migrating a task tci over port pj to a neigh-
boring computational node is then computed as:

Ii,j =
Icom
i,j

Icom
max

− Imig
i

Imig
max

+ Ipar
i,j

As shown in figure 11.5, this improvement will be determined for all mi-
gratable tasks tci ∈ T c

m ⊆ T and all ports pj of node nm. Some of the im-
provement values calculated for the migratable tasks, negative improvement
values might be in the list and can impair the current binding. Therefore,
two possibilities exist: a) remove all negative improvement values or b) allow
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Fig. 11.5. The flow diagram shows the complete process of binding optimization
that will be executed locally on each computational node ni ∈ N in the network.

for negative improvement values depending on the migration counter mci of
task tci . In the next step, the algorithm selects the task tci with the highest
improvement value Ii,j and asks the neighboring computational node at port
pj if the task can be scheduled on the CPU or bound onto the reconfigurable
hardware device, respectively (see figure 11.5). If enough resources are avail-
able for scheduling/placing the task it will be migrated and all improvement
values ∀pj ∈ P : Ii,j will be deleted. Otherwise, only the improvement value
Ii,j for the considered port pj and task tci will be deleted. These two steps of
selecting the task with the highest improvement value and trying to migrate
it, is repeated locally until no improvement value Ii,j remains. Note that the
set of migratable tasks Tm contains only tasks with a migration counter below
a given limit: mci ≤ mclimit. The counter mci is incremented after each mi-
gration of task tci and reset after a node or link defect. With this constraint,
the algorithm will terminate by preventing alternating behavior. All in all,
our methodology runs asynchronously in the network, i.e., periodic migration
rounds are not required. Since the routing needs to be fixed before calculating
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Fig. 11.6. a) ε-dominance and its standard deviation between a Pareto-optimal
reference set R and the online partitioner over time (number of task migrations).
b) Normalized traffic T and percentage of suboptimally bound tasks N over time
(number of task migrations).

the improvement values of the tasks on a node, it is not possible to migrate
tasks on different nodes simultaneously. Therefore, a token will be placed to
an arbitrary node. If a node or link defect occurs, the node with the token
will start with the calculation of improvement values and migrates a task to
a neighboring node. Along with this migrated task a token will be transferred
and the node which receives the token may start the calculation of improve-
ment values. If the node will not migrate a task, the token will be passed to
an arbitrary neighboring node. This strategy is derived from the class of hill
climbing algorithms, where optimization runs are repeatedly started from ar-
bitrary initial points. The algorithm stops after the token has been transferred
a certain number of times.

11.3.2.1 Experimental evaluation

Setup and scenarios for the experimental evaluation of the communication-
aware hardware/software partitioning algorithm are the same as before, but
here, the edges in the problem graph have been annotated with demands.
Starting again with an arbitrary binding of the tasks to the computational
nodes of the network, the algorithm tries to improve the binding by migrating
functionality between the hardware and software resources in the network. Af-
ter each migration step, we determine the overall traffic T in the network and
the fraction of tasks which are executed in their non-favorite implementation
style F :
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T =
|Esca|∑
i=1

|Etg|∑
j=1

Ti,j · btraffic
i,j , (11.20)

F =
∑|T{sca}|

i=1 fi

|T {sca}| (11.21)

with

fi =

{
1 : if t

{s,c,a}
i is implemented in its non-favorite style

0 : else

Again, we compared the solutions si = (T, F ), si ∈ S of each optimization
run with a reference set R. The ε-dominance and the standard deviation for
the three different problem sizes are shown in figure 11.6a). After each task
migration the quality of the solution has been evaluated and it can be seen that
the algorithm drastically improves the initial binding of the tasks, but it can
also run into local minima. In figure 11.6b) the two normalized objectives are
shown and it can be seen that, starting from an initial binding, the algorithm
reduces the traffic by at least 20% and the number of suboptimally bound
tasks by 50%.

11.4 Conclusions

In this contribution, a framework for self-healing and self-adaptive networks
of hardware/software reconfigurable nodes has been presented. This frame-
work consists of a fast repair and an optimization phase. While the fast repair
phase may apply known mechanisms for activating tasks and reestablishing
inter-task communication, the optimization phase is of central interest here.
For this purpose, we presented algorithms and theoretical as well as empir-
ical results for different task models (with and without data dependencies)
on how to optimize the binding of active tasks to hardware/software recon-
figurable resources in a network. As a proof of concept, we built up a real
demonstrator [16] running the proposed methodology.

All in all, we expect that the presented approach is a promising step to-
wards self-healing and self-adaptive networked embedded systems.
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Summary. This article presents an artificial hormone system for a completely de-
centralized realization of self-organizing task allocation. We show that tight upper
bounds for the real-time behavior of self-configuration, self-optimization and self-
healing can be given. We also calculate the communication load produced by the
hormone system and find it acceptable.

Key words: Decentralized control loops , real-time task allocation, task clustering,
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12.1 Introduction

Today’s computational systems are growing increasingly complex. They are
built from large numbers of heterogeneous processing elements with highly
dynamic interaction. Middleware is a common layer in such distributed sys-
tems, which manages the cooperation of tasks on the processing elements and
hides the distribution from the application. It is responsible for seamless task
interaction on distributed hardware. Like shown in figure 12.1, all tasks are
interconnected by the middleware layer and are able to operate beyond pro-
cessing element boundaries as if residing on a single hardware platform. To
handle the complexity of today’s and even more tomorrow’s distributed sys-
tems, self-organization techniques are necessary. These systems should be able
to find a suitable initial configuration by itself, to adapt or optimize itself to
changing environmental and internal conditions, to heal itself in case of sys-
tem failures or to protect itself against attacks. These so-called self-x features
are essential for the idea of Organic Computing. Middleware is well-suited to
realize such self-x features. By autonomously choosing an initial task alloca-
tion, which means finding the best initial processing element for each task,
middleware can configure the distributed system. By changing the task allo-
cation, middleware can optimize the system in case of changing environmental

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,
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Fig. 12.1. Middleware in a distributed system.

conditions and heal it in case of processing element or task failures. Especially
for self-healing, it is important that these organic features are decentralized
to avoid single points of failure. This work presents an artificial hormone sys-
tem for task allocation to heterogeneous processing elements. The proposed
approach has the following properties:

• It is completely decentralized. There are no central decision making
instances to determine the task allocation. Each processing element (PE)
in the heterogeneous distributed system decides which tasks to take on the
basis of simple local rules and information received from other processing
elements.

• It is self-organizing. There is no external organization instance which
influences the task allocation. This is done by the interaction of the PEs
only.

• It is self-configuring. The presented approach determines an initial task
allocation, which takes into account the capabilities (e.g. computational
power, memory, etc.) and the state (e.g. operation temperature, energy
level, etc.) of the heterogeneous PEs.
The artificial hormone system is also able to respect related tasks (which
often have a high communication rate) in order to cluster them close to-
gether, thus forming “organs”.

• It is self-optimizing. The task allocation autonomously adapts to chang-
ing environmental conditions and states of the PEs (e.g. decreasing energy
level, increasing temperature) during operation. Self-optimization also in-
cludes the assignment of newly arriving tasks to PEs.

• It is self-healing. Due to the lack of central instances and due to the
capability of self-optimization the presented approach automatically com-
pensates the effects of failing tasks or PEs by reordering the task allocation.

• It is real-time capable. There are tight upper time bounds for self-
configuration and self-optimization. This bounds are partially valid for
self-healing, too.

• It produces limited communication overhead, which is reasonable for
embedded applications.
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The term “artificial hormone system” was chosen because our approach
was highly inspired by the hormone system of higher animals. There are sev-
eral comparable properties between the hormone system in biology and our
technical system:

• In biology, chemical signals called messengers or hormones are unspecif-
ically spread to certain regions of the body or the whole body to cause
some effects. The messengers (or hormones) of our artificial hormone sys-
tem are also not addressed to a specific processing element (PE); rather
they are spread in the neighborhood of a processing element or over the
whole processor grid.

• The reaction of a cell to a hormone depends on the cell itself. In the same
way, the reaction of a PE to a messenger in our system depends only on
the specification of the PE itself (see properties mentioned above).

• A PE is able to react to a received messenger in different ways: It starts,
stops, continues or quits the execution of a task. In reaction to this, the
PE itself is also able to spread messengers over the system establishing a
closed control loop, which stabilizes the system. Such loops can also be
found in nature: the hormones T3 and T4 of the thyroid implement a
closed loop controlling the body temperature.

• Like in the biological hormone system, these closed loops are completely
decentralized. As for cells, removing PEs from the loop does not harm the
system as long as there are enough PEs left to execute tasks and send or
receive messengers.

• The hormones of higher animals are reduced by their metabolism, so they
are not effective after some time (unless new ones are produced). In our
implementation of the artificial hormone system, the effectiveness of the
messengers is bounded by time stamps. If not renewed the messengers of
our system expire, too.

It has to be stated that our “artificial hormone system” is not a copy of
the biological hormone system, but it has been inspired by nature and its
strategies. In biology, hormones are chemical objects transmitted via chemical
processes and reactions. In our approach, the messengers are bits and bytes
transferred via communication links. However, the effects and principles are
similar. This is why we have called our messengers hormones as well.

In the following we will present our approach in detail and we will discuss
and prove the enumerated properties.

12.2 An artificial hormone system for a decentralized
realization of the self-x-properties

For task allocation, three types of hormones are used:

Eager value: This hormone determines how well a PE can execute a task.
The higher the hormonal value the better the task is suited for the PE.
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Fig. 12.2. Hormone-based control loop.

Suppressor: A suppressor represses the execution of a task on a PE. Sup-
pressors are subtracted from eager values. They can be used to limit task
execution and to indicate a degrading PE state.

Accelerator: An accelerator favors the execution of a task on a PE. Accel-
erators are added to eager values. They can be used to cluster related or
cooperating tasks in the neighborhood (thus forming organs) or to indicate
an improved PE state.

Figure 12.2 sketches the basic control loop used to assign a task Ti to a
processing element. The notation scheme is as follows: Hiγ means a hormone
for task Ti executed on PEγ and Hiγ means a hormone from task Ti executed
on PEγ . Latin letters are task indices and Greek letters are processing element
indices. This closed control loop is executed for every task on every processing
element. Based on the level of the three hormone types it determines if a task
Ti is executed on a processing element PEγ or not. The local static eager
value Eiγ indicates how well task Ti executes on PEγ . From this value, all
suppressors Siγ received for task Ti on PEγ are subtracted and all accelerators
Aiγ received for task Ti on PEγ are added. The result of this calculation is
a modified eager value Emiγ for task Ti on PEγ . The modified eager value
is sent to all other PEs in the system and compared to the modified eager
values Emiγ received from all other PEs for this task. If Emiγ is greater
than all received eager values Emiγ , task Ti will be taken by PEγ (in case of
equality a second criterion, e.g. the position of a PE in the grid, is used to get
an unambiguous decision). Now, task Ti on PEγ sends suppressors Siγ and
accelerators Aiγ to the others. This procedure is repeated periodically.

At this point we emphasize that the initial strength of the hormone values
is set by the applicants wanting to influence task allocation. The organic
middleware evaluates the hormones to allocate the different tasks, but it does
not set their initial strength.
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12.2.1 Notation

Now we will define some basic indices and sets, which will be used frequently
in the following sections. To allow an easy distinction, we use Latin lower
case letters for task indices and Greek lower case letters for processing ele-
ment indices (like already done in figure 12.2). Accordingly, we use upper case
Latin letters for task sets and upper case Greek letters for sets of processing
elements.
Let

Ω be the set of all processing elements in the system.
ω be the number of all processing elements in the system.

ω = |Ω|
IΩ be the set of indices of all processing elements.

IΩ := {1, ..., ω}
Thus, we obtain the set of all processing elements as

Ω = {PE1, ..., PEω} = {PEγ | γ ∈ IΩ}.
Φγ be the set of processing elements which are neighbored to processing ele-

ment PEγ . Notice that this relation is reflexive.
Neighbored processing elements are able to communicate directly (hop
count=0 or 1).

Φγ := {PEδ | δ ∈ IΩ and PEδ neighbored to PEγ}
ϕγ be the number of processing elements neighbored to PEγ .

ϕγ := |Φγ |
M be the set of all tasks in the system.
m be the number of all tasks in the system.

m := |M |
IM be the set of indices of all tasks.

IM := {1, ...,m}
Thus, we obtain the set of all tasks in the system as

M = {T1, ..., Tm} = {Ti | i ∈ IM}.
Vi be the set of all tasks related to task Ti. Related tasks work on common

problems and therefore have to cooperate closely.

Vi := {Tj | j ∈ IM and Tj related to Ti}
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vi be the number of all tasks related to task Ti.

vi := |Vi|
Eγ be the set of tasks executed on processing element PEγ .

Eγ := {Tj | Tj ∈ M and Tjexecuted by PEγ}
eγ be the number of all tasks executed on PEγ .

eγ := |Eγ |
In the following sections, we describe the hormones in more detail. Several

kinds of eager values, suppressors and accelerators have to be distinguished.
Therefore, we extend the notation from figure 12.2 to specify the hormones:

Hjδ
iγ : Hormone from task Ti running on PEγ to be sent to task Tj running

on PEδ.

Hormones can be also sent to several tasks or PEs simultaneously. In that
case, indices are replaced by the associated sets, e.g.:

HMΩ
iγ : Hormone from task Ti executed on PEγ to be sent to all tasks on each

processing element.

12.2.2 Different kinds of hormones

Using the notation introduced above we now describe the used hormones and
their function in detail and start by explaining the eager values:

Local eager value Eiγ : This value states the initial suitability of PEγ for task
Ti. It assures that task allocation is adapted to the capabilities of the PEs.

Modified eager value EiΩ
iγ : This value is calculated by adding the received ac-

celerators for task Ti on PEγ and subtracting the received suppressors for
task Ti on PEγ from the local eager value Eiγ . It is sent to task Ti on all
other PEs.

We used the following suppressors for the artificial hormone system:

Acquisition suppressor SaiΩ
iγ : This suppressor is sent to task Ti on all other

PEs in the system, as soon as PEγ has taken task Ti. Therefore, this
suppressor determines how often task Ti will be allocated in the overall
system. A very strong acquisition suppressor enforces that task Ti is taken
only once, while a weaker suppressor enables multiple allocation of this
task.

Load suppressor SlMγ
iγ : This suppressor is sent only locally to that PEγ which

has taken task Ti. It affects not only task Ti, but all tasks on this PE.
Thereby it determines how many tasks can be taken by a PE. A very
strong load suppressor enforces, that a PE can take only one task, while
a weaker one allows multiple tasks to be allocated on this PE.
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Monitoring suppressor SmMγ
Mγ : This suppressor is sent locally to a PE by local

monitoring and affects all tasks on this PE. Thereby, the common state
of a PE influences task allocation. E.g., the lower the energy level or the
higher the temperature of a PE, the stronger this suppressor becomes.

We also used different kinds of accelerators for the artificial hormone system:

Organ accelerator Ao
ViΦγ

iγ : This accelerator is sent to all tasks Vi related to
task Ti on the PEs Φγ neighbored to PEγ , if PEγ has taken task Ti.
Thereby, this accelerator attracts tasks related to task Ti to settle on
the same or neighbored PEs. The stronger the accelerator the stronger
is the attraction. The basic idea behind this is that related tasks work
on common problems and have to communicate frequently, making short
communication distances useful. Related tasks form a kind of virtual or-
gan, which works on a bigger problem.

Stay accelerator Asiγ
iγ : As soon as PEγ has taken task Ti, this assignment is

initially fixed. This leads to stable task allocation in the context of self-
configuration. But to allow self-optimization, the possibility of changes
in task allocation is necessary. Therefore, a task assigned to a PE can
offer itself periodically for reallocation. To achieve this, the task suspends
the transmission of its acquisition suppressor SaiΩ

iγ and starts sending its
modified eager value EiΩ

iγ again. This enables other PEs to take this task,
if they are now more suitable. Such a task migration introduces costs
expressed by the stay accelerator by means of favoring the stay of task Ti

on PEγ . It is sent from task Ti on PEγ to itself (i, γ). The stronger the
stay accelerator, the better another PE must be suited for task Ti to be
able to take it from PEγ .

Monitoring accelerator AmMγ
Mγ : This accelerator is sent locally to a PE by

local monitoring and affects all tasks on the PE. It is the opponent of the
monitoring suppressor. Therefore, the local monitoring can strengthen a
PE if it is currently very powerful, e.g. due to a high energy level (solar
cell in plain sun).

The described approach is completely decentralized, each PE is responsible
for its own tasks, the communication to other PEs is realized by a unified
hormone concept. Furthermore, it realizes the described self-x properties:

• The approach is self-organizing, because no external influence controls
task allocation.

• It is self-configuring, as an initial task allocation is found by exchang-
ing hormones. The self-configuration is finished as soon as all modified
eager values become zero meaning no more tasks want to be taken. This is
done by sending suppressors. Of course, the suppressors have to be chosen
strong enough to inhibit an infinite task assignment (the suppressors must
be stronger then the accelerators), otherwise the system would become
instable.
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Fig. 12.3. Hormone cycle.

• The self-optimization is done by offering tasks. The point of time for
such an offer is determined by the task or by the PE itself. It can be
done periodically or at a point in time when the task or the PE is idle.
Furthermore, an offered task continues its operation on the old PE as long
as it is not taken by a new PE.

• The approach is self-healing. In case of a task or PE failure all related
hormones are no longer sent, especially the acquisition suppressors. This
initiates automatic reassignment of the task to the same PE (if it is still
active) or another PE. The only additional requirement is a hormone Hjδ

iγ

sent from task Ti on PEγ to task Tj on PEδ with an expiration time. If
task Tj on PEδ receives no new hormone value within this expiration time,
the old value is discarded. This enables detection of missing hormones after
the expiration time.

A detailed discussion of the real-time behavior, especially of upper time
bounds for self-configuration, self-optimization, and self-healing can be found
in the following sections. The communication overhead introduced will be
analyzed there, too.

12.3 Dynamics of the artificial hormone system

In this section, the dynamics of the artificial hormone system and the condi-
tions and rules for its correct operation will be presented. Figure 12.3 shows
the cyclic sequence of sending out hormones and deciding on task allocation.
The sequence starts with ”send hormones” (S) to create the knowledge base
for the first decision. At least the eager values need to be available. At time
tSD after sending the hormones, a decision (D) to allocate tasks is made based
on the received hormones. This process is repeated after a time of tDS .

12.3.1 Dynamics of task allocation

Let PEγ be a processing element willing to run a task Ti. We need to distin-
guish three cases:
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Fig. 12.4. Worst-case timing scenario of the hormone exchange for task allocation

Case 1: All eager values EmiΩ
iγ of all processing elements PEγ ∈ Ω for task

Ti are constant and spread over the entire system. Thus, the system is in
a steady state and all PEs make their decisions based on up-to-date and
constant values. Then, PEγ can allocate a task if it has the highest eager
value or, in the case of equal eager values, a higher priority.

Case 2: The eager value EmiΩ
iγ of processing element PEγ for task Ti declines

(e.g. by suppressor influence), i.e. ActiveEmiΩ
iγ < PastEmiΩ

iγ . In this case
PEγ may allocate the task Ti if the declined eager value ActiveEmiΩ

iγ is
still sufficient. All the other PEs will not allocate the task, as they know
either ActiveEmiΩ

iγ or PastEmiΩ
iγ , and PEγ wins with both values.

Case 3: The eager value EmiΩ
iγ of the processing element PEγ for task Ti

increases (e.g. by accelerator influence), i.e. ActiveEmiΩ
iγ > PastEmiΩ

iγ .
This case is critical if PEγ becomes the winner by the increased eager value
ActiveEmiΩ

iγ , because other PEs might not yet know this increased eager
value and therefore decide wrongly. Thus, PEγ may only allocate the task
Ti after the new eager value ActiveEmiΩ

iγ has successfully been submitted to
all PEs and until PEγ itself has received a possible acquisition suppressor
SaiΩ

iδ from another PEδ (γ �= δ), which allocated the task Ti based on the
old, lower eager value PastEmiΩ

iγ .
But how long is the waiting time for PEγ? Figure 12.4 shows the worst-
case scenario, in which PEδ allocated the task Ti just before the new eager
value ActiveEmiΩ

iγ from PEγ has been received. PEγ may not come to a
decision until it has received the possibly incoming suppressor SaiΩ

iδ from
PEδ. The communication time tK needed by a hormone to spread the
whole system is very important. It is possible to establish the following
rule for task allocation for increasing eager values as well as conditions for
the times tDS and tSD.
Rule: If a processing element PEγ is able to allocate a task Ti only by the

increased eager value ActiveEmiΩ
iγ then it may not decide before the

next communication cycle to allow the new eager value ActiveEmiΩ
iγ to
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spread and to wait for potentially incoming suppressors. This is true
if (follows directly from figure 12.4):

tSD ≥ tDS + 2tK

Thus, the cycle time results in:

tC = tSD + tDS

Of course, the cycle time should be kept at a minimum, therefore
1) tDS should be as small as possible, ideally 0.
2) tSD ≥ tDS + 2tK , ideally with tDS = 0: tSD ≥ 2tK

Conclusion: For the allocation of a task Ti by a processing element PEγ the
following cases can be distinguished:

1) PastEmiΩ
iγ = ActiveEmiΩ

iγ : The task can be allocated, if PastEmiΩ
iγ =

ActiveEmiΩ
iγ qualifies the processing element.

2) PastEmiΩ
iγ > ActiveEmiΩ

iγ : The task can be allocated, if ActiveEmiΩ
iγ qual-

ifies the processing element.
3) PastEmiΩ

iγ < ActiveEmiΩ
iγ : The task can be allocated, if PastEmiΩ

iγ qualifies
the processing element. Otherwise the decision has to be postponed until
the following cycle.

�

12.3.2 Self-configuration: worst case timing behavior

Figure 12.5 shows the detailed cycle of the hormone distribution and interpre-
tation based on figure 12.3. First the hormones (eager values, suppressors and
accelerators) for all tasks PEγ is interested in are emitted by PEγ . Therefore,
we define

Mγ := {Tj | Tj ∈ M and PEγ is interested in Tj}
After waiting the time tSD, the decision for a task Ti ∈ Mγ is made. Af-
terwards i is incremented and the next cycle starts (tDS = 0). This way, in
each cycle the hormones for all relevant tasks are emitted and the decision
for exactly one task is made. To decide on only one task per cycle allows the
hormones to take effect. If task allocation took place all at once for all avail-
able tasks, the accelerators emitted when a task is allocated would not have
a chance to make an impact as all the tasks would already be allocated in the
first cycle.

To calculate the worst case timing behavior of this allocation process,
we make the following basic assumption: All tasks (m tasks) have to be
distributed on all PEs and all PEs are interested in all tasks.

First we make a further assumption to simplify the scenario: Let all eager
values be constant, i.e., there are no accelerators and suppressors. Then, all
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Fig. 12.5. Cycle of the hormone distribution and decision by PEγ

tasks have been handled by all PEs and have been allocated after m cycles
and it follows:

Worst Case Timing Behavior = m cycles (12.1)

�

In the following we remove the simplifying assumption of constant eager
values and allow accelerators and suppressors. Now some tasks may not have
been allocated after m cycles. This can be caused by accelerators and sup-
pressors as shown in the following examples. In the first example three PEs
are checking one after another the possibility to allocate task Ti. While PEγ

and PEδ are checking, PEε still is the winner. After PEδ has checked, it
increases its eager value caused by a received accelerator. If afterwards PEε

checks for allocation, PEδ becomes the winner. However, PEδ will not check
again for allocation within the next m cycles. The second example shows a
similar scenario, this time caused by an eager value decreased by a suppressor.

Example 1: Delay of task allocation caused by accelerators

PEγ checks allocation of task Ti, winner is PEε

PEδ checks allocation of task Ti, winner is PEε

PEε checks allocation of task Ti, winner is PEδ

←− PEδ in-
creases its ea-
ger value for Ti

caused by a re-
ceived accelera-
tor

�

t
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Example 2: Delay of task allocation caused by suppressors

PEγ checks allocation of task Ti, winner is PEε

PEδ checks allocation of task Ti, winner is PEε

PEε checks allocation of task Ti, winner is PEδ

←− PEε de-
creases its ea-
ger value for Ti

caused by a re-
ceived suppres-
sor

�

t

At worst in both cases task Ti will not be re-checked until a complete cycle
of all other tasks, thus after m cycles. Afterwards, the same scenario could
occur again. However, the maximal number of cycles is limited: A change of
the eager value by suppressors or accelerators only takes place if a task has
been allocated somewhere in the system (Assumption: Monitoring accelerators
and suppressors are constant during the initial self-configuration). It follows
that in each allocation cycle at least one task will be allocated. Thus, in the
case of a variable eager value we get the following worst case timing behavior
for the self-configuration:

Worst Case Timing Behavior = m2 cycles (12.2)

�

12.3.2.1 Improvement of the worst case timing behavior

By refining the algorithm presented in figure 12.5 it is possible to improve the
timing behavior of the worst case scenario.

Refinement 1: If a PEγ sends an eager value for a task Tk which was increased
by an accelerator and this increased eager value is higher than all other
values received for task Tk so far, then PEγ exits the regular sequential
decision cycle and checks for Tk instead.1

By using this refinement the following timing behavior results for the eager
values increased by accelerators:

The worst case scenario is as follows: Assume, task Ti would be allocated
by processing element PEγ at the mth cycle. Exactly in this cycle, the corre-
sponding eager value EmiΩ

iγ is incremented by an accelerator of another task.

1 This is conform to the rule from section 12.3, that an interval of tSD ≥ tDS +2tK

will be waited between sending and decision making.
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task Tk 

No 
 

Yes 
 

Fig. 12.6. Cycle of the hormone distribution and decision making for a PEγ using
the first refinement.

One of m − 1 other tasks may be responsible for sending this accelerator by
being allocated somewhere. As a result, Ti will not be allocated on PEγ and
will be re-checked in cycle m + 1.

Further delay will arise if another accelerator is be sent in cycle m+1 and
the eager value EmiΩ

iγ for task Ti will be increased another time. Now, m− 2
tasks may be responsible, one of which has been allocated. It follows that all
tasks are assigned no later than m + (m − 1) = 2m − 1 cycles, which is also
shown in the following scheme:

Cycle 1 : T1 T2 ... Tm−2 Tm−1 Tm

Cycle 2 : T1 T2 ... Tm−2 Tm−1 Tm

... ... ... ... ... ... ...

... ... ... ... ... ...

Cycle m : T1 T2 ... Tm−2 Tm−1 Tm ← Tm assigned, accelerator sent

Cycle m + 1 : T1 T2 ... Tm−2 Tm−1 ← Tm−1 assigned, accelerator sent

Cycle m + 2 : T1 T2 ... Tm−2 ← Tm−2 assigned, accelerator sent

... ... ... ... ... ...

... ... ... ... ... ...

Cycle 2m − 2 : T1 T2 ← T2 assigned, accelerator sent

Cycle 2m − 1 : T1 ← T1 assigned, accelerator sent

As a conclusion, we notice assuming that refinement 1 holds:

Worst Case Timing Behavior = 2m − 1 cycles (12.3)

�

Now we define a similar refinement for delays caused by suppressors:

Refinement 2: If a PEγ receives an eager value for a task Tk which was de-
creased by a suppressor and therefore the own eager value is higher than
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Fig. 12.7. Cycle of the hormone distribution and decision making for a PEγ using
the second refinement.

all other values received for task Tk so far, then PEγ exits the regular
sequential decision cycle and checks for Tk instead.

As a suppressor (similar like an accelerator) results from a task which has been
allocated, the same worst-case timing behavior of 2m−1 cycles will result from
the same consideration as before. It should be noted that in our application
refinement 2 can be omitted, because suppressors only affect the same tasks
that created them. Therefore, a suppressor for a task is only emitted if this
task has already been taken somewhere and need not be taken in the same
cycle again.

12.3.2.2 Further improvements

Consequently, we narrow the scenario to the influence of accelerators on timing
behavior and the worst-case timing behavior can be specified more precisely:

An accelerator is only sent to related tasks. Therefore a task Ti can not
receive an accelerator from all the other m − 1 tasks but only from the vi

tasks it is related to (vi ≤ m− 1). Then, task allocation will be completed at
the latest after

m + vi ≤ 2m − 1 cycles.

Considering all tasks we get the following result:

Worst Case Timing Behavior = m + vmax cycles (12.4)

where

vmax := max
Ti∈M

{vi}, the largest number of related tasks.

�
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Example 3: Differences caused by the improvements
We assume there are 10 tasks to be distributed in the system:

10 tasks: T1 ... T10, thus m = 10
Related tasks: T1 ... T4 and T5 ... T10, thus

vmax = max{v1, ..., v10} = max{4, 4, 4, 4, 6, 6, 6, 6, 6, 6} = 6

The result is

• with 2m − 1 = 20 − 1 = 19 cycles as an upper limit for the self-
configuration (without any assumption about the largest number of
related tasks).

• with m + vmax = 10 + 6 = 16 cycles as an upper limit for the self-
configuration (including the information about the largest number of
related tasks).

• Furthermore it may happen that not all PEs apply for all tasks, but
e.g. PE1 and PE2 for T1 ... T5 and PE3 and PE4 for T6 ... T10. Then

mmax = max{m1, m2, m3, m4} = {5, 5, 5, 5} = 5

Then, the upper limit for the self-configuration is

mmax + vmax = 5 + 6 = 11 cycles.

Further reductions of the worst-case timing behavior may take place, if
not all PEs apply for all m tasks. If we release this basic assumption, the
following timing behavior results for a PEγ applying for a task Ti: The task
allocation is finished at the latest after

mγ + vi cycles

where

mγ = |Mγ |, the number of tasks for which PEγ applies.

Extending this result to all tasks we obtain:

Worst Case Timing Behavior = mmax + vmax cycles (12.5)

where

mmax := max
PEγ∈Ω

{mγ}, the largest number of tasks a PE is applying for.

�
Example 3 illustrates the differences of these improvements.
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12.3.3 Self-optimization: worst case timing behavior

Self-optimization means the relocation of a task Ti from a processing element
PEγ to another processing element PEδ. This relocation takes place only if
PEγ currently executing Ti offers this task. Thus, PEγ chooses the point in
time for the optimization, e.g., periodically or when Ti is idle. Additionally,
PEγ operates the task until it is completely transferred to PEδ. Notice that
even γ = δ is possible, which means the task execution is continued on PEγ .
This has the following consequences:

• There is no blackout time (except the time used to transfer the task state).
• Real-time behavior is guaranteed.

The time interval from offering the task until to the completion of the transfer
is bounded. Thus, the time for self-optimization is also bounded.

In the worst case, all processing elements offer all tasks for self-
optimization, which leads to the same time bounds like for self-configuration.

Worst Case Timing Behavior = mmax + vmax cycles (12.6)

�

Notice that there is no interruption in task execution because relocated
tasks are operated by the previous PEs until completely transferred to the
new PEs.

If we assume that only one task is offered per cycle the time for self-
optimization is decreased considerably. Let’s assume PEγ would offer Ti for
self-optimization. Then, the eager value EmiΩ

iδ would increase on all processing
elements PEδ ∈ Ω applying for Ti as the acquisition suppressor SaiΩ

iγ would
be dropped. If we use refinement 1 (see section 12.3.2.1) all eligible processing
elements check for Ti in the next cycle. Assuming that only one task is offered
in this cycle there are no further modifications of the eager values. Thus, Ti

is assigned to a new processing element PEδ in the next cycle.

Worst Case Timing Behavior = 1 cycle ≡ const. (12.7)

�

12.3.4 Self-healing: worst case timing behavior

In case of processing element failure, the execution of its tasks fails until they
are reassigned. The point in time when the processing element fails is not
predictable. Therefore, we only obtain limited real-time behavior. Neverthe-
less, we are able to compute time bounds for this case. The worst case is
that all processing elements are failing simultaneously, which means there is
no chance for self-healing. Thus, we exclude this case and assume that there
are still enough processing elements operational to execute all tasks. Then,
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almost the same upper bound as for self-optimization holds. We only have to
add the time the operational processing elements need to recognize that other
processing elements failed by the expiration of the hormones.

Worst Case Timing Behavior = mmax + vmax + a cycles (12.8)

where a: number of cycles after which a not updated hormone is considered to
be too old and thus not valid any longer (expiration time, see section 12.2.2). �

If only one PEγ fails and there is no self-optimization in parallel, the tasks
Ti ∈ Eγ running on PEγ will be reassigned due to their vanishing acquisition
suppressors. If we use refinement 1 and consider the emission of accelerators
when a task is taken, we obtain

Worst Case Timing Behavior = eγ + max
Ti∈Eγ

{vi} + a cycles (12.9)

where

max
Ti∈Eγ

{vi} : greatest number of related tasks to the tasks running on PEγ .

�

12.4 Communication load introduced by the artificial
hormone system

Now, we calculate the communication load introduced by the artificial hor-
mone system. A processing element PEγ is sending per cycle:

Broadcast to all other PEs : 1 modified eager value EmjΩ
jγ for each task Tj

PEγ applied for

1 acquisition suppressor SaiΩ
iγ for each task Ti

PEγ has taken

Multicast to neighbors : 1 organ accelerator Ao
ViΦγ

iγ for each task related
to a taken task Ti

All other kinds of hormones are sent or used locally (see section 12.2).
We also need to know the sender information additionally to the eager

values, suppressors and accelerators to be able to refresh the hormone values
of a sender. Thus, we propose the following structure for a sent hormone:

Type of hormone︸ ︷︷ ︸
Eager value, accelerator, suppressor

,PE-identification, Task-identification︸ ︷︷ ︸
Sender information

,Value
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12.4.1 Hormone communication load per processing element

Each PEγ causes the following hormone communication load:

Broadcast to all other processing elements:

Dbγ = De ∗ kγ + Ds ∗ eγ (12.10)

where

Dbγ : broadcast data load caused by PEγ

De : data load to send an eager value
Ds : data load to send a suppressors

kγ : number of tasks PEγ applied for, which are not yet com-
pletely taken in the system

Multicast to neighbors:

Dmγ = Da ∗
∑

Ti∈Eγ

vi (12.11)

where

Dmγ : multicast data load caused by PEγ

Da : data load to send an accelerator

Following from this, we obtain the hormone communication load from
any processing element PEγ at the beginning of the task allocation (self-
configuration) and in the steady state (all tasks are allocated, only self-
optimization and self-healing take place):

StartDbγ = De ∗ kγ

StartDmγ = 0

⎫⎪⎬
⎪⎭ eγ = 0 at the start (12.12)

and

EndDbγ = Ds ∗ eγ

EndDmγ = Da ∗
∑

Ti∈Eγ

vi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ kγ = 0 at the end (12.13)

�
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12.4.2 Overall hormone communication load

The overall hormone communication load introduced by the artificial hor-
mones at any processing element PEγ results from the sum of the multicasts
to its neighbors and the sum of broadcasts of all processing elements:

Dγ =
∑

PEδ∈Ω

Dbδ +
∑

PEδ∈Φγ

Dmδ

where Dγ : overall communication load of PEγ

(12.14)

As a result, we can compute the overall communication load at any processing
element PEγ at the beginning of the task allocation and in the steady state:

StartDγ =
∑

PEδ∈Ω

StartDbδ +
∑

PEδ∈Φγ

StartDmδ

=
∑

PEδ∈Ω

De ∗ kδ

(12.15)

and

EndDγ =
∑

PEδ∈Ω

EndDbδ +
∑

PEδ∈Φγ

EndDmδ

=
∑

PEδ∈Ω

Ds ∗ eδ + Da ∗
∑

PEδ∈Φγ

∑
Ti∈Eδ

vi

(12.16)

Now, we can calculate an upper bound for the overall communication load
at any processing element at the beginning of the task allocation and in the
steady state. We estimate the sums of the individual communication load by
multiplying the maximal communication load with the number of assigned
processing elements.

Considering the broadcast, we estimate the sum of individual broadcast
communication load by multiplying the greatest existing broadcast communi-
cation load of all processing elements with the number of processing elements.

Considering the multicast, we estimate the sum of the individual multicast
communication load of neighbored processing elements by multiplying the
greatest existing multicast communication load with the greatest number of
neighbors existing in the scenario. We obtain for each PEγ ∈ Ω:

StartDγ ≤ ω ∗ max
PEδ∈Ω

{StartDbδ}
= ω ∗ De ∗ kmax

(12.17)

and for each PEγ ∈ Ω holds:

EndDγ ≤ ω ∗ max
PEδ∈Ω

{EndDbδ} + max
PEδ∈Ω

{ϕδ} ∗ max
PEδ∈Ω

{EndDmδ}
≤ ω ∗ Ds ∗ emax + ϕmax ∗ Da ∗ emax ∗ vmax

(12.18)



280 Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln

where

kmax := max
PEδ∈Ω

{kδ}, maximum of all kδ

emax := max
PEδ∈Ω

{eδ}, maximum of all eδ

vmax := max
Ti∈M

{vi}, greatest number of related tasks, see section 12.3.2.2

ϕmax := max
PEδ∈Ω

{ϕδ}, greatest number of all neighbored processing
elements.

�

12.4.3 Example

In this section, we calculate the data load introduced by the artificial hormones
in a concrete scenario. First, we define the structure of the hormones and the
resulting data load.

Eager values,
suppressors 2 bit for the type of hormone

4 bit x-coordinate of PE

4 bit y-coordinate of PE

}
(ID of PE (256 PEs at
maximum))

7 bit for the task ID (128 tasks at maximum)

7 bit value (128 nuances of a hormone)

∑
24 bit

Thus, it follows:
De = Ds = 24 bit

Accelerators 2 bit for the type of hormone

4 bit x-coordinate of PE

4 bit y-coordinate of PE

7 bit for the task ID

7 bit for the ID of related tasks

7 bit value

}
(repeated vi times)

∑
17 + vi ∗ 14 bit

To calculate the worst case, we assume vi = vmax. Thus, it follows:

Da = 17 + vmax ∗ 14 bit
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Now, we define the values for the number of processing elements, tasks and
so on:

ω := 64 (Number of processing elements)
ϕmax := 9 (Number of PEs neighbored to a PE)
kmax := 32 (Maximal number of tasks a PE applied for)
emax := 2 (Maximal number of tasks taken by a PE)
vmax := 8 (Maximal number of tasks related to a task)

Using these values, we obtain for each PEγ ∈ Ω:

StartDγ ≤ 64 ∗ 24 ∗ 32 bit = 49152 bit = 6144 bytes (12.19)

EndDγ ≤ 64 ∗ 24 ∗ 2 + 9 ∗ 2 ∗ (17 + 8 ∗ 14) bit = 674.25 bytes (12.20)

Let’s assume a cycle time of 100 ms (tSD + tDS). Then, we can compute the
maximal data load caused by the artificial hormones for each PEγ ∈ Ω:

StartDSγ ≤ 10 ∗ 6144 bytes/sec = 60 kBytes/sec (12.21)

EndDSγ ≤ 10 ∗ 674.25 bytes/sec ≈ 6.58 kBytes/sec (12.22)

As it can be seen, the data load caused by the artificial hormones is signifi-
cantly higher at the beginning than in the steady state. However, there is only
a small amount of user data to be sent at the beginning because the tasks are
not yet assigned. In the steady state, there is more user data to be sent and
the data load caused by the artificial hormones is small. In the best case, both
effects eliminate each other thus resulting in a constant data load caused by
the artificial hormones.

12.5 Related work

There are several approaches for task allocation in middleware. In [2], the
authors present a scheduling algorithm distributing tasks onto a grid. It is im-
plemented in the Xavantes Grid Middleware and arranges the tasks in groups.
This approach is completely different from ours because it uses central ele-
ments for the grouping: The Group Manager (GM), a Process Manager (PM)
and the Activity Managers (AM). Here, the GM is a single point of failure
because, if it fails there is no possibility to get group information from this
group anymore. In our approach there is no central task distribution instance
and therefore no single point of failure can occur.

Another approach is presented in [7]. The authors present two algorithms
for task scheduling. The first algorithm, Fast Critical Path (FCP) makes sure
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time constrains to be kept. The second one, Fast Load Balancing (FLB) sched-
ules the tasks so that every processor will be used. Using this strategy - espe-
cially the last one - it is not guaranteed that related tasks are scheduled nearby
each other. In contrast to our approach, these algorithms do not include the
failing of processing elements.

In [6], a decentralized dynamic load balancing approach is presented. Tasks
are considered as particles which are influenced by forces like e.g. a load
balancing force (results from the load potential) and a communication force
(based on the communication intensities between the tasks). In this approach,
the tasks are distributed according to the resultant of the different types of
forces. A main difference to our approach is that we are able to provide time
bounds for the self-configuration. Besides our approach covers self-healing,
which is absolutely not considered by this decentralized dynamic load balanc-
ing.

[8] presents a load balancing scheme for task allocation based on local
workpiles (of PEs) storing the tasks to be executed. The authors propose to
execute a load balancing algorithm between two PEs to balance their work-
load. The algorithm is executed with a probability inversely proportional to
the length of the workpile of a PE. Although this approach is distributed it
does not consider aspects like self-healing and real-time constraints.

Other approaches of load balancing are presented in [1, 3, 4, 5, 9]. None
of them cover the whole spectrum of self-x-properties, task clustering, and
real-time conditions like our approach.

12.6 Conclusion and further work

We presented an artificial hormone system to assign tasks to processing el-
ements within a processor grid. The assignment is completely decentralized
and holds self-x features. Besides, we showed that we can guarantee tight up-
per bounds for the real-time behavior of the artificial hormone system as well
as for the data load induced by the artificial hormones.

We implemented a simulator including the presented algorithms and as
future work, we will evaluate the time bounds received by the theoretical
examinations of the hormone system.

Furthermore, we will investigate additional quality properties of the artifi-
cial hormone system like stability of the task assignment and rules for selecting
the level of hormone values to, e.g., obtain organs. Another question in this
scope is how to find an optimal task assignment (if it exists) by the artificial
hormone system.

We will also investigate the artificial hormone system in the scope of a
practical example, the DoDORG project, which deals with a grid of process-
ing elements to be organized by an organic middleware using the artificial
hormone system.
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Summary. The turn to nature has brought us many unforeseen great concepts
and solutions. This course seems to hold on for many research domains. In this
article, we study the applicability of biological mechanisms and techniques in the
domain of communications. In particular, we study the behavior and the challenges
in networked embedded systems that are meant to self-organize in large groups of
nodes. Application examples include wireless sensor networks and sensor/actuator
networks. Based on a review of the needs and requirements in such networks, we
study selected bio-inspired networking approaches that claim to outperform other
methods in specific domains. We study mechanisms in swarm intelligence, the artifi-
cial immune system, and approaches based on investigations on the cellular signaling
pathways. As a major conclusion, we derive that bio-inspired networking techniques
do have advantages compared to engineering methods. Nevertheless, selection and
employment must be done carefully to achieve the desired performance gains.

Key words: bio-inspired networking, autonomic networking, self-organization, net-
worked embedded systems, bio-inspired algorithms

13.1 Introduction

The proliferation of wireless sensor networks (WSN) and similar ad hoc net-
works based on huge amounts of spontaneously interacting nodes is changing
the world of telecommunications. In addition to the increasing number of
communicating nodes, node mobility is an issue as addressed, for example, in
sensor/actuator networks (SANET). Previously, controllability and determin-
ism were the keywords during protocol development and network research.
Based on the primary objectives of WSN, nodes communicate using a ra-
dio interface, they are battery-driven, small, and cover only few resources.
Therefore, new key factors have been identified for developing communication
methods. Above all, scalability of the employed mechanisms is required.

Researchers anticipate self-organization methods as the general solution
to the depicted communication issues in WSN and SANET. Centralized

R.P. Würtz (ed.), Organic Computing. Understanding Complex Systems,
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Fig. 13.1. The changing world: centralized systems, decentralized control, and self-
organization [13].

management and optimized control will be replaced by methodologies that fo-
cus on local knowledge about the environment and adequate decision making
processes. Similar problems are known and well-studied in nature. Therefore,
such biological solutions should be analyzed for adaptation to the communi-
cation in ad hoc networks and WSN.

The goal of this article is to provide an overview of some bio-inspired net-
working mechanisms and to introduce the underlying biological functionality
as well as the adaptation to technical processes. Even though it is not intended
as a general review, it summarizes the best-known approaches and explains
selected mechanisms in more detail.

13.2 Networked embedded systems

Networked embedded systems are used in many application scenarios. Above
all, wireless sensor networks (WSN) are widely studied [3, 6]. Sensor networks
consist of multiple, usually hundreds or even thousands of sensor nodes. Such
networks do not have a predominant topology but are created dynamically, ad
hoc on demand. The nodes themselves can be of any size. Nevertheless, most
publications understand sensor nodes as small, battery-driven devices with
limited processing power and memory, radio communication, and sensors to
measure physical parameters such as the temperature.

Similarly, sensor/actuator networks (SANET) extend the idea of wireless
sensor networks to mobile actuation systems, e.g. robot-like systems. In gen-
eral, such SANET are built of cooperating mobile autonomous systems that
allow some kind of actuation, e.g. handling, mobility [2].
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With WSN and SANET, new issues appeared that are not covered by ex-
isting communication methods and protocols. Some of these issues are inher-
ent in the idea of interconnecting thousands of networked embedded systems,
others evolve based on particular application scenarios of WSN:

Node mobility: In general, sensor networks are believed to be stationary, i.e.,
to have a fixed topology – at least in terms of node location. Admittedly,
node mobility is becoming a major concern of new application scenarios
such as logistics. SANET, on the other hand, inherently include location
dynamics and mobility.

Network size: In contrast to other networks, the number of nodes that are
building a network on demand can be very high. Structured networks such
as the Internet benefit from a hierarchical organization and a centralized
management of subnetworks. WSN and SANET are infrastructureless net-
works facing scalability problems if too many nodes are concerned.

Deployment density: Depending on the application scenario, the node density
in a WSN can be very high. This may break existing medium access control
protocols and lead to energy exhaustion just for neighborhood detection.

Energy constraints: Instead of having unlimited energy for computation and
communication, energy constraints are much more stringent than in fixed
or cellular networks. Usually, sensor nodes are battery operated and in
certain cases, recharging of the energy source is impossible. We distinguish
replenishable power sources, e.g., for wearable sensors, non-replenishable
power sources, e.g. for sensors deployed in remote, hazardous terrain, and
regenerative power sources.

Data / information fusion: Limited bandwidth as well as the mentioned
power constraints demand aggregation techniques. Each data packet that
has to be transported through a WSN is expensive. Aggregated data re-
duce energy consumption and provide higher usefulness.

In summary, it can be said that self-organization mechanisms are needed
for higher scalability in WSN/SANET communication [12]. The basic mech-
anisms available include neighborhood discovery, topology (re-)organization,
and probabilistic approaches. Since optimization on a global level is no longer
possible, there is always a discrepancy between multiple objectives. For ex-
ample, the latency of path-finding with on-demand routing protocols may be
too high and periodic routing overhead in a table-driven routing protocol may
consume a significant amount of bandwidth [1]. On the other hand, the prob-
ability of successful transmission might be too low for stateless approaches.
Therefore, hybrid architectures may improve the scalability and optimize the
network behavior depending on the application scenario.

Figure 13.1 illustrates the control and management of systems consisting
of multiple subsystems. Centralized control is primarily used to operate in an
environment consisting of a few nodes. Using centralized information about
all systems, optimized solutions for communication and task allocation can be
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Fig. 13.2. Antagonism between determinism/controllability vs. scalability in system
management and control [13].

derived. Examples are perfect schedules for medium access and real-time fail-
ure detection and repair. Distributed control allows to manage larger numbers
of systems in a scalable way by preserving most systems characteristics such
as controllability. Nevertheless, optimization becomes harder and predictabil-
ity is reduced. Finally, self-organizing systems should help to overcome all
scalability problems.

Unfortunately, determinism and controllability of the overall system are
reduced. The relation between determinism and scalability is depicted in fig-
ure 13.2. Another issue is the challenge of programming such less predictable
systems showing emergent behavior.

Referring to networked embedded systems and their management and con-
trol, self-organization mechanisms are needed in order to support a large
amount of simultaneously intercommunicating nodes. In WSN and SANET,
we need new methods to identify available communication paths, nodes, and
their capabilities and resources. Additionally, data handling including storage,
aggregation, and distribution must be changed and adapted to the new re-
quirements. All mentioned operations should be possible without knowledge
about the current network topology, available nodes, their addresses, their
location, and others.

13.3 Self-organization: “from nature to engineering”

The turn to nature for solutions to technological problems has brought us
many unforeseen great concepts. This encouraging course seems to hold on
for many aspects in technology. First studies on biological self-organization
and its possible adaptation to technical solutions date back to the 1960ies. Von
Foerster [30] and Eigen and Schuster [16] proposed to employ self-organization



13 Bio-Inspired Networking 289

Fig. 13.3. System control using positive and negative feedback loops.

methods as known from many areas in biology. He saw the primary application
in engineering in general. Nevertheless, it has been shown that communica-
tions can benefit from biologically inspired mechanisms as well.

13.3.1 Basic principles of self-organization

There are three major principles of self-organization mechanisms: feedback
loops, local state evaluation, and interaction between individuals. Addition-
ally, probabilistic methods that provide scalability and some degree of pre-
dictability can be found in nature and adapted to technology. This process
needs careful consideration to prevent mistakes due to limited knowledge
about the biological processes or due to the lack of correlation between the
natural and the technical models [12].

Figure 13.3 depicts a system that employs all three principles. The main
system is performing some action on a source to provide an outcome. Based
on this system, the mentioned mechanisms for self-organization need to be
discussed in more detail:

Feedback loops: One major component in understanding the interaction of
components producing a complex pattern are positive and negative feed-
back loops. Positive feedback acts as an amplifier for a given effect. In
order to prevent overreaction and misregulation, negative feedback is used
to efficiently control the system behavior. An example for a positive feed-
back loop is depicted in figure 13.3, the activation of the processing step.
Additionally, a negative feedback loop is included. The outcome directly
suppresses an environmental reaction and, therefore, reduces the activa-
tion capabilities, i.e., the level of the system’s inherent ability to become
activated due to observed effects.
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Local state: The second ingredient is the local state. This means that all sub-
systems are acquiring and acting upon locally stored information. Any
global control or dependency is prevented in order to enable fully au-
tonomous behavior embedded into a global context. The idea of using
local state only is depicted in our example by missing external control
processes.

Interactions: Information transfer between individuals is necessary to update
the local state. There are two ways to conduct such interactions: direct
interaction or communication between related subsystems and indirect
information exchange by interacting with the environment. This process is
also known as stigmergic [9]. The example in figure 13.3 includes stigmergic
interactions. The system influences the environment (it produces some
effect). This effect can be measured and directly increases or decreases
the activation capabilities to the system behavior.

Probabilistic methods: In order to prevent synchronization problems and to
increase the variety of application domains scalability is often achieved by
random selection.

13.3.2 Bio-inspired techniques in technical systems

The development in the area of bio-inspired engineering is relying on vari-
ous research fields including swarm intelligence, the artificial immune system,
evolutionary and genetic algorithms, and cell and molecular biology based
approaches. Some of the best known approaches should be summarized here
whereas selected methods are depicted in more detail in the following section.

The behavior of large groups of interacting small insects such as ants and
bees builds the basis for the field of swarm intelligence . Simple and seem-
ingly unrelated, autonomously working individuals are considered to compose
complex cooperative tasks. Similar actions are required in various areas of
engineering and computer science. Thus, swarm intelligence is forming a basis
for building self-organizing systems [5, 19]. The focus lies on the formation of
groups or clusters that allow efficient task allocation mechanisms. Successful
application of swarm intelligence methods has been demonstrated in task allo-
cation and control of multi-robot systems [24]. Recently, similar applicability
has been shown in sensor networks [26].

The immune system of mammals builds the basis for research on the ar-
tificial immune system (AIS). The reaction of the immune system, even
to unknown attacks, is a highly adaptive process. Therefore, it seems obvious
to apply the same mechanisms for self-organization and self-healing opera-
tions in computer networks. In the last decade, several architectures for an
AIS have been proposed [20, 17]. Application examples include autonomous
communication [29] as well as ad hoc networking [27] Additionally, security
scenarios including virus and intrusion detection already benefited from AIS
approaches [22, 23].
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Fig. 13.4. The emergent collective intelligence of groups of simple agents [5].

Evolutionary algorithms (EA) are self-manipulating mechanisms. The
evolution in nature is the basis for such methodologies. In particular, there are
multiple ways for organisms to learn. A natural selection process (survival of
the fittest) is going on letting only the optimal prepared organisms to survive
and to reproduce. Changes appear for example by mutations. An overview to
evolutionary algorithms is provided for example in [4, 7].

An emerging research area looks for cell and molecular biology based
approaches. All organisms are built in the same way. They are composed of
organs, which consist of tissues and finally of cells. This structure is very
similar to computer networks, and so are the cellular signaling pathways.
Therefore, research on methods in cell and molecular biology promises high
potential for computer networking in general and adaptive sensor networks
and network security in particular [14, 25].

While many advantages can be identified that make the use of bio-inspired
techniques successful, we also need to comment the limitations of bio-inspired
mechanisms. Biology always makes compromises between different goals and
it is well known that biology sometimes fails. Additionally, some natural mech-
anisms are not well understood and well-defined problems may be solved by
other means.

13.4 Bio-inspired networking

Primarily, the goal of this section is to demystify the concepts of bio-inspired
networking. Based on selected approaches, the objectives and solution paths
of biologically inspired methods are depicted in more detail.

13.4.1 Swarm intelligence

The collaborative work of a multitude of individual autonomous systems is
necessary in many areas of engineering. Swarms of small insects such as bees
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Fig. 13.5. Simulation setup for evaluation of the attractor based task allocation
and routing.

or ants address similar issues. For example, ants solve complex tasks by simple
local means. There is only indirect interaction between individuals through
modification of the environment, e.g., pheromone trails are used for efficient
foraging. Finally, the productivity of all involved ants is better than the sum of
their single activities and ants are “grand masters” in search and exploration.

The basic principles are simple. All individuals – the systems that collab-
orate on an overall task – follow simple rules that lead to impressive global
behavior, which emerges based on the simple rules and interactions between
the systems, either directly or indirectly via the environment. An example is
described in figure 13.4. The foraging algorithm used by termites to collect
wood chips is shown on the left hand side. Using a simulation model, the over-
all visible behavior was studied [5]. Quickly, the chips are heaped together and
structures emerge from the scene as shown on the right hand side.

Attractor-based routing and task allocation

As a specific example to demonstrate the capabilities of swarm intelligence
methods in networking, we chose an attractor scheme for routing and task
allocation [26]. In sensor networks supported by mobile robots, routing de-
cisions usually need to be taken on demand because the network topology
changes over time. Additionally, multiple tasks may be needed to be executed
by different systems in the network. Usually, static programming or complex,
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auction-based task allocation strategies are used, whereas those approaches
fail in large scale and highly dynamic scenarios. The algorithm described here
is based on the AntHocNet approach that enables self-organized routing con-
trol in ad hoc networks [10]. The pheromone trail mechanism is exploited
to search for optimal paths through ad hoc networks. After a short learn-
ing phase, the optimal solution can be derived from messages transmitted
previously over suboptimal paths.

The new approach is based on a probabilistic scheme. Each node performs
a local decision process that provides the basis for task allocation and routing
decisions. The basic idea is as simple as powerful. If a node successfully per-
formed a particular task (whether forwarding a packet or anything else), its
probability to perform this task again is increased. Similarly, the probability
is decreased if the node failed for a particular task. Additionally, each node
observes the behavior of the surrounding nodes to update its local behavior
accordingly.

More formally, this algorithm can be written as follows. Each node n as-
sociates to a task Ti to an attractor τi with i ∈ T . At the moment of selecting
a task to perform, the node computes a probability for choosing task Ti as
follows:

P (i) =
τβ
i∑

k∈T

τβ
k

(13.1)

The parameter β was introduced to increase the exploitation of good paths.
Each node initializes τ i with τ init. If the node successfully performed the given
task i, τi is recalculated as follows: τi = min{τmax, τi + Δτ}. Similarly, τi is
reduced for unsuccessful operations: τi = max{τmin, τi − Δτ}.

The complete algorithm, the corresponding calculations, and an in-depth
evaluation can be found in [26]. In that paper, a set of experiments was per-
formed to demonstrate the advantages of the attractor scheme. The simulation
setup is shown in figure 13.5. 25 nodes were places in a grid on a playground
of 500m×500m. Four different tasks were defined to be performed by all these
nodes. Disregarding task allocation, we focus on the associated route selection
in this network.

Figure 13.6 shows selected simulation results. On the left hand side, we
show a typical snapshot of the distribution of tasks in the network. The plot
refers to task T3. It can be seen that when a node had high probability of
performing T3, its neighbors were likely to have a low one. The routes that
were used to send the data to the base host are depicted in the same figure on
the right. The network was split in two halves: there were few links between the
top right triangle and the bottom left triangle. This figure does not represent
the steady state of the network. The network reached a dynamic equilibrium,
where things continually changed. This is especially true for the depicted
routes, since the routing table entries were removed after a while, and new
discoveries took place.
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Fig. 13.6. Simulation results [26]. Left: Distribution of task T3 among the nodes.
The darker the circle, the higher is the probability that an agent performs T3. Right:
Routes to deliver the output of T3 to the base host (in the upper left corner). The
arrows show the known next hops for every node. Their thickness is proportional to
the probability of choosing a node as next hop.

This example illustrates an architecture for attractor-based task allocation
and routing. The nodes make use of solutions inspired by ants’ behavior. The
control architecture is based on strong interlayer and interagent interactions.
The latter are local, meaning that they occur only between agents within a
given range, smaller than the experimental area. The architecture is based on
probabilistic decisions. During the lifetime of the network, the nodes adapt
their probability to execute one task from a given set. The architecture exploits
the interactions between agents, but only within a limited range. The local
interactions are, however, sufficient to induce a global pattern, i.e., to provide
a self-organizing behavior. No particular knowledge of the environment or of
the other nodes’ activity is required. Moreover, the architecture is based on
a cross-layer design, in which application and network layers collaborate on a
common objective.

13.4.2 Artificial immune system

Artificial immune systems are computational systems inspired by theoretical
immunology and observed immune functions, principles and models, which
are applied to complex problem domains [8]. The primary goal of an artificial
immune system (AIS) is to efficiently detect changes in the environment or
deviations from normal system behavior. The most impressing capabilities of
the immune system are its recognition capabilities (anomaly detection, noise
tolerance), its robustness, diversity, the capability of reinforcement learning,
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and the possibility to memorize observations. These features allow to build
self-optimizing and self-learning processes.

The role of the mammalian immune system can be summarized as follows.
It should protect the body from infections. For this, two immune responses
were identified. The primary one is to launch a response to invading pathogens
leading to an unspecific response (using leucoytes). In contrast, the secondary
immune response remembers past encounters, i.e., it represents the immuno-
logic memory. It allows a faster response the second time around showing a
very specific response (using B-cells and T-cells).

The immune recognition is based on the complementarity between the
binding region of a receptor and a portion of an antigen called epitope. An-
tibodies have a single type of receptor, while antigens might show several
epitopes. This means that different antibodies can recognize a single antigen.
The immune system needs to be able to differentiate between self and non-
self cells. Antigenic encounters may result in cell death; therefore, the immune
system establishes some kind of positive and negative selection.

The scope of AIS is widespread. There are applications for fault and
anomaly detection, data mining (machine learning, pattern recognition),
agent-based systems, control, and robotics. In the mammalian immune sys-
tem, the shape of the molecules defines the degree of binding. In an AIS,
a similar distance measure is needed. Typically, antigens and antibodies
are described in form of vectors, i.e. Ab = 〈Ab1, Ab2, . . ., AbL〉 and Ag =
〈Ag1, Ag2, . . ., AgL〉. Different shape spaces can be used depending on the
current environment:

Real-valued shape space: the attribute strings are real-valued vectors.
Integer shape space: the attribute strings are composed of integer values.
Hamming shape space: composed of attribute strings built out of a finite

alphabet of length k.
Symbolic shape space: usually composed of different types of attribute

strings, such as a ‘name’, a ‘color’, etc.

Based on this definition, the matching of antigens to antibodies can be de-
scribed using their affinity. The affinity is related to the distance. For example,
the Euclidean distance can be used:

D =

√√√√ L∑
i=1

(Abi − Agi)2 (13.2)

Other distance measures such as Hamming or Manhattan can be used as
well. The main application in computer science and engineering is anomaly
detection. The normal behavior of a system is often characterized by a series of
observations over time. The problem of detecting novelties, or anomalies, can
be viewed as finding deviations of a characteristic property in the system. For
computer scientists, the identification of computational viruses and network
intrusions is considered one of the most important anomaly detection tasks.
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One of the first AIS was presented in [20]. Based on this work, misbehavior
detection and attack or intrusion detection systems were developed according
to the working principles of the natural immune system [22, 23, 27]. Besides
network security applications, the operation and control of multi-robot sys-
tems was addressed by AIS approaches. The collaborative behavior of robots
collecting objects in an environment is difficult to optimize without central
control. It was shown that an emerging collective behavior through commu-
nicating robots using an AIS overcomes some of the problems. The immune
network theory was used to suppress or encourage robots behavior [28].

Misbehavior detection in mobile ad hoc networks

In ad hoc networks, each node serves as both an end system and a router.
This allows to build dynamic on demand network topologies supporting mo-
bile systems as well. Various routing protocols for mobile ad hoc networks
have been proposed focusing on the efficiency in terms of route detection and
maintenance (time, overhead, etc). This dynamic behavior allows – on the
one hand – to enable sophisticated mobile applications. On the other hand,
such dynamics also open ways to attack the network on the routing protocol
layer. Such attacks might be initiated for denial of service reasons as well as
for taking over the ad hoc network for private services. A third reason for
misbehavior in ad hoc networks is the occurrence of faulty nodes. Either the
system might be erroneous or the routing protocol might be incorrectly imple-
mented. A misbehavior detection scheme using an artificial immune system
has been developed [27], which works for DSR (dynamic source routing), a
particular ad hoc routing protocol. The goal was to build a system that, like
its natural counterpart, automatically learns and detects new misbehavior. It
employs negative selection, an algorithm used by the natural immune system.
In the original paper, the mapping of the natural immune system concepts
such as self, antigen and antibody to a mobile ad hoc network is defined and
the resulting algorithm for misbehavior detection is presented. The following
elements have been defined:

Body: the entire mobile ad-hoc network.
Self-Cells: well behaving nodes.
Non-Self Cells: misbehaving nodes.
Antigen: Sequence of observed DSR protocol events recognized in sequence

of packet headers. Examples of events are “data packet sent”, “data packet
received”, “data packet received followed by data packet sent”, “route
request packet received followed by route reply sent”.

Antibody: A pattern with the same format as the compact representation
of antigen

Negative Selection: Antibodies are created during an offline learning
phase. In a deployed system this would be done in a testbed with nodes
deployed by an operator.
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Fig. 13.7. Impact of misbehavior and parameter tuning [27]: Probability of correct
detection of misbehaving nodes (true positive) and erroneous detection of well be-
having nodes (false positive) vs. misbehavior probability for the misbehaving node
(left) and number of self antigens collected for learning (right).

Since antigens represent traces of observed protocol events, such sequences
would become very long in a short period of time. Therefore, all traces need
to be limited by a time limit Δt for the observation interval. A typical se-
quence (the letters represent different protocol events) would look like this:
l1 = (EAFBHHEDEBHDHDHDHD. . .). Then, a number of “genes” are
defined. A gene is an atomic pattern used for matching. Typical examples
are g1=#E in sequence or g2=#(H*D) in sequence. With this information, l1
can be mapped to an antigen like this: l2=(3 2 7 6). Finally, the antigens are
encoded in binary representation. The numeric range of antigens is split into
several intervals and the bit in the representation is set to one if the antigen
belongs to this particular interval: l3=(0000000010 0000000010 0000001000
0000001000).

As previously described, a matching function must be defined to associate
antigens to antibodies. Antibodies have the same format as antigens (such
as l3), except that they may have any number of nucleotides equal to 1. An
antibody matches an antigen if the antibody has a 1 in every position where
the antigen has a 1. This approach has already been successfully demonstrated
in [21]. It is used in this paper as a method that allows a detection system to
have good coverage of a large set of possible non-self antigens with a relatively
small number of antibodies. Antibodies are created randomly, uniformly over
the set of possible antibodies. During negative selection, antibodies that match
any self antigen are discarded.

The primary evaluation criteria for such detection approaches are the true
positive detection rate and the false positive detection rate, i.e., the number
of successfully identified misbehaving nodes and the number of accidentally
mis-identified nodes, respectively. As shown in figure 13.7, the approach yields
quite encouraging results.
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Fig. 13.8. Overview of the regulation of signaling cascades responsible for regulating
the blood pressure [15].

13.4.3 Intercellular information exchange

Regarding efficient networking, investigations into the structure and organi-
zation of intercellular communication seem to be valuable. Molecular biology
is the basis of all biological systems and features high specificity of informa-
tion transfer. Interestingly, we find many similar structures in biology and
in technology, especially in computer networking [25]. The primary concepts
are intra- and intercellular signaling pathways and diffuse communication in
large-scale structures. Considering the knowledge about molecular biology and
its similarity to communication networks [14], it is possible to extract the fol-
lowing principles: efficient response to a request, shortening of information
pathways, and directing of messages to an applicable destination.

The information pathways can be distinguished into local and remote.
Local: a signal reaches only cells in the neighborhood. The signal induces a
signaling cascade in each target cell resulting in a very specific response, which
vice versa affects neighboring cells. Remote: a signal is released into the blood
stream, which carries it to distant cells and induces a response in these cells,
which then passes on the information or can activate helper cells (e.g. the
immune system). Signals can appear in the form of particles, i.e., proteins
and hormones, as well as of environmental conditions that can be observed
and changed, e.g. the calcium concentration.

Inhibitors and promoters forming efficient feedback loops

An example for successful application of the described communication method
in WSN is the feedback loop mechanism [15]. Here, the Angiotensin-based
regulation process for the blood pressure was used to model the control loop
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for an efficient regulatory process in an organism. In the case of decreasing
arterial blood pressure, the kidney starts to produce a specific protein, renin.
This protein initiates a cascade of conversions and activations, respectively. So
it promotes the conversion of another protein (angiotensinogen) to a shorter
one (now called angiotensin I), which is finally translated to angiotensin II.
This protein represents the final response, which now has many effects on
different cells in different organs in order to increase the blood pressure to
its normal level. At the same time, a molecular negative feedback mechanism
finishes the whole cellular reaction. If all receptor are bound by angiotensin
II, the reaction is blocked, which in turn also blocks the primary conversion
of angiotensinogen to angiotensin II in the way that the initial renin secretion
is blocked. This process is shown in figure 13.8.

This process was adapted to work in a sensor network by using the follow-
ing two concepts:

1. The density of the sensor network allows for alternative feedback loops
via the environment: directly via the physical phenomena to be controlled
by the infrastructure.

2. Indirect communication allows for more flexible organization of au-
tonomous infrastructures and reduces the number of control messages.

In a sensor network, the control of activities requires information exchange
between multiple nodes in the network. Such communication is needed for
at least two reasons. First, the control information must be transported to
the appropriate destination and, second, the destination must respond to the
request by confirming the instructions. All conventionally designed network
protocols for such a function follow the same principles. Transmission of a
data packet destined for the particular target is initiated. State information
is accumulated at several points in the network until a response packet is
received which confirms the transaction. The paradigms for data transport
in sensor networks are already changing. Directed diffusion, which was in-
troduced in [18], has some interesting features: data-centric dissemination,
reinforcement-based adaptation to the empirically best path, and in-network
data aggregation and caching. Similar changes are expected for the control
information flow which we are focusing on.

As learned from biology, a diffuse communication principle has been pro-
posed [11, 15]. Each message to be sent is given a priority, which reflects
the importance of achieving the particular task. Based on this priority, the
message is sent to a percentage of the direct neighbors and an even lower
percentage of remotely accessible nodes. This process is repeated until the
desired job is confirmed running or the job is canceled globally. Thereby, a
random factor is applied to the dispersion of information or, in particular,
to the distribution of tasks. The benefit lies in better system efficiency and
reliability, especially in unreliable multihop ad hoc wireless sensor networks.
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13.5 Conclusion

In conclusion, it can be said that many approaches for bio-inspired network-
ing have been studied and we can already see first impressive solutions and
applications. Basically, the following mechanisms have been adapted to solve
open issues in networking: feedback loops, i.e. positive feedback to initiate
actuation or data aggregation, and negative feedback for network congestion
control and smooth regulation; local state information for efficient data fusion,
energy control, and clustering; and weighted probabilistic approaches for task
allocation, controlled communication and congestion control. Finally, we are
facing a multi-objective optimization process that balances between overhead
(latency vs. energy) vs. predictability.

Self-organization mechanisms for communication and coordination be-
tween networked embedded systems need further research and development.
There are many objectives and many directions, but similar solutions can be
derived. Bio-inspired networking is a powerful approach among several others.
Ongoing research objectives include efficient data dissemination, handling and
storage in WSN as well as task allocation schemes and distributed control in
SANET.
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together with Dr. Bettina Krüger, Dept. of Physiology, University of Erlangen-
Nuremberg, Germany.

References

1. K. Akkaya and M. Younis. Energy-aware routing of time-constrained traffic in
wireless sensor networks. Journal of Communication Systems, Special Issue on
Service Differentiation and QoS in Ad Hoc Networks, 17(6):663–687, 2004.

2. I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research
challenges. Elsevier Ad Hoc Network Journal, 2:351–367, October 2004.

3. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on
sensor networks. IEEE Communications Magazine, 40(8):102–116, August 2002.

4. P. J. Bentley, T. Gordon, J. Kim, and S. Kumar. New trends in evolutionary
computation. In Congress on Evolutionary Computation (CEC-2001), pages
162–169, Seoul, Korea, May 2001.

5. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York, 1999.

6. D. Culler, D. Estrin, and M. B. Srivastava. Overview of sensor networks. Com-
puter, 37(8):41–49, August 2004.

7. S. K. Das, N. Banerjee, and A. Roy. Solving otimization problems in wireless
networks using genetic algorithms. In Handbook of Bio-inspired Algorithms.
2004.



13 Bio-Inspired Networking 301

8. L. N. de Castro and J. Timmis. Artificial Immune Systems: A New Computa-
tional Intelligence Approach. Springer, Berlin, 2002.

9. G. Di Caro and M. Dorgio. AntNet: Distributed stigmergetic control for com-
munication networks. Journal of Artificial Intelligence Research, 9:317–365,
December 1998.

10. G. Di Caro, F. Ducatelle, and L. M. Gambardella. AntHocNet: An adaptive
nature-inspired algorithm for routing in mobile ad hoc networks. European
Transactions on Telecommunications, Special Issue on Self-organization in Mo-
bile Networking, 16:443–455, 2005.

11. F. Dressler. Locality driven congestion control in self-organizing wireless sensor
networks. In 3rd International Conference on Pervasive Computing (Pervasive
2005): International Workshop on Software Architectures for Self-Organization,
and Software Techniques for Embedded and Pervasive Systems (SASO+STEPS
2005), Munich, Germany, May 2005.

12. F. Dressler. Self-organization in ad hoc networks: Overview and classification.
Technical Report 02/06, University of Erlangen, Dept. of Computer Science 7,
March 2006.

13. F. Dressler. Self-Organization in Sensor and Actor Networks. John Wiley &
Sons Ltd., West Sussex, 2007.
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Summary. Two main theories exist with respect to face encoding and representa-
tion in the human visual system (HVS). The first one refers to the dense (holistic)
representation of the face, where faces have “holon”-like appearance. The second one
claims that a more appropriate face representation is given by a sparse code, where
only a small fraction of the neural cells corresponding to face encoding is activated.
Theoretical and experimental evidence suggest that the HVS performs face analysis
(encoding, storing, face recognition, facial expression recognition) in a structured
and hierarchical way, where both representations have their own contribution and
goal. According to neuropsychological experiments, it seems that encoding for face
recognition, relies on holistic image representation, while a sparse image represen-
tation is used for facial expression analysis and classification. From the computer
vision perspective, the techniques developed for automatic face and facial expres-
sion recognition fall into the same two representation types. Like in Neuroscience,
the techniques which perform better for face recognition yield a holistic image rep-
resentation, while those techniques suitable for facial expression recognition use a
sparse or local image representation. The proposed mathematical models of image
formation and encoding try to simulate the efficient storing, organization and coding
of data in the human cortex. This is equivalent with embedding constraints in the
model design regarding dimensionality reduction, redundant information minimiza-
tion, mutual information minimization, non-negativity constraints, class informa-
tion, etc. The presented techniques are applied as a feature extraction step followed
by a classification method, which also heavily influences the recognition results.
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sentation and Encoding, Face and Facial Expression Analysis and Recogni-
tion.
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14.1 Introduction

In the human visual system (HVS), the visual image propagates from retina
to the inferotemporal (IT) cortex, where the visual signal is decoded and pro-
cessed. The question of how the human brain stores the image patterns in
its visual cortex and how many pattern-specific neurons are activated and re-
spond to a specific visual stimulus is a fundamental problem of psychology. A
huge amount of research has been done in the attempt to understand how in-
formation captured by sensory channels is represented in the brain at different
levels. Nowadays, this task is not only a concern of psychologists but also of
image processing and computer vision experts. The pattern features that must
be extracted from the data is a task-dependent matter. Among the huge visual
data our eyes are overwhelmed by, facial images receive particular attention,
due to their biological and sociological significance. This fact explains why the
face analysis enjoys an important status with psychologists, anthropologists,
neuroscientists and computer scientists alike. It is well known that in social
interaction the human face constitutes the primary source of information for
person recognition. As far as the computer scientists are concerned, the devel-
opment of an automated face recognition system is necessary in order to cope
with a large and complex area of applications, such as biometrics for secu-
rity, surveillance, banking, law enforcement, video indexing, human-computer
interaction, etc.

Another aspect closely related to face analysis is provided by facial ex-
pressions. Emotions can typically be conveyed by facial expressions. Like for
face recognition, the recognition of facial expressions is a subject of interdisci-
plinary research. From the psychological and anthropological perspectives the
following questions are addressed: What information does a facial expression
typically convey? Can there be emotions without facial expression? Can there
be facial expression without emotions? How do individuals differ in their fa-
cial expression of emotions [23]? It is well known among psychologists that
the social context is dominated by language. However, the language alone is
insufficient when it comes to successful social interaction. Plenty of commu-
nication comes through non-verbal communication. As Mehrabian suggested
in [40], people express only 7% of the messages through a linguistic language,
38% through voice, and 55% through facial expressions.

A good understanding of the underlying process that governs the appear-
ance of expressions is necessary in order to develop an appropriate facial im-
age representation. In a human-computer interaction task, this constitutes the
input to a human facial expression recognition system with satisfactory clas-
sification performance and, eventually, to artificial facial expression synthesis
on an avatar for friendlier human-computer interface.

This chapter is organized as follows. Face encoding in the HVS from the
neuroscience perspective is described in section 14.2. It starts with the analy-
sis of dense, sparse and local face image representation followed by examples
of these representations for face and facial expression recognition. A com-
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Fig. 14.1. Visual pathway in HVS. Information passes from the retina to the lateral
geniculate nucleus (LGN) before arriving in cortical area V1. Further processing
occurs in areas V2 and V4 and the posterior and anterior inferotemporal (IT) cortex
(PIT and AIT).

puter vision analysis of face and facial expression recognition approaches is
undertaken in section 14.3, where both dense and sparse image representation
techniques are presented. The chapter ends with a discussion in section 14.4.

14.2 Face encoding in human visual system: a
neuroscience view point

14.2.1 Dense and sparse image representation

How can we represent facial image information so that it can activate a rep-
resentation in human memory under various conditions? Is human perception
of a facial image based on its parts or it is viewed as a whole? Despite the
huge amount of psychological research done in this respect, there is no general
consensus in answering these questions. Rather, the answer to the problem of
how the visual cortex understands complex objects, and, in particular human
faces, is a controversial one. In recent years it has been argued from a visual
neuroscience viewpoint that the architecture of the visual cortex suggests a
hierarchical organization, in which neurons become selective to progressively
more complex aspects of image structure.

Figure 14.1 depicts the visual pathway starting from the retina and ending
at the two regions of inferotemporal cortex – IT (PIT and AIT). Multiple rep-
resentations of the retinal space are mapped onto the cortex in a manner that
preserves the visual topology. These representations define the visual mod-
ules: V1, V2, V4, IT. Whereas the earliest stages of the human visual system
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(e.g. retina and V1 neurons) seem to produce a local distributed image rep-
resentation, as we step into the higher visual system levels (such as V2, V4
areas or IT), the neurons have increasing receptive field sizes, being able to
tackle increasingly complex stimuli [34]. Concerning neuroscience, the type of
image encoding is related to the number of neurons that are active (respond)
to a certain piece of information represented by a specific sensory stimulus
caused by the image. We refer to a local image code when only a single indi-
vidual specific cell is activated. We have a dense image code, when a large cell
population with overlapping sensory input is activated and contributes to the
image representation. The local code is “computed” very fast and occupies lit-
tle memory. However, it cannot generalize (i.e., when trained with a sufficient
number of samples, it achieves satisfactory results when tested on samples
from the training set, but performs poorly on new test samples not belong-
ing to the training set) [27]. This is caused by the fact that the input-output
unit association (as in single-layer neural networks) is very weak and a new
sample cannot be linked with the old association learned during the training
process. On the other hand, a system based on a dense code suffers from slow
training, requires heavy training and is likely to produce redundant image
representations. However, it has a large capacity of making new associations.
In between local and dense codes, we have the sparse image codes, where only
a fraction of a large neuronal population is active. It is a trade-off between
dense and local image codes, combining their advantages and trying to elimi-
nate their drawbacks. Dense and local codes are closely related to holistic and
local (component, or part-based) image representation and processing. The
term holistic refers to an image representation which stores a face as a per-
ceptual whole, without explicitly specifying its parts (components). The term
component describes the separated parts of the face (e.g. eyes, nose, mouth,
chin) that are perceived independently as distinct parts of the whole.

Atick and Redlich [1] support the idea of a dense image code within the
HVS and argue for compact, densely decorrelated codes for image representa-
tion. They have demonstrated that receptive fields of retinal ganglion cells can
be viewed as local “whitening” filters that remove second-order correlations
between image pixels. Bandpass, multiscale and oriented receptive fields of
V1 neurons may also be considered as filters that remove second-order corre-
lation, the way Principal Component Analysis (PCA) does. Regarding human
facial images, PCA has a certain appeal as a psychological model of face per-
ception and memory. For example, the application of principal components
is consistent with psychological evidence that the PCA of a set of face im-
ages accounts for some aspects of human memory performance, as shown by
Valentine [56].

Ample evidence for sparse image coding within HVS has been collected
by other researchers. They argue for a sparse image representation that leads
to “efficient coding” in the visual cortex [26]. Since spatial receptive fields of
simple cells (including V1 neurons) have been reasonably well described phys-
iologically as being localized, oriented and bandpass, Olshausen and Field [42]
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Fig. 14.2. Thatcher illusion [54]. The eyes and mouth of Margaret Thatcher (former
Prime Minister of England whose face is depicted in the left hand image) have been
inverted relative to the rest of her face (middle and right hand image). When the
picture is viewed upright the face appears (middle image) highly grotesque. This
strange distortion is much less evident when the face is turned upside-down (right
hand image). Reproduced with permission from [54].

show that efficient image coding can be produced by considering an approach
where the image is described by a small number of descriptors. These descrip-
tors can be found by applying principles such as entropy minimization [3],
which is equivalent to minimizing the mutual information in a such a way
that the higher-order correlation between images is removed. Palmer [45] and
Wachsmuth et al. [58] have drawn psychological and physiological evidence
for parts-based object representations in the brain. Biederman came up with
the theory of recognition-by-components (RBC) [7]. Empirical tests support
his idea that complex objects are segmented into components called ‘geons’,
which are further used by humans for image understanding. The “Thatcher
illusion” presented in [54] suggests that parts of the face are processed inde-
pendently. As depicted in figure 14.2 the rotated face seems to be processed
by matching parts, which could be the reason why the face looks normal when
turned upside-down.

Another sparse model of the neural receptive fields in early visual system
was provided by Gabor functions [37]. A Gabor function is a sinusoid win-
dowed with a Gaussian function. Its size, frequency and orientation can be
manipulated to produce a wide range of different receptive field models. By
convolving the image with the Gabor functions, a new image representation
can be achieved with features that are sparse, oriented and localized.

Despite the large number of experiments and investigations, it is still un-
clear which approach (holistic or sparse) best fits for face image processing in
terms of optimal image coding. This process is rather task-dependent [8, 16].
For instance, some evidence has been found that face identification and facial
expression recognition are two independent tasks based on different repre-
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sentations and processing mechanisms. This hypothesis comes from the dis-
sociation of these two processes found in brain damaged patients. It leads
to the hypothesis that multiple representations of faces may reside in the
visual cortex. The IT area of the temporal lobe contains neurons whose re-
ceptive fields cover the entire visual space. It also contains specialized neurons
(face cells) that are selectively tuned to faces. There are dedicated areas in
temporal cortical lobe that are responsible for processing information about
faces [20, 47, 33]. It was also found that in AIT areas neurons with responses
related to facial identity recognition exist, while other neurons (located in the
superior temporal sulcus) are specialized to respond only to facial expressions
[28].

14.2.2 Face and facial expression recognition

Experimentally, evidence for both sparse and dense face representations in the
HVS has been found by neurophysiologists. However, the contribution of each
representation depends on the task to be processed. While face recognition
seems to favor a dense image representation (hence producing a holistic ap-
pearance of the faces), a more sparse (or even local) image representation has
been found to account for facial expression analysis. This difference has been
noticed in several works. Tanaka and Farah presented evidence in favor of a
holistic process involved in face recognition [51]. These findings are stressed
by the work of Farah et al. [25], which brings new evidence that part-based
shape representation for faces has less impact in recognition than the holis-
tic one. Furthermore, their theory is emphasized by the work of Dailey and
Cottrell [19].

Contrary to representation for face identification, the work of Ellison and
Massaro [24] has revealed that facial expressions are better represented by
facial parts, suggesting non-holistic representation. This is consistent with re-
search results showing that human subjects respond to information around
the eyes independently from variation around the mouth and they are able
to recognize and distinguish isolated parts of faces. The dissociation between
face and facial expression recognition is also noted by Cottrell et al. [16] who
found that PCA (which produces eigenfaces) performs well for face recogni-
tion but eigeneyes and eigenmouth (nonholistic eigenfeatures) perform better
in recognizing expressions than eigenfaces, suggesting that eigenfeatures might
transmit facial expression information. One of the techniques successfully ap-
plied to classify facial actions related to facial expressions, was Independent
Component Analysis (ICA), which looks for components as independent as
possible from each other and produces image features that can mimic the out-
put of V1 receptive fields with orientation selectivity, bandpass and scaling
properties [6]. In a direct comparison between PCA and ICA, Draper et al. [22]
found that facial identity recognition performance is better when the features
are represented by a holistic approach (PCA) while an approach based on
more localized features (ICA) performs better for facial action recognition.
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14.3 Face and facial expression analysis: a
computer-vision view point

The HVS often serves as an informal standard for evaluating systems. There-
fore, not surprisingly, most face analysis approaches rely on biologically in-
spired models. To be plausible, these computer vision models have to share
some characteristics and constraints with their organic models. A common
characteristic of the proposed HVS models is the dimensionality reduction
principle of image space. This physical constraint is easily understood if we
consider, for instance, that an image of 64×64 pixels has dimensionality 4096.
It is commonly accepted that the intrinsic dimensionality of the space of pos-
sible faces is much lower than that of the original image space. Basically, the
latent variables incorporated there are discovered by decomposing (project-
ing) the image onto a linear (nonlinear) low dimensional image subspace. By
reference to neuroscience, the receptive fields can be modeled by the basis
images of the image subspace and their firing rates can be represented by the
decomposition coefficients [42].

In order to generate the subspace image representation produced by the
methods presented in this chapter, 164 image samples from the Cohn-Kanade
AU-coded facial expression database [32] have been used. The number of basis
images (subspace) was chosen to be 49.

14.3.1 Holistic image representations

As already mentioned, one of the most popular techniques for dimensional-
ity reduction is PCA, which represents faces by their projection onto a set
of orthogonal axes (also known as principal components, eigenvectors, eigen-
faces, or basis images) pointing into the directions of maximal covariance in
the facial image data. The basis images corresponding to PCA are ordered
according to the decreasing amount of variance they represent, i.e., the respec-
tive eigenvalues. PCA-based Representations of human faces give us a dense
code and the post-processed images have a holistic (“ghostlike”) appearance,
as can be seen from the first row of figure 14.3.

The principal components produce an image representation with minimal
quadratic error. One of the proposed general organizational principles of the
HVS refers to redundancy reduction. In PCA, this is achieved by imposing
orthogonality among the basis images, thus redundancy is minimized. The
nature of information encoded in the basis images was analyzed by O’Toole
et al. [43] and Valentin and Abdi [57]. They found that the first basis im-
ages (containing low spatial frequency information) were most discriminative
for classifying gender and race, while the basis images with small eigenvalues
(corresponding to a middle range of spatial frequencies) contain valuable in-
formation for face recognition. This is coherent with findings that the face cells
within HVS respond most strongly to face images containing energy within
a middle range of spatial frequency between 4 and 32 cycles per image [49].
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Fig. 14.3. Holistic subspace image representation. From top to bottom, each row
depicts the first 10 basis images (out of 49) corresponding to PCA, FLD, ICA2 and
NMF. For PCA the basis images are ordered by decreasing variance, for ICA2 and
NMF by decreasing kurtosis.

Also, different components were found to be responsible for encoding identity
and facial expression by Cottrell et al. in [15].

PCA has been successfully applied to face recognition [17], [5] and [55],
and facial expression recognition, respectively [18], [44] and [14]. One statisti-
cal limitation of PCA is that it only decorrelates the input data (second-order
statistics) without addressing higher-order statistics between image pixels. It
is well known and accepted that, at least for natural stimuli, important in-
formation (e.g. lines, edges) is encoded in the higher-order statistics. Another
limitation is related to the poor face recognition results for PCA when the
faces are recorded under strong illumination variations.

Another holistic subspace image representation is obtained by a class-
specific linear projection method based on Fisher’s linear discriminant (FLD)
[5]. This technique projects the images onto a subspace where the classes are
maximally separated by maximizing the between-classes scatter matrix and
minimizing the within-class scatter matrix at the same time. The basis im-
ages obtained through FLD are depicted in the second row of figure 14.3. This
approach has been shown to be efficient in recognizing faces, outperforming
PCA. Although this method seems to be more robust than PCA when small
variation in illumination conditions appears, it fails in case of strong illumina-
tion changes. This is due to the assumption of linear separability of the classes.
This assumption is violated, when strong changes in illumination occur. An-
other drawback of this method is that it needs a large number of training
image samples for reasonable performance. Furthermore, the projection onto
too few subspace dimensions does not guarantee the linear separability of the
classes, hence the method will yield poor performance.

Along with redundancy reduction, another principle of HVS image coding
mechanism is given by phase information encoding. It was shown by Field [26]
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that methods relying only on second order statistics capture the amplitude
spectrum of images but not the phase. The phase spectrum can be captured by
employing higher order statistics. This has been proven to be accomplished by
extracting independent image components [6]. There are several optimization
principles taken into account when extracting independent components. The
one described in [6] is based on the maximal information transfer between
neurons and, among all the proposed ICA techniques, it seems to be the most
plausible approach from the neuroscientific point of view.

Bartlett et al. [4] used two ICA configurations to represent faces for recog-
nition. PCA was carried out prior to ICA for dimensionality reduction. An
intermediate step for “whitening” the data has been introduced between PCA
and ICA processing. The data were then decomposed into basis images and de-
composition coefficients. Their second ICA configuration (ICA2) yields holistic
basis images very similar to those produced by PCA. Such basis images are
depicted in the third row of figure 14.3. In that case, ICA is applied to the pro-
jection matrix containing the principal components. Under this architecture,
the linear decomposition coefficients are as independent as possible.

A recently proposed subspace image decomposition technique is Nonnega-
tive Matrix Factorization (NMF) [36], which allows the data to be described as
a combination of elementary features that involve only additive parts to form
the whole. Both basis images and decomposition coefficients are constrained
to be non-negative. Allowing only addition for recombining basis images to
produce the original data is justified by the intuitive notion of combining parts
to form the whole image. Another argument for imposing non-negativity con-
straints comes from neuroscience and is related to the non-negative firing
rate of neurons. Finally, the positivity constraint arises in many real image
processing applications. For example, the pixels in a grayscale image have
non-negative intensities. Euclidean distance and Kullback-Leibler (KL) di-
vergence were originally proposed as objective functions for minimizing the
difference between the original image data and their decomposition product.
Although, theoretically, the decomposition constraints tend to produce sparse
image representations of basis images by composing the parts in an additive
fashion, this is not always the case. It has been noticed in several works that,
for some databases, the NMF decomposition rather produces a holistic image
representation [38, 12, 30]. The representation could be affected by the im-
precise image alignment procedure performed on the original database prior
to NMF. It is known that the subspace techniques are generally sensitive to
image alignment (registration). As noted in the last row of figure 14.3, for
Cohn-Kanade database images, the basis images retrieved by NMF have a
holistic appearance. A measure for quantifying the degree of sparseness in im-
age representations is provided by the normalized kurtosis. If the basis images
are stored as columns of a matrix Z the kurtosis of a base image z is defined

as k(z) =
∑

i(zi − z)4

(
∑

i(zi − z)2)2
− 3, where zi are the the elements of z (pixels of

base image) and z denotes the sample mean of z. The average normalized kur-
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Fig. 14.4. Sparse subspace image representation. From top to bottom, each row
depicts the first 10 basis images (out of 49) corresponding to ICA1, LNMF and
DNMF, respectively. The basis images are ordered by decreasing kurtosis.

tosis for the 49 basis images are: kPCA = 1.22, kFLD = 1.23, kICA2 = 0.93,
kNMF = 5.93. Thus, by far, NMF is the sparsest representation among ones
represented in figure 14.3.

14.3.2 Sparse image representations

The first ICA (ICA1) configuration produces independent basis images [4]. In
this case, ICA is applied to the projection coefficients of PCA. Entropy mini-
mization leads to a highly kurtotic distribution of basis image pixels, most of
them having zero value, thus producing a sparse representation, as can be seen
in the first row of Figure 14.4. Another representation, Local Non negative
Matrix Factorization (LNMF) [38] enhances the sparseness of basis images
by generating much more sparse, even localized and oriented image features.
The extremely sparse basis images resulting from the LNMF approach are
depicted in the second row of figure 14.4. The proposed approach uses the
KL divergence as objective function to be minimized [38]. In addition to the
non negativity constraints imposed for both decomposition factors, the re-
dundant information is minimized by adding orthogonality constraints in the
basis images formation. Furthermore, two more terms are added to the objec-
tive function for maximizing both sparseness and total activity and retaining
only the most “expressive” image components [38]. In direct comparison for
face recognition LNMF outperformed NMF [38, 12]. Buciu and Pitas fur-
ther modified the LNMF algorithm in [11] and proposed a supervised NMF
approach called Discriminant Nonnegative Matrix Factorization (DNMF) for
facial expression classification. Besides the common constraints borrowed from
NMF and LNMF, its underlying objective function also contains terms refer-
ring to discriminant class information. The basis images found by running
the algorithm on image samples are sparse, oriented and localized, as can be
seen in the last row of figure 14.4. DNMF is differentiated from the other
NMF algorithms in that its facial basis images emphasize the salient facial
features (eyes, eyebrows, mouth), when the images are labeled according to
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facial expression. These features convey the most discriminative information
and are of great relevance for facial expression recognition. As can be seen by
visual comparison of the basis images in figure 14.4, DNMF preserves local
spatial information of salient facial features (that are almost absent in the
case of LNMF) while it discards information less important for expression
analysis (e.g., nose and chin, which is not the case for NMF) by incorporating
class information. The average normalized kurtosis for the 49 basis images
are: kICA1 = 17.26, kLNMF = 49.16, kDNMF = 31.69. The preservation
of the spatial facial topology correlates well with the findings of Tanaka et
al. [52], who argued that some face cells require the correct spatial feature
configuration in order to be activated for facial expression recognition. Inter-
estingly, DNMF seems to resemble many characteristics of the neural receptive
fields [13]. The three NMF approaches have been applied to classify facial ex-
pressions [11] and to face recognition [10]. The DNMF approach was found to
perform best for facial expression recognition, a fact that is indicating the role
of sparse image representations. However, for face recognition, DNMF did not
achieve the best performance compared to the other two approaches.

Local Feature Analysis (LFA) is another biologically inspired method that
retrieves local image features [46]. To exploit image redundancy, LFA is used
to extract a set of topographic local features defined by kernel filters that are
optimally matched to the second-order statistics from the global PCA modes.
They are found by minimizing the image reconstruction error and by using
a process called sparsification [46]. To achieve this, a LFA neural network is
employed, where the active units found by LFA are sparsely distributed. The
selection of the spatial support of 100 filters found by LFA is shown in Figure
14.5 over a mean face from the experiment database.

One of the two most popular techniques for face recognition are known as
“elastic graph matching” [35], and its relative, named “elastic bunch graph
matching” [59]. “Elastic bunch graph matching” is based on applying a set of
Gabor filters to special representative landmarks on the face (corners of the
eyes and mouth, the contour of the face). Gabor filters represent the multi-
scale nature of receptive fields, as each component has a unique combination
of orientation, frequency tuning and scale. The face is represented by a list of
values that comprise the amount of contrast energy that is present at spatial
frequencies, orientations and scales included in the jet. For recognition, each
face is compared with any other one with a similarity metric that takes into
account the spatial configuration of the landmarks. It has been noted that
the similarity metric involved in this approach is in line with the one used by
the HVS [8]. Similar Gabor filters have been used by Würtz in [60] to extract
local features that are robust to translations, deformations, and background
changes. Each image is convolved with a set of different Gabor kernels, fol-
lowed by amplitude thresholding and discarding all units influenced by the
background. Once the local features are extracted, four matching approaches
(namely, multidimensional template matching, global matching, mapping re-
finement and phase alignment) are employed and combined to form corre-
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Fig. 14.5. A set of 100 optimally localized topographic kernel filters found by Local
Feature Analysis (LFA). The clusters of these filters are located around the fiducial
points represented by eyes, eyebrows and mouth of the mean face. The algorithm
from [46] has been applied to samples from the Cohn-Kanade database.

spondence maps used further for the face recognition task. To remove the
weak correspondence points a relative similarity threshold is introduced, thus
a final correspondence map is obtained. The combination of these matching
approaches leads to a hierarchical structure of the algorithm with several de-
cision levels, where the correspondence maps obtained by this method was
proved to be very reliable. Furthermore, the Gabor functions have been suc-
cessfully used for facial expression synthesis or recognition. The convolution
of images with the set of Gabor filters can be performed either at the location
of fiducial points (landmarks) [64] or, alternatively, the Gabor filters can be
applied to the entire face image instead to specific face regions [9]. Figure 14.6
presents the result of the convolution of a set of 40 Gabor filters (5 frequen-
cies and 8 orientations) with a sample image from the Cohn-Kanade database.
The features extracted by the Gabor filters are localized and oriented [9].

One drawback of this feature extraction technique is the manual annota-
tion of landmarks when the Gabor filters are applied to specific fiducial points.
To overcome this issue, Heinrichs et al. [29] reduce the manual annotation to
only one single image from which a self-organizing selection strategy builds
up the bunches by adding the most similar face to the bunch graph and then
the matching is recomputed. Another improvement is the replacement of the
resulting Gabor wavelet bunches by principal components of the nodes of all
training images. An enhancement in both the precision of landmark local-
ization and face recognition accuracy was obtained with this new approach.
An extension of “elastic bunch graph matching” with a new application was
recently proposed by Tewes et al. in [53]. They have developed a flexible ob-
ject model using Gabor-wavelet-labeled graphs to synthesize facial expression.
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Fig. 14.6. The output of an image sample from the database convolved (filtered)
with 40 Gabor filters (5 frequencies and 8 orientations).

The graphs are then parameterized to allow flexible facial expression gener-
ation, where the expression parameters are viewed as a graph function. An
overview of “elastic bunch graph matching” approach and its relationship to
the Organic Computing paradigms is presented in [61].

A representative research work for facial expression recognition was con-
ducted by Donato et al. [21], who investigated several holistic and sparse image
representation techniques and measured their performance. Their work shows
that the extraction of sparse features from the entire face space by convolving
each image with a set of Gabor filters having different frequencies and orien-
tations can outperform other methods that invoke the holistic representation
of the face, when it comes to classify facial actions, closely related to facial ex-
pressions. They achieved the best recognition results by using ICA and Gabor
filters. However, they also found that other local spatial approaches, like local
PCA and PCA jets provide worse recognition accuracy than, for example,
Fisher Linear Discriminant (FLD), which is a holistic approach.

14.4 Discussion

It has been argued that the tuning of the temporal cortex neurons that re-
spond preferentially to faces represents a trade-off between fully distributed
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encoding (holistic or global representation, as PCA, FLD, ICA2, NMF result)
and a grandmother cell type of encoding (local representation, achieved by
LNMF) [50]. Psychophysiologically, one single pixel representation is similar
to having a grandmother cell where a specific image is represented by one
neuron. Among the approaches presented in this chapter, Gabor, ICA and
DNMF turns out to be the most suitable biologically plausible models used
in computer vision. However, it has to be noted that the DNMF approach is
a relatively a new method and yet insufficiently investigated. In recent stud-
ies [11], it showed superior facial expression classification performance, when
compared to Gabor, NMF, LNMF, and ICA approaches. However, its per-
formance was not the one expected when applied to face recognition. More
research has to be done in this regard. As we show in this chapter, one of the
most popular techniques used for face and facial recognition tasks is PCA.
When higher-order statistics are to be extracted and processed, ICA is cho-
sen over PCA, which also seems to resemble the neuroscientific paradigms.
However, a question related to ICA and PCA for face and facial expression
recognition arises. Is ICA really better for these tasks than PCA? First of
all, regardless of the feature extraction technique, the recognition results are
not solely dependent on subspace image representation. It is also up to the
classifier involved in the final step of the recognition task. A nearest neighbor
classifier is usually chosen employing various similarity measures (distance
metrics), such as L1 (city block), L2 (Euclidean), Mahalanobis or cosine dis-
tance. Several metrics favor the holistic representations, while others favor
the sparse ones. This is mainly the reason, why, in the PCA-ICA debate,
several works reported ICA outperforming PCA [21, 4, 22, 62, 39], while in
other works ICA was found inferior to PCA [2], or, finally, no difference was
found between them [41, 31]. Recently, new results on the ICA - PCA de-
bate for face recognition have been revealed through the work conducted by
Yang et al. [63]. They have repeated the experiments from [4] and have found
that it is the “whitening” process (the intermediate step between PCA and
ICA) that is responsible for the difference in the classification performance.
Thus, as conclusion, ICA has an insignificant effect on the performance of
face recognition . ICA was applied to cope with face recognition assuming
that important information to discriminate between identities is contained in
high-order image statistics, statistics that the PCA cannot retrieve. Interest-
ing evidence that supports the observation that the elimination of high-order
correlations between image pixels could not be so important for the neural
receptive fields was brought by Petrov and Li [48]. They investigated local
correlation and information redundancy in natural images and found that
the removal of higher-order correlations between the image pixels increased
the efficiency of image representation insignificantly. Accordingly, their results
suggest that the reduction of higher-order redundancies than the second-order
ones is not the main cause of receptive field properties of neurons in V1.

Still two main questions remain: Are the holistic subspace image represen-
tations more appropriate for face recognition and the sparse subspace image
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representation more suitable for facial expression recognition? And, if it is
so, which similarity measures should these representations be combined with
in order to achieve the best recognition performance? Unfortunately, one of
the shortcomings in neuroscience literature on face analysis is that no psy-
chological measures for similarity of face image features (neither holistic nor
sparse) exist. A large number of psychological studies are required in order
to validate an existing subspace image representation model in combination
with the optimal choice of the similarity metric.
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15.1 Introduction

Human-computer interaction (HCI) is entering our everyday life. We are
welcomed by robot guide-bots in Japan [2] and play computer games us-
ing Nintendo’s nunchucks [1]. Nevertheless, the revolution is not finished and
computer vision is still under development [21]. In this paper we present an
organic computing approach to the recognition of gestures performed by a
single person in front a monocular video camera.

Visual gesture recognition has to deal with many well-known problems of
image processing, like camera noise, object tracking, object recognition and
the recognition of a dynamic trajectory. Thus, a gesture recognition system
has to show robust feature extraction and adaptation to a flexible environ-
ment and signer. It requires properties of an organic computing system, with
different autonomous modules cooperating to solve the given problem.

Sign language is a good playground for gesture recognition research be-
cause it has a structure, which allows to develop and test methods on sign
language recognition first before applying them on gesture recognition. Thus,
here we restrict ourselves to working on signs of the British Sign Language
(BSL) and concentrate on their manual part.

We have to consider that the projection of the 3D scene onto a 2D plane
results in loss of depth information and therefore the reconstruction of the 3D-
trajectory of the hand is not always possible. Also the position of the signer
in front of the camera may vary. Movements like shifting in one direction or
rotating around the body axis must be kept in mind, as well as the occlusion
of some fingers or even a whole hand during signing.

Despite its constant structure each sign shows plenty of variation in time
and space. Even if the same person performs the same sign twice, small
changes in speed and position of the hand will occur. Generally, a sign is
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affected by the preceding and subsequent sign, an effect called coarticulation.
Part of the coarticulation problem is that the system has to be able to detect
sign boundaries automatically, thus the user is not required to segment the
sign sentence into single signs.

Our approach follows the principles of organic computing [10]. We di-
vide problems into different subtasks that are solved by autonomous subsys-
tems. All subsystems are working on-line and therefore can help each other
or can flexibly adapt to new situations. Integrating information from different
sources, like hand shape, position and their temporal development present,
beside the coordination of these processes, the main challenge for creating
a recognition system. Our subsystems will autonomously solve part of the
problem using organically inspired techniques like democratic integration for
information merging, bunch graph matching for face/object recognition and
a modified parallel hidden Markov model (HMM) for the recognition of the
dynamic trajectories. Each of these techniques learns its knowledge from ex-
amples according to the organic computing approach. We explicitly separate
gesture recognition into two main processes: feature extraction, which includes
localization and tracking of body parts and the recognition process, which uses
the selected features. Both processes will be performed during the performance
of the sign.

To realize different autonomous units, their environment and communica-
tion between them in a software framework we designed a multi-agent system
(MAS). Agents show self-x properties like dynamical adaptation to a changing
environment (self-healing), perception of their environment and the capability
to rate their action (self-reflection).

The structure of the paper is as follows: Section 15.2 gives an overview
of previous work in the field of sign language recognition and motivates our
ambition to use organic computing. The following section 15.3 describes the
multi-agent system architecture, in particular the constructed agents and their
use of organic computing methods. Visual tracking is presented in section 15.4
and our approach to sign language recognition in section 15.5. A description
of the experiments undertaken and their results can be found in section 15.6.
Finally, in section 15.7 conclusions are drawn and future work is outlined.

15.2 Related work

Sign languages, designed to be used by deaf people, are visual languages.
They can be characterized by manual (hand shape, hand orientation, location
and motion) and non-manual (trunk, head, gaze, facial expression, mouth)
parameters. In this work, we concentrate on manual features and investigate
one-handed signs performed by the dominant hand only, and two-handed signs,
which can be performed symmetrically or non-symmetrically.

Sign language recognition (SLR) has to solve three problems, first the
reliable tracking of the hands, second robust feature extraction, and third the
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interpretation of the temporal feature sequence. In the following we present
the approaches to these problems that have inspired our work.

Starner and Pentland [13] analyze sign gestures performed by one signer
wearing colored gloves. After color segmentation and the extraction of position
and shape of the hands their recognition is based on a continuous sequence of
signs that are bound to a strict grammar using trained hidden Markov mod-
els. Bauer and Krais [3] introduce an HMM-based continuous sign language
recognition system by splitting the signs into subunits to be recognized. Im-
age segmentation and feature extraction are simplified by using colored gloves
with different colors for fingers and palm. The extracted sequence of feature
vectors reflects the manual sign parameters. The same group has built an-
other recognition system that works with skin color segmentation and builds
a multiple tracking hypothesis system [24, 20]. They are using HMM as well
and extract geometric features like axis ratio, compactness and eccentricity of
the hands segmented by skin color.

Instead of colored gloves Vogler and Metaxas [18] use 3D electrical track-
ing of the wrists. They propose a parallel HMM algorithm to model gesture
components and recognize continuous signing sentences. Shape, movement,
and location of the right hand along with movement and location of the left
hand are represented by separate HMM channels, which are trained with rel-
evant data and features. For recognition, individual HMM networks are built
in each channel and a modified Viterbi decoding algorithm searches through
all the networks in parallel. Path probabilities from each network that went
through the same sequence of words were combined. Tanibata et al. [14] pro-
posed a similar scheme where output probabilities from HMMs modeling the
gesture data from right and left hand, were multiplied together for isolated
word recognition in the Japanese Sign Language.

The group around Richard Bowden [4, 11, 7] structures the classification
mode around a linguistic definition of signed words. This enables signs to be
learned reliably from just a handful of training examples. Their classification
process is divided into two stages. The first stage generates a description of
hand shape and movement using skin color detection. This level of feature
is based directly upon those used within sign linguistics to document signs.
Its broad description supports generalization and therefore significantly re-
duces the requirements of further classification stages. In the second stage,
Independent Component Analysis (ICA) is used to separate the channels of
information from uncorrelated noise. Their final classification uses a bank of
Markov chains to recognize the temporal transitions of individual words/signs.

All the presented work is very inspiring and has different interesting ap-
proaches to the problems of sign language recognition. Most of these systems
are working offline, meaning they collect the feature sequence and do their
recognition when the gesture is already performed.

In our approach we divide the problems into different subtasks that are
solved by autonomous subsystems. Instead of color tracking we use self-
organizing multi-cue tracking for the different body parts. Like in the pa-
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Fig. 15.1. An agent is based on three modules provided with as much flexibility as
possible. The interface to the environment and the communication are included in
the agent class. There is one cueIntegrator, a module that integrates and interprets
the information provided by the sensors.

pers above we use an HMM approach for the temporal recognition, but we
extended the idea of HMM by introducing self-organization properties.

15.3 System architecture

Organic computing systems consist of autonomous and cooperating subsys-
tems. We build on a multi-agent system (MAS) developed earlier [9] as a
framework for our task. The system consists of three base classes of objects,
the environment, the blackboard, and the agent. While environment and
blackboard are realized as singleton objects [5], there can be a multitude
of different agents. These agents handle tasks ranging from coordination of
subprocesses, tracking of an image point, up to the recognition of human
extremities.

The information about the world is supplied by the environment. Based
on the desired functionality of visual tracking and recognition, the environ-
ment provides access to image sequences, e.g., the current original color image
and its processed versions, the gray value image and the difference image be-
tween two consecutive video frames.

Communication within the system is done via the blackboard. A mes-
sage can be quite complex (e.g. carry an image) and has a defined lifetime.
Each agent can write messages onto the blackboard and read the messages
other agents have posted. Thus, the message handling allows the creation of
new agents with specific properties, the change of properties and also the
elimination of agents during run-time.

The agent is the most interesting entity, it shows the following self-x prop-
erties. Agents are autonomous and aware of their state. They perceive their
surrounding, to which they can adapt and they communicate with other en-
tities. To implement this behavior, agents have three layers, see figure 15.1.
The top layer, called agent handles the communication, the fusion center,
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called cueIntegrator, merges the information supplied by one or more sensors.
Perception of the surrounding is twofold. On the one hand there is message
handling via the blackboard, on the other hand an agent can receive infor-
mation from its sensors, which filter incoming data. Based on the obtained
information the agent reaches a decision about further actions.

Gesture recognition is split into the subproblems of object tracking and
recognition (object and gesture). Each subproblem is solved by one or more
agents. Hence teamwork and a observer/controller architecture are essential.
There are three main classes of agents, tracking agents, agents for recognition
and agents for control.

We designed tracking agents whose task is to follow an object. These
agents merge different visual cues like color, texture, movement, etc. Cue
fusion is done using democratic integration [16]. This technique offers a self-
organized, flexible and robust way of tracking and will be explained in sec-
tion 15.4. Agents that provide world knowledge stored in the system are called
recognition agents. This includes knowledge for face recognition and static
hand gesture recognition. Training the recognition agents, i.e. learning world
knowledge from examples is also a crucial task requiring organic computing
methods see [23]. As the system should act independently from user interac-
tion controlling agents are responsible for solving the conflicts that might
occur during execution.

15.4 Visual tracking

Visual tracking of head, left and right hand is done by a cooperation of glob-
ally and locally acting agents that are organized in a hierarchical network [9].
A global working agent scans the image for regions of interest, defined by
skin colored and moving blobs. A controlling agent supervises the tracking.
It collects the region of interest messages, checks whether they are already
tracked and if not instantiates a new tracking agent. The visual appearance
of the hand is a function of several factors, which hand classifier and track-
ing agents have to take into account, including pose, lighting, occlusion and
intra/inter-signer variations.

Object tracking is performed by tracing an image point on the object.
Tracking agents take on this task by scanning on the new frame the local
surrounding of the last target position of the previous image. Hence they are
called local agents. Due to lack of robustness of single cues, tracking should
not rely on a single feature, thus each tracking agent integrates the results
of four different information sources, namely pixel template, motion, motion
prediction, and color, each realized in a sensor. The agent’s cueIntegrator
calculates the result as a weighted average of saliency maps derived from the
different sensors. The result is fed back to the sensors and serves as the basis for
two types of adaptation. First, the weights of the sensor are adapted according
to their agreement with the overall result. Second, sensors are allowed to
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Fig. 15.2. In this tracking sequence head and hands were found. The identity of the
objects is visualized by the gray value of the rectangles, which delineate the search
region of each tracking agent. Moving skin color in the background is ignored.

adapt their internal parameters in order to have their output better match
the determined collective result. This integration scheme is called democratic
integration [16] and will be explained below.

After tracking the object on the current frame, the tracking agent evaluates
its success and posts a message containing the actual position, the contour and
an image of the target. This information is passed to the recognition agents
trying to identify the object. The face recognition agent, for instance, performs
face detection using bunch graph matching [22]. Once a face has been found
left and right hands are determined via their position relative to the face. The
tracking agent adds its identification to its messages, see figure 15.2. To further
support identification we added two recognition agents to identify the static
hand gesture. The first recognition agent matches a gallery of learned bunch
graphs on the image to identity the texture of the static hand gesture [17];
the second one matches the contour against a gallery of learned contours.

Since there might be skin colored moving blobs in the background of a
real-world setting, which are not connected to a hand or the head, agents
that track an unknown object over a period of time will delete themselves.
This self-healing of the global system is also enforced if the agent is not content
with its tracking results. After this analysis the tracking continues.



15 Self-organized Evaluation of Dynamic Hand Gestures 327

Fig. 15.3. Tracking agent in use, on the left we see the tracking result marked with
the circle. The rectangle shows the border of the agent’s search region. On the right
we see the similarity maps created by the different sensors, from left to right: color,
motion, motion prediction and pixel template. The fusion center shows the result of
the information integration.

Using democratic integration the different cues, namely color, motion, mo-
tion prediction and pixel template, are integrated to agree on one result. After
this decision each cue adapts toward the result agreed on. In particular, dis-
cordant cues are quickly suppressed and re-calibrated, while cues having been
consistent with the result in the recent past are given a higher decision weight
in future.

Integrating information using democratic integration relies on two assump-
tions. First, the cues must be statistically dependent, otherwise there is no
point in trying to integrate them. Second, the environment must exhibit a
certain temporal continuity. Without that, any adaptation would be useless.

As shown in figure 15.3 all cues are working on the two dimensional search
region of the agent. Each sensor i provides a similarity map Mi(x, t) at time
t, that shows the image similarity at each coordinate x with an agent-specific
and adaptable prototype template Pi(t). To integrate the similarity maps to
an overall map R(x, t), they are weighted and summed up

R(x, t) =
∑

i

ri(t)Mi(x, t), (15.1)

The weights ri(t) are part of the self-controlling of each sensor and
will further be called reliability. The reliabilities are normalized such that∑

i

ri(t) = 1. The target position x̂(t) is found by scanning the overall simi-

larity map for the maximal entry

x̂(t) = arg max
x

{R(x, t)} . (15.2)

To rate its action each tracking agent analyzes the similarity value at the
target position x̂(t). If the value is above a threshold, the image point has
been found, otherwise, the tracking agent has failed to track it. Using the
information of the similarity value and the target position each sensor is able
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to update its reliability and to adapt its prototype to the new situation. The
adaptation depends on the tracking result — if the target was found in the
image the prototype adapts towards the actual parameters at the target po-
sition x̂(t). Otherwise it adapts towards its initial values. We refer to [16] for
a complete description of the update strategies.

Equation (15.2) has proven to work well on small objects [16, 8] with a
unimodal similarity map. Larger objects can create a multimodal similarity
map with more than one peak. Hence we modified the search of the target
position by thresholding the map and from the remaining peaks we calculate
the center of gravity. The new target position might be located outside the
object or might be a bad point to track, but our experiments showed that this
was not the case for different tracking scenarios and that tracking became
more stable.

15.5 Recognition

In the previous section we presented the MAS system for visual tracking of
head and hands. Tracking agents provide position and static hand gesture
information of the object for nearly each frame. In this section we describe
the subsystem that collects the information about the trajectory of left and
right hand and the corresponding static hand gesture. The information for sign
language recognition is merged by using an extended self-organizing hidden
Markov model architecture. Recognition needs to be stable and robust enough
tho deal with the changes in speed and position of a hand, which will even
occur if the same person is performing the same sign twice. Hidden Markov
models (HMMs) can solve these problems. Their ability to compensate time
and amplitude variations of signals has been amply demonstrated for speech
and character recognition. Before we discuss our approach to recognition using
an extension to HMM we review the aspects of HMM theory relevant to this
paper.

15.5.1 Theory of hidden Markov models

This section briefly discusses the theory of hidden Markov models (see fig-
ure 15.4 as an example of a left-right architecture). It follows the classic paper
by Rabiner [12], which we recommend for a more detailed description of this
topic. A hidden Markov model is characterized by the following:

1. N , the number of states in the model. We denote the individual states as
S = {S1, S2, . . . , SN}, and the state at time t as qt.

2. M , the number of distinct observation symbols per state, i.e. the discrete
alphabet size. The observation symbols correspond to the physical output
of the system being modeled. We denote the individual symbols as V =
{v1, v2, . . . , vM}. If the observation is in a continuous space, M is replaced
by an interval of possible observations.
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Fig. 15.4. HMM with the left-right (Bakis) topology, typically used in gesture
and speech recognition. The solid lines denote the transition probabilities and set
aij = 0 ∀ j < i ∧ j > i+2. The dotted line connects a continuous observation
distribution to the belonging state (circle).

3. The transition probability distribution A = {aij} where

aij = P (qt+1 = Sj | qt = Si) , 1 ≤ i, j ≤ N (15.3)

and ∑
j

aij = 1. (15.4)

Assuming that the state transition probability aij from state Si to state
Sj only depends on the preceding state (first order Markov process). For
the special case that any state can reach any other state in a single step,
we have aij > 0, for all i, j. For other types of HMM, we would have
aij = 0 for one or more i, j pairs.

4. The observation probability distribution B = {bj(k)} in state j, where

bj(k) = P (vk at t | qt = Sj) , 1 ≤ j ≤ N, 1 ≤ k ≤ M (15.5)

and ∑
k

bj(k) = 1. (15.6)

The observation probability distribution can be discrete or continuous.
5. The initial distribution π = {πi} where

πi = P (q1 = Si) , 1 ≤ i ≤ N. (15.7)

A complete specification of a HMM consists of two model parameters
(N and M), the specification of observation symbols, and the specification
of the three probabilistic measures A,B and π. For convenience, we use the
compact notation

λ = (π,A,B) (15.8)

to indicate the complete parameter set of the model.
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Due to their doubly stochastic nature HMMs are very flexible and became
quite famous in the gesture recognition community (section 15.2). The art of
HMM design lies in the specification of their topology of allowed transitions,
and the features to be observed. There are three basic problems of interest
that must be solved for the HMM to be useful in real-world applications:

Evaluation problem: Given the observation sequence O = O1, O2, . . . , OT ,
and the model λ = (π,A,B), how do we efficiently compute P (O | λ),
the probability of generating the observation sequence given the model?

Decoding problem: Given the observation sequence O = O1, O2, . . . , OT , and
the model λ, how do we choose a corresponding state sequence Q =
q1, q2, . . . , qT which is meaningful in some sense (i.e., best “explains” the
observations)?

Estimation problem: How do we train the HMM by adjusting the model pa-
rameters λ = (π,A,B) to maximize P (O | λ)?

The standard way to recognize a gesture out of a set G is to train a HMM λg

for every single gesture g ∈ G and after the observation sequence is recorded,
start the calculation of P (O | λg) for every HMM λg (see section 15.5.3.1).
The solution of the evaluation problem is used for recognition where the model
λg which produces the highest probability of describing the observation se-
quences

g = arg max
g

P (O | λg) (15.9)

is deemed to be the recognized gesture.

15.5.2 Organic modification of the hidden Markov model

The topology of our HMMs is an extension of the Bakis model as seen in
figure 15.4 and will be further explained in section 15.5.3.1.

The observed features (which we will call observations from now on) are
provided by the tracking module described in section 15.4, namely position,
texture and contour of left and right hand. Each kind of observation has a
particular degree of uncertainty, the position can vary on the object, texture
and contour might not be accurately determined due to blurring or erroneous
segmentation. Thus, we use the organic computing principle that distributed
information is advantageous for robustness and split the observations into
different channels. This parallel HMM (PaHMM) structure had been used by
Vogler [18] and Tanibata [14], who divided the observations for left and right
hand and trained a HMM for each hand. The independence of the channels
has been demonstrated in [19]. Consequently, we go one step further give the
system better generalization power if every observation has its own HMM,
instead of putting them into one observation vector. Therefore, in our system
a gesture g will be represented by six channels that separate the position
y relative to the head, texture τ and contour c for left and for right hand.
Another point is that if we assume that parallel HMMs model the parallel
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Fig. 15.5. Layout of the recognition agent. It is hierarchically organized, at the
bottom we have the HMM sensor modules, four of them for each gesture. They collect
the information and calculate their observation probability. The HMM sensor results
are merged in the Gesture HMM Integration modules, of which there is one for each
learned gesture. The Decision Center decides about the most probable gesture.

processes independently, they can also be trained independently, and do not
require consideration of the different combinations at training time.

15.5.3 The HMM recognition agent

Administration of gesture recognition is hosted in the recognition agent. Dur-
ing a recognition cycle the agent starts collecting the observations. Gesture
recognition is done from bottom to top (see figure 15.5 and algorithm box 1).
Layer one consists of the trained HMM channels for each gesture. In terms
of our MAS they are called HMM Sensors. They independently calculate the
actual observation probability and pass this information to layer two. The Ges-
ture HMM Integration modules in layer two represent the learned gestures.
Each module fuses the information of its channels to compute a decision about
the probability that the performed gesture is similar to the one represented by
the Gesture HMM Integration module. Finally, in the Decision Center of layer
three, the results of the Gesture HMM Integration modules are compared to
determine which gesture is the most probable.

15.5.3.1 Layer one: modified HMM

Starting at the sensor layer we are mainly interested in solving the evaluation
problem mentioned above. Before we present our extensions of the HMM idea,
we want to outline the Forward-Backward approach to calculate P (O | λ) and
motivate our modifications.
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Forward-backward algorithm

The forward-backward algorithm [12] solves the evaluation problem by calcu-
lating the P (O | λ) using the forward variable αt(j), which is defined as

αt(j) = P (O1, O2, . . . , Ot, qt = Sj | λ), (15.10)

the probability of the partial observation sequence O1, O2, . . . , Ot and state
Sj at time t, given the model λ. The forward variable is solved inductively,
as follows:

1. Initialization:
α1(j) = πjbj(O1), 1 ≤ j ≤ N. (15.11)

2. Induction:

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1 1 ≤ j ≤ N. (15.12)

3. Termination:

P (O | λ) =
N∑

i=1

αT (i). (15.13)

The backward variable βt(i) is calculated in a similar manner and is defined
as the probability of the partial observation sequence t + 1 to the end, given
state Si at time t. Each of these variables or a combination of them can be
used to solve the evaluation problem.

Using the forward-backward algorithm and especially the multiplication
of probabilities in equation (15.12), recognition would not be robust to:

1. a missing observation,
2. a wrongly classified static hand gesture that was not in the training data1,
3. the observation sequence taking longer than the learned ones.

Problem one can be solved by having perfect tracking and perfect classification
of static hand gestures. The other two problems become less crucial when
collecting more training data. But it is our aim to develop a system that works
robustly in a self-organized way under real-world conditions, the conditions
of sparse data.

HMM sensor

The flexibility of the HMM depends on the training data, which determines the
transition probabilities aij and the observation probability distributions B =
{bj(k)} of the model. Under real world conditions the HMM will be confronted
with unknown, not learned, observations or variations in the dynamics caused
1 Using a discrete observation distribution, a zero will be returned for the observa-

tion probability of a symbol that has not been learned for the particular state.
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by, e.g., missing tracking information, blurring, etc. To face these problems
we split up the doubly probabilistic method of the HMM by introducing a
self-organized transition between the states. In our approach we are using a
strict left-right model with π1 = 1, πi = 0 for i �= 1 and aij = 1 if j = i + 1,
aij = 0 else. The number of states N is equal to the longest learning sequence
of the gesture’s training set. Instead of the transition probability matrix A
where the transitions are learned, the aij are replaced by a weighting function
wt(u). Equation (15.12) will become

αt+1(j) = αt(i) aij︸︷︷︸
=1

wt(u)bj(Ot+1), (15.14)

and therefore equation (15.13) becomes

P (O | λ) = αT (N). (15.15)

Equation (15.14) allows the HMM to perform on-line gesture recognition and
computes its probability on every frame.

The weighting function of each channel is Gaussian

w(u) = exp
(
−u2

2σ

)
, (15.16)

where u = [0,∞] is a measure of uncertainty. Starting with a maximal cer-
tainty of u = 0 at the beginning of the recognition, the modified HMM
(mHMM) checks whether the received observation Ot is presented in the obser-
vation distribution bi(Ot) of the actual state i. If the result is not satisfactory,
i.e., below a recognition threshold, the mHMM can pass the observation to
the next state i+1, check again, and pass it further to state i+2 if necessary.
If the observation does not even match at state i + 2 it will be ignored. Each
of these transitions is punished by increasing the uncertainty u and thus low-
ering the weighting function. To reinstall its certainty, the mHMM recovers
with every recognized observation by decreasing u. If the observation has been
recognized the system switches to the next state.

To come back to our HMM recognition agent, the task of the HMM sensor
(layer one in figure 15.5) is to calculate its weighted observation probability
wt(u)bj(Ot) for the actual frame.

15.5.3.2 Layer two: gesture HMM integration

Each learned gesture g has a Gesture HMM Integration unit in layer two. By
merging the information of its six sensors the Gesture HMM Integration unit
computes the quality Qg of the gesture g matching the observation sequence.

Due to the nature of the observation, the HMM sensors have different
probability distributions. The position information is stored in a continuous
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Algorithm 1: Recognition is hierarchically organized using three layers.
The characteristic of each layer is its information integration. Layer one,
the HMM Sensor, compares the received observation with its observation
probability function. Layer two comprise the HMM Integration unit of
each learned gesture and integrates the information received from layer
one. The top layer compares the results from the HMM Integration units.
The Decision Center determines the most probable gesture and manages
the inhibition.

while not at end of gesture sequence do1

/* ********************************************************* */

/* Layer one: HMM sensor */

/* ********************************************************* */

foreach HMM sensor do2

calculate observation probabilities;3

end4

/* ********************************************************* */

/* Layer two: HMM Integration unit */

/* ********************************************************* */

foreach HMM Integration unit do5

compute � to fuse the information of position, texture and contour;6

calculate the actual quality Qa;7

update the overall quality Qg;8

control the activation using Qg, ξstart and ξstop ;9

end10

/* ********************************************************* */

/* Layer three: Decision Center */

/* ********************************************************* */

if ∃ HMM Integration unit that reached its ζmin then11

choose HMM Integration unit with highest Qg12

as current winner;13

end14

if ζwinner == 1 then15

reset all HMM Integration units;16

end17

else18

/* inhibit all gestures */

search for the maximal quality Qmax;19

foreach HMM Integration unit do20

subtract Qmaxfrom Qg;21

end22

end23

end24

Result: last winner will be chosen as recognized gesture.
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distribution using Gaussian mixtures. The information of the static hand ges-
ture, the identified most similar contour and bunch graph, are stored sepa-
rately using a discrete probability distribution, which is realized as histogram
based on the appearance of the elements of the contour alphabet or bunch
graph alphabet, respectively.

The continuous distribution offers a more flexible way to evaluate the
observation, as we have a Euclidean distance for our position observations.
In our discrete feature space the concept of similarity, or distance, cannot
be assumed to be Euclidean. Therefore, we use position as the basis for our
recognition. The aim of sensor integration is the computation of the overall
quality Qg for the single gesture g. At the beginning or after a reset (see
below), the Qg is initialized with zero. To get rid of possible multiplications
with small numbers when estimating αt+1(j) using equation (15.14), we will
work with the logarithms of the probabilities sent by the sensors and therefore
obtain:

αt+1(j) = αt(i) + log(wt(u)bj(Ot+1)). (15.17)

Thus, for every frame we receive the log probability l of the left hand
position llh(y), left hand contour llh(c) , left hand texture llh(τ ) and right
hand lrh(y), lrh(c), lrh(τ ). To calculate the actual gesture quality Qa of the
current frame, we first weight the position probabilities of the two hands and
add them to Qa

Qa = wlhllh(y) + wrhlrh(y). (15.18)

Thereby we focus on the dominant hand by setting wrh = 0.7 and wlh = 0.3.
Although position is already a good observation for gesture recognition we
have to add the static hand gesture information to obtain better results. But
as mentioned above, recognition of the static hand gesture might not be stable
on every frame, especially when the hand is moving. Hence, we decided to
integrate the bunch graph and contour information using a rewarding function
�. This function rewards only if position and static hand gesture information
are correlated. Correlation does not necessarily mean that the mHMMs have
to be in the same state i. For each hand the l(c) and l(y) or l(τ ) and l(y)
just have to be above a threshold θ. The reward is linked to the probability
for the static hand recognition l(c), l(τ ) respectively

�(x) = (x − θ)H(x − θ) ; H : Heaviside step function (15.19)

and will be added to Qa. After computing Qa we update the Qg by adding
Qa. Without the static hand gesture information the Qg would decrease with
increasing gesture length. By introducing � we allow the Qa and Qg to become
positive and therefore Qg cannot be transferred into a probability again.

Each Gesture HMM Integration unit has two states, active and inactive.
In the active state the gesture is certain that it could match the data and
by increasing the states of the HMM Sensor the recognition is continuously
following the incoming observations. Increase of the state of the HMM Sensor
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is a cue for the similarity of the learned gesture to the performed sign. A
gesture becomes active if the Qa of the first state is above the threshold
ξstart. Otherwise, the gesture is inactive, which means that all the connected
HMM Sensors are set to their initial state and all the parameters like the
uncertainty u of each sensor and the Qg are reset to zero. An active gesture
can become inactive if the Qg drops below a threshold ξstop. ξstart and ξstop

have global values and allow the system to reset a gesture autonomously to
restart the recognition during the performance of the sign. We developed
this active/inactive mode to handle the problem of coarticulation (the frames
between two gestures) and the case where we have similar beginning for one
or more gestures and only the following frames will decide which gesture is
performed.

15.5.3.3 Layer three: decision center

Only active gestures will receive the attention of the Decision Center in layer
three. The Decision Center compares the results of the Gesture HMM Inte-
gration units and determines which gesture is the most probable so far.

The autonomy of the Gesture HMM Integration units in choosing a start-
ing time prohibits the Decision Center from using equation (15.9) directly
and declare the gesture g with the highest value of Qg the recognized one. In
that case the Decision Center would wrongly favor gestures that just started
over gestures that already accumulated similarity. Thus, we coupled the recog-
nition to the progress, the actual state, of the HMM Sensor by means of a
confidence value ζ, which is computed by the ratio of the actual state of the
sensor to the maximal number of states N of the mHMM. This confidence
value is a measure of certainty. Only gestures that are above a threshold of
ζmin will be handled by the Decision Center. This minimal confidence ζmin

is individual for each gesture and is computed as the ratio of its shortest to
its longest sequence in the training set. Out of the gestures that reached their
ζmin the Decision Center chooses the one with the highest Qg to be the most
probable gesture that represents the observation sequence so far. This method
favors short gestures that only need a small amount of recognized frames to
reach their ζmin. Therefore, all gestures are inhibited by the gesture with the
highest Qg to become inactive before they reach the needed confidence value.
If a gesture reaches a confidence value of one, it is deemed recognized already
before termination of the sequence, and a reset signal is sent to all connected
Gesture HMM Integration units.

15.6 Experiments and results

15.6.1 Sign language data

Our training and testing data consist of signs of the British Sign Language
(BSL) that were kindly provided by Richard Bowden. The data is a continuous
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Fig. 15.6. Recognition started with the beginning of the gesture. The histogram
shows the result for the experiment using only position and contour information
in light color and in dark color the result when integrating position, contour and
texture information.

movie with ground truth information about the beginning and the end of
each gesture. We have 91 different signs performed with 10 repetitions by one
signer, a total of 29219 images to be processed. The sequence length ranges
from 11 to 81 frames for the gestures and even within the gestures the sequence
length shows differences of around 50 percent, e.g., the length of gesture “live”
ranges from 18 to 41 frames. The signer is wearing colored gloves, hence for
training the exact position of the hand (the center of gravity), the texture and
the shape contour could be automatically determined. To calculate relative
positions for the hands a bunch graph face detection was run on the images.
The segmented hands allow the automatic creation of bunch graphs for left
and right hand for each frame. They where clustered by matching each bunch
graph on the other images and adding the image if the matching similarity
was above a certain threshold. The extracted contours were clustered using
standard vector quantization as described in Gray [6] to gain an alphabet of
representative hand shapes. As a result we obtain observation sequences for
relative hand position and static hand gesture, which are used to train the
mHMM.
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Fig. 15.7. Recognition started 10 frames in front of the the beginning of the ges-
ture to examine the effect of coarticulation. The histogram shows the result for the
experiment using only position and contour information in light color and in dark
color the result when integrating position, contour and texture information

15.6.2 Experiments

The recognition experiments were performed using a leave-one-out procedure,
where for the testing gesture all sequences excluding the one that is tested were
used to build the mHMMs. Therefore, we perform ten recognition experiments
per gesture. At the end of each performance, the final most likely gesture is
deemed to be the overall recognized gesture.

We tested our system in two sets of recognition experiments. In the first
set recognition starts at the known beginning of the sign, while in the second
recognition experiment we included the coarticulation of a previous gesture.
To simulate coarticulation we started the recognition 10 frames before the
ground truth starting time.

On both sets we tested the benefit of multi-cue integration and the stability
of of the system concerning missing data by running each set two times.
In the first run we integrated position, contour and texture information for
recognition and then we dropped the texture information and only integrated
position and contour information in the second run.

The distribution of the recognition rates is shown in figure 15.6 for the
given start of the gesture and figure 15.7 for the coarticulation. The results
are presented in histogram style, where we plotted the recognition rate (light
bars for the recognition experiment applying only position and dark bars for
adding texture information) against the number of recognized gestures. For
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Fig. 15.8. The trajectories and static hand gestures of the signs “excited interested”
(left) and “live” (right) are very similar. Therefore, the shorter sign live dominates
the recognition of the excited interested performance. The integration of non-manual
observation like a grammar or facial expression should help to differentiate between
similar signs.

example, using figure 15.6 we have recognized eight gestures with a recognition
rate of 70% when only using position and contour information.

Given the start of the gesture we achieve an average recognition rate of
90% if we integrate position contour and texture. The mean recognition rate
is reduced to 84% if we exclude the texture information. Taking the first
run we receive a mean recognition rate of 90% and higher for over the half
of our gestures. By analyzing the gestures with lower recognition rates of
0 to 10%, these gestures were mainly dominated by a very similar gesture that
have a lower sequence length. For example the “excited interested” gesture is
dominated by the shorter “live” gesture, that shows a very similar trajectory
and similar static hand gestures as can be seen in figure 15.8. The difference
of the trajectories is small compared to the inter-sign variations that can
occur in other sign like the “different” and the “bat” gesture trajectories that
are plotted in figure 15.9. This misclassification trap is caused by the self-
organizing property of the system. All known gestures are in a loop and are
waiting to become active by passing the activation threshold ξstart. Therefore
as seen for the low recognized gestures they are likely to be dominated by
similar shorter gestures and this might be a good reason to include grammar
or other non-manual observation like facial expression to future systems.

The benefit of this autonomy to start the recognition becomes obvious in
our second set. Running the experiment with the same data and parameters
we achieve a mean recognition rate of 85% or 78% respectively for the second
run. The recognition system shows just a 5% difference between a fixed and
a self-organized start of the recognition.

Comparing recognition rates for sign language recognition is a difficult
task, because every group has its own data. Nevertheless we have to admit that
our recognition rates are below the results of von Agris et al [20] with 97.9%
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Fig. 15.9. The signs “different” (left) and “bat” (right) shown with the trajectory
differences of ten repetitions by the same signer.

for a database of 153 isolated signs and Kadir et al [7] who have a recognition
rate of 92% for a lexicon of 164 words. The strength of our system is the
autonomy of the recognition process to handle the effect of coarticulation,
which have not been investigated by von Agris and Kadir.

15.7 Conclusion

We have presented an approach to gesture recognition by organic computing
technology. We built a software framework to design and test multi-agent sys-
tems. The characteristics of a multi-agent system are autonomous and coop-
erating units. Organic computing principles like divide and conquer, learning
from examples and self-control have been used for object tracking and sign
language recognition. Both systems are running simultaneously.

For gesture recognition we modified a standard HMM architecture by in-
troducing two types of information, a more reliable channel as a basis and a
weaker one. Both are integrated by using a correlation and rewarding scheme.
Another innovation is the competition of the learned gestures during the recog-
nition process. In addition to satisfying recognition results the autonomy of
the system allows to handle the problem of coarticulation.

Only simple features like the position, contour and texture of the hands
have been applied, we resigned to grammar or a high level description. To
learn a grammar or a high level description would be an interesting challenge
for future projects. In the near future we plan to integrate facial expression
recognition of Tewes et al [15] as a new HMM sensor and to run the system
on more data to examine its signer independence ability.



15 Self-organized Evaluation of Dynamic Hand Gestures 341

Acknowledgments

We thank Richard Bowden from the University of Surrey for providing his
sign language data. Funding by the DFG in the SPP “Organic Computing”
(MA 697/5-1 and WU 314/5-2) is gratefully acknowledged.

References

1. http://de.wii.com/, 2006.
2. http://www.kokoro-dreams.co.jp/english/robot/act/index.html, 2006.
3. B. Bauer and K.-F. Kraiss. Video-based sign recognition using self-organizing

subunits. In ICPR (2), pages 434–437, 2002.
4. R. Bowden, A. Zisserman, T. Kadir, and M. Brady. Vision based interpretation

of natural sign languages. In International Conference on Computer Vision
Systems, Graz. Austria, 2003.

5. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons, August 1996.

6. R. M. Gray. Vector quantization. In A. Waibel and K.-F. Lee, editors, Readings
in Speech Recognition, pages 75–100. Kaufmann, San Mateo, CA, 1990.

7. T. Kadir, R. Bowden, E. J. Ong, and A. Zisserman. Minimal training, large
lexicon, unconstrained sign language recognition. In Proceedings of the 15th
British Machine Vision Conference, Kingston, 2004.

8. O. Kähler and J. Denzler. Self-organizing and adaptive data fusion for 3d object
tracking. In U. Brinkschulte, J. Becker, D. Fey, C. Hochberger, T. Martinetz,
C. Müller-Schloer, H. Schmeck, T. Ungerer, and R. Würtz, editors, ARCS 2005
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