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Abstract. This paper presents a fuzzy controller to solve a master-slave chaos 
synchronization problem. At first, the method of traditional sliding mode 
control is considered, which utilizes the discontinuous sign function to make the 
system state reaching a sliding surface. Next, fuzzy rules are determined 
according to the Lyapunov theorem, and the fuzzy controller is designed for 
chaos synchronization. Finally, an example of chaos synchronization for an 
uncertain Duffing-Holmes system is presented to illustrate the validity and 
feasibility of the proposed controller. 

1   Introduction 

A chaos synchronization problem means making both chaotic oscillators behave 
exactly the same. Generally two chaotic systems in synchronization are called a drive 
system and a response system, respectively. Chaos synchronization can be applied in 
many areas such as in chemical reactions, power converters, signal process, 
communication, and biological systems [1, 3, 4, 8, 12]. There are many methods for 
synchronization of a chaotic system such as adaptive control method [5, 6, 14], back-
stepping control method [7], ∞H  control method [10], sliding mode (variable 
structure) control method [2, 13, 16], and fuzzy control method [15]. 

Zadeh [17, 18] initiated a fuzzy set theory. The fuzzy logic control schemes have 
been widely developed for almost 40 years, and have been successfully applied to 
many applications [13, 15]. We can easily apply the fuzzy logic control to control an 
ill-modeled system by experiments of skilled operators. Although there have been 
some successful applications of fuzzy logic control, it still has some drawbacks in the 
design procedure. For example, the fuzzy control rules are often experience-oriented 
and suitable membership functions should be given by time-consuming trial-and-error 
procedures. Besides, the dynamic behavior of control system cannot be specified 
precisely. In recent years, some chaos synchronization based on fuzzy system has 
been proposed [15]. 
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In this paper, we are devoted to the research of design fuzzy controller for 
synchronizing the state trajectories of two Duffing-Holmes systems with differential 
initial conditions, system uncertainties and external disturbances. This paper is 
organized as follows: Section 2 described the dynamics of mater-slave chaos 
synchronization system. In section 3 described the design approaches of fuzzy 
controller. Numerical simulations that confirm the validity and feasibility of proposed 
method are shown in Section 4. Finally, conclusions are given in Section 5. 

2   System Description and Problem Formulation 

Consider the following two n-dimensional chaotic systems, 
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where Ru ∈  is a control input, f  is a given nonlinear function of x  and t , )(yfΔ  is 

an uncertain term representing the unmodeled dynamics or structural variation of the 
system (2) and )(td  is the disturbance of system (2). In general, the uncertain term 

)(yfΔ  and disturbance term are assumed bounded, i.e.  

α<Δ )(yf  and β<)(td , (3) 

where α  and β  are positive. 

It is assumed that ),( txf , ),( tyf and ),( tyΔ  satisfy all the necessary conditions, 

such that system (1) and (2) have a unique solution in the time interval ),[ 0 ∞+t , 

00 >t , for any given initial condition )( 00 txx =  and )( 00 tyy = . The dynamics of 

system (1) display a chaotic motion without control input )0( =u .  

The control problem considered in this paper is that for different initial conditions 
of systems (1) and (2), the two coupled system, i.e. the master system (1) and the 
slave system (2), to be synchronized by designing an appropriate control )(tu  which 

is attached to the slave system (2) such that  

0)()(lim →−
∞→

tytx
t

, (4) 

where ⋅  is the Euclidean norm of a vector. 

3   Fuzzy Controller for Design Methodology 

In this section, we want to address the sliding-mode control and design procedures of 
a fuzzy controller for chaos synchronization. 
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3.1   Sliding-Mode Control 

Let the error state be iii xye −= , ni ,,2,1 …= , and ),(),(),( txftxefteg −+= , the 

error dynamic equations are 
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Using the concept of extended systems, the standardized state space equations of 
the error states can be obtained as 
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System (6) is of the controllable canonical form. In such a case, there are no 
internal dynamics [11]. Based on the control law proposed by [2], the sliding surface 
can be defined as 
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where )0(1+ne  denotes the initial state of 1+ne . Eq. (7) can also be formulated as 
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with the initial condition )1(01 )0( ++ = nn ee , and the sliding mode dynamics can be 

described by the following system of equations: 
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or in a matrix equation form as 
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with the initial states being T
ni eeee ][)0( )1(0)2(0)1(0 += " . The design parameters jc  

can be determined by choosing the eigenvalues of iA  such that the corresponding 

characteristic polynomial 
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is Hurwitz. These eigenvalues are also relative to the speed of system response. 

3.2   Fuzzy Controller Designs 

The fuzzy logic control arose from the desire to describe complex control with 
linguistic descriptions. The fuzzy logic control is easy to understand and simple to 
implement, because fuzzy logic emulates human control. The fuzzy controller and 
expert systems have been successfully applied in many complex industrial processes. 
In this section, we utilize the fuzzy logic and fuzzy propositions to design the 
controller. The block diagram of fuzzy controller with chaos system is illustrated in 
Fig. 1. We have the error state from the master and slave systems. The fuzzy 
controller can determine )(tu  by the error and system states. 

 

Fig. 1. Diagram of the fuzzy controller 

The fuzzy controller has a two-input and a single-output. Input variables are the 
normalized sliding function (7) and the derivative of sliding function s� . The overall 
control output is chosen as 

),()( ssFtu f �= . (12) 

where ),( ssF �  denotes the functional characteristics of the fuzzy linguistic decision 

schemes. The membership function of the input linguistic variables s  and s� , and the 
membership functions of the output linguistic variable )(tu f  are shown in Fig. 2, 

respectively. They are decomposed into seven fuzzy partitions expressed as negative 
big (NB), negative small (NS), zero (ZE), positive small (PS), and positive big (PB). 
The fuzzy rule table is designed in Table 1. 

The reaching law can be chosen as 

),( ssFks f �� −= . (13) 

where fk  is a positive constant value. From Eqs. (7) and (13), we can obtain 
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The differential equation of control input )(tu  is 
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In the real world, the external disturbance )(td  and the system uncertainty )(yfΔ  

are unknown. So, the implemented control input is described as 
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After integration of Eq. (16), we can obtain the control input of the slave system 
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Fig. 2. The membership functions of input variables and output variable 

Table 1. Rules-table of fuzzy controller 

sssF ,
NB NS ZE PS PB 

NB NB NB NB NS ZE 
NS NB NB NS ZE PS 
ZE NB NS ZE PS PB 
PS NS ZE PS PB PB 

s

PB ZE PS PB PB PB  

Theorem 1. Consider the master-slave system (1) and (2), the two systems are 
synchronized by the controller )(tu  (17) for the slave system. Then the error state 

trajectory converges to the sliding surface 0)( =ts .  

Proof. We define a Lyapunov function as 



 Design of Fuzzy Sliding-Mode Controller for Chaos Synchronization 41 
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Taking the time derivative of Eq. (16), we have 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −+Δ== ),()()( ssFktdyf

dt

d
sssV f ��� . (19) 

Let [ ])()( tdyf
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d +Δ  is bounded, and [ ] fktdyf
dt

d ≤+Δ )()( . There, we have 
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The reaching condition 0<ss�  is maintained and 0)(lim →
∞→

ts
t

. This completes the 

proof. 

4   Numerical Example 

In this section, simulation results are presented to demonstrate the effectiveness of the 
proposed fuzzy sliding-mode controller for chaos synchronization problem. Consider 
two coupled Duffing-Holmes systems as follows 

21 xx =�  

)cos(3
122112 tqxxpxpx ω+−−−=� , 

(21) 

21 yy =�  

)()cos()()(3
122112 tutqtdyfyypypy +++Δ+−−−= ω� . 

(22) 

The second equation of the slave system (22) is perturbed by an uncertainty term 
)(yfΔ  and interfered with a disturbance )(td  and the control input )(tu  is attached 

to the slave system. Let us define the synchronization errors between the master 
system and slaver system as 111 xye −=  and 222 xye −= . Subtracting (22) from 

(21), we have the synchronization error dynamics as 
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Then, the standardized state space equations can be described as 
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Let the sliding surface be defined as 

( )∫ +++−= t
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The eigenvalues corresponding to the sliding surface can be decided by 
][ 123 ccc  and these eigenvalues dominate the converging rate of the error 

dynamics. They can arbitrarily be assigned. Choose the reaching law as in Eq. (17). 
The control input is determined as 

( ) dtssFkecececxxyyepepu f
t
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with the initial condition 0)0( =u . 

 
Fig. 3. Hyperchaotic behavior of the Duffing-Holmes oscillator in 21 xx −  plane 

 

Fig. 4. The time response of 1x  and 1y  



 Design of Fuzzy Sliding-Mode Controller for Chaos Synchronization 43 

 

Fig. 5. The time response of 2x  and 2y  

For the master-slave synchronization control systems (21) and (22), the parameters 
are 1.11 −=p , 4.02 =p , 1.2=q  and 8.1=ω , the master system (21) displaces 

chaotic behavior [9]. The master system (21) will exhibit a hyperchaotic behavior, as 
shown in Fig. 3, where the attractor is shown on the 21 xx −  plane by giving initial 

conditions 1.0)0(1 =x  and 1.0)0(2 =x . It is supposed that the disturbance 

)cos(20)( t.td π=  and the uncertainty term 105.0)( yyf −=Δ  in the slaver system (22). 

The eigenvalues corresponding to the sliding surface are chosen as 
[ ] [ ]20200600321 =ccc , and coefficient of the sliding-mode controller is 

chosen as 50=fk . The simulation step size was 001.0 sec. 

 

Fig. 6. The error state responses 
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The simulation results with initial conditions 2.0)0(1 =x , 2.0)0(2 =x , 

3.0)0(1 −=y , and 3.0)0(2 =y  are shown in Fig. 4 and Fig. 5. Those show that the 

slave and the master systems can reach synchronization when control operation in the 
slave system at 10=t  secs. Fig. 6 shows the error state responses. The control input 
of slave system was demonstrated in Fig. 7. 

 

Fig. 7. The control input of slave system 

5   Conclusions 

In this paper, fuzzy sliding-mode control for chaos synchronization has been 
proposed. The fuzzy controller based on the sliding-mode and Lyapunov stability 
theory, which is designed for the regulation of the error state vector to a desired point 
in the state space. Numerical simulation results demonstrate that the proposed method 
can be successfully applied to synchronization problems of a Duffing-Holmes system. 
The derived controllers are robust so that the closed-loop system is stable in the 
presence of uncertainties and disturbance. The chattering phenomenon of conven-
tional switching type sliding controls does not occur in this study. 
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