
8 Support for Collaboration

This chapter examines collaboration with respect to design rationale. On
the one hand, this is a discussion of how collaboration can support the
development, codification, and use of design rationale. On the other hand,
it is a discussion of how rationale supports collaboration in design and
development

8.1 Introduction

8.1.1 General

wish to accomplish projects that are too large and complex for a single
person. Although this is the fundamental basis for collaboration in all
human endeavors, it is not always a simple matter of adding team members
to tackle ever-greater challenges. Indeed, one of the classics of software
engineering, Brooks’ Mythical Man-Month (1975), took its title from the
mistaken notion that software team productivity scales linearly with the
number of team members. Brooks analyzed his own experience managing
the development of the IBM Operating System 360 software, a project in
which he concluded that the addition of team members eventually reduced
productivity.

8.1.2 Objectives of This Chapter

rationale. First, it observes that software development is almost always
collaborative, for the simple reason that most software projects are too big
for solitary individuals ever to successfully tackle. This raises a set of
specific challenges: collaboration aggregates individual efforts, but it also
creates new sources of work for people in teams, and new risks for the

People work together in software design and development because they

This chapter surveys the relationship between collaboration and design

104 8 Support for Collaboration

products of teamwork. We then consider how collaboration supports
rationale in software development—by encouraging team members to
explicitly articulate their goals and plans, and therefore to create the
possibility of a discussion about reasons, and by supporting a culture of
software development to conventionalize and leverage social mechanisms
like anthropomorphic metaphors and software patterns. Finally, we
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s
collaborators, and coordination among collaborators, especially with
respect to making progress in uncertainty.

8.2 Software Development as Collaborative Work

8.2.1 Collaboration Is Inescapable

tackle large and complex projects: Brooks estimated that Operating System
360 took 5000 person-years. Quite simply, there is just too much work to
do in many projects for one person to ever be able to carry them out. But
the issue is more than one of mere additions.

Collaboration is well integrated into human psychology and sociology.
For example, groups of people generate more ideas and higher-quality
ideas than disaggregated individuals. People with different skills and
experience often experience synergies in collaboration; that is, together
people can develop solutions that no one of them could have conceived of
or executed individually (Kelly and Littman 2001).

During its brief history, software engineering has developed as a
pervasively collaborative work practice. Developing a substantial software
system requires many specialized skills. The tasks of system
development—requirements identification and analysis, architectural
specification, software design, implementation, testing—involve a great
diversity of skills. Individual software professionals cannot be expert in all
or even most of these skills. Indeed, software professionals typically
devote a significant fraction of their professional effort to keeping up to
date with just one or two of these professional skill sets.

The tasks of software development are at least partially decomposable,
as suggested—perhaps a bit optimistically—by traditional waterfall
models of system development. Thus, modern software development
regularly involves divisions of labor and coordination of specialized

The most basic driver for collaborative work is the human ambition to

8.2 Software Development as Collaborative Work 105

contributions. This entails fairly elaborate and articulated specializations in
software project management, in addition to the primary skills of software
development.

Furthermore, labor economics and the worldwide distribution of skills
have produced a global distributed paradigm for software development.
Today, many systems are developed by collections of technical teams
scattered throughout the world, each providing some specific capabilities,
and sometimes having little or no direct contact other teams. Such far-
flung projects were unprecedented only a few years ago, and still
constitute an area of intense innovation in collaborative work.

In this context, the example of Operating System 360 begins to appear
an unrealistically simple case: the OS 360 software only had to run on one
hardware configuration, and was developed by a colocated team; most of
the designers and developers worked in direct physical proximity.

 8.2.2 Collaboration Entrains Challenges

that adding people to a project does not enhance the total effort linearly.
The basic reason for this is that collaboration itself is work. Two people
chopping down a tree must share their plans and coordinate their efforts
just to survive, let alone to experience a productivity boost. This sharing
and coordination diverts and subtracts time and effort from the primary
task. Thus, the tree may be cut down faster than either person alone could
do it, but it is never cut down twice as fast.

The challenge of collaborative work is considerably greater than
suggested by the tree-cutting example. When people work in groups, they
tend to work less hard than they do when working as individuals—a
phenomenon called “social loafing” (Karau and Williams 1993). Social
loafing is especially prevalent when people perceive that their contribution
to a collective outcome is not unique, that someone else could do the work
just as well, or when they believe that their loafing will not be evident to
their co-workers.

When people pool their ideas, when they collectively brainstorm and
develop new ideas, they tend to adjust their contributions toward positions
taken by others they perceive to be competent or powerful, or toward
existing majority opinions—the status quo. This tendency to conform
undermines the extent to which collaborative intellectual activity can
generate more and better ideas, and over time causes groups to become
more homogenous and less effective (Latane and Bourgeois 2001).

The notion of a man-month—or person-month—is mythical in the sense

106 8 Support for Collaboration

However, diversity in groups also entails collaborative challenges.
People with different technical backgrounds commonly have different
fundamental values and beliefs; they can find it difficult to appreciate one
another’s contributions, or even understand what is being contributed
(Pelled et al. 1999). Thus, diversity in collaborative groups frequently
leads to conflicts, often very deep, value-based conflicts.

Phenomena like social loafing and conformity/conflict have significant
derivative effects on group dynamics. Derogatory terms like “slacker” and
“overachiever” reveal the tensions that can be created in a group over
social loafing. Effective group performance requires a foundation of
common ground, that is, shared knowledge about local context,
conventions, and co-reference to enable efficient and reliable interactions.
Sustained group performance requires the development of trust and
generalized reciprocity, sometimes called social capital (Coleman 1990).

Many of the challenges of collaboration are inherent tradeoffs; they can
be addressed, and perhaps balanced, but not solved tout court. For
example, designating a “coordinator” to receive and direct all group
communications can improve group problem solving efficiency, but
decreases satisfaction with the group activity (Leavitt 1951). Similarly,
including a “skeptic” in brainstorming allows groups to produce more and
better ideas, but also decreases members’ satisfaction with the group
activity (Connolly et al. 1990).

These collaborative challenges are as old as human organizations, but
they are exacerbated by the very nature of knowledge work like software
design and development. In knowledge work the interim work products,
sometimes even the final work products, can be quite insubstantial; they
are plans and strategies, architectures, algorithms, and heuristics. The
products of knowledge work are also typically arcane; indeed, software
systems are possibly the best example there is of this.

8.3 Collaboration Supports Rationale

collaborative interactions of various software professionals ineluctably and
naturally externalize rationales, though often incompletely. Collaborative
interactions in software development also shape the software development
process in ways that favor rationale.

Collaboration is an important social resource for design rationale. The

8.3 Collaboration Supports Rationale 107

8.3.1 Collaboration Externalizes Rationales

documentation activity within the software development lifecycle, and it is
certainly true that design rationale can be a kind of documentation.
Incorporating rationale into formal documentation activities is useful and
efficient, since rationale provides causal foundation for other categories of
documentation such as final specifications, reference, and maintenance
manuals, and user documentation like online help and tutorials.

However, rationale is more broadly the reasoning that occurs throughout
design and development, whenever and however it is codified and used.
One of the most important consequences of collaborative work is that co-
workers must articulate and externalize knowledge, assumptions, and
reasoning that otherwise might remain tacit. If you watch one programmer
at work, you would most likely get little insight into programming. The
work activity is mostly mental, and the occasional external inscriptions
that are produced are quite arcane, but if you watch two programmers
collaborating, you see quite a lot about programming. More specifically,
you see quite a lot of rationale.

Software development is a complex, intellectual task in which there are
never singularly correct solutions. More typically, there are many
satisfactory solutions, each entailing a variety of partially understood
tradeoffs and side-effects. Elsewhere in this book we have characterized
these problems as wicked (Rittel and Weber 1973) or ill-structured
(Reitman 1965). When people work on this kind of task collaboratively
there is lots to talk about, indeed, lots to analyze, justify, and debate.

As Kraut (2003) put it, this kind of collaborative work follows a “trust-
supported” heuristic in which group performance can be only as good as
the second-best member. Groups pool and weigh different perspectives;
they identify and repair errors in candidate solutions and the rationale for
candidate solutions. Producing a solution requires both the technical
enterprise of identifying and developing a proposal, but also the social
enterprise of convincing one’s colleagues.

An old chestnut of software engineering is that no-one wants either to
produce or to use documentation. But in collaborative contexts, in which
one must obtain the support of colleagues in order to make a technical
decision, there is no shortage of design rationale. Indeed, the culture of
software development work has evolved a variety of mechanisms to
capture, preserve, and discuss these materials, such as commenting and
literate programming (Knuth 1992), bug reports and frequently asked
questions (FAQ) forums, and indeed the entire spectrum of Usenet

The creation of design rationale is often conceived of as a

108 8 Support for Collaboration

communities. Collaboration in software development unavoidably and
voluminously generates rationale.

8.3.2 Software Development Communities of Practice

profession, but it is a profession that is all about the skills and practices of
constructing software. Software professionals have developed a culture of
software development—communication and work practices to coordinate
work and to teach and coach one another (Curtis et al. 1988; DeMarco and
Lister 1999; Lammers 1988). For example, software developers frequently
talk about software components and their interactions in explicitly
anthropomorphic terms; thus, a component is said to know things—such as
how to put a file on the print queue—or to expect things from other
components (e.g., Herbsleb 1999; Madsen 1994). In this sense, software
development is a community of practice (Lave and Wenger 1991).

One could regard the cultural practices of software developers as
curiosities, but in fact social practices emerge, evolve, and persist because
they add something to human activity. Thus, it seems prudent to consider
how the ways software professionals talk about and construct software—
particularly those work practices that are not taught in formal education or
encouraged by industry standards, corporate policies, or managerial
directives—may reveal important characteristics about how experts think
about software, and how they coordinate software development work.

In this light, consider the issue of anthropomorphic and other
metaphorical language. Formal education and normative practices in
software engineering have traditionally placed high value on explicit and
correct representations such as specification languages, programming
languages, and a variety of diagrams. Notably these formal representations
are pretty much strictly declarative; they describe the structures and
interactions in a software design and implementation. Classic articles on
computer science education by Dijsktra (1989), among others, have
specifically argued against metaphorical language.

Why then would software developers employ anthropomorphic and other
metaphorical language? Carroll and Mack (1985) argued that metaphorical
representations clarify new domains by leveraging concepts that are already
known, while at the same time highlighting mismatches in the mapping
of old-to-new, and thereby flagging conceptual problems that need attention.
Rosson and Alpert (1990) suggested that the anthropomorphic metaphors
of object-oriented design facilitate upstream communication among
developers by reducing the need for explicit point-by-point clarification and

Software development is diverse and somewhat fragmented as a

8.3 Collaboration Supports Rationale 109

refinement entailed by more explicit representations. For example, saying
that software component A knows about software component B is both
succinct and rich. It conveys that the behavior of A depends in some way on
the behavior of B, and that the specific nature of the contingency is either
not yet known or not needed for present purposes.

Herbsleb (1999) elaborated this conjecture by noting that the strategy of
anthropomorphic representation allows software developers to leverage
“naïve psychology” (Clark 1987)—the near-universal understandings that
humans share about animate entities. Naïve psychology allows people to
reason what an animate entity must have known to have acted as it did, or
what it is trying to do given its behavior and knowledge. In other words, it
bundles declarative understanding of what is happening with direct
perception of its rationale—that is, how an entity is able to do what it does
and why. It is believed that naïve psychology capabilities were selected in
evolution because individuals who could draw these inferences were better
able to succeed in the early social world (Clark 1987).

Herbsleb (1999) analyzed a corpus of 1800 system behavior
descriptions identified in a series of software engineering domain analyses.
The domain analyses involved teams of 3–5 experts analyzing message-
passing protocols in telephony or switch maintenance software. Herbsleb
found that 70% of the behavior descriptions were metaphorical. Each
domain analysis involved a series of meetings; for each series, Herbsleb
analyzed one early meeting, one meeting from the middle of the series, and
one of the final meetings. He found that, through the course of the three
domain analysis meetings, teams of software engineers came to rely
increasingly on certain of these metaphorical descriptions—the ones
derived from naïve psychology. That is, metaphors were not used as
ephemeral ice-breakers, to replaced with more proper and explicit
descriptions. Instead, they became established in the domain analysis as a
sort of local technical language for the teams.

Communities of practice are social mechanisms for the codification and
social transmission of practices and their rationales. Collaborative software
development work requires sharing extraordinarily complex information
fluently. Software development has evolved as a community of practice to
leverage naïve psychology via anthropomorphic metaphors, selectively
hiding and emphasizing information, while bundling description and
rationale. Another example of this in contemporary software practice is
pattern languages (Gamma et al. 1995). Both simplify and speed
communication in software collaborations by leveraging rationale.

110 8 Support for Collaboration

8.4 Rationale Supports Collaboration

role of rationale in software development is motivated and facilitated by
collaborations among professionals, but rationale also supports
collaboration. It provides a compelling management tool for keeping
projects on track spanning time, distance, and organizational change. It
facilitates awareness of one’s team members, contributing to the
development of common ground and trust, and it facilitates coordination,
particularly in project contexts of high uncertainty.

8.4.1 Awareness

needs to know many things about one’s collaborators (Carroll et al. 2006):
Who are they? What do they want to do? What are they doing now? What
tools are they using? To what other resources do they have access? Who
do they work with? What are they thinking about? What do they know?
What do they expect? What are they planning to do in the near future?

accomplished evolving over time?
This may seem like a long list, but in fact it is quite incomplete.

Consider the issue of coordinating nuances in vocabulary. A user interface
designer and a software architect may both support prioritizing design
elegance; they may even be able to talk at length about how and why this
objective is important. But in practice, they may have entirely different
notions of what elegance is. If goals are not adequately analyzed and
codified, this kind of failure of common ground can quickly lead to
conflict, putting the collaboration and the project outcome at risk.

Of course the mere fact that different professional perspectives differ
with respect to technical concepts and skills, values and priorities, and so
forth is not the problem. Indeed, such differences are required for a
successful large-scale software project, or any other large-scale human
endeavor. Professional diversity can be, should be, and often is a resource
to a software development team. The challenge is to efficiently recognize
and effectively manage these differences.

This is where rationale can help. To the extent that people share
concepts, skills, values and priorities, they can more easily create and

The relationship between rationale and collaboration is reciprocal. The

In order to collaborate effectively in a large and complex project one

interaction? What do they value? What criteria will they use to evaluate
joint outcomes? How is their view of the shared plan and the work

past? What disciplinary biases and assumptions do they bring to this
What sorts of significant relevant experiences have they had in the

8.4 Rationale Supports Collaboration 111

develop common ground and trust. This is the essence of a community of
practice (Lave and Wenger 1991), as discussed earlier in this chapter.
When team members do not share disciplinary concepts, skills, values and
priorities - as in the example of the user interface designer and the software
architect discussing elegance, they need to construct common ground
socially by exchanging perspectives and attaining mutual understanding.
(Analogous points could be made for social structures other than discipline
and community of practice, such as culture and ethnicity.) Members of a
software development team can construct common ground by sharing their
goals and visions for a project, their ideas about how to turn these into
plans and actions, what they most value, and what they think they can
contribute to the project.

A great variety of groupware tools are being developed, deployed, and
investigated to provide awareness support in collaborative work, for
example, tools for online discussion about, or direct annotation of project
objects, various activity visualizations, personal profiles and social
networks, and activity integrators (Carroll et al. 2006). All of these tools
help to codify bits of rationale; many have the effect of making personal
rationales more permanently accessible to other team members, or more
closely integrated with project data objects. They help people share more
of their reasoning and their reasons with one another, and that helps them
collaborate more effectively.

8.4.2 Coordination

organizations, Kraut and Streeter (1995) found that informal discussion
among team members was both the most valued and the most used
coordination technique among the 18 coordination techniques they studied.
Curiously, they also found that members of the software teams they
studied valued informal interaction more than they actually engaged in it.
More generally, Kraut and Streeter found that less formal coordination
mechanisms—such as group meetings, discussions with one’s manager,
requirement reviews, design reviews, and customer testing—mechanisms
that bring to light diverse viewpoints, were judged as valuable given the
extent to which they were used, whereas more formal coordination
mechanisms—like status reviews, code inspections, CASE tools, data
dictionaries, milestone schedules, and source code—were judged as not
valuable relative to the extent to which they were used.

In this investigation, the rated importance of informal and social
coordination mechanisms in large software projects was strongest during

In their empirical study of collaborative coordination in large software

112 8 Support for Collaboration

periods of high uncertainty, such as in requirements and early design. In
other words, the easy exchange of rationale, facilitated by less formal
coordination mechanisms such as meetings and discussions, was critical to
collaboration among software developers in high uncertainty, upstream
stages.

Kraut and Streeter also noted a somewhat alarming tendency for
projects to increasingly de-emphasize informal interaction through the
course of development. Managers tended to prefer formal coordination
mechanisms, and to shift towards these when possible.

Kraut and Streeter concluded that an important potential advantage in
software management would be to devise better tools and techniques to
enhance informal and interpersonal communication among team members
throughout the development process. They noted that many of the most
prominent and celebrated techniques in software engineering, such as
formal specification languages, are designed to minimize interpersonal
communication. These may satisfy a manager’s desire for formal
coordination mechanisms, but they do not facilitate the easy exchange of
rationale and were rated by developers as valueless relative to their use.

8.5 Summary and Conclusions

rationale. First, it observed that software development is almost always
collaborative work, for the simple reason that most software projects are
too big for solitary individuals ever to successfully tackle. This raises a set
of specific challenges: collaboration aggregates individual efforts, but it
also creates new sources of work for people in teams, and new risks for the
products of team work. We then considered how collaboration supports
rationale in software development: by encouraging team members to
explicitly articulate their goals and plans, and therefore to create the
possibility of a discussion about reasons, and by supporting a culture of
software development to conventionalize and leverage social mechanisms
such as anthropomorphic metaphors and software patterns. Finally, we
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s
collaborators, and coordination among collaborators, especially with
respect to making progress in uncertainty.

This chapter surveys the relationship between collaboration and design

