
 

 

6 Presentation of Rationale 

This chapter examines issues of presentation for software engineering 
rationale (SER). The substance, the content of rationale, is always 
mediated by some presentation. The presentation could be free form, 
natural language text, or a formal, symbolic language; it could be printed 
sheets of paper, or three-dimensional displays in a virtual environment. 
The presentation of rationale has its own effects on the utility of rationale 
as an information resource in software development. 

6.1 Introduction 

6.1.1 General 

The ingenuity and effort of creating a sound and comprehensive rationale 
is only worthwhile if people can use it. The use of rationale is always 
mediated by its presentation.  The presentation of a rationale can be 
relatively formal and symbolic, for example, using types and logic with 
labeled links, or it can be relatively informal, such as free text or even a 
videotaped interview with a designer explaining his or her design. Various 
approaches to presenting rationale themselves have rationales. One 
significant advantage for Software Engineering Rationale (SER) 
presentation is that, unlike hardware devices, the designed artifacts 
themselves are stored electronically. This supports the potential to attach 
the rationale for the artifact directly to the artifact in ways that are 
impossible in other design domains. 

6.1.2 Objectives of This Chapter 

This chapter describes the main line of development of the IBIS (for Issue-
Based Information System) notation for rationales, from the early 
innovations of Kunz and Rittel (1970), through work on hypertext and 



80      6 Presentation of Rationale 

 

hypermedia rendering of IBIS graphs, through to studies of the use of IBIS 
and IBIS-derived approaches to presenting rationale. One of the key issues 
that emerges from this line of research is that there is a tradeoff between the 
discipline and clarity that one obtains from casting a design discussion into 
as IBIS presentation, and the inflexibility and cumbersome aspects of 
working with IBIS. In part, these tradeoffs led to a turn toward informal 
presentations of rationale in the mid-1990s and subsequently. Today, 
reconciling these approaches, and enhancing them through new techniques 
in information visualization, seems feasible, and perhaps even more 
necessary as the role of the software developer expands to include end users. 

6.2 Codifying Rationale Semiformally 

6.2.1 The rationale for rationale notations 

Discussions of rationale quite appropriately tend to start with Kunz and 
Rittel’s (1970) concept of Issue-Based Information Systems (IBIS). IBIS 
presents rationale as a structured discourse of arguments that support or 
oppose positions that themselves correspond to issues. This results in a 
straightforward and explicit relational decomposition of issues, positions, 
and arguments. However, IBIS quickly gets more complex: arguments can 
support or oppose other arguments as well as positions, and in particular, a 
given argument can support/oppose arguments that pertain to other 
positions on other issues. Issues have many interrelationships; one issue 
can illustrate another issue, generalize another issue, resolve another issue, 
etc. Thus, the hierarchy of issues, positions, and arguments is actually a 
network. 

The key insight of IBIS can be regarded as essentially presentational: 
Kunz and Rittel emphasized that in planning and design problem solving 
the key ideas, the “solutions”, were often “there” in plain view, but not 
always identified, weighed, and valued appropriately. IBIS makes explicit 
how the elements of a complex problem solving process interrelate. It 
presents the underlying argumentation as a graph of related propositions so 
that planners and designers can have more precise discussions. 

An IBIS presentation of the status of a design rationale makes public 
what issues are currently identified and how they are related. This can 
focus disagreements and discussions and make them more productive. For 
example, a debate about what the positions are with respect to an issue is 
very different from that of how various arguments support or oppose a set 



6.2 Codifying Rationale Semiformally      81 

 

of positions. It is efficient to distinguish between these two sorts of 
debates, among others.  

An IBIS presentation of a design process can also be a generative tool. 
Laying out the network of currently identified issues, positions, and 
arguments, helps to suggest further issues that need to be raised, or further 
relations among issues already identified; it makes clear what positions have 
been identified for each issue, perhaps suggesting positions that still need to 
be articulated. Setting out the arguments for every position shows which 
positions are better supported than others, suggesting where attention can be 
focused to strengthen and/or eliminate some of the current positions. 

problem solving process, and poses a detailed agenda for further discussion 
and action. It seeks to improve the outcome of deliberative processes by 
highlighting divergence and even controversy. It gathers and integrates the 
knowledge distributed among members of a planning or design project, 
organizing the knowledge with respect to its relevance to the project. It 
makes the bases of eventual decisions more transparent and auditable. 

The network presentation of rationale, first developed as IBIS, has 
become a standard visualization for subsequent rationale projects—even 
those that construe the content of rationale in ways different from IBIS.  
For example, Questions, Options, and Criteria (QOC) is a variant of IBIS 
that seeks to document a design solution, as opposed to the discussion 
process that led to the solution (MacLean et al. 1989). Thus, where Kunz 
and Rittel (1970) wanted to capture and present the actual issues, positions, 
and alternatives as they were discussed in a design process, including parts 
that ultimately had no tangible impact on the final design solution, QOC 
seeks to present only the design argumentation that justifies the design 
solution. MacLean, Young and Moran (1989) saw QOC rationales 
themselves as a form of designed documentation for a design solution. 
Nevertheless, QOC rationales are typically presented in graphs that are 
isomorphic to IBIS graphs: design questions (essentially, IBIS issues), the 
options that address them (essentially, IBIS positions), and the criteria for 
assessing options (essentially, IBIS arguments).  

 

6.2.2 Hypermedia Presentations of Rationale 

IBIS was originally conceived as a paper-based information technology. 
However, as IBIS argument networks get larger and more complex, they 
become very difficult to read and edit in paper: they are too large for 
standard-sized sheets of paper, and as they change and grow, pages 

Thus, an IBIS presentation both explicitly codifies the current state of a 



82      6 Presentation of Rationale 

 

become cluttered with crossing lines, erasures, and annotations, and purely 
paper representations are not convenient to save, and very difficult to share 
with remote collaborators or to adapt and reuse in subsequent projects.  

IBIS has been incorporated into design war-room practices in which a 
design problem is analyzed and managed through paper-and-string 
representations pinned to the walls of a workroom (Newman and Landay 
2000; Whittaker and Schwarz 1995). Wall-sized pin-up representations are 
large enough to display nontrivial IBIS graphs, and, relative to paper, they 
are easily edited. However, rooms are expensive and cumbersome in their 
own ways as representational media: they cannot be saved for subsequent 
reference or reuse, and they cannot be shared with remote collaborators. 

The advent of hypertext and hypermedia in the mid-1980s provided a 
breakthrough in the presentation of IBIS rationales. Conklin and Begeman 
(1988) described graphical IBIS (gIBIS), a browsing and editing tool for 
navigating and managing vast rationale networks. This tool provided many 
of the navigation and maintenance affordances of a wall-sized pin-up 
display, but rendered them accessible through a workstation user interface. 
This made possible saving, sharing, and reusing IBIS graphs.  

Many hypermedia and hypertext tools for presenting rationale have been 
developed. For example, McKerlie and MacLean (1993) prototyped a 
hypermedia QOC rationale browser that incorporated documents, 
diagrams, images, and other media types directly into the nodes of a QOC 
graph.  

6.2.3 Using Semiformal Rationales 

Semiformal rationales lie in the gray area between notations with known 
properties and free-form expressions of rationale. Through the nearly 40 
years of experience with IBIS and its descendants, there has always been a 
tension between beliefs that the discipline of categories and links could 
help to focus design thinking and beliefs that the notation could be an 
awkward distraction from the substance of design thinking. Indeed, 
Conklin and Begeman (1988) reported both patterns among their early 
users.  

One of the benefits of semiformal notations is that they project a 
template structure onto design argumentation, highlighting gaps, and 
thereby helping to further articulate requirements. Because gIBIS was 
actually implemented and used (albeit mainly in research laboratory 
software development projects), it helped to identify some of the second-
order challenges for rationale browsers—challenges that could only 
become apparent through the real use of rationale presentation tools. 



6.3 Codifying Rationale Informally      83 

 

Conklin and Begeman (1988) noted, for example, that the use of gIBIS 
helped to identify some specific problems having to do with the fact the 
IBIS does not represent design decisions per se. Decisions are critical events 
in design discussions; they resolve sets of positions on an issue, selecting 
one position and rejecting the others. The chosen positions are often 
embodied as a solution element (e.g., a specific piece of code). Conklin and 
Begeman (1988) observed that users had to keep track of design decisions 
and their associated solution elements outside the gIBIS system.  

Conklin and Begeman considered indicating selected positions through 
display highlighting, to distinguish them visually from the rejected 
positions. However, one deficiency of this approach is that the rationale for 
the decision itself—as distinct from the rationale for the position as a 
response to a given issue—cannot be represented. A more comprehensive 
approach, also discussed by Conklin and Begeman (1988), is to create a 
separate layer of meta-argumentation for discussion about nodes and 
groups of nodes in an IBIS graph. This approach obviously adds a great 
deal more complexity. 

In the early 1990s, influential empirical studies of the use of semi-
formal rationales presented through hypermedia browsers identified 
substantial cognitive and social obstacles (Buckingham Shum and 
Hammond 1994). Indeed, these specific studies were assimilated to a more 
general critique of efforts to support intellectual work directly with formal 
and semiformal knowledge representations (Grudin 1994; Shipman and 
Marshall 1999a). Recent work on semiformal rationales presented through 
hypermedia browsers has focused on providing a richer vocabulary of 
categories and data types, and more flexible user interactions (Buckingham 
Shum et al. 2006.). 

6.3 Codifying Rationale Informally 

The tradition of rationale presentations inaugurated by IBIS focused on 
constrained symbolic descriptions. This was intended to benefit analysts 
and designers by providing a relatively precise description language as 
well as a discipline for using the language. However, for the most part this 
is more of an intention, a vision of what rationale could be, rather than an 
achievement tout court.  

The semiformal notations, such as the standard IBIS graphs, do not 
actually provide very much descriptive constraint, and to the extent they 
do provide constraint—as in the example of including no category for 
decisions, the constraint were sometimes found to be inappropriate. 



84      6 Presentation of Rationale 

 

Nevertheless, pursuing even a programmatic interest in constrained 
descriptions is different, eschewing such concerns. Starting in the mid-
1990s, less formal approaches to rationale became more common.  

Many of these less formal approaches to rationale were part of a 
concurrent rethinking of software design, and a turn toward less formal 
approaches to specifications and other software design representations 
(Carroll 1995; Fowler 2003). A central characteristic of these approaches 
was (1) a focus on narrative: stories of workflows and other organizational 
processes, scenarios of user interaction, and use cases of system interactions, 
and (2) a deliberate compromise of semantic precision for conceptual 
richness. Thus, where IBIS tried to impose (albeit programmatically) 
conceptual austerity on planning and design—the most “wicked” of problem 
types, in Rittel’s famous term—these latter approaches took the more 
naturalistic stance of confronting the wickedness first. 

Scenario-Claims Analysis (SCA) conceptualizes the rationale for 
interactive software systems as a collection of natural language 
propositions (claims) that are implicit in the usage scenarios afforded by 
the system (Carroll and Rosson 1992; Carroll 2000). The propositions are 
used to identify tradeoffs in the rationale for the system. Consider a simple 
scenario in which a person is trying to copy text using an information 
system that grays out currently inappropriate/disabled menu items. Going 
to the Edit menu before selecting the text to be copied, the person finds 
Copy grayed out, but after selecting the text, the Copy command is no 
longer grayed out, and the operation can be completed. This scenario 
illustrates a claim that graying out is an effective visual signal for currently 
inappropriate/disabled commands. This claim also helps identify potential 
tradeoffs, downsides of the graying-out technique; for example, the user 
might not make the right interpretation; the grayed-out command might 
just seem to be broken in the software, instead of suggesting that its 
argument needs to be specified. 

SCA rationales are usually presented in tables, not as IBIS graphs, but in 
fact there is an obvious, though perhaps rough, mapping between the two: 
each scenario in SCA presents an issue, or possibly a nexus of related 
issues. The design artifacts described in the scenario (such as the graying-
out technique) are positions that respond to the issue or issues, and the 
claim tradeoffs are arguments for and against these positions. Of course 
there are also differences: a user interaction scenario is both more complex 
and more narrow than an IBIS issue. For example, scenarios often present 
more than one issue, and generally illustrate only a single position for a 
given issue, not a range of possible positions responding in various ways to 
the issue. A similar comparison can be carried out for other scenario-based 
approaches such as Lewis, Reimann, and Bell’s (1996) problem-based 



6.4 Directions      85 

 

evaluation approach in which a set of problem scenarios are identified, 
each presenting one or more issues, and then used to analytically evaluate 
a set of design proposals (positions) via an informal walkthrough 
(producing a set of arguments for the positions). 

Other contemporaneous efforts at naturalistic capture and presentation of 
rationales explored narrative frameworks that were even less schematic than 
scenarios. Some of this work captured ethnographic design history material. 
For example, the Raison d’Etre project captured and presented the individual 
rationales and understanding of project members at specific points in time 
during a software development project. A dozen core members of a software 
product design team were recurrently interviewed during a 12-month period. 
The developers were individually asked about the goals and approaches of 
the project. A video database of about a thousand short clips was created 
(Carroll 2000; Carroll et al. 1994). The video clips could be browsed and 
retrieved using a set of tags (e.g., <project vision>). 

This project showed that there is an abundance of rationale generated 
every day in software development. However, it also showed that there is 
only a partial convergence and consensus as to why decisions were taken, 
or even about what decision were taken. Developers were very interested 
to review and discuss the database of interview clips, but the most practical 
application of the Raison d’Etre materials was to help new project 
members get better oriented to the issues that the project had faced, the 
diversity of positions that had been taken, and arguments that had been 
advanced for those positions. 

Mackay, Ratzer, and Janecek (2000) also employed video to capture and 
present design requirements, concepts, and rationales. Their approach 
focused on documenting a system in use by videotaping both expert users 
and novices in actual work contexts. They also videotaped design meetings 
in which new design proposals were described and critiqued. Finally, they 
used these real materials to plan and construct animated storyboard 
scenarios showing how particular design proposals might be implemented 
and how they might change the system in use. 

6.4 Directions 

The original challenge in presenting rationales was the complexity and 
vastness of the considerations that can bear on wicked problems of 
planning and design. The IBIS notation brought an order to research on 
this challenge, but the challenge remains. Today, software technology 
advances in databases, and more generally in information repositories, and 



86      6 Presentation of Rationale 

 

in data visualization present new opportunities for developments in 
managing rationale. 

6.4.1 Reusable Rationale Databases 

Since the early 1990s, papers on design rationale have suggested the 
possibility of repositories or libraries of rationale. Indeed, one argument 
that could be made for semiformal design rationale notations is that they 
provide a rubric for structuring and retrieving rationale elements in such 
repositories.  Such repositories could improve the cost–benefit balance for 
developing rationales in three distinct ways: they amortize the costs of 
developing comprehensive design rationales by permitting many authors to 
contribute rationale, they could improve the validity and applicability of 
rationales by moving the level of design discourse beyond single projects 
and into the entire software design community, and they could increase the 
benefits of developing rationales by allowing many developers to access 
and use rationales once they are created. 

Sutcliffe and Carroll (1999) defined a structural schema for claims to 
facilitate claim retrieval and reuse. Their schema includes a series of 
labeled slots for each claim, including parent claims, projected usage 
scenarios, design effects, upsides, downsides, issues, dependencies, 
evaluation data, and basis in theory. Developers could search or browse a 
claims repository using the values of these slots. Chewar et al. (2005) 
adopted this proposal and developed a rationale repository to support the 
design of notification systems (interactive interface displays like Really 
Simple Syndication (RSS) clients that run in background of a primary task 
and notify users of updates). Their Leveraging Integrated Notification 
Knowledge with Usability Parameters (LINK-UP) system presents claims 
for typical notification system scenarios. On-going evaluation of the use of 
LINK-UP by novice designers has been encouraging (see also Fabian et al. 
2006; Payne et al. 2003). 

The Software Engineering Using RATionale (SEURAT) system (Burge 
and Brown 2004) uses the RATSpeak representation (Burge and Brown 
2003) implemented as a reusable rationale database schema. When 
rationale is required for a new project, the initial rationale-base is 
populated with the required schema tables and a fully populated Argument 
Ontology that contains a hierarchy of reasons for making software 
decisions. SEURAT has only been used as a single-user system. The 
relational database would make it straightforward for multiple users to 
contribute rationale but there are other SEURAT capabilities, such as the 



6.4 Directions      87 

 

ability to associate that rationale with the code, that cannot be distributed 
using the current implementation. 

6.4.2 Multi-Scale Presentations of Rationale  

All of the standard presentations of rationale articulate a great amount of 
structure at basically a single level. This is obvious in the vast networks 
that gIBIS tried to manage through hypermedia browsing. However, in 
some ways this does not reflect the structure of a rationale space as 
designers and users experience it. Some issues, positions, and arguments 
are first-order elements of the design argument; others are subordinate. 
However, these relations are not necessarily clear or even codified at all in 
standard IBIS graphs.  

This could be seen as an example of multiscale data structures. For 
example, in a map of the world the continents and oceans are always 
visible, but the Hudson River may or may not be visible at that scale. 
However, in a map of the state of New York, the Hudson River is always 
visible, but the individual streets in the town of Ossining (located on the 
river) would most likely not be visible, though they would be on a map of 
Ossining or of Westchester County. The point is that map data is 
understood to be multi-scale data, and is typically presented in multiscale 
presentations. 

Analogously, rationale data might be organized so that the coarsest scale 
would present only the leading issues, positions, and arguments. However, 
one could drill down to finer scales to see the subordinate issues, positions, 
and arguments. The multiscale concept is most typically discussed with 
respect to visualization techniques, as illustrated by maps. Perhaps its 
application to presentations of rationale should be pursued especially with 
respect to visualizations of design argumentation (e.g., Kirschner et al. 2003).  

Wahid et al. (2004) describe a simple but concrete example from their 
claims repository work: they visualize a central claim as surrounded by 
concentric orbits of supporting or otherwise related claims. The user can 
filter the visualization to see only the core claim, or to see only the core 
claim with its most related claims, or to see the maximum map of related 
claims. 

6.4.3 Integrated Presentation 

As stated earlier, the capture and use of rationale for software development 
has a significant advantage over rationale for other domains. Since software 
is stored entirely electronically, the rationale can be attached directly to the 



88      6 Presentation of Rationale 

 

artifacts that it describes. This is aided significantly by progress in software 
development environments that have emphasized the ability to integrate and 
extend the various tools used in developing software. These tools include 
word processors used to write and access documentation, UML editing tools 
used in design, and the Interactive Development Environments used to write, 
edit, compile, and debug the code. The extensibility of software 
development environments has also benefited from the increasing 
availability and use of open-source applications in these environments, 
which provide even more flexibility and openness in customizing the 
environment to support and accommodate rationale. 

One of the issues in the capture and use of rationale is the need for 
developers to record and use their rationale as part of their normal 
development process. The need to have to use a separate tool for rationale 
has been a deterrent toward doing this. When examining past scenarios 
where rationale could have been beneficial in saving time or money, one 
question arises: would the person who could have benefited from the 
rationale have actually looked at it? Would they have even known that it 
existed? While rationale does have some benefit as a generative tool, it 
should not be treated as “write-only” documentation.  

Software design is often documented using the Unified Modeling 
Language (UML). Zhu and Gorton (2007) developed a UML profile that 
models design decisions in UML and captures the relationships (support, 
break, help, hurt) between the decisions and nonfunctional requirements 
(NFRs). UML stereotypes were used to model each of these elements. The 
design decision stereotype describes the decision, design rules applying to 
the system components, design constraints, the set of architectural 
elements (such as UML classes) the decision refers to, and the rationale (in 
an unspecified format). The NFR stereotype gives attributes specific to that 
NFR, and the relationship stereotype describes any constraints that apply 
to that relationship. The profile supports consistency checking between 
design decisions and related architectural elements. 

When building a Rationale Management System, one issue that must be 
addressed is how and when the developer should be informed that there is 
rationale available. Systems working in domains that are more constrained 
than software, such as the JANUS system (Fischer et al. 1989) which 
supported kitchen design, served as critics that presented rationale when the 
designers’ actions appeared to contradict rules embedded in the system. The 
user is informed of the presence of rationale when they make a decision that 
appears to be incorrect. Rationale is also used interactively within a design 
environment in the Representation and Maintenance of Process Knowledge 
(REMAP) system (Ramesh and Dhar 1992) where the rationale behind the 
functional specification is used to help make design choices. 



6.5 Summary and Conclusions      89 

 

While rationale can be used prescriptively to assist with designing, it is 
also valuable when used descriptively by providing insight into why the 
system is implemented the way it is. The user is more likely to be aware 
of, and read, the rationale behind the code if the rationale is integrated 
either directly into the code that they are modifying or the environment 
that they are modifying it with. The SEURAT system (Burge and Brown 
2004) integrated rationale capture and presentation into the Eclipse 
(www.eclipse.com) development framework. The rationale argumentation 
structure was displayed in a tree format within an Eclipse “view.” In 
addition, three standard Eclipse views were extended/used to show the 
presence of rationale: the Java Package Explorer was augmented by an 
icon overlay on every file that had associated rationale, rationale 
associations were stored as Eclipse “bookmarks”, and each bookmark 
giving an association was shown in the editor used to modify code. The 
bookmarks could be used to jump directly from the rationale alternative to 
the code that implemented it. The goal behind the integration was to 
reduce the likelihood of a developer or maintainer working with code 
while oblivious to the presence of the rationale that could assist them. 

6.5 Summary and Conclusions 

Probably the two greatest innovations in presenting rationale are still the 
original information schema of IBIS and the gIBIS hypermedia browser 
for IBIS graphs. Some of the dichotomies that have structured research and 
development on rationale presentations during the past several decades 
have dissolved. For example, the distinction between semiformal notations 
and informal notations seemed paradigmatic in the early 1990s, but will 
probably matter less as information systems increasingly create structure 
out of content, and thus do not need to force structural constraints on the 
humans that use them. Thus, the presentation of rationale—how it appears 
to its human users—will tend to matter more in the future.  




