
 

 

4 Learning from Rationale Research in Other 
Domains 

While the issues of rationale usage in software engineering (SE) often differ 
crucially from those of rationale usage in other domains, there is still the 
possibility of learning a great deal from research on other domains. This is 
suggested by the fact that rationale research in SE originally derived from 
Rittel’s much earlier rationale research in architecture (building design), 
urban planning, and policy making. In addition to this work, which is still 
not widely known in SE circles, there is research on rationale that has been 
going on in various engineering disciplines for as long as 20 years. All of 
this work provides potentially valuable lessons for SE researchers and 
developers. This chapter will look at some examples of this work that could 
have important implications for rationale research in SE. 
 

4.1 Introduction 

4.1.1 Research on Rationale in other Domains 

Research on design rationale began with Rittel’s Issue-Based Information 
System (IBIS) (Kunz and Rittel 1970) and its applications to urban planning, 
architecture (building design), and governmental policy making in the 1970s 
and 1980s. By the late 1980s software engineers at the Microelectronics and 
Computer Technology Corporation (MCC) were looking at adapting Rittel’s 
method to their own field and developing appropriate computer support 
(Conklin and Begeman 1988; Potts and Bruns 1988). Since then many other 
researchers involved with software engineering (SE), human–computer 
interaction (HCI), and other software-related related fields have created 
various rationale approaches, including QOC (MacLean, Young and Moran 
1989), DRL (Lee 1991), RATSpeak (Burge and Brown 2004), and many 
others. Most of these approaches continue the basic tradition started by 
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Rittel, while suggesting various modifications meant to go beyond Rittel’s 
IBIS and better fit rationale to the SE domain. 

Chapter 2 of this book emphasizes that there are some crucial 
differences between the problems of rationale usage in the SE domain and 
rationale usage in the domains of physical artifact creation. At the same 
time, there continues to be a considerable overlap in the issues facing 
rationale researchers in these two types of domains. This suggests that 
researchers in these domain types might still have much to learn from each 
other. This chapter explores this topic by presenting some examples of 
rationale research in design and engineering. 

4.1.2 Objectives of This Chapter 

 
Rather than attempting a comprehensive survey of rationale research in 
other domains, this chapter will concentrate on examples of such research 
that raise important issues for research on rationale support in SE. For 
these examples, the issues raised mostly have to do with the way in which 
they use computers to support rationale; therefore, this chapter will go into 
more detail on the rationale management software systems than is 
generally the case in the remainder of the book. 

The approaches and systems described in the chapter all deal with the 
rationale for design. For the examples discussed, this chapter will first 
identify crucial functionality that they bring to the support of rationale, 
functionality not currently found in rationale management systems for SE. 
Connections to existing research on software engineering rationale (SER) 
will then be identified. The potential advantages of adopting this 
functionality in SER support systems will then be discussed; and potential 
challenges to implementing this functionality in SE will be described. 

4.2 Domain-Oriented Design Environments Using PHI  

4.2.1 PHIDIAS and JANUS 

The PHIDIAS (PHI-based Design Intelligence Augmentation System) 
project (McCall et al. 1990) began in 1985 with the goal of adding a CAD 
subsystem to the MIKROPLIS hypertext software. MIKROPLIS (McCall 
et al. 1981; McCall 1991) was a hypertext authoring system devised in the 
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early 1980s to support the PHI variant (McCall 1991) of IBIS (Kunz and 
Rittel 1970). In this project, fundamental issues arose about how the 
integration of CAD graphics and PHI rationale should work from the 
standpoint of human–computer interaction (HCI). These issues were 
ultimately settled not by working directly on PHIDIAS but by working on 
the JANUS system. 

JANUS combined the functionality of the CRACK system (Fischer and 
Morch 1988) for kitchen design with hypertext functionality needed for 
PHI-based design rationale. CRACK enabled designers to create kitchen 
layouts using a domain-oriented construction kit. A construction kit is a 
collection of graphical building blocks that can be dragged and dropped 
into place in a CAD system. A construction kit is domain oriented if its 
building blocks represent high-level domain concepts, such as walls, 
windows, stoves, sinks, etc. rather than low-level computer graphics 
concepts such as points, lines, and shapes. Domain-oriented construction 
kits were used because they enabled designers to rapidly and intuitively 
build designs. Such a construction kit is, in essence, simply a conventional 
CAD symbol library to which semantics had been added so that each type 
of building block indicates what type of real-world object it denotes—e.g., 
window, door, stove or sink. 

In CRACK the semantic information of the building block is used by a 
critiquing system that “looks over the shoulders” of designers as they work 
and points out violations of rules of thumb for kitchen design. An example 
of such a critique might be, “do not put the stove in front of a window.” 
The rationale for this critique is that placing a stove in front of a window 
creates several potential problems: (1) a person might reach over the stove 
to open or close the window, thus creating the risk that the person might 
knock over a pot or lean into the flame of burner on the stove; (2) curtains 
in the window might catch fire; (3) the windows might get greasy; (4) 
someone cooking at a stove might get distracted by looking out the 
window. CRACK, however, did not display this rationale for users; it only 
displayed a brief critiquing message. 

CRACK was meant as an improvement over an expert system approach 
in the sense that it empowered users by both providing expert advice but 
allowing those users to ignore this advice when they chose. The problem 
with CRACK was that, although it presented advice, it did not present the 
rationale behind that advice. Users were thus often uncertain about whether 
to follow the advice and how to act if they chose not to follow the advice. 
This deficiency was remedied by creating a new system, called JANUS, that 
combined the CRACK functionality with hypertext functionality that 
displayed the rationale for each critique using PHI. The new system had two 
fundamentally different kinds of functionality: support for constructing 
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designs (using construction kits) and support for design rationale. It was 
therefore named JANUS, after the Roman god with two faces. 

JANUS presented the rationale for critiques in the form of domain-
oriented issue base (DOIB) structured using PHI. These are collections of 
issues, positions, arguments, and subissues that commonly arise in a 
particular design domain. DOIBs had been developed since the late 1970s for 
a variety of domains including the design of residences, lunar and Martian 
habitats, neighborhood shopping areas, health care policy, and information 
retrieval systems. The JANUS system’s DOIB provided issue-based 
information that was relevant to a wide range of kitchen design projects. 

JANUS was successful not only in further empowering its users; it also 
answered the crucial questions raised in the PHIDIAS project about how 
and when to integrate support for rationale with support for CAD. After 
the JANUS system was implemented and judged successful, it was 
realized that these successes were actually implied by Schön’s theory of 
Reflective Practice (Schön 1983). 

Schön had viewed design as consisting of a repeated alternation between 
two processes, that he labeled Knowing-in-Action and Reflection-in-Action. 
Knowing-in-Action is the process of intuitively creating the form of a 
design—e.g., using pencils or CAD systems. It is a nonreflective process of 
unselfconscious engagement in the task of forming the design. This process 
continues until there is a breakdown of intuition when something unexpected 
happens. In conventional design, breakdowns correspond to the designer 
realizing that something is wrong with the design or that some unforeseen 
opportunity has arisen for improving the design. Once a breakdown has 
occurred, the designer changes to the mental process Schön calls Reflection-
in-Action. This consists of reflecting on how to deal with the breakdown 
situation. This is a process of critical thinking in which the reasoning behind 
the design becomes explicit and it cannot be done simultaneously with the 
intuitive process of Knowing-in-Action. Once the designer has determined 
how to deal with the breakdown, Knowing-in-Action takes over again and 
implements the solution to the breakdown. 

The JANUS group saw the intuitive construction of designs using con-
struction kits as a clear example of Knowing-in-Action. Critiques corres-
ponded to potential breakdowns. The PHI-based presentation of rationale for 
critiques provided support for the designers’ Reflection-in-Action. 

The JANUS functionality was integrated into PHIDIAS and then 
additional functionality was added. JANUS’s hypertext functionality was 
implemented using the Document Examiner, which supported display of 
rationale but provided no support for authoring. Because PHIDIAS was 
based on MIKROPLIS, it also supported authoring of rationale, thus 
enabling designers to add their rationale to the DOIB used by the system. 
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This authoring of rationale was accomplished using a prototyping 
mechanism that enabled creation of a virtual copy of the DOIB. This 
enabled designers to add there rationale to the DOIB and even edit the 
DOIB without actually altering the original DOIB itself. 

PHIDIAS also expanded the kind of knowledge-based critiquing 
available. In addition to critics that fired when designers positioned 
construction kit building blocks in the model of the designed artifact, 
PHIDIAS provided critics and rationale for the selection of building blocks 
from alternatives. PHIDIAS also provided knowledge-based agents that 
alerted members of design teams to potential conflicts between their work 
and the work of other designers in the team (McCall and Johnson 1997). 
PHIDIAS was applied to a variety of design domains, including the layout 
of computer networks in buildings, the design of lunar habitats and, of 
course, kitchen design. 

4.2.2 Discussion 

Critiquing is the most prominent feature of JANUS and PHIDIAS, but it is 
not the most important in its implications for rationale research in SE. The 
most important is the theory of Reflective Practice that these systems 
support. A central tenet of this theory is that it is a mistake to attempt to 
explicitly record the rationale for the process of Knowing-in-Action. This 
means that the traditional approach to rationale capture cannot be made to 
work for this part of the design process. The reason for this, according to 
Schön, is that forcing humans to make the reasoning behind Knowing-in-
Action explicit would prevent Knowing-in-Action from taking place. But, if 
Knowing-in-Action cannot happen, then neither can design, at least 
according to Schön. The significance of this claim is that, if true, (1) it 
would go a long way towards explaining why it has proved so difficult to 
capture design rationale, and (2) it would imply that the traditional approach 
to the capture of design rationale can only succeed in capturing part of the 
reasoning that goes into decision-making in design. This does not mean, 
however, that capture is not possible, merely that it is not possible if one 
asks the person engaging in Knowing-in-Action to record the rationale. Such 
capture might effectively be accomplished by another person or by 
automated means such as those used by Myers et al. and described below. 

One important contribution of critiquing is that it alerts decision-makers 
to the existence of rationale for a decision task without their having to ask 
whether it exists. This is a valuable contribution that makes it less likely 
that decision-makers will miss valuable information. However, critiquing 
is not the only mechanism that can do this. PHIDIAS also employs other 
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mechanisms that detect what task designers are engaged in and alert the 
designer to rationale for this task, thus implementing a general sort of task-
based indexing of rationale in addition to its critiquing. Burge has 
implemented mechanisms in the Eclipse IDE that alert implementers to the 
existence of rationale relevant to particular pieces of code that they look at. 
This is somewhat similar to the task-based indexing in PHIDIAS, but there 
is the question of whether Burge’s approach could be extended to include 
more general task-based indexing for SE. 

One feature of both PHIDIAS and JANUS appears to have 
straightforward application to every activity of SE: the use of Domain-
Oriented Issue Bases (DOIBs). Because any decision task can be 
represented as an issue, DOIBs would seem to be applicable to decision 
tasks of all types, including those for requirements determination, design, 
construction, testing, and maintenance. 

Adapting the critiquing of JANUS and PHIDIAS to SE support systems 
presents an interesting challenge. This sort of critiquing is heavily dependent 
on CAD systems’ use of iconic models. Iconic models are graphical models 
in 2D or 3D Euclidean space of artifacts that occupy 3D Euclidean space. In 
iconic models there is a natural correspondence—or natural mapping—
between parts of the model and the parts of the real-world object it 
represents. In addition, the placement of a single element into an iconic 
model implies the existence of a whole battery of relationships with other 
elements in the model. These relationships include distance between 
elements, whether they are lined up vertically, horizontally or at an angle, 
whether they are collinear—and so forth. All the critics in JANUS and 
PHIDIAS are based on these implied relationships. 

The only place that SE uses iconic models is in the design of graphical 
user interfaces (GUIs). This is therefore the one area where the approaches 
used in JANUS and PHIDIAS—as well as other systems described in this 
chapter—might find direct application to software projects. 

Software designers generally create and use symbolic models rather than 
iconic models. By definition, the denotation relationships between 
elements of a symbolic model and the artifact it represents are arbitrary 
social conventions. Symbolic models can, however, come to feel like they 
also have a natural mapping if the relationships between symbols and real 
objects are truly standard, i.e., something universally accepted within a 
large group of people. The more software designers use models with 
standardized semantic meaning, the more natural this mapping will seem. 

An open research question is whether the sort of rich collection of 
implied relationships found in iconic models can also be found in symbolic 
models. Since these models often take the form of graphs, it may well be 
that graphic theory might provide a way of deducing such relationships. 
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Perhaps conceptual schemas dealing with the types of elements and 
relationships amongst them could be used as the basis of critiquing in 
symbolic models. Whether a significant set of critics for SE can be 
developed remains to be demonstrated. 

4.3 Automating the Capture of Design Rationale with CAD 

4.3.1 The Rationale Capture Problem 

This book emphasizes repeatedly that the biggest challenge facing the use 
of rationale in real-world projects is the rationale capture problem. This is 
the fact that it is extremely difficult to capture rationale in a real-world 
setting. The hallmark of this problem is that those involved in design and 
other SE activities often seem reluctant to record their rationale. Why this 
should be and what to do about it are controversial questions in current 
rationale research in SE as well as in other fields where rationale research 
is done. 

Researchers in increasing numbers have come to the conclusion that the 
capture problem results from the intrusive and time-consuming nature of 
the traditional approach to rationale capture. In this approach, rationale 
must be structured according a given schema, such as IBIS, DRL or QOC, 
in order to be recorded. In other words, the initial recording of the rationale 
is in a structured form. There is little debate about the fact that this 
structuring process is labor intensive, but some claim that it is also 
disruptive to the free flow of intuitive and creativity thought in problem 
solving. Marshall and Shipman see all mandatory structuring as inhibiting 
user input (Marshall and Shipman 1999), and Fischer and his colleagues 
use Schön’s theory of Reflective Practice to argue that the explicitly 
structured reflection interferes with the intuitive problem-solving process 
that Schön calls Knowing-in-Action. 

On the other side of the debate are those who acknowledge that the 
capture process is intrusive and labor intensive but argue that it is worth it 
because of the benefits from having captured rationale and even from the 
process of structuring it. In the latter case, advocates of the traditional 
approach claim that the structuring process helps artifact developers to 
improve the consistency and thoroughness of their reasoning.   
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4.3.2 Solution Approach: Automating the Capture of Rationale 

Myers, Zumel, and Garcia have done research on rationale for the design 
of physical artifacts (Myers et al. 1999), and they are among those who see 
the traditional approach as the central cause of the capture problem. Their 
strategy for solving this problem is to automate rationale capture to the 
greatest extent possible. In other words, they seek to use automated 
computer methods to capture rationale in a manner that is so unobtrusive 
that a designer can be completely unaware that capture is taking place. 
More specifically, they adopt the generative paradigm of Gruber and 
Russell (1996) and attempt to derive rationale from data obtained during 
design. Interestingly, they do not use the argument for this approach given 
by Gruber and Russell, which is that it is not possible during design to 
predict what rationale will be needed later. Instead, they use the argument 
that the unobtrusiveness of the approach is the decisive factor. 

Myers and her collaborators adopt the approach of first recording the 
behavior of designers using a CAD system and secondly inferring from 
these records both a design history and design intent. A design history is an 
account of what designers did and when they did it; design intent is why 
they did what they did. The goal here is not to automate all rationale 
capture, but instead to automate capture of “important but low-level 
aspects of the design process,” so that designers can limit their 
documentation efforts to the higher-level, “creative and unusual aspects” 
(Myers et al. 1999).  The central insight on which their approach is based 
is that CAD systems often enable designers to perform operations on 
artifacts that are semantically meaningful in the application domain.  

To derive a design history, they capture records of the atomic actions 
possible with the CAD system and then attempt to infer designers’ 
behavior at higher levels of abstraction (lower levels of granularity). They 
derive a hierarchical account of designer behavior in terms of episodes 
created by grouping atomic actions. They also characterize the artifact in 
hierarchical terms as assemblies, subassemblies, and other groupings of 
parts. From these hierarchies of behavior and artifact structure they deduce 
what decision tasks designers are undertaking and what decision 
alternatives they are exploring. These decision tasks all have to do with 
determining features of the artifact; so they correspond to questions in 
QOC rather than the more general concept of issues in IBIS. The decision 
alternatives thus correspond to QOC options. It should be noted, however, 
that the analyses of Myers et al. make no reference to QOC or any other 
rationale schema. 

To derive design intent, they use artificial intelligence (AI) techniques 
that speculate on user motives using so-called design metaphors and a 
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formally stated set of requirements for the artifact. Design Metaphors are 
sequences of designer activities that suggest explanations for these 
activities.  

4.3.3 Implementation: The Rationale Construction Framework 

Rationale Construction Framework (RCF) to implement and test their 
ideas about automatic capture of design rationale. RCF has three main 
components: 

 
• An enhanced CAD tool 
• A Monitoring module 
• A Rationale Generation module (RGM) 

 
The CAD tool used was the commercially available MicroStation95, 
which had capabilities for modeling in the domain of electromechanical 
design, in which the ideas for automated rationale capture were to be 
tested. This tool was enhanced to enable designers to indicate the semantic 
type of graphical objects together with type-specific semantic attributes. 
For example, a given graphical object might be assigned the semantic type 
gear and given gear-specific attributes such as number of teeth and gear 
ratio. A second augmentation of the CAD tool added a set of analysis 
programs linked directly to objects in the CAD drawing. A third 
augmentation added the ability for designers to select graphical objects 
from a predefined library of semantically meaningful graphical objects. 

The Monitoring module in RCF unobtrusively tracks the operations of 
the designer with the CAD system. Those operations that are relevant to 
design rationale are then passed on to the RGM in real time. Such 
operations include the creation, deletion, and modification of design 
objects, the selection of such object from the library and their use as parts 
of other objects, as well as the assignment of semantic information to 
objects. Undoing and redoing are also passed on to the RGM as is the use 
of analysis programs. 

The RGM performs the majority of the inference done by the RCF 
system. It constructs a symbolic model of the artifact being designed. It 
then uses this model and the design event log received from the 
Monitoring module together with a formally specified set of design 
requirements and the design metaphors to construct the design rationale. 

To derive design intent, the RGM focuses on explaining the changes to 
the artifact model during design. Design metaphors play a major role in 

Myers, Zumel, and Garcia created a software system called the 
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explaining these changes. Two examples of such metaphors are refinement 
and part substitution.  Other metaphors help to identify important 
relationships between object that are not formally indicated in the model. 
Such metaphors can detect when objects are created, modified, and deleted 
together. 

Identification of relationships between design requirements and the 
changes in design objects also plays a crucial role in deriving design intent. 
Specifically, RCF constructs hypotheses that such changes are attempts to 
satisfy requirements. Such hypotheses can be constructed with or without 
domain-specific background knowledge, though the latter provides richer 
accounts of design intent. Once hypotheses are constructed, they can then 
be supported or undermined by further evidence collected as the design 
effort proceeds. 

Myers, Zumel, and Garcia (1999) describe the testing of RCF in a 
project aimed at designing a three-degree-of-freedom surgical robot arm. 
The system recorded and analyzed design activities from initial design 
through multiple stages of refinement. RCF was successful in describing 
designer activities at several levels of abstraction, identifying stages where 
the designer concentrated on revisions of particular parts or subassemblies, 
identifying the results of design tradeoffs, and in explaining key changes in 
the design.  

4.3.4 Discussion 

The rationale capture problem is of such importance for the future of 
rationale usage that a claim to capture a significant portion of it 
automatically cannot be ignored. The work on the RCF looks like a 
promising extension of research on domain-oriented design environments. 
Myers et al. have used the same sort of semantically meaningful 
components found in the construction kits of JANUS and PHIDIAS, 
information used by those systems to identify design decision tasks, 
decision alternatives and decisions taken. However, RCF’s abilities to 
identify and characterize designer activities and to speculate on the reasons 
for them goes far beyond what JANUS and PHIDIAS can offer. The RCF 
approach provides a way of capturing rationale for the intuitive Knowing-
in-Action that Schön claims is disrupted by the explicit reflection that 
traditional rationale capture requires. 

RCF, like JANUS and PHIDIAS, relies on the natural semantic mapping 
available in the iconic models that CAD systems create. This means that 
there is a question about how well the RCF approach would transfer to the 
purely symbolic models that are used in software design. However, to the 
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degree that the symbols used in software design models are genuine 
standards and not the arbitrary creations of individual designers, transfer 
would seem to be possible. 

If transfer of the principles of RCF to software design is possible, the 
benefits would be considerable. Of prime importance, of course, is that it 
might solve at least part of the capture problem. But in addition, RCF’s 
emphasis on rationale for explaining changes has crucial implications for 
change analysis as well as the iterative and evolutionary methods of 
software development. 

4.4 Parameter Dependency Networks as Design Rationale 

4.4.1 The DRIVE System and Parameter Dependency Networks 

de la Garza and Alcantara (1997) describe a software system, called 
Design Rationale in Value Engineering (DRIVE), that provides additional 
computer support to aid designers who document their rationale. As is 
often the case, the additional computer support requires a higher level of 
formalization of rationale than is common with most rationale 
management approaches. The DRIVE approach, however, can be viewed 
as a simple extension of the formalization required for Design Space 
Analysis in QOC. 

The DRIVE system enables designers of physical artifacts to create 
dependency relationships between the parameters of objects found in a 
model of a physical artifact that is being designed. Such dependencies can 
then be used as rationale for design decisions made using a CAD 
subsystem. More specifically, these dependencies constitute rules—or 
more accurately, rules of thumb—for design decisions. These rules can 
then be used to critique the decisions that the designer makes using CAD. 
The DRIVE system uses these rules to detect conflicts created by decisions 
and then alerts the designer to the existence of the conflicts as they use the 
CAD subsystem. The designer can then either resolve the conflicts 
immediately or postpone their resolution. Conflict resolution is 
accomplished by altering the design, altering the dependency rule or 
canceling the dependency rule for a specific CAD decision. 

There are two types of parameter dependencies that DRIVE supports. 
One type is the dependency of the value of a parameter (attribute) of an 
object on the value of a parameter of an object, where either the 
parameters are different or the objects are different or both. The second 
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type is a dependency of a parameter constraint on the values of other 
parameters. There are also two ways in which dependencies can be 
represented: as mathematical formula or as an if–then rule. The following 
is an example of an if–then dependency of a parameter constraint on a 
parameter value as it would be expressed in the DRIVE system (de la 
Garza and Alcantara 1997): 

If [Mechanical Room]:[General Function] 
    Is equal to “House Mechanical Equipment” 
Then [Mechanical Room]:[Fire Resistance Rating] 
    (minimum value) is not less than 2 hours 
 

In ordinary language this rule says that, if the general function of a 
“Mechanical Room” is to house mechanical equipment, then this room 
should have a fire resistance rating of at least 2 hours. It should be noted 
that in DRIVE each such rule is accompanied by natural language text that 
explains the rule and can provide additional arguments for them. 

4.4.2 Discussion 

4.4.2.1 How DRIVE’s Parameter Dependency Networks Relate to 
Other Approaches to Rationale 

DRIVE’s treatment of rationale resembles QOC’s Design Space Analysis 
in the sense that it deals only with rationale for features of the designed 
artifact. However, DRIVE’s description of artifact features is more specific 
than QOC’s. QOC only provides a textual description of a feature, but 
DRIVE provides a three-part feature description: (1) a type of object, (2) a 
parameter (i.e., an attribute) of the object, and (3) one or more allowed 
values of that parameter. While QOC, like DRL, evaluates a proposed 
artifact feature by means of assessments with respect to criteria, DRIVE 
assesses a proposed decision about a parameter value by means of other 
parameter values. 

The DRIVE system resembles both JANUS and PHIDIAS in its use of a 
critiquing system that delivers textual rationale to designers of physical 
artifacts as they work in a CAD system. The crucial innovations of DRIVE 
are (1) the use of parameter dependency networks as the basis for 
critiquing and (2) enabling designers to create their own critiquing rules. 

The dependency relationships used by de la Garza and Alcantara in 
DRIVE are more specific that the dependency relationships used by Burge 
in RATSpeak and her SEURAT software. Burge’s dependencies are 
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natural language arguments that do not enable the computation of values 
and constraints as in DRIVE, and of course, DRIVE’s parameter 
dependency networks are far more specific than the dependency network 
between decisions (issues) that PHI uses to structure rationale. 

As with JANUS, PHIDIAS, and the Rationale Capture Framework of 
Myers et al., DRIVE depends on the natural association of semantic 
meaning with the graphical objects used in the CAD system, i.e., the 
natural mapping of iconic models. This is crucial because the critiquing 
depends on the rules applying to classes of objects. In DRIVE, this is, in 
effect, accomplished using is-a and has-a relationships, though the actual 
implementation of these concepts is domain dependent and complex. 

4.4.2.2 Significance for Software Engineering Rationale 

DRIVE’s use of algebraic formulas for dependencies seems unlikely to 
find extensive application in SE, but its if–then dependencies would seem 
to have a wide range of applications in SE. They constitute a more specific 
and more computable version of the argumentative dependencies between 
decision alternatives found in RATSpeak. This is especially significant in 
view of the fact that RATSpeak was created in an attempt to tailor DRL to 
the needs of software engineers who do maintenance. The if–then 
computational dependencies used in DRIVE are especially promising for 
change analysis, which is one of the most important and popular uses of 
rationale in SE. Investigating the potential value of parameter dependency 
networks should therefore be an important topic for future research on 
software engineering rationale.  

4.5 Case-Based Reasoning as Design Rationale  

4.5.1. From Automated Case-Based Reasoning to Case-Based 
Design Aids  

Case-Based Reasoning (CBR) (Riesbeck and Schank 1989; Kolodner 
1993) began as a branch of artificial intelligence (AI) research. It was 
meant as an alternative to the dominant AI approach, sometimes called 
Model-Based Reasoning (MBR). MBR had run into well-known 
difficulties, and CBR researchers thought their approach offered a way 
around many of these difficulties. MBR is about reasoning from principles, 
often in the form of rules or productions. Roughly speaking, CBR does not 
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reason from principles but from similarity of a current problem to cases of 
previously solved problems.  

CBR originally dealt with the creation of automated systems that 
mimicked the human ability to use knowledge of prior cases to deal with 
new kinds of problems, but it eventually became clear that the number and 
complexity of cases it could deal with in a completely automated manner 
was quite limited (Narayanan and Kolodner 1995). To address these 
problems, Kolodner began to look at developing nonautomated CBR 
systems that aided human problem solvers in complex problem domains. 
The idea was that, by learning how to aid humans who solved complex 
problems, CBR researchers would get better insights about how these 
problem solvers use large collections of complex and often incomplete 
cases. These insights could ultimately be used to improve fully automated 
CBR systems. 

The primary applications domain chosen for study was architectural 
design, i.e., the design of buildings. Kolodner and her computer-science 
colleagues at Georgia Tech worked with faculty and students in the 
Department of Architecture at that institution to create Case-Based Design 
Aids (CBDAs) and populate them with information about buildings. This 
effort resulted in a number of systems, including two versions of the 
ARCHIE CBDA for building design and DesignMuse, a generalized 
authoring tool for creating CBDAs for different domains of physical 
artifact design. Originally the building domain was restricted to the design 
of courthouses, but it was later expanded to deal with libraries and tall 
buildings. 

CBDAs are case libraries for design, i.e., “structured, indexed and 
searchable databases of analyzed case studies” (Narayanan and Kolodner 
1995) containing descriptions and evaluations of existing designs, e.g. the 
designs of existing buildings. The descriptions are typically represented 
using multiple media, including text and graphics. The purpose of a CBDA 
is to provide information about lessons learned from the experiences of 
previous designs so that current designers can avoid the pitfalls of past 
projects and benefit from solution ideas that have proved successful in 
such projects. 

CBDAs contain cases structured around four major categories of 
information: descriptions, problems, stories, and responses. Descriptions are 
multimedia representations of designed physical artifacts. In ARCHIE these 
take the form of annotated CAD drawings of floor plans, elevations, and 
sections of buildings, as well as sketches, photographs, and animations.  

Problems are descriptions of unresolved conflicts that are common and 
persistent in a type of building. The following is an example of a problem 
statement: 
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Clerestories [narrow, horizontal bands of windows just 
beneath a ceiling] and skylights can help light large interior 
spaces, but they can also cause costly environmental problems. 
They can create hot spots in warm weather and increase air-
conditioning costs (Zimring et al. 1995). 

 
Stories are brief representations, in text and other media, of how the 

problem or a solution has manifested itself in a particular building. The 
following is an example of a story about a solution for the above-given 
problem: 

 
In the Gwinnett County Courthouse clerestories and skylights 

were used to illuminate the interior atriums. The high, angled 
skylights are made of tinted glass. The depth and tinting of the 
skylights helps prevent direct sunlight from flooding the building 
(Zimring et al. 1995). 

 

Responses are general strategies a designer might consider for resolving 
the problems. There can be many suggested responses for each problem. 
The following is an example of a multipoint response to the above 
problem: 

 
Use tinted glass where possible. Use clerestories rather than 

skylights. Angle and inset skylights to block direct sun. Use 
electronically moveable/controllable louvers (Zimring et al. 
1995). 

 
There can be many such responses to a problem.  

CBDAs enable designers to retrieve information either by using special 
case-based retrieval mechanisms or by browsing using hypertext links. 
One of the special retrieval mechanisms automatically retrieves relevant 
cases based on the designer’s description of a current problem’s goals and 
constraints. The other uses an induction algorithm that clusters cases to 
build a hierarchical index. Hypertext links in ARCHIE and other CBDAs 
connect design descriptions to stories, stories to problems, and problems to 
responses (Zimring et al. 1995.)  

There can be many stories for a given problem. The same is true for problems
and responses. 
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4.5.2 Discussion 

4.5.2.1 Design Case Libraries as Design Rationale 

The creators of ARCHIE and other CBDAs make no claim that the 
information in these systems is design rationale (DR); yet there seems to 
be little reason to doubt that it is. After all, the cased-based information in 
ARCHIE deals with design problems, design solutions, and solution 
strategies. It includes descriptions and evaluations of designed artifacts. Its 
sole function is to provide information that can help designers to make 
better decisions, i.e., to aid designers’ reasoning. And, as with almost all 
other rationale approaches, the information in a CBDA is organized as a 
hyperdocument of links and nodes of text and graphics.  

While case-based information about design clearly must be counted as 
design rationale, it differs profoundly from all other known types of design 
rationale hyperdocuments, including those based on IBIS, PHI, QOC, 
DRL, SCA or any of the SE-specific approaches currently in existence. 
CBDAs provide a fundamentally different perspective on how to go about 
collecting, structuring, indexing, retrieving, and using design rationale. 
And this new perspective comes with a solid intellectual pedigree in 
cognitive science and computer science. No picture of research on 
rationale would be complete if it omitted the work on CBDAs like 
ARCHIE. A crucial task for future rationale research will be to fit case-
based design rationale into the overall landscape of rationale approaches. 

4.5.2.2 Design Case Libraries as an Alternative Approach to Reuse of 
Rationale  

In the rationale research literature there have been two main approaches to 
reuse of rationale. One is the addition of rationale to design patterns. The 
other is the use of domain-oriented issue bases (DOIBs). Design case 
libraries represent a third fundamental alternative. 

One way to attempt to understand the crucial differences between the 
three alternative approaches to rationale reuse is to compare the ways in 
which they use generalization and specificity when reasoning about new 
projects. Rationale linked to patterns represents an attempt to create 
generalized stores of reasoning, in other words, collections of rationale that 
involve generalizations that apply to many specific design projects. This 
can be seen as reasoning from principles, the central notion of MBR in AI 
research. Case libraries for design, however, are based on a fundamentally 
different approach to reasoning, namely CBR, which involves reasoning 
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from cases of previous, specific projects to draw conclusions about a 
current, specific project.  

DOIBs involves a type of reasoning that falls in between the MBR-type 
of reasoning of pattern-based rationale and the CBR reasoning of case-
based design rationale. Where it sits in between MBR and CBR depends 
on which of two distinct modes a DOIB is used in. One mode attempts to 
create collection of texts—including issues, positions, and arguments—
that can be reused as is in many projects. This mode is exemplified by the 
use of the DOIB for kitchen design in JANUS. In its reuse of unmodified 
information in many specific projects this mode is like pattern-based 
rationale except that there is no claim of either completeness or correctness 
for the texts in the DOIB.  

A second mode of use of DOIBs is provided by the virtual copying of 
hypermedia networks that is available in PHIDIAS. This enables the 
creation of a new DOIB by making and modifying a virtual copy of the 
original DOIB using the prototyping inheritance mechanism in PHIDIAS. 
This is typically used to create a more specific DOIB than the original, in 
particular, one tailored to a specific project. This mode of DOIB usage is 
in between the general-to-specific reasoning of pattern-based rationale and 
the specific-to-specific reasoning of case-based design rationale, because it 
uses generalized information but adapts it to a particular project. 

There is also a third way in which the hypermedia network inheritance 
functionality of PHIDIAS can be used. In this approach a new project-
specific issue base is created by virtually copying and modifying a previous 
project-specific issue base. This approach takes a significant further step 
towards the type of reasoning used in cased-based design rationale, but the 
schema for issue-based rationale remains dramatically different from the 
schema for cased-based rationale of CBDAs like ARCHIE. 

4.5.2.3 The Relevance of Case-Based Design Rationale to Software 
Engineering 

Despite the fact that CBDAs have been created only for the domain of 
physical artifact design, there seems to be no fundamental reason why they 
could not be applied to software design and perhaps even to the full 
spectrum of development and maintenance activities in SE. Given the fact 
the case-based approach to rationale is so fundamentally different from 
other rationale approaches, exploring its potential for SE would seem to be 
an important topic for research in software engineering rationale. 

Where case-based design rationale would appear to have special 
promise is in the design of human–computer interaction (HCI), because it 
is fundamentally a user-centric, rather than decision-centric, approach to 
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rationale. Currently, there is only one user-centered approach to rationale 
that is usable for this purpose, namely Scenario-Claims Analysis (SCA). In 
fact, the current heavy emphasis on both static and animated graphical 
representation of artifacts in CBDAs would be directly applicable to a case 
library of HCI designs. Such a case-based approach to interface design 
might be a useful complement to SCA, though it also seems possible that 
the two approaches might be integrated. 

Of course, most of SE does not deal with the creation of an intrinsically 
graphical artifact as is the case with both physical artifact design and HCI 
design. However, software design, like the design of physical artifacts, 
does involve the use of models that have a graphical representation. Such 
models can be annotated and could easily have problems, stories, and 
responses associated with them. While these models are purely symbolic 
in nature and do not have the natural mapping to the artifacts they 
represent that iconic models like floor plans have to buildings, this does 
not seem to constitute an insurmountable obstacle to the creation of 
CBDAs for SE. 

4.6 Summary and Conclusions 

There are fundamental issues to be resolved before much of the research 
on rationale in domains of physical artifact design can be applied to the 
design of software; but the ideas in this research are important enough that 
the effort to resolve these issues seems worthwhile. Above all, it is the 
value of this work in the areas of rationale capture and change analysis 
that recommends it to software engineers. It seems ironic that the work on 
change analysis has made such progress in physical artifact design, where 
there is generally much less change—especially change due to iteration 
and evolutionary development—than is characteristic of software design. It 
seems appropriate that software engineers endeavor to learn and benefit 
from this progress. 

Finally, it is interesting to note that all of the projects described in this 
chapter in some way apply insights from artificial intelligence (AI) 
research to the support of rationale. In particular, all but one of these 
projects—the one based on Case-Based Reasoning—bring active 
computational aids to support the capture and retrieval of rationale in 
artifact creation. This suggests that researchers in SE should seek to 
answer the questions of what other ideas from AI and what other 
computational aids might support rationale not only in software design but 
in the full spectrum of SE activities. 




