
3 Rationale and Software Engineering

Software engineering, the process of developing software-intensive
systems, is a complex area. This chapter introduces software engineering
as well as the potential benefits in capturing, maintaining, and reusing
rationale to support it.

3.1 Introduction

3.1.1 Software Engineering

According to the IEEE (IEEE 1993), software engineering is “the
application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.” A more detailed definition of
software engineering, and the one that we use during this book, was
provided by Finkelstein and Kramer (2000):

SE focuses on: the real-world goals for, services provided by,
and constraints on such systems; the precise specification of
system structure and behavior, and the implementation of these
specifications; the activities required in order to develop an
assurance that specifications and real-world goals have been met;
the evolution of such systems over time and across system
families. It is also concerned with the processes, methods and
tools for the development of software intensive systems in an
economic and timely manner.

Both the IEEE and the Finkelstein and Kramer definitions stress the
necessity for a disciplined process of software development. This
discipline is what puts the “engineering” in software engineering.

38 3 Rationale and Software Engineering

3.1.2 Software Engineering Rationale

Much of the research on rationale has addressed design rationale (DR). In
domains such as engineering design, most critical decisions are made at
design time and that is when the majority of the rationale is captured and
used. During software development, while most development
methodologies include a phase called design, decisions that drive software
development are made throughout the process. We therefore view rationale
as something that can be captured and used at all stages. In this book we
use the term software engineering rationale (SER) to encompass all
different types of rationale in many SE processes (Dutoit et al. 2006b) and
to serve as a base for examining how SER can support the entire software
engineering process.

3.1.3 Objectives of This Chapter

This chapter begins with a description of how rationale can be used to help
define and implement the software process. This is then followed by a
description of how rationale can support project management. The
remainder of the chapter introduces how and when rationale can be used in
software development.

3.2 Rationale and the Software Process

3.2.1 Software Process Definition and Implementation

In order for software development to be performed in a systematic and
disciplined approach, it is necessary to follow some defined software
engineering process. There is no single software development process that
fits all types of software development. Instead, the software process used
should be chosen, or defined, to best meet the organizational needs of the
software developers as well as any process requirements that may be
mandated by the client. According to the IEEE Software Engineering Body
of Knowledge (SWEBOK) (IEEE 2004a), software engineering process
(SEP) definition/development can be broken into four sub-areas: (1)
Process Implementation and Change, (2) Process Definition, (3) Process
Assessment, and (4) Process and Product Measurement.

3.2 Rationale and the Software Process 39

The Process Implementation and Change subarea defines what needs to
be known in order to either implement a new software engineering process
or to change an existing one. This includes the definition of the
infrastructure needed for process management, determining how the process
will be managed, and selecting an appropriate quality improvement model.

The Process Definition subarea involves selecting the appropriate
software lifecycle model, the software lifecycle process, determining the
appropriate notation to describe the software process, adapting the selected
process to meet the needs of the specific organization, and determining
how, or what portions of, the process can be automated using process
support tools.

The Process Assessment subarea utilizes assessment models. The
Capability Maturity Model (CMM) (SEI 1997) and CMMI (CMMI 2006)
are two examples. Process assessment also requires process assessment
methods that can use information about the process to give it a rating, or
“score.”

Finally, the Process and Product Measurement subarea describes the
need to measure process outcomes (its success at meeting process
outcomes) and to perform product measurement to look at its size,
structure, and quality. Of course, deciding what data to collect is
insufficient; it is also necessary to decide how to assess the quality of the
measurement results. A rigorous quality improvement process also
involves collecting measurement data over time into a repository,
modeling the information, and determining how the information can be fed
back into the process on future projects.

3.2.2 Rationale and SE Process Decision-Making

We will describe the role of rationale in the software lifecycle and in
software process improvement later in the book. Here, we will address
how rationale can support the process definition process described in the
SWEBOK as outlined above. Determining what the appropriate software
development process is, and how that process should be managed and
measured, involves making a number of very crucial decisions. The
decision-making process involves determining the software process goals,
the alternative means for achieving those goals, and evaluating those
means to determine which alternatives best suit the goals of the specific
organization and project.

Process Implementation and Change. In order to implement a new
process, or change an existing one, many decisions must be made. What
are the requirements for the new/adapted process? What changes should be

40 3 Rationale and Software Engineering

made to the current process infrastructure? How is the process going to be
managed? Which quality improvement model best suits the needs of the
project? The rationale for the choices made when making these decisions
can be used to determine if the reasons for these choices are consistent
with project goals. It can also be compared with that from prior projects to
see where past processes can be reused or adapted to meet new process
needs.

Process Definition. The choice of process, and how rigorous that process
should be, will have a significant impact on the software project. There are
tradeoffs that need to be made between having a well-defined and
rigorously monitored process and the cost and time that this may entail.
Software life-cycle models are not “one size fits all.” Selecting the
appropriate model for a specific project involves careful examination of
alternative lifecycles and their advantages and disadvantages relative to the
needs of the organization. There are also many choices that need to be
made when deciding if, and how, the process requires adaptation to meet
specific organizational goals. It is important that adaptations are consistent
with the goals of the lifecycle and do not counter its advantages. Process
automation is also an area where decisions must be made. If automation is
a high priority, it may prove to be a key driver in selecting the software
process. The process may be chosen based on the tool support available
and what that tool support is likely to cost.

Rationale should be recorded for the reasons behind the choices made.
The explicit articulation of tradeoffs made will ensure that the choices are
made for the right reasons and, if these decisions are revisited for future
development efforts, that the effort that went into making these crucial
decisions can be assist in making the correct decisions in the future.

Process Assessment. The choice of how a process will be assessed may
or may not be under the control of the software development organization.
In either case, the standards used to evaluate the software process can be
captured in the rationale as criteria used to assess the other decisions made
during the process definition process. The process outcomes identified will
be the main criteria used to determine the process measurement strategy.

Process Measurement. There are many aspects to the software process
and product that could measured during development. The question is,
which of these should be measured in order to assess the software projects
success at achieving process outcomes. Again, there are tradeoffs to be
made between the time and effort it takes to perform process and product
measurement against the value of the information obtained. Choices may
be made based on tool support available to assist in this effort.

3.3 Rationale and Project Management 41

Capturing the rationale for these decisions can help to clarify what
measurement options should be considered and what the reasons are for
choosing them. The knowledge captured in the form of rationale can also
assist future projects when they need to make similar decisions.

3.3 Rationale and Project Management

The Project Management Institute defines project management as “the
application of knowledge, skills, tools, and techniques to project activities to
meet project requirements” (PMBOK 2003). This definition is rather general
but it is commonly understood that good project management is essential to
ensuring that a project meets its goals of delivering quality software on time
and within budget. Management needs to work successfully with the client
to ensure that their needs are understood and met while also working with
the developers to ensure that they have the knowledge and resources
necessary to successfully develop the software product.

As in software development, rationale can play multiple roles. Rationale
can assist with guiding and capturing the decision-making process when
developing the management strategy for a project. As with software
development processes, there is not one management solution that will
work under all circumstances. Processes used in the past require tailoring
to meet the needs of specific projects and the skills of specific teams.
Rationale captured for management choices in the past can be used to
determine if those choices are still valid for future projects.

Examples of some management choices include:
• Status reporting requirements for project teams
• Project team structure (size, distribution of responsibility,

communication strategy)
• Necessity of hiring consultants with key technical expertise
• Frequency and duration of status meetings
• Role of software tools in the software project

Criteria for making these choices might include:
• Team member expertise and experience
• Team familiarity—experience of team members with each other
• Value of permanent employees learning new technology for future

projects
• Budget provided for tool aquisition
• Management experience
• Customer flexibility (in terms of both deliverables and schedule)

42 3 Rationale and Software Engineering

It is critical that these key management decisions be made based on an
understanding of the criteria that impact their success. Using the rationale
to capture and evaluate these decisions helps to ensure that the
management strategy selected best suits the needs of the client, product,
and team.

Rationale can also assist with many project management or related
tasks. Charette (1996) states that “large project management is risk
management.” The identification of risks is a crucial factor in successful
software development. Capturing these risks, alternative mitigation
strategies proposed, and the mitigation strategy used serves to both clarify
the risk management process for the current project as well as form a
knowledge base of risks, strategies, and outcomes for use in future
projects.

Another aspect of software development where project management
plays a key role is in the reconciliation of stakeholder viewpoints. Theory-
W (Boehm and Ross 1989) is a software project management theory where
the main goal is to “make everyone a winner.” Theory W is based on
Fisher and Ury’s (1981) negotiation approach, where a key part of the
negotiation involves identifying options and evaluating those using
objective criteria. In Theory W, the key to a successful negotiation is to
identify the stakeholder win conditions and to find options that create the
win–win situations. The generation of these options and win–conditions is
supported using the WinWin support system (Boehm et al. 1995). The
information captured in WinWin is, in essence, the rationale behind the
software requirements (Boehm and Kitapci 2006).

One of the more successful uses of argumentation-based rationale is to
assist with structuring discussion during project meetings. The Issue-Based
Information System (IBIS) notation (Kunz and Rittel 1970) is the basis of
several systems applied to capture discussions in meetings. The indented
text IBIS (itIBIS) system was used at NCR to capture project team
meetings (Conklin and Burgess-Yakemovic 1996). This helped to focus
discussion and point out potential problems with the requirements.
Converting the textual rationale into a graphical form (gIBIS) exposed
several problems with the proposed design that would probably not have
been detected otherwise. The use of IBIS to aid in collaboration has
continued with the Compendium project (Buckingham Shum et al. 2006)
to perform “Dialogue Mapping.” In their approach, a trained facilitator
uses Compendium to capture discussion in an IBIS format during
meetings. The results of the discussion can be displayed in real time to
allow meeting participants to view, and reflect on, the discussion taking
place.

3.4 Rationale and Software Development 43

3.4 Rationale and Software Development

The previous sections described how rationale can assist with defining the
software development process and in managing the implementation of that
process. Here, we highlight uses of rationale during the software
development process by describing why rationale is needed, what some of
the uses of rationale are, when rationale can be used during the process,
and finally how it can be used. These areas are our primary focus during
the remaining chapters of this book.

3.4.1 Why Capture Software Engineering Rationale?

Earlier in this book we defined rationale and its importance in software
engineering. The success of any software project is dependent on the right
choices being made during its development.

Software engineering contains many key challenges that can be
addressed by the capture and use of rationale:

• Software system longevity. Software systems have been shown to remain
in operation longer than the original developers probably anticipated.
This longevity, and the need to continually evolve software to keep it
viable, means that it is essential to understand the reasons behind
development decisions made years earlier.

• The Iterative nature of software development. Many current software
development processes utilize some form of iteration in order to
increase their ability to adapt to changing requirements and technology.
As development progresses, criteria appearing in the later iterations may
affect decisions made in the earlier ones. The rationale can help to
assess the impact of the changing criteria and guide the developer in
making changes that implement the new functionality with minimum
risk to that implemented earlier.

• Stakeholder involvement. There are many different stakeholders in a
software development effort who have their own, sometimes conflicting,
goals for the system. For example, the customer is concerned with the
functionality provided by the system; the end user is concerned with
how well it helps them perform their tasks and how easy it is to learn
and use; the developers are concerned with how difficult it will be to
implement; the managers are concerned with how long implementation
will take and how much it will cost; all stakeholders are concerned with
the reliability of the delivered system; etc. Capturing the decision-
making process, and the stakeholders having input into that process, can

44 3 Rationale and Software Engineering

serve as a basis for negotiation. Rationale also captures how the
different stakeholder priorities affect the developed system.

• Knowledge transfer. Significant amounts of expert knowledge are
involved in the development of a large software system. This is
information that will be lost if it is not documented, particularly at times
of high turnover in the software industry. Rationale can serve as a key
component in an organization’s knowledge management strategy.

• Increasing size and complexity of software systems. Software systems
have long since passed the point where their design is simple enough to
exist in the heads of their developers. Rationale can assist as a “memory
aid” to assist developers in remembering why they made their earlier
decisions. Rationale can also be used to index into the code and
documentation to determine the impact of changing decisions on the
software.

3.4.2 What are the Uses of Software Engineering Rationale?

In order to convince software developers that capturing rationale is worth
their time and effort (and convincing software managers that capturing
rationale is worth some additional up-front costs), it is essential that the
rationale is useful both during the initial requirements and design stages
and later as the software is maintained and reused. We have identified
several key areas of rationale use:

• Presentation. The use that immediately comes to mind for rationale is
its ability to document the decision-making process. The ability to
browse through, or query, the rationale-base to learn more about the
decisions can assist developers in learning about the software,
preventing the duplication of past work, and avoiding errors. The
usefulness of the presented rationale will be dependent on the method of
presentation. Ideally, presentation should be done within the same tools
that are already in use to develop the software. The developer will be far
more likely to know that the rationale is available and take it into
account when making decisions if they do not need to use an additional
tool.

• Evaluation. The CMMI (CMMI 2006) Decision Analysis and
Resolution (DAR) process area stesses the importance of performing a
“formal evaluation” of selected issues by evaluating alternative
solutions (that address those issues) against criteria. Rationale can
support this type of calculation by providing detailed information about
the solution alternatives and their relationship to the decision criteria

3.4 Rationale and Software Development 45

(such as requirements, quality attributes, and assumptions). This
information can be used to rate or rank the alternatives to evaluate the
quality of the decision results. Rationale also supports usability
evaluation, as demonstrated by the Scenario-Claims Analysis approach
(SCA) (Carroll and Rosson 1992).

• Collaboration. Later in this book we describe how software
development is almost always collaborative work. Rationale’s
importance to collaboration during software engineering was
highlighted in Jim Whitehead’s talk as part of the Future of Software
Engineering track of the 2007 International Conference on Software
Engineering (Whitehead 2007). Whitehead views architecture and
design as “argumentative proceses” and proposes rationale capture, in
the form of “collaborative argumentation” as an effective means of
supporting these processes. The ability for rationale to support and
capture this the negotiation required during software development has
been demonstrated by many approaches, such as the WinWin (Boehm et
al 1995) and Compendium (2006) systems described earlier.

• Change analysis. As mentioned earlier, software development is an
iterative process. Software requires change both during the development
process, as more information is learned about the requirements and
incorporated into the software, and afterwards as it enters the
maintenance and evolution stage of its life. Software may require
changing for a multitute of reasons but one thing remains certain—the
need to understand how the proposed changes impact the existing
software. This includes both determining where the changes need to be
made and also how those changes may affect the ability of the software
to meet the requirements, quality criteria, etc. that were the basis of the
decisions made during its initial development. With appropriate tool
support, rationale can be used to identify change location and change
impact. Rationale-based consistency checking can aid in consistency
management—an ongoing process during software development and
maintenance.

3.4.3 When can Software Engineering Rationale be Used in
Software Development?

As mentioned earlier, rationale can support many aspects of software
development and is not constrained to the design stage. These aspects
include the “standard” development stages of requirements, design, etc.
and also the cross-cutting areas of project management and reuse.

46 3 Rationale and Software Engineering

• The software lifecycle. Rationale can play a role in any of the software
lifecycles selected to guide the software development process. Rationale
also has a role in software process improvement, as mentioned earlier in
this chapter.

• Requirements engineering. Rationale is involved in software
requirements in several ways. One is in requirements elicitaiton and
documentation. The rationale is a natural place to capture the
relationship between the software requirements captured during
elicitation and the source of those requirements. This provides a “rich
traceability” back to the original customer requirements (Dick 2005;
Hull et al. 2002). As with all aspects of software development,
negotiation plays a role in requirements engineering as all stakeholders
need to agree on what the requirements are. This negotiation and the
parties involved can be captured in the requirements rationale.
Requirements also appear in the rationale for the system as the
arguments for and against alternatives. Capturing this information, and
associating it with the code that implements the alternatives, is a form of
requirements traceability (Burge and Brown 2007).

• Software design. Since much rationale research has been in the area of
design rationale, it is no surprise that rationale for software design, and
more specifically software architecture, is an active research area.
Software architecture, while traditionally thought of in terms of
components and connectors, is seen by some as “a composition of
architectural design decisions” (Bosch 2004). This decision-centric view
has encouraged more research into capturing the knowledge behind
those decisions, as shown by workshops such as that on SHaring and
Reusing Architectural Knowledge (SHARK).

• Software verification and validation. This is an area where the capture
and use of rationale remains largely unexplored. Still, decision-making
in software engineering does not stop when the development is
complete. The planning and execution of an effective testing strategy
requires making complex tradeoffs between cost and quality to ensure
that the software meets the needs of its users while keeping testing costs
under control. Rationale for the choices made when selecting testing
methodologies and tools should be captured so that it will be available
for use by subsequent projects or if the testing strategy of the current
project requires re-evaluation.

• Software maintenance. One of the areas where the availability of
rationale can be most valuable is during software maintenance. The
challenge of software maintenance is ensuring that software evolves
without damage to, or reduction in, the functionality needed by its users.

3.5 Summary and Conclusions 47

This is difficult because the maintainers may not be the same people
who initially developed the code and often have a steep learning curve
to understand an unfamiliar piece of software. The ablity to utilize the
past experience of software developers via access to their rationale
supports these goals.

• Software reuse. Reuse has often been refered to as “the holy grail” of
software engineering. The ability to reuse software systems or
components has shown great promise in allowing software delivery with
fewer defects, higher quality, and in significantly less time. There are
many types and levels of software reuse and, while all have advantages,
reuse is not without its risk. Rationale can play several roles in reuse.
One is to support decision-making about if and when reuse is
appropriate for any given project. There may be some cases where the
risk outweighs the benefits. Another use is to capture the reasons behind
the decisions on what should be reused. There may be several reuse
alternatives that should be examined. Rationale can also be used to
evaluate reuse candidates. If the rationale behind those candidates is
available, this information would provide valuable insight into the
decisions that went into their design.

3.4.4 How Can We Support Software Engineering Rationale Use
in Software Development?

In order for Rationale-Based Software Engineering to live up to its
promise, we need to develop Rationale Management Systems that support
its capture and use. As in any software development project, the first step
is to identify the requirements. What are the uses of rationale that such a
system needs to support? How does rationale, as we currently understand
it, support software engineering and when does it fall short? How do we
address those shortcomings?

Later in this book we provide two frameworks, one defining the key
concepts in Rationale-Based Software Engineering and their relationships
(the Conceptual Framework) and one that provides a framework for RMS
development that supports the key features of RBSE needed to support
software development (the Architectural Framework).

3.5 Summary and Conclusions

Rationale can play many roles throughout the software development pro-
cess, both descriptive—by providing a richer view into the decision-making

48 3 Rationale and Software Engineering

process, and prescriptive—by guiding that process and evaluating its results.
There is however a small literature of doom-and-gloom discussions that
dismiss the value of rationale relative to its cost, some even implying that
the additional cost could make the difference between software project
success or failure (Grudin 1996). Cost is an important factor in the equation,
but it not a simple linear factor. Indeed, most nihilistic accounts of rationale
describe development projects where rationale practices were implemented
narrowly, manually, and incompletely.

Rationale provides technical leverage throughout all the processes and
activities of software development. A broad approach to capture and reuse
of rationale is required to enjoy multiplicative benefits of pervasive
rationale practices. Software tools to support partial automation of
rationale management can reduce the cost side of the equation even
further. Finally, implementing rationale practices thoroughly in
development organizations is critical. Process improvement efforts such as
the CMM and CMMI involve rigorous documentation of software
development that takes both time and effort. Initial studies on the CMMI
(Goldenson and Gibson 2003) show that many of the companies studied
showed cost, schedule, and quality improvement after adopting the
processes.

When rationale practices are adopted broadly and with appropriate tool
support, and when they are adopted thoroughly in development
organizations, rationale has the potential to yield benefits that far outweigh
its costs.

