
10 Rationale and the Software Lifecycle

Software development can be modeled using a number of different
lifecycle, or process, models. These include the waterfall model, the spiral
model, the Unified Process, the V-Model, and others. In this chapter, we
will describe these models and how rationale capture and use supports the
development process followed in each of them.

10.1 Introduction

10.1.1 Software Engineering Process

The software engineering process and the software lifecycle are closely
related concepts. The software lifecycle refers to the stages of software
development that take place over the lifetime of the software. The Institute
for Electrical and Electronics Engineers/Electronic Industries Association
(IEEE/EIA) defines the primary lifecycle processes to be acquisition,
supply, development, operation, and maintenance (IEEE/EIA 1996). There
are also supporting processes and organizational lifecycle processes
(IEEE/EIA 1996). Supporting processes include documentation,
configuration management, quality assurance, verification, validation, joint
review, audit, and problem resolution. Organizational lifecycle processes
include management, infrastructure, improvement, and training. While the
International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC) standards described earlier take a high view, the
most typically mentioned lifecycle stages encompass the development and
maintenance lifecycle processes and include requirements analysis and
specification, design, implementation, integration, verification and
validation (testing), installation/deployment, maintenance, and retirement.
Software lifecycles are modeled by a variety of software process models that
define how the development stages progress. The lifecycle model defines the
“skeleton and philosophy” of the process (Fuggetta 2000).

126 10 Rationale and the Software Lifecycle

The software process is what controls and monitors the development
described by the lifecycle model. The software process is defined by
Fuggetta (2000) to be “the coherent set of policies, organizational
structures, technologies, procedures, and artifacts that are needed to
conceive, develop, deploy, and maintain a software product.”

Rationale can play a role in software process by capturing the reasons
behind both process and product decisions. The product rationale captures
the reasons for decisions that directly impact the delivered product, while
the process rationale describes the reasons behind the process selected to
guide the product development. Process decisions are important because
the process chosen needs to fit the size of the project, the experience level
of the development team, and the development tools available.

10.1.2 Objectives of This Chapter

In this chapter, we describe the stages of the software development life-
cycle and how rationale applies to each of them. We also describe a
number of software lifecycle models. We conclude with a section on
software process improvement.

10.2 Development Activities and Rationale

The software lifecycle consists of a number of stages of software develop-
ment. In this section, we briefly describe a typical set of development stages
and how rationale can be captured and used in each of them.

10.2.1 Project Planning and Management

While project planning and management is listed first among the stages,
planning and management are ongoing activities throughout the
development process. Project planning involves many decisions: delivery
date, staffing needs, budget, milestones, deliverables, etc. These decisions
involve many tradeoffs. For example, one tradeoff might be assessing the
importance of short time-to-market versus the amount of functionality
provided or the quality level of that functionality (how much time to spend
on validation and verification). These decisions and the reasons for the
choices made should all be captured in the rationale. The process of
recording deliberation during planning as rationale assists with
collaboration and negotiation.

10.2 Development Activities and Rationale 127

Management decisions can also be captured in the rationale for the
project. Rationale can support collaboration, risk management, success
criteria reconciliation, process improvement, and knowledge management.

10.2.2 Requirements

Requirements engineering is arguably the most crucial stage in the
software lifecycle. Failing to capture and refine requirements adequately is
considered to be a leading cause of project failure (Alford and Lawson
1979; Hofmann and Lehner 2001). Rationale can support requirements
elicitation by capturing reasons behind requirements and allowing
comparison with stakeholder needs, enabling requirements negotiation by
capturing the deliberation process, assisting inconsistency management by
allowing comparison of priorities across requirements, and in requirements
prioritization, a key element of Value-Based Software Engineering
(Boehm 2006b) by associating priorities to the criteria behind each
requirement, both functional and non-functional.

Rationale can also play a large role in requirements traceability by
providing the means to associate the decisions made later in the
development process with the requirements that drive them. This applies to
both the functional requirements as well as nonfunctional ones. Both types
of requirement can appear in arguments for and against alternatives that
are captured in the rationale.

10.2.3 Design

Much of the research involving rationale has been in the area of design
rationale—the reasons behind design decisions. In software, there are
several levels of design that take place depending on the size of the system
being built. High-level design is often referred to as architectural design.
This stage involves designing or selecting the software architecture. The
choice of architecture is often driven by the “quality requirements” (non-
functional requirements) of the system. For example, Attribute-Based
Architectural Styles (ABAS) (Klein and Kazman 1999) associate software
architectural styles with quality attributes such as performance,
availability, and modifiability.

The design process progresses from the high-level decisions made when
performing architectural design into the lower-level decisions in detailed
design as classes, or modules, are designed. The rationale can be used to
capture the decisions made at this point in the process and eventually
linked to the code that will implement the alternatives selected.

128 10 Rationale and the Software Lifecycle

10.2.4 Implementation

Implementation involves translating the design into the executable source
code. There are still decisions made during this part of the process and the
rationale for these decisions should be captured. The rationale can be
evaluated to ensure that the reasons chosen are consistent with those given
at earlier stages of development. The rationale can also be used during
software maintenance to describe why the software was implemented the
way it was and to help prevent new decisions from counteracting those
intentions.

10.2.5 Verification and Validation

In order to ensure that the developed system provides the functionality
needed by the customer and that it meets its specification, it needs to be
tested. The evaluation process is typically described as verification and
validation (V&V). While we often describe this stage as occurring after
implementation, in reality V&V activities should take place all the way
through the development process. Test planning should be started when the
project planning is performed, requirements should be examined to ensure
that they are testable, unit testing should be performed during
implementation, system testing is performed prior to deployment, and
regression testing (as well as any new tests) must be performed when
changes are made during maintenance.

Boehm gave an often-cited definition of the difference between
validation and verification—validation asks “are we building the right
product?” and verification asks “are we building the product right?”
(Boehm 1979; Sommerville 2007). Verification involves ensuring that the
software conforms to its specification while validation involves checking
that the software does what the customer needs it to do.

Rationale can support software testing by providing insight into how
quality factored into software decisions. This information can be used to
determine where testing efforts should be concentrated. Collecting
rationale for the testing effort itself would be useful in assisting with
making testing decisions and in using the reasons behind testing choices
and the results of these decisions to point out testing strengths and
weaknesses that can be applied to future projects.

10.3 Software Lifecycle Models 129

10.2.6 Maintenance

A successful software system is likely to require some form of maintenance
over its lifetime. These changes can be challenging, especially if the original
developers are not available. This is an area where rationale is especially
valuable. Knowing the intent behind the decisions made when developing
the software can help to prevent problems or inconsistencies being
introduced during maintenance. If the rationale captures the assumptions
made when initially building the system it can be used during maintenance
to suggest where changes need to be made if those assumptions change. This
assistance is provided in the Software Engineering Using RATionale
(SEURAT) system (Burge and Brown 2006).

10.2.7 Retirement

If, or when, to retire a software system is potentially the last decision that
needs to be made during the system’s lifetime. The decision on whether to
repair (maintain) or replace a system needs to be well thought out. This
deliberation can be supported by and captured with rationale. The rationale
for the decision would also be valuable if the retired system ends up being
reinstated or reused later.

10.3 Software Lifecycle Models

There are a number of different categorizations for software lifecycle
process models. Here we have chosen to break them into three categories:
sequential models where development typically proceeds linearly through
the phases, iterative models where iteration is built into the models, and a
third category for models that do not fit into either of the two categories or
that span categories.

10.3.1 Sequential Models

10.3.1.1 Waterfall Model

The waterfall model was originally defined by Royce (1970). In this
model, development proceeds through the stages in a sequential fashion as
shown in Figure 10.1. Each stage (shown as a box in the figure) needs to
complete before the next stage can begin. The example shown here

130 10 Rationale and the Software Lifecycle

includes feedback loops indicating that it is possible to go back to make
modifications to work done earlier if necessary. The stages vary slightly
between different depictions of the model but typically include
requirements, design, implementation, and testing, and may also include
maintenance, deployment, and retirement.

Fig. 10.1. Waterfall Model

The waterfall model has fallen somewhat out of favor. The separate stages
are seen as being inflexible and less responsive to changing requirements.
The model does, however, have the advantage that it is easy to assess
where in the process a software project is, something not always clear with
more iterative methods. This model resembles models used in other kinds
of engineering projects and is often used when the software is part of a
larger systems engineering project (Sommerville 2007).

Each of the stages captured in the waterfall model will include many
decisions that will have a large impact on the later stages. Capturing the
rationale for these decisions will help to ensure that decisions made in later
stages will be consistent with earlier ones.

10.3.1.2 V-Model

The V-model is similar to the waterfall model but also includes the
verification activities and how they relate to development stages. A key
difference between the V-model and the waterfall model is that the level of
abstraction is explicit (Bruegge and Dutoit 2004). Figure 10.2 shows a
simplified V-model, adapted from Bruegge and Dutoit (2004) and Jensen
and Tonies (1979). As with the waterfall model, capturing rationale can
help with the traceability of decision criteria throughout the process.

Requirements

Design

Implementation

Testing

etc.

10.3 Software Lifecycle Models 131

Requirements

Implementation

Detailed Design

Unit Test

High Level
 Design

Integration
Test

System Test

Fig. 10.2. V-Model

10.3.2 Iterative Models

Iterative models differ from sequential ones in that they depend on the
software being built in a series of iterations. In this section we briefly
describe some of the more common models.

10.3.2.1 Incremental Delivery

Incremental delivery consists of portioning the system into a series of
releases. The initial requirement development and architectural design is
done for the system as a whole but the functionality is delivered
incrementally. This method has several advantages including making the
software available to the users earlier, gaining experience with early
increments to help refine requirements for later ones, reducing the risk of
project failure, and ensuring that the most important functionality
(typically developed in the earlier increments) receives the most testing
(Sommerville 2007).

10.3.2.2 Spiral Model

The Spiral Model, developed by Boehm (1986), depicts the software
development process as a series of increasingly more developed prototypes.
The spiral moves through four quadrants. The first quadrant looks at
objectives, alternatives, and constraints on the next development cycle. The
second quadrant evaluates the alternatives proposed in the first quadrant and
identifies and resolves risks. The third quadrant develops and verifies that
level of the product (the prototype), and the fourth plans out the next phase

132 10 Rationale and the Software Lifecycle

or phases. This model both explicitly addresses risk and, by the alternative
identification and evaluation steps in the first two quadrants, the rationale.

Rationale is supported in the Theory W (win-win) extensions to the spiral
model (Boehm and Bose 1994). In Theory W, stakeholders are identified for
each revolution through the spiral along with their “win conditions.” These
win conditions are used in defining objectives, constraints, and alternatives.
The win conditions and the alternatives generated during the spiral model
process form the rationale for the system.

10.3.2.3 Unified Process

The Rational Unified Process (RUP) (Kruchten 1999) and its more general
form, the Unified Software Development Process (Jacobsen et al. 1999),
consists of four phases, with multiple iterations taking place during each
phase. The four phases are inception, where the initial business case is
defined; elaboration, where requirements and risks are defined; construction,
where the system is designed, programmed, and tested; and transition where
the system is moved into its operational environment (Sommerville 2007).
Within each of these phases, there are nine core workflows: business
modeling, requirements, analysis and design, implementation, test,
deployment, project management, configuration and change management,
and environment. The amount of effort spent in each of these workflows
depends on the development phase. For example, more time is spent on
business modeling and requirements in the inception and elaboration phases
and less in the construction and transition phases. Similarly, the amount of
implementation slowly increases in the first two phases, which may involve
simple prototypes, reaching its highest level in the construction phase when
the actual system is built. The Rational Unified Process was developed by
Rational Software and is supported by its products.

The Unified Process is a generic and comprehensive process that
attempts to cover all aspects of software development. Because of its
comprehensive nature, it can be seen as being too unwieldy for smaller
development projects. The process can, however, be adapted to work with
smaller projects (Hirsch 2002; Pollice et al. 2003). Process rationale can
be captured to document how the process was tailored, and why. This
information can then be used to transfer the lessons learned to future
software projects using the same or similar processes.

10.3.2.4 Extreme Programming

Extreme Programming (XP) can be viewed as a variant on incremental
delivery (Sommerville 2007). The extreme in extreme programming does

10.3 Software Lifecycle Models 133

not indicate “daredevil programming” but instead refers to taking existing
best practices to the extreme (Beck 1999). The development process is a
collaborative one between the customer and the developer where
functionality is described as a series of stories (similar to use cases) and
where each release chooses the set of stories that are viewed as the most
important. Releases are developed using test-first development and pair-
programming.

The goal of XP is to center the development process on coding and to try
to develop releases that are as simple as possible and to plan on refactoring
later if necessary. The danger of this is the difficulty of knowing where
short-cuts were made that may need to be re-examined in later releases.
Documenting the rationale for the decisions made in earlier iterations can be
used to detect where alternatives were chosen in the interest of expediency
that may require change as requirements are added or refined. The value of
this is demonstrated by the Software Engineering Using RATionale
(SEURAT) system (Burge and Brown 2006) where non-functional
requirement priorities can be modified and used to detect where earlier
choices should be reconsidered. A rationale-based support system such as
SEURAT can be used during XP to detect candidates for refactoring.

10.3.3 Other Models

10.3.3.1 Rapid Application Development

The goal of Rapid Application Development (RAD) is to build software
products more quickly, and with higher quality, than can be done using
more traditional software life-cycle approaches (Martin 1991). This is
accomplished by taking advantage of Computer-Aided Software
Engineering (CASE) tools and fourth-generation language tools. RAD is
an approach that can be used to build data-intensive business applications
(Sommerville 2007) by exploiting commonalities between these systems:
forms needed for data input and display, database access, commonly used
office applications such as word processors and spreadsheets, and report
generation. Many RAD projects are a form of COTS-based development
projects because they link together existing Commercial Off-the-Shelf
(COTS) applications to provide the required functionality (Sommerville
2007). RAD is often confused with rapid prototyping but the key
difference is that rapid application development is intended to build the
final system while a prototype is typically built to gain a better
understanding of system requirements or available technology.

134 10 Rationale and the Software Lifecycle

The success of a RAD development effort hinges on the selection of the
tools, products, and COTS applications used in its construction. There may
need to be compromises made to adjust system requirements so that they
can be supported by these tools and components. Capturing rationale for
the choices made and alternatives considered assists the selection process
by making the reasons for selection and any tradeoffs made explicit. The
rationale, and the alternatives captured in it, is also useful if subsequent
versions of the system need to reconsider these decisions. RAD systems
run the risk of dependence on third-party software where the vendor may
go out of business, stop supporting the product, or raise licensing fees.
These vendor changes may necessitate a change in the system to avoid
problems.

10.3.3.2 Component-Based Software Engineering

The Component-Based Software Engineering (CBSE) development
process builds software products out of reusable components. The goal is
to make software engineering more like other engineering disciplines
where parts are ordered from a catalog and configured using well-defined
interfaces in order to create a new product. CBSE relies on the availability
of components and on being able to adapt requirements, when necessary,
to work with these components. CBSE is not strictly a process or a life-
cycle. The components can be developed and used within any of the life-
cycle models described here.

Rationale can be used during CBSE by both component providers and
consumers. For component providers, the component rationale can
describe both functional and nonfunctional capabilities of the component.
For component consumers, the rationale can be used to find a component
that best matches the functional and nonfunctional requirements of the
system under development.

10.3.3.3 Open-Source Software Development

Open-source software development involves multiple software developers
working together over the Internet to build software systems where the
code is freely available to all. This has resulted in a number of successful
software projects including the Linux operating system (www.linux.org),
the Apache web server (www.apache.org), and Mozilla project products
(www.mozilla.org) such as the Firefox browser and the Bugzilla bug-
tracking system. There have also been open-source projects with corporate
support, such as IBM’s Eclipse development framework
(www.eclipse.org). The unifying attribute of these systems that has made

10.3 Software Lifecycle Models 135

them successful is that they are all systems that the developers want to be
able to use themselves. Successful projects result from developers solving
problems that they are excited about (Raymond 2001).

Since open-source development is a highly collaborative process where
developers can come and go from the project at will, the capture and use of
rationale could play a significant role in the success of these efforts.
Successful open-source projects such as Apache and Mozilla make heavy
use of version control systems, such as CVS, and bug tracking (Mockus et
al. 2002). These systems capture the reasons behind software changes that
could be included in their rationale. Capturing the intent behind the
software modifications can be used to help guide the developers as the
system evolves.

10.3.3.4 Model-Driven Development

Models have been used to assist with software development for many
years. The simplest definition of model-driven development (MDD) is to
built a model of a system that is then transformed into the system itself
(Mellor et al. 2003). A more specific view is to develop domain models for
application areas and use those to develop system architectures (Boehm
2006a). Models used in MDD can be developed using UML (France et al.
2006) or domain-specific modeling languages (DSMLs) that define
relationships between domain concepts along with semantics and
constraints (Schmidt 2006).

The usefulness of these models would be increased if they were
developed with rationale attached. This would assist in selecting the
appropriate model for the problem that the system is solving and could also
help to determine when tailoring the model would be appropriate or not.

10.3.3.5 Service-Oriented Development

In service-oriented development applications are built using stand-alone
services that can be executed on distributed computers (Sommerville
2007). Services are accessed via a service registry which is used to find
applicable services. When a service is found by an application, the
application is then bound to that service. A key aspect of service-oriented
development is the ability to perform “ultra-late-binding” where the
service is located and bound dynamically (Turner et al. 2003). Web
services are an example of the service oriented development paradigm.

The uses of rationale in service oriented development are similar to
those in CBSE: the rationale can be used as part of the selection criteria
used when discovering service providers. For example, the Web services

136 10 Rationale and the Software Lifecycle

stack framework proposed in (Turner et al. 2003) includes a non-functional
description level that provides a non-functional description of a service.
These protocols would then provide the rationale for selecting the service.

10.4. Software Process Improvement

As described earlier, the quality of software products is related to the
quality of the software process. In this section, we describe two process
improvement initiatives: the CMM and CMMI process improvement
framework and the Personal Software Process.

10.4.1 CMM

The Software Engineering Institute (SEI) developed the Capability
Maturity Model (CMM) (Paulk et al. 1993) to define software maturity
levels. These levels are initial, repeatable, defined, managed, and
optimizing. At the initial level, the process is undefined and unpredictable.
At the repeatable level there are policies and procedures in place for the
software process. Companies working at the defined level have
documented and standardized procedures that work across the
organization. At the managed level metrics are collected to assess the
quality of the software process and at the optimizing level this information
is fed back into the process to improve it.

The Capability Maturity Model has been replaced with Capability
Maturity Model Integration (CMMI) (CMMI Team 2006). The CMMI
integrates the software CMM with the Systems Engineering Capability
Model (SECM) (EIA 1998) and the Integrated Product Development
Capability Maturity Model (IPD-CMM) (SEI 1997). The CMMI has two
representations—a staged model that assesses the organizations process at
one of five discrete levels (similar to the CMM) and a continuous model
where different process areas within an organization can be ranked at
different capability levels. The capability levels are incomplete, performed,
managed, defined, quantitatively managed, and optimizing. There are 24
process areas defined within the CMMI. Examples are project planning,
requirements management, and configuration management.

Rationale capture and use is related to the CMMI Decision Analysis and
Resolution process area. This process consists of defining a “formal
evaluation process” for evaluating decision alternatives. This process
includes identifying the alternatives, determining the evaluation criteria,
selecting and using the evaluation method, and selecting the alternatives

10.4. Software Process Improvement 137

based on the criteria (CMMI Team 2006). The evaluation process used on
a project should determine which categories of decision will require formal
evaluation (such as high-risk decisions) and how the evaluation will be
performed and documented.

10.4.2 Personal Software Process

The Personal Software Process (PSP) (Humphrey 1995) arose from
applying the CMM to small software projects. The CMM focuses on
improving the process of software development organizations and the PSP
extends that focus to improving the process of individual software
engineers. The PSP follows the principles that each developer needs to
base their process on data that they collect on their own performance, the
developers need to follow a defined and measured process, developers
need to be responsible for the quality of their work, and that defects should
be avoided if possible, fixed as soon as they are detected, and that the right
way to do the job will be the fastest and cheapest (Humphrey 2000).

The PSP follows a process improvement cycle where individual
developers capture metrics on their job performance: time spent and
defects introduced and removed. These metrics are then used to improve
their performance. The PSP provides detailed forms and scripts to use
during the development process.

The Team Software Process (TSP) (McAndrews 2000) extends the PSP
to developing software in teams. The TSP addresses four causes of project
failure: lack of training in planning, development, and quality practices;
the focus on schedule rather than quality; the lack of a formal team-
building process; and unrealistic project plans damaging motivation. The
TSP defines how Level 5 of the CMM can be put into practice.

Neither the PSP nor TSP calls for the recording of rationale as part of
the process. The success of these approaches, however, indicates that
emphasizing quality over schedule concerns leads to more successful
projects. The addition of rationale to the collected data would add to this
success by providing additional insight into the development process that
can then be used to tune these processes during future development. It is
clear from the results of PSP/TSP projects that spending time up front to
collect data ends up improving the process and not having the detrimental
effect on schedule that is so often feared.

138 10 Rationale and the Software Lifecycle

10.5. Summary and Conclusions

The incentive behind the defining, modeling, and monitoring of the
software lifecycle is to increase quality and decrease costs. Software
process models have evolved from sequential models towards more
iterative ones in order to be more responsive to changes in software
requirements. The importance of a defined and monitored software process
has been highlighted by process improvement efforts such as the CMMI
and the PSP.

The capture and use of rationale should be an integral part of any
development process. The usual software artifacts produced during
development only describe what was done and not why. Knowing the
information behind the decisions can provide much-needed insight when
these decisions are the basis of future ones. The reasons for making
decisions that are captured in the rationale are often nonfunctional
requirements that affect overall software quality. The rationale can provide
a way to evaluate that quality and support quality improvement.

Much of the opposition to the capture and use of rationale has been the
view that it is difficult and time consuming to collect. This argument can
be used against most forms of documentation but it is rare to find anyone
who does not believe that documenting software will not save money in
the long run. As software processes become more rigorous, the cost of
collecting rationale will continue to become less of an issue compared to
the savings provided by the defect reduction and requirement conformance
provided by the improved processes.

