
Rationale-Based
Software Engineering

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Janet E. Burge
John M. Carroll
Raymond McCall
Ivan Mistrík

R
atio

n
ale

-B
ased

B

u
rg

e · C
arro

ll

Rationale-Based Software Engineering

●

Rationale-Based

 John M. Carroll ●

●

Software Engineering

Janet E. Burge
Raymond McCall Ivan Mistrík

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

School of Eng. & Appl. Science
Computer Science & Systems
205 Benton Hall

USA
burgeje@muohio.edu

Penn State University
School of Information Sciences
and Technology

120 S. Burrowes Street
504 Rider I Building

USA
jcarroll@ist.psu.edu

 Raymond McCall
University of Colorado
College Architecture &
314 UCB

USA
Mccall@colorado.edu

Ivan Mistrík

ISBN 978-3-540-77582-9 e-ISBN 978-3-540-77583-6

Library of Congress Control Number: 2008924869

ACM Computing Classification (1998): D.2, K.6

Authors

Miami University

Analysis

Planning

in its current version, and permissions for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Janet E. Burge John M. Carroll

Oxford, OH 45056

Boulder, CO 80309-0314

University Park, PA 16801-3857

Independent Consultant
Werderstr. 45
69120 Heidelberg
Germany
i.j.mistrik@t-online.de

Cover design: KünkelLopka Werbeagentur, Heidelberg, Germany

Foreword

The Search for Meaning

At the risk of appearing to exaggerate, I will argue that the pursuit of
rationale in engineering is nothing less than a search for meaning. On the
face of it, capturing, recording, and perusing rationale in support of
software engineering is a worthy software management activity, whose
benefits are well documented and accepted. Indeed chapters of this book
speak to this issue. However, there is a more significant reason for the
pursuit of rationale: a desire to make sense of the world – to explain it and
to explain its behavior, both expected and unexpected. Weick calls this
sensemaking, and of course is right insofar as the world makes ‘sense’.
Wouldn’t it be grand if we were able to understand why the world is
structured as it is, and why artifacts in the world have been engineered to
behave the way they do? Sometimes, the reasons why are straightforward:
an engineer solving a problem in the world may recognize it as a normal
problem that he has encountered before, the solution of which is well
understood, tried, and tested. The rationale for his engineering solution in
this case is mostly reusable – after all he is engaging in normal
engineering, in normal design (Vincenti 1990).

But what if the problem encountered is radical? Well, Vincenti tells us
that we need to engage in radical engineering, in radical design. The
consequence of this is that we should expect to fail in our first attempts at a
solution, but strive to learn from our failures, so that future encounters
with our radical problem become more normal.

It is in this transition from radical to normal that rationale research
offers attractive opportunities for advancing the state of the art in software
engineering, and offers an intellectual umbrella for breaking new ground in
this area. This umbrella needs to cover both problem analysis in pursuit of
stakeholder requirements, and engineering design in pursuit of solutions to
those requirements. Research on the relationship between requirements
and design, on managing traceability and software evolution, and
ultimately on assuring the quality of software engineering solutions, all sit
comfortably under this umbrella.

vi Foreword

However, there is a difficulty, observed by Jackson (Jackson 2007). As
we specialize and strive to evolve the discipline of software engineering
into normal engineering, we find that much normal design rationale is
hidden, perhaps lost in time, when imaginable alternative solutions were
considered and discarded. We then find ourselves back to where we
started: trying to make sense of what we have already, trying to understand
the reasons why the normal design we have before us is the way it is.
Weick writes:

Sensemaking is about such things as placement of items into
frameworks, comprehending, redressing surprise, constructing
meaning, interacting in pursuit of mutual understanding, and
patterning. (Weick 1995, p.6)

My colleague Simon Buckingham Shum (2007) has taken Weick’s

message to heart, and has made sensemaking the centerpiece of his
framework for constructive argumentation and explanatory rationale.

A book such as this is important because the development of software is
engineering and not science. It is not enough simply to understand why
software behaves the way it does, but rather how it can be built – rationally

(Parnas and Clements 1986), or at least systematically – to behave as
intended. We need the framework offered by this volume to develop such
meaningful software.

Bashar Nuseibeh
Professor of Computing and Director of Research
The Open University, UK

Foreword

Design Rationale: Retrospect and Prospect

Danish philosopher Soren Kierkegaard once said that life can only be
understood backwards but must be lived forward. He might easily have
been talking about the software design process. In a software project, many
developers work together on a system development effort, some of them
only for some phases of the project, and few with an overview of the entire
system. As a system emerges from this process, it has to be explained for
future designers, maintenance programmers, and others. Some of the logic,
the rationale for the way the system is, may have been apparent from the
beginning. But in many cases, the trajectory of all the little decisions that
contribute to the way a system is when it is released may only be apparent
in retrospect when tied together in a deliberate activity of sensemaking and
documentation.

It is not supposed to be this way. Software engineering textbooks and
process improvement manuals exhort us to have well-defined requirements
and a core architectural vision that drive the details forward. Such
requirements and architectural features must be documented and
internalized by project staff so that everyone appreciates the significance
and impact of changes. But the real life of software projects is not so
simple. Stakeholders change their minds. The business context of a system
changes during its development. As infrastructure technology changes,
new implementation opportunities become available. Architectural
commitments have to be changed or diluted as their consequences become
apparent. People simply forget what they are doing and develop different
styles in how they work and implement software that may conflict.
Kierkegaard, of course, was not a software architect. His struggle was not
with customers, users, and intransigent or imperfect fellow developers, but
19th century institutions, repression, and hypocrisy. But the consequences
of both struggles are the same: we cannot always make sense of what is

viii Foreword

going on when we are in the middle of things until after the smoke has
cleared. And the root causes are essentially the same too: the world is
complex, and people are only human.

Design rationale research started in the 1980s from the recognition that
the results of design often do not make sense to those outside the design
team, but have to be made sense of to foster better understanding during
the ongoing process of maintenance and feature evolution. There were two
strands to this research emerging from different communities, and these
strands persist to the present day. In a nutshell, the difference between
them goes back to Kierkegaard’s comment: if we have to make a choice
between the two alternative modes of sense making, should we try to make
design easier to explain in retrospect, or should we make it more
transparent and reflective while it is going on? These answers led to
retrospective rationale research and prospective rationale research.

In the retrospective rationale community, the concern was primarily
how to document large-scale software architectures or standards. Since an
architecture is a stable foundation for a continually evolving system, and
standards are expected to endure over generations of many systems
produced by many organizations, it is essential to document the
architecture and standards and the reasons behind them. Architectures and
standards are the types of thing that we are stuck with once we make a
commitment to them and then come to depend on for a myriad of detailed
decisions. They are therefore high-risk commitments.

The first notable example of the use of rationale in after-the-fact
documentation came from the team led by David Parnas, who used the
avionics software of the A-7 aircraft as a microcosm for exploring design
specification and documentation techniques (Parnas and Clements 1986).

The A-7 work has had an influence in more recent efforts and methods,
such as the Software Engineering Institute (SEI) architecture initiative
(Clements et al. 2002). Different but similarly motivated efforts have led to
architectural decision support technologies such as the Architecture Design
Decision Support System (ADSS) (Capilla et al. 2007). There is a general
consensus emerging that the documentation of rationale, whatever form it
takes, should be tightly bound to the documentation about the architecture
itself. For example, Zhu and Gorton (2007) devised a Unified Modeling
Language (UML) profile for adding rationale information to standard
UML design diagrams. In this way, the rationale is a first-class part of the
documentation, not an addendum or collection of low-value notes.

In the standards community, it has become almost universal to
document the rationale for parts of a standard, often in terms of
comparisons between what the standard requires and plausible but inferior
alternatives. A pioneering example of this in software engineering was the

Foreword ix

documentation and rationale for the Ada programming language and

layered structure (Druffel and Buxton 1980).
The explanatory role of retrospective rationale documentation means

that it is not critical that the rationale be historically accurate. Designers
might well have had considerations in mind that led to architecture
decisions that no longer seem relevant in retrospect. Conversely, making
sense of the overall sweep of the architectural design process in retrospect,
it may be clear that reasons were prominent that were not completely
apparent at the time. Reasons given may be a white lie, they may
oversimplify or distort that convoluted process that people went through.
They may even be self-serving or apologetic, designed to protect the
authors from criticism. After the fact, these factors may not be important to
maintenance programmers or designers of later releases. An approximate,
simplified and glossed rationale, even one that is somewhat distorted, may
be more suitable for supporting the concerns of these professionals than
documentation that more faithfully describes the agonizing process of
decision-making that the developers actually went through.

In keeping with this, creative and constructive distortion of the design
decision-making process is another property of retrospective rationale: it
has to be carefully crafted. Like the documentation of the architecture’s
form, the documentation of its rationale is expected to endure and become
part of the project’s knowledge base as the project goes forward. It
therefore makes economic sense to invest resources and time in writing
rationale documents and clearly articulating them.

In contrast, another community came to design rationale research in the
1980s. These researchers had been inspired by the pioneering work of
Horst Rittel and other design theorists in their attempts to provide structure
to collaborative decision-making among designers and other stakeholders,
particularly in community architecture and urban planning projects, when

characterized by dispute about what the problem actually is and how one
would recognize whether it had been solved. Thus, a wicked problem is
not just hard; its very nature is contested and cries out for discussion. In
this second tradition of design rationale research, therefore, an emphasis
was placed on semi-structured representations of ongoing issues, positions,
and arguments. The emphasis was on supporting problem formulation and
decision-making as they occurred rather than seeking to justify decisions
for people who came after.

Such support is support for design rationale, though, for two reasons.
The first reason is definitional: the rationale for a decision consists of the

a particularly good example of the analysis of why the environment had a
programming support environment. The latter (code named “Stoneman”) is

the problems they faced were “wicked”. A wicked problem is

x Foreword

reasons why it was chosen. These reasons do not have to be documented
with a future consumer, such as a maintenance programmer, in mind. Even
if nobody were to read the rationale in the future, its documentation and
value during the unfolding of the design would not make it any the less a
record of rationale. A second reason for this type of ongoing decision-
making support counting as rationale is more practical: the information
may well be useful in the future by accident, even though that may not be
the motivation for its capture.

two streams of research. Both streams emphasize care and professionalism
during design. But the careful audience analysis, crafting, and writing of
rationale documentation in the retrospective rationale tradition emphasizes
that the recording of rationale is a significant part of a project and should
be budgeted for and rewarded. In contrast, the capturing of design rationale
in the prospective rationale tradition implies that rationale documentation
is a fortuitously gathered by-product of another activity. That other
activity, collaborative design argumentation and decision-making, may be
serious, it may be planned and budgeted, and it may be highly structured in
its processes. But the rationale produced is expected to be immediately
valuable, and any later benefits that accrue from it should not require any
further planning or writing. These benefits should come for free.

Probably the most influential prototype prospective rationale
management system was gIBIS (Conklin and Begeman 1988), which
although it never created a major user community, was used in NCR for
the development of hotel and restaurant support systems (Conklin and
Burgess-Yakemovic 1991), and the IBIS argumentation model at its core
has been extremely influential as the baseline for representation of nearly
all rationale.

In parallel to the use of rationale capture in software engineering, a
similar argumentation model based on explicit decision criteria was
influencing research into user interface design in the human–computer
interaction (HCI) community (Maclean et al. 1989). Here the design
decisions were typically more local in scope, such as in the choice of
alternative user interface widgets or menu structures to support a user’s
task. The model used, Design Space Analysis, based on questions, options,
and criteria, rather than the issues, positions and arguments of IBIS,
emphasized the making of choices between mutually exclusive options and
was based on explicit and frequently quantitative criteria. The design
problems addressed were therefore constrained and clearly specified.
While they may have been subtle and far reaching in their impact on
usability, they were anything but wicked problems in the sense defined
above.

In fact, the term “capture” reveals a fundamental difference between the

Foreword xi

More recent research in prospective design rationale in software
engineering tends to emphasize quantitative criteria for choosing among
alternatives, and the normal targets of these decisions are architectural
choices such as the distribution of services across a network. Recent work
in software engineering economics represents an attempt to make these
design decisions rigorous in the same way that financial decisions in
business can be based on rigorous projections and risk models (Boehm et
al. 1995; Bose 1998). Typical of the decision-making methods and models
that are incorporated into such work are Cost–Benefit Analysis (e.g.,
Kazman et al. 2003) and the Analytical Hierarchy Process (e.g., Lozano-
Tello and Gomez-Perez 2001; Wallin et al. 2007).

In software engineering, other than the early, limited experiments with
gIBIS, prospective design rationale research foundered for several years,
possibly because the unique qualities of software design were largely
neglected. The increasingly complex argumentation models could have
applied to the design of anything. In customizing design rationale
representations to software engineering, a key early insight was that
software design methods are sets of heuristics for making requirements,
design, and implementation decisions, not just software notations. Object-
oriented methods, for example, provide guidelines for the identification of
objects and their responsibilities and guidelines for refactoring when these
early decisions lead to reorganization. Such methods essentially
encapsulate reusable design knowledge. Before the widespread adoption of
object-oriented methods, the methodology community was rather
fragmented, and so extensions of design rationale representations to
software methods tended to focus on illustrative methods. Among these
were Potts and Bruns’s (1988) adaptation of the Liskov and Guttag

Jackson System Development (JSD), and the later incorporation of goal-
based and scenario-based representations of system requirements into the
Inquiry Cycle model of prospective rationale (Potts et al. 1994).

In addition to design methods, which tend to focus on generic design
decisions, domain-specific issues can also arise that can be captured and
represented as reusable rationale. An early example of this was Belotti’s
(1993) attempt to integrate theoretical and practitioner perspectives on HCI
guidelines through Design Space Analysis. More recent work has included
domain-specific architectural rationale for automotive software
engineering (Wallin et al. 2007).

Not satisfied with the attachment of design rationale to design artifacts
represented by these methodological extensions or by the introduction of
explicit and often quantitative criteria in the Design Space Analysis
community in HCI, some researchers sought to extend the rationale models

abstraction-based design method, the Potts (1989) treatment of Jackson’s

xii Foreword

in such a way that some decisions could be made automatically or
dependencies between decisions could be computed and maintained
consistently (Ali Babar and Gorton 2007; Lee 1991; Lee and Lai 1991;
Wang and Xiong 2001) by means of an elaborate and formal data model
for design rationale information and its relationship to elements in the
design itself. It is not clear to what extent the benefits of such
computational support outweigh the burden of recording the rationale
information in such a rigorous and necessarily fine-grained fashion. Nor is
it clear whether the structure of such models can be easily maintained as
the design and its rationale change. Such approaches do promise to be
extremely valuable when coupled with a formal theory of design change
and configuration management.

Recently, however, the focus has returned to reusable software
engineering knowledge and rationale. The entire software patterns
community (Gamma et al. 1995) can be regarded as engaged in a quest to
produce a corpus of rationale documents that discuss design patterns, the
issues that arise when they are used, the arguments for when they are
appropriate and when they cause problems, how they interact, and
illustrations of their use. Debating whether a pattern library is a generic
library of design artifacts or a rationale library seems rather fruitless, since
the design alternatives faced by a designer, criteria and considerations that
affect the decisions, illustrative solutions, and warnings about interactions
are so inextricably interwoven. The role of rationale is woven through the
patterns literature, although it has a secondary role to the capturing of
artifact knowledge. A more explicit role for rationale can be seen in
Baniassad et al.’s (2003) Design Pattern Rationale Graph (DPRG), a tool
for linking designs and implementations through rationale information.

Thus, much of the development of work in the prospective design
rationale tradition can be seen to be aimed at producing information that
can be used subsequently, not just as an aid to decision-making in the
moment. Such subsequent uses may include specific rationale information
to be referred to later in the same project, or it may even take the form of
more generic lessons learned that can be applied across projects.

There have been few comprehensive reviews on design rationale, and
none of monograph length. The theoretical models of design rationale, the
phases of the design process during which they are useful, the domain-
specific contexts in which they can be applied, and evidence of practicality
have been lacking. Only one software engineering textbook, that of
Bruegge and Dutoit (2004) makes a thorough attempt to integrate design
rationale into the software engineering process.

As we enter the third decade of design rationale research, however, now
is a good time to take stock. Everyone acknowledges that designing is

Foreword xiii

difficult, that it involves many people often over long periods of time who
need explicit records of who did what, when, and for what reasons. The
support for design rationale and its integration into software engineering
processes has not yet reached the mainstream of software engineering
writing and practice, and it is time that it did. Or as Kierkegaard also said:
truth always rests with the minority.

Colin Potts
Associate Professor in the School of Interactive Computing
Georgia Institute of Technology, USA

Preface

The most distinctive thing about humans is not the thumb, of course. It is
design. Unlike any other animal, we incessantly and dramatically reshape
both ourselves and our environment. We design ourselves through
innovating concepts, language, culture, and other practices, and we design
almost everything around us. It is telling that we now speak of “natural”
places on the Earth to distinguish the few places we have not (yet!)
redesigned.

Among the most complex, diverse, and pervasive things that humans
design are software systems. The history of software design is almost
entirely a history of trying to catch up with complexity and diversity. As
we look back to the 1960s the notion of what was then called the “software
crisis” seems almost amusing. At that time, barely a decade after the
invention of software, it was recognized that the complexity and diversity
of software systems was being elaborated far more rapidly than were
engineering techniques to manage software development. What is amusing
is that this was (optimistically) called a crisis, as if it were a temporary
threat that would in the course of time be rectified.

But this never happened. Instead the software crisis became chronic. It
became the context for the software industry and for software engineering.
And by now, as almost every system is, incorporates, or fundamentally
depends upon software, as software systems have become utterly pervasive,
the software crisis has really become an epoch in human history.

No one is very happy about this, and from time to time manifestations of
the ongoing software crisis bubble up into dramatic mass media reports
about how vital defense systems are fundamentally unverifiable, about
how medical systems make it more or less inevitable than surgeons will
kill their patients, about how banking systems occasionally share account
information with unknown hackers, and so forth.

What are we to do? There are many answers, many approaches, but
none of them is a “silver bullet” (as Fred Brooks vividly put it). The most
obvious approach, and quite likely the most powerful, is to explicitly
describe and justify the design, implementation, and use of software
systems, and to do this routinely, iteratively, and regularly throughout the
software development process. We call this “Rationale-Based Software

xvi Preface

Engineering.” It is not a new idea, though in some areas there are new
tools and techniques. Rather, it is an essential idea that has been around,
that we cannot afford to lose track of, and that perhaps can be pushed to
greater fruition now. In this book, we try to bring together a broad
discussion of rationale and focus on aspects of the very old and very
weighty challenge of the software crisis.

Book Overview

This book consists of four parts. Part 1 sets the context for the work and
describes why Software Engineering Rationale (SER) and Rationale-Based
Software Engineering (RBSE) are essential contributors toward improving
the software development process. Part 2 describes how Software
Engineering Rationale can be used to support software development. Part 3
describes how RBSE can be applied throughout the software engineering
lifecycle as well as supporting software reuse. Part 4 presents architectural
and conceptual frameworks for RBSE as well as our vision of future
directions for RBSE research.

Part 1: Introduction

So why capture rationale? Before making a case for why SER capture and
use should be an essential part of software development, it is important to
first define what it is. Part 1 defines rationale and sets the context for the
remainder of the book.

Chapter 1, “What is Rationale and Why Does it Matter” provides an
initial discussion of the scope and value of rationale in software engineering.
An initial introduction of previous work on rationale is provided and we
make our initial case for why rationale is useful during software engineering.

Chapter 2, “What Makes Software Different” describes some of the key
differences between applying rationale to software engineering and applying
rationale to other domains. This includes both opportunities for use in
software engineering that are lacking when developing other artifacts as well
as some of the unique challenges posed by software development.
Specifically, we look at the role of the computer in software development
versus physical artifact development as well as the implications of the
necessity to support iteration in software development on rationale
management.

Chapter 3, “Rationale and Software Engineering” introduces both
Software Engineering and Software Engineering Rationale (Dutoit et al.

2006b). Rationale has a role to play in defining software processes,
supporting software project management, and as a mechanism to both
document and guide decision-making throughout the software process.

Chapter 4, “Learning from Rationale Research in Other Domains”
describes key rationale research in other domains and its implication to
software engineering. The chapter focuses on four areas: domain-oriented
design environments using Procedural Hierarchy of Issues (PHI) (McCall
1991); automating design rationale capture in Computer-Aided Design,
more specifically that using the Rationale Construction Framework (Myers
et al. 1999); rationale support via Parameter Dependency Networks and
DRIVE (de la Garza and Alcantara 1997); and how Case-Based Reasoning
(CBR) systems such ARCHIE (Zimring et al. 1995) relate to rationale.

Chapter 5, “Decision-Making in Software Engineering” examines the
role that human decision-making has in software engineering. The chapter
describes naturalistic decision-making and Klein’s recognition-primed
decision model (Klein 1998), which addresses some of the problems with
classical decision making by proposing a strategy more consistent with
observations of human decision-makers, where the first acceptable
alternative is selected. The chapter concludes with a discussion of
rationale as a resource for decision-making and how rationale relates to
both the classical and naturalistic views.

Part 2: Uses of Rationale

There is little or no point in capturing rationale if there are not ways in
which it can be used. Part 2 describes some key uses of rationale in
software development.

Chapter 6, “Presentation of Rationale” looks at rationale presentation.
The two major classes of presentation formats, semiformal and informal,
are described. The chapter then describes new opportunities for
presentation provided by reusable rationale databases, multiscale
presentation, and development tool integration.

Chapter 7, “Evaluation” describes how rationale can be used for
evaluation from two angles. The first is how argumentation-based rationale
can be used for decision evaluation by evaluating the consistency and
completeness of the rationale as well as evaluating support for
development alternatives taking into account decision criteria, input from
multiple developers, and uncertainty. The second approach to evaluation
describes scenario-based evaluation as supported by scenario-based design
(Carroll and Rosson 1992).

xvii Preface

xviii Preface

Chapter 8, “Support for Collaboration” discusses rationale and
collaboration from two perspectives. The first is how the highly
collaborative nature of software development supports the development,
codification, and use of rationale. The need for collaborators to justify their
decisions to each other is a key source of rationale. The other is how
rationale supports collaboration by encouraging the exchange of
information and awareness of the goals of team members.

Chapter 9, “Change Analysis” identifies the important role that rationale
can play in assessing the impact of changing requirements, design criteria,
and assumptions on a software system. By explicitly recording the impact
that those elements had on the decisions involved and relating the results
of the decision-making process to the artifacts that instantiate them, the
rationale can be used to detect where changes will be required if
requirements, criteria, and assumptions change. In addition, rationale can
also capture crucial inter-decision dependencies and alert the developer if
one of those dependencies is later violated.

Part 3: Rationale and Software Engineering

In software engineering, decision-making is not restricted to only part of
the process. There are critical decisions to be deliberated throughout the
lifecycle of the software system. Part 3 describes how rationale supports
the various stages of the software lifecycle and how rationale research
relates to other software engineering research that also supports those
stages.

Chapter 10, “Rationale and the Software Lifecycle” gives a brief
introduction to the stages of software development and how rationale can
be utilized. The topic of lifecycle modeling is then introduced and the

approaches. The chapter concludes with a discussion of how rationale
supports process improvement initiatives.

Chapter 11, “Rationale and Requirements Engineering” describes
rationale’s contribution to requirements engineering. This includes how
rationale can support the requirements definition process by assisting with
requirements elicitation, achieving consensus on requirements, identifying
requirements inconsistency, and supporting requirement prioritization.
Rationale’s role in requirements traceability and the relationship between
rationale and nonfunctional requirements is also described. The chapter
concludes with how rationale can assist in adapting to changing
requirements, one of the major challenges in software engineering.

v-model is described as well as how rationale can be applied to iterative
application of rationale to sequential models, such as waterfall and the

Chapter 12, “Rationale and Software Design” describes design rationale
as applied to software design. The chapter begins with a description of the
nature and importance of software design rationale, both that generated by
the designers while designing and that generated during construction and
use. Two fundamentally different types of decisions are described—design
space decisions and rationale for non-design-space decisions that represent
a deeper reflection on the design process. We conclude with a look at some
specific approaches to rationale as applied to software design and software
architecture.

Chapter 13, “Rationale and Software VV&T” defines verification and
validation and then describes the issues involved in the major types of
software tests—inspection, unit testing, integration testing, and system
testing. The role of rationale in software testing is described by focusing
on three major uses: the contribution of rationale to testability, rationale’s
contribution to test case prioritization, and using rationale to support
component testing and selection.

Chapter 14, “Rationale and Software Maintenance” describes how
rationale can be used to support software maintenance. The chapter
describes four areas where rationale can support maintenance:
maintenance prediction, impact assessment, program comprehension, and
maintenance rationale. The chapter then concludes with a discussion of
why rationale should also be captured during software maintenance and
some existing research that supports the capture of maintenance rationale.

Chapter 15, “Rationale and Software Reuse” begins with a description
of key software reuse concepts and categories, along with defining types of
rationale that support reuse. The chapter then describes several ways that
rationale has been, or can be, applied to assist with software re-use.

Part 4: Frameworks for Using Rationale in Software
Engineering

In this part, we take a look ahead. In order to support Rationale-Based
Software Engineering, it is necessary to have frameworks to define the key
concepts and architectural needs for Rationale Management Systems. In
this part, we define a conceptual framework and architectural framework
to support Rationale-Based Software Engineering.

Chapter 16, “A Conceptual Framework for Rationale-Based Software
Engineering” describes the goals of conceptual frameworks in general,
followed by what is needed by a conceptual framework for rationale use in
software engineering. To support the decision-centric approaches, we
define a taxonomy of software decisions that could be answered using

xix Preface

xx Preface

SER. To support usage-centric approaches, we describe how Carroll and
Rosson’s (1992) Scenario Claims Analysis (SCA) rationale can be applied
to software engineering. We conclude with a discussion of the implications
of iteration, a summary of current challenges to rationale use, and propose
some potential solutions.

Chapter 17, “An Architectural Framework for Rationale-Based Software
Engineering” describes the key features needed for a Rationale
Management System (RMS) to support software engineering. This
includes the model management subsystem (which includes support for
capture and formalization), the underlying hypermedia substrate, and the
necessary integrations between RMS and external software development
support systems.

Chapter 18, “Rationale-Based Software Engineering: Summary and
Prospect” serves two purposes. First, it summarizes the work presented in
this book and its implications for future rationale research and use. We
then look at some key future challenges to software development and
conclude with a discussion of both the promises of and challenges to
Rationale-Based Software Engineering.

Acknowledgements

This book would not have been possible without the support of many
people. First of all we would like to thank Ralf Gerstner of Springer,
Germany for making this project possible and for invaluable advice in
publishing matters. We appreciate his infinite patience with watching this
project come to fruition. We would also like to thank Bashar Nuseibeh and
Colin Potts for their excellent and inspiring forewords. At Miami
University, Monica Baxter provided secretarial assistance in pulling
together the various components of the book. Last, but not least, we would
like to thank our friends, family, and colleagues for their support, patience,
and encouragement throughout this project.

Author Biographies

Janet E. Burge is an assistant professor at Miami University Computer
Science and Systems Analysis Department. Dr. Burge’s major research
interests are in software engineering and artificial intelligence. Her
primary research area is in design rationale, with a focus on design
rationale for software maintenance. Prior to her appointment at Miami
University in 2005, she taught software engineering and assembly
language at Worcester Polytechnic Institute (WPI) for four years. During
and prior to that time, she worked for eight years at Charles River
Analytics Inc. on various projects using genetic algorithms for decision
support and on a knowledge elicitation workstation. Before joining Charles
River Analytics, she worked for one year at Fidelity Investments
developing an expert system to monitor their midrange computer systems
and for 11 years at Raytheon Corporation as a software engineer. She
received her PhD in Computer Science from WPI in 2005, her M.S in
Computer Science from WPI in 1999, and her B.S. in Computer Science
from Michigan Technological University in 1984.

John M. Carroll is the Edward M. Frymoyer Chair Professor of
Information Sciences and Technology at the Pennsylvania State University.
His research interests include methods and theory in human–computer
interaction, particularly as applied to networking tools for collaborative
learning and problem solving, and the design of interactive information
systems. His books include Making Use (MIT Press, 2000), HCI in the New
Millennium (Addison-Wesley, 2001), Usability Engineering (Morgan-
Kaufmann, 2002, with M.B. Rosson) and HCI Models, Theories, and
Frameworks (Morgan-Kaufmann, 2003). He serves on several editorial
boards for journals, handbooks, and series and is Editor-in-Chief of the
ACM Transactions on Computer–Human Interactions. He received the Rigo
Award and the CHI Lifetime Achievement Award from the ACM, the Silver
Core Award from the IFIP, and the Alfred N. Goldsmith Award from the
IEEE. He is a fellow of the ACM, IEEE, and HFES.

Raymond McCall is an associate professor in the Department of Planning
and Design at the University of Colorado, Denver. His major areas of

xxii Author Biographies

research are in design rationale methods and systems. Since 1992, most of
his research has concentrated on the use of rationale to support the
design of artifacts for human exploration of space. For much of this time
he collaborated with NASA contractors and with employees of the
Johnson Space Center in Houston. He has nearly 30 years of experience in
design rationale usage in architectural design, planning, policy making and
software design. He created the first hypertext systems for support of
design rationale in the 1970s and 1980s and was the first to integrate
support for rationale capture and delivery into 3D computer-aided design
systems. Before coming to the University of Colorado, he worked for six
years at the Gesellschaft fuer Information und Dokumentation in
Heidelberg, Germany. He received a Ph.D. in Architecture in 1978 from
the University of California, Berkeley, and an M.S. in Product Design in
1975 from the Institute of Design at the Illinois Institute of Technology.

Ivan Mistrík is an independent consultant for Software-Intensive Systems
Engineering. He is a computer scientist who is interested in software
engineering and software architecture, in particular: relating software
requirements and architectures, knowledge management in software
development, rationale-based software engineering, and collaborative
software engineering. He has more than 40 years experience in the field of
computer systems engineering, primarily working at renowned R&D
institutions as a principal scientist and project manager; in parallel he has
done consulting on a variety of large international IT projects sponsored by
DFG, ESA, EU, NASA, NATO, and UN. He has also taught university-
level computer sciences courses in software engineering, software
architecture, distributed information systems, and human–computer
interaction. He is the author or co-author of more than 80 articles and
papers in international journals, conferences, books and workshops and
was the editor of the book Rationale Management in Software Engineering
published by Springer-Verlag in 2006. In addition, he was the editor of the
Special Issue on Relating Software Requirements and Architectures
published by IEE Proceedings Software in 2005.

Bashar Nuseibeh is professor and Director of Research in Computing at
The Open University (OU), and a visiting professor at Imperial College
London and the National Institute of Informatics, Japan. Previously he was
a reader at Imperial College London and head of its Software Engineering
Laboratory. His research interests are in software requirements engineering
and design, software process modeling and technology, and technology
transfer. He has published over 100 refereed papers and consulted widely
with industry, working with organizations such as the UK National Air

Author Biographies xxiii

Traffic Services (NATS), Texas Instruments, Praxis Critical Systems,
Philips Research Labs, and NASA. He has also served as Principal
Investigator on a number of research projects on software engineering,
security engineering, and learning technologies. Bashar is Editor-in-Chief
of the Automated Software Engineering Journal, and an Associate Editor
of IEEE Transactions on Software Engineering, the Requirements
Engineering Journal, and a number of other journals. He was a founder and
first chairman of the BCS Requirements Engineering Specialist Group
(1994–2004), and is currently chair of IFIP Working Group 2.9 (Software
Requirements Engineering) and chair of the steering committee of the
International Conference on Software Engineering (ICSE). He has served

RE'01, and ICSE-2005. Bashar holds an MSc and PhD in Software
Engineering from Imperial College London, and a First Class Honours
BSc in Computer Systems Engineering from the University of Sussex, UK.
He received a Philip Leverhulme Prize (2002), an ICSE “Most Influential
Paper” award (2003), a “Best Application Paper” award from the 18th
International Conference on Logic Programming (ICLP-2002), and a
number of other best paper and service awards. He held a Senior Research
Fellowship of the Royal Academy of Engineering and the Leverhulme
Trust between 2005 and 2007. He is a Fellow of the British Computer
Society (FBCS) and the Institution of Engineering and Technology (FIET),
an Automated Software Engineering Fellow, and is a Chartered Engineer
(C.Eng.).

Colin Potts is associate professor in the School of Interactive Computing
at the Georgia Institute of Technology, where he conducts research in
human-centered computing; specifically in requirements elicitation and
analysis, feature clustering and evolution, privacy-aware computing, and
design rationale. He is also active in the teaching of social implications of
computing and professional ethics. Before joining Georgia Tech, Colin
Potts worked at Imperial College, London and the Microelectronics and
Computer Technology Corporation. He has a PhD in psychology from
Sheffield University.

as Program Chair of major conferences in his field, including ASE’98,

Contents

Part 1 Introduction ..1

1 What is Rationale and Why Does It Matter?3
1.1 Introduction ..3

1.1.1 The Scope and Value of Rationale in Software Engineering3
1.1.2 Objectives of This Chapter ..5

1.2 A Rough Sketch of Research on Rationale.......................................5
1.2.1 Argumentative Approaches to Rationale...................................5
1.2.2 Rationale Methods That Go Beyond Argumentation12

1.3 Why Rationale Matters ...13
1.3.1 The Usefulness of Rationale for Artifact Creation13
1.3.2 The Usefulness of Rationale for Software Engineering16

1.4 Summary and Conclusions ...22

2 What Makes Software Different..25
2.1 Introduction ..25

2.1.1 Rationale for Software Artifacts versus Rationale for
Physical Artifacts..25
2.1.2 Objectives of This Chapter ..26

2.2 The Roles of the Computer...26
2.2.1 Comparison of the Roles of the Computer in the Lifecycles
of Physical and Software Artifacts ...27
2.2.2 The Significance for Rationale Management in Software
Engineering...28

2.3 Iteration in Development ..32
2.3.1 The Role of Iteration in Different Types of Development32
2.3.2 Implications of Iteration for Rationale Management in
Software Engineering ...33

2.4 Summary and Conclusion...35

3 Rationale and Software Engineering ..37
3.1 Introduction ..37

3.1.1 Software Engineering ..37
3.1.2 Software Engineering Rationale ..38

3.1.3 Objectives of This Chapter ..38
3.2 Rationale and the Software Process...38

3.2.1 Software Process Definition and Implementation38
3.2.2 Rationale and SE Process Decision-Making39

3.3 Rationale and Project Management ..41
3.4 Rationale and Software Development ..43

3.4.1 Why Capture Software Engineering Rationale?......................43
3.4.2 What are the Uses of Software Engineering Rationale?..........44
3.4.3 When can Software Engineering Rationale be Used in
Software Development? ...45
3.4.4 How Can We Support Software Engineering Rationale Use
in Software Development? ...47

3.5 Summary and Conclusions ...47

4 Learning from Rationale Research in Other Domains......................49
4.1 Introduction ..49

4.1.1 Research on Rationale in other Domains.................................49
4.1.2 Objectives of This Chapter ..50

4.2 Domain-Oriented Design Environments Using PHI50
4.2.1 PHIDIAS and JANUS ...50
4.2.2 Discussion..53

4.3 Automating the Capture of Design Rationale with CAD55
4.3.1 The Rationale Capture Problem ..55
4.3.2 Solution Approach: Automating the Capture of Rationale......56
4.3.3 Implementation: The Rationale Construction Framework57
4.3.4 Discussion..58

4.4 Parameter Dependency Networks as Design Rationale..................59
4.4.1 The DRIVE System and Parameter Dependency Networks....59
4.4.2 Discussion..60

4.5 Case-Based Reasoning as Design Rationale...................................61
4.5.1. From Automated Case-Based Reasoning to Case-Based
Design Aids ..61
4.5.2 Discussion..64

4.6 Summary and Conclusions ...66

5 Decision-Making in Software Engineering...67
5.1 Introduction ..67

5.1.1 General ..67
5.1.1 Objectives of this Chapter ...67

5.2 Decision-Making Problems ..68
5.2.1 Where Decisions Go Wrong..68
5.2.2 Poor Decisions in Software ...69

xxvi Contents

5.3 Naturalistic Decision-Making...71
5.3.1 Background..71
5.3.2 The Recognition-Primed Decision Model72

5.4 Rationale as a Resource for Decision-Making73
5.4.1 Classical Decision-Making..74
5.4.2 Naturalistic Decision-making ..75

5.5 Summary and Conclusions ...76

Part 2 Uses for Rationale...77

6 Presentation of Rationale ...79
6.1 Introduction ..79

6.1.1 General ..79
6.1.2 Objectives of This Chapter ..79

6.2 Codifying Rationale Semiformally...80
6.2.1 The rationale for rationale notations..80
6.2.2 Hypermedia Presentations of Rationale...................................81
6.2.3 Using Semiformal Rationales..82

6.3 Codifying Rationale Informally..83
6.4 Directions..85

6.4.1 Reusable Rationale Databases ...86
6.4.2 Multi-Scale Presentations of Rationale87
6.4.3 Integrated Presentation ..87

6.5 Summary and Conclusions ...89

7 Evaluation..91
7.1 Introduction ..91

7.1.1 Argumentation-Based Rationale..91
7.1.2 Scenario-Based Rationale..93
7.1.3 Objectives of This Chapter ..93

7.2 Evaluating the Rationale...94
7.2.1 Completeness...94
7.2.2 Correctness ..95

7.3 Evaluating the Decisions ..96
7.3.1 Comparing Alternatives...96
7.3.2 Combining Inputs from Multiple Developers..........................97
7.3.3 Handling Uncertainty ..98

7.4 Scenario-Based Evaluation...100
7.5 Summary and Conclusions ...101

8 Support for Collaboration..103
8.1 Introduction .. 103

Contents xxvii

8.1.1 General .. 103
8.1.2 Objectives of This Chapter ..103

8.2 Software Development as Collaborative Work104
8.2.1 Collaboration Is Inescapable ...104
8.2.2 Collaboration Entrains Challenges ..105

8.3 Collaboration Supports Rationale...106
8.3.1 Collaboration Externalizes Rationales...................................107
8.3.2 Software Development Communities of Practice..................108

8.4 Rationale Supports Collaboration...110
8.4.1 Awareness..110
8.4.2 Coordination .. 111

8.5 Summary and Conclusions ...112

9 Change Analysis..113
9.1 Introduction .. 113

9.1.1 Issues with Change in Software Development113
9.1.2 Objectives of This Chapter ..115

9.2 Types of Software Changes .. 115
9.2.1 Functional Requirement Change ...116
9.2.2 Nonfunctional Requirement Change117
9.2.3 Changing Assumptions..118
9.2.4 Structural Changes...119
9.2.5 Defect Correction ..119

9.3 Change Impact Assessment ..120
9.4 Consistency Management...121
9.5 Summary and Conclusions ...122

Part 3 Rationale and Software Engineering..123

10 Rationale and the Software Lifecycle..125
10.1 Introduction ..125

10.1.1 Software Engineering Process ...125
10.1.2 Objectives of This Chapter ..126

10.2 Development Activities and Rationale126
10.2.1 Project Planning and Management126
10.2.2 Requirements ... 127
10.2.3 Design..127
10.2.4 Implementation..128
10.2.5 Verification and Validation ...128
10.2.6 Maintenance ..129
10.2.7 Retirement ...129

10.3 Software Lifecycle Models...129

xxviii Contents

10.3.1 Sequential Models ...129
10.3.2 Iterative Models...131
10.3.3 Other Models ... 133

10.4. Software Process Improvement ...136
10.4.1 CMM ... 136
10.4.2 Personal Software Process...137

10.5. Summary and Conclusions ..138

11 Rationale and Requirements Engineering......................................139
11.1 Introduction ..139

11.1.1 Requirements Engineering ..139
11.1.2 Objectives of This Chapter ..140

11.2 Obtaining Requirements ...140
11.2.1 Requirements Elicitation ...140
11.2.2 Achieving Consensus ..142
11.2.3 Requirements Inconsistency ..143
11.2.4 Requirements Prioritization...144

11.3 Requirements Traceability..144
11.4 Rationale and Nonfunctional Requirements146

11.4.1 Nonfunctional Requirement Categorization146
11.4.2 The NFR Framework...147
11.4.3 SEURAT Argument Ontology and NFR Prioritization.......148
11.4.4 NFRs and Conflict Representation and Detection...............148

11.5 Goal-Based Requirements Engineering......................................149
11.5.1 Goal-Based Requirements Analysis149
11.5.2 Goal-Oriented Requirements Engineering150
11.5.3 Relationship to Rationale...151

11.6 Adapting to Changing Requirements..152
11.7 Summary and Conclusions ...153

12 Rationale and Software Design..155
12.1 Introduction ..155

12.1.1 The Nature and Importance of Software Design Rationale.156
12.1.2 Objectives of This Chapter ..156

12.2 Relating Rationale Approaches to Software Design Processes ..157
12.2.1 Decision-centric and Usage-centric Rationale Approaches.157
12.2.2 Prescriptive and Descriptive Roles of Rationale
Approaches ... 159
12.2.3 Rationale for Design Space Analysis and Deeper
Reflection ... 164

12.3 Specific Approaches that Integrate Rationale into Software
Design... 167

Contents xxix

12.3.1 Rationale and Software Architecture...................................167
12.3.2 Strategies for Fitting Rationale into Architectural Design
Processes... 172

12.4 Summary and Conclusions ...173

13 Rationale and Software Verification, Validation, and Testing.....175
13.1 Introduction ..175

13.1.1 Verification, Validation, and Testing175
13.1.2 Software Testing Issues ...176
13.1.3 Objectives of This Chapter ..177

13.2 Types of Software VV&T ..177
13.2.1 Inspection ..177
13.2.2 Unit Testing ...178
13.2.3 Integration Testing...179
13.2.4 System Testing ..179

13.3 Rationale Support for Software VV&T......................................180
13.3.1 Rationale and Testability ...180
13.3.2 Rationale and Test Case Prioritization181
13.3.3 Rationale, Testing, and Component Selection.....................182

13.4 Software Testing Rationale...183
13.4.1 Testing Rationale...183
13.4.2 Uses for Testing Rationale ..184

13.5 Summary and Conclusions ...184

14 Rationale and Software Maintenance ...187
14.1 Introduction ..187

14.1.1 Software Maintenance and Evolution..................................187
14.1.2 Objectives of This Chapter ..188

14.2. Types of Software Maintenance ..188
14.3 Improving Maintainability..190

14.3.1 Designing for Maintenance ...190
14.3.2 System Reengineering ...191

14.4 Software Maintenance Support... 193
14.4.1 Maintenance Prediction ...193
14.4.2 Impact Assessment ..193
14.4.3 Program Comprehension ...194
14.4.4 Maintenance Recovery ..196
14.4.5 Maintenance Rationale ..197

14.5 Summary and Conclusions ...198

15 Rationale and Software Reuse ...199
15.1 Introduction ..199

xxx Contents

15.1.1 Software Reuse..199
15.1.2 Objectives of This Chapter ..200

15.2 Reuse: Concepts and Categories...200
15.2.1 Types of Reuse ..200
15.2.2 Types of Rationale for Reuse ..202
15.2.3 Reusable Rationale ..203

15.3 Applying Rationale... 203
15.3.1 Rationale and Patterns ...203
15.3.2 Rationale and Component-Based Software Engineering.....205
15.3.3 Rationale and Software Product Lines206
15.3.4 Rationale and COTS-Based Software Engineering............. 208

15.4. Summary and Conclusions ..209

Part 4 Frameworks for Rationale-Based Software Engineering211

16 A Conceptual Framework..213
16.1 Introduction ..213

16.1.1 What a Conceptual Framework Should Do213
16.1.2 Objectives of This Chapter ..214

16.2 General Goals of Rationale Usage in Software Engineering......214
16.3 Rationale: Types of Approaches, Specific Approaches, and
Methods .. 215
16.4 Decision-centric Rationale in Software Engineering..................216

16.4.1 Decision-Making in Rationale Approaches.........................216
16.4.2 Question Answering in Software Engineering218
16.4.3 Using Decision-centric Rationale in the Full Spectrum of
SER... 223

16.5 Usage-centric Rationale in Software Engineering......................227
16.6 Rationale and Iterative Software Development228

16.6.1 A Rationale-Based Account of Iterative Development 229
16.6.2 Principles for Rationale Approaches to Support Iterative
Development... 230
16.6.3 Supporting Iterative Development by Combining Decision-
centric and Usage-centric Rationale ...234

16.7 Challenges to Rationale Usage ...235
16.7.1 Solving the Capture Problem...235
16.7.2 Solving the Delivery Problem ...238

16.8 Summary and Conclusions ...239

17 An Architectural Framework ..241
17.1 Introduction ..241

Contents xxxi

17.1.1 An Integrative Architecture for Rationale-Based Software
Engineering... 241
17.1.2 Objectives of This Chapter ..242

17.2 The Need for an Integrative Approach to Rationale
Management ... 243

17.2.1 Representing and Integrating All Types of Software
Engineering Rationale ..243
17.2.2 Alleviating the Capture and Delivery Problems..................243

17.3 Framework of an Integrative Architecture for Rationale
Management in Software Engineering ...248

17.3.1 An Overview of the Framework..248
17.3.2 Workings of the Rational Management System249
17.3.3 Integration with External Systems.......................................251

17.4 Summary and Conclusions ...254

18 Rationale-Based Software Engineering: Summary and
Prospect .. 255

18.1 Introduction ..255
18.1.1. Rationale as an Aid to Software Engineering.....................255
18.1.2 Objectives of This Chapter ..256

18.2 Summary of the Book...256
18.3 The Challenges of Future Software Development......................258

18.3.1 Managing Change..258
18.3.2 Managing the Increasing Scale, Complexity, and
Longevity of Software Projects ..258

18.4 The Promise of Rationale-Based Software Engineering 259
18.4.1 Rationale and the Management of Change..........................260
18.4.2 Using Rationale to Manage the Increasing Scale,
Complexity, and Longevity of Software Projects...........................261

18.5 Challenges for Rationale-Based Software Engineering.............. 261
18.5.1 Addressing the Capture Problem...262
18.5.2 Addressing the Delivery Problem..265

18.6. Summary and Conclusions ..266

Bibliography...269

Glossary .. 295

Index.. 311

xxxii Contents

Part 1
Introduction

Rationale research, which has been going on since the 1970s, initially
focused on design rationale – the reasons behind decisions made when
designing. This is an appropriate term in many domains where a physical
artifact is first designed and then manufactured. While there is a phase in
most software engineering (SE) lifecycles that produces a software design
(design as a noun), the act of designing (design as a verb)—making the
decisions that affect that design and how it is realized in the software
system—takes place throughout the software development process. In
order to make this distinction clear, in this book we refer to rationale as
Software Engineering Rationale (SER), as defined in Dutoit et al. (2006b)
and refer its use as a key aspect of the software process as Rationale-Based
Software Engineering (RBSE).

The first step towards RBSE is an understanding of what rationale is and
how it can help us meet the critical challenges that software engineering
faces (Chapter 1). Software is not the same as hardware and these
differences affect both what the rationale is (structure and content) and
how rationale can be used (Chapter 2). These differences provide both
opportunities, such as the ability to directly link rationale to the artifacts
that it describes, and challenges, such as the need to support iteration.

software development process/methodology, management strategy, and
how the software will be verified, validated, and even deployed.

The rationale research described here builds on work that started with
Rittel’s Issue-Based Information system (IBIS) (Kunz and Rittel 1970),
initially applied to urban planning. Those proposing approaches to
applying rationale to SE would be doing their research a disservice by not
learning from the experience of applying rationale to other domains
(Chapter 4). And finally, it is important to understand that decision-
making, in particular human decision-making, lies at the heart of software
engineering and how RBSE supports that process (Chapter 5).

SER can have many roles in supporting software engineering (Chapter 3).
The decisions where rationale should be captured include not only those
occurring during development but also those affecting the choice of

1 What is Rationale and Why Does It Matter?

As the term is used here, rationale is the reasoning underlying the creation
and use of artifacts. Software engineering research on rationale aims to
devise methods and systems for managing rationale throughout the
software engineering process. Managing rationale includes eliciting it,
recording it, indexing it for retrieval, editing it, and retrieving it for those
who need it. Recorded rationale can play a valuable role in every stage of
the software lifecycle and for every participant in that lifecycle. It can help
developers to create better software by enabling them to learn from the
successes and failures of the past. It can facilitate coordination and
collaboration within development teams, aid in identification and analysis
of requirements, as well as design, testing, and maintenance. It can even
help users to understand the systems they use.

1.1 Introduction

1.1.1 The Scope and Value of Rationale in Software
Engineering

As used here, the term rationale denotes the reasoning underlying the
creation and use of artifacts. Rationale research seeks ways of aiding
decision-makers by creating explicit records of this reasoning. Most other
types of research on decision-making, by contrast, seek to create formal,
computational methods for deriving decisions. Rationale research
primarily deals with informal and semiformal, verbal reasoning; but it does
not ignore formal reasoning and computation, both because humans
sometimes use these in reasoning about decisions and because they can
augment human reasoning. While rationale is primarily verbal, various
kinds of graphics can play crucial supporting roles. Not all rationale can be
made explicit. Nevertheless, researchers generally appear to believe even
incomplete records of rationale can improve the quality of artifacts.

4 1 What is Rationale and Why Does It Matter?

To date, almost all research on rationale in various application domains
has dealt solely with design rationale, i.e., the reasoning within the design
process. In fact, the term design rationale is often used as if it were the
only subject of rationale research. But to understand the full meaning and
importance of the term rationale, one must look further. Design is only
part of the larger process of artifact creation, and rationale-based decision-
making is found in every other part of that process. It is found, for
example, in the determination of requirements, the construction of the
artifact, the maintenance of that artifact, and the administration of the
overall creation process.

This chapter and this book deal with the full potential of rationale in
software engineering (SE), i.e., not only in design but in all parts of the
software lifecycle and all aspects of SE. Since the term design rationale
does not encompass the full scope of reasoning about decisions in SE, the
term software engineering rationale (SER) is used here instead. Rationale-
based Software Engineering (RBSE) research investigates concepts,
theories, approaches, methods, and software needed to realize the full
potential of SER to aid SE. The typical approach to realizing this potential
is to create rationale management systems (RMSs), i.e., software that aids
in the elicitation, recording, structuring, indexing, retrieval and distribution
of SER to stakeholders in software projects.

This chapter argues that a rationale-based approach will be essential for
meeting the current and future challenges of SE. Software developers and
maintainers currently find themselves deluged with problems that severely
tax their abilities, and yet the future looks even more challenging. Many
current software projects fail completely, and many others achieve only
partial success. Nevertheless, software projects continue to grow
relentlessly in number, variety, scale, complexity, longevity, and
technological requirements as developers attempt to keep up with
competitors, customer demands and new hardware capabilities.

Software engineers are currently wrestling with the issue of how SE will
need to adapt to meet the challenges of the future. We argue that these
challenges make it crucially important that participants in software projects
understand the reasoning of others involved in such projects. Absence of
such understanding creates the risk of serious errors in requirements,
design, implementation, maintenance, redesign, coordination, and project
management. Achieving such understanding requires the use of software
engineering tools that manage rationale.

1.2 A Rough Sketch of Research on Rationale 5

1.1.2 Objectives of This Chapter

The first objective of this chapter is to explain what rationale is. The second
is to explain how SE will derive crucial benefits from a rationale-based
approach. To explain what rationale is, Section 1.2 provides a rough sketch
of research in rationale. To explain why rationale matters for SE, Section 1.3
begins by looking at ways in which rationale can be useful for artifact
creation in general. It then lists various ways in which rationale can aid
software engineering in particular. It looks at the problems facing future
software engineers and discusses ways in which rationale management can
alleviate these problems. Finally, Section 1.4 summarizes the chapter and
indicates where to find further information on the nature of rationale
research in SE and why it matters.

1.2 A Rough Sketch of Research on Rationale

The general goal of rationale research is to use records of rationale to
improve the processes of creating artifacts of various kinds, including
physical artifacts such as buildings, cities, and machines as well as cognitive
artifacts such as software and governmental policy. To support this goal
rationale research has sought to develop methods and software that enable

• the elicitation of useful rationale from its authors
• the recording of useful rationale
• the structuring and indexing of rationale to aid its retrieval
• retrieval of rationale when it is useful
• delivery of that rationale to those for whom it is useful
• use of the rationale by those people

A good way to get a rough preliminary understanding of subsequent
approaches to rationale management methods is to view them as either
variations on Issue-Based Information Systems (IBIS) (Kunz and Rittel
1970) or fundamental alternatives to it. This implies comparing these
approaches to IBIS. This, of course, pre-requires at least a basic
understanding of IBIS—which is where we shall begin.

1.2.1 Argumentative Approaches to Rationale

Rittel’s pioneering work on design rationale was motivated by his theory
of wicked problems (Rittel and Weber 1972), an idea that has also

6 1 What is Rationale and Why Does It Matter?

influenced SE in other ways (Budgen 2003; De Grace and Stahl 1998;
Fitzpatrick 2003). Rittel saw design problems as wicked in the sense that
they presented fundamental difficulties that could not be overcome using
either strictly scientific methods or purely automated methods such as
those of artificial intelligence and optimization theory (Rittel 1972a).
Instead, they required new types of methods that supported creative human
problem solving (Rittel 1980) by means of what he called an
argumentative approach (Rittel 1972a). In this approach, every step in
problem solving can be seen as part of an inquiry that involves
questioning, proposing ideas, and subjecting them to critical discussion
from the viewpoints of different stakeholders. Rittel devised IBIS to
implement this argumentative approach. A number of other rationale
methods have either modified Rittel’s approach or invented their own
argumentative methods from scratch. Procedural Hierarchy of Issues (PHI)
(McCall 1979b; McCall 1991), Decision Representation Language (DRL)
(Lee 1991), and RATSpeak (Burge and Brown 2004) are examples of the
former. Questions, Options, and Criteria (QOC) (MacLean et al. 1991) and
Scenario-Claims Analysis (SCA) (Carroll and Rosson 1996) are examples
of the latter.

1.2.1.1 IBIS

IBIS structures rationale using a fixed conceptual schema featuring given
element types and given relationships between them. The schema divides
rationale into processes of deciding various issues, stated in the form of
questions. Proposed decision alternatives for an issue are called positions,
and reasoning about the merits of the positions is represented as arguments
for or against (1) the positions or (2) other arguments. The decision taken
on an issue is its resolution. Relationships of various kinds link issues to
each other. Figure 3.1 shows how IBIS could be used to document
preliminary discussion on one issue in a project on creation of a rich
internet application. In addition to dealing with design of system features,
issues in IBIS can deal with any other topic in artifact development that
can be phrased as a question to be answered.

IBIS has most often been used to structure design discussion as it takes
place. But at times it has been used to retrospectively give structure to
free-form design discourse. Sometimes these retrospective descriptions
reflect the actual history (temporal sequence) of the discussion; sometimes
they are idealized accounts that ignore history in favor of a more “logical”
organization of the rationale. The former is called a process-oriented
approach, the latter a structure-oriented approach.

1.2 A Rough Sketch of Research on Rationale 7

Issue: What programming technology should we use to implement
the client for our Rich Internet Application?

Position 1: AJAX (Asynchronous JavaScript and XML)
Arguments on this position:

Against: AJAX still has problems with some older browser
versions.

For: This approach makes good use of W3C standards.
Arguments on this argument:

Against: AJAX makes it difficult to meet the
guidelines of the W3C’s Web
Accessibility Initiative.

Against: Some kinds of AJAX use in-line
frames, which are not part of the
W3C’s XHTML 1.1 recommendation.

Position 2: Flex/Flash (with ActionScript)
Arguments on this position:

For: Flash has more than 98% browser penetration.
For: Flash is almost completely platform independent.
Against: Flash technology is proprietary and thus could change

rapidly in ways that would be detrimental to our
project. Public standards tend to put the brakes on
such rapid change.
Arguments on this argument:

Against: Flash’s enormous installed base
makes it extremely unlikely that it
would change in such a way as to
break existing applications.

Against: The ActionScript Virtual Machine was
donated to the Mozilla Foundation
and is now the basis for the Tamarin
open source project.

Against: Flex is also an open source project.
Position 3: Silverlight

Arguments on this position:
For: Silverlight will work across IE, Firefox and Safari browsers.
For: Silverlight is compatible with AJAX and can make AJAX

development easier through use of the Atlas technology.

Fig. 3.1. Partial discussion of one IBIS issue is shown here in outline format

Certain general features of IBIS are shared by most other argumentative
approaches to rationale. These include the following:

1. Using a fixed conceptual schema of elements and relationships

between pairs of them

8 1 What is Rationale and Why Does It Matter?

2. Dividing rationale into the reasoning about individual decision-
making tasks (called issues in IBIS)

3. Representing decision-making tasks as questions to be answered
4. Proposing decision alternatives for each decision-making task

(called positions in IBIS)
5. Evaluating the proposed decision alternatives by stating and

considering pros and cons of these alternatives (called arguments
on positions in IBIS)

6. Evaluating the evaluations by stating and considering pros and
cons (called arguments on arguments in IBIS)

7. Deciding a decision task by selecting one decision alternative on
the basis of its evaluation

8. Using several relationships to link the separate decision-making
processes (called inter-issue relationships in IBIS)

We will look briefly at a number of other argumentative methods:

• PHI (Procedural Hierarchy of Issues) (McCall 1979b; 1991),
• revisions of IBIS by Potts and Bruns (Potts and Bruns 1988; Potts

1996)
• QOC (Questions, Options, and Criteria) (MacLean et al. 1996)
• DRL (Decision Representation Language) (Lee 1991; Lee and Lai

1996)
• RATSpeak (Burge and Brown 2004)
• Scenario-Claims Analysis (Carroll and Rosson 1996; Carroll

2000)

All except the last of these approaches can usefully be viewed as variations
on some of the ideas introduced by IBIS, though it should be noted that
QOC was not derived from IBIS. Scenario-Claims Analysis represents a
fundamental departure from the other approaches.

1.2.1.2 PHI

PHI is a refinement of IBIS and its main innovation is to show that
frequently the decision on one issue depends on the decisions made on
others. For example, the decision on the issue in Figure 3.1 could depend
on the decision on the issue, “Is it important that our project adhere to
W3C standards?” PHI models rationale as a connected graph of issues
linked by such dependency relationships. This structure tends to be
roughly hierarchical, thus the name Procedural Hierarchy of Issues, and
has a root issue representing the project as a whole. The root issue of the

1.2 A Rough Sketch of Research on Rationale 9

project for Figure 3.1 might be, “What is our web-based CAD system to
be?” Such an issue has three crucial properties: (1) the process of deciding
this issue is the development project in its entirety, (2) the final decision on
this issue is a representation of the final, constructed artifact, and (3) the
decision on this issue depends on the decisions to all the other issues in the
project.

1.2.1.3 Potts and Bruns

Inspired in part by Conklin’s and Begeman’s use of IBIS (Conklin and
Begeman 1988) in their gIBIS hypertext system, Potts and Bruns (1988)
modified IBIS for use in software design. The crucial innovation of their
approach was to include in their schema elements that represented
“intermediate artifacts,” i.e., the various models and documents produced
during design to represent the software being designed. In other words,
their schema was not exclusively a rationale schema, but rather a hybrid
schema containing both rationale and artifact elements. This approach
created design histories in the form of a collection of linked intermediate-
artifact and rationale nodes.

Besides adding intermediate-artifact nodes, Potts and Bruns also made
some modifications to IBIS itself. Instead of having separate argument
elements, they represented all argumentation on a given decision (issue) in
a single justification statement. They also argued that to put IBIS to
practical use in software design, it would have to be tailored to specific
software design methods. They give an example of this that shows how it
could be adapted to work with Liskov and Guttag’s software design
method (1986).

Potts (1996) went on to elaborate the original Potts and Bruns approach
to give a general account of how IBIS-based rationale could be used to
support software methods. In particular, he argued that methods could
themselves be modeled as recurring, method-specific collections of issues
combined with method-specific types of intermediate-artifact nodes. He
supported this argument by providing accounts of how three specific
software methods could be represented in this manner.

The Potts and Bruns approach was to inspire the creation of DRL (Lee
1990), which in turn inspired the creation of RATSpeak (Burge and Brown
2004). Many SE-specific approaches to rationale also adopt the idea
originated by Potts and Bruns of using hybrid artifact-rationale schemas
(see Chapter 12: Rationale and Software Design), and a number of the
recommendations of this book center on this idea as well (See, for
example, Chapter 17: An Architectural Framework).

10 1 What is Rationale and Why Does It Matter?

1.2.1.4 QOC

Like IBIS, QOC centers on decision tasks that are represented as questions
and evaluates proposed decision alternatives, called options. QOC, however,
only deals with “design space” questions, i.e., those that determine features
of the designed artifact. Thus, there are many issues that IBIS and PHI can
deal with but that QOC does not attempt to deal with.

QOC’s main innovation is a finer level of granularity of elements in the
evaluation of alternative answers to questions. Instead of an IBIS-type
argument on a proposed alternative, QOC uses a pairing of a criterion and
an evaluation of the alternative with respect to the criterion. This is
especially significant for software engineering, because (1) software
requirements can be represented as criteria and (2) doing so enables the
tracing of requirements to specific features of the artifact. Also significant
is the fact that two other rationale methods discussed in this section,
namely DRL and Scenario-Claims Analysis, have also opted for the QOC
style of evaluation rather than the IBIS style. QOC and DRL do, however,
allow IBIS-type arguments for and against the criterion-based evaluations.

The authors of QOC do not use the method to model rationale as it is
being generated and do not attempt to structure designers’ thought
processes using the QOC schema. Instead, they use the method merely for
retrospective documentation of design rationale. In other words, they use a
structure-oriented rather than a process-oriented approach.

1.2.1.5 DRL

DRL revises and extends the approach of Potts and Bruns (1988). DRL’s
schema corresponds roughly to a superset of QOC’s that also has
dependency relationships between elements, including some derived from
PHI. DRL has a finer-grained schema than other approaches and is thus
more “expressive.” While it does not always represent decision tasks as
questions, DRL uses a semantically equivalent form. Examples of DRL in
the literature deal only with the “design space” decisions like QOC, but it
seems in principle that DRL could be applied to the larger range of
decision tasks dealt with by IBIS.

In devising DRL Lee objected to the Potts and Bruns approach of
merging the many arguments of IBIS into a single “justification”
statement. But Lee also abandoned the argument category in favor of one
called claims. At first, a claim appears to be a single sentence rather than
the multi-sentence, multi-premise syllogism that the laws of logic require
an argument to be. This might give the erroneous impression that
arguments are being broken into their constituent premises (claims). In

1.2 A Rough Sketch of Research on Rationale 11

reality, however, the DRL claims that are used to evaluate other claims are
enthememes, that is, multi-premised arguments in which all but one of the
premises are left unstated because their existence is clear from common
sense. In other words, such claims are really just an elliptical form of
argument in which only one of the premises is stated. In fact, enthememes
are common in all argumentative discussion, regardless of which rationale
schema is used. The problem with replacing the argument category with
the claim category is that it is not at all clear that all arguments can be
stated as enthymemes.

1.2.1.6 RATSpeak

Burge and Brown (2006) describe RATSpeak as an extension of DRL that is
designed to make it more suitable for use in software engineering. But some
of the RATSpeak revisions make it more like IBIS. In particular, it reinstates
arguments as elements of the rationale schema in addition to claims.

RATSpeak introduces a number of new categories of elements into its
schema to enable a greater amount of automated checking and inference-
making than would be possible with DRL. For example, requirements,
assumptions, and background knowledge are introduced as element types.
In addition, it adds an argument ontology consisting of a hierarchy of
argument types tailored to the domain of software engineering. This
ontology is used for automated checking of the rationale for correct form.

RATSpeak contains a crucial innovation in the form of a special type of
argument that describes dependencies between alternatives on different
decision tasks. These arguments enable the description of how adoption of
an alternative on one decision might help or hinder the adoption of an
alternative on a different decision. No other argumentative approach
described here enables the recording of such dependencies between
alternatives—though PHI and DRL can represent dependencies between
decision tasks. This makes RATSpeak especially valuable for change
analysis and iterative approaches to software engineering. It also suggests
that other argumentative schemas are inherently incomplete.

1.2.1.7 Scenario-Claims Analysis

Scenario-Claims Analysis (SCA) is strictly for the design of human–
computer interaction. It uses scenarios of software use to evaluate system
features with respect to users’ goals. Like QOC and DRL, SCA evaluates
features as positive or negative with respect to goals, but unlike other
approaches, it does not represent decision tasks or decision alternatives. It
only represents (1) system features, (2) use-based criteria/goals by which

12 1 What is Rationale and Why Does It Matter?

they are evaluated, and (3) users’ positive or negative evaluations of the
features against those criteria. It does not use deeper levels of
argumentation on these evaluations, but since these goal-based evaluations
are themselves arguments for or against the features, SCA must be counted
as an argumentative approach. SCA is the only rationale method to deal
explicitly with usage scenarios; as such, it is the most user-centered of the
rationale approaches. It is also the only argumentative approach to show
how rationale fits into an iterative process of design. In short, SCA
represents a fundamentally different view of rationale for design.

1.2.2 Rationale Methods That Go Beyond Argumentation

1.2.2.1 Structuring Rationale Using Artifact Structure

One common way of documenting rationale uses the structure of the
designed artifact rather than the structure of an argumentative schema to
organize rationale. In fact, this is simplest and least labor intensive way of
recording rationale (Lee and Lai 1996). In the design of physical artifacts,
this can be done by simply linking textual rationale to a digital model of
the artifact being designed, as has been done by Reeves and Shipman
(1992) and by Domeshek and Kolodner (1996). In software development,
this can be done by linking textual rationale directly to sections of code as
has been done by Schneider (2006). It should be noted that some schema-
based software systems for argumentative rationale, such as SEURAT
(Software Engineering Using RATionale) (Burge and Brown 2004), also
make it possible to link rationale directly to the artifact, which in the case
of SEURAT is the source code. This shows that there is no inherent
conflict in structuring an rationale both around its argumentative structure
and the structure of the artifact.

1.2.2.2 Problem-Based Evaluation

Lewis, Riemann, and Bell (1996) present a novel approach for evaluating
alternative features of an artifact. They describe their own software design

proposals for a programming environment they were designing. They
evaluate a design proposal by looking at how well it could be used to solve
the problems in the suite. Their work suggests that argumentation may not
be the only, or even the best, means of evaluating alternatives in all cases.
This challenges the sufficiency of the argumentative approaches that
currently dominate rationale research. While the notion of problem-based

process as using a suite of problems for conceptual testing of different

1.3 Why Rationale Matters 13

evaluation suggests an interesting direction for future work on rationale in
software design, it does not yet constitute a generally applicable rationale
method.

1.2.2.3 Generative Rationale

Gruber and Russell (1996) argue that argumentative schemas prejudge
what information will be needed later by software engineers. No advance
collection of rationale, they claim, could answer all of the questions that
might later be raised about the rationale for an artifact. Rather than having
designers create highly detailed models of their rationale, they argue that it
would be better to collect engineering data and models during the project
and then later use these to deduce the rationale behind the artifact in
response to questions that arise about it. This claim constitutes an
interesting hypothesis about possible future approaches to rationale for
software development; but, as is the case with the above-described
problem-based evaluation, it does not yet constitute a generally applicable
rationale method.

In the end, then, it is primarily to the argumentative approaches that we
must look for viable approaches to documenting design rationale. The one
nonargumentative approach that is viable is that in which rationale is
structured according to the structure of the artifact being designed, e.g., the
software. Typically, this means that pieces of the rationale that discuss a
part of the artifact are associated with that part of the artifact in some way.
There are several ways in which this can be done. One is by linking parts
of the rationale to corresponding parts in a model of the artifact. Another
way to do this in software development is to link parts of the rationale to
parts of the artifact itself, i.e., either in the source code or the runtime
(compiled/interpreted) code.

1.3 Why Rationale Matters

Rationale matters because it is useful for artifact creation in general and
for software engineering in particular. We will first look at the former and
then at the latter.

1.3.1 The Usefulness of Rationale for Artifact Creation

There are two ways in which rationale documentation methods can be
useful for artifact creation. The first and most basic is by providing a

14 1 What is Rationale and Why Does It Matter?

record of the reasoning associated with decision-making. The second is by
actively shaping the process of reasoning about decisions. The following
sections look at each of these in turn.

1.3.1.1 The Usefulness of Rationale as a Record of Decision-Making

There are two respects in which a record of the reasoning in decision-
making can be useful. One is by serving as a memory aid for those who
participated in the decision-making. The other is by informing those who
did not participate but are affected by the decisions.

Rationale as a memory aid. For those who participate in making given
decisions, having records is important because of a tendency to forget what
was decided and why. Correctly remembering all the rationale for the
decisions in a project is generally more than any individual can do. This is
especially true in large and complex projects, in which hundreds or even
thousands of decisions are made.

Documented rationale also provides a crucial resource in case decisions
need to be revisited. This often happens when, after decisions have already
been made, they are discovered to have undesirable consequences. It can
also happen when new features need to be added to an artifact, or when the
artifact needs to be redesigned. On the other hand, documented rationale
can prevent decisions from being pointlessly revisited, which can happen
when the rationale for them is forgotten.

Sometimes artifact creators find themselves facing decision tasks similar
to ones in prior projects they have worked on. In such cases, they often
feel that it would be useful to know how they arrived at those previous
decisions. Unfortunately, they also often find that they cannot precisely
recall their own prior rationale. Documented rationale serves as a valuable
memory aid in these cases as well.

Rationale as information for other stakeholders. Documenting rationale
for decisions can also help people who do not participate in making those
decisions but who nevertheless have a stake in what is decided. Such
stakeholders include those who must implement the decisions, those who
need to coordinate their own decision-making with the given decisions and
those who manage the processes of artifact development and maintenance.
The rationale for a given decision typically indicates what the goals and
evaluation criteria of the decision-makers are; this information enables
others participating in development or maintenance to make sure their own
efforts do not conflict with those goals and criteria.

One important use of rationale as information exists when people join or
leave a decision-making team. There is a tendency for new team members

1.3 Why Rationale Matters 15

to challenge decisions made before they arrived. This can be unnecessarily
disruptive if the new team members base their challenges on ignorance of
the rationale for decisions. It is therefore useful to require new team
members to examine the documented rationale for decisions before
challenging them. And when people have left a project, it is no longer
possible to ask them about their rationale for past decisions, so having
documentation of their rationale becomes crucial.

1.3.1.2 The Usefulness of Rationale as an Aid to Decision-Making

In addition to the value of simply recording it, rationale can be useful by
aiding decision-making. There are two, mutually compatible approaches to
doing this. One is by providing information that helps people to make
better decisions. Since this information aids decision-making, it is by
definition rationale. The goal of this first approach might be described as
informed decision-making. The information used to aid design might come
from feedforward from earlier decisions or feedback from later decisions,
implementation, or use of the artifact. It might also come from previous
projects.

The second approach to aiding decision-making is to prescribe the
process by which the reasoning about decisions proceeds. This is typically
done in an effort to make rationale more thorough, consistent, or carefully
argued. The goal of this approach might be described as well-reasoned
decision-making. Typical procedural prescriptions include making sure
that alternatives are considered for every issue, that all such alternatives
are evaluated by the relevant criteria, that the arguments both for and
against the alternatives are considered, and that the argumentation is
representative of the full range of stakeholders.

1.3.1.3 The Descriptive and Prescriptive Roles of Rationale

With respect to any given decision or set of decisions a rationale approach
can play a purely descriptive role, a purely prescriptive role or a combined
prescriptive–descriptive role. In a purely descriptive role, a rationale
approach merely seeks to record the reasoning of decision-makers and
does not seek to influence that reasoning or the decisions made. When
used in this way with respect to some decision-making tasks a rationale
approach typically seeks to improve other types of decision-making tasks.
For example, it is common to find approaches that seek to record the
rationale of designers not to influence the design but to influence
construction, maintenance or project management.

16 1 What is Rationale and Why Does It Matter?

When a rationale approach seeks to influence a given type of activity,
such as requirements determination or project management, then it is, by
definition, prescriptive with respect to that activity. As a consequence,
rationale approaches are generally prescriptive with respect to one or more
such activities.

A rationale approach would be purely prescriptive with respect to a
given set of decisions if it only sought to improve the reasoning of the
associated decision-makers without keeping records of their reasoning. For
example, QOC records design rationale as a way of improving the
decision-making in software construction, yet it does not record the
reasoning of software architects or programmers who do the decision-
making about construction. QOC is thus purely prescriptive with respect to
the decision-making in construction. Similarly, Scenario-Claims Analysis
uses the rationale of users to inform the design of human–computer
interaction (HCI) but does not record the reasoning of those who design
this interaction. It thus plays a purely prescriptive role with respect to HCI
decision-making.

A rationale approach is both prescriptive and descriptive with respect to
decisions when it seeks both to influence the reasoning of the associated
decision-makers and to record their reasoning. IBIS, for example, is often
used as a procedure for running design meetings to make sure decision-
makers look at a wider range of decision alternatives (positions) and wider
range of arguments both for and against the proposed alternatives. Having
elicited this wider range of rationale, IBIS makes sure that it is
documented so that it is not lost. When used in this manner IBIS is
prescriptive–descriptive with respect to design decisions.

It should also be pointed out that a rationale approach might start out
merely as a way of describing the rationale for a given set of decisions—
such as design decisions—then later become prescriptive with respect to
that same set of decisions by serving as a memory aid for the decision-
makers—i.e., the designers.

1.3.2 The Usefulness of Rationale for Software Engineering

1.3.2.1 Possible Uses of Rationale in Software Engineering

One way to quickly get an idea of the value of rationale for software
engineering is to look at the range of its possible uses. The outline shown
below is by no means complete, but it gives an idea of this range.

1.3 Why Rationale Matters 17

Uses of Rationale in Software Engineering:
• Supporting requirements engineering

1. Supporting identification of requirements
2. Supporting explanation/evaluation of requirements
3. Supporting revision of existing requirements

a. By providing feedback from design, implementation,
and use

4. Supporting addition of new requirements
a. By providing feedback from design, implementation,

and use
5. Helping requirements engineers make better decisions by

informing those decisions and improving the reasoning
underlying them

a. By providing records of the decisions and reasoning
about requirements from past projects

• Supporting design
1. Providing traceability of requirements to design decisions and

vice versa
2. Helping designers make better decisions by informing those

decisions and improving the reasoning underlying them
a. By providing feedback from implementation,

maintenance, and use to validate requirements
b. By providing rationale behind design patterns
c. By providing records of the design decisions and

reasoning from past projects
• Supporting implementation of software

1. Providing traceability of requirements and design decisions to
implementation decisions and vice versa

2. Helping implementers make better decisions by informing those
decisions and improving the reasoning underlying them

a. By providing rationale for implementation patterns
b. By providing records of the implementation decisions

and reasoning from past projects
• Supporting software maintenance

1. Helping maintainers to make better decisions by informing
those decisions and improving the reasoning underlying them

a. By helping maintainers to understand the rationale for
the requirements of users, the decisions of designers,
and the implementation decisions of programmers

b. By providing feedback from the use of the software to
make it clear when maintenance is needed

18 1 What is Rationale and Why Does It Matter?

c. By providing historical records of the rationale for
maintenance decisions

• Supporting project management
1. Making it possible for managers to understand when decisions

are being made by various participants in the software project,
why those decisions are being made, and who is likely to be
affected by those decisions

2. Helping project managers to make better decisions by informing
those decisions and improving the reasoning underlying them

a. By providing historical records of the rationale for
management decisions

b. By providing records of the rationale for management
of past projects

• Supporting use
1. Providing rationale as explanations of the functioning of

complex software systems
• Supporting the work of groups

1. Using rationale as a vehicle for communication amongst
different kinds of experts and stakeholders in a project

2. Exposing differing points of view amongst stakeholders
3. Facilitating participation of stakeholders and collaboration

among team members by making the decision-making process
“transparent” and open to inspection

4. Making it clear when the decisions of a given group of people
supports or interferes with the decisions of others

5. Building consensus
a. By providing greater transparency—nobody is hiding

anything
b. By exposing conflicting points of view early in the

process so that they can be negotiated
c. By revealing areas of agreement, so that they can serve

as starting points for building consensus
• Supporting change

1. Helping to detect when change is needed
a. By providing a record of assumptions that could

become invalid in the future, including assumptions
about facts, requirements, means, constraints, and
evaluation criteria

b. By providing feedback that shows when decisions have
produced unforeseen consequences that in turn suggest
revisiting and revising decisions

1.3 Why Rationale Matters 19

c. By providing information from users that indicate new
or newly discovered requirements

2. Helping to cope with current changes and to prepare for future
changes

a. By showing the network of dependencies among
decisions that indicate how the effects of a given design
change can ripple through the design of the software

b. By showing which team members’ work will be
affected by changes

c. By showing the goals and evaluation criteria for the
current version of the software, and thus indicating
goals and criteria that a redesigned system should also
satisfy

d. By providing a record of decision alternatives and their
evaluations to facilitate the redesign of the system

3. Supporting the management of change, by showing its effects
on the work of individuals and groups as well as on the
expenditure of time and money

• Supporting software reuse
1. Providing explanations for what code is designed to achieve as

well as why it is designed and implemented the way it is
• Supporting knowledge transfer

1. Enabling learning from the successes, failures, and ideas of past
software projects

2. Validating designs
3. Collecting, organizing, and delivering reusable knowledge for

development and maintenance
4. Supporting training and education
5. Supporting research on real-world software engineering projects

1.3.2.2 Rationale and the Future of Software Engineering

To understand why rationale matters for SE, it is not enough to know the
range of its possible SE applications. It is also crucial to know the value of
these applications in view of the profound challenges now facing the SE
field.

The challenges that software engineering faces. The current state of
software development is not good. Developers have been unable to keep
up with the dramatic progress in hardware resulting from Moore’s Law
and the spread of the Internet throughout the world and into every aspect
of people’s lives. It is not enough to urge software developers to do a

20 1 What is Rationale and Why Does It Matter?

better job, because they already find themselves coping with difficulties
that tax their abilities severely.

Unfortunately, current trends indicate that the future will be even more
challenging. Software progress will increasingly lag behind hardware
progress. As developers scramble to keep up with new technologies, rising
customer expectations, and aggressive competitors, they will find that the
development tasks they face are getting progressively more difficult.
Software projects will continue to grow relentlessly in number, variety,
scale, complexity, and longevity. This will make coping with any given
amount of change increasingly difficult, but it will also dramatically
increase the amount of change that must be coped with.

The issue of the increasing longevity of systems by itself represents in a
microcosm the future difficulties awaiting developers. This increasing
longevity results from the initial success of software systems. Successful
systems stay on the market and go through version after version. This long
life of systems creates a host of problems. As systems get older they tend
to increase in functionality, driven by the pressure of new hardware
capabilities, increases in user expectations for functionality, and the need
to keep up with competitors. Additional functionality increases the size
and complexity of systems, thus making it progressively more difficult to
maintain the systems and add new features without breaking existing
functionality or angering the installed bases of users who are used to
previous versions. Typically, systems grow in this incremental manner
until further growth becomes too difficult, at which point the systems are
comprehensively redesigned and reimplemented.

The picture that emerges is one in which software goes through many
cycles of redesign and reimplementation over the many years of its life.
Each such cycle creates the dangers that (1) good ideas in the system’s
design and implementation will be lost and that (2) hard-won lessons about
how not to design and implement the system will be forgotten. Predicted
future increases in software scale and complexity increase these dangers
dramatically.

In addition to the above-listed problems, Patterson (2005) has argued
that future creators of software face additional challenges due to the legacy
of a 20th century value system that is profoundly unsuited to 21st century
software development. In the 20th century the priorities were faster and
cheaper computers and communication. These priorities generated the
current problems of lack of security, privacy, and reliability. Of course,
cheaper software only meant cheaper to purchase, not cheaper to install,
operate, and maintain. Adding to these problems is the fact that the
increased speed and capacity of systems was used almost exclusively to
add features to software rather than make it easier to use. Patterson

1.3 Why Rationale Matters 21

therefore calls for 21st century developers to abandon their 20th century
values of cost and performance and in favor of what he calls the “SPUR”
challenges: security, privacy, usability, and reliability.

But the SPUR challenges are not the only problem. Patterson points out
that there are many other crucial challenges facing 21st century developers.
He lists two important examples:

• Extending web search to all information, including multimedia

information, and to all people, including those outside the first world
• Adapting software, including operating systems, programming

languages, databases, and applications, to massively parallel
microprocessors.

The upshot of the various challenges that Patterson identifies is the
necessity for fundamental redesign of almost all the software currently in
use, as well as redesign of the software engineering process itself to
support the new priorities of 21st century software.

How rationale can help in meeting these challenges. Software
engineering appears to be headed into a future characterized by incessant
change and repeated redesign of software systems that have grown greatly
in scale and complexity. Change and redesign invariably create the risk of
side-effects that damage the quality of a system, as for example, when
existing good features become lost or broken. But such unintended and
undesirable side-effects can be much more easily avoided if those making
changes to the system understand the rationale underlying the systems
they are changing. The justifications for existing features help redesigners
and maintainers to understand what aspects of a system need to remain
constant and how a system can change while still achieving the goals of
previous versions.

When development teams are small and when the history of the
software is short, there might appear to be little need for documentation of
the rationale behind the decisions that went into its creation. Those who
change the systems are likely to be the same people who created it to begin
with. In such cases, the rationale underlying the system can be accessed
through memory and informal communication with other project
participants.

But when software is older, larger, and more complex, the need for
documentation of rationale is more obvious, because it becomes difficult
or impossible to know all the system rationale without documentation. The
people doing redesign, reimplementation, and maintenance are unlikely to
be members of the original development team. Without documentation of

22 1 What is Rationale and Why Does It Matter?

rationale, the current developers and maintainers have little or no access to
the rationale of those who worked on the system previously. Without
knowledge of this rationale, the chances are great that redesign and re-
implementation will result in serious errors and that attempted
improvements will actually degrade the system.

Future software developers and maintainers will be greatly aided in their
work if they have an understanding of the rationale behind the systems
they seek to improve. Tools that provide this understanding must be
integrated into the environments that software engineers use to create and
maintain software. In particular, these tools must be capable of managing
and delivering relevant rationale to software engineers when and where
they need it. A central goal of rationale research in SE is to create tools
that enable the use of rationale throughout the SE process and thus make
possible a rationale-based approach to software engineering.

1.4 Summary and Conclusions

Rationale research studies the reasoning underlying the creation and use of
artifacts. It seeks ways of aiding decision-makers by creating, storing, and
retrieving explicit records of this reasoning. While this research has until
recently focused almost exclusively on rationale for design, attention has
begun to shift to the many other parts of the artifact lifecycle where
rationale-based decision-making plays crucial roles. To understand fully
what rationale is and why it matters, it is necessary to understand all of
these roles.

Starting with Rittel’s IBIS (Kunz and Rittel 1970), the dominant theme
in rationale research has been modeling the argumentative structure of
rationale. Almost all argumentative approaches—including IBIS, PHI, the
Potts–Bruns approach, QOC, DRL, and RATSpeak—have modeled the
evaluation by decision-makers of decision alternatives using
argumentation. Scenario-Claim Analysis has been unique in modeling the
evaluation by users of features of designed artifacts during scenarios of
artifact use. More detailed treatments of these and many other approaches
are found in other chapters of this book. In addition, a detailed overview of
current research on rationale in software engineering can be found in the
book, Rationale Management in Software Engineering (Dutoit, McCall,
Mistrik, and Paech eds. 2006a).

Rationale matters for SE, first of all, because it has a wide spectrum of
uses to aid decision-making and other activities throughout the software
lifecycle. But in addition, rationale matters because the ways in which it

1.4 Summary and Conclusions 23

aids SE have great value in meeting the profound challenges that are
facing the future of software engineering. In particular, rationale is
especially useful for dealing with large-scale high-functionality software
projects characterized by constant change and repeated redesign.

2 What Makes Software Different

Research on rationale in software engineering was originally inspired by
research on rationale for the design of physical artifacts. While there is still
much that software engineering can learn from the latter, it is important to
recognize that the process of software development differs in crucial ways
from the processes of developing physical artifacts. These differences have
important consequences for the successful implementation of rationale
management. One consequence is that software development has unique
and urgent problems that rationale management can do much to solve.
Another is that the ways in which software differs from a physical artifact
provide unique advantages for implementing rationale management in
software engineering.

2.1 Introduction

2.1.1 Rationale for Software Artifacts versus Rationale for
Physical Artifacts

Rationale research and applications have been conducted not only in
software engineering (SE), but also in a variety of other fields, including
mechanical engineering, civil engineering, architecture (building design),
architectural engineering, urban design, city planning, and policy making.
Almost all of these fields deal with the creation of physical artifacts, such
as machines, bridges, buildings, and cities.

Research on rationale for decision-making began in architecture
(building design) and urban planning with Rittel’s work on IBIS (Kunz
and Rittel 1970). The initial adoption of this work for use in software
engineering (Conklin and Begeman 1988; Potts and Bruns 1988) was
based on the notion that there are crucial commonalities between the
processes of creating software and the processes of creating physical
artifacts like buildings and cities. This notion derives some additional
plausibility from the fact that design patterns (Gamma et al. 1995), which

26 2 What Makes Software Different

have found such widespread acceptance in SE, were also originally
invented for use in creating buildings and cities (Alexander et al. 1977). In
Chapter 4 we discuss what software engineering can still learn from work
on rationale for physical artifacts. In the current chapter, however, we
concentrate on the differences between the task of devising effective
rationale management for SE and the comparable task in physical artifact
development. In particular, we argue that these differences are crucial for
the success of rationale-based software engineering for two reasons. One is
that software engineering has unique problems that can be alleviated with
rationale management. The other is that it also has unique advantages that
aid the implementation of rationale management.

2.1.2 Objectives of This Chapter

The central objective of the chapter is to point out important differences
between software development and the development of physical artifacts,
i.e., differences that have crucial significance for making rationale
management a practical reality in software development. Section 2.2
describes the special roles of the computer in software engineering and
how these create unique opportunities for effective rationale management
in software development. Section 2.3 looks at the role of iteration in
software development and how this differs decisively from its role in the
development of most physical artifacts. This difference creates
opportunities for rationale management in software development but it also
calls for approaches to rationale management that go beyond those created
for physical artifacts. Finally, Section 2.4 summarizes the ways in which
software development is different and the significance of this fact for
rationale-based software engineering.

2.2 The Roles of the Computer

Where the activities of an artifact’s lifecycle involve using computers, it
becomes possible to employ rationale management software to greatly
facilitate the capture, editing, structuring and retrieval of rationale. This is
especially true when rationale management functionality is integrated into
software used in decision-making, such as CAD systems (Fischer et al.
1996), CASE systems (Oinas-Kukkonen 1988), and programming IDEs
(Burge and Brown 2004) as well as systems for computer-supported
collaborative work (McCall and Johnson 1997). There appears to be a
broad consensus that without software support rationale management is

2.2 The Roles of the Computer 27

generally infeasible except for very small projects. As a consequence, in
complex, real-world projects the question of whether a lifecycle activity is
computer supported becomes decisive for determining the viability of
rationale management in conjunction with that activity. The sections that
follow argue that in this respect SE has dramatic advantages over fields
that aim to create physical artifacts.

2.2.1 Comparison of the Roles of the Computer in the
Lifecycles of Physical and Software Artifacts

The development processes for physical and software artifacts have a
number of important similarities. Both involve the identification and
analysis of requirements as well as design processes that center on the
creation of models of the artifact being developed. In both domains, the
computer has gained an increasingly important role in supporting design
and requirement-related processes, and it is plausible in both cases that in
the future all aspects of these processes might come to be computer
supported.

In those aspects of the artifact lifecycle that are not related to
requirements or design there are profound differences between the roles of
the computer with respect to software and physical artifacts. These
differences derive from the simple fact that physical artifacts do not
require computers for their existence while software artifacts do. Though
computers can in certain cases play a role in the construction of physical
artifacts, as with computer-aided design computer-aided manufacturing
(CAD-CAM), computers are not necessary for the construction of most
physical artifacts. Furthermore, they are never sufficient for the
construction of any physical artifacts because non-digital, physical means
must always be employed. Functioning software artifacts, however, cannot
be constructed without the use of computers. In fact, the use of computers
is both necessary and sufficient for the construction of software. We might
write code using pencil and paper, but this code does not become software
until it can be used by computers.

The role of the computer also differs in the use of physical and software
artifacts. There do exist some computer-mediated ways of using physical
artifacts, such as by means of telerobotic systems that move around or
through physical artifacts and make it possible for human users to
manipulate them. However, using artifacts in this computer-mediated way
is, of course, rare. Almost invariably, the use of physical objects is by
purely non-digital, physical means. Software artifacts, by contrast, can
only be used through the use of computers.

28 2 What Makes Software Different

The differences in construction and use in turn imply differences in the
roles of computers in maintenance and testing. After all, maintenance
involves construction, and testing involves at least simulated use.
Maintenance of physical objects necessarily involves physical means, and
in fact the use of computers in testing and maintenance of physical
artifacts is still relatively uncommon and seems likely to remain so for
many years to come. With software, however, neither maintenance nor
testing of constructed artifacts is possible, or even conceivable, without the
use of computers. The result is that the computer is invariably much more
heavily used in the maintenance and testing of software than in the
maintenance and testing of physical artifacts.

In summary, when it comes to the construction, testing, maintenance,
and use of artifacts, there is a profound difference between the roles that
computers play with respect to physical artifacts and software artifacts.
Computers are ubiquitous in these aspects of the software lifecycle, yet
they are rarely used in these aspects of the lifecycle of physical artifacts. If
this ubiquity is combined with the increasing role of computers in software
requirements engineering and design, we see that the computer will
eventually be ubiquitous in all aspects of the software lifecycle, i.e., in all
aspects of SE.

The intent here is not to downplay or to diminish the importance of the
computer in the development of physical artifacts, but merely to point out
that the role of the computer in the software lifecycle goes substantially
beyond the role of the computer in the lifecycle of physical artifacts.
Software differs from physical artifacts in having the computer as a
common medium for every aspect of its creation and existence, including
design, implementation, testing, use, and maintenance.

2.2.2 The Significance for Rationale Management in Software
Engineering

2.2.2.1 General Implications for Support of Software Engineering
Rationale

The differences between the roles of computers in the respective lifecycles
of physical and software artifacts have crucial implications for support of
rationale. The greater role of computers in the construction, testing, use,
and maintenance of software means that there are greater possibilities of
using rationale in these activities. In other words, SE has the potential for
using rationale in more lifecycle activities than do fields that specialize in

2.2 The Roles of the Computer 29

the development of physical artifacts. This potential has two parts: many
more places where rationale can be captured and many more places where
it can be used to improve the artifact creation process.

The ubiquity of the computer in the software lifecycle has important
implications for rationale-based software engineering, though research on
some of these implications is still in its early stages. One such implication
is the potential for extending rationale research beyond the current focus
on design and requirements engineering to other activities in the software
lifecycle. Another implication of this ubiquity is the potential for
computer-mediated communication, collaboration, and participation
involving participants in development, maintenance, and use of software.
Such communication provides a rich source for the capture of rationale
(Shipman and McCall 1997) as well as an excellent vehicle for the
delivery of rationale to those who need it. This sort of communication can
provide feedback from construction and use that informs iterative and
incremental approaches to design and requirements engineering. It can also
provide valuable feedforward about requirements and design intent that
informs construction, maintenance, and use.

2.2.2.2 Linking Software Artifacts to Their Rationale

One important consequence of the ubiquity of the computer in the software
lifecycle is that the rationale about some feature or characteristic of the
system can be directly linked to the part of the software that implements that
feature or characteristic. This has a number of implications for rationale
management. One is that the artifact can be used as a way of rapidly
accessing rationale. For example, Burge uses source code in the Eclipse IDE
to alert programmers to the existence of rationale about individual pieces of
code (Burge and Brown 2004). This is, of course, made possible by
augmenting Eclipse with rationale management functionality. With this sort
of augmented IDE, the artifact can in effect be used as a way of indexing
rationale. Though Burge also uses her RATSpeak schema for structuring
rationale, some, such as Schneider (2006), use linkage of rationale to
software as a substitute for the use of a schema. This has the potential to
eliminate the need for a schema, which in turn has the potential of
dramatically reducing the amount of work required for capture of
rationale—or at least the rationale associated with construction decisions.

Yet another potential value of linking rationale to software is that it
provides a basis for checking whether the decisions about the
requirements, design, and implementation correspond to the as-built state
of the code. Such checking might even be partially or completely
automated. Automated checking would require that the computer be able

30 2 What Makes Software Different

to “understand” the denotation of the textual descriptions of decisions in
the rationale for requirements, design, and implementation.

It might be argued that the linking of the rationale to the artifact is not
really something that makes software development different from the
development of physical artifacts, because with CAD systems, rationale
could be linked to the digital model of the physical artifact. A crucial
difference, however, arises when the artifact is actually constructed and
put into use. A physical artifact has no intrinsic ability to have rationale
linked to it—since the rationale is digital and the artifact is not. Of course,
someone might devise a way of linking rationale to various parts of a
physical artifact—using, RFIDs, bar codes or some as-yet-unknown
technology. The crucial point, however, is that such linking is inherently
much simpler and easier to accomplish with software than with a building
or some other physical artifact.

The relative ease of linking rationale to software artifacts implies that a
person constructing, modifying or reusing software could easily have
access to the rationale behind the design and the requirements as well as
the rationale of others who have worked on the system—and, in fact, to the
rationale of every stakeholder associated with the system’s creation,
revision, and use. Furthermore, if the links to rationale are preserved when
the code is compiled, then even users could have access to rationale for the
software. In fact, Haynes (2006) has advocated and experimented with
using design rationale that is linked to compiled software to explain the
functionality of complex systems to their users.

2.2.2.3 Using Networked Computers to Capture and Retrieve
Stakeholders’ Rationale

The fact that the networked computer is the ubiquitous platform for every
activity in the software lifecycle, including the implementation and use of
the software, means that all the stakeholders for a software project, including
the developers, maintainers, and users, could in principle input their own
rationale at any time and retrieve the rationale created by any and all other
stakeholders at any time. Rationale methods for doing this already exist.
Carroll’s Scenario-Claims Analysis approach is already well suited to
capturing user evaluations of system features in the context of use. And the
decision-centered approaches to argumentative rationale, including IBIS,
PHI, QOC, DRL, and RATSpeak are well suited to documenting the
rationale of the development and maintenance teams. What needs to be done
is to create software systems that can support this full spectrum of rationale
management. This will require a great deal of work, but the potential is
there. No type of physical artifact development offers such potential.

2.2 The Roles of the Computer 31

In fact, if communication amongst the stakeholders is integrated into the
software environments for development, maintenance, and use, such
communication could be automatically captured and used as a basis for the
system’s rationale. This by itself would go a long way towards solving one
crucial part of the capture problem, which has been the main obstacle to
practical use of rationale management—that part being the recording of
substantial amounts of rationale. In fact, in addition to acquiring large
quantities of rationale, this would enable acquiring rationale from the
entire spectrum of stakeholders in the project. The advantages this would
offer for collaboration, coordination, and project management can hardly
be overestimated.

The other part of the capture problem actually has nothing to do with
capture per se. It is the problem of structuring and indexing captured
rationale. Without this, the rationale cannot be effectively retrieved when
needed. This part of the problem might well be solved with the help of the
sort of artifact-based structuring described above.

Implementing a practical system that all stakeholders would actually use
for capturing, structuring, indexing, and retrieving rationale would be an
extremely ambitious task, and one that might be still more complex than
the above description suggests. However, it is possible for software
engineering in a way that simply does not exist for other fields that seek to
aid the development of physical artifacts. This fact alone suggests that
there is more hope for success in creating a truly rationale-based software
engineering than for implementing a rationale-based approach to any field
of physical artifact development.

With physical artifacts, the rationale for their development ultimately
becomes disconnected from that artifact, which means there is a natural
tendency for that rationale to become inaccessible to people who use these
artifacts or try to learn from their development. With software there exists
the possibility for rationale to be permanently bound to the software it
discusses and thus be available to all who have access to the software
regardless of how much time has passed. This would facilitate both the
reuse of the software and the design of similar software in the future.

The permanent connection of software to its rationale would facilitate
learning from previous projects and even the development of cumulative
stores of rationale that are not only added to over many years, but that are
also progressively refined in their detail, completeness, consistency,
organization, and indexing as they mature. This learning would, of course,
be greatly enhanced if the rationale included extensive feedback from
users, so that future developers could judge whether the expectations of the
developers about the quality of the software were matched by the
experiences of the users. Such stores of rationale could serve as

32 2 What Makes Software Different

organizational memories for project teams, companies, and the software
engineering field as a whole.

2.3 Iteration in Development

2.3.1 The Role of Iteration in Different Types of Development

Iteration has historically been the subject of radically different points of
view in software engineering. Early on, many campaigned against it; more
recently, many have campaigned for it under such various labels as
“incremental,” “evolutionary,” “agile” and, of course, “iterative”
development. One does not have to take sides in this controversy to
recognize that iteration is possible in software development to an extent
and in ways not found in the development of most other kinds of artifacts,
especially larger-scale physical artifacts such as buildings and cities. In
fact, it is precisely the manifest possibility of iterative approaches to
software development that has enabled it to be the subject of controversy
amongst software engineers.

Independent of the iterative approaches currently being promoted in SE,
it is clear that iteration, in the sense of repeatedly learning from experience
with constructed systems, is already deeply rooted in conventional
software development. This is especially clear in the cases of commercial
off-the-shelf (COTS) and open-source software. Such products generally
have great longevity and go through many different release versions, each
of which may be preceded by alpha and beta versions. Their development
is characterized many iterations of redesign, recoding and patching, all
informed by feedback from constructers, users and maintainers of previous
versions.

If, however, we look at the role of iteration in the development of large-
scale physical artifacts such as buildings, a dramatically different picture
emerges. While there is good deal of iteration in the virtual world of CAD
models, there is relatively little iteration in the real world of the constructed
artifact itself—especially in comparison with SE. One important reason for
this appears to be that the costs of changes in construction would be
excessive as a fraction of the overall cost of the project. Another reason is
that an incremental approach in which large artifacts, such as buildings, are
partially constructed, then inhabited, and then later refined seems to be both
dangerous and infeasible for a variety of reasons. For example, while people
can continue using an old software version while a new one is being

2.3 Iteration in Development 33

constructed, constructing a new version of a building would probably
require evacuation of the building. Thus, the concept of version, in the sense
of a constructed artifact, plays no significant role.

Like version, the concept prototype also has little or no role in the
development of large physical artifacts. The only real use for prototypes, in
the sense of full-scale functioning artifacts, is for possible testing of a few
small parts of the final design—for example, a prototype of a wall panel
for a building being created. Full-scale usable prototypes of a building are
generally out of the question; they are simply too expensive. These facts
rule out iterative development of buildings, in the sense in which this term
is used in software engineering.

2.3.2 Implications of Iteration for Rationale Management in
Software Engineering

2.3.2.1 The Importance of Rationale in Iterative Development

Each iteration in an iterative development process introduces change into
the software system. As a minimum there is change in the construction of
the system, but there may also be changes in the design and even in the
requirements. Before any such change is made it is important to know
what the rationale was for the previous state of the system, because this
can help to avoid breaking or losing functionality when changes are
implemented. Records of the dependencies between design decisions are
especially important because they enable developers both to predict the
consequences of changes and to cope with these consequences. If
developers do not have a solid knowledge of rationale, there is the danger
that the software will, over many iterations, “drift” and lose the integral
unity of its design and construction. It might then “grow like topsy,”
becoming progressively more disorganized and less robust.

2.3.2.2 The Absence of Explicit Iteration in Most Approaches to
Rationale

Both the possibility and current popularity of iteration (Rajlich 2006) in
software development make it important to ask what its implications might
be for rationale management in software engineering. Unfortunately,
almost all argumentative approaches to rationale management in software
engineering—including IBIS, PHI, QOC, DRL, and RATSpeak—fail to
provide any explicit account of how they would deal with iterative
development. These approaches base decision-making on a purely verbal

34 2 What Makes Software Different

process of argumentative deliberation. There is no explicit role for action,
construction, versions, prototypes, testing, use, experience or empirical
evidence. This, however, does not necessarily mean that they cannot be
used in iterative software development. It merely means that they have not
yet indicated how they would do so. In fact, it seems that lessons learned
from experience with constructed and released software could easily be
incorporated into argumentation; but there has been little discussion in the
literature about how this would work. Until more literature is generated on
this subject, it will up to each development team to determine how to use
these rationale methods in the context of iterative software development.
However, Chapter 16 of this book, entitled “A Conceptual Framework”,
attempts to partially remedy this problem by giving a theoretical account
of how rationale might support iterative software development.

There are some approaches to rationale that currently deal with iteration
explicitly. One of these is Scenario-Claims Analysis (SCA), which Carroll
and Rosson (1996) devised explicitly to support what they describe as
“deliberated evolution” in “the task–artifact cycle.” In addition, the Win–
Win rationale method is explicitly tied to Boehm’s Spiral Model of
software development (Boehm and Kitapci 2006).

2.3.2.3 Rationale as a Means for Benefiting from Lessons Learned

If software development is an inherently iterative process in which
software is improved through experience with constructed systems, then it
is largely a process of learning. One crucial opportunity for improving the
quality of future software development is to make sure that the hard-won
lessons learned from iterative development efforts are available for future
development efforts. Documenting rationale behind current development
provides a means for doing this. It is crucial not merely to document the
reasons for the decisions taken but also the arguments against those
decisions, the alternatives to the decisions, and the argumentation on these.
Without this sort of documentation it is easy to fall into the trap of being
seduced by intuitive but mistaken solution ideas. Without documentation
of why bad ideas are bad, we doom future generations of developers to
find out the hard way that these ideas are bad.

If future developers can learn the lessons of previous developers without
having to repeat their experiences, it would seem that the amount of
iteration required in development might be reduced. Only time and
experience with documented rationale will tell if this is the case.

To maximize the benefits of lessons from the past, we need long-term
storage of rationale and widespread access to that rationale. Ideally, we
need cumulative stores of rationale that grow and evolve through use. A

2.4 Summary and Conclusion 35

number of approaches are possible, including rationale centered on design
patterns (Pena-Mora and Vadhavkar 1997; Hagge et al. 2006), domain-
oriented issue-bases such as those used by JANUS (Fischer et al. 1996)
and PHIDIAS (McCall et al. 1992), and approaches based on Case-Based
Reasoning, such as that used in the ARCHIE system (Kolodner 1993) (see
Chapter 4 of this book, “Learning from Rationale Research in Other
Domains”).

2.4 Summary and Conclusion

Rationale research began in fields that dealt with the development of large-
scale physical artifacts, such as buildings and cities. The development of
software differs from the development of such physical artifacts in ways
that are crucial for the success of rationale management in software
engineering. The ubiquitous role of the computer in every aspect of the
software lifecycle gives software engineering the potential to capture
rationale from every type of stakeholder in a development project and to
enable each of those stakeholders to retrieve rationale from every other
stakeholder. No comparable potential exists in physical artifact
development. In addition, because the software artifact is constructed and
used on the computer, the rationale from stakeholders can be linked to the
sections of the software, thus enhancing retrieval and potentially easing the
work of capturing, structuring, and indexing rationale.

Finally, the inherently iterative nature of much modern software
development creates both challenges and opportunities for software
engineers. The challenges include modifying rationale methods to reflect
the iterative reasoning processes in this development. The opportunities
include the capability of learning from past development efforts through
the building of cumulative stores of rationale that grow and evolve through
use in the context of development.

3 Rationale and Software Engineering

Software engineering, the process of developing software-intensive
systems, is a complex area. This chapter introduces software engineering
as well as the potential benefits in capturing, maintaining, and reusing
rationale to support it.

3.1 Introduction

3.1.1 Software Engineering

According to the IEEE (IEEE 1993), software engineering is “the
application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.” A more detailed definition of
software engineering, and the one that we use during this book, was
provided by Finkelstein and Kramer (2000):

SE focuses on: the real-world goals for, services provided by,
and constraints on such systems; the precise specification of
system structure and behavior, and the implementation of these
specifications; the activities required in order to develop an
assurance that specifications and real-world goals have been met;
the evolution of such systems over time and across system
families. It is also concerned with the processes, methods and
tools for the development of software intensive systems in an
economic and timely manner.

Both the IEEE and the Finkelstein and Kramer definitions stress the
necessity for a disciplined process of software development. This
discipline is what puts the “engineering” in software engineering.

38 3 Rationale and Software Engineering

3.1.2 Software Engineering Rationale

Much of the research on rationale has addressed design rationale (DR). In
domains such as engineering design, most critical decisions are made at
design time and that is when the majority of the rationale is captured and
used. During software development, while most development
methodologies include a phase called design, decisions that drive software
development are made throughout the process. We therefore view rationale
as something that can be captured and used at all stages. In this book we
use the term software engineering rationale (SER) to encompass all
different types of rationale in many SE processes (Dutoit et al. 2006b) and
to serve as a base for examining how SER can support the entire software
engineering process.

3.1.3 Objectives of This Chapter

This chapter begins with a description of how rationale can be used to help
define and implement the software process. This is then followed by a
description of how rationale can support project management. The
remainder of the chapter introduces how and when rationale can be used in
software development.

3.2 Rationale and the Software Process

3.2.1 Software Process Definition and Implementation

In order for software development to be performed in a systematic and
disciplined approach, it is necessary to follow some defined software
engineering process. There is no single software development process that
fits all types of software development. Instead, the software process used
should be chosen, or defined, to best meet the organizational needs of the
software developers as well as any process requirements that may be
mandated by the client. According to the IEEE Software Engineering Body
of Knowledge (SWEBOK) (IEEE 2004a), software engineering process
(SEP) definition/development can be broken into four sub-areas: (1)
Process Implementation and Change, (2) Process Definition, (3) Process
Assessment, and (4) Process and Product Measurement.

3.2 Rationale and the Software Process 39

The Process Implementation and Change subarea defines what needs to
be known in order to either implement a new software engineering process
or to change an existing one. This includes the definition of the
infrastructure needed for process management, determining how the process
will be managed, and selecting an appropriate quality improvement model.

The Process Definition subarea involves selecting the appropriate
software lifecycle model, the software lifecycle process, determining the
appropriate notation to describe the software process, adapting the selected
process to meet the needs of the specific organization, and determining
how, or what portions of, the process can be automated using process
support tools.

The Process Assessment subarea utilizes assessment models. The
Capability Maturity Model (CMM) (SEI 1997) and CMMI (CMMI 2006)
are two examples. Process assessment also requires process assessment
methods that can use information about the process to give it a rating, or
“score.”

Finally, the Process and Product Measurement subarea describes the
need to measure process outcomes (its success at meeting process
outcomes) and to perform product measurement to look at its size,
structure, and quality. Of course, deciding what data to collect is
insufficient; it is also necessary to decide how to assess the quality of the
measurement results. A rigorous quality improvement process also
involves collecting measurement data over time into a repository,
modeling the information, and determining how the information can be fed
back into the process on future projects.

3.2.2 Rationale and SE Process Decision-Making

We will describe the role of rationale in the software lifecycle and in
software process improvement later in the book. Here, we will address
how rationale can support the process definition process described in the
SWEBOK as outlined above. Determining what the appropriate software
development process is, and how that process should be managed and
measured, involves making a number of very crucial decisions. The
decision-making process involves determining the software process goals,
the alternative means for achieving those goals, and evaluating those
means to determine which alternatives best suit the goals of the specific
organization and project.

Process Implementation and Change. In order to implement a new
process, or change an existing one, many decisions must be made. What
are the requirements for the new/adapted process? What changes should be

40 3 Rationale and Software Engineering

made to the current process infrastructure? How is the process going to be
managed? Which quality improvement model best suits the needs of the
project? The rationale for the choices made when making these decisions
can be used to determine if the reasons for these choices are consistent
with project goals. It can also be compared with that from prior projects to
see where past processes can be reused or adapted to meet new process
needs.

Process Definition. The choice of process, and how rigorous that process
should be, will have a significant impact on the software project. There are
tradeoffs that need to be made between having a well-defined and
rigorously monitored process and the cost and time that this may entail.
Software life-cycle models are not “one size fits all.” Selecting the
appropriate model for a specific project involves careful examination of
alternative lifecycles and their advantages and disadvantages relative to the
needs of the organization. There are also many choices that need to be
made when deciding if, and how, the process requires adaptation to meet
specific organizational goals. It is important that adaptations are consistent
with the goals of the lifecycle and do not counter its advantages. Process
automation is also an area where decisions must be made. If automation is
a high priority, it may prove to be a key driver in selecting the software
process. The process may be chosen based on the tool support available
and what that tool support is likely to cost.

Rationale should be recorded for the reasons behind the choices made.
The explicit articulation of tradeoffs made will ensure that the choices are
made for the right reasons and, if these decisions are revisited for future
development efforts, that the effort that went into making these crucial
decisions can be assist in making the correct decisions in the future.

Process Assessment. The choice of how a process will be assessed may
or may not be under the control of the software development organization.
In either case, the standards used to evaluate the software process can be
captured in the rationale as criteria used to assess the other decisions made
during the process definition process. The process outcomes identified will
be the main criteria used to determine the process measurement strategy.

Process Measurement. There are many aspects to the software process
and product that could measured during development. The question is,
which of these should be measured in order to assess the software projects
success at achieving process outcomes. Again, there are tradeoffs to be
made between the time and effort it takes to perform process and product
measurement against the value of the information obtained. Choices may
be made based on tool support available to assist in this effort.

3.3 Rationale and Project Management 41

Capturing the rationale for these decisions can help to clarify what
measurement options should be considered and what the reasons are for
choosing them. The knowledge captured in the form of rationale can also
assist future projects when they need to make similar decisions.

3.3 Rationale and Project Management

The Project Management Institute defines project management as “the
application of knowledge, skills, tools, and techniques to project activities to
meet project requirements” (PMBOK 2003). This definition is rather general
but it is commonly understood that good project management is essential to
ensuring that a project meets its goals of delivering quality software on time
and within budget. Management needs to work successfully with the client
to ensure that their needs are understood and met while also working with
the developers to ensure that they have the knowledge and resources
necessary to successfully develop the software product.

As in software development, rationale can play multiple roles. Rationale
can assist with guiding and capturing the decision-making process when
developing the management strategy for a project. As with software
development processes, there is not one management solution that will
work under all circumstances. Processes used in the past require tailoring
to meet the needs of specific projects and the skills of specific teams.
Rationale captured for management choices in the past can be used to
determine if those choices are still valid for future projects.

Examples of some management choices include:
• Status reporting requirements for project teams
• Project team structure (size, distribution of responsibility,

communication strategy)
• Necessity of hiring consultants with key technical expertise
• Frequency and duration of status meetings
• Role of software tools in the software project

Criteria for making these choices might include:
• Team member expertise and experience
• Team familiarity—experience of team members with each other
• Value of permanent employees learning new technology for future

projects
• Budget provided for tool aquisition
• Management experience
• Customer flexibility (in terms of both deliverables and schedule)

42 3 Rationale and Software Engineering

It is critical that these key management decisions be made based on an
understanding of the criteria that impact their success. Using the rationale
to capture and evaluate these decisions helps to ensure that the
management strategy selected best suits the needs of the client, product,
and team.

Rationale can also assist with many project management or related
tasks. Charette (1996) states that “large project management is risk
management.” The identification of risks is a crucial factor in successful
software development. Capturing these risks, alternative mitigation
strategies proposed, and the mitigation strategy used serves to both clarify
the risk management process for the current project as well as form a
knowledge base of risks, strategies, and outcomes for use in future
projects.

Another aspect of software development where project management
plays a key role is in the reconciliation of stakeholder viewpoints. Theory-
W (Boehm and Ross 1989) is a software project management theory where
the main goal is to “make everyone a winner.” Theory W is based on
Fisher and Ury’s (1981) negotiation approach, where a key part of the
negotiation involves identifying options and evaluating those using
objective criteria. In Theory W, the key to a successful negotiation is to
identify the stakeholder win conditions and to find options that create the
win–win situations. The generation of these options and win–conditions is
supported using the WinWin support system (Boehm et al. 1995). The
information captured in WinWin is, in essence, the rationale behind the
software requirements (Boehm and Kitapci 2006).

One of the more successful uses of argumentation-based rationale is to
assist with structuring discussion during project meetings. The Issue-Based
Information System (IBIS) notation (Kunz and Rittel 1970) is the basis of
several systems applied to capture discussions in meetings. The indented
text IBIS (itIBIS) system was used at NCR to capture project team
meetings (Conklin and Burgess-Yakemovic 1996). This helped to focus
discussion and point out potential problems with the requirements.
Converting the textual rationale into a graphical form (gIBIS) exposed
several problems with the proposed design that would probably not have
been detected otherwise. The use of IBIS to aid in collaboration has
continued with the Compendium project (Buckingham Shum et al. 2006)
to perform “Dialogue Mapping.” In their approach, a trained facilitator
uses Compendium to capture discussion in an IBIS format during
meetings. The results of the discussion can be displayed in real time to
allow meeting participants to view, and reflect on, the discussion taking
place.

3.4 Rationale and Software Development 43

3.4 Rationale and Software Development

The previous sections described how rationale can assist with defining the
software development process and in managing the implementation of that
process. Here, we highlight uses of rationale during the software
development process by describing why rationale is needed, what some of
the uses of rationale are, when rationale can be used during the process,
and finally how it can be used. These areas are our primary focus during
the remaining chapters of this book.

3.4.1 Why Capture Software Engineering Rationale?

Earlier in this book we defined rationale and its importance in software
engineering. The success of any software project is dependent on the right
choices being made during its development.

Software engineering contains many key challenges that can be
addressed by the capture and use of rationale:

• Software system longevity. Software systems have been shown to remain
in operation longer than the original developers probably anticipated.
This longevity, and the need to continually evolve software to keep it
viable, means that it is essential to understand the reasons behind
development decisions made years earlier.

• The Iterative nature of software development. Many current software
development processes utilize some form of iteration in order to
increase their ability to adapt to changing requirements and technology.
As development progresses, criteria appearing in the later iterations may
affect decisions made in the earlier ones. The rationale can help to
assess the impact of the changing criteria and guide the developer in
making changes that implement the new functionality with minimum
risk to that implemented earlier.

• Stakeholder involvement. There are many different stakeholders in a
software development effort who have their own, sometimes conflicting,
goals for the system. For example, the customer is concerned with the
functionality provided by the system; the end user is concerned with
how well it helps them perform their tasks and how easy it is to learn
and use; the developers are concerned with how difficult it will be to
implement; the managers are concerned with how long implementation
will take and how much it will cost; all stakeholders are concerned with
the reliability of the delivered system; etc. Capturing the decision-
making process, and the stakeholders having input into that process, can

44 3 Rationale and Software Engineering

serve as a basis for negotiation. Rationale also captures how the
different stakeholder priorities affect the developed system.

• Knowledge transfer. Significant amounts of expert knowledge are
involved in the development of a large software system. This is
information that will be lost if it is not documented, particularly at times
of high turnover in the software industry. Rationale can serve as a key
component in an organization’s knowledge management strategy.

• Increasing size and complexity of software systems. Software systems
have long since passed the point where their design is simple enough to
exist in the heads of their developers. Rationale can assist as a “memory
aid” to assist developers in remembering why they made their earlier
decisions. Rationale can also be used to index into the code and
documentation to determine the impact of changing decisions on the
software.

3.4.2 What are the Uses of Software Engineering Rationale?

In order to convince software developers that capturing rationale is worth
their time and effort (and convincing software managers that capturing
rationale is worth some additional up-front costs), it is essential that the
rationale is useful both during the initial requirements and design stages
and later as the software is maintained and reused. We have identified
several key areas of rationale use:

• Presentation. The use that immediately comes to mind for rationale is
its ability to document the decision-making process. The ability to
browse through, or query, the rationale-base to learn more about the
decisions can assist developers in learning about the software,
preventing the duplication of past work, and avoiding errors. The
usefulness of the presented rationale will be dependent on the method of
presentation. Ideally, presentation should be done within the same tools
that are already in use to develop the software. The developer will be far
more likely to know that the rationale is available and take it into
account when making decisions if they do not need to use an additional
tool.

• Evaluation. The CMMI (CMMI 2006) Decision Analysis and
Resolution (DAR) process area stesses the importance of performing a
“formal evaluation” of selected issues by evaluating alternative
solutions (that address those issues) against criteria. Rationale can
support this type of calculation by providing detailed information about
the solution alternatives and their relationship to the decision criteria

3.4 Rationale and Software Development 45

(such as requirements, quality attributes, and assumptions). This
information can be used to rate or rank the alternatives to evaluate the
quality of the decision results. Rationale also supports usability
evaluation, as demonstrated by the Scenario-Claims Analysis approach
(SCA) (Carroll and Rosson 1992).

• Collaboration. Later in this book we describe how software
development is almost always collaborative work. Rationale’s
importance to collaboration during software engineering was
highlighted in Jim Whitehead’s talk as part of the Future of Software
Engineering track of the 2007 International Conference on Software
Engineering (Whitehead 2007). Whitehead views architecture and
design as “argumentative proceses” and proposes rationale capture, in
the form of “collaborative argumentation” as an effective means of
supporting these processes. The ability for rationale to support and
capture this the negotiation required during software development has
been demonstrated by many approaches, such as the WinWin (Boehm et
al 1995) and Compendium (2006) systems described earlier.

• Change analysis. As mentioned earlier, software development is an
iterative process. Software requires change both during the development
process, as more information is learned about the requirements and
incorporated into the software, and afterwards as it enters the
maintenance and evolution stage of its life. Software may require
changing for a multitute of reasons but one thing remains certain—the
need to understand how the proposed changes impact the existing
software. This includes both determining where the changes need to be
made and also how those changes may affect the ability of the software
to meet the requirements, quality criteria, etc. that were the basis of the
decisions made during its initial development. With appropriate tool
support, rationale can be used to identify change location and change
impact. Rationale-based consistency checking can aid in consistency
management—an ongoing process during software development and
maintenance.

3.4.3 When can Software Engineering Rationale be Used in
Software Development?

As mentioned earlier, rationale can support many aspects of software
development and is not constrained to the design stage. These aspects
include the “standard” development stages of requirements, design, etc.
and also the cross-cutting areas of project management and reuse.

46 3 Rationale and Software Engineering

• The software lifecycle. Rationale can play a role in any of the software
lifecycles selected to guide the software development process. Rationale
also has a role in software process improvement, as mentioned earlier in
this chapter.

• Requirements engineering. Rationale is involved in software
requirements in several ways. One is in requirements elicitaiton and
documentation. The rationale is a natural place to capture the
relationship between the software requirements captured during
elicitation and the source of those requirements. This provides a “rich
traceability” back to the original customer requirements (Dick 2005;
Hull et al. 2002). As with all aspects of software development,
negotiation plays a role in requirements engineering as all stakeholders
need to agree on what the requirements are. This negotiation and the
parties involved can be captured in the requirements rationale.
Requirements also appear in the rationale for the system as the
arguments for and against alternatives. Capturing this information, and
associating it with the code that implements the alternatives, is a form of
requirements traceability (Burge and Brown 2007).

• Software design. Since much rationale research has been in the area of
design rationale, it is no surprise that rationale for software design, and
more specifically software architecture, is an active research area.
Software architecture, while traditionally thought of in terms of
components and connectors, is seen by some as “a composition of
architectural design decisions” (Bosch 2004). This decision-centric view
has encouraged more research into capturing the knowledge behind
those decisions, as shown by workshops such as that on SHaring and
Reusing Architectural Knowledge (SHARK).

• Software verification and validation. This is an area where the capture
and use of rationale remains largely unexplored. Still, decision-making
in software engineering does not stop when the development is
complete. The planning and execution of an effective testing strategy
requires making complex tradeoffs between cost and quality to ensure
that the software meets the needs of its users while keeping testing costs
under control. Rationale for the choices made when selecting testing
methodologies and tools should be captured so that it will be available
for use by subsequent projects or if the testing strategy of the current
project requires re-evaluation.

• Software maintenance. One of the areas where the availability of
rationale can be most valuable is during software maintenance. The
challenge of software maintenance is ensuring that software evolves
without damage to, or reduction in, the functionality needed by its users.

3.5 Summary and Conclusions 47

This is difficult because the maintainers may not be the same people
who initially developed the code and often have a steep learning curve
to understand an unfamiliar piece of software. The ablity to utilize the
past experience of software developers via access to their rationale
supports these goals.

• Software reuse. Reuse has often been refered to as “the holy grail” of
software engineering. The ability to reuse software systems or
components has shown great promise in allowing software delivery with
fewer defects, higher quality, and in significantly less time. There are
many types and levels of software reuse and, while all have advantages,
reuse is not without its risk. Rationale can play several roles in reuse.
One is to support decision-making about if and when reuse is
appropriate for any given project. There may be some cases where the
risk outweighs the benefits. Another use is to capture the reasons behind
the decisions on what should be reused. There may be several reuse
alternatives that should be examined. Rationale can also be used to
evaluate reuse candidates. If the rationale behind those candidates is
available, this information would provide valuable insight into the
decisions that went into their design.

3.4.4 How Can We Support Software Engineering Rationale Use
in Software Development?

In order for Rationale-Based Software Engineering to live up to its
promise, we need to develop Rationale Management Systems that support
its capture and use. As in any software development project, the first step
is to identify the requirements. What are the uses of rationale that such a
system needs to support? How does rationale, as we currently understand
it, support software engineering and when does it fall short? How do we
address those shortcomings?

Later in this book we provide two frameworks, one defining the key
concepts in Rationale-Based Software Engineering and their relationships
(the Conceptual Framework) and one that provides a framework for RMS
development that supports the key features of RBSE needed to support
software development (the Architectural Framework).

3.5 Summary and Conclusions

Rationale can play many roles throughout the software development pro-
cess, both descriptive—by providing a richer view into the decision-making

48 3 Rationale and Software Engineering

process, and prescriptive—by guiding that process and evaluating its results.
There is however a small literature of doom-and-gloom discussions that
dismiss the value of rationale relative to its cost, some even implying that
the additional cost could make the difference between software project
success or failure (Grudin 1996). Cost is an important factor in the equation,
but it not a simple linear factor. Indeed, most nihilistic accounts of rationale
describe development projects where rationale practices were implemented
narrowly, manually, and incompletely.

Rationale provides technical leverage throughout all the processes and
activities of software development. A broad approach to capture and reuse
of rationale is required to enjoy multiplicative benefits of pervasive
rationale practices. Software tools to support partial automation of
rationale management can reduce the cost side of the equation even
further. Finally, implementing rationale practices thoroughly in
development organizations is critical. Process improvement efforts such as
the CMM and CMMI involve rigorous documentation of software
development that takes both time and effort. Initial studies on the CMMI
(Goldenson and Gibson 2003) show that many of the companies studied
showed cost, schedule, and quality improvement after adopting the
processes.

When rationale practices are adopted broadly and with appropriate tool
support, and when they are adopted thoroughly in development
organizations, rationale has the potential to yield benefits that far outweigh
its costs.

4 Learning from Rationale Research in Other
Domains

While the issues of rationale usage in software engineering (SE) often differ
crucially from those of rationale usage in other domains, there is still the
possibility of learning a great deal from research on other domains. This is
suggested by the fact that rationale research in SE originally derived from
Rittel’s much earlier rationale research in architecture (building design),
urban planning, and policy making. In addition to this work, which is still
not widely known in SE circles, there is research on rationale that has been
going on in various engineering disciplines for as long as 20 years. All of
this work provides potentially valuable lessons for SE researchers and
developers. This chapter will look at some examples of this work that could
have important implications for rationale research in SE.

4.1 Introduction

4.1.1 Research on Rationale in other Domains

Research on design rationale began with Rittel’s Issue-Based Information
System (IBIS) (Kunz and Rittel 1970) and its applications to urban planning,
architecture (building design), and governmental policy making in the 1970s
and 1980s. By the late 1980s software engineers at the Microelectronics and
Computer Technology Corporation (MCC) were looking at adapting Rittel’s
method to their own field and developing appropriate computer support
(Conklin and Begeman 1988; Potts and Bruns 1988). Since then many other
researchers involved with software engineering (SE), human–computer
interaction (HCI), and other software-related related fields have created
various rationale approaches, including QOC (MacLean, Young and Moran
1989), DRL (Lee 1991), RATSpeak (Burge and Brown 2004), and many
others. Most of these approaches continue the basic tradition started by

50 4 Learning from Rationale Research in Other Domains

Rittel, while suggesting various modifications meant to go beyond Rittel’s
IBIS and better fit rationale to the SE domain.

Chapter 2 of this book emphasizes that there are some crucial
differences between the problems of rationale usage in the SE domain and
rationale usage in the domains of physical artifact creation. At the same
time, there continues to be a considerable overlap in the issues facing
rationale researchers in these two types of domains. This suggests that
researchers in these domain types might still have much to learn from each
other. This chapter explores this topic by presenting some examples of
rationale research in design and engineering.

4.1.2 Objectives of This Chapter

Rather than attempting a comprehensive survey of rationale research in
other domains, this chapter will concentrate on examples of such research
that raise important issues for research on rationale support in SE. For
these examples, the issues raised mostly have to do with the way in which
they use computers to support rationale; therefore, this chapter will go into
more detail on the rationale management software systems than is
generally the case in the remainder of the book.

The approaches and systems described in the chapter all deal with the
rationale for design. For the examples discussed, this chapter will first
identify crucial functionality that they bring to the support of rationale,
functionality not currently found in rationale management systems for SE.
Connections to existing research on software engineering rationale (SER)
will then be identified. The potential advantages of adopting this
functionality in SER support systems will then be discussed; and potential
challenges to implementing this functionality in SE will be described.

4.2 Domain-Oriented Design Environments Using PHI

4.2.1 PHIDIAS and JANUS

The PHIDIAS (PHI-based Design Intelligence Augmentation System)
project (McCall et al. 1990) began in 1985 with the goal of adding a CAD
subsystem to the MIKROPLIS hypertext software. MIKROPLIS (McCall
et al. 1981; McCall 1991) was a hypertext authoring system devised in the

4.2 Domain-Oriented Design Environments Using PHI 51

early 1980s to support the PHI variant (McCall 1991) of IBIS (Kunz and
Rittel 1970). In this project, fundamental issues arose about how the
integration of CAD graphics and PHI rationale should work from the
standpoint of human–computer interaction (HCI). These issues were
ultimately settled not by working directly on PHIDIAS but by working on
the JANUS system.

JANUS combined the functionality of the CRACK system (Fischer and
Morch 1988) for kitchen design with hypertext functionality needed for
PHI-based design rationale. CRACK enabled designers to create kitchen
layouts using a domain-oriented construction kit. A construction kit is a
collection of graphical building blocks that can be dragged and dropped
into place in a CAD system. A construction kit is domain oriented if its
building blocks represent high-level domain concepts, such as walls,
windows, stoves, sinks, etc. rather than low-level computer graphics
concepts such as points, lines, and shapes. Domain-oriented construction
kits were used because they enabled designers to rapidly and intuitively
build designs. Such a construction kit is, in essence, simply a conventional
CAD symbol library to which semantics had been added so that each type
of building block indicates what type of real-world object it denotes—e.g.,
window, door, stove or sink.

In CRACK the semantic information of the building block is used by a
critiquing system that “looks over the shoulders” of designers as they work
and points out violations of rules of thumb for kitchen design. An example
of such a critique might be, “do not put the stove in front of a window.”
The rationale for this critique is that placing a stove in front of a window
creates several potential problems: (1) a person might reach over the stove
to open or close the window, thus creating the risk that the person might
knock over a pot or lean into the flame of burner on the stove; (2) curtains
in the window might catch fire; (3) the windows might get greasy; (4)
someone cooking at a stove might get distracted by looking out the
window. CRACK, however, did not display this rationale for users; it only
displayed a brief critiquing message.

CRACK was meant as an improvement over an expert system approach
in the sense that it empowered users by both providing expert advice but
allowing those users to ignore this advice when they chose. The problem
with CRACK was that, although it presented advice, it did not present the
rationale behind that advice. Users were thus often uncertain about whether
to follow the advice and how to act if they chose not to follow the advice.
This deficiency was remedied by creating a new system, called JANUS, that
combined the CRACK functionality with hypertext functionality that
displayed the rationale for each critique using PHI. The new system had two
fundamentally different kinds of functionality: support for constructing

52 4 Learning from Rationale Research in Other Domains

designs (using construction kits) and support for design rationale. It was
therefore named JANUS, after the Roman god with two faces.

JANUS presented the rationale for critiques in the form of domain-
oriented issue base (DOIB) structured using PHI. These are collections of
issues, positions, arguments, and subissues that commonly arise in a
particular design domain. DOIBs had been developed since the late 1970s for
a variety of domains including the design of residences, lunar and Martian
habitats, neighborhood shopping areas, health care policy, and information
retrieval systems. The JANUS system’s DOIB provided issue-based
information that was relevant to a wide range of kitchen design projects.

JANUS was successful not only in further empowering its users; it also
answered the crucial questions raised in the PHIDIAS project about how
and when to integrate support for rationale with support for CAD. After
the JANUS system was implemented and judged successful, it was
realized that these successes were actually implied by Schön’s theory of
Reflective Practice (Schön 1983).

Schön had viewed design as consisting of a repeated alternation between
two processes, that he labeled Knowing-in-Action and Reflection-in-Action.
Knowing-in-Action is the process of intuitively creating the form of a
design—e.g., using pencils or CAD systems. It is a nonreflective process of
unselfconscious engagement in the task of forming the design. This process
continues until there is a breakdown of intuition when something unexpected
happens. In conventional design, breakdowns correspond to the designer
realizing that something is wrong with the design or that some unforeseen
opportunity has arisen for improving the design. Once a breakdown has
occurred, the designer changes to the mental process Schön calls Reflection-
in-Action. This consists of reflecting on how to deal with the breakdown
situation. This is a process of critical thinking in which the reasoning behind
the design becomes explicit and it cannot be done simultaneously with the
intuitive process of Knowing-in-Action. Once the designer has determined
how to deal with the breakdown, Knowing-in-Action takes over again and
implements the solution to the breakdown.

The JANUS group saw the intuitive construction of designs using con-
struction kits as a clear example of Knowing-in-Action. Critiques corres-
ponded to potential breakdowns. The PHI-based presentation of rationale for
critiques provided support for the designers’ Reflection-in-Action.

The JANUS functionality was integrated into PHIDIAS and then
additional functionality was added. JANUS’s hypertext functionality was
implemented using the Document Examiner, which supported display of
rationale but provided no support for authoring. Because PHIDIAS was
based on MIKROPLIS, it also supported authoring of rationale, thus
enabling designers to add their rationale to the DOIB used by the system.

4.2 Domain-Oriented Design Environments Using PHI 53

This authoring of rationale was accomplished using a prototyping
mechanism that enabled creation of a virtual copy of the DOIB. This
enabled designers to add there rationale to the DOIB and even edit the
DOIB without actually altering the original DOIB itself.

PHIDIAS also expanded the kind of knowledge-based critiquing
available. In addition to critics that fired when designers positioned
construction kit building blocks in the model of the designed artifact,
PHIDIAS provided critics and rationale for the selection of building blocks
from alternatives. PHIDIAS also provided knowledge-based agents that
alerted members of design teams to potential conflicts between their work
and the work of other designers in the team (McCall and Johnson 1997).
PHIDIAS was applied to a variety of design domains, including the layout
of computer networks in buildings, the design of lunar habitats and, of
course, kitchen design.

4.2.2 Discussion

Critiquing is the most prominent feature of JANUS and PHIDIAS, but it is
not the most important in its implications for rationale research in SE. The
most important is the theory of Reflective Practice that these systems
support. A central tenet of this theory is that it is a mistake to attempt to
explicitly record the rationale for the process of Knowing-in-Action. This
means that the traditional approach to rationale capture cannot be made to
work for this part of the design process. The reason for this, according to
Schön, is that forcing humans to make the reasoning behind Knowing-in-
Action explicit would prevent Knowing-in-Action from taking place. But, if
Knowing-in-Action cannot happen, then neither can design, at least
according to Schön. The significance of this claim is that, if true, (1) it
would go a long way towards explaining why it has proved so difficult to
capture design rationale, and (2) it would imply that the traditional approach
to the capture of design rationale can only succeed in capturing part of the
reasoning that goes into decision-making in design. This does not mean,
however, that capture is not possible, merely that it is not possible if one
asks the person engaging in Knowing-in-Action to record the rationale. Such
capture might effectively be accomplished by another person or by
automated means such as those used by Myers et al. and described below.

One important contribution of critiquing is that it alerts decision-makers
to the existence of rationale for a decision task without their having to ask
whether it exists. This is a valuable contribution that makes it less likely
that decision-makers will miss valuable information. However, critiquing
is not the only mechanism that can do this. PHIDIAS also employs other

54 4 Learning from Rationale Research in Other Domains

mechanisms that detect what task designers are engaged in and alert the
designer to rationale for this task, thus implementing a general sort of task-
based indexing of rationale in addition to its critiquing. Burge has
implemented mechanisms in the Eclipse IDE that alert implementers to the
existence of rationale relevant to particular pieces of code that they look at.
This is somewhat similar to the task-based indexing in PHIDIAS, but there
is the question of whether Burge’s approach could be extended to include
more general task-based indexing for SE.

One feature of both PHIDIAS and JANUS appears to have
straightforward application to every activity of SE: the use of Domain-
Oriented Issue Bases (DOIBs). Because any decision task can be
represented as an issue, DOIBs would seem to be applicable to decision
tasks of all types, including those for requirements determination, design,
construction, testing, and maintenance.

Adapting the critiquing of JANUS and PHIDIAS to SE support systems
presents an interesting challenge. This sort of critiquing is heavily dependent
on CAD systems’ use of iconic models. Iconic models are graphical models
in 2D or 3D Euclidean space of artifacts that occupy 3D Euclidean space. In
iconic models there is a natural correspondence—or natural mapping—
between parts of the model and the parts of the real-world object it
represents. In addition, the placement of a single element into an iconic
model implies the existence of a whole battery of relationships with other
elements in the model. These relationships include distance between
elements, whether they are lined up vertically, horizontally or at an angle,
whether they are collinear—and so forth. All the critics in JANUS and
PHIDIAS are based on these implied relationships.

The only place that SE uses iconic models is in the design of graphical
user interfaces (GUIs). This is therefore the one area where the approaches
used in JANUS and PHIDIAS—as well as other systems described in this
chapter—might find direct application to software projects.

Software designers generally create and use symbolic models rather than
iconic models. By definition, the denotation relationships between
elements of a symbolic model and the artifact it represents are arbitrary
social conventions. Symbolic models can, however, come to feel like they
also have a natural mapping if the relationships between symbols and real
objects are truly standard, i.e., something universally accepted within a
large group of people. The more software designers use models with
standardized semantic meaning, the more natural this mapping will seem.

An open research question is whether the sort of rich collection of
implied relationships found in iconic models can also be found in symbolic
models. Since these models often take the form of graphs, it may well be
that graphic theory might provide a way of deducing such relationships.

4.3 Automating the Capture of Design Rationale with CAD 55

Perhaps conceptual schemas dealing with the types of elements and
relationships amongst them could be used as the basis of critiquing in
symbolic models. Whether a significant set of critics for SE can be
developed remains to be demonstrated.

4.3 Automating the Capture of Design Rationale with CAD

4.3.1 The Rationale Capture Problem

This book emphasizes repeatedly that the biggest challenge facing the use
of rationale in real-world projects is the rationale capture problem. This is
the fact that it is extremely difficult to capture rationale in a real-world
setting. The hallmark of this problem is that those involved in design and
other SE activities often seem reluctant to record their rationale. Why this
should be and what to do about it are controversial questions in current
rationale research in SE as well as in other fields where rationale research
is done.

Researchers in increasing numbers have come to the conclusion that the
capture problem results from the intrusive and time-consuming nature of
the traditional approach to rationale capture. In this approach, rationale
must be structured according a given schema, such as IBIS, DRL or QOC,
in order to be recorded. In other words, the initial recording of the rationale
is in a structured form. There is little debate about the fact that this
structuring process is labor intensive, but some claim that it is also
disruptive to the free flow of intuitive and creativity thought in problem
solving. Marshall and Shipman see all mandatory structuring as inhibiting
user input (Marshall and Shipman 1999), and Fischer and his colleagues
use Schön’s theory of Reflective Practice to argue that the explicitly
structured reflection interferes with the intuitive problem-solving process
that Schön calls Knowing-in-Action.

On the other side of the debate are those who acknowledge that the
capture process is intrusive and labor intensive but argue that it is worth it
because of the benefits from having captured rationale and even from the
process of structuring it. In the latter case, advocates of the traditional
approach claim that the structuring process helps artifact developers to
improve the consistency and thoroughness of their reasoning.

56 4 Learning from Rationale Research in Other Domains

4.3.2 Solution Approach: Automating the Capture of Rationale

Myers, Zumel, and Garcia have done research on rationale for the design
of physical artifacts (Myers et al. 1999), and they are among those who see
the traditional approach as the central cause of the capture problem. Their
strategy for solving this problem is to automate rationale capture to the
greatest extent possible. In other words, they seek to use automated
computer methods to capture rationale in a manner that is so unobtrusive
that a designer can be completely unaware that capture is taking place.
More specifically, they adopt the generative paradigm of Gruber and
Russell (1996) and attempt to derive rationale from data obtained during
design. Interestingly, they do not use the argument for this approach given
by Gruber and Russell, which is that it is not possible during design to
predict what rationale will be needed later. Instead, they use the argument
that the unobtrusiveness of the approach is the decisive factor.

Myers and her collaborators adopt the approach of first recording the
behavior of designers using a CAD system and secondly inferring from
these records both a design history and design intent. A design history is an
account of what designers did and when they did it; design intent is why
they did what they did. The goal here is not to automate all rationale
capture, but instead to automate capture of “important but low-level
aspects of the design process,” so that designers can limit their
documentation efforts to the higher-level, “creative and unusual aspects”
(Myers et al. 1999). The central insight on which their approach is based
is that CAD systems often enable designers to perform operations on
artifacts that are semantically meaningful in the application domain.

To derive a design history, they capture records of the atomic actions
possible with the CAD system and then attempt to infer designers’
behavior at higher levels of abstraction (lower levels of granularity). They
derive a hierarchical account of designer behavior in terms of episodes
created by grouping atomic actions. They also characterize the artifact in
hierarchical terms as assemblies, subassemblies, and other groupings of
parts. From these hierarchies of behavior and artifact structure they deduce
what decision tasks designers are undertaking and what decision
alternatives they are exploring. These decision tasks all have to do with
determining features of the artifact; so they correspond to questions in
QOC rather than the more general concept of issues in IBIS. The decision
alternatives thus correspond to QOC options. It should be noted, however,
that the analyses of Myers et al. make no reference to QOC or any other
rationale schema.

To derive design intent, they use artificial intelligence (AI) techniques
that speculate on user motives using so-called design metaphors and a

4.3 Automating the Capture of Design Rationale with CAD 57

formally stated set of requirements for the artifact. Design Metaphors are
sequences of designer activities that suggest explanations for these
activities.

4.3.3 Implementation: The Rationale Construction Framework

Rationale Construction Framework (RCF) to implement and test their
ideas about automatic capture of design rationale. RCF has three main
components:

• An enhanced CAD tool
• A Monitoring module
• A Rationale Generation module (RGM)

The CAD tool used was the commercially available MicroStation95,
which had capabilities for modeling in the domain of electromechanical
design, in which the ideas for automated rationale capture were to be
tested. This tool was enhanced to enable designers to indicate the semantic
type of graphical objects together with type-specific semantic attributes.
For example, a given graphical object might be assigned the semantic type
gear and given gear-specific attributes such as number of teeth and gear
ratio. A second augmentation of the CAD tool added a set of analysis
programs linked directly to objects in the CAD drawing. A third
augmentation added the ability for designers to select graphical objects
from a predefined library of semantically meaningful graphical objects.

The Monitoring module in RCF unobtrusively tracks the operations of
the designer with the CAD system. Those operations that are relevant to
design rationale are then passed on to the RGM in real time. Such
operations include the creation, deletion, and modification of design
objects, the selection of such object from the library and their use as parts
of other objects, as well as the assignment of semantic information to
objects. Undoing and redoing are also passed on to the RGM as is the use
of analysis programs.

The RGM performs the majority of the inference done by the RCF
system. It constructs a symbolic model of the artifact being designed. It
then uses this model and the design event log received from the
Monitoring module together with a formally specified set of design
requirements and the design metaphors to construct the design rationale.

To derive design intent, the RGM focuses on explaining the changes to
the artifact model during design. Design metaphors play a major role in

Myers, Zumel, and Garcia created a software system called the

58 4 Learning from Rationale Research in Other Domains

explaining these changes. Two examples of such metaphors are refinement
and part substitution. Other metaphors help to identify important
relationships between object that are not formally indicated in the model.
Such metaphors can detect when objects are created, modified, and deleted
together.

Identification of relationships between design requirements and the
changes in design objects also plays a crucial role in deriving design intent.
Specifically, RCF constructs hypotheses that such changes are attempts to
satisfy requirements. Such hypotheses can be constructed with or without
domain-specific background knowledge, though the latter provides richer
accounts of design intent. Once hypotheses are constructed, they can then
be supported or undermined by further evidence collected as the design
effort proceeds.

Myers, Zumel, and Garcia (1999) describe the testing of RCF in a
project aimed at designing a three-degree-of-freedom surgical robot arm.
The system recorded and analyzed design activities from initial design
through multiple stages of refinement. RCF was successful in describing
designer activities at several levels of abstraction, identifying stages where
the designer concentrated on revisions of particular parts or subassemblies,
identifying the results of design tradeoffs, and in explaining key changes in
the design.

4.3.4 Discussion

The rationale capture problem is of such importance for the future of
rationale usage that a claim to capture a significant portion of it
automatically cannot be ignored. The work on the RCF looks like a
promising extension of research on domain-oriented design environments.
Myers et al. have used the same sort of semantically meaningful
components found in the construction kits of JANUS and PHIDIAS,
information used by those systems to identify design decision tasks,
decision alternatives and decisions taken. However, RCF’s abilities to
identify and characterize designer activities and to speculate on the reasons
for them goes far beyond what JANUS and PHIDIAS can offer. The RCF
approach provides a way of capturing rationale for the intuitive Knowing-
in-Action that Schön claims is disrupted by the explicit reflection that
traditional rationale capture requires.

RCF, like JANUS and PHIDIAS, relies on the natural semantic mapping
available in the iconic models that CAD systems create. This means that
there is a question about how well the RCF approach would transfer to the
purely symbolic models that are used in software design. However, to the

4.4 Parameter Dependency Networks as Design Rationale 59

degree that the symbols used in software design models are genuine
standards and not the arbitrary creations of individual designers, transfer
would seem to be possible.

If transfer of the principles of RCF to software design is possible, the
benefits would be considerable. Of prime importance, of course, is that it
might solve at least part of the capture problem. But in addition, RCF’s
emphasis on rationale for explaining changes has crucial implications for
change analysis as well as the iterative and evolutionary methods of
software development.

4.4 Parameter Dependency Networks as Design Rationale

4.4.1 The DRIVE System and Parameter Dependency Networks

de la Garza and Alcantara (1997) describe a software system, called
Design Rationale in Value Engineering (DRIVE), that provides additional
computer support to aid designers who document their rationale. As is
often the case, the additional computer support requires a higher level of
formalization of rationale than is common with most rationale
management approaches. The DRIVE approach, however, can be viewed
as a simple extension of the formalization required for Design Space
Analysis in QOC.

The DRIVE system enables designers of physical artifacts to create
dependency relationships between the parameters of objects found in a
model of a physical artifact that is being designed. Such dependencies can
then be used as rationale for design decisions made using a CAD
subsystem. More specifically, these dependencies constitute rules—or
more accurately, rules of thumb—for design decisions. These rules can
then be used to critique the decisions that the designer makes using CAD.
The DRIVE system uses these rules to detect conflicts created by decisions
and then alerts the designer to the existence of the conflicts as they use the
CAD subsystem. The designer can then either resolve the conflicts
immediately or postpone their resolution. Conflict resolution is
accomplished by altering the design, altering the dependency rule or
canceling the dependency rule for a specific CAD decision.

There are two types of parameter dependencies that DRIVE supports.
One type is the dependency of the value of a parameter (attribute) of an
object on the value of a parameter of an object, where either the
parameters are different or the objects are different or both. The second

60 4 Learning from Rationale Research in Other Domains

type is a dependency of a parameter constraint on the values of other
parameters. There are also two ways in which dependencies can be
represented: as mathematical formula or as an if–then rule. The following
is an example of an if–then dependency of a parameter constraint on a
parameter value as it would be expressed in the DRIVE system (de la
Garza and Alcantara 1997):

If [Mechanical Room]:[General Function]
 Is equal to “House Mechanical Equipment”
Then [Mechanical Room]:[Fire Resistance Rating]
 (minimum value) is not less than 2 hours

In ordinary language this rule says that, if the general function of a
“Mechanical Room” is to house mechanical equipment, then this room
should have a fire resistance rating of at least 2 hours. It should be noted
that in DRIVE each such rule is accompanied by natural language text that
explains the rule and can provide additional arguments for them.

4.4.2 Discussion

4.4.2.1 How DRIVE’s Parameter Dependency Networks Relate to
Other Approaches to Rationale

DRIVE’s treatment of rationale resembles QOC’s Design Space Analysis
in the sense that it deals only with rationale for features of the designed
artifact. However, DRIVE’s description of artifact features is more specific
than QOC’s. QOC only provides a textual description of a feature, but
DRIVE provides a three-part feature description: (1) a type of object, (2) a
parameter (i.e., an attribute) of the object, and (3) one or more allowed
values of that parameter. While QOC, like DRL, evaluates a proposed
artifact feature by means of assessments with respect to criteria, DRIVE
assesses a proposed decision about a parameter value by means of other
parameter values.

The DRIVE system resembles both JANUS and PHIDIAS in its use of a
critiquing system that delivers textual rationale to designers of physical
artifacts as they work in a CAD system. The crucial innovations of DRIVE
are (1) the use of parameter dependency networks as the basis for
critiquing and (2) enabling designers to create their own critiquing rules.

The dependency relationships used by de la Garza and Alcantara in
DRIVE are more specific that the dependency relationships used by Burge
in RATSpeak and her SEURAT software. Burge’s dependencies are

4.5 Case-Based Reasoning as Design Rationale 61

natural language arguments that do not enable the computation of values
and constraints as in DRIVE, and of course, DRIVE’s parameter
dependency networks are far more specific than the dependency network
between decisions (issues) that PHI uses to structure rationale.

As with JANUS, PHIDIAS, and the Rationale Capture Framework of
Myers et al., DRIVE depends on the natural association of semantic
meaning with the graphical objects used in the CAD system, i.e., the
natural mapping of iconic models. This is crucial because the critiquing
depends on the rules applying to classes of objects. In DRIVE, this is, in
effect, accomplished using is-a and has-a relationships, though the actual
implementation of these concepts is domain dependent and complex.

4.4.2.2 Significance for Software Engineering Rationale

DRIVE’s use of algebraic formulas for dependencies seems unlikely to
find extensive application in SE, but its if–then dependencies would seem
to have a wide range of applications in SE. They constitute a more specific
and more computable version of the argumentative dependencies between
decision alternatives found in RATSpeak. This is especially significant in
view of the fact that RATSpeak was created in an attempt to tailor DRL to
the needs of software engineers who do maintenance. The if–then
computational dependencies used in DRIVE are especially promising for
change analysis, which is one of the most important and popular uses of
rationale in SE. Investigating the potential value of parameter dependency
networks should therefore be an important topic for future research on
software engineering rationale.

4.5 Case-Based Reasoning as Design Rationale

4.5.1. From Automated Case-Based Reasoning to Case-Based
Design Aids

Case-Based Reasoning (CBR) (Riesbeck and Schank 1989; Kolodner
1993) began as a branch of artificial intelligence (AI) research. It was
meant as an alternative to the dominant AI approach, sometimes called
Model-Based Reasoning (MBR). MBR had run into well-known
difficulties, and CBR researchers thought their approach offered a way
around many of these difficulties. MBR is about reasoning from principles,
often in the form of rules or productions. Roughly speaking, CBR does not

62 4 Learning from Rationale Research in Other Domains

reason from principles but from similarity of a current problem to cases of
previously solved problems.

CBR originally dealt with the creation of automated systems that
mimicked the human ability to use knowledge of prior cases to deal with
new kinds of problems, but it eventually became clear that the number and
complexity of cases it could deal with in a completely automated manner
was quite limited (Narayanan and Kolodner 1995). To address these
problems, Kolodner began to look at developing nonautomated CBR
systems that aided human problem solvers in complex problem domains.
The idea was that, by learning how to aid humans who solved complex
problems, CBR researchers would get better insights about how these
problem solvers use large collections of complex and often incomplete
cases. These insights could ultimately be used to improve fully automated
CBR systems.

The primary applications domain chosen for study was architectural
design, i.e., the design of buildings. Kolodner and her computer-science
colleagues at Georgia Tech worked with faculty and students in the
Department of Architecture at that institution to create Case-Based Design
Aids (CBDAs) and populate them with information about buildings. This
effort resulted in a number of systems, including two versions of the
ARCHIE CBDA for building design and DesignMuse, a generalized
authoring tool for creating CBDAs for different domains of physical
artifact design. Originally the building domain was restricted to the design
of courthouses, but it was later expanded to deal with libraries and tall
buildings.

CBDAs are case libraries for design, i.e., “structured, indexed and
searchable databases of analyzed case studies” (Narayanan and Kolodner
1995) containing descriptions and evaluations of existing designs, e.g. the
designs of existing buildings. The descriptions are typically represented
using multiple media, including text and graphics. The purpose of a CBDA
is to provide information about lessons learned from the experiences of
previous designs so that current designers can avoid the pitfalls of past
projects and benefit from solution ideas that have proved successful in
such projects.

CBDAs contain cases structured around four major categories of
information: descriptions, problems, stories, and responses. Descriptions are
multimedia representations of designed physical artifacts. In ARCHIE these
take the form of annotated CAD drawings of floor plans, elevations, and
sections of buildings, as well as sketches, photographs, and animations.

Problems are descriptions of unresolved conflicts that are common and
persistent in a type of building. The following is an example of a problem
statement:

4.5 Case-Based Reasoning as Design Rationale 63

Clerestories [narrow, horizontal bands of windows just
beneath a ceiling] and skylights can help light large interior
spaces, but they can also cause costly environmental problems.
They can create hot spots in warm weather and increase air-
conditioning costs (Zimring et al. 1995).

Stories are brief representations, in text and other media, of how the

problem or a solution has manifested itself in a particular building. The
following is an example of a story about a solution for the above-given
problem:

In the Gwinnett County Courthouse clerestories and skylights

were used to illuminate the interior atriums. The high, angled
skylights are made of tinted glass. The depth and tinting of the
skylights helps prevent direct sunlight from flooding the building
(Zimring et al. 1995).

Responses are general strategies a designer might consider for resolving
the problems. There can be many suggested responses for each problem.
The following is an example of a multipoint response to the above
problem:

Use tinted glass where possible. Use clerestories rather than

skylights. Angle and inset skylights to block direct sun. Use
electronically moveable/controllable louvers (Zimring et al.
1995).

There can be many such responses to a problem.

CBDAs enable designers to retrieve information either by using special
case-based retrieval mechanisms or by browsing using hypertext links.
One of the special retrieval mechanisms automatically retrieves relevant
cases based on the designer’s description of a current problem’s goals and
constraints. The other uses an induction algorithm that clusters cases to
build a hierarchical index. Hypertext links in ARCHIE and other CBDAs
connect design descriptions to stories, stories to problems, and problems to
responses (Zimring et al. 1995.)

There can be many stories for a given problem. The same is true for problems
and responses.

64 4 Learning from Rationale Research in Other Domains

4.5.2 Discussion

4.5.2.1 Design Case Libraries as Design Rationale

The creators of ARCHIE and other CBDAs make no claim that the
information in these systems is design rationale (DR); yet there seems to
be little reason to doubt that it is. After all, the cased-based information in
ARCHIE deals with design problems, design solutions, and solution
strategies. It includes descriptions and evaluations of designed artifacts. Its
sole function is to provide information that can help designers to make
better decisions, i.e., to aid designers’ reasoning. And, as with almost all
other rationale approaches, the information in a CBDA is organized as a
hyperdocument of links and nodes of text and graphics.

While case-based information about design clearly must be counted as
design rationale, it differs profoundly from all other known types of design
rationale hyperdocuments, including those based on IBIS, PHI, QOC,
DRL, SCA or any of the SE-specific approaches currently in existence.
CBDAs provide a fundamentally different perspective on how to go about
collecting, structuring, indexing, retrieving, and using design rationale.
And this new perspective comes with a solid intellectual pedigree in
cognitive science and computer science. No picture of research on
rationale would be complete if it omitted the work on CBDAs like
ARCHIE. A crucial task for future rationale research will be to fit case-
based design rationale into the overall landscape of rationale approaches.

4.5.2.2 Design Case Libraries as an Alternative Approach to Reuse of
Rationale

In the rationale research literature there have been two main approaches to
reuse of rationale. One is the addition of rationale to design patterns. The
other is the use of domain-oriented issue bases (DOIBs). Design case
libraries represent a third fundamental alternative.

One way to attempt to understand the crucial differences between the
three alternative approaches to rationale reuse is to compare the ways in
which they use generalization and specificity when reasoning about new
projects. Rationale linked to patterns represents an attempt to create
generalized stores of reasoning, in other words, collections of rationale that
involve generalizations that apply to many specific design projects. This
can be seen as reasoning from principles, the central notion of MBR in AI
research. Case libraries for design, however, are based on a fundamentally
different approach to reasoning, namely CBR, which involves reasoning

4.5 Case-Based Reasoning as Design Rationale 65

from cases of previous, specific projects to draw conclusions about a
current, specific project.

DOIBs involves a type of reasoning that falls in between the MBR-type
of reasoning of pattern-based rationale and the CBR reasoning of case-
based design rationale. Where it sits in between MBR and CBR depends
on which of two distinct modes a DOIB is used in. One mode attempts to
create collection of texts—including issues, positions, and arguments—
that can be reused as is in many projects. This mode is exemplified by the
use of the DOIB for kitchen design in JANUS. In its reuse of unmodified
information in many specific projects this mode is like pattern-based
rationale except that there is no claim of either completeness or correctness
for the texts in the DOIB.

A second mode of use of DOIBs is provided by the virtual copying of
hypermedia networks that is available in PHIDIAS. This enables the
creation of a new DOIB by making and modifying a virtual copy of the
original DOIB using the prototyping inheritance mechanism in PHIDIAS.
This is typically used to create a more specific DOIB than the original, in
particular, one tailored to a specific project. This mode of DOIB usage is
in between the general-to-specific reasoning of pattern-based rationale and
the specific-to-specific reasoning of case-based design rationale, because it
uses generalized information but adapts it to a particular project.

There is also a third way in which the hypermedia network inheritance
functionality of PHIDIAS can be used. In this approach a new project-
specific issue base is created by virtually copying and modifying a previous
project-specific issue base. This approach takes a significant further step
towards the type of reasoning used in cased-based design rationale, but the
schema for issue-based rationale remains dramatically different from the
schema for cased-based rationale of CBDAs like ARCHIE.

4.5.2.3 The Relevance of Case-Based Design Rationale to Software
Engineering

Despite the fact that CBDAs have been created only for the domain of
physical artifact design, there seems to be no fundamental reason why they
could not be applied to software design and perhaps even to the full
spectrum of development and maintenance activities in SE. Given the fact
the case-based approach to rationale is so fundamentally different from
other rationale approaches, exploring its potential for SE would seem to be
an important topic for research in software engineering rationale.

Where case-based design rationale would appear to have special
promise is in the design of human–computer interaction (HCI), because it
is fundamentally a user-centric, rather than decision-centric, approach to

66 4 Learning from Rationale Research in Other Domains

rationale. Currently, there is only one user-centered approach to rationale
that is usable for this purpose, namely Scenario-Claims Analysis (SCA). In
fact, the current heavy emphasis on both static and animated graphical
representation of artifacts in CBDAs would be directly applicable to a case
library of HCI designs. Such a case-based approach to interface design
might be a useful complement to SCA, though it also seems possible that
the two approaches might be integrated.

Of course, most of SE does not deal with the creation of an intrinsically
graphical artifact as is the case with both physical artifact design and HCI
design. However, software design, like the design of physical artifacts,
does involve the use of models that have a graphical representation. Such
models can be annotated and could easily have problems, stories, and
responses associated with them. While these models are purely symbolic
in nature and do not have the natural mapping to the artifacts they
represent that iconic models like floor plans have to buildings, this does
not seem to constitute an insurmountable obstacle to the creation of
CBDAs for SE.

4.6 Summary and Conclusions

There are fundamental issues to be resolved before much of the research
on rationale in domains of physical artifact design can be applied to the
design of software; but the ideas in this research are important enough that
the effort to resolve these issues seems worthwhile. Above all, it is the
value of this work in the areas of rationale capture and change analysis
that recommends it to software engineers. It seems ironic that the work on
change analysis has made such progress in physical artifact design, where
there is generally much less change—especially change due to iteration
and evolutionary development—than is characteristic of software design. It
seems appropriate that software engineers endeavor to learn and benefit
from this progress.

Finally, it is interesting to note that all of the projects described in this
chapter in some way apply insights from artificial intelligence (AI)
research to the support of rationale. In particular, all but one of these
projects—the one based on Case-Based Reasoning—bring active
computational aids to support the capture and retrieval of rationale in
artifact creation. This suggests that researchers in SE should seek to
answer the questions of what other ideas from AI and what other
computational aids might support rationale not only in software design but
in the full spectrum of SE activities.

5 Decision-Making in Software Engineering

This chapter examines human decision-making, its role in software
engineering, and the role that rationale can play in the decision-making
that occurs within software engineering.

5.1 Introduction

5.1.1 General

Software engineering can be conceived of as decision-making. Software
designers work their way through the software development process
essentially by making a series of decisions. Each of these decisions can
itself be analyzed as a complex episode of problem solving. Each decision
depends on a substantial amount of knowledge and/or conjecture; each is
highly constrained by prior decisions, and exerts substantial downstream
constraint on future decisions.

5.1.1 Objectives of this Chapter

In this chapter, we first describe decision-making problems, both generally
and with respect to software engineering. Focusing on the weaknesses of
human decision-making is a traditional approach in psychology and decision
science, and leads immediately to ideas about how to support and improve
human decision-making—specifically to avoid those characteristic
weaknesses.

We then consider decision-making in software engineering as
naturalistic decision-making in the sense of this term used by Klein
(1997a). Klein makes the important observation that humans are actually
quite accomplished decision-makers, as evidenced by our successful
performance in many complex and risky task circumstances. Naturalistic

68 5 Decision-Making in Software Engineering

decision-making focuses on identifying and analyzing the strengths of
human decision-making.

Finally, we consider rationale as a resource for and an outcome of
human decision-making, specifically in the context of software
engineering. Decisions that have already been made, and whose
consequences can therefore be observed and assessed, are the best possible
guidance we can have for future decisions.

5.2 Decision-Making Problems

5.2.1 Where Decisions Go Wrong

During the 1970s and 1980s, Kahneman, Tversky, and their colleagues
conducted an impressive series of investigations into human decision-
making (Kahneman and Tversky 2000). The core contribution of this work
is a detailed inventory and analysis of about two-dozen characteristic
biases of human decision-making. For example, the confirmation bias is
the tendency of human decision-makers to seek and prize data that
confirms their decisions over data that disconfirms their decisions. The
familiarity bias is the tendency of human decision-makers to consider
familiar data and interpretations as typical.

It is easy to see how such biases could undermine decision-making
outcomes. Consider the confirmation bias. Initial decisions are frequently
based on inadequate or misleading data just because better data takes more
time to identify, collate, and interpret, and accordingly becomes available
later in the course of investigation. For example, so-called emergent
requirements are often critical, but identified only after initial prototypes
have been developed (Brooks 1995). If data that enter the decision process
“late” are employed primarily to confirm initial decisions, poor decisions
will tend to be confirmed, not eliminated. In such a process, emergent
requirements will rarely trigger a change of direction in system develop-
ment, which is arguably their primary raison d’être.

The familiarity bias would cause a software engineer to weigh his or her
own professional experience too highly, misinterpreting what is personally
familiar, but possibly idiosyncratic, as being universal. For example, a
designer might justify a decision by asserting that people in general need
and desire a particular feature or function, when it is only the designer that
actually experiences this need or preference. At the root of the familiarity

5.2 Decision-Making Problems 69

bias is the assumption on the part of decision-makers that they are more or
less just like everyone else.

Nigel Cross (2003) comprehensively surveyed empirical studies of
designers, and identified several further biases that appear to be specialized
for human decision-making and problem solving in the context of design.
The strongest of these is the solution-first bias, the tendency of designers
to rapidly frame a solution to a problem they do not yet fully understand.
This initial solution is then used as a vehicle to explore the problem further
(see also Lawson 1979; Carroll 2000). Interestingly, the solution-first bias
is actually more pronounced in the strategies of more experienced
designers than it is in the work activity of less experienced designers
(Lloyd and Scott 1994).

It easy to deduce that the solution-first bias and the confirmation bias
jointly entail a behavior pattern in which designers rapidly make solution
decisions before adequately understanding the full problem space, and then
disproportionately adduce confirmatory evidence to justify what was quite
likely an ill-considered decision. Indeed, Cross (2003) reviews
considerable evidence of this pattern, which he calls fixation, from many
design domains, including software engineering (Guindon 1990). He also
reviews evidence that decision fixation causes poor design results (Smith
and Tjandra 1998).

5.2.2 Poor Decisions in Software

With respect to the characteristic weaknesses of human decision-making,
there is no reason to think that software is special. Brooks’ (1995) classic
discussion of emergent requirements in the IBM System 360 project is a
clear instance of solution-first design aggravated by the confirmation bias,
leading to poor design decisions. His famous conclusion that designers
need to be prepared to “throw one away” is a strategic orientation to
managing these characteristic biases.

However, decision-making is not a topic that is energetically focused
upon in software engineering research. For example, Ngo-The and Ruhe
(2005) surveyed the requirements engineering technical literature for the
five years 2000–2005 and found only 44 articles that addressed decision-
making. In general, software engineering has approached decision-making
normatively—seeking to avoid the pitfalls of human decision-making
biases by enforcing structured models for decision processes. The classical
decision model (e.g., Janis and Mann 1979) is not so much a model of how
people actually and naturally make decisions as a prescription for how

70 5 Decision-Making in Software Engineering

decision-makers ought to make decisions. Table 5.1 enumerates a typical
version of this model.

Table 5.1. Classical decision model

1. Exhaustively survey and enumerate alternatives
2. Identify criteria and cost–benefit tradeoffs for evaluating alternatives
3.Weigh each criterion (iterate until weightings are complete and consis-

 tent)
4. Rate alternatives: for each of the top alternatives, follow entailments

 of contingencies and interactions with respect to linked decisions
5. Pick best alternative

At first encounter, this model seems impressively comprehensive. It
presents an algorithm for making an optimal decision. Who could ask for
more? Ironically then, it has come as a surprise to many research and
practitioners that this model is both impossible to implement and
fundamentally inadequate.

The model is impossible to implement because in any decision domain
of reasonable complexity, most of the steps enumerated in Table 5.1
cannot be carried out. Thus, for most software engineering decisions, one
cannot enumerate a priori the space of possible alternatives. Indeed, in
many complex decision domains, discovering new alternatives—at least
novel variants of known types of solution strategies—is routine, and often
required. Moreover, it is often not practical to take an enumeration
approach because doing so would take too long, or consume too many
other resources, chiefly human effort.

The problems do not stop there. Identifying criteria and cost–benefit
tradeoffs is clearly important for evaluating alternatives. However, it is
often not possible to identify a set of criteria that are strong enough (in the
sense of measurement theory) and mutually orthogonal to guarantee that a
complete and consistent weighting is possible, let alone practical.

The classical model of Table 5.1 is suitable for modeling decision-
making in highly constrained circumstances, such as certain games. The
algorithmic nature of the model facilitates explicit computational modeling
of such decision-making, and has played an important role in decision-
making agents (Chaib-Draa and Dignum 2002). However, in real-world
decision-making, such as the decision-making in software engineering, the
classical model leads to indeterminacy and deadlock.

5.3 Naturalistic Decision-Making 71

5.3 Naturalistic Decision-Making

5.3.1 Background

The classical model of decision-making is not only impossible to
implement, it is inadequate: it fails to identify, describe, and explain
anything about some of the most important aspects of human decisions and
decision-making. As discussed earlier, Rittel (Rittel and Webber 1973)
observed that decision-makers in urban planning often became lost in a
web of decisions they could not keep track of, and were overwhelmed by
wicked problems that fundamentally had no optimal solution, and indeed
offer only a set of variously unattractive compromises. Rational,
hierarchical decomposition methods cannot solve such problems: there is
no single correct decomposition, and the combinatorics of problem
features overwhelm any exhaustive analysis.

Gary Klein (1998), from whom we have taken the term naturalistic
decision-making, describes vividly how he embarked on a 15-year
program of research on decision-making. The first thing he noticed was
that everything he had expected—based largely on the classical model—
was wrong. For example, real expert decision-makers do not even try to
enumerate all alternatives, and indeed they often make decisions
instantaneously, without even considering a single alternative course of
action.

Although studies of decision-making biases and other decision-making
problems provide an important source of guidance in understanding
decision-making in real domains, such as software development, these
studies are themselves biased in a peculiar way. In order to eliminate the
complicating influences of domain semantics, tacit expert knowledge, and
of overlearned professional practices, psychologists and decision theorists
often study simplistic and contrived problems.

However, this can be seen as just another bias: After all, a contrived
puzzle context is a context. It is a serious—and open—question whether
the lessons gained from studying a puzzle context can be generalized to
other contexts such as software development. Real decisions are embedded
in workflows, data gathering, conversation, and planning. They are almost
always based on inadequate information, unclear and sometimes
contradictory goals, time and other resource pressure, and relatively high
costs of failure. Decisions are typically made in dynamic circumstances; if
the decision-maker hesitates, the problem has changed. Decisions are not
answers to puzzles printed on a page.

72 5 Decision-Making in Software Engineering

A second worrisome characteristic in “classical” studies of decision-
making is their focus on bias and error. Of course, understanding these
pathologies of human decision-making is vitally important for designing
instruction and support for decision-makers, but it is not the whole story.
Humans may be biased in characteristic ways, but they are also quite good
at decision-making.

5.3.2 The Recognition-Primed Decision Model

These two lines of critique come together in Klein’s (1998) recognition-
primed decision model. In this model, expert decision-making is chiefly a
matter of classification. Experts experience situations as exemplars of
known prototypes. If they make such a classification, and cannot
immediately reject the classification as specious, then they know what to
do from past experience. If they do reject a classification, they examine the
next-most-likely classification, and so on.

Klein calls the recognition-primed decision strategy “satisficing,” after
Simon (1957). The strategy selects the first acceptable alternative. This
contrasts sharply with the five-step classical decision model enumerated in
Table 5.1. Klein’s model involves a variety of sophisticated intellectual
mechanisms such as intuitions (through which the decision-maker
apprehends the situation holistically as a pattern in time, and evaluates
qualitative expectations about change), analogical reasoning (in which the
decision-maker deliberately sees aspects of the problem situation
counterfactually or metaphorically in order to reason more creatively), and
mental simulation (in which the decision-maker steps through an analog
mental model to assess decision consequences and trajectories). However,
most notably and importantly, Klein’s model actually accords with
observations of expert human decision-makers, such as firefighting, air
traffic control, aircraft operations, obstetric medicine, software engineering,
and crisis management.

Decision-makers recognize current circumstances as instances of
patterns they have encountered before. They build models of current
situations to support further exploration through what–if reasoning, with
the objective of understanding the situation just well enough to identify a
satisfactory and actionable option. These models are very rich in the sense
that they incorporate a huge amount of expert domain knowledge, but they
are often quite informal. Stories and analog mental models are often used
because they can incorporate a lot of the expert’s knowledge, yet still be
flexible and open to further elaboration and development.

5.4 Rationale as a Resource for Decision-Making 73

Klein reports that these models are sometimes anti-models in the sense
that they vividly present features of the problem context or of alternative
outcomes that the decision-maker wants to avoid. This is a highly adaptive
natural strategy of decision-making. The Danish ergonomist Jens
Rasmussen (1974) emphasized that that error is inevitable in tasks of any
complexity, and that one of the most effective strategies for curtailing the
consequences of human error is to make error as visible as possible. Anti-
models are cognitive tools through which experts decision-makers regulate
their own potential decision-making errors.

Klein’s ideas about naturalistic decision-making are highly compatible
with a broader revisionist movement in contemporary social, cognitive,
and behavioral science that has urged greater attention to what people do
in real situations, sometimes called “situated cognition” (e.g., Lave 1988).
The leading idea in situated cognition is that social and material contexts
are resources for human cognition and action. To take a favorite example,
it is much easier to reason about lumps of butter for a cookie recipe than it
is to carry out multiplication of fractions. In this view, it is simply
idealistic to analyze decision-making without considering that real
decisions are characteristically complex problem solving carried out in
near-real time, high uncertainty, and high downside risk simultaneously
constrained by political, social, organizations, human, technological,
functional, temporal, budgetary, and other resource factors. As we noted in
Chapter 1, rationale is a tool for benefiting from lessons learned.

5.4 Rationale as a Resource for Decision-Making

When people make decisions, they are accountable. All decision-makers
know that they may be asked why a decision was made the way it was,
why an alternative was selected, or why a different alternative was not
selected. The answer to such “why questions” is the decision rationale. If
we think of the software development process as a lattice of decisions,
unfolding in time, then rationale is the justification for each of those
decisions.

Codifying and maintaining rationales can provide guidance in decision-
making by helping to evoke reflection and self-criticism. Codified
rationale can be useful subsequently by summarizing the patterns and the
lessons of ones professional experience, and that of other professionals.

74 5 Decision-Making in Software Engineering

5.4.1 Classical Decision-Making

The classical decision model (Table 5.1) begins with an exhaustive
enumeration of alternative decision outcomes. Rationale provides
evaluation criteria and cost–benefit tradeoffs for evaluating these
alternatives, as well as guidance in weighing each of the decision criteria,
and using them to rate the alternatives.

As we have already observed, complex decision-making does not, and
cannot, follow this model. Nevertheless, as in other intellectual endeavors,
ideal models have their place. As Parnas and Clements (1986) cleverly put
it, there are good reasons to “fake” a rational design process. They note
that ideal descriptions are often simplified to make important concepts and
relationships more salient (cf. acceleration in the physics of frictionless
planes). They note that idealizations can provide standards for reference,
rather than standards anyone would or could actually follow. In this way,
idealizations can help to create and sustain a professional practice—even
though they do not exemplify actual practice.

Much work on design rationale in software engineering follows this
model. For example, in one of few empirical studies of rationale in
software engineering, Conklin and Burgess-Yakemovic (1991) showed
that an explicit Issue-Based Information System (Rittel and Webber 1980)
rationale—visualized with their gIBIS tool—enabled several actual
software errors to be identified. However, the rationale was created
through a deliberate and effortful research manipulation, not through the
routine and authentic practices of software engineers. The rationale was
presented with an extremely powerful (for the 1980s) graphical
visualization system. And the rationale was ultimately used effectively
through a quirky procedural machination: because of a software upgrade,
the rationale database had to be hand-transcribed into a new storage
format, and it was during this transcription that the software errors were
discovered.

Conklin and Burgess-Yakemovic did not study naturalistic software
development: their study gives no reason for us to hope that software
engineers can actually be coaxed into creating or using Issue-Based
Information Systems, and surely they did not intend to propose that
transcribing rationale databases by hand should be a routine step in making
use of them. Rather, they studied a research model that in effect faked a
rational process. However, the study showed that under idealized
circumstances it is possible both to capture and use rationale. This is an
important contribution, and has made this study a widely used pedagogical
case.

5.4 Rationale as a Resource for Decision-Making 75

5.4.2 Naturalistic Decision-making

Naturalistic decision-making emphasizes the semantics and dynamics of
real-world contexts of decision-making, and the considerable domain
knowledge and skill of expert decision-makers. This is far more than merely
the logical warrant, and the line of reasoning for decision outcomes, as it is
in classical decision-making. Rationale in naturalistic decision-making
includes the circumstances in which the decision rationales were noticed and
developed, the personal experiences, stories, professional beliefs, and values
of the persons who articulated the rationales, the methods they used, and the
specific instances of observed or conjectured system behavior and user
interaction that were employed in developing the rationale.

But how could that sort of rationale be captured and used? Klein (1998)
suggests that the stories about episodes of practice shared among expert
decision-makers are an important transmission medium for the patterns
that experts recognize so quickly in actual decision-making. Wenger
(1998) describes stories as a typical vehicle in professional communities of
practice to share results about ways of doing things. Indeed, in the late
1940s Herman Kahn had described the “accidental war” scenario in which
an isolated nuclear error precipitates all-out war, a story that guided Cold
War geopolitics for 50 years (Kahn 1962).

Carroll et al. (1994) videotaped stories from members of a development
team at 6-month intervals over a 2-year project. Team members generally
found it enjoyable to share their accounts of how issues were identified
and analyzed, how project decisions were made, and what challenges were
currently being faced. Interestingly, different team members often told
fundamentally inconsistent stories. A digitized database of the stories was
found to be especially useful in helping to quickly orient new team
members (Karat et al. 1995). Constructing this video database of informal
story-based rationales was arduous, though digital media tools have
improved considerably since 1992.

The more general lesson is that, in order to emerge from and to
effectively assist naturalistic decision-making in software engineering,
rationales need to be well integrated into the social activities of learning
and performance in software development. Stories are a good example of a
naturalistic strategy for rationale, because narrative is so fundamentally
human—as evidenced by dreams, myth, folklore, and everyday human
social interaction. Other complementary strategies involve integrating the
creation of and access to rationale into debuggers, bug-trackers and other
software development tools and environments.

Naturalistic decision-making entails a different epistemological stance
toward rationale than classical decision-making. It does not necessarily

76 5 Decision-Making in Software Engineering

(and we would argue it definitely should not) reject the logic-based and
schematic rationales of classical decision-making; rather it encompasses
these and much more with respect to the situations in which rationale and
its use is embedded.

5.5 Summary and Conclusions

Design rationale is both a natural strength and weakness of human
decision-makers. From the standpoint of naturalistic decision-making,
humans have a strong desire to understand the causal dynamics of
outcomes. Humans are not satisfied with faits accomplis; they want to
know why. However, rationale—whatever else it may be—is
documentation, and if software engineers and their users agree on
anything, it is that most documentation is too much trouble to write or to
read.

The resolution of this yin–yang of rationale is to acknowledge that
rationale is an essential resource for reliable and effective human decision-
making. Good decisions in any domain require support for sharing and
developing best practices. A key challenge in designing rationale is to
evoke the interest of decision-makers in understanding and assimilating
explanations of prior decisions, while not overwhelming them with
information, or information management tasks.

Part 2
Uses for Rationale

One of the major stumbling blocks in rationale research has been the fear
that rationale may not be worth the cost of its capture. With the continuing
emphasis on software quality and process improvement, the development
community has become more aware that software development is not only
about producing code and that the upfront costs of a more rigorous process
result in downstream savings. The question is, how can the rationale be
used and do the uses justify its cost?

The first use that comes to mind for rationale is the most simple—
presenting the rationale to the software developer or maintainer when they
need it. The presentation of rationale (Chapter 6) helps the developer learn
about the software and the criteria that guided its development, and helps
them to avoid errors in future decisions.

Rationale supports the ability to evaluate decisions (Chapter 7) to ensure
that the choices made during development are the ones that best meet the
needs of the system stakeholders. The importance of this evaluation is
highlighted in the CMMI’s inclusion of the Decision Analysis and
Resolution process area (CMMI Team 2006).

Software development is a highly collaborative process since most
systems are well outside the size and scope where they can be developed
by only a few people. The support for collaboration provided by rationale
(Chapter 8) has been demonstrated by field studies (Conklin and Burgess-
Yakemovic 1991) and was highlighted in a talk on collaboration presented
at the Future of SE track of the 2007 International Conference on SE
(Whitehead 2007).

Unlike with hardware, software engineering rationale can be directly
connected to the artifacts that it describes. These connections allow
rational to support change analysis (Chapter 9) by identifying interdecision
dependencies and showing the developer how changes in decisions affect
the software. This, and the other uses described in this chapter, clearly
indicates that rationale has the potential to provide software development
assistance that far outweighs the cost and effort required to capture it.

6 Presentation of Rationale

This chapter examines issues of presentation for software engineering
rationale (SER). The substance, the content of rationale, is always
mediated by some presentation. The presentation could be free form,
natural language text, or a formal, symbolic language; it could be printed
sheets of paper, or three-dimensional displays in a virtual environment.
The presentation of rationale has its own effects on the utility of rationale
as an information resource in software development.

6.1 Introduction

6.1.1 General

The ingenuity and effort of creating a sound and comprehensive rationale
is only worthwhile if people can use it. The use of rationale is always
mediated by its presentation. The presentation of a rationale can be
relatively formal and symbolic, for example, using types and logic with
labeled links, or it can be relatively informal, such as free text or even a
videotaped interview with a designer explaining his or her design. Various
approaches to presenting rationale themselves have rationales. One
significant advantage for Software Engineering Rationale (SER)
presentation is that, unlike hardware devices, the designed artifacts
themselves are stored electronically. This supports the potential to attach
the rationale for the artifact directly to the artifact in ways that are
impossible in other design domains.

6.1.2 Objectives of This Chapter

This chapter describes the main line of development of the IBIS (for Issue-
Based Information System) notation for rationales, from the early
innovations of Kunz and Rittel (1970), through work on hypertext and

80 6 Presentation of Rationale

hypermedia rendering of IBIS graphs, through to studies of the use of IBIS
and IBIS-derived approaches to presenting rationale. One of the key issues
that emerges from this line of research is that there is a tradeoff between the
discipline and clarity that one obtains from casting a design discussion into
as IBIS presentation, and the inflexibility and cumbersome aspects of
working with IBIS. In part, these tradeoffs led to a turn toward informal
presentations of rationale in the mid-1990s and subsequently. Today,
reconciling these approaches, and enhancing them through new techniques
in information visualization, seems feasible, and perhaps even more
necessary as the role of the software developer expands to include end users.

6.2 Codifying Rationale Semiformally

6.2.1 The rationale for rationale notations

Discussions of rationale quite appropriately tend to start with Kunz and
Rittel’s (1970) concept of Issue-Based Information Systems (IBIS). IBIS
presents rationale as a structured discourse of arguments that support or
oppose positions that themselves correspond to issues. This results in a
straightforward and explicit relational decomposition of issues, positions,
and arguments. However, IBIS quickly gets more complex: arguments can
support or oppose other arguments as well as positions, and in particular, a
given argument can support/oppose arguments that pertain to other
positions on other issues. Issues have many interrelationships; one issue
can illustrate another issue, generalize another issue, resolve another issue,
etc. Thus, the hierarchy of issues, positions, and arguments is actually a
network.

The key insight of IBIS can be regarded as essentially presentational:
Kunz and Rittel emphasized that in planning and design problem solving
the key ideas, the “solutions”, were often “there” in plain view, but not
always identified, weighed, and valued appropriately. IBIS makes explicit
how the elements of a complex problem solving process interrelate. It
presents the underlying argumentation as a graph of related propositions so
that planners and designers can have more precise discussions.

An IBIS presentation of the status of a design rationale makes public
what issues are currently identified and how they are related. This can
focus disagreements and discussions and make them more productive. For
example, a debate about what the positions are with respect to an issue is
very different from that of how various arguments support or oppose a set

6.2 Codifying Rationale Semiformally 81

of positions. It is efficient to distinguish between these two sorts of
debates, among others.

An IBIS presentation of a design process can also be a generative tool.
Laying out the network of currently identified issues, positions, and
arguments, helps to suggest further issues that need to be raised, or further
relations among issues already identified; it makes clear what positions have
been identified for each issue, perhaps suggesting positions that still need to
be articulated. Setting out the arguments for every position shows which
positions are better supported than others, suggesting where attention can be
focused to strengthen and/or eliminate some of the current positions.

problem solving process, and poses a detailed agenda for further discussion
and action. It seeks to improve the outcome of deliberative processes by
highlighting divergence and even controversy. It gathers and integrates the
knowledge distributed among members of a planning or design project,
organizing the knowledge with respect to its relevance to the project. It
makes the bases of eventual decisions more transparent and auditable.

The network presentation of rationale, first developed as IBIS, has
become a standard visualization for subsequent rationale projects—even
those that construe the content of rationale in ways different from IBIS.
For example, Questions, Options, and Criteria (QOC) is a variant of IBIS
that seeks to document a design solution, as opposed to the discussion
process that led to the solution (MacLean et al. 1989). Thus, where Kunz
and Rittel (1970) wanted to capture and present the actual issues, positions,
and alternatives as they were discussed in a design process, including parts
that ultimately had no tangible impact on the final design solution, QOC
seeks to present only the design argumentation that justifies the design
solution. MacLean, Young and Moran (1989) saw QOC rationales
themselves as a form of designed documentation for a design solution.
Nevertheless, QOC rationales are typically presented in graphs that are
isomorphic to IBIS graphs: design questions (essentially, IBIS issues), the
options that address them (essentially, IBIS positions), and the criteria for
assessing options (essentially, IBIS arguments).

6.2.2 Hypermedia Presentations of Rationale

IBIS was originally conceived as a paper-based information technology.
However, as IBIS argument networks get larger and more complex, they
become very difficult to read and edit in paper: they are too large for
standard-sized sheets of paper, and as they change and grow, pages

Thus, an IBIS presentation both explicitly codifies the current state of a

82 6 Presentation of Rationale

become cluttered with crossing lines, erasures, and annotations, and purely
paper representations are not convenient to save, and very difficult to share
with remote collaborators or to adapt and reuse in subsequent projects.

IBIS has been incorporated into design war-room practices in which a
design problem is analyzed and managed through paper-and-string
representations pinned to the walls of a workroom (Newman and Landay
2000; Whittaker and Schwarz 1995). Wall-sized pin-up representations are
large enough to display nontrivial IBIS graphs, and, relative to paper, they
are easily edited. However, rooms are expensive and cumbersome in their
own ways as representational media: they cannot be saved for subsequent
reference or reuse, and they cannot be shared with remote collaborators.

The advent of hypertext and hypermedia in the mid-1980s provided a
breakthrough in the presentation of IBIS rationales. Conklin and Begeman
(1988) described graphical IBIS (gIBIS), a browsing and editing tool for
navigating and managing vast rationale networks. This tool provided many
of the navigation and maintenance affordances of a wall-sized pin-up
display, but rendered them accessible through a workstation user interface.
This made possible saving, sharing, and reusing IBIS graphs.

Many hypermedia and hypertext tools for presenting rationale have been
developed. For example, McKerlie and MacLean (1993) prototyped a
hypermedia QOC rationale browser that incorporated documents,
diagrams, images, and other media types directly into the nodes of a QOC
graph.

6.2.3 Using Semiformal Rationales

Semiformal rationales lie in the gray area between notations with known
properties and free-form expressions of rationale. Through the nearly 40
years of experience with IBIS and its descendants, there has always been a
tension between beliefs that the discipline of categories and links could
help to focus design thinking and beliefs that the notation could be an
awkward distraction from the substance of design thinking. Indeed,
Conklin and Begeman (1988) reported both patterns among their early
users.

One of the benefits of semiformal notations is that they project a
template structure onto design argumentation, highlighting gaps, and
thereby helping to further articulate requirements. Because gIBIS was
actually implemented and used (albeit mainly in research laboratory
software development projects), it helped to identify some of the second-
order challenges for rationale browsers—challenges that could only
become apparent through the real use of rationale presentation tools.

6.3 Codifying Rationale Informally 83

Conklin and Begeman (1988) noted, for example, that the use of gIBIS
helped to identify some specific problems having to do with the fact the
IBIS does not represent design decisions per se. Decisions are critical events
in design discussions; they resolve sets of positions on an issue, selecting
one position and rejecting the others. The chosen positions are often
embodied as a solution element (e.g., a specific piece of code). Conklin and
Begeman (1988) observed that users had to keep track of design decisions
and their associated solution elements outside the gIBIS system.

Conklin and Begeman considered indicating selected positions through
display highlighting, to distinguish them visually from the rejected
positions. However, one deficiency of this approach is that the rationale for
the decision itself—as distinct from the rationale for the position as a
response to a given issue—cannot be represented. A more comprehensive
approach, also discussed by Conklin and Begeman (1988), is to create a
separate layer of meta-argumentation for discussion about nodes and
groups of nodes in an IBIS graph. This approach obviously adds a great
deal more complexity.

In the early 1990s, influential empirical studies of the use of semi-
formal rationales presented through hypermedia browsers identified
substantial cognitive and social obstacles (Buckingham Shum and
Hammond 1994). Indeed, these specific studies were assimilated to a more
general critique of efforts to support intellectual work directly with formal
and semiformal knowledge representations (Grudin 1994; Shipman and
Marshall 1999a). Recent work on semiformal rationales presented through
hypermedia browsers has focused on providing a richer vocabulary of
categories and data types, and more flexible user interactions (Buckingham
Shum et al. 2006.).

6.3 Codifying Rationale Informally

The tradition of rationale presentations inaugurated by IBIS focused on
constrained symbolic descriptions. This was intended to benefit analysts
and designers by providing a relatively precise description language as
well as a discipline for using the language. However, for the most part this
is more of an intention, a vision of what rationale could be, rather than an
achievement tout court.

The semiformal notations, such as the standard IBIS graphs, do not
actually provide very much descriptive constraint, and to the extent they
do provide constraint—as in the example of including no category for
decisions, the constraint were sometimes found to be inappropriate.

84 6 Presentation of Rationale

Nevertheless, pursuing even a programmatic interest in constrained
descriptions is different, eschewing such concerns. Starting in the mid-
1990s, less formal approaches to rationale became more common.

Many of these less formal approaches to rationale were part of a
concurrent rethinking of software design, and a turn toward less formal
approaches to specifications and other software design representations
(Carroll 1995; Fowler 2003). A central characteristic of these approaches
was (1) a focus on narrative: stories of workflows and other organizational
processes, scenarios of user interaction, and use cases of system interactions,
and (2) a deliberate compromise of semantic precision for conceptual
richness. Thus, where IBIS tried to impose (albeit programmatically)
conceptual austerity on planning and design—the most “wicked” of problem
types, in Rittel’s famous term—these latter approaches took the more
naturalistic stance of confronting the wickedness first.

Scenario-Claims Analysis (SCA) conceptualizes the rationale for
interactive software systems as a collection of natural language
propositions (claims) that are implicit in the usage scenarios afforded by
the system (Carroll and Rosson 1992; Carroll 2000). The propositions are
used to identify tradeoffs in the rationale for the system. Consider a simple
scenario in which a person is trying to copy text using an information
system that grays out currently inappropriate/disabled menu items. Going
to the Edit menu before selecting the text to be copied, the person finds
Copy grayed out, but after selecting the text, the Copy command is no
longer grayed out, and the operation can be completed. This scenario
illustrates a claim that graying out is an effective visual signal for currently
inappropriate/disabled commands. This claim also helps identify potential
tradeoffs, downsides of the graying-out technique; for example, the user
might not make the right interpretation; the grayed-out command might
just seem to be broken in the software, instead of suggesting that its
argument needs to be specified.

SCA rationales are usually presented in tables, not as IBIS graphs, but in
fact there is an obvious, though perhaps rough, mapping between the two:
each scenario in SCA presents an issue, or possibly a nexus of related
issues. The design artifacts described in the scenario (such as the graying-
out technique) are positions that respond to the issue or issues, and the
claim tradeoffs are arguments for and against these positions. Of course
there are also differences: a user interaction scenario is both more complex
and more narrow than an IBIS issue. For example, scenarios often present
more than one issue, and generally illustrate only a single position for a
given issue, not a range of possible positions responding in various ways to
the issue. A similar comparison can be carried out for other scenario-based
approaches such as Lewis, Reimann, and Bell’s (1996) problem-based

6.4 Directions 85

evaluation approach in which a set of problem scenarios are identified,
each presenting one or more issues, and then used to analytically evaluate
a set of design proposals (positions) via an informal walkthrough
(producing a set of arguments for the positions).

Other contemporaneous efforts at naturalistic capture and presentation of
rationales explored narrative frameworks that were even less schematic than
scenarios. Some of this work captured ethnographic design history material.
For example, the Raison d’Etre project captured and presented the individual
rationales and understanding of project members at specific points in time
during a software development project. A dozen core members of a software
product design team were recurrently interviewed during a 12-month period.
The developers were individually asked about the goals and approaches of
the project. A video database of about a thousand short clips was created
(Carroll 2000; Carroll et al. 1994). The video clips could be browsed and
retrieved using a set of tags (e.g., <project vision>).

This project showed that there is an abundance of rationale generated
every day in software development. However, it also showed that there is
only a partial convergence and consensus as to why decisions were taken,
or even about what decision were taken. Developers were very interested
to review and discuss the database of interview clips, but the most practical
application of the Raison d’Etre materials was to help new project
members get better oriented to the issues that the project had faced, the
diversity of positions that had been taken, and arguments that had been
advanced for those positions.

Mackay, Ratzer, and Janecek (2000) also employed video to capture and
present design requirements, concepts, and rationales. Their approach
focused on documenting a system in use by videotaping both expert users
and novices in actual work contexts. They also videotaped design meetings
in which new design proposals were described and critiqued. Finally, they
used these real materials to plan and construct animated storyboard
scenarios showing how particular design proposals might be implemented
and how they might change the system in use.

6.4 Directions

The original challenge in presenting rationales was the complexity and
vastness of the considerations that can bear on wicked problems of
planning and design. The IBIS notation brought an order to research on
this challenge, but the challenge remains. Today, software technology
advances in databases, and more generally in information repositories, and

86 6 Presentation of Rationale

in data visualization present new opportunities for developments in
managing rationale.

6.4.1 Reusable Rationale Databases

Since the early 1990s, papers on design rationale have suggested the
possibility of repositories or libraries of rationale. Indeed, one argument
that could be made for semiformal design rationale notations is that they
provide a rubric for structuring and retrieving rationale elements in such
repositories. Such repositories could improve the cost–benefit balance for
developing rationales in three distinct ways: they amortize the costs of
developing comprehensive design rationales by permitting many authors to
contribute rationale, they could improve the validity and applicability of
rationales by moving the level of design discourse beyond single projects
and into the entire software design community, and they could increase the
benefits of developing rationales by allowing many developers to access
and use rationales once they are created.

Sutcliffe and Carroll (1999) defined a structural schema for claims to
facilitate claim retrieval and reuse. Their schema includes a series of
labeled slots for each claim, including parent claims, projected usage
scenarios, design effects, upsides, downsides, issues, dependencies,
evaluation data, and basis in theory. Developers could search or browse a
claims repository using the values of these slots. Chewar et al. (2005)
adopted this proposal and developed a rationale repository to support the
design of notification systems (interactive interface displays like Really
Simple Syndication (RSS) clients that run in background of a primary task
and notify users of updates). Their Leveraging Integrated Notification
Knowledge with Usability Parameters (LINK-UP) system presents claims
for typical notification system scenarios. On-going evaluation of the use of
LINK-UP by novice designers has been encouraging (see also Fabian et al.
2006; Payne et al. 2003).

The Software Engineering Using RATionale (SEURAT) system (Burge
and Brown 2004) uses the RATSpeak representation (Burge and Brown
2003) implemented as a reusable rationale database schema. When
rationale is required for a new project, the initial rationale-base is
populated with the required schema tables and a fully populated Argument
Ontology that contains a hierarchy of reasons for making software
decisions. SEURAT has only been used as a single-user system. The
relational database would make it straightforward for multiple users to
contribute rationale but there are other SEURAT capabilities, such as the

6.4 Directions 87

ability to associate that rationale with the code, that cannot be distributed
using the current implementation.

6.4.2 Multi-Scale Presentations of Rationale

All of the standard presentations of rationale articulate a great amount of
structure at basically a single level. This is obvious in the vast networks
that gIBIS tried to manage through hypermedia browsing. However, in
some ways this does not reflect the structure of a rationale space as
designers and users experience it. Some issues, positions, and arguments
are first-order elements of the design argument; others are subordinate.
However, these relations are not necessarily clear or even codified at all in
standard IBIS graphs.

This could be seen as an example of multiscale data structures. For
example, in a map of the world the continents and oceans are always
visible, but the Hudson River may or may not be visible at that scale.
However, in a map of the state of New York, the Hudson River is always
visible, but the individual streets in the town of Ossining (located on the
river) would most likely not be visible, though they would be on a map of
Ossining or of Westchester County. The point is that map data is
understood to be multi-scale data, and is typically presented in multiscale
presentations.

Analogously, rationale data might be organized so that the coarsest scale
would present only the leading issues, positions, and arguments. However,
one could drill down to finer scales to see the subordinate issues, positions,
and arguments. The multiscale concept is most typically discussed with
respect to visualization techniques, as illustrated by maps. Perhaps its
application to presentations of rationale should be pursued especially with
respect to visualizations of design argumentation (e.g., Kirschner et al. 2003).

Wahid et al. (2004) describe a simple but concrete example from their
claims repository work: they visualize a central claim as surrounded by
concentric orbits of supporting or otherwise related claims. The user can
filter the visualization to see only the core claim, or to see only the core
claim with its most related claims, or to see the maximum map of related
claims.

6.4.3 Integrated Presentation

As stated earlier, the capture and use of rationale for software development
has a significant advantage over rationale for other domains. Since software
is stored entirely electronically, the rationale can be attached directly to the

88 6 Presentation of Rationale

artifacts that it describes. This is aided significantly by progress in software
development environments that have emphasized the ability to integrate and
extend the various tools used in developing software. These tools include
word processors used to write and access documentation, UML editing tools
used in design, and the Interactive Development Environments used to write,
edit, compile, and debug the code. The extensibility of software
development environments has also benefited from the increasing
availability and use of open-source applications in these environments,
which provide even more flexibility and openness in customizing the
environment to support and accommodate rationale.

One of the issues in the capture and use of rationale is the need for
developers to record and use their rationale as part of their normal
development process. The need to have to use a separate tool for rationale
has been a deterrent toward doing this. When examining past scenarios
where rationale could have been beneficial in saving time or money, one
question arises: would the person who could have benefited from the
rationale have actually looked at it? Would they have even known that it
existed? While rationale does have some benefit as a generative tool, it
should not be treated as “write-only” documentation.

Software design is often documented using the Unified Modeling
Language (UML). Zhu and Gorton (2007) developed a UML profile that
models design decisions in UML and captures the relationships (support,
break, help, hurt) between the decisions and nonfunctional requirements
(NFRs). UML stereotypes were used to model each of these elements. The
design decision stereotype describes the decision, design rules applying to
the system components, design constraints, the set of architectural
elements (such as UML classes) the decision refers to, and the rationale (in
an unspecified format). The NFR stereotype gives attributes specific to that
NFR, and the relationship stereotype describes any constraints that apply
to that relationship. The profile supports consistency checking between
design decisions and related architectural elements.

When building a Rationale Management System, one issue that must be
addressed is how and when the developer should be informed that there is
rationale available. Systems working in domains that are more constrained
than software, such as the JANUS system (Fischer et al. 1989) which
supported kitchen design, served as critics that presented rationale when the
designers’ actions appeared to contradict rules embedded in the system. The
user is informed of the presence of rationale when they make a decision that
appears to be incorrect. Rationale is also used interactively within a design
environment in the Representation and Maintenance of Process Knowledge
(REMAP) system (Ramesh and Dhar 1992) where the rationale behind the
functional specification is used to help make design choices.

6.5 Summary and Conclusions 89

While rationale can be used prescriptively to assist with designing, it is
also valuable when used descriptively by providing insight into why the
system is implemented the way it is. The user is more likely to be aware
of, and read, the rationale behind the code if the rationale is integrated
either directly into the code that they are modifying or the environment
that they are modifying it with. The SEURAT system (Burge and Brown
2004) integrated rationale capture and presentation into the Eclipse
(www.eclipse.com) development framework. The rationale argumentation
structure was displayed in a tree format within an Eclipse “view.” In
addition, three standard Eclipse views were extended/used to show the
presence of rationale: the Java Package Explorer was augmented by an
icon overlay on every file that had associated rationale, rationale
associations were stored as Eclipse “bookmarks”, and each bookmark
giving an association was shown in the editor used to modify code. The
bookmarks could be used to jump directly from the rationale alternative to
the code that implemented it. The goal behind the integration was to
reduce the likelihood of a developer or maintainer working with code
while oblivious to the presence of the rationale that could assist them.

6.5 Summary and Conclusions

Probably the two greatest innovations in presenting rationale are still the
original information schema of IBIS and the gIBIS hypermedia browser
for IBIS graphs. Some of the dichotomies that have structured research and
development on rationale presentations during the past several decades
have dissolved. For example, the distinction between semiformal notations
and informal notations seemed paradigmatic in the early 1990s, but will
probably matter less as information systems increasingly create structure
out of content, and thus do not need to force structural constraints on the
humans that use them. Thus, the presentation of rationale—how it appears
to its human users—will tend to matter more in the future.

7 Evaluation

Software Engineering Rationale (SER) can play several roles in supporting
system evaluation. One is to support the evaluation of decision alternatives
by providing the means to capture the arguments for and against each
alternative. The rationale can be used to automatically calculate support for
alternatives and present it to the developer to assist them in making, or
revising, their decisions. Rationale also supports usability evaluation by
providing a process for analyzing use scenarios via Scenario-Claims
Analysis (SCA) (Carroll and Rosson 1992; Carroll 2002). In this chapter,
we discuss a number of approaches for using rationale to evaluate the
alternatives to assist with decision-making and also how SCA supports
usability evaluation.

7.1 Introduction

7.1.1 Argumentation-Based Rationale

7.1.1.1 Decision-Making in SE

Developing a software system requires making many different types of
decisions. Decision-making consists of generating alternative solutions, or
approaches, identifying the reasons for and against these alternatives with
respect to evaluation criteria, and selecting the “best” alternative based on
these reasons and criteria.

Decisions made during software development affect many aspects of the
development process and the developed product:

• Product decisions – What is being developed? Who should it be
marketed to? Who is the customer/user? What are the requirements?
Where does the system need to run?

92 7 Evaluation

• Process decisions – How should the system be developed? What
process model should be followed? When should versions be released?
What level of documentation needs to be produced? What is the testing
strategy?

• Management decisions – How should the development team be
structured? Who should be on it? What resources should be made
available to the project?

• Development decisions – What development tools should be used? What
components can be integrated? What is the system architecture? What
are the data structures?

These are only a few examples of the many different decisions and
decision types that need to be made. The results of each decision may be
important to a different collection of stakeholders. For example, a system
user would be interested in decisions regarding functionality but not as
concerned with process models or data structures.

Each decision also has several different types of criteria that influence
alternative selection. These criteria include functional requirements, non-
functional requirements, assumptions, dependencies, risk, and constraints.
The degree to which an alternative meets or fails to meet criteria may vary
as well as the certainty in that evaluation. The decision-making task is
further complicated by criteria differing in importance.

7.1.1.2 Rationale and Decision Support

The information generated and used during decision-making consists of
decisions required, alternatives considered, reasons for and against the
alternatives, and the criteria used for evaluation. This information forms
the rationale for the choices made as a software system is developed and
maintained. The rationale can be used to evaluate these choices and
support the human decision-maker by advising them if their decisions are
inconsistent with the rationale that they recorded.

The rationale can both be evaluated itself and used to support evaluation
of the decisions made. Evaluating the rationale itself involves syntactic
checks on the structure of the rationale and semantic checks that analyze
its content (Conklin and Burgess-Yakemovic 1996). An example of a
syntactic check would be to look for missing information, such as
decisions where alternatives were not chosen, while semantic checks
would look for contradictions in reasoning, such as arguments that are
used to both support and refute an alternative.

Evaluating the decisions made involves using the rationale to indicate
which alternatives are preferable over other alternatives and why. The

7.1 Introduction 93

method of evaluation and the inputs to each method vary depending on the
complexity of the problem and the types of information available.
Decisions may involve looking at different types of criteria (functional and
nonfunctional requirements, assumptions, constraints, etc.), conflicting
opinions from multiple decision-makers, uncertainty, shifting priorities,
and missing or incomplete data. The evaluation of an alternative may
change over time as well so there also needs to be a way to determine
when re-evaluation is necessary.

Selecting an evaluation method requires tradeoffs between the amount of
information required to use a method, the computational requirements (if
evaluation is computer assisted), and the required rigor. The value of the
evaluation is directly dependent on the ability to capture the rationale in
sufficient detail to support the method chosen. This chapter will describe
several alternative methods for computer-assisted evaluation of
argumentation-based rationale in order to augment human decision-making.

7.1.2 Scenario-Based Rationale

starting point of design. Scenarios describe how the user goes about
performing a task using the artifact that is being designed. Scenarios are
valuable because they are a way to take knowledge about system use that
is tacit, such as assumptions, and make it concrete (Carroll 2000).
Scenario- Claims Analysis (SCA) is the process of analyzing scenarios to
extract “claims”—implicit causal relations that describe the desirable and
undesirable consequences of design features described in the scenario
(Carroll 2000). These claims describe the rationale behind the scenario—
why the scenario operates the way that it does. Later in this chapter we will
describe how SCA can be used in evaluation.

7.1.3 Objectives of This Chapter

This chapter discusses the evaluation of and using argumentation rationale
as well as using rationale generated during scenarios-claims analysis for
system evaluation. For the argumentation evaluation, this chapter looks at
two types of evaluation: evaluation of the rationale itself for completeness
and correctness and using the rationale to evaluate decision alternatives.
For alternative evaluation, it concentrates on three issues: comparing the
alternatives, combining inputs from multiple developers, and handling
uncertainty. The focus is primarily on computational evaluation using
argumentation. The scenarios-claims analysis section describes how

Scenario-based design (Carroll and Rosson 1992) uses scenarios as the

94 7 Evaluation

analyzing scenarios to extract claims is a form of evaluation that can be fed
into the development of testing scenarios to gather evaluation data.

7.2 Evaluating the Rationale

argumentation. This format is a natural way to express the decisions,
alternatives, and arguments and can be read easily by people and
interpreted by computers. There are many argumentation formats which
date back to Toulmin’s warrants, claims, datums, backings, and rebuttals
(Toulmin 1958). These include the Issue-Based Information System
(IBIS) notation (Kunz and Rittel 1970), Questions, Options, and Criteria
(QOC) (MacLean et al. 1989), the Decision Representation Language
(DRL) (Lee 1991), WinWin (Boehm and Ross 1989), the Design
Recommendation and Intent Model (DRIM) (Peña-Mora et al. 1995), and
numerous notations that extend these representations and Rationale
Management Systems that use them.

In this section we describe two types of evaluation of the rationale:
checking the rationale for completeness and checking the rationale for
correctness.

7.2.1 Completeness

Completeness checking over the rationale looks primarily at the syntax
checks, or what Conklin and Burgess-Yakemovic referred to as “well-
formedness checks” on the syntax and structure (Conklin and Burgess-
Yakemovic 1995). Completeness checking typically does not ensure that
all the rationale for the system has been collected but instead checks to see
if there are any holes in the rationale that is present.

There are many possible checks, or inference, that can be performed on
the rationale. The availability of these checks depends on the richness of
the representation format. There are some checks, however, that can be
made over most argumentation-based formats. These include: checks to
ensure that there are alternatives proposed for each issue/decision, checks
to see if an alternative has been selected for each issue/decision, checks to
see if alternatives are selected that do not have any arguments (in either
direction), and checks to see if alternatives are selected that only have
arguments objecting to them with none in support.

Many rationale representations take the form of semiformal

7.2 Evaluating the Rationale 95

7.2.2 Correctness

While syntactic inference looks at the structure of the rationale, semantic
inference looks at the contents. The ability to do this is limited—
comparing information within the rationale requires that a common
vocabulary be used. The Knowledge-Based Design System (KBDS)
(Bañares-Alcántara et al. 1995; King and Bañares-Alcántara 1997), which
extends IBIS, used keywords to check argument consistency. Inferencing
over Rationale (InfoRat) (Burge and Brown 2000) created a common
vocabulary of arguments. SEURAT’s RATSpeak (Burge 2005), an
extension of DRL, extended this vocabulary into an argument ontology
that described a hierarchy of reasons for making software decisions at
different levels of abstraction. Using a common vocabulary within
arguments allows for inferences that look for contradictions such as using
the same argument for and against an alternative.

Some rationale representations, such as RATSpeak, capture
dependencies between alternatives. These relationships can be used to
check if there is a dependency violation where an alternative is chosen that
conflicts with another selected alternative or requires an alternative that
has not been selected. If the requirements are explicitly captured in the
rationale, the rationale can also be used to detect if an alternative has been
selected that has an argument indicating that it violates a requirement.
Some representations, such as RATSpeak and REMAP (Ramesh and Dhar
1992) represent requirements as explicit types of rationale entities. QOC
and DRL can do this less directly by having QOC’s critieria and DRL’s
goals contain requirements.

Another type of semantic inference is to detect if there have been any
tradeoff violations. Many arguments captured in rationale describe
qualities that are “traded off” when making decisions. Known tradeoffs
that apply at a system-wide level can be captured as “background
knowledge” in InfoRat (Burge and Brown 2000) and SEURAT (Burge and
Brown 2004). An example of a software tradeoff would be the ease of
coding an alternative versus its flexibility. In most cases, the more flexible
design is likely to be more difficult to implement initially. The rationale
can be evaluated to check to see if there were alternatives with arguments
that claim flexibility where there were no opposing arguments warning of
the potentially longer development time. The rationale can also be checked
to ensure that alternatives do not claim to be flexible and easy to
implement. The developer can override the results of these inferences in
cases where there are exceptions to the general rule.

96 7 Evaluation

7.3 Evaluating the Decisions

Software development decisions are often multidimensional, i.e., decision
outcomes involve multiple dimensions. Vetschera (2006) states four
contributors to multidimensionality: alternatives impact multiple criteria,
uncertainty of alternative outcomes, multiple stakeholders, and alternative
outcomes that vary over time. The rationale can serve as inputs to many
different evaluation methods. In this section we will describe some of the
methods and issues and how rationale has been, or can be, used to support
them.

7.3.1 Comparing Alternatives

There are many possible methods that can be used to compare alternatives.
The choice of method depends on the information available as input (i.e.,
the richness of the rationale representation and the fidelity of the data) and
the results of tradeoffs between computational complexity and semantic
justification of the results. Methods require extensive calculation,
evaluations for each criteria, multiple pairwise comparisons (which do not
scale well if the number of alternatives is large), or quantitative
measurements (which may not be available).

The simplest evaluation involves arguments that are either for or against
an alternative. The support for the alternative consists of the difference in
the pro and con arguments divided by the total number of arguments (Fox
and Das 2000). This method assumes that all arguments are equally
important.

Many evaluation methods fall into the category of Additive Sum
Methods (Vetschera 2006) where the alternative utility is calculated using
a weighted value for each argument. The simplest form, Weighted Sum
Method (WSM), is used by several rationale-based systems including
HERMES (Karacapilidis and Papadias 2001), InfoRat (Burge and Brown
2000), and SEURAT (Burge and Brown 2004; Burge and Brown 2006).
In these systems, each argument is given a weight to indicate its relative
importance. Assigning these importance values is not a simple task—the
values could be given relative to the specific decision or could apply
system wide. In HERMES, the evaluation involves the sum of the weights
in favor minus the sum of the weights against. In InfoRat and SEURAT,
the weight is applied to (multiplied by) a numerical amount indicating the
degree to which the alternative affects the criteria. Additive Sum Methods
can be evaluated for sensitivity to any of the weight values by plotting the
result when expressed as a function of that weight (Vetschera 2006).

7.3 Evaluating the Decisions 97

Determining the appropriate weights can be difficult and the results of the
summations do not always accurately reflect the utility. Vetschera (2006)
demonstrates that a summation of weights may result in avoiding
compromise alternatives. He suggests correcting this by adding an
additional partial utility function to each argument in addition to the
weight. This would be especially valuable when different types of
arguments are involved. A violation to a functional requirement, for
example, should have a significantly higher impact on the decision than
other types of arguments.

The Analytic Hierarchy Process (AHP) (Saaty 1980) is another method
for comparing alternatives. In this method, pairwise comparisons are
performed between all alternatives examined against all relative criteria.
As with the other weighted methods, criteria are given different weights.
AHP has been applied to software engineering decision problems such as
prioritizing software requirements (Karlsson and Ryan 1997) and choosing
software products (Lai et al. 2002). This method requires that the same
criteria be used to weigh each alternative. The significant disadvantage to
this method is that it does not scale well when comparing large numbers of
alternatives.

7.3.2 Combining Inputs from Multiple Developers

Rationale can be a valuable tool for collaboration and negotiation. This
was demonstrated with gIBIS (Conklin and Burgess-Yakemovic 1995),
Compendium (Buckingham Shum et al. 2006), and SHARED-DRIM
(Peña-Mora et al. 1995). The argumentation can serve as a natural medium
for the different contributors, or stakeholders, in a project to state their
views on alternatives under consideration. This does pose an interesting
challenge for evaluation: how can conflicting beliefs and opinions be
aggregated? Factors that contribute to the difficulty include the differing
expertise of developers and differing degrees of confidence in evaluations.
There could potentially be arguments refuting and supporting other
arguments as developers debate each other’s arguments. The developers
may not disagree with the arguments themselves but may not agree with
information such as the importance of the argument criteria, the degree to
which the alternative meets the criteria, or the plausibility of the argument.

Combining conflicting beliefs has been an important topic of research in
economics, statistics, and artificial intelligence. How can conflicting
beliefs be combined to reach some version of Pareto optimality? There are
numerous impossibility theories (Arrow 1963; Mongin 1998; Blackorby et
al. 2000) but also many approaches that avoid impossibility by methods

98 7 Evaluation

that include restricting the Pareto condition (Gilboa et al. 2004) and
understanding that not all expert opinions should carry the same weight
(Maynard-Zhang and Lehman 2003).

As with other evaluation methods, the belief combination method used
will depend on the type of information available and the amount of
computation that needs to be performed.

The field of economics has studied this issue when looking at preference
aggregation (Andreka et al. 2002; Hild et al. 1998; Harsanyi 1955).
Lexicographic ordering is another method used to combine preference
operations (Andreka et al. 2002). Clemen and Winkler (1999) describe
many different methods for combining probability distributions from
multiple experts when performing risk analysis/assessment. These methods
include the linear opinion pool (Stone 1961), which uses a weighted sum
incorporating the “quality” of each expert and Bayesian updating (Winkler
1968). In AI, combining beliefs is necessary when performing ensemble
learning (Pennock et al. 2000) and when merging information from
multiple data sources (Booth 2002; Meyer et al. 2001).

The most promising methods are those that take advantage of information
about the experts—their level of expertise, their experience, their reliability,
and potentially even their influence. When experts disagree and their
negotiation is captured in the rationale, they are unlikely to be given equal
weight in the decision-making process and it is important to utilize this
information when proposing decisions. Knowledge about the expert
providing the information can be used to provide a “pedigree” for the
information. This pedigree information is used in belief fusion (Maynard-
Ried II and Shoham 2001) to combine beliefs from different experts.

7.3.3 Handling Uncertainty

Software decision-making needs to address the uncertainty surrounding the
development process. Uncertainty can refer to many things: vagueness,
imprecision, inconsistency, incompleteness, or ambiguity (Parsons 2001).
Ziv et al. (1996) describe four domains where uncertainty is an issue:
requirements analysis, transitioning from requirements to design and code,
uncertainty in re-engineering, and uncertainty in reuse. This uncertainty
can come from many sources. Three examples are the problem domain
(“real world”), the solution domain, and the humans participating in the
development process (Ziv et al. 1996). Lehman and Fernández-Ramil
(2006) are concerned with the impact of assumptions which may change
over time. When assumptions that were the basis of software decisions no
longer hold they can result in system failure. A high-profile example of

7.3 Evaluating the Decisions 99

this is the loss of the Ariane 5 rocket (Nuseibeh 1997; Lehman and
Fernández-Ramil 2006). Decisions must also be made in the presence of
incomplete information and may require revisitation later in the process
when more is known about the problem.

The presence and role of uncertainty in making software decisions can
be captured in the rationale. Systems such as REMAP (Ramaesh and Dhar
1994) and SEURAT (Burge and Brown 2006) explicitly represent
assumptions in the rationale. SEURAT supports the ability to disable an
assumption and re-evaluate the support level for any alternatives referring
to it. If the assumption refers to an event that is expected to be true at some
point in time, it should be given a time stamp to remind the designer that
the decision should be re-examined (Burge et al. 2006).

The need to gather additional information can be captured in the form of
questions as is done in DRL/SIBYL (Lee and Lai 1996) and SEURAT.
These systems use questions to describe what information is required to
make a decision or evaluate an argument and to indicate, if known, the
likely sources of that information. SEURAT will report all unanswered
questions as errors until they are resolved.

 Uncertainty in arguments is captured in DRL, SEURAT, and the
Knowledge-Based Decision System (KBDS) (King and Beñares-Alcántara
1997) using plausibility, or uncertainty, values for each position. SEURAT
and KBDS use these values, along with weights applied to each criteria, to
rank the alternatives.

Using a plausibility value as a weighting factor in a weighted sum
evaluation is one approach to incorporating the effect of uncertainty in
evaluation. There are numerous other approaches that can also be used.
Parsons and Hunter (1998) divide formalisms for uncertainty handling into
two “camps”—the “numerical camp” that uses quantitative methods and
the “symbolic camp” that uses logical, or qualitative, methods.

Numerical, or quantitative, measures include those based on probability
theory, evidence theory, such as Dempster–Shaefer (Shafer 1976), and
possibility theory (Zadeh 1978), based on fuzzy sets (Zadeh 1965). These
methods share several drawbacks: the potential difficulty in obtaining the
“numbers” (probabilities, possibilities, and distributions), the risk of
comparing different types of beliefs, and the possibly significant
computational expense (Parsons and Hunter 1998).

Two quantitative methods frequently used in decision-making are
influence diagrams and decision trees (Clemen and Reilly 2001). Influence
diagrams capture the decision structure as decisions, change events, the
desired outcome (payoff node), and intermediate consequences/calculation
nodes. The different alternatives, outcomes, and consequences are present
as tables within the nodes. Decision trees express this information more

100 7 Evaluation

explicitly in the structure where decisions branch to choices and “chance
events” branch to outcomes. Decision trees are often used to compute the
“Expected Value” of a decision. Decision trees have been used to support
Value Based Software Engineering by calculating the value of a software
project (Erdogmus et al. 2006).

Qualitative methods are those that work either without numeric
information or with only some numeric information (Parsons 2001). In
some cases, these methods are variants on quantitative methods.
Qualitative Probabalistic Networks (Wellman 1990; Parsons 2001) are a
variant on influence diagrams where the influence of one node on another
is expressed qualitatively as being positive or negative.

Defeasible reasoning is a form or reasoning that accounts for the need to
retract initial conclusions when new information is obtained (Parsons
2001). Parsons describes three forms of defeasible reasoning: logic,
probability, and argumentation. Argumentation can support reasoning
under uncertainty either by calculating the “safety” of arguments based on
the presence of counterarguments or by adding a confidence factor
indicating the degree to which the argument is believed to be true (Parsons
and Hunter 1998).

The ability to re-evaluate beliefs (in our case, in the form of alternative
evaluations) in the face of changing assumptions is similar to work done
using Truth Maintenance Systems (TMSs) (Doyle 1979; de Kleer 1986). In
rationale-based systems, changing assumptions and NFR priorities can be
used to re-evaluate alternatives to indicate where changes might be
advisable. This process would probably stop short of actually retracting the
selection of alternatives but would instead inform the developer of the
potential problems.

7.4 Scenario-Based Evaluation

an informal and holistic working representation in requirements analysis
and design. The scenarios depict user interactions observed, predicted, and
proscribed, and provide a medium for exploring first-order consequences
and interactions of envisioned design features. For example, one obstacle
to code reuse is that it is often difficult for programmers to find examples
of how a given object or module is to be reused; thus, they must work
directly from code definitions, which is a strong deterrent to reuse (Rosson
and Carroll 1996). In designing support for code reuse, one might envision

As described earlier, scenario-based design uses interaction scenarios as

7.5 Summary and Conclusions 101

and analyze a scenario in which part of the documentation for software
objects and modules is pointers to commented example uses of that code.

The scenario might be the starting point for a design solution (e.g., part
of the programming environment), but it also helps to evoke and evaluate
rationale. For every design feature in an envisioned scenario, one can
identify desirable and undesirable consequences. Thus, providing example-
based usage documentation is indeed a resource to programmers: they
quickly learn to borrow usage protocol directly from example uses
(Rosson and Carroll 1996). This is an upside consequence of the design
solution. However, there are also downsides, risks, or costs entailed by the
design solution: positing new documentation raises the question of who
will create and maintain the documentation, and of how and where it will
be stored and accessed.

Evaluating a design solution and its rationale by analyzing interaction
scenarios is an example of what Scriven (1967) called intrinsic evaluation.
Intrinsic evaluation assesses solution properties analytically, instead of
empirically measuring performance characteristics. Intrinsic evaluation is
often more illuminating than empirical evaluation, since it constructs an
arbitrarily rich decision space of implicit tradeoffs. Intrinsic evaluation can
also be less expensive, but it is always less definitive in that it cannot
determine the exact cost parameters in the tradeoffs. In the example of
reuse documentation, the analysis identified valid desirable and
undesirable consequences of the design solution, but only a large-scale
implementation could show whether the benefits outweigh the costs.

7.5 Summary and Conclusions

Here we have described two ways that SER can be used to support
software evaluation: supporting decision-making by evaluating decision
alternatives and supporting usability evaluation through scenarios claims
analysis. There are many different types of decisions made during software
development for which rationale can be captured. This rationale can then
be used to evaluate these decisions to ensure that choices made do not
contain flaws that can be detected via computation. This evaluation is not
necessarily used to make the final decision but can be used as a
verification step. Evaluation is also an important aspect of change analysis
that provides a means for accessing the impact of changing criteria on the
recommended decisions. Scenarios and SCA evaluate how the system
supports its goals in operation by providing a framework for evaluating
usability based on the scenarios and the accompanying usability rationale.

8 Support for Collaboration

This chapter examines collaboration with respect to design rationale. On
the one hand, this is a discussion of how collaboration can support the
development, codification, and use of design rationale. On the other hand,
it is a discussion of how rationale supports collaboration in design and
development

8.1 Introduction

8.1.1 General

wish to accomplish projects that are too large and complex for a single
person. Although this is the fundamental basis for collaboration in all
human endeavors, it is not always a simple matter of adding team members
to tackle ever-greater challenges. Indeed, one of the classics of software
engineering, Brooks’ Mythical Man-Month (1975), took its title from the
mistaken notion that software team productivity scales linearly with the
number of team members. Brooks analyzed his own experience managing
the development of the IBM Operating System 360 software, a project in
which he concluded that the addition of team members eventually reduced
productivity.

8.1.2 Objectives of This Chapter

rationale. First, it observes that software development is almost always
collaborative, for the simple reason that most software projects are too big
for solitary individuals ever to successfully tackle. This raises a set of
specific challenges: collaboration aggregates individual efforts, but it also
creates new sources of work for people in teams, and new risks for the

People work together in software design and development because they

This chapter surveys the relationship between collaboration and design

104 8 Support for Collaboration

products of teamwork. We then consider how collaboration supports
rationale in software development—by encouraging team members to
explicitly articulate their goals and plans, and therefore to create the
possibility of a discussion about reasons, and by supporting a culture of
software development to conventionalize and leverage social mechanisms
like anthropomorphic metaphors and software patterns. Finally, we
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s
collaborators, and coordination among collaborators, especially with
respect to making progress in uncertainty.

8.2 Software Development as Collaborative Work

8.2.1 Collaboration Is Inescapable

tackle large and complex projects: Brooks estimated that Operating System
360 took 5000 person-years. Quite simply, there is just too much work to
do in many projects for one person to ever be able to carry them out. But
the issue is more than one of mere additions.

Collaboration is well integrated into human psychology and sociology.
For example, groups of people generate more ideas and higher-quality
ideas than disaggregated individuals. People with different skills and
experience often experience synergies in collaboration; that is, together
people can develop solutions that no one of them could have conceived of
or executed individually (Kelly and Littman 2001).

During its brief history, software engineering has developed as a
pervasively collaborative work practice. Developing a substantial software
system requires many specialized skills. The tasks of system
development—requirements identification and analysis, architectural
specification, software design, implementation, testing—involve a great
diversity of skills. Individual software professionals cannot be expert in all
or even most of these skills. Indeed, software professionals typically
devote a significant fraction of their professional effort to keeping up to
date with just one or two of these professional skill sets.

The tasks of software development are at least partially decomposable,
as suggested—perhaps a bit optimistically—by traditional waterfall
models of system development. Thus, modern software development
regularly involves divisions of labor and coordination of specialized

The most basic driver for collaborative work is the human ambition to

8.2 Software Development as Collaborative Work 105

contributions. This entails fairly elaborate and articulated specializations in
software project management, in addition to the primary skills of software
development.

Furthermore, labor economics and the worldwide distribution of skills
have produced a global distributed paradigm for software development.
Today, many systems are developed by collections of technical teams
scattered throughout the world, each providing some specific capabilities,
and sometimes having little or no direct contact other teams. Such far-
flung projects were unprecedented only a few years ago, and still
constitute an area of intense innovation in collaborative work.

In this context, the example of Operating System 360 begins to appear
an unrealistically simple case: the OS 360 software only had to run on one
hardware configuration, and was developed by a colocated team; most of
the designers and developers worked in direct physical proximity.

 8.2.2 Collaboration Entrains Challenges

that adding people to a project does not enhance the total effort linearly.
The basic reason for this is that collaboration itself is work. Two people
chopping down a tree must share their plans and coordinate their efforts
just to survive, let alone to experience a productivity boost. This sharing
and coordination diverts and subtracts time and effort from the primary
task. Thus, the tree may be cut down faster than either person alone could
do it, but it is never cut down twice as fast.

The challenge of collaborative work is considerably greater than
suggested by the tree-cutting example. When people work in groups, they
tend to work less hard than they do when working as individuals—a
phenomenon called “social loafing” (Karau and Williams 1993). Social
loafing is especially prevalent when people perceive that their contribution
to a collective outcome is not unique, that someone else could do the work
just as well, or when they believe that their loafing will not be evident to
their co-workers.

When people pool their ideas, when they collectively brainstorm and
develop new ideas, they tend to adjust their contributions toward positions
taken by others they perceive to be competent or powerful, or toward
existing majority opinions—the status quo. This tendency to conform
undermines the extent to which collaborative intellectual activity can
generate more and better ideas, and over time causes groups to become
more homogenous and less effective (Latane and Bourgeois 2001).

The notion of a man-month—or person-month—is mythical in the sense

106 8 Support for Collaboration

However, diversity in groups also entails collaborative challenges.
People with different technical backgrounds commonly have different
fundamental values and beliefs; they can find it difficult to appreciate one
another’s contributions, or even understand what is being contributed
(Pelled et al. 1999). Thus, diversity in collaborative groups frequently
leads to conflicts, often very deep, value-based conflicts.

Phenomena like social loafing and conformity/conflict have significant
derivative effects on group dynamics. Derogatory terms like “slacker” and
“overachiever” reveal the tensions that can be created in a group over
social loafing. Effective group performance requires a foundation of
common ground, that is, shared knowledge about local context,
conventions, and co-reference to enable efficient and reliable interactions.
Sustained group performance requires the development of trust and
generalized reciprocity, sometimes called social capital (Coleman 1990).

Many of the challenges of collaboration are inherent tradeoffs; they can
be addressed, and perhaps balanced, but not solved tout court. For
example, designating a “coordinator” to receive and direct all group
communications can improve group problem solving efficiency, but
decreases satisfaction with the group activity (Leavitt 1951). Similarly,
including a “skeptic” in brainstorming allows groups to produce more and
better ideas, but also decreases members’ satisfaction with the group
activity (Connolly et al. 1990).

These collaborative challenges are as old as human organizations, but
they are exacerbated by the very nature of knowledge work like software
design and development. In knowledge work the interim work products,
sometimes even the final work products, can be quite insubstantial; they
are plans and strategies, architectures, algorithms, and heuristics. The
products of knowledge work are also typically arcane; indeed, software
systems are possibly the best example there is of this.

8.3 Collaboration Supports Rationale

collaborative interactions of various software professionals ineluctably and
naturally externalize rationales, though often incompletely. Collaborative
interactions in software development also shape the software development
process in ways that favor rationale.

Collaboration is an important social resource for design rationale. The

8.3 Collaboration Supports Rationale 107

8.3.1 Collaboration Externalizes Rationales

documentation activity within the software development lifecycle, and it is
certainly true that design rationale can be a kind of documentation.
Incorporating rationale into formal documentation activities is useful and
efficient, since rationale provides causal foundation for other categories of
documentation such as final specifications, reference, and maintenance
manuals, and user documentation like online help and tutorials.

However, rationale is more broadly the reasoning that occurs throughout
design and development, whenever and however it is codified and used.
One of the most important consequences of collaborative work is that co-
workers must articulate and externalize knowledge, assumptions, and
reasoning that otherwise might remain tacit. If you watch one programmer
at work, you would most likely get little insight into programming. The
work activity is mostly mental, and the occasional external inscriptions
that are produced are quite arcane, but if you watch two programmers
collaborating, you see quite a lot about programming. More specifically,
you see quite a lot of rationale.

Software development is a complex, intellectual task in which there are
never singularly correct solutions. More typically, there are many
satisfactory solutions, each entailing a variety of partially understood
tradeoffs and side-effects. Elsewhere in this book we have characterized
these problems as wicked (Rittel and Weber 1973) or ill-structured
(Reitman 1965). When people work on this kind of task collaboratively
there is lots to talk about, indeed, lots to analyze, justify, and debate.

As Kraut (2003) put it, this kind of collaborative work follows a “trust-
supported” heuristic in which group performance can be only as good as
the second-best member. Groups pool and weigh different perspectives;
they identify and repair errors in candidate solutions and the rationale for
candidate solutions. Producing a solution requires both the technical
enterprise of identifying and developing a proposal, but also the social
enterprise of convincing one’s colleagues.

An old chestnut of software engineering is that no-one wants either to
produce or to use documentation. But in collaborative contexts, in which
one must obtain the support of colleagues in order to make a technical
decision, there is no shortage of design rationale. Indeed, the culture of
software development work has evolved a variety of mechanisms to
capture, preserve, and discuss these materials, such as commenting and
literate programming (Knuth 1992), bug reports and frequently asked
questions (FAQ) forums, and indeed the entire spectrum of Usenet

The creation of design rationale is often conceived of as a

108 8 Support for Collaboration

communities. Collaboration in software development unavoidably and
voluminously generates rationale.

8.3.2 Software Development Communities of Practice

profession, but it is a profession that is all about the skills and practices of
constructing software. Software professionals have developed a culture of
software development—communication and work practices to coordinate
work and to teach and coach one another (Curtis et al. 1988; DeMarco and
Lister 1999; Lammers 1988). For example, software developers frequently
talk about software components and their interactions in explicitly
anthropomorphic terms; thus, a component is said to know things—such as
how to put a file on the print queue—or to expect things from other
components (e.g., Herbsleb 1999; Madsen 1994). In this sense, software
development is a community of practice (Lave and Wenger 1991).

One could regard the cultural practices of software developers as
curiosities, but in fact social practices emerge, evolve, and persist because
they add something to human activity. Thus, it seems prudent to consider
how the ways software professionals talk about and construct software—
particularly those work practices that are not taught in formal education or
encouraged by industry standards, corporate policies, or managerial
directives—may reveal important characteristics about how experts think
about software, and how they coordinate software development work.

In this light, consider the issue of anthropomorphic and other
metaphorical language. Formal education and normative practices in
software engineering have traditionally placed high value on explicit and
correct representations such as specification languages, programming
languages, and a variety of diagrams. Notably these formal representations
are pretty much strictly declarative; they describe the structures and
interactions in a software design and implementation. Classic articles on
computer science education by Dijsktra (1989), among others, have
specifically argued against metaphorical language.

Why then would software developers employ anthropomorphic and other
metaphorical language? Carroll and Mack (1985) argued that metaphorical
representations clarify new domains by leveraging concepts that are already
known, while at the same time highlighting mismatches in the mapping
of old-to-new, and thereby flagging conceptual problems that need attention.
Rosson and Alpert (1990) suggested that the anthropomorphic metaphors
of object-oriented design facilitate upstream communication among
developers by reducing the need for explicit point-by-point clarification and

Software development is diverse and somewhat fragmented as a

8.3 Collaboration Supports Rationale 109

refinement entailed by more explicit representations. For example, saying
that software component A knows about software component B is both
succinct and rich. It conveys that the behavior of A depends in some way on
the behavior of B, and that the specific nature of the contingency is either
not yet known or not needed for present purposes.

Herbsleb (1999) elaborated this conjecture by noting that the strategy of
anthropomorphic representation allows software developers to leverage
“naïve psychology” (Clark 1987)—the near-universal understandings that
humans share about animate entities. Naïve psychology allows people to
reason what an animate entity must have known to have acted as it did, or
what it is trying to do given its behavior and knowledge. In other words, it
bundles declarative understanding of what is happening with direct
perception of its rationale—that is, how an entity is able to do what it does
and why. It is believed that naïve psychology capabilities were selected in
evolution because individuals who could draw these inferences were better
able to succeed in the early social world (Clark 1987).

Herbsleb (1999) analyzed a corpus of 1800 system behavior
descriptions identified in a series of software engineering domain analyses.
The domain analyses involved teams of 3–5 experts analyzing message-
passing protocols in telephony or switch maintenance software. Herbsleb
found that 70% of the behavior descriptions were metaphorical. Each
domain analysis involved a series of meetings; for each series, Herbsleb
analyzed one early meeting, one meeting from the middle of the series, and
one of the final meetings. He found that, through the course of the three
domain analysis meetings, teams of software engineers came to rely
increasingly on certain of these metaphorical descriptions—the ones
derived from naïve psychology. That is, metaphors were not used as
ephemeral ice-breakers, to replaced with more proper and explicit
descriptions. Instead, they became established in the domain analysis as a
sort of local technical language for the teams.

Communities of practice are social mechanisms for the codification and
social transmission of practices and their rationales. Collaborative software
development work requires sharing extraordinarily complex information
fluently. Software development has evolved as a community of practice to
leverage naïve psychology via anthropomorphic metaphors, selectively
hiding and emphasizing information, while bundling description and
rationale. Another example of this in contemporary software practice is
pattern languages (Gamma et al. 1995). Both simplify and speed
communication in software collaborations by leveraging rationale.

110 8 Support for Collaboration

8.4 Rationale Supports Collaboration

role of rationale in software development is motivated and facilitated by
collaborations among professionals, but rationale also supports
collaboration. It provides a compelling management tool for keeping
projects on track spanning time, distance, and organizational change. It
facilitates awareness of one’s team members, contributing to the
development of common ground and trust, and it facilitates coordination,
particularly in project contexts of high uncertainty.

8.4.1 Awareness

needs to know many things about one’s collaborators (Carroll et al. 2006):
Who are they? What do they want to do? What are they doing now? What
tools are they using? To what other resources do they have access? Who
do they work with? What are they thinking about? What do they know?
What do they expect? What are they planning to do in the near future?

accomplished evolving over time?
This may seem like a long list, but in fact it is quite incomplete.

Consider the issue of coordinating nuances in vocabulary. A user interface
designer and a software architect may both support prioritizing design
elegance; they may even be able to talk at length about how and why this
objective is important. But in practice, they may have entirely different
notions of what elegance is. If goals are not adequately analyzed and
codified, this kind of failure of common ground can quickly lead to
conflict, putting the collaboration and the project outcome at risk.

Of course the mere fact that different professional perspectives differ
with respect to technical concepts and skills, values and priorities, and so
forth is not the problem. Indeed, such differences are required for a
successful large-scale software project, or any other large-scale human
endeavor. Professional diversity can be, should be, and often is a resource
to a software development team. The challenge is to efficiently recognize
and effectively manage these differences.

This is where rationale can help. To the extent that people share
concepts, skills, values and priorities, they can more easily create and

The relationship between rationale and collaboration is reciprocal. The

In order to collaborate effectively in a large and complex project one

interaction? What do they value? What criteria will they use to evaluate
joint outcomes? How is their view of the shared plan and the work

past? What disciplinary biases and assumptions do they bring to this
What sorts of significant relevant experiences have they had in the

8.4 Rationale Supports Collaboration 111

develop common ground and trust. This is the essence of a community of
practice (Lave and Wenger 1991), as discussed earlier in this chapter.
When team members do not share disciplinary concepts, skills, values and
priorities - as in the example of the user interface designer and the software
architect discussing elegance, they need to construct common ground
socially by exchanging perspectives and attaining mutual understanding.
(Analogous points could be made for social structures other than discipline
and community of practice, such as culture and ethnicity.) Members of a
software development team can construct common ground by sharing their
goals and visions for a project, their ideas about how to turn these into
plans and actions, what they most value, and what they think they can
contribute to the project.

A great variety of groupware tools are being developed, deployed, and
investigated to provide awareness support in collaborative work, for
example, tools for online discussion about, or direct annotation of project
objects, various activity visualizations, personal profiles and social
networks, and activity integrators (Carroll et al. 2006). All of these tools
help to codify bits of rationale; many have the effect of making personal
rationales more permanently accessible to other team members, or more
closely integrated with project data objects. They help people share more
of their reasoning and their reasons with one another, and that helps them
collaborate more effectively.

8.4.2 Coordination

organizations, Kraut and Streeter (1995) found that informal discussion
among team members was both the most valued and the most used
coordination technique among the 18 coordination techniques they studied.
Curiously, they also found that members of the software teams they
studied valued informal interaction more than they actually engaged in it.
More generally, Kraut and Streeter found that less formal coordination
mechanisms—such as group meetings, discussions with one’s manager,
requirement reviews, design reviews, and customer testing—mechanisms
that bring to light diverse viewpoints, were judged as valuable given the
extent to which they were used, whereas more formal coordination
mechanisms—like status reviews, code inspections, CASE tools, data
dictionaries, milestone schedules, and source code—were judged as not
valuable relative to the extent to which they were used.

In this investigation, the rated importance of informal and social
coordination mechanisms in large software projects was strongest during

In their empirical study of collaborative coordination in large software

112 8 Support for Collaboration

periods of high uncertainty, such as in requirements and early design. In
other words, the easy exchange of rationale, facilitated by less formal
coordination mechanisms such as meetings and discussions, was critical to
collaboration among software developers in high uncertainty, upstream
stages.

Kraut and Streeter also noted a somewhat alarming tendency for
projects to increasingly de-emphasize informal interaction through the
course of development. Managers tended to prefer formal coordination
mechanisms, and to shift towards these when possible.

Kraut and Streeter concluded that an important potential advantage in
software management would be to devise better tools and techniques to
enhance informal and interpersonal communication among team members
throughout the development process. They noted that many of the most
prominent and celebrated techniques in software engineering, such as
formal specification languages, are designed to minimize interpersonal
communication. These may satisfy a manager’s desire for formal
coordination mechanisms, but they do not facilitate the easy exchange of
rationale and were rated by developers as valueless relative to their use.

8.5 Summary and Conclusions

rationale. First, it observed that software development is almost always
collaborative work, for the simple reason that most software projects are
too big for solitary individuals ever to successfully tackle. This raises a set
of specific challenges: collaboration aggregates individual efforts, but it
also creates new sources of work for people in teams, and new risks for the
products of team work. We then considered how collaboration supports
rationale in software development: by encouraging team members to
explicitly articulate their goals and plans, and therefore to create the
possibility of a discussion about reasons, and by supporting a culture of
software development to conventionalize and leverage social mechanisms
such as anthropomorphic metaphors and software patterns. Finally, we
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s
collaborators, and coordination among collaborators, especially with
respect to making progress in uncertainty.

This chapter surveys the relationship between collaboration and design

9 Change Analysis

Keeping track of how changes in decisions require changes in other
decisions is crucial in design and development. By capturing decision tasks
and decision alternatives in the rationale, and by recording the
dependencies between these decisions, we can help to anticipate the effects
of changes and identify the different kinds of interdecision dependencies.
In this chapter we explain the implications of change analysis for rationale
usage and rationale support systems in software engineering.

9.1 Introduction

9.1.1 Issues with Change in Software Development

In any successful system, change is inevitable. This is expressed in
Lehman’s first law of Continuing Change: a program that is being used in
the real world will need to change or will become less and less useful in
that real-world environment (Lehman 1996). Changing a software system,
particularly one that is in operation, is a difficult proposition. There are
several questions that are raised when a change is proposed:

• How will the change impact the software and related artifacts
(requirements, design, code, testing)? What are the likely costs and risks
involved?

• Is this change consistent with system requirements (functional and non-
functional)? How will the consistency (or inconsistency) be managed?

These suggest approaching change analysis from two directions: impact
assessment, where the change is analyzed to determine the extent, cost,
and risk of the change, and consistency management, where the change is
analyzed to determine if it is consistent with the requirements and goals for
the software system. Consistency management also includes managing
inconsistency in a system. While inconsistency is undesirable, there are

114 9 Change Analysis

cases where it may be best to leave inconsistency in place to avoid
committing to its resolution too early (Nuseibeh et al. 2000).

Rationale can assist with impact assessment by linking requirements,
decisions, and implementation. Rationale can assist with consistency
management by providing the intent behind earlier decisions that should
serve as a basis for the consistency checks. Rationale also supports change
analysis by providing a means for documenting the intent of the changes
themselves.

The amount of support that can be provided by the rationale depends on
both its availability and structure. One example, which we will use to
illustrate our points, is the RATSpeak notation defined for the SEURAT
system (Burge and Brown 2004). The SEURAT rationale uses a semi-
structured argumentation format that captures four types of arguments for
and against decision alternatives: arguments referring to requirements,
arguments referring to claims (nonfunctional requirements), arguments
referring to assumptions, and arguments describing dependencies between
alternatives. Figure 9.1 shows a portion of this argumentation structure.

Alternative

Argument
• importance

Requirement
• importance

Alternative Assumption
• importance
• confidence

Claim
• importance
• amount

Argument
Ontology

NFR

NFR NFR

argued by

addresses
satisfies
violates

supports
denies

supports
denies

presupposes
opposes

maps to

Instantiation
(if selected)
instantiated

Fig. 9.1. Rationale argumentation structure

9.2 Types of Software Changes 115

This is one example of a semistructured argumentation format and is
shown here to illustrate the types of arguments that are considered when
making software decisions.

9.1.2 Objectives of This Chapter

This chapter describes the sources and types of changes made to software
over the course of a system’s lifetime and how these changes can be
assisted by rationale. The chapter then focuses on two issues where
rationale can support software change: change impact assessment and
consistency management.

9.2 Types of Software Changes

There are many reasons why software requires modification. Changes
come from an initial source, or cause. Reasons for needing to make a
change can be broken into several, not mutually exclusive, categories:

• Requests – a change can be requested by the (or a) customer, system
users, or management.

• Defects – a change can be a response to a defect in the system.
• Operational environment – a change can be due to some change in the

environment in which the software is operated. This would include
changes in hardware configurations and changes in any laws/policies
that would affect the software while in operation.

• Development resources – a change could be due to a change in
resources available for future development of the system. This would
include changes in personnel available to work on the project and
changes in COTS or other component suppliers.

• Political environment – this could refer to the environment at the
development company or the client company.

The proposed change, which often requires retracting a previously made
decision for a decision task and selecting (or proposing) an alternative
decision, needs to be analyzed to determine if the change affects the
functional requirements (added functionality, changed functionality, or
removed functionality), nonfunctional requirements (quality goals for the
system have been changed), assumptions used in making development
decisions, the structure of the system itself (adaptive or preventative
maintenance changes required for future enhancements), or require fixes to
defects in the software that do not derive from errors in requirements.

116 9 Change Analysis

Part of the change analysis process should also involve an assessment to
determine if the change should be performed, deferred, or rejected. The
change may conflict with current system requirements in a way that cannot
be resolved. A requested change may be desirable for some system
customers or users and undesirable for others. The potential cost of the
change must be weighed against the expected benefit. The change may be
evaluated as necessary but deferred to a later date. The arguments for and
against making the change can be captured in the rationale for the request.
This is especially crucial for changes that are rejected—it is not unlikely
that the issue will be raised again in the future and having the reasons for
the decision available will be crucial in determining if the initial rejection
is still valid or should be reconsidered.

9.2.1 Functional Requirement Change

Functional requirements may require change for many reasons. Requests
for additional functionality are a common type of change and adding or
enhancing system functionality results in new requirements. Requirements
may also require modification. There may be cases where the original
requirement needs to be relaxed or strengthened. The requirement may
have initially been ambiguous or incorrect, resulting in software defects.

The rationale can assist in requirement change in several ways. For
additions, the rationale for the additions should be captured to assist future
developers/maintainers if the requirement needs modification in the future.
Implementing the new functionality will require decisions on how that
implementation should be done. The rationale for the design and imple-
mentation alternatives that are proposed should refer to the new require-
ments and to any existing requirements affected by the proposed changes.

For modified requirements, the rationale for the requirement will provide
the intent behind the initial version of the requirement. This information
should be taken into consideration in determining if and how the
requirement is modified. The rationale can also provide traceability to
decisions made during design and implementation that were made based on
the original requirement. This can point out places where these decisions
should change. The requirement may also be associated with arguments for
and against alternatives considered and rejected when building the system. If
the requirement has been changed, some of these alternatives may merit
reconsideration.

Traceability from requirements to decision alternatives, as captured in
the rationale, can be used to determine the effect of removing an
alternative. Choosing a notation that supports this can then be used by a

9.2 Types of Software Changes 117

Rationale Management System to indicate which alternatives are argued
by the requirements and by recomputing alternative support if a
requirement is removed or disabled and reporting if this action should
result in reconsidering previous alternative selections. One example of a
system that utilizes this information to predict change impact is SEURAT
(Burge and Brown 2006).

Rationale should also be captured for the change. This provides a
history of how the software has been modified over time and for what
reasons. An evolution history can be used to determine where problems
have frequently occurred in the software (Nierstrasz et al. 2005) and to
predict what future evolutions may be needed (Antón and Potts 2001). The
ability to capture the historical information provides process-oriented
rationale (Conklin and Burgess-Yakemovic 1991) where the focus is on
using rationale to capture a history of the design process rather than a
representation of the “design space.”

9.2.2 Nonfunctional Requirement Change

Nonfunctional requirements (NFRs) are qualities or characteristics that are
desirable for the system being developed. They are also known as the
“ilities” (Filman 1998) and include scalability, reusability, maintainability,
etc. NFRs can be viewed as characteristics that constrain how, or how
well, the system provides its functionality.

The importance of an NFR may change over the lifetime of a system.
This could be in response to a change in how the software is used. For
example, the number of expected users may increase, necessitating a
stronger focus on the scalability of an application. Change may also be
needed based on user feedback. If the users are unhappy with the
performance of an application then any decisions made that affect system
performance may need to be reconsidered.

If the rationale has captured the impact of NFRs on design and
implementation decisions, the rationale can be used to evaluate the impact
of changing NFR priorities. In SEURAT, NFR priority, or importance, can
be changed and used to recomputed support for alternatives captured in the
rationale (Burge and Brown 2006). The NFR Framework (Chung et al.
2000) was used in the Goal-Centric Traceability (Cleland-Huang et al.
2005) approach. Impact analysis was performed using a SoftGoal
Interdependency Graph (SIG) by propagating changes made to goal
contributions through the graph. The graph is linked to the functional
model captured in UML.

118 9 Change Analysis

Rationale should also be captured for changes in NFR priorities. This
can be used to analyze how these priorities changed over time to help
predict future changes to the current system and potentially to predict
changes to other, similar, systems.

9.2.3 Changing Assumptions

Software decisions are often based on, or at least influenced by,
assumptions. Unlike requirements, assumptions are not entities that must
be true about the developed product but are entities that are believed to be
true about the environment in which it must operate. An assumption may
be made because developers are working with incomplete information or
information that they are aware is likely to change over time. Some
assumptions have a strong temporal component, as shown in rationale for a
spacecraft design where designers made decisions assuming that certain
technologies will be available in the future when the spacecraft is actually
built (Oberto 2002).

The gradual change in validity of assumptions over time is a key driver
of software evolution (Lehman 2005). This indicates a need to be able to
easily assess their impact on the software product in order to respond to, or
even anticipate, these changes. This can be supported by capturing these
assumptions, and their role in software decision-making, in the rationale.
In cases where an assumption is known to have an “expiration date”, such
as the spacecraft example mentioned earlier, it should be possible to use
the rationale to alert the developers/maintainers when that date approaches
so they can re-evaluate these assumptions to determine if they still hold
(Burge et al. 2006). When an assumption is known to no longer be valid,
the rationale can be used to determine its impact on the system by viewing
its relationship with selected alternatives. The removal of the assumption
can also be used to recalculate alternative support and alert the
developer/maintainer if the change in assumptions should require
reconsideration of alternative selections (Burge and Brown 2006). A more
prescriptive approach to assumptions is taken by the REMAP system
(Ramesh and Dhar 1994). In REMAP, the rationale is used to help the user
select from design object alternatives in a design library. If an assumption
that guided an earlier choice is retracted, the affected design object is
automatically retracted and a new one is selected by the system.

If new assumptions are involved in system changes these assumptions
should be captured in the rationale so that this information will be
available to use if the assumptions no longer hold in the future.

9.2 Types of Software Changes 119

9.2.4 Structural Changes

Sometimes software changes are required in order to make the software
more maintainable. These changes are referred to as perfective (IEEE
1998) or preventative (Lientz and Swanson 1988) maintenance. Such
changes are often necessary as evolving systems become increasingly
complex (Lehman 1996) over time. These changes could be refactorings to
remove “bad smells” in code (Fowler et al. 1999) or major system
reengineering efforts (Sommerville 2007) where much of the application is
rewritten. Rationale can support both of these efforts.

When code is modified, the presence of the rationale associated with it
can be used to provide the author’s intent. This additional insight can help
prevent defects from being introduced due to misunderstandings of the
original implementation. One of the authors of this book experienced this
first hand when a coworker made a software change that removed what
they thought was a defect in the code and introduced (or more likely,
reintroduced) a timing error that damaged the hardware the code was
controlling.

Rationale is also useful in documenting the structural changes and the
reasons behind them. Design Patterns (Gamma et al. 1995) can be of great
assistance in writing code that is more easily extensible, but if patterns are
not documented they may be “broken” in subsequent modifications to the
code, negating their value. Relating the actual changes to the reasons for
making them can also assist with traceability if structural changes lead to
defects.

9.2.5 Defect Correction

Some software changes are in response to defects in the software
discovered during testing or operation. The defect may have arisen from
misinterpreting a requirement, making a poor design or implementation
choice, or be a simple coding error.

In the first two cases, the rationale can provide a link to where the defect
may have been introduced. This is of considerable assistance since finding
the relevant code can take a significant portion of the repair time (Ko at al.
2005). If the problem can be traced to a misinterpretation of a requirement,
the rationale can be used to determine what decisions were based on the
presence of the requirement and point the way towards the
implementation. Similarly, if the problem was introduced by a bad
decision, the rationale will indicate where the decision was implemented
and also what some alternatives might have been. For coding errors,

120 9 Change Analysis

rationale associated with the code is useful in explaining the relevant code
and may help to prevent modifications that conflict with the developers’
intent and introduce additional defects.

9.3 Change Impact Assessment

When a software change is proposed, there are two decisions that require
impact assessment. The first is if the change should take place at all. It is
possible that the proposed modifications may conflict with other system
requirements and may not be beneficial to the majority of system users. It
is also possible that the proposed modifications may be desirable but not
enough to outweigh their costs. The second decision is the decision of how
to make the modification; there may be more than one alternative that
should be considered.

Both of these decisions require some level of impact assessment to
determine what effect the proposed change will have on the current
system. This assessment can be made more quickly and accurately if the
maintainers are given the rationale behind the development decisions. This
was shown in a study that compared impact assessment using only source
code, standard documentation, and model dependency descriptors
(Abbattista et al. 1994). This study showed that using the model
dependency descriptors (Cimitile et al. 1992), which contained rationale,
increased impact assessment accuracy.

There are many approaches to determining impact at the code level.
These include analyzing the source code call graph (Bohner and Arnold
1996), static and dynamic program slicing (Weiser 1981; Agrawal and
Horgan 1990; Gallagher and Lyle 1991), path-based impact analysis (Law
and Rothermel 2003), program change histories (Canfora and Cerulo 2006;
Zimmerman et al. 2004), and approaches that use multiple techniques such
as the Technical Risk Estimation (TRE) tool which uses dependency
structure and change history (Walker et al. 2006) to predict how change
will propagate. These approaches evaluate the impact starting with a set of
predicted code changes or by detecting similarity to prior changes.

Another approach to impact analysis is to provide traceability between
related artifacts through metadata describing their relationships. An
example of this is the software repository developed by Sneed (2001). This
repository captures concept models, code models, and test models. The
relationships captured in these models are used to determine the impact of
a proposed change.

9.4 Consistency Management 121

Rationale is another form of metadata about the software and can also
support impact analysis. Most impact analysis techniques require
identification of a set of “trigger” objects (Queille et al. 1994) that indicate
where the change will start. This can be difficult if the change originates at a
high level such as a change in NFR priority or the invalidation of a key
assumption. The rationale mapping the NFRs, requirements, and assumptions
can assist with detecting which objects are involved. The rationale can also
be used to detect similar changes that occurred in the past by comparing
rationale for the currently proposed change and the past changes.

9.4 Consistency Management

One of the challenges in developing and evolving large software systems is
to maintain consistency when possible and to manage inconsistency when
consistency is not possible. There are numerous approaches toward software
consistency that look at consistency in requirements (Klein 1997b), code
(Tarr and Clarke 1998), views/perspectives (Finkelstein et al. 1994; Grundy
et al. 1998) and between software artifacts (Riess 2002; Nentwich et al.
2003). These approaches utilize constraints to check for consistency.

In some cases it is not possible, or even desirable, to eliminate
inconsistency. Tolerating inconsistency may be necessary if inconsistencies
are too expensive to repair, if the information required to resolve the
inconsistency is not known at the current stage of the development, or if it is
too early in the process to make the design decisions required for resolution.
The inconsistency can be ignored, and revisited at a later date, deferred until
a later time, circumvented by changing the rule that indicated the
consistency was present (if the inconsistency is an exception or if the rule is
incorrect), or partially resolved (Nuseibeh et al. 2000).

Software engineering rationale provides another tool in consistency and
inconsistency management. While other tools look for inconsistency
between developed artifacts, rationale can also be used to detect
inconsistencies in the decision-making process and the developers’
reasoning. For example, semantic inference is performed over the rationale
captured in InfoRat (Burge and Brown 2000) and SEURAT (Burge and
Brown 2006) to look for selected alternatives where their arguments were
contradictory. In SEURAT, NFR priorities can be assigned at a global
level and propagated through the rationale to evaluate alternatives and
report if selections were inconsistent with overall system goals. If the
global priority is not applicable to a specific decision it can be overridden
and these overrides are saved so they can be reported on if necessary.

122 9 Change Analysis

Results of rationale-based consistency checks do not have to be resolved
immediately. In SEURAT, they are reported as warnings and can be
overridden if necessary. As with priority overrides, this information is
stored so the override can be removed later if necessary. Rationale can also
support the ability to record questions that come up during the decision-
making process that need to be resolved before the decision can be made.
These questions support inconsistency management by providing the
developers with the means to indicate explicitly where more information is
required before an inconsistency can be resolved. The ability to capture
questions and information on potential methods for their resolution is
supported by the Decision Representation Language (DRL) (Lee 1991) for
use in SIBYL and was also implemented in SEURAT (Burge and Brown
2006).

9.5 Summary and Conclusions

Software systems undergo many different types of changes during their
lifetimes for a variety of reasons. Change comes with risk: risk that the
change is incompatible with decisions made earlier, risk that changes are
implemented incorrectly or incompletely, risk that change introduces
inconsistency into the system. These risks can be mitigated by the presence
and use of rationale. The rationale describes decisions made earlier and the
intent behind the developers’ choices. This information is invaluable when
these decisions change and can help to prevent problems such as repeating
past mistakes, introducing conflicts with earlier choices, and using
reasoning that is inconsistent with earlier efforts.

In this chapter we described how rationale can be used to support the
different types of changes made to software systems and how it supports
two key aspects of change analysis: change impact assessment and
consistency management. The success of making a change to a software
system is directly affected by the depth of knowledge the modification is
based on. This knowledge is greatly enhanced by rationale that indicates
not only what the system does but why.

Part 3
Rationale and Software Engineering

The importance of rationale in software engineering is underscored by
rationale being featured as a key activity in recent talks on the Future of
Software Engineering (Taylor and van der Hoek 2007;Whitehead 2007)
and by rationale being featured as part of one of the process areas in the
Software Engineering Institute’s Capability Maturity Model Integration:
Decision Analysis and Resolution (CMMI Team 2006).

Decisions are made throughout the software development process
ranging from deciding how customer requests can be translated into
software requirements to deciding when and how to adapt software in
operation and on to when a system is ready for retirement (Chapters 10–
14). The rationale behind those decisions documents the developers’ intent
and keeps this information from being lost forever due to attrition,
reassignment, or by simply being forgotten.

An important aspect to software development that cross-cuts
development phases is reuse (Chapter 15). As software increases in
complexity and cost, it becomes critical to avoid “reinventing the wheel”
and to utilize existing software applications to save time, by buying instead
of building, to save money, since the price to purchase an off-the-shelf
application is often less than building it yourself, and to increase
reliability, by working with applications that have already received
extensive evaluation. Still, while reuse can potentially meet these valuable
goals, it is not without its dangers. Deciding when and how reuse should
be utilized, and what the best candidates for reuse are, must be carefully
deliberated.

The ability of a software system to fulfill the needs of its stakeholders is
directly dependent on the degree to which those needs were taken into
account by the developer. By capturing the decisions made during
development and relating the alternatives chosen to the stakeholder needs,
it is possible to use this Software Engineering Rationale to assess the
ability of the software to meet those needs. This is the essence of
Rationale-Based Software Engineering.

10 Rationale and the Software Lifecycle

Software development can be modeled using a number of different
lifecycle, or process, models. These include the waterfall model, the spiral
model, the Unified Process, the V-Model, and others. In this chapter, we
will describe these models and how rationale capture and use supports the
development process followed in each of them.

10.1 Introduction

10.1.1 Software Engineering Process

The software engineering process and the software lifecycle are closely
related concepts. The software lifecycle refers to the stages of software
development that take place over the lifetime of the software. The Institute
for Electrical and Electronics Engineers/Electronic Industries Association
(IEEE/EIA) defines the primary lifecycle processes to be acquisition,
supply, development, operation, and maintenance (IEEE/EIA 1996). There
are also supporting processes and organizational lifecycle processes
(IEEE/EIA 1996). Supporting processes include documentation,
configuration management, quality assurance, verification, validation, joint
review, audit, and problem resolution. Organizational lifecycle processes
include management, infrastructure, improvement, and training. While the
International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC) standards described earlier take a high view, the
most typically mentioned lifecycle stages encompass the development and
maintenance lifecycle processes and include requirements analysis and
specification, design, implementation, integration, verification and
validation (testing), installation/deployment, maintenance, and retirement.
Software lifecycles are modeled by a variety of software process models that
define how the development stages progress. The lifecycle model defines the
“skeleton and philosophy” of the process (Fuggetta 2000).

126 10 Rationale and the Software Lifecycle

The software process is what controls and monitors the development
described by the lifecycle model. The software process is defined by
Fuggetta (2000) to be “the coherent set of policies, organizational
structures, technologies, procedures, and artifacts that are needed to
conceive, develop, deploy, and maintain a software product.”

Rationale can play a role in software process by capturing the reasons
behind both process and product decisions. The product rationale captures
the reasons for decisions that directly impact the delivered product, while
the process rationale describes the reasons behind the process selected to
guide the product development. Process decisions are important because
the process chosen needs to fit the size of the project, the experience level
of the development team, and the development tools available.

10.1.2 Objectives of This Chapter

In this chapter, we describe the stages of the software development life-
cycle and how rationale applies to each of them. We also describe a
number of software lifecycle models. We conclude with a section on
software process improvement.

10.2 Development Activities and Rationale

The software lifecycle consists of a number of stages of software develop-
ment. In this section, we briefly describe a typical set of development stages
and how rationale can be captured and used in each of them.

10.2.1 Project Planning and Management

While project planning and management is listed first among the stages,
planning and management are ongoing activities throughout the
development process. Project planning involves many decisions: delivery
date, staffing needs, budget, milestones, deliverables, etc. These decisions
involve many tradeoffs. For example, one tradeoff might be assessing the
importance of short time-to-market versus the amount of functionality
provided or the quality level of that functionality (how much time to spend
on validation and verification). These decisions and the reasons for the
choices made should all be captured in the rationale. The process of
recording deliberation during planning as rationale assists with
collaboration and negotiation.

10.2 Development Activities and Rationale 127

Management decisions can also be captured in the rationale for the
project. Rationale can support collaboration, risk management, success
criteria reconciliation, process improvement, and knowledge management.

10.2.2 Requirements

Requirements engineering is arguably the most crucial stage in the
software lifecycle. Failing to capture and refine requirements adequately is
considered to be a leading cause of project failure (Alford and Lawson
1979; Hofmann and Lehner 2001). Rationale can support requirements
elicitation by capturing reasons behind requirements and allowing
comparison with stakeholder needs, enabling requirements negotiation by
capturing the deliberation process, assisting inconsistency management by
allowing comparison of priorities across requirements, and in requirements
prioritization, a key element of Value-Based Software Engineering
(Boehm 2006b) by associating priorities to the criteria behind each
requirement, both functional and non-functional.

Rationale can also play a large role in requirements traceability by
providing the means to associate the decisions made later in the
development process with the requirements that drive them. This applies to
both the functional requirements as well as nonfunctional ones. Both types
of requirement can appear in arguments for and against alternatives that
are captured in the rationale.

10.2.3 Design

Much of the research involving rationale has been in the area of design
rationale—the reasons behind design decisions. In software, there are
several levels of design that take place depending on the size of the system
being built. High-level design is often referred to as architectural design.
This stage involves designing or selecting the software architecture. The
choice of architecture is often driven by the “quality requirements” (non-
functional requirements) of the system. For example, Attribute-Based
Architectural Styles (ABAS) (Klein and Kazman 1999) associate software
architectural styles with quality attributes such as performance,
availability, and modifiability.

The design process progresses from the high-level decisions made when
performing architectural design into the lower-level decisions in detailed
design as classes, or modules, are designed. The rationale can be used to
capture the decisions made at this point in the process and eventually
linked to the code that will implement the alternatives selected.

128 10 Rationale and the Software Lifecycle

10.2.4 Implementation

Implementation involves translating the design into the executable source
code. There are still decisions made during this part of the process and the
rationale for these decisions should be captured. The rationale can be
evaluated to ensure that the reasons chosen are consistent with those given
at earlier stages of development. The rationale can also be used during
software maintenance to describe why the software was implemented the
way it was and to help prevent new decisions from counteracting those
intentions.

10.2.5 Verification and Validation

In order to ensure that the developed system provides the functionality
needed by the customer and that it meets its specification, it needs to be
tested. The evaluation process is typically described as verification and
validation (V&V). While we often describe this stage as occurring after
implementation, in reality V&V activities should take place all the way
through the development process. Test planning should be started when the
project planning is performed, requirements should be examined to ensure
that they are testable, unit testing should be performed during
implementation, system testing is performed prior to deployment, and
regression testing (as well as any new tests) must be performed when
changes are made during maintenance.

Boehm gave an often-cited definition of the difference between
validation and verification—validation asks “are we building the right
product?” and verification asks “are we building the product right?”
(Boehm 1979; Sommerville 2007). Verification involves ensuring that the
software conforms to its specification while validation involves checking
that the software does what the customer needs it to do.

Rationale can support software testing by providing insight into how
quality factored into software decisions. This information can be used to
determine where testing efforts should be concentrated. Collecting
rationale for the testing effort itself would be useful in assisting with
making testing decisions and in using the reasons behind testing choices
and the results of these decisions to point out testing strengths and
weaknesses that can be applied to future projects.

10.3 Software Lifecycle Models 129

10.2.6 Maintenance

A successful software system is likely to require some form of maintenance
over its lifetime. These changes can be challenging, especially if the original
developers are not available. This is an area where rationale is especially
valuable. Knowing the intent behind the decisions made when developing
the software can help to prevent problems or inconsistencies being
introduced during maintenance. If the rationale captures the assumptions
made when initially building the system it can be used during maintenance
to suggest where changes need to be made if those assumptions change. This
assistance is provided in the Software Engineering Using RATionale
(SEURAT) system (Burge and Brown 2006).

10.2.7 Retirement

If, or when, to retire a software system is potentially the last decision that
needs to be made during the system’s lifetime. The decision on whether to
repair (maintain) or replace a system needs to be well thought out. This
deliberation can be supported by and captured with rationale. The rationale
for the decision would also be valuable if the retired system ends up being
reinstated or reused later.

10.3 Software Lifecycle Models

There are a number of different categorizations for software lifecycle
process models. Here we have chosen to break them into three categories:
sequential models where development typically proceeds linearly through
the phases, iterative models where iteration is built into the models, and a
third category for models that do not fit into either of the two categories or
that span categories.

10.3.1 Sequential Models

10.3.1.1 Waterfall Model

The waterfall model was originally defined by Royce (1970). In this
model, development proceeds through the stages in a sequential fashion as
shown in Figure 10.1. Each stage (shown as a box in the figure) needs to
complete before the next stage can begin. The example shown here

130 10 Rationale and the Software Lifecycle

includes feedback loops indicating that it is possible to go back to make
modifications to work done earlier if necessary. The stages vary slightly
between different depictions of the model but typically include
requirements, design, implementation, and testing, and may also include
maintenance, deployment, and retirement.

Fig. 10.1. Waterfall Model

The waterfall model has fallen somewhat out of favor. The separate stages
are seen as being inflexible and less responsive to changing requirements.
The model does, however, have the advantage that it is easy to assess
where in the process a software project is, something not always clear with
more iterative methods. This model resembles models used in other kinds
of engineering projects and is often used when the software is part of a
larger systems engineering project (Sommerville 2007).

Each of the stages captured in the waterfall model will include many
decisions that will have a large impact on the later stages. Capturing the
rationale for these decisions will help to ensure that decisions made in later
stages will be consistent with earlier ones.

10.3.1.2 V-Model

The V-model is similar to the waterfall model but also includes the
verification activities and how they relate to development stages. A key
difference between the V-model and the waterfall model is that the level of
abstraction is explicit (Bruegge and Dutoit 2004). Figure 10.2 shows a
simplified V-model, adapted from Bruegge and Dutoit (2004) and Jensen
and Tonies (1979). As with the waterfall model, capturing rationale can
help with the traceability of decision criteria throughout the process.

Requirements

Design

Implementation

Testing

etc.

10.3 Software Lifecycle Models 131

Requirements

Implementation

Detailed Design

Unit Test

High Level
 Design

Integration
Test

System Test

Fig. 10.2. V-Model

10.3.2 Iterative Models

Iterative models differ from sequential ones in that they depend on the
software being built in a series of iterations. In this section we briefly
describe some of the more common models.

10.3.2.1 Incremental Delivery

Incremental delivery consists of portioning the system into a series of
releases. The initial requirement development and architectural design is
done for the system as a whole but the functionality is delivered
incrementally. This method has several advantages including making the
software available to the users earlier, gaining experience with early
increments to help refine requirements for later ones, reducing the risk of
project failure, and ensuring that the most important functionality
(typically developed in the earlier increments) receives the most testing
(Sommerville 2007).

10.3.2.2 Spiral Model

The Spiral Model, developed by Boehm (1986), depicts the software
development process as a series of increasingly more developed prototypes.
The spiral moves through four quadrants. The first quadrant looks at
objectives, alternatives, and constraints on the next development cycle. The
second quadrant evaluates the alternatives proposed in the first quadrant and
identifies and resolves risks. The third quadrant develops and verifies that
level of the product (the prototype), and the fourth plans out the next phase

132 10 Rationale and the Software Lifecycle

or phases. This model both explicitly addresses risk and, by the alternative
identification and evaluation steps in the first two quadrants, the rationale.

Rationale is supported in the Theory W (win-win) extensions to the spiral
model (Boehm and Bose 1994). In Theory W, stakeholders are identified for
each revolution through the spiral along with their “win conditions.” These
win conditions are used in defining objectives, constraints, and alternatives.
The win conditions and the alternatives generated during the spiral model
process form the rationale for the system.

10.3.2.3 Unified Process

The Rational Unified Process (RUP) (Kruchten 1999) and its more general
form, the Unified Software Development Process (Jacobsen et al. 1999),
consists of four phases, with multiple iterations taking place during each
phase. The four phases are inception, where the initial business case is
defined; elaboration, where requirements and risks are defined; construction,
where the system is designed, programmed, and tested; and transition where
the system is moved into its operational environment (Sommerville 2007).
Within each of these phases, there are nine core workflows: business
modeling, requirements, analysis and design, implementation, test,
deployment, project management, configuration and change management,
and environment. The amount of effort spent in each of these workflows
depends on the development phase. For example, more time is spent on
business modeling and requirements in the inception and elaboration phases
and less in the construction and transition phases. Similarly, the amount of
implementation slowly increases in the first two phases, which may involve
simple prototypes, reaching its highest level in the construction phase when
the actual system is built. The Rational Unified Process was developed by
Rational Software and is supported by its products.

The Unified Process is a generic and comprehensive process that
attempts to cover all aspects of software development. Because of its
comprehensive nature, it can be seen as being too unwieldy for smaller
development projects. The process can, however, be adapted to work with
smaller projects (Hirsch 2002; Pollice et al. 2003). Process rationale can
be captured to document how the process was tailored, and why. This
information can then be used to transfer the lessons learned to future
software projects using the same or similar processes.

10.3.2.4 Extreme Programming

Extreme Programming (XP) can be viewed as a variant on incremental
delivery (Sommerville 2007). The extreme in extreme programming does

10.3 Software Lifecycle Models 133

not indicate “daredevil programming” but instead refers to taking existing
best practices to the extreme (Beck 1999). The development process is a
collaborative one between the customer and the developer where
functionality is described as a series of stories (similar to use cases) and
where each release chooses the set of stories that are viewed as the most
important. Releases are developed using test-first development and pair-
programming.

The goal of XP is to center the development process on coding and to try
to develop releases that are as simple as possible and to plan on refactoring
later if necessary. The danger of this is the difficulty of knowing where
short-cuts were made that may need to be re-examined in later releases.
Documenting the rationale for the decisions made in earlier iterations can be
used to detect where alternatives were chosen in the interest of expediency
that may require change as requirements are added or refined. The value of
this is demonstrated by the Software Engineering Using RATionale
(SEURAT) system (Burge and Brown 2006) where non-functional
requirement priorities can be modified and used to detect where earlier
choices should be reconsidered. A rationale-based support system such as
SEURAT can be used during XP to detect candidates for refactoring.

10.3.3 Other Models

10.3.3.1 Rapid Application Development

The goal of Rapid Application Development (RAD) is to build software
products more quickly, and with higher quality, than can be done using
more traditional software life-cycle approaches (Martin 1991). This is
accomplished by taking advantage of Computer-Aided Software
Engineering (CASE) tools and fourth-generation language tools. RAD is
an approach that can be used to build data-intensive business applications
(Sommerville 2007) by exploiting commonalities between these systems:
forms needed for data input and display, database access, commonly used
office applications such as word processors and spreadsheets, and report
generation. Many RAD projects are a form of COTS-based development
projects because they link together existing Commercial Off-the-Shelf
(COTS) applications to provide the required functionality (Sommerville
2007). RAD is often confused with rapid prototyping but the key
difference is that rapid application development is intended to build the
final system while a prototype is typically built to gain a better
understanding of system requirements or available technology.

134 10 Rationale and the Software Lifecycle

The success of a RAD development effort hinges on the selection of the
tools, products, and COTS applications used in its construction. There may
need to be compromises made to adjust system requirements so that they
can be supported by these tools and components. Capturing rationale for
the choices made and alternatives considered assists the selection process
by making the reasons for selection and any tradeoffs made explicit. The
rationale, and the alternatives captured in it, is also useful if subsequent
versions of the system need to reconsider these decisions. RAD systems
run the risk of dependence on third-party software where the vendor may
go out of business, stop supporting the product, or raise licensing fees.
These vendor changes may necessitate a change in the system to avoid
problems.

10.3.3.2 Component-Based Software Engineering

The Component-Based Software Engineering (CBSE) development
process builds software products out of reusable components. The goal is
to make software engineering more like other engineering disciplines
where parts are ordered from a catalog and configured using well-defined
interfaces in order to create a new product. CBSE relies on the availability
of components and on being able to adapt requirements, when necessary,
to work with these components. CBSE is not strictly a process or a life-
cycle. The components can be developed and used within any of the life-
cycle models described here.

Rationale can be used during CBSE by both component providers and
consumers. For component providers, the component rationale can
describe both functional and nonfunctional capabilities of the component.
For component consumers, the rationale can be used to find a component
that best matches the functional and nonfunctional requirements of the
system under development.

10.3.3.3 Open-Source Software Development

Open-source software development involves multiple software developers
working together over the Internet to build software systems where the
code is freely available to all. This has resulted in a number of successful
software projects including the Linux operating system (www.linux.org),
the Apache web server (www.apache.org), and Mozilla project products
(www.mozilla.org) such as the Firefox browser and the Bugzilla bug-
tracking system. There have also been open-source projects with corporate
support, such as IBM’s Eclipse development framework
(www.eclipse.org). The unifying attribute of these systems that has made

10.3 Software Lifecycle Models 135

them successful is that they are all systems that the developers want to be
able to use themselves. Successful projects result from developers solving
problems that they are excited about (Raymond 2001).

Since open-source development is a highly collaborative process where
developers can come and go from the project at will, the capture and use of
rationale could play a significant role in the success of these efforts.
Successful open-source projects such as Apache and Mozilla make heavy
use of version control systems, such as CVS, and bug tracking (Mockus et
al. 2002). These systems capture the reasons behind software changes that
could be included in their rationale. Capturing the intent behind the
software modifications can be used to help guide the developers as the
system evolves.

10.3.3.4 Model-Driven Development

Models have been used to assist with software development for many
years. The simplest definition of model-driven development (MDD) is to
built a model of a system that is then transformed into the system itself
(Mellor et al. 2003). A more specific view is to develop domain models for
application areas and use those to develop system architectures (Boehm
2006a). Models used in MDD can be developed using UML (France et al.
2006) or domain-specific modeling languages (DSMLs) that define
relationships between domain concepts along with semantics and
constraints (Schmidt 2006).

The usefulness of these models would be increased if they were
developed with rationale attached. This would assist in selecting the
appropriate model for the problem that the system is solving and could also
help to determine when tailoring the model would be appropriate or not.

10.3.3.5 Service-Oriented Development

In service-oriented development applications are built using stand-alone
services that can be executed on distributed computers (Sommerville
2007). Services are accessed via a service registry which is used to find
applicable services. When a service is found by an application, the
application is then bound to that service. A key aspect of service-oriented
development is the ability to perform “ultra-late-binding” where the
service is located and bound dynamically (Turner et al. 2003). Web
services are an example of the service oriented development paradigm.

The uses of rationale in service oriented development are similar to
those in CBSE: the rationale can be used as part of the selection criteria
used when discovering service providers. For example, the Web services

136 10 Rationale and the Software Lifecycle

stack framework proposed in (Turner et al. 2003) includes a non-functional
description level that provides a non-functional description of a service.
These protocols would then provide the rationale for selecting the service.

10.4. Software Process Improvement

As described earlier, the quality of software products is related to the
quality of the software process. In this section, we describe two process
improvement initiatives: the CMM and CMMI process improvement
framework and the Personal Software Process.

10.4.1 CMM

The Software Engineering Institute (SEI) developed the Capability
Maturity Model (CMM) (Paulk et al. 1993) to define software maturity
levels. These levels are initial, repeatable, defined, managed, and
optimizing. At the initial level, the process is undefined and unpredictable.
At the repeatable level there are policies and procedures in place for the
software process. Companies working at the defined level have
documented and standardized procedures that work across the
organization. At the managed level metrics are collected to assess the
quality of the software process and at the optimizing level this information
is fed back into the process to improve it.

The Capability Maturity Model has been replaced with Capability
Maturity Model Integration (CMMI) (CMMI Team 2006). The CMMI
integrates the software CMM with the Systems Engineering Capability
Model (SECM) (EIA 1998) and the Integrated Product Development
Capability Maturity Model (IPD-CMM) (SEI 1997). The CMMI has two
representations—a staged model that assesses the organizations process at
one of five discrete levels (similar to the CMM) and a continuous model
where different process areas within an organization can be ranked at
different capability levels. The capability levels are incomplete, performed,
managed, defined, quantitatively managed, and optimizing. There are 24
process areas defined within the CMMI. Examples are project planning,
requirements management, and configuration management.

Rationale capture and use is related to the CMMI Decision Analysis and
Resolution process area. This process consists of defining a “formal
evaluation process” for evaluating decision alternatives. This process
includes identifying the alternatives, determining the evaluation criteria,
selecting and using the evaluation method, and selecting the alternatives

10.4. Software Process Improvement 137

based on the criteria (CMMI Team 2006). The evaluation process used on
a project should determine which categories of decision will require formal
evaluation (such as high-risk decisions) and how the evaluation will be
performed and documented.

10.4.2 Personal Software Process

The Personal Software Process (PSP) (Humphrey 1995) arose from
applying the CMM to small software projects. The CMM focuses on
improving the process of software development organizations and the PSP
extends that focus to improving the process of individual software
engineers. The PSP follows the principles that each developer needs to
base their process on data that they collect on their own performance, the
developers need to follow a defined and measured process, developers
need to be responsible for the quality of their work, and that defects should
be avoided if possible, fixed as soon as they are detected, and that the right
way to do the job will be the fastest and cheapest (Humphrey 2000).

The PSP follows a process improvement cycle where individual
developers capture metrics on their job performance: time spent and
defects introduced and removed. These metrics are then used to improve
their performance. The PSP provides detailed forms and scripts to use
during the development process.

The Team Software Process (TSP) (McAndrews 2000) extends the PSP
to developing software in teams. The TSP addresses four causes of project
failure: lack of training in planning, development, and quality practices;
the focus on schedule rather than quality; the lack of a formal team-
building process; and unrealistic project plans damaging motivation. The
TSP defines how Level 5 of the CMM can be put into practice.

Neither the PSP nor TSP calls for the recording of rationale as part of
the process. The success of these approaches, however, indicates that
emphasizing quality over schedule concerns leads to more successful
projects. The addition of rationale to the collected data would add to this
success by providing additional insight into the development process that
can then be used to tune these processes during future development. It is
clear from the results of PSP/TSP projects that spending time up front to
collect data ends up improving the process and not having the detrimental
effect on schedule that is so often feared.

138 10 Rationale and the Software Lifecycle

10.5. Summary and Conclusions

The incentive behind the defining, modeling, and monitoring of the
software lifecycle is to increase quality and decrease costs. Software
process models have evolved from sequential models towards more
iterative ones in order to be more responsive to changes in software
requirements. The importance of a defined and monitored software process
has been highlighted by process improvement efforts such as the CMMI
and the PSP.

The capture and use of rationale should be an integral part of any
development process. The usual software artifacts produced during
development only describe what was done and not why. Knowing the
information behind the decisions can provide much-needed insight when
these decisions are the basis of future ones. The reasons for making
decisions that are captured in the rationale are often nonfunctional
requirements that affect overall software quality. The rationale can provide
a way to evaluate that quality and support quality improvement.

Much of the opposition to the capture and use of rationale has been the
view that it is difficult and time consuming to collect. This argument can
be used against most forms of documentation but it is rare to find anyone
who does not believe that documenting software will not save money in
the long run. As software processes become more rigorous, the cost of
collecting rationale will continue to become less of an issue compared to
the savings provided by the defect reduction and requirement conformance
provided by the improved processes.

11 Rationale and Requirements Engineering

Many of the decisions that have the greatest impact on the software
development process are made during requirements analysis. Software
Engineering Rationale (SER) can support this process by providing the
ability to capture the decisions and reasons behind them, starting at these
earliest phases. SER also supports requirements traceability throughout
the process by directly mapping the development options chosen to the
requirements that provide their rationale and by providing rationale for the
requirements, thereby mapping requirements back to their source. In this
chapter, we describe how rationale can support requirements engineering.

11.1 Introduction

11.1.1 Requirements Engineering

needs of its intended customer. This means that the software developers
must determine what the requirements are for the software system. The
process of identifying requirements, analyzing them to obtain additional
requirements, documenting them in a specification, and validating that
specification to ensure that it meets user needs is known as requirements
engineering (Saiedian and Dale 2000). In provisioned systems (systems
developed under contract), the requirement specification serves as the
basis for the development contract; in product development, requirements
are written based on market analysis and are expected to change if
necessary (Kuusela and Savolainen 2000).

Inadequate or deficient software requirements are considered the leading
cause of project failure (Alford and Lawson 1979; Hofmann and Lehner
2001). Lindquist (2005) states that analysts report the percentage of project
failures resulting from poor requirements management to be greater than
70%. The management problem is especially difficult on systems where
the requirements are not stable. It is well known that the later in the

The key to every successful software project is its ability to meet the

140 11 Rationale and Requirements Engineering

development process a requirement changes the higher the cost to make
the change will be. Agile development methodologies, such as Extreme
Programming (Beck 1999), have been created to “flatten the curve” and be
more responsive to changing requirements.

Requirements are typically broken into two categories: functional
requirements that describe what the system should do (functions performed
or features implemented) and nonfunctional requirements (NFRs) that
describe qualities that the developed system should have. NFRs are often
referred to as “ilities” (Filman 1998) since NFRs include qualities such as
usability, scalablity, reusability, testability, maintainability, etc.
Nonfunctional requirements are difficult to test and verify because they
tend to cross-cut functionality of the system and also because they are
often difficult to quantify. While they do not describe the functionality
desired by the stakeholders they do have a direct impact on how satisfied
the stakeholders are likely to be with the final product. Some NFRs
involve the development process. Examples of these would be
affordability, maintainability, and flexibility.

11.1.2 Objectives of This Chapter

This chapter discusses some of the key areas of requirements engineering
(RE) and how they can be supported by the capture and use of rationale. In
particular, the chapter focuses on obtaining requirements, requirements
traceablity, approaches using nonfunctional requirements, goal-based
requirements engineering and how rationale can support requirements
change.

11.2 Obtaining Requirements

11.2.1 Requirements Elicitation

The first challenge faced in RE is the difficult task of eliciting requirements
from the system stakeholders. Stakeholders are typically referred to as being
anyone who is involved in the project or “whose interest the project affects”
(Hoffman and Lehner 2001). This is a very broad category and can include
the users, developers, marketers, procurers, QA, and any others who might
be affected by the use of the system. Sharp et al. (1999) identify four groups
of “baseline” stakeholders: users (those who interact with or control the

11.2 Obtaining Requirements 141

software and those who use products of the system), developers, legislators
(anyone providing guidelines for operation), and decision-makers (managers
and finance people in both the developer and user organizations).

After stakeholders are identified, the next challenge is obtaining the
requirements. There are many challenges encountered in this process,
including stakeholders having difficulty expressing what they want or
making technically unrealistic demands; stakeholders describing
requirements in the language of their domain, which may not be familiar to
the analyst; conflicts in stakeholder requirements; political factors
affecting requirements; and the possibility of the business environment
changing (Sommerville 2007). The requirements specification can be
viewed as a “wish list” for the different groups of stakeholders where the
requirements rising from different stakeholder views may be inconsistent
or contradictory (Kuusela and Savolainen 2000).

Requirements can be obtained using many methods. These include
structured or unstructured interviews, observing the system in use (if the
new system replaces an existing one), rapid prototyping to get user
feedback, and collaborative approaches such as Joint Application
Development (JAD) (Bruegge and Dutoit 2000). The stakeholders may
have a difficult time articulating their requirements. The more expert a
user is at performing a task, the higher the chance that they will be
performing at least parts of it “automatically,” making it more difficult for
them to describe those steps to another person. This necessitates a
combination of direct and indirect elicitation techniques where direct
techniques are used to obtain information that can easily be expressed
verbally and indirect techniques are used to obtain information that cannot
be easily expressed verbally (Hudlicka 1997).

One thing that is typically not done during requirements elicitation is
capturing the rationale behind the requirements. There may be many
system features identified for potential incorporation into a software
system. The rationale can capture the tradeoffs between these features
along with the consequences, both desirable and undesirable, of
incorporating or not incorporating each of them (Carroll et al. 1998).

The rationale would also be a logical place to capture the source of the
requirement. Knowing which stakeholders, and which stakeholder category
they fit into, would be useful if questions arise about the requirement that
require clarification. Knowing the requirement source would assist in the
prioritization of the requirement by identifying the interested parties.
Rationale can also associate requirements identified and refined during the
requirements engineering process with the original customer requirements
and provide “rich traceability” (Dick 2005; Hull et al. 2002). The rationale
would also provide the intent behind the requirement, or the stakeholder

142 11 Rationale and Requirements Engineering

goal(s) that the requirement addresses. The mapping of goals to
requirements can be used later to determine which requirements would
require adjustment if the goals change later in the development process. The
rationale would also be a place where dependencies or conflicts between
requirements can be identified. Knowing the source and intent of each
conflict will be useful when determining the best way to resolve conflict and
inconsistency.

11.2.2 Achieving Consensus

An important part of the RE process is the negotiation that needs to take
place between the various stakeholders. The different groups approach the
system from different viewpoints and may have conflicting goals. The
rationale for the requirements is a key element in the negotiation process
by providing a means for identifying conflicts and explicitly stating the
arguments of all participants. The collection process itself was found to be
useful during field trials using itIBIS and gIBIS (the textual and graphical
versions of the Issue-Based Information Systems approach) (Conklin and
Burgess-Yakemovic 1995). Structured rationale capture assisted with team
communication by making meetings more productive. The Compendium
approach (Shum et al. 2006) is an IBIS-based collaboration support system
that is used to capture stakeholder needs via a “dialogue map” that aids in
collaboration by structuring discussion and capturing the “meanings and
ideas” of the group.

The role of rationale in requirements negotiation is a key element in the
WinWin approach to requirements negotiation (Boehm and Kitapci 2006;
Boehm and Bose 1994). An ontology defining the rationale in WinWin
was developed by Bose (1995) and describes what the attributes are for the
WinWin rationale elements (Winconditions, Options, Issues, and
Agreements). The goal of the WinWin approach is to make “winners” of
the system’s stakeholders. The EasyWinWin tool assists in group
facilitation to aid in determining what the win conditions are, prioritizing
the win conditions, identifying what the issues are, and capturing the
decision rationale (Grünbacher and Boehm 2001). Experiments performed
using students demonstrated that the WinWin approach assisted with
distributed collaboration, aided in cooperation, reduced friction between
team mates, and helped the students to focus on the key issues (Boehm and
Egyed 1998). There are more than 100 real-world projects that have used
EasyWinWin (Boehm and Kitapci 2006).

11.2 Obtaining Requirements 143

An alternative approach to requirements negotiation and validation is
the Software Quality Function Deployment (SQFD) approach (Ramires et
al. 2005). SQFD builds a matrix that gives correlation values between
specifications and requirements where the stakeholders provide the
correlation values. The MEG groupware tool was built to support SQFD
and added rationale, in an adapted IBIS format, to the SQFD matrix. The
IBIS component captures stakeholder positions and arguments. The
evaluation of the requirements is achieved using a majority voting scheme
where votes are weighted depending on how each stakeholder participated
in past decisions (Win-Win, Win-Lose, or Lose-Lose).

11.2.3 Requirements Inconsistency

Since requirements are obtained from a variety of stakeholders and
sources, there is a risk that inconsistencies may arise. It is important to
identify inconsistencies so they can be handled appropriately, whether
through resolution, avoidance, deterring, or ignoring (Nuseibeh et al.
2000). There are a number of approaches to performing consistency
checking in requirements. The C-Re-CS system (Klein 1997b) captures
requirements and their rationale in a semantic net structure. The system
contains exception management services that check for completeness,
correctness, and consistency in the requirements; identify problem
diagnosis using a knowledge base of general requirements problems; and
identify potential resolutions to the problems based on past knowledge of
general problems. The knowledge base is structured as a taxonomy of
diagnoses from more general to more specific that is traversed similarly to
a decision tree based on questions and answers.

Reiss (2002) has developed a constraint-based, semiautomatic
maintenance support system that works on the abstracted code, code,
design artifacts, or metadata to assist with maintaining consistency
between artifacts. The CLIME software development environment checks
for consistency between UML class diagrams and source code; between
UML interaction diagrams and code; test cases to source code (to ensure
unit tests have been run if a method was modified); documentation to
source code; source code to documentation; and also checks code and
documentation to ensure that certain preset standards (such as naming
conventions) are followed (Reiss et al. 2003).

144 11 Rationale and Requirements Engineering

11.2.4 Requirements Prioritization

Recent work on Value-Based Software Engineering has begun to address
the problem that software development efforts treat each requirement (and
other development artifacts) as if they were of equal value (Boehm 2006b).
In reality, some requirements are more important to the stakeholders than
others. When decisions need to be made to decide what requirements
should be implemented first or should be given the most resources, it
would make sense to base these decisions on the relative value of the
requirements and prioritize them.

Karlsson and Ryan (1997) propose using a cost-value approach to
prioritize software requirements. This method uses the Analytic Hierarchy
Process (AHP) (Saaty 1990) to perform pairwise comparisons of the
requirements. Customers and users use AHP to provide relative value and
software engineers use AHP to provide relative cost. This is an effective
method for determining priorities but does have scalability issues for large
numbers of requirements.

Rationale can also be used to assist with the requirements prioritization
process. The rationale behind each requirement can capture the underlying
intent behind the requirement. The Software Engineering Using
RATionale (SEURAT) tool (Burge and Brown 2006) allows the rationale
for each requirement to be captured. This rationale can serve as a basis for
negotiating requirement importance and could potentially be used to
compute rankings for the alternatives.

11.3 Requirements Traceability

Requirements traceability typically refers to the ability to trace from the
requirements all through the development process. The goal of traceability
is to ensure that all system requirements are met. Requirements
traceability is a key element in requirements management and is required
to assess the impact and consequences of requirements changes (Nuseibeh
and Easterbrook 2000).

Requirements can be traced in two directions. Tracing a requirement
backwards refers to tracing back from the requirements specification to the
origins of the requirement. Tracing a requirement forwards traces from
specification through implementation and test. These two directions are
referred to as Pre-RS traceability and Post-RS traceability, respectively
(Gotel and Finkelstein 1994). The rationale for the requirements and for
the developed system can aid in both kinds of traceability.

11.3 Requirements Traceability 145

Pre-specification traceability is one of the more neglected forms of
traceability (Gotel and Finkelstein 1994). The ability to know the origins
of a requirement can be used later on if the requirement needs further
clarification. Unfortunately, this information is often difficult to obtain.
One way to track the origin of a requirement would be through the
rationale for the requirement. The rationale would provide information on
who argued for (or against) its inclusion and what the reasons behind the
choice were. This information can be very useful in future development if
the requirements need to change.

Post-specification traceability is what most developers think about when
they think about requirements traceability—the ability to trace from the
requirements through to the test cases in order to ensure that the software
system meets its specification. Rationale can assist with post-specification
traceability. The requirements, both functional and nonfunctional, can
appear in the arguments for and against the many decisions made when
designing and implementing the software. Each alternative chosen would
eventually map to some development artifact, whether a section of a
document, elements in a UML diagram, or the code itself. The arguments
for choosing that alternative consist of requirements and nonfunctional
requirements. The mapping from the alternative to its implementation
would then provide traceability to those requirements. An example of this
is the SEURAT system (Burge and Brown 2006), which captures
traceability between code elements and alternatives.

The “rich traceability” proposed by Hull et al. (2002) supports both pre-
and post-specification traceability by representing requirements at different
levels—stakeholder requirements, system requirements, and design
requirements. Rich traceability contains “satisfaction arguments” that can
be supported by domain knowledge as well as information from other
sources such as the output of modeling tools. These satisfaction arguments
indicate how requirements relate to each other, in particular they capture
when all of the requirements at one level are necessary to satisfy
requirements at the level above (conjunction) or if any one requirement is
needed (disjunction). For example, it may be necessary that all of a set of
system requirements must be satisfied to satisfy the stakeholder
requirement they relate to or it may only be necessary that one be satisfied.

Nonfunctional requirement (NFR) traceability is also important. The
relationship between rationale and NFRs is described in the following
section. Surveys of NFR traceability approaches can also be found in
Hayes et al. (2005) and Cleland-Huang et al. (2005).

146 11 Rationale and Requirements Engineering

11.4 Rationale and Nonfunctional Requirements

While functional requirements describe the function of a system or device,
nonfunctional requirements describe how the system or device should
accomplish that function given “the constraints of a non-ideal world”
(Thayer and Dorfman 1990). Nonfunctional requirements often refer to
software quality and are related to Boehm et al.’s “Quality
Characteristics.” (Boehm et al. 1979). Roman (1985) describes NFRs as
restricting the types of solutions under consideration. NFRs are not directly
related to specific system components and often involve aggregate system
behavior (Manola 1999). Research involving nonfunctional requirements
and their impact on software development is taking place in a number of
areas, many of which fall into the category of “separation of concerns”
(Workshop 2000; Ossher and Tarr 1999). Concerns can fall into many,
often overlapping, categories and can describe concerns about features,
requirements, extensibility, performance, and reliability. Many categories
of concerns have been proposed but the common thread is that each
category describes attributes of a system that “cross-cut” the system’s
structure and/or functionality.

Functional requirements describe the functionality that a system needs
to provide in order to satisfy the needs of its stakeholders. Nonfunctional
requirements describe how well the system needs to perform that
functionality or, in some cases, how the development effort needs to
proceed in order to meet the needs of the customer and the developing
organization. One way that the NFRs can be captured during requirements
engineering and throughout development is in the rationale for the system.
The NFRs would appear as arguments for and against different alternatives
considered. The rationale can be analyzed to assess the impact of various
NFRs on the software product and to determine how the decisions made
might change if NFR priorities change.

11.4.1 Nonfunctional Requirement Categorization

When working with NFRs, it is often useful to work with a set vocabulary,
or ontology, of terms. In rationale-based systems, a common vocabulary of
keywords is needed to support semantic inference (Burge and Brown 2000).
There are several different ways that NFRs have been organized or grouped.
Bruegge and Dutoit (2000) referred to NFRs as “design goals” and broke
them down into five groups: performance, dependability, cost, maintenance,
and end-user criteria. Chung et al. (2000) provide an unordered list of NFRs
and also hierarchies of NFRs for performance and auditing.

11.4 Rationale and Nonfunctional Requirements 147

Some categorizations emphasize NFRs that relate to software quality
and have formed quality measure hierarchies. The ISO/IEC 9126 software
product quality standards (Jung et al. 2004) give six characteristics
(functionality, reliability, usability, efficiency, maintainability, and
portability) as well as 27 subcharacteristics. The CMU Quality Measures
Taxonomy (CMU 2002) organizes quality measures into Needs
Satisfaction Measures, Performance Measures, Maintenance Measures,
Adaptive Measures, and Organizational Measures.

11.4.2 The NFR Framework

The view that quality characteristics are important when developing a
software system was the driving force behind the development of the NFR
Framework (Chung and Nixon 1995). The NFR Framework uses
nonfunctional requirements, represented as Softgoals, to drive the software
design process (Chung et al. 2000). This process produces the design,
because the process is driven by the NFRs—its rationale. The NFRs are
represented in a softgoal interdependency graph. The graph allows
traceability from requirements to design decisions and from design
decisions back to the requirements considered (Chung and Yu 1998). If
requirements are changed, the goal graph can capture a historical record
that relates new requirements to the old ones (Chung et al. 1996).

Cysneiros and Leite (2004, 2001) focused on how NFRs could be
incorporated into the conceptual models represented in UML. They chose to
create two views of the system: an NFR view, built on the NFR Framework
(Chung et al. 2000) and a functional view, captured in UML. These two
views should be connected at “convergence points.” A Language Extended
Lexicon (LEL) was built to contain the vocabulary used for the functional
requirements and links to the NFRs. The LEL is generated first and is used
in constructing the functional and nonfunctional views.

The NFR Framework was also used to support the Goal-Centric
Traceability (Cleland-Huang et al. 2005) approach. Goal-Centric
Traceability consists of four phases: goal modeling, impact detection, goal
analysis, and decision-making. The goal modeling phase uses Chung’s
Softgoal interdependency graph (SIG) (Chung et al. 2000) to capture the
NFRs and tradeoffs. Impact detection automatically creates links between
the SIG elements and a functional model of the system captured in UML
class diagrams using ontological keywords. Goal analysis propagates
changes made to the goal contributions by the user through the SIG to
determine their impact.

148 11 Rationale and Requirements Engineering

11.4.3 SEURAT Argument Ontology and NFR Prioritization

The ability to inference over the rationale has many different uses. One
use, demonstrated in the SEURAT system (Burge and Brown 2006), is to
evaluate the impact of changing priorities over the life-time of a system.
This capability was supported by the use of an Argument Ontology (Burge
2005). This ontology, based on the NFR taxonomies described earlier
(Bruegge and Dutoit 2000; Chung et al. 2000; CMU 2002; Jung et al.
2004) and extended to incorporate additional criteria, contains a hierarchy
of reasons for making software decisions. The base elements of this
ontology are Affordability Criteria, Adaptability Criteria, Dependability
Criteria, End-User Criteria, Needs Satisfaction Criteria, Maintainability
Criteria, and Performance Criteria. The hierarchy then subdivides these
items into more detailed criteria (up to four levels deep). The Argument
Ontology contains 277 terms and is documented in Burge (2005).

SEURAT uses the rationale to re-evaluate the support for each decision
whenever the importance (priority) of an element in the argument ontology
changes. This can show which (and how many) alternatives may need to
be reconsidered. Another use of rationale supported by SEURAT is to
detect relationships between functional requirements and the NFRs in the
Argument Ontology. This can be done by looking for the ontology entries
that appear in arguments along with the functional requirements. This may
indicate a relationship between the goals depicted in the ontology and the
functional requirements.

The rationale can also be used to analyze the reasons for and against the
decisions made in order to determine how, and by how much, the goals
determined during the requirements engineering process ended up
influencing the final system. This is something that can be done during
development to ensure that the program is staying on track and that the
decisions are made in accordance with customer priorities and also after
development to learn what might be the important factors to consider when
developing future systems.

11.4.4 NFRs and Conflict Representation and Detection

and FRs can be used to identify conflicts between requirements. In the case
of NFR-to-NFR conflicts, it is important to determine how these
requirements interact to avoid situations where one is met at the expense of
another. This need to achieve “balance of attribute satisfaction” was the
impetus behind the Quality Attribute Risk and Conflict Consultant

The relationships between NFRs and the relationships between NFRs

11.5 Goal-Based Requirements Engineering 149

(QARCC) (Boehm and In 1996). Given a win condition generated using
WinWin, QARCC uses a knowledge base of architecture (product) and
process strategies for achieving quality attributes to check for conflicts.
The knowledge base identifies the positive or negative impact that an
architecture strategy has on affected quality attributes. The quality
attributes are stored in a hierarchy where attributes at the highest level of
abstraction, the “primary quality attributes” are mapped to stakeholder
roles. Conflict detection is supported by the rationale captured in
SEURAT by storing tradeoffs between quality attributes as background
knowledge that is then used to detect conflicts. This differs from the
approach used in QARCC by capturing the tradeoffs directly and not
relative to a specific architectural decision.

Egyed and Grünbacher (2004) use the quality attributes to detect
conflicts in functional requirements. In their approach, functional
requirements have requirement attributes that relate to qualities such as
efficiency, usability, and security. A cooperation and conflict model gives
the relationships between qualities (positive, negative, or no effect). If a
requirement has quality attributes that conflict with those of another
requirement, that may indicate a conflict between the two requirements.
This approach in and of itself would likely generate numerous false
positives so it is augmented with trace analysis to only report conflicts
between requirements that effect the same part of the code. The traces are
generated by running the test scenarios that test each requirement.

11.5 Goal-Based Requirements Engineering

Requirements engineering can be viewed as the process of transforming
stakeholder needs, or goals, into requirements that describe the system that
will meet those names or goals. Even in cases where the stakeholders
explicitly express their requirements, the system may be more successful if
the goals behind those requirements can be expressed so that alternative
ways to meet those goals can be explored (Antón and Potts 1998). In this
section, we will look at two approaches involving goals: Goal-Based
Requirements Analysis (GBRAM) (Antón and Potts 1998) and Goal
Oriented Requirements Engineering (GORE) (van Lamsweerde 2001).

11.5.1 Goal-Based Requirements Analysis

goal analysis and goal refinement. In goal analysis, the analyst explores
In GBRAM (Antón and Potts 1998), goals are defined in two phases:

150 11 Rationale and Requirements Engineering

various information sources to identify possible goals and classify them
according to goal dependencies. In goal refinement, the goal set is pruned
if necessary, goals are analyzed to identify obstacles towards the goals, and
goals are operationalized (turned into formal requirements).

Specifications and scenarios, sometimes in the form of use cases,
(Antón et al. 2000) are used as in puts to the goal identification process.
One method used to identify goals is to look for verbs such as “avoid” or
“improve” that are then followed by a desirable or undesirable condition.
These verbs are also uses to categorize goals into categories based on the
verb used. This categorization is used to separate user goals from system
goals. User goals are identified as “achieve” goals while system goals
(how the system responds to the user goals) are identified as “make” goals.
The categorization differentiates between providing capability and
providing information by using “notify” and “inform” to describe
providing information and using “provide” and “allow” to describe
providing capability (Antón et al. 2000). The goal categorizations used
vary depending on the domain. The CommerceNet Web Server project
described in Antón and Potts (1998) used avoid, ensure, improve, increase,
keep, know, maintain, make, and reduce while the e-commerce system
analyzed in Antón et al. (2000) used allow, achieve, make, provide,
inform, ensure, and notify as the goal categories.

11.5.2 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) focuses on the use of
goals to drive requirements engineering (van Lamsweerde 2001; van
Lamsweerde 2004). Goals can be functional goals, which are then used to
build use cases and other “operational models” or quality goals that
describe “preferred behavior” and are used to compare different
alternatives as well as posing constraints (van Lamdsweerde 2004). The
level of abstraction can also vary from high-level goals that are strategic to
low-level goals that describe technical concerns (van Lamsweerde 2001).

The Keep All Objectives Satisfied (KAOS) method (van Lamsweerde
and Letier 2000) represents goals and obstacles (undesirable conditions) in
a formal temporal logic. The KAOS construct specification consists of two
levels: a semantic net layer declaring the concept and its relationship with
other concepts and a formal assertion layer that gives a formal definition.
The second, formal, layer is optional and is used for formal reasoning
while the semantic net layer supports modeling, traceability, and reuse.
The goal specification defines the goal, and the property it should hold
(achieve, cease, maintain, avoid), what other objects are involved, the parent

11.5 Goal-Based Requirements Engineering 151

goal, subgoals that it should be refined to, and an informal description of
the goal. The specification also contains the formal layer expressed in
temporal logic. While goals describe desired behaviors, obstacles describe
undesirable behaviors. Obstacles can be broken into five types: non-
satisfaction obstacles that keep goals from being satisfied; non-information
obstacles that obstruct information dissemination; inaccuracy obstacles
that obstruct object state consistency; hazard obstacles that interfere with
safety goals; and threat obstacles that interfere with threat goals.

van Lamsweerde and Letier (2000) define a requirements elaboration
method that elaborates and operationalizes goals while also defining
obstructions to those goals. This process starts with elaboration, where
goals are refined; object capture that determines what objects are involved
(objects can be entities, relationships, or events); operation capture that
finds object state transitions; operationalization, which determines pre and
post conditions; and finally responsibility assignments to identify
alternative assignments and select alternatives based on nonfunctional
goals. Obstacles and alternative resolutions are identified during the
elaboration phase.

The GORE process is also supported by a software environment, Goal-
Driven Requirements Analysis, Integration, and Layout (GRAIL), which
supports editing, semantic checking, and views (Darimont et al. 1997).
GRAIL contains a text editor for requirements acquisition and to check
syntax and semantics. GRAIL can also present a graphical view of the
specification.

11.5.3 Relationship to Rationale

These methodologies both utilize rationale. In GBRAM (Antón and Potts
1998), the rationale for requirements provided by the stakeholder is used
during the refinement process to determine if there are additional
requirements that need to be generated. As the refinement process
proceeds, the rationale is tracked so that any unresolved issues can be
monitored and eventually resolved. Each requirement generated in the
GBRAM process is annotated with rationale: the questions, answers,
alternatives, and scenarios that were generated and used during refinement.

Defining requirements using the GORE method produces the rationale
for the requirements in the form of the goals that they were derived from.
The goal hierarchy that resulted in the final requirement definition can be
traced back to determine the rationale.

There are a number of places within the methodology where decisions
need to be made. One is in the assignment of responsibility for the terminal

152 11 Rationale and Requirements Engineering

goals to “agents”: entities (humans, programs, devices, etc.) that perform
operations or agents that monitor an object. Assumptions are defined as
terminal goals that are assigned to “agents in the environment”, while
requirements are defined as terminal goals that are assigned to “agents in
the software” (van Lamsweerde and Leiter 2000). The alternatives are
captured in the GORE process and the selection criteria can be captured as
well.

There are also alternative resolutions to obstacles defined during the
goal elaboration phase. The resolution strategies range from obstacle
elimination to obstacle tolerance (van Lamsweerde and Leiter 2000). The
choice of resolution strategy depends on the likelihood and severity of the
obstacle. The alternative resolutions and reasons for resolution selection
should be documented in the rationale.

11.6 Adapting to Changing Requirements

As stated earlier, failure to manage requirements, or more specifically
manage requirements change, is a major cause of project failure. Managing
requirements change requires addressing the following issues: identifying
(the need for) change, impact analysis, determining when changes conflict,
negotiation, prioritizing changes, change measurement, risk assessment,
change estimation, planning (scheduling), and change learning (Lam and
Shankararaman 1999).

These issues are strongly related to each other. For example, negotiation
is heavily involved when determining the need for change, prioritizing
changes, and scheduling change. Rationale has been shown to be an
effective strategy in supporting negotiation by allowing the views of all the
participants to be captured in a formal or semiformal manner. The ability
to use the rationale in evaluating alternatives can be helpful in
prioritization as well, especially if the rationale captures the importance of
different evaluation criteria.

Impact analysis and risk analysis are closely related. A requirement
having a higher impact on the system will bring a higher risk. If the
requirement is a change to an existing one, the rationale could be used to
determine what parts of the system were affected by the original
requirement so that those could be modified. This is supported by systems
such as SEURAT (Burge and Brown 2006) which use requirements as part
of the argumentation and map the selected alternatives to the code that
implements them. The ability to perform impact assessment also assists
with change measurement since the impact on the system is related to the

11.7 Summary and Conclusions 153

amount of change needed. The impact assessment results will assist with
change estimation as well.

One issue that rationale is especially helpful with is supporting the
process of determining when changes conflict. The rationale records the
intent behind the current choices made in a system and should also capture
what tradeoffs were made. New requirements can be assessed against
known tradeoffs. Another use of rationale is to avoid repeating mistakes
that occurred in the past. If a change is proposed that was rejected earlier,
the rationale will capture that decision and inform the analyst that there is a
potential problem.

The goal of “change learning” is to collect information about changes
that have occurred so that when similar changes happen in the future,
information about that change will “reduce surprise” (Lam and
Shankararaman 1999). Change information for a change, or type of
change, can be captured in its rationale. The rationale would provide the
reasons for the change, how it was made, and other pertinent information
such as cost. Rationale also helps with learning by providing the intent
behind the original requirements.

11.7 Summary and Conclusions

Requirements engineering is a crucial component of all software
developments. The ability to successfully capture stakeholder needs and
represent them in a way that they can then be used to drive software
development has a significant impact on the success of software projects.

In this chapter, we describe the requirements engineering process and
some key aspects including requirements elicitation, negotiation,
prioritization, and traceability. We also discuss research in nonfunctional
requirements and goal-based requirements engineering. These areas have
strong ties to rationale. By using NFRs to drive system design, the NFR
framework captures the rationale for each decision. Goal-based
requirements engineering examines the goals that drive each requirement,
i.e., its rationale.

Because of the criticality of requirements, and the high costs incurred if
requirements are incorrect, incomplete, or mismanaged, capturing the
rationale for the requirements should be a necessary step in the RE
process.

12 Rationale and Software Design

More has been written about software design rationale than about any
other topic in research on software engineering rationale. Much work has
gone into identifying the value of design rationale for software developers,
maintainers, and users; but realizing this value requires that approaches to
rationale capture and delivery be successfully integrated into the processes
of software design. This chapter looks at the complexities of this task and a
variety of approaches that researchers have adopted for dealing with them.

12.1 Introduction

A crucial goal of Rationale-Based Software Engineering is to effectively
capture and use rationale throughout software design. Both capture and use
of design rationale present problems for researchers and practitioners,
though the challenges of rationale capture are by far the more challenging.
To solve these problems, it is crucial to understand how processes of
rationale capture and use relate to what software designers do. More
specifically, it necessary to understand how decision-centric and usage-
centric approaches to rationale fit into, or fail to fit into, the processes of
software design.

The processes that practicing software designers use are varied. Some
are the product of their personal experiences and beliefs. Some are
prescribed by design methods that they subscribe to. Some are dictated by
the SE tools that designers use. The variety of processes in use is likely to
continue increasing as methods and tools evolve over the coming decades.

Given the variety of design processes and rationale approaches, the
question arises as to how to go about discussing the fit of rationale
approaches to design. A comparison of all rationale approaches with all
design processes is clearly beyond the scope of this chapter. Instead, the
chapter will look for underlying principles of fit and misfit.

156 12 Rationale and Software Design

12.1.1 The Nature and Importance of Software Design Rationale

12.1.1.1 The Nature of Software Design Rationale

Software design rationale (SDR) is the reasoning used in making decisions
about the design of software. Most of the literature on design rationale
deals exclusively with the elicitation and structuring of rationale from
designers. But to understand fully the issues of SDR, it is important to
recognize that not all the rationale used by the designers in a given
software project is generated by those designers. Some of this rationale
comes from stakeholders involved in SE activities other than design and
includes information about requirements as well as feedback from
construction and use of prototypes and earlier versions of the software.
This externally generated rationale can also include information about the
rationale for and outcomes of earlier projects.

12.1.1.2 The Importance of Software Design Rationale

Support for the capture and use of rationale generated by designers is
important because it can improve design and other SE activities, such as
construction, maintenance (Burge and Brown 2006), and the management
of software projects. It can also facilitate coordination and collaboration in
development teams as well as participation by users in development. The
argument has also been made that it can aid the users of software in
understanding complex, high-functionality systems (Haynes 2006).

Also important, however, is the design rationale that is not generated by
a project’s designers. Systematic use of such externally generated rationale
provides an intelligence augmentation (IA) strategy, i.e., a way of
augmenting the rationale of designers to enhance the quality of their design
efforts. Externally generated rationale includes feedback from construction
and use, which is one of the driving forces behind iterative approaches to
software design and development. Enriching this feedback and other
external sources of rationale might be the most promising means for
helping designers to cope with the increasingly pressing problems of
software development described in Chapter 1.

12.1.2 Objectives of This Chapter

The main objective of this chapter will be to identify the underlying
principles of fit and misfit between rationale approaches and design
processes. It will do this by means of two kinds of analysis. The first is a

12.2 Relating Rationale Approaches to Software Design Processes 157

general, theoretical analysis of rationale approaches and design processes.
The second is an analysis of concrete examples of attempts to integrate
rationale approaches into software design processes.

Subsection 12.2 looks in a general, theoretical way at the issues of
relating rationale approaches to software design processes. Subsection
12.2.1 looks at the ways in which decision-centric and usage-centric
approaches to rationale fit into design. Subsection 12.2.2 deals with ways
in which prescriptive and descriptive roles of rationale approaches can
support and conflict with design. Subsection 12.2.3 examines how the
roles of rationale for design space analysis and deeper reflection relate to
each other and to the design process.

Section 12.3 looks at specific approaches to tailoring rationale
approaches to software design. Subsection 12.3.1 surveys a variety of
approaches that researchers have devised for integrating rationale into the
design of software architecture. Subsection 12.3.2 then speculates on what
this highly diverse research suggests in the way of principles for fitting
rationale processes into the processes of design software architecture.

Finally, Section 12.4 summarizes the chapter and draws conclusions
about the state of research on software design rationale.

12.2 Relating Rationale Approaches to Software Design
Processes

In determining how rationale approaches relate to design processes, we can
make good use of three basic distinctions: between decision-centric and
usage-centric rationale, between the descriptive and prescriptive roles of
rationale approaches, and between the rationale for design space analysis
and deeper reflection. These distinctions reveal important information
about the compatibility of rationale approaches and design processes.

12.2.1 Decision-centric and Usage-centric Rationale
Approaches

Decision-making is the concept that most obviously connects SDR to
software design processes. This section will therefore start by looking at
the decision-centric approaches, which explicitly represent decision-
making processes. The results of this analysis will then be used to analyze
the usage-centric rationale approaches, which do not represent such
processes.

158 12 Rationale and Software Design

12.2.1.1 Decision-centric Rationale and Design Processes

What makes it possible to see the fundamental connection between
decision-centric rationale processes and design processes is the fact that
both deal with decision-making. In particular, both deal with decision tasks
and the evaluation of proposed decisions as a way of arriving at decisions.
Typically, both also deal with decision alternatives, i.e., multiple,
alternative, proposed decisions. These things might be represented
differently in a given rationale approach and a given design process used
by a software designer; nevertheless, understanding their equivalence
makes it possible to see the crucial similarities and differences between the
rationale approach and the design process.

The next crucial similarity is that each decision-centric rationale
approach and each design process necessarily has a way of evaluating
proposed decisions, i.e., decision alternatives. Finally, we can see that each
decision task can, and usually does, have a decision to adopt one of the
proposed decision alternatives.

If we look at this model of decision-making we can see that practically
everything a software designer does is part of some decision-making
process of this type. We can also see that every decision-centric approach
to rationale models decision-making in this way. As a consequence, the
question of how and where such approaches to rationale fit into design
appears simple to answer: they fit everywhere into design processes and
they fit well.

 The problem is that this notion of an extensive and deep fit between
decision-centric rationale and design process is hard to reconcile with the
reality of the rationale capture problem. The fact that this problem is
currently the greatest obstacle to the use of rationale approaches in
software projects seems to suggest a fundamental misfit of some sort
between rationale approaches and design process. This section will attempt
to understand this dilemma by looking for ways in which rationale
approaches can come into conflict with design processes. But first it will
look at how usage-centric rationale fits into the overall design process.

12.2.1.2 Usage-centric Rationale and Software Design Processes

According to the definition given above, something can count as SDR only
if it plays a role in helping to make design decisions. This might seem to
suggest that only decision-centric rationale approaches deal with SDR, but
this is not the case. A crucially important use of usage-centric rationale
approaches—such as Scenario-Claims Analysis (SCA) (Carroll and Rosson

12.2 Relating Rationale Approaches to Software Design Processes 159

1996)—is to provide rationale that informs the decision-making of
designers.

The contribution of usage-centric rationale approaches like SCA is to
recognize that organizing rationale around decisions is not the best way to
elicit and characterize some of the rationale needed for making appropriate
design decisions. A design must largely be judged in terms of its
consequences for its users, and the best way to identify these consequences
is to document the evaluation of system features by users as they interact
with the system. This information can then be fed back to the system
designers in the form of argumentation rationale that prompts them to
revise their decisions about the design of the system. Thus, usage-centric
rationale, such as that produced by SCA, gets its value for design by
informing design decision-making, but it does so by providing feedback
that gets designers to change their previous decisions. SCA is thus part of
an iterative design process that Carroll and Rosson have labeled “the task–
artifact cycle.” So ultimately, a complete account of SDR must show how
usage-centric rationale becomes part of the evaluation of decision
alternatives in decision-centric rationale for software design.

12.2.2 Prescriptive and Descriptive Roles of Rationale
Approaches

The distinction between the prescriptive and descriptive roles of rationale
approaches, explained in Chapter 1, reveals various ways in which these
approaches can be compatible or incompatible with design processes.
Rationale approaches can play various descriptive and prescriptive roles in
design, and these roles intrude into the design process in different ways
and to different degrees. The intrusiveness of rationale approaches is an
especially important topic because it is at the center of a controversy
amongst rationale researchers about the difficulties of getting rationale
approaches used in practice. The focus of this controversy is the rationale
capture problem, which is widely regarded as the main obstacle to
practical application of rationale. One side of this controversy advocates
the use of traditional approaches to capture, which tend to be relatively
intrusive. The other side, which has emerged over the past decade or so,
argues that the intrusiveness of traditional approaches to capture is the
main cause of the capture problem. Making sense of this controversy
requires a detailed understanding of the varieties of prescriptive and
descriptive roles of rationale and the ways in which they intrude into
design. This subsection starts by looking at the prescriptive roles and then
looks at the descriptive roles.

160 12 Rationale and Software Design

However, before describing the intrusiveness of rationale approaches it
is important to state some words of caution. It would be a mistake to
regard intrusion into design as necessarily bad. There is no way to improve
design without altering it, and this means intruding into it. Even if one
believes that the intrusiveness of rationale methods has been the central
barrier to rationale capture, it would be foolish to conclude that designers
are against all intrusions into design. After all, this would imply that they
were opposed to the idea that design could be improved.

12.2.2.1 Prescriptive Rationale Approaches and Design Processes

Prescriptive approaches to design rationale attempt to alter the thinking of
designers in order to improve design. While the intention of such
approaches is to be useful to designers, there exists the possibility that they
will interfere with the way designers prefer to work. In fact, one possible
explanation for the difficulties in getting designers to adopt rationale
approaches is that they do not like being told how to do their jobs. But
before accepting such a glib explanation, it is prudent to look more closely
at the varieties of prescriptive roles and how they affect design.

Two ways rationale approaches can be prescriptive. Rationale
approaches can be prescriptive by informing design, i.e., by providing
information for designers to think about in making decisions; or they can
be prescriptive by prescribing processes for designers to follow in making
decisions. An example of the former is the approach of Fischer et al.
(1996) (described in Chapter 4 of this book) which uses knowledge-based
critics to supply designers with information from a collection of rationale
structured using the PHI variant of IBIS. An example of the latter is the
process-oriented approach to IBIS advocated by Conklin and Burgess-
Yakemovic (1996).

Intrusiveness of these two ways of being prescriptive. The approach of
informing design represents a relatively minor intrusion into the design
process. Thus, in the work of Fischer et al. the design process is only
intruded into briefly and intermittently when critics detect violations of
rules of thumb for design and display rationale to help designers determine
whether it makes more sense to follow the rules or break them.

By contrast, the approach of prescribing processes is a much greater
intrusion on the design process. Thus, in the work by Conklin and Burgess-
Yakemovic, designers are restricted to what these authors call “‘legal moves
in the IBIS design conversation” (Conklin and Burgess-Yakemovic 1996)
throughout the design process. They describe the use of IBIS to structure

12.2 Relating Rationale Approaches to Software Design Processes 161

meetings, but IBIS can also be used to structure the work of individual
designers.

It is clear that, in principle, prescriptive approaches to rationale should
be able to justify their intrusiveness by their benefits to designers. All
prescriptive uses of rationale in design are, by definition, aimed at aiding
designers. The question seems to be what types and degrees of intrusions
designers are likely to regard as worthwhile.

 Conklin and Burgess-Yakemovic as well as others, e.g., Shum et al.
(2006), have reported many cases where designers found that the use of
process-prescribing rationale methods produced higher-quality design.
Despite such reports, it is clear that effective rationale capture remains a
largely unsolved problem. So it is important to see if there are additional
ways in which rationale might conflict unacceptably with processes that
designers choose to use.

Ways in which designers might view intrusiveness as bad. There are
two respects in which a prescriptive rationale approach can dictate how
decisions are made. The first is that it can require the use of a conceptual
schema for categorizing and interrelating the rationale used in decision-
making. For example, when IBIS is used in a prescriptive approach, its
schema requires that rationale be stated in the form of issues, positions,
arguments, and resolutions and that these elements be linked together only
in certain ways using a given set of relationships. Other rationale schemas
have similar requirements when used in this prescriptive manner.

There are a number of reasons that designers might have for viewing
schema-based approaches to decision-making as undesirable. They might
feel that a given schema does not fit their individual, and perhaps highly
skilled, modes of reasoning about design. Or they might be committed to
using a software design method or tool that does not allow rationale to be
organized according to the given schema.

Much of the rationale literature has been devoted to devising new schemas,
and not infrequently this work is based on a claim that the difficulties of
rationale capture derive from mismatches between schemas previously used
and the way in which designers naturally organize their thoughts. Ironically,
there is little or no evidence that changing the schema has resulted in more
effective capture of rationale. This suggests that the problem might not be
any particular schema, but the use of schemas in general.

Schön’s theory of Reflective Practice suggests that the use of a rationale
schema fundamentally conflicts with some of the cognitive processes
required for design. Schön argues that designers alternate between two
complementary types of processes: an intuitive process of action and a
rational process of reflection. A cornerstone of his theory is that a designer

162 12 Rationale and Software Design

can only engage in one of these processes at a time. Using a rationale
schema to structure design thinking is a kind of rationale reflection. Thus,
the attempt to use schema-based rationale throughout the design process is
in effect an attempt to turn all of design into rationale reflection. According
to Schön this makes design impossible. It should be noted that Marshall and
Shipman have made a similar but more general argument about the
counterproductive nature of schemas for human–computer interaction
(Shipman and Marshall 1999a).

Intrusiveness of elicitation and structuring procedures. There is a
second respect in which a prescriptive approach to rationale can dictate the
way in which decisions are made, and that is by prescribing the procedures
used for eliciting and structuring rationale. These procedures can also
conflict with the processes that designer prefer to use, either because they
prefer to think in a given way or because they are committed to using
software design methods or tools that conflict with the elicitation and
structuring procedures mandated by the prescriptive approach to rationale.

Temporal intrusiveness. Wherever a prescriptive rationale approach does
not conflict with the processes designer prefer to use, there might seem to be
no obstacle to using the approach in conjunction with the preferred design
processes; but there is one more problem that is potentially a “show-
stopper.” The problem is that using any rationale that involves having the
designer document rationale or even participate in the documentation of
rationale is likely to be very time consuming. There are two questions that
need to be answered before the documentation of rationale can be justified.
One is whether the designers have enough time to participate in the
documentation. The other is whether having the designers spend time on this
documentation is of greater value than having them spend that time on
design itself. The latter question indicates that it is not enough to consider
the absolute cost of documenting rationale; it is necessary to consider the
lost opportunity costs of such documentation. It seems likely that the
inability to answer these two questions in the affirmative has played a large
role in limiting the capture of rationale in real-world software projects.

12.2.2.2 Descriptive Rationale Approaches and Design Processes

In retrospect, it might seem obvious that procedurally prescriptive rationale
approaches are inherently intrusive on design processes; and this might
create the expectation that when playing a purely descriptive role rationale
approaches would necessarily be less intrusive. Things are not that simple,
however, because designers often do not state their rationale, much less
document it, when they design. Obtaining a detailed record of their rationale

12.2 Relating Rationale Approaches to Software Design Processes 163

might therefore require a concerted effort to elicit it from them and to record
it. This effort has the potential for being highly intrusive on the design
process. As a consequence, researchers who feel that intrusiveness is the root
of the capture problem have sought various ways of describing designers’
rationale in ways that are less intrusive.

highly intrusive approach to eliciting rationale is to systematically
interrogate designers about what decisions they make and the reasoning for
each decision. This approach becomes maximally intrusive when it uses a
rationale schema and dictates the order in which statements are elicited.
Such an approach is nearly as intrusive as the most aggressive procedurally
prescriptive approaches but has the further disadvantage of offering no
obvious payoff to designers as a motivation for them to tolerate the
intrusion.

The approach of systematic interrogation can be done either in process-
oriented or structure-oriented mode, i.e., either to produce a history of the
design process or a “logically” structured record of design rationale
without any indication of the process by which it was produced. In the
former case it intrudes on every step of the design process. In the latter
case it can be done in retrospect and so could be intrusive only in the sense
of requiring designers’ time. Of course, there may be some question about
how accurate such retrospective accounts of rationale are likely to be.

Perhaps the most extreme example of intrusive elicitation of rationale
using a purely descriptive approach was found in the use of PROTOCOL,
the first software designed exclusively as a rationale management system
(McCall 1979a). This system used a systematic interrogation approach
based on the PHI schema and had a fixed order in which statement types
were elicited. The approach was applied recursively in the sense that each
response became the subject of further interrogation, in a manner
somewhat reminiscent of the Eliza system (Weizenbaum 1966). A
rationale elicitation session only ended when users were unable or
unwilling to give further responses. While the system was highly effective
in eliciting large quantities of rationale, users generally found the
experience extremely tiring and few were willing to repeat it. Someone
observing this effect commented that the system had given a whole new
meaning to “exhaustive enumeration” (McCall 1979a).

The QOC approach is much less intrusive than the approaches described
above. It is exclusively targeted at describing the rationale for design—
usually software design—and employs a structure-oriented approach. It
uses a schema in eliciting rationale, but apparently does not dictate the
precise order in which statement types are stated. Most important of all is

Intrusiveness of various approaches to describing rationale. One

164 12 Rationale and Software Design

the fact that QOC does not intrude into the design process directly, because
it is not used while design is taking place.

QOC can, however, indirectly intrude on design to various degrees,
depending on how it is used. The authors of QOC insist that that the
rationale for a project should itself be designed, so the crucial question is
how much the designers themselves need to be involved in this process.
The more designers are involved in designing the design rationale, the
more time will be required of them and, consequently, the more temporally
intrusive QOC will be on design. Users of the QOC approach, however,
might minimize this intrusiveness by eliciting only the raw rationale from
the designers and employing other people, e.g. rationale experts, to refine
and design this rationale.

Descriptive approaches lend themselves to highly unobtrusive capture,
including both automated capture and automated structuring of rationale.
The work of Myers et al. (1999) (described in Chapter 4) uses a
completely nonintrusive approach that captures rationale by recording the
actions of designers using a CAD system. Schneider (2006) does a similar
kind of nonintrusive capture of rationale from software engineers as a by-
product of their use of development tools. McCall and Mistrik (2005) use
natural language processing to capture and structure rationale from
communications between software designers and prospective system users.
Also, it should be mentioned that the approach proposed by Gruber and
Russell (1996), i.e., retrospectively reconstructing rationale rather than
attempting to record it, is also completely nonintrusive.

12.2.3 Rationale for Design Space Analysis and Deeper
Reflection

We can distinguish two fundamentally different types of decisions that
designers make: design-space decisions and other design decisions. The
former decide what the features of the artifact will be; the latter do not.
Much of the literature on design rationale in all fields has focused on
design space decisions so exclusively as to give the impression that these
are the only decisions designers deal with. But there are many other
decisions that they make that do not directly decide system features but
nevertheless have a profound, albeit indirect, affect on what features a
system has. These decisions reflect a deeper level of reflection on factors
that influence the design of the system.

The decision-making processes associated with deeper reflection provide
an important mechanism for improving the quality of software design.
It is therefore important to understand the role that rationale approaches

12.2 Relating Rationale Approaches to Software Design Processes 165

can play in supporting this sort of reflection. If a design process that
software designers generally use does not explicitly support this sort of
reflection, employing a rationale approach that promotes such reflection may
enable the designers to improve the quality of their decisions.

12.2.3.1 Rationale for Design Space Analysis

The term design space analysis was coined by MacLean et al. (1996) to
describe the sort of rationale-based decision-making represented in their
Questions, Options and Criteria (QOC) approach to design rationale. This
approach documents the evaluation of proposed alternative answers to
design questions. The questions they deal with are those whose answers
represent features of the artifact being designed—usually software.
Answering these questions amounts to making decisions about what
features the artifact will have. To distinguish such questions from other
types of questions dealt with in design, we will call the QOC-type
questions design-space decisions. The set of chosen answers to all design
space decisions in a project thus constitutes the complete design of the
artifact. A crucial point for relating rationale to design is that design space
decisions represent the points where rationale meets the representation of
the artifact being designed.

Other decision-centric rationale approaches, such as Issue-Based
Information Systems (IBIS) (Kunz and Rittel 1970) and Procedural
Hierarchy of Issues (PHI) (McCall 1990), can also represent the rationale for
Design Space Analysis, though their schema for representing the evaluation
of alternatives differs from QOC’s. Unlike QOC, IBIS and PHI can also deal
with design questions that do not correspond to design-space decisions.

The Decision Representation Language (DRL) (Lee 1990) resembles
QOC in many ways, especially in its evaluation schema. Examples in the
literature of the decisions that it deals with have been limited to design
space decisions; yet the author of the system (Lee) makes no claim about
its use being restricted to design space analysis. It seems reasonable to give
DRL the benefit of the doubt and assume that it can also be used for other
kinds of design decisions.

12.2.3.2 Rationale for Deeper Reflection

Design space decisions are not the only kind of decisions made in the part
of the development process known as design. This can be seen by looking
at decisions in the way that IBIS does: any decision to be made can be
represented as a question to be answered; and any design question that
needs to be answered represents a decision to be made. There are many

166 12 Rationale and Software Design

important questions that can arise in design that do not have answers
describing features of the artifact being designed.

Rittel listed a number of major categories of design questions, or issues
as he called them (Kunz and Rittel 1970). These included the following:

• Factual issues—including questions about what is, was or will
be the case

• Deontic issues—including questions about what should be or
ought to the case

• Explanatory issues—including questions about why something
is the case or what causes something to be the case or what a
term means or what effects something has

The decisions on these issues typically do not directly describe artifact
features, and yet they occur as part of the overall design effort and can
decisively influence the design of the artifact.

An example of a factual issue would be, “Which rich Internet
application (RIA) technology is likely to become dominant over the next
five years?” An example of a deontic issue would be, “Should we be
buying or building the graphics functionality that we need?” Examples of
explanatory issues would include questions like “Why has security been so
hard to achieve for previous versions of this software?”, “How are we
interpreting the meaning of the term Rich Internet Application in our
project?” and “What does this requirement really mean?”

There are a number of different roles for non-design-space decisions in
the larger design process. Often these roles are made clear by the
circumstances in which such decisions arise. For example, some of these
decisions arise from the attempt to generate decision alternatives. “How
has this decision been made in other projects?” and “If cost were not a
concern, what are all the conceivable ways we might try to accomplish this
task?” are examples that have the role of helping to generate decision
alternatives. Although both of these questions have answers that describe
artifact features, they are not design space decisions, because they do not
decide that the artifact should definitely have any specific feature.

Often non-design-space decisions arise out of argumentative evaluation
of decision alternatives. In collaborative design, for example, it is quite
common for one designer to challenge a statement made by another; and
sometimes these challenges are elevated to the status of non-design-space
decisions that are decided by the whole group. This can happen because
any statement that someone makes can be questioned, i.e., literally become
the basis of a question about it. In fact, in any reasoning about a design
space, questions can arise that are crucial for the design of the system but

12.3 Specific Approaches that Integrate Rationale into Software Design 167

which are not design space decisions in the sense of having answers that
decide features of the artifact being designed.

Some non-design-space decisions take the form of metadecisions, i.e.,
decisions about the decision-making process itself. Examples of such
questions include, “Which decision should we make first?” and “How
much time should we allocate to making this decision?”

Decisions that occur during the design process but that are not design-
space decisions gain there relevance to the design process only by
influencing design-space decision-making. The non-design-space
decisions—such as the ones categorized by Rittel—are relevant to design
only if they inform design space decisions, i.e., influence the reasoning
about design-space decisions. This indicates that, although rationale for
non-design-space decisions is not directly about design-space decisions, it
is always indirectly about such decisions.

A useful way of looking at the rationale for non-design-space decisions
is that it represents deeper reflection on the design process than is
represented in the rationale of design space decisions. Rationale on the
non-design-space decisions is especially important because it enables the
deeper thinking about design that produces more thoughtfully designed
artifacts that are of higher quality.

12.3 Specific Approaches that Integrate Rationale into
Software Design

12.3.1 Rationale and Software Architecture

Software architecture is the one area of software engineering where
rationale is most explicitly mentioned as an area of research. One reason
may be the criticality of decisions made at this stage. As Bass et al. (2003)
describe it:

Software architecture manifests the earliest design decisions about a
system, and these early bindings carry weight far out of proportion
to their individual gravity with respect to the system’s remaining
development, its deployment, and its maintenance life. It is also the
earliest point at which design decisions governing the system to be
built can be analyzed.

The criticality of these early decisions indicates the grave importance
that they be made with careful deliberation and remain consistent with the

168 12 Rationale and Software Design

criteria identified by system stakeholders during requirements elicitation
and analysis.

The importance of design decisions to architecture can be taken one step
further—the architecture can be viewed as more than a collection of
components and their relationships but rather as “a composition of
architectural design decisions” (Bosch 2004). Tyree and Ackerman (2005)
feel that architectural decisions are the key to “demystifying architecture
products” and describe several places where traditional architectural
approaches “break down.” They point out that the lack of rationale results
in system stakeholders continually needing to ask for answers to the same
questions. These decision-centric views of software architecture lead
naturally to decision-centric views on its rationale.

Not content with assuming that rationale is useful, Tang et al. (2006)
surveyed architects to determine their opinions on the usefulness of
rationale. The survey results showed that 85.1% of the architects surveyed
considered rationale as important (4 or 5 on a 1–5 Likert scale). Other
interesting results were that 74% of the architects did not remember the
reasons behind their own design decisions and that 80% agree that if the
design rationale is not present they may not understand why a design was
created without the assistance of the original designer.

12.3.1.1 Rationale and Architectural Decision Documentation

While it is encouraging to see rationale as a part of architectural design
research, for the most part this information is delegated to a descriptive
role where schema-based rationale appears in, and is defined by, a decision
model or decision template. The information that populates the
architectural knowledge repositories is for the most part provided manually
by the designer as part of the architecture design process.

A number of architectural knowledge research projects stress the
importance of rationale and capture it by including it as part of an
architecture decision template that is filled in by the architect. Tyree and
Ackerman (2005) proposed an architecture decision description template
based on the Representation and Maintenance of Process Knowledge
(REMAP) (Ramesh and Dhar 1992; Rhamesh and Dhar 1994) and
Decision Representation Language (Lee 1990) rationale representations.
The template expresses the decision, its status, assumptions, constraints,
positions (alternatives) considered, arguments, and implications, and
related decisions, requirements, artifacts, and principles.

Templates are also used in the PAKME knowledge management tool
(Ali-Babar and Gorton 2007). PAKME stores design options, and their

12.3 Specific Approaches that Integrate Rationale into Software Design 169

rationale, as “design option cases” that can be used to support case-based
reasoning. A selected design option is represented as an architecture
decision. Both design options and architecture decisions have rationale,
also captured with the assistance of a template. Their rationale “describes
the reasons for an architectural decision, justification for it, tradeoffs made,
and argumentation leading to the design decision.” (Ali-Babar and Gorton
2007) and is described using a template (not described in the paper) based
on those defined by Tyree and Ackerman (2005) and in the Views and
Beyond (Clements et al. 2002) approach.

The Views and Beyond template is extended by Bass et al. (2006) by
adding a causal graph of rationale that provides causal relationships
between decisions. They also describe how a structural graph of rationale
can capture rationale for each architectural element. The rationale focuses
on the architectural elements’ responsibilities with respect to achieving
functional requirements and quality attributes. It also relates the
architectural elements to the design decision alternatives. These two
graphs provide two different ways of looking at the design—as a series of
decisions (the causal graph) and as the result of making those decisions—
the software structure.

An example of a model using rationale is the one developed under the
GRIFFIN (a GRId For information about architectural knowledge)
contract that structures software architecture project memories (de Boer et
al. 2006). This model captures rationale as the alternatives proposed for a
decision topic that are ranked based on concerns addressed in a particular
viewpoint and that influence the decision topic. A major goal of their
model is to “associate know-how, or rationale, with the know-what and
know-how contained in design artifacts.”

The Architecture Design Decision Support System (ADDSS) (Capilla et
al. 2006) also utilizes a model that contains rationale. Their model (Capilla
et al. 2007) contains several attributes that could be interpreted as rationale:
the mandatory rationale attribute, recording the reason for making the
decision, as well as several optional attributes providing alternatives,
assumptions, pros/cons, quality attributes, and a decision category. Another
interesting optional attribute is iteration—this provides support for tracking
decisions to the “architectural iteration” in which it was made.

Zhu and Gorton (2007) model design decisions using the Unified
Modeling Language (UML) (OMG 2005b) profiles and the Object
Constraint Language (OCL) (OMG 2005a). Rationale is attached to the
model by adding the rationale description as a UML tag (a mechanism for
adding descriptive information to the model) on the relationship between
design decisions and the nonfunctional requirements. Many believe that the
UML is the closest thing to a standard in software engineering and it is

170 12 Rationale and Software Design

surprising that more approaches are not utilizing it for capturing rationale
(although many approaches use it as a notation for describing their
schemas).

Several approaches define their own ontologies, or notations, for
rationale. The DAta Model for Software Architecture Knowledge
(DAMSAK) (Ali-Babar et al. 2006) defines design rationale as containing
the following elements: description, comment, constraint, assumption,
strength, weakness, cost, benefit, complexity, unresolved issues,
justification, rule, context, tradeoffs, arguments, and other information, all
text fields with the assumption of unresolved issues (which is an integer
which must map to something else). Krutchen et al. (2006) define a rich
ontology of design decisions. This ontology captures rationale directly as a
textual description and indirectly through relationships between design
decisions. The relationships defined in their ontology are quite
comprehensive: constrains, forbids, enables, subsumes, conflicts-with,
overrides, comprises, is an alternative to, is bound to, and is related to.

Archium (van der Ven et al. 2006) captures design decisions in a
template-like format that either uses, or bears a strong resemblance to, Java
annotations. The fields of their template are not called rationale, but
capture alternative solutions along with their constraints, consequences,
pros, and cons. There is also a place in the template to identify tradeoffs.

The Architecture Rationale and Elements Linkage (AREL) model (Tang
et al. 2007) captures three types of rationale: qualitative rationale,
arguments for and against design decisions; quantitative rationale that
describes the costs, benefits, and risks of each design option; and a third
type, the alternative architecture rationale, to describe design options that
were discarded. The qualitative rationale (QLR) is captured using a
template and contains the issues, assumptions, constraints, strengths,
weaknesses, tradeoffs, risks (and non-risks), the assessment and decision,
and any other supporting information required to make a decision. The
quantitative rationale (QNR) represents cost, benefit, and risk using an
Architecture Cost Index (taking into account costs such as development,
maintenance, and platform support), Architecture Benefit Index (which
combines requirement priority and how well the decision satisfies it),
Outcome Certainty Risk (how likely the architecture will be to meet its
outcomes) and the Implementation Certainty Risk (the risk of
implementation issues causing problems). The alternative architecture
rationale (AAR) contains all the information in architectural rationale
except for alternatives that have been rejected (Tang and Han 2005).

12.3 Specific Approaches that Integrate Rationale into Software Design 171

12.3.1.2 Using Rationale to Support Software Architecture

The main emphasis of most of the approaches described appears to be
using rationale descriptively as part of design decision documentation.
There are approaches, however, that take a more prescriptive approach.
For example, the PAKME architectural management system (Ali-Babar
and Gorton 2007) described uses rationale as part of its “design option
cases” that support case-based reasoning and the reuse of the rationale.
This can be viewed as a means of informing design, by providing
information that would be useful to the designers.

The Decision Goals and Alternatives (DGA) Design Decision Rationale
(DDR) technique (Falessi et al. 2006) both supports design decision
documentation and supports design decision-making. The DGA provides a
decision documentation process that first has the decision-maker refine
objectives, constraints, and subgoals and a second stage that takes the
designer through the “enaction” of decision phases where the designer
assigns scores to the relevant attributes identified in the earlier phase. The
scores provide the importance that an attribute has to the decision task at
hand. This is an example of a rationale approach of prescribing processes.

The Architecture Rationale and Element Linkage (AREL) system
described earlier can support several uses for rationale that support design
modification and understanding, rather than assisting with the design
activity itself. AREL has been extended to create the eAREL system (Tang
et al. 2006) to support architecture evolution. This is done by storing a
current version of each architecture element (AE) and architecture rationale
(AR) as well as one or more “historical versions.” The links between the
ARs and AEs provide traceablity forward, to perform impact assessment,
backward, to provide root-cause analysis, and over time, to analyze the
evolution of decisions and/or architectural elements. Change impact
prediction to assess the effect of system requirements or decisions
changing is also provided by a version of the system where AREL is
modeled as a Bayesian Belief Network (BBN) (Pearl 1988) where the nodes
of the network are architecture elements (requirements and decisions) or
architecture rationale (the reason for making a decision) (Tang et al.
2005b). In the AREL BBN, the links represent causal relationships.
Architecture element nodes have two possible states: stable or volatile,
indicating if it is likely to change, and architecture rationale nodes have the
two states of valid or invalid. Conditional probability tables give the
probabilities of different combinations of these states. The BBN supports
two kinds of reasoning: predictive reasoning where the network is used to
predict the effect of an architectural design change by changing the state of
an architectural element to volatile, and diagnostic reasoning where a non-

172 12 Rationale and Software Design

root node is set to volatile and the posterior probabilities of its ancestors
are evaluated to determine possible causes for the change.

12.3.2 Strategies for Fitting Rationale into Architectural Design
Processes

Almost all of the described approaches focus on fitting rationale into the
processes of designing software architecture. But at first glance these
approaches are so varied that it may seem hard to discover any common
strategies for fitting rationale to design. A closer look, however, does
reveal some basic trends. One of these is that more than half the
approaches focus on the integration of rationale models with models of
architectural artifacts to make hybrid rationale–artifact models.

There are two basic kinds of software architecture artifacts. One kind is
the architecture itself and the various design space decisions that it consists
of. As van der Ven et al. (2006) point out, these decisions are where
rationale and architecture meet. This means they are also where rationale
processes and the processes of software architecture must also meet.

The other kind of software architecture artifact consists of the many
things that software architects create to do the work of design. These
include things like patterns, tactics, scenarios, findings, and design
histories. A number of the papers integrate rationale and such artifacts into
hybrid models. PAKME does this for the stated purpose of integrating
rationale into the processes of software architecting, and this appears to be
the motivation for other approaches doing this as well. In general it seems
that the more rationale can be tied to the creation of such artifacts, the
more rationale processes can be fitted into the processes of designing
software architecture.

Another trend is the reliance on the modeling of dependency
relationships among decisions as a type of rationale. Sometimes this is
little more than a reinvention of the dependencies found in rationale
approaches such as PHI, DRL, and RATSpeak (Burge and Brown 2004).
In other cases, a fundamentally different approach is taken to modeling
dependencies. Most notably different is the AREL system’s use of
dependencies based on Bayesian Belief Networks. Regardless of how
dependencies are modeled, the purposes for modeling them seem to be the
same: traceability and predicting the consequences of change. These
purposes are so important to SE that using rationale to model them fits
rationale processes more closely to SE processes.

Other, more minor trends are the use of automatic capture of rationale
and the introduction of more elaborate and quantitative modes of evaluation

12.4 Summary and Conclusions 173

into rationale. The former seems aimed at reducing the potential conflict
between rationale and software engineering processes. The latter bring
evaluation of decision alternatives more in line with the types of evaluation
used in SE.

12.4 Summary and Conclusions

Effective capture and use of rationale in software design requires that
rationale approaches be skillfully fitted into the processes that software
designers use. Arranging for a good fit is a complex undertaking that
requires a detailed understanding of how approaches to representing,
capturing, and delivering rationale can support or conflict with software
design. This chapter has used two methods for coming to such an
understanding. The first was a theoretical analysis of various types and
roles of design rationale and the way these affect software design. The
second was a look at a variety of approaches that researchers have devised
for fitting rationale into the design of software architecture. The theoretical
analysis focused on the potential difficulties and benefits of rationale
capture and use. The survey of research focused on the modifications of
rationale schemas to include representation of SE artifacts, dependency
networks, and more elaborate modes of evaluation, all of which work to
increase the fit between rationale and software design processes.

The complexity of the topic of fitting rationale into design and the great
variety of approaches to doing so both suggest that much more research
can and should be done on this topic if a broad consensus on approaches to
design rationale is to be reached. At the same time, they make it clear that
enormous progress has been made over the early days of rationale research
when it was naïvely assumed that successful capture and use of design
rationale in SE was a simple matter and that simple approaches would
suffice. What is also clear is that researchers on design rationale have
made progress not only in understanding the problems they face but also in
solving them.

13 Rationale and Software Verification,
Validation, and Testing

Designing and developing effective verification, validation, and testing
strategies is always a challenge. The testing strategy needs to take into
account the crucial balance between cost and quality and make appropriate
tradeoffs depending on the specific project. In this chapter, we will
investigate whether the presence of Software Engineering Rationale (SER)
can assist in determining how and what to test.

13.1 Introduction

13.1.1 Verification, Validation, and Testing

One of the most important parts of the software development process is
Verification and Validation (V&V). The goal of V&V is to provide an
assessment of the ability of the software both to meet its requirements and
to satisfy the needs of the user (IEEE 2004b). Verification refers to
assessing the software’s conformance to its specification while validation
refers to ensuring that the software fulfils the customers’ expectations
(Sommerville 2007). As Barry Boehm (1979; Sommerville 2007) puts it,
validation asks “Are we building the right product?” and verification asks
“Are we building the product right?”

The V&V process encompasses assessment, analysis, evaluation, review,
inspection, and testing (IEEE 2004b). Software, which includes
documentation as well as code, can be assessed statically, through
inspections or other analysis techniques, or dynamically through software
testing. There are many reasons why inspection should be done in addition
to testing. Inspection can find errors that might be masked by other problems
during testing, can be performed before the software is complete, and
can assess nonfunctional requirements such as conformance to standards and
the choice of algorithms (Sommerville 2007). Testing is still necessary to

176 13 Rationale and Software Verification, Validation, and Testing

ensure the software runs and to assess performance, scalability, reliability,
and other qualities during operation. Testing continues to become more
difficult as increasingly powerful systems (at the same price) provide the
ability to run increasingly complex software (Stobie 2005).

The process of ensuring that the software conforms to its specification,
as well as the evaluation of the development process itself, falls under the
category of software quality assurance (SQA) (IEEE 1990). Quality
assurance involves planning for how quality will be achieved and
measured. QA strategies vary between organizations with some planning
for quality from the start and monitoring progress while others view SQA
as simply being testing, an approach to SQA compared to “locking the
barn door after the horse has escaped” (Baker 2001).

13.1.2 Software Testing Issues

One of the most famous software engineering phrases comes from
Dijkstra: “program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for showing their
absence” (Dijkstra 1972). This highlights the primary difficulty of
software testing—it is impossible to ensure that there are no errors. The
presence of errors is inevitable. Error probabilities for experienced
programmers are around 1% (one in 100 lines of code) and increase for
less experienced developers (Wang and Tan 2005). Testing can account for
a significant percentage of the development effort (Juristo et al. 2006).

There are many decisions that need to be made when developing a
testing strategy. One is the level of software integrity required. IEEE 1012-
2004 (IEEE 2004b) defines four integrity levels ranging from level four,
where if the software does not run correctly there may be significant
consequences (loss of life, equipment, or money) to level one where the
consequences of failure are minor. Since software testing can be very
expensive and time consuming, it is important to determine how rigorous
the effort should be and if there may be more important considerations
such as time to market that should take precedence.

Decisions also have to be made about what types of testing to perform.
Some researchers break testing down into two types: debug testing and
operational testing (Frankl et al. 1997). This fits with two primary reliability
testing goals—to find and remove defects in the software and to evaluate the
ability of the software to operate as expected. Debug testing is more
effective at finding defects but may result in focusing testing resources in
finding problems that may never appear operationally. Operational testing

13.2 Types of Software VV&T 177

evaluates the system under realistic conditions but may not find rare, but
possibly catastrophic, problems that may occur under extreme conditions.

The number of tests, or test cases, is also an issue where cost/reliability
tradeoffs must be made. Exhaustive testing of all possible inputs is almost
always prohibitively expensive. Test cases need to be chosen carefully so
that the level of testing is appropriate for the integrity level of the system
as well as achieving sufficient test coverage.

13.1.3 Objectives of This Chapter

This chapter provides a brief introduction into some components of
software VV&T and describes some ways that rationale could contribute
to each of them. That description is then followed by a discussion of how
rationale would support software testability, test case prioritization, and
component selection and testing. We then conclude by examining how
rationale captured for test planning and strategy selection could be used to
support future development efforts.

13.2 Types of Software VV&T

13.2.1 Inspection

Inspection, of code or other software artifacts, is an important component
of the VV&T process. As stated earlier, inspection can find problems that
testing often cannot. Inspection can also be employed at the early stages of
system development to detect specification and design errors. If these
errors cannot be detected and removed, the resulting system is likely to be
poorly structured with faults due to the design flaws (Kitchenham and
Linkman 1998).

Numerous studies have been performed to compare the effectiveness of
inspections versus testing. Formal inspections (also known as Fagan
Inspections) have been shown to be 7.4 times more productive (looking at
the ratio of errors found to effort expended) than testing (Eickelmann et al.
2002).

Inspection and rationale can work together in a number of ways. As with
exhaustive testing, exhaustive inspections may not be feasible for many
projects. If rationale is available, it can be used to help determine where
the inspection efforts should be focused. The rationale for a software system

178 13 Rationale and Software Verification, Validation, and Testing

can point out where the nonfunctional requirements best addressed by
inspection (such as maintainability) were used to drive the decision-making
process. The rationale can also point out where these non-functional
requirements were not considered. If maintainability, for example, was not
considered for some software artifacts and it should have been, those
artifacts should be inspected.

Inspections can also be used to assist in rationale capture by requiring
that the rationale be inspected along with the software artifacts it applies
to. The inspectors can ask questions such as:

• Were alternatives considered?
• Were criteria used to drive the decision-making process appropriately?

Were items given the correct priorities relative to overall system goals?
• Were there any assumptions made that need to be documented in the

rationale?

Incorporating rationale capture into the inspection process makes
rationale capture an integral part of the development process. It also helps to
focus the collection on areas that were considered crucial enough to merit
inspection. Also, since inspection is a collaborative activity, it ensures that
the decisions made are reviewed and ensures that input from team members
other than the primary developer are taken into consideration. Several
rationale-based systems have been shown to be helpful in keeping meetings
on track and in supporting collaboration and negotiation. Examples include
WinWin (Boehm and Kitapci 2006) for requirements negotiation and
Compendium for meeting facilitation (Buckingham Shum et al. 2006).

13.2.2 Unit Testing

Unit tests are tests performed on the “smallest possible testable software
component” where units can be classes, small commercial off-the-shelf
(COTS) components, in-house components, or procedures/functions
(Burnstein 2003). These tests are typically performed by the software
developer. Unit testing consists of three phases: planning, test set
acquisition, and test set measurement (execution and evaluation)
(ANSI/IEEE 1987). In Test-Driven Development (TDD) (Beck 2002), also
known as Test-First Development, the unit tests are written before the code.
The ability to do this is supported by unit testing frameworks like JUnit
(http://www.junit.org).

For unit testing, one key decision is how many tests to write. As with
other forms of testing, exhaustive testing is not possible. The techniques of
white (or glass) box testing can be utilized—tests should be written to

13.2 Types of Software VV&T 179

cover all paths, as well as black-box testing—creating equivalence classes
to test different types of inputs and to ensure that boundary conditions are
covered. Test case prioritization is also important; running higher-priority
unit test cases first has been shown to increase fault detection rates (Do et
al. 2006; Rothermel and Elbaum 2003).

13.2.3 Integration Testing

Integration testing refers to testing that is performed as the various
components that make up the system are combined. There are many
different methods that can be used during integration. The method chosen
depends on the process used to develop the system and when components
are available for integration. As a general rule, the “big bang” approach
where all components are integrated together at once is to be avoided
because it makes it more difficult to isolate which component is
responsible when an error is detected (Schultz 1979).

 Alternatives to the “big bang” approach include bottom-up testing,
where lower-level components are tested first, top-down testing, where the
higher-level components, starting with the user interface, are tested first,
and other variants, such as sandwich testing, which performs testing of the
top and bottom levels in parallel using the components in the middle layer
(Bruegge and Dutoit 2004). One heuristic used to evaluate different
integration strategies is to ensure that the “most important components”
receive the most testing.

The rationale can help with determining the integration strategy in
several ways. One is by its support for requirements traceability. If
requirements are used as arguments for selecting decision alternatives that
then map to the code implementing these alternatives, this mapping can
show what portions of the software apply to which requirements. This is
useful to know when assessing the criticality of components.
Nonfunctional requirements can also appear in the rationale and can be
used to assess criticality.

13.2.4 System Testing

System testing is a general category that refers to a variety of different
types of tests that could be performed on the system as a whole. One type
of system testing is the Acceptance Test—tests that demonstrate to the
customer that the system functions as required.

Regression testing is another form of testing that works with the system
as a whole. Regression tests are performed on a system when changes are

180 13 Rationale and Software Verification, Validation, and Testing

made during software maintenance. The goal is to ensure that new changes
added do not break any of the existing functionality. Regression testing
can be very expensive so it is often necessary to perform only a subset of
the possible tests. The use of rationale to support regression testing is
described later in this chapter.

There are also a number of specialized tests that can be performed on the
completed system. These could look at aspects such as system performance,
reliability, security, and other nonfunctional system characteristics.
Performance alone contains many different subtests including stress testing
(testing the number of “requests”), volume testing (data amount), security
tests, timing tests (checking timing constraints), and recovery tests (the
ability to recover from failures) (Bruegge and Dutoit 2004). The rationale
can be used to help determine how the different types of testing should be
performed by identifying areas of the system where those aspects were
considered during development. This assists in targeting the tests to areas
where failures are likely to be the most critical.

13.3 Rationale Support for Software VV&T

13.3.1 Rationale and Testability

Since testing is both difficult and costly, developers should be thinking
about how testability could be designed into their software. The IEEE
Standard Glossary of Software Engineering Terminology (IEE 1990) defines
testability as follows: “The degree to which a system or component
facilitates the establishment of test criteria and the performance of tests to
determine whether those criteria have been met.” Knowing the testability of
a software component can help guide testing by indicating how difficult it
will be to find defects in that component and using that information to
determine the “testing intensity” (Voas and Miller 1995).

Rationale can support testability in two ways. The first is by encouraging
developers to provide rationale for their decisions and by offering testability
attributes as reasons for considering one alternative over another. Boehm
(1979) included testability characteristics in his Software Quality
Characteristics Tree. The characteristics identified are communicativeness
(understandable inputs and outputs), self-descriptiveness (well documented,
traceable), and structuredness (well organized). Bass et al. (2003) define
testability “tactics” that can be used to design for testability at the
architecture level. These include information recording and playback

13.3 Rationale Support for Software VV&T 181

capability, separating the interface from the implementation, providing
specialized interfaces for use by test harnesses, and building in monitors to
save state information. Burge (2005) included testability attributes in the
SEURAT Argument Ontology such as function visibility, minimizing
variable reuse, providing triggers, supporting instrumentation, and providing
re-entry points. If developers use a rationale support system to assist in their
decision-making this could increase awareness of testability criteria as
reasons for their decisions. In addition, the presence of the rationale would
reduce the risk of software maintainers making design decisions that limit
testability by modifying the software in ways that conflict with prior
testability goals. Since functionality supporting testability, such as
instrumentation and re-entry points, tends to cross-cut much of the system
functionality, the ability to trace from the code to the traceability goal is
especially useful.

The rationale describing the testability of the software can then be used to
help set the testing intensity, as described by Voas and Miller (1995). If the
component has been designed to be easier to test it may require fewer test
cases to provide sufficient confidence in its correctness. If the component
did not consider testability and the rationale indicates that it is critical, this
would indicate that a higher testing intensity will be warranted.

13.3.2 Rationale and Test Case Prioritization

A key component in both incremental development and software
maintenance is regression testing—repeating earlier tests to ensure that
new modifications have not harmed existing functionality or quality.
Regression testing can be both time consuming and expensive so it is often
not possible to repeat the entire set of tests for each modification. There
may even be cases where if the new modification is critical enough, such
as an emergency patch for a fatal error or security flaw, and where time is
limited, the number of tests run is significantly constrained to the point
where some tests that would normally be run are not (Srivastava and
Thiagarajan 2002). The need to perform regression testing both effectively
and efficiently requires some form of test case prioritization. A second
goal of prioritization is to find problems as early as possible during
regression testing so they can be corrected.

There are a number of testing goals that can drive test case prioritization.
Some examples include achieving test coverage quickly, testing frequently
used features first, and early defect detection (Rothermel and Elbaum 2003).
Studies have shown that prioritization techniques consistently outperform
randomized testing (Rothermel and Elbaum 2003).

182 13 Rationale and Software Verification, Validation, and Testing

The presence of rationale can supplement methods for test case selection
by providing a link between the software and the quality attributes that
need to be assessed when changes are made. When a change is introduced
into the code base, the quality attributes used to drive the original decisions
can indicate the qualities that need to be evaluated after a change has been
made. Traceability links between functional requirements and the code,
also captured in rationale, can help in the determination of which functions
are most critical and should receive retesting earliest in the test suite.

13.3.3 Rationale, Testing, and Component Selection

Many software development projects are making use of reused or
purchased components. While there are many advantages to this approach,
it does introduce additional difficulty into software testing. One goal of
COTS or component-based development is to reduce costs and increase
reliability. This is dependent on the reliability of the components chosen.
While this software may have been extensively tested, that testing may not
have been performed under the same circumstances as it will be used in a
new product. For a component to be trusted, the component provider needs
to have tested it in all possible configurations and independently of a
specific context of use (Harrold 2000).

Rationale can be of considerable support during the component
selection and evaluation process. Rationale is often described as the way to
capture intent (Sim and Duffy 1994). The success of COTS and
component-based development efforts hinges on the compatibility of the
intended use of the component from the component provider and the
component consumer perspectives. If the rationale for component
development is provided, that information would be invaluable to the
consumer. Avoiding selection of a poorly suited component is the first step
in avoiding component-introduced defects.

Assuming that the component appears to be suitable, the rationale can
also be of assistance if the rationale for the component provider’s testing
strategy is available. Did the tests focus on specific qualities such as
performance and reliability? Has the component provider designed their
component to support ease of testing? Are test harnesses for the component
provided? The more information available about how the component was
tested, the greater the consumer confidence will be. The component
consumer can examine the rationale behind the testing strategy used by the
provider to ensure that it is a good fit with what they need and except from
the component.

13.4 Software Testing Rationale 183

13.4 Software Testing Rationale

Quality Assurance and software VV&T require careful planning in order
to determine appropriate strategies and tools. As with the rest of software
development, the decision problems encountered, the alternatives
considered, and the final decisions made can be captured as rationale.
Bertolino (2007) identifies six questions identifying any approach to
software testing: why (the test objective), how (test selection), how much
(test adequacy), what (levels of testing), where (testing context), and when
in the product lifecycle. The answers to these questions form the testing
strategy and can be captured in the testing rationale.

13.4.1 Testing Rationale

A good VV&T strategy is unlikely to be something that just happens—
there needs to be careful planning to determine what the testing priorities
are and how to assess test effectiveness. As with other types of planning,
there will be many decisions made that can be captured in the rationale.
Capturing test development rationale is useful in negotiating priorities for
the current development effort and also in determining testing strategies
for subsequent efforts. The combination of test history and rationale for the
strategies chosen would be very helpful in determining if those strategies
were successful and how they should be modified.

As mentioned earlier, there are many tradeoffs that must be made during
VV&T planning. For example, what level of testing integrity (IEEE
2004b) is required? Is time to market more important than quality? It is
important that projects determine what quality means for them and what
costs they are able to incur to achieve it. If pursued incorrectly, quality can
“destroy value” of a product (Favaro 1996).

Test case selection is another area where decisions need to be made.
What is an appropriate granularity level for test cases? Small cases are
easier to prioritize but add to the cost of test suite management (Rothermel
and Elbaum 2003). The rationale is a natural place to capture these and
other testing tradeoffs. Similarly, the choice of integration strategy and
which types of system tests are run are also decisions that should be
justified in the rationale. Rationale for inspection decisions can also be
captured—what was inspected and using which technique? There are many
different techniques for reading code, all of which are based on their own
assumptions about code inspections (Thelin et al. 2003). The rationale can
record the reasons for the choice of technique so that they can be compared
to those of the project’s overall QA strategy.

184 13 Rationale and Software Verification, Validation, and Testing

Rationale should also capture the reasons behind the choice of metrics
collected. While metrics are a valuable mechanism for assessing software
quality, they can be expensive and time consuming to collect. The value
of metrics in achieving quality goals and monitoring high-risk areas needs
to be balanced against the cost of collecting the metrics data (Clapp 1993).
The project goals and their relationship to the metrics collected can be
captured in the rationale. The type of metrics collected may also be
influenced by the tool support available to aid in collection. This
information should also be collected in the rationale so that if tool
availability or preferences change it will be easy to determine if this should
result in a corresponding change in which metrics are collected.

13.4.2 Uses for Testing Rationale

where one of the primary goals is to capture the expertise utilized during a
software project. While valuable during a single project, a key goal is to be
able to share knowledge between projects. One way towards this goal from
the testing perspective would be to perform a retrospective examination of
testing strategies with the goal of applying the lessons learned to future
projects. For example, test case selection is likely to involve making
assumptions about how effective each case will be at finding defects
(Chernak 2001). Analyzing the actual effectiveness and comparing it against
the initial assumptions will help determine if those assumptions were valid.
That information can then be fed into test planning on subsequent projects.

Testing rationale can also make a valuable contribution to the QA
process for a project. The rationale can be evaluated to determine if the
reasons behind the testing decisions were consistent with the overall
project goals. It can also be used to evaluate how well supported the
selected decision alternatives were. Requiring that rationale be collected
for testing decisions to be used as part of the quality assessment may
encourage test planners to put more thought into choosing their strategy
than they might have otherwise.

13.5 Summary and Conclusions

Software VV&T is crucial in ensuring the quality of delivered software.
Developing and carrying out an appropriate strategy can be both difficult
and expensive. There are many decisions that need to be made regarding
what needs to be testing and how that testing should be performed. Not all

Rationale capture can be viewed as a form of knowledge management

13.5 Summary and Conclusions 185

tests are of equal value and the costs and risks need to be examined as part
of a “value-based” testing strategy (Ramler et al. 2006).

Rationale can support software testing as both an input to and an output
of VV&T. As an input, the rationale provides the intent behind the
software decisions. This could highlight potential weakness that should be
evaluated as well as indicating some of the types of tests that might be
appropriate given the nonfunctional requirements that guided specific
decisions. The testability of a piece of software can be explicitly captured
in the rationale. As an output, rationale for decisions made on how and
what to test can be compared later with the eventual outcomes of that
testing to provide insight into how testing processes can be improved for
future projects.

14 Rationale and Software Maintenance

Software maintenance can be a very expensive part of the software
development process. Anyone working in the software industry during the
years leading up to the year 2000 (Y2K) is all too familiar with the often
unexpectedly long lifespan of many software systems. The difficulties of
maintaining these systems are acerbated because the original developers
are often not available. Software Engineering Rationale (SER) would
provide insight into why the system is the way it is by giving the reasons
behind the decisions made during design and implementation. Rationale
could help to indicate where changes might be needed during maintenance
if design goals change and help the maintainer to avoid repeating earlier
mistakes by explicitly documenting alternatives that were tried earlier that
did not work. In this chapter we will look at these and other ways that
rationale can assist with software maintenance.

14.1 Introduction

14.1.1 Software Maintenance and Evolution

Software maintenance refers to “the modification of a software product
after delivery to correct faults, to improve performance or other attributes,
or to adapt the product to a modified environment” (IEEE 1998). This
process is often referred to as software evolution, although evolution can
be considered to be only one phase in a software maintenance cycle that
also includes servicing (minor changes made when the system is no longer
capable of being evolved), phase out, and close down (Bennett and Rajlich
2000). Lehman’s laws state that if a system is not evolved, it becomes less
satisfactory to the users and is perceived to have declining quality
(Lehman 1996).

If a software system is successful, it could potentially spend a large
percentage of its lifetime in the maintenance stage and maintenance costs
could be significant. Costs appear to be increasing over time, with lifecycle

188 14 Rationale and Software Maintenance

costs devoted to maintenance rising from 40% in the early 1970s to 90% in
the early 1990s, with 80% of these costs going for system improvements
(Pigoski 1996). Despite its importance, this is an area that requires more
attention. Unfortunately, software development is often driven by cost and
schedule with no incentive for the software developers to build maintainable
software (Pigoski 1996). In 2001, a study was performed to study process
improvement efforts in industry (Hall et al. 2001). Qualitative data was
collected from 13 companies using focus groups and quantitative data was
collected from 85 companies using questionnaires. The study showed that
formal process improvement models did not sufficiently address
maintenance. Kajko-Mattson (2001) and a class of software maintenance
students studied 18 organizations in Sweden to assess how well they met a
set of documentation requirements, many of which were intended to support
software maintenance, and demonstrated that there needed to be
improvement. Problems with software documentation, which is often out of
date, may be why software maintainers often do not trust the documentation
and get most of their information from the source code (Singer 1998).

One way to potentially decrease the cost and risk of software
maintenance would be to capture and use the rationale behind decisions
made during design and implementation. Maintainers would no longer
need to guess at the developers’ intent but instead could take advantage of
developer knowledge when making maintenance decisions.

14.1.2 Objectives of This Chapter

This chapter describes the software maintenance process and how it is
supported by rationale. It defines the types of software maintenance and
then focuses on two main areas: how maintenance can be improved and
how maintenance can be supported. Maintenance improvement involves
both designing the code to be more maintainable and re-engineering
existing code for maintainability. Maintenance support involves predicting
where maintenance will be required, evaluating the impact of proposed
maintenance changes, understanding the software being maintained, and
studying the history of how the software has evolved over time.

14.2. Types of Software Maintenance

Software maintenance involves maintaining more than just the code. The
most commonly mentioned types are the four given by Lientz and
Swanson (1980): corrective (repairing faults), adaptive (changes that do not

14.2. Types of Software Maintenance 189

add functionality but adapt the software to changes in the environment),
perfective (updates to add functionality), and preventative maintenance
(changes to make the software more maintainable in the future). Chapin
(2000) took a wider approach and identified 12 types of software
maintenance: training, consultive, evaluative, reformative, updative,
groomative, preventive, performance, adaptive, reductive, corrective, and
enhancive. The first five types do not involve modifying the software but
instead affect how the stakeholders or developers interact with it (training,
consultive, evaluative) or update the software documentation (reformative,
updative).

For any type of maintenance, several activities need to take place.
Kitchenham et al. (1999) list four activities: investigation, modification,
management, and quality assurance. Investigation involves impact
assessment to determine what impact the change will have, modification is
the change itself, management encompasses all management activities
including configuration management, and quality assurance includes
testing and other activities that must take place to ensure that the changes
do not damage product quality. Figure 14.1 shows questions arising during
these activities that could be answered by the rationale.

Investigation Modification

Management

Quality Assurance

Rationale:
-Where does the
change need to be
made?
-What impact will
the change have?

Rationale:
-Where have most
changes been
made in the past?
-Should it be
maintained or re-
engineered?

Rationale:
-What are the
criteria for my
change?
-Does this change
conflict with
anything?
-Has this been tried
before?

Rationale:
-What were the
original quality
criteria?
-Are these still true
now?
-Will the
maintenance
changes still
conform to these
criteria?

Fig. 14.1. Rationale support for maintenance activities

Software maintenance changes can be needed for many reasons.
Corrective maintenance is necessary when a problem is detected in the

190 14 Rationale and Software Maintenance

software. Enhancive maintenance is necessary when requirements are added
to meet customer needs. Another reason for making changes involves
assumptions. Over time, assumptions that were made during development
can become invalid. This invalidation is a major driver for software
evolution (Lehman 2005). When these changes are made, it is important to
understand how they impact the software and its ability to meet customer
requirements. Rationale can assist with this by relating the code being
modified to the requirements and assumptions that drove its design.

The software maintenance process is also affected by who performs the
maintenance. In some cases, this is not the original developers. It is not
uncommon on large projects to award separate contracts for operations and
maintenance (OEM). If the maintainers do not have access to the original
developers it is quite possible that the rationale will provide the only
insight into the original developers’ intent.

14.3 Improving Maintainability

Not all software systems are equally maintainable. Ideally, systems should
be designed with maintenance in mind with a well-documented, easily
extensible design. Using maintainability as a design goal and documenting
it in the system rationale is a step in the right direction. Not all systems,
however, can or should be maintained. If the system quality is low but the
system is still crucial to the business using it then it should be
re-engineered to improve its quality (Sneed 1995).

14.3.1 Designing for Maintenance

Many of the goals of good software design, such as reducing coupling and
increasing cohesion, are intended to make it easier to extend the software
more easily. Studies have shown that system structure does have an effect
on the time required for and accuracy of software maintenance (Gibson
and Senn 1989). This indicates that maintenance costs could be reduced if
software is designed so that it can be more easily modified later.

The ability to extend software easily was one of the driving forces
behind Design Patterns (Gamma et al. 1995). Design Patterns are solutions
to common problems that reduce or isolate dependencies between classes.
Examples of patterns that are especially valuable during maintenance are
the Facade pattern, which isolates clients from the code that provides
services to them by providing a single class as an interface, the Adaptor
pattern, which creates a “wrapper” around the interface of a component or

14.3 Improving Maintainability 191

system so that clients only access the controlled wrapper interface, and the
Mediator pattern, which uses a single Mediator class to control how
underlying classes work together so that they are not dependent on each
other’s interfaces.

One of the goals of writing extensible software is to follow the “Open-
Closed Principle” (Myer 1988). The open-closed principle states that
software should be “open for extension” but “closed for modification”, i.e. it
should be possible to extend the software without modifying existing code.
A study performed using the State design pattern showed that following it
correctly results in code that follows the Open-Closed principle (Ng et al.
2006). Design patterns can result in more complicated designs. Prechelt et
al. (2001) performed an experiment to determine if maintenance time was
reduced by using a pattern rather than a simpler solution. In most tasks
studied, the pattern was shown to be beneficial but there were cases where
the simpler solution had fewer errors or took less time to maintain.

Rationale can contribute toward better designed software in several
ways. One is in the selection of design patterns. The Design
Recommendation and Intent Model Extended to Reusability (DRIMER)
system used rationale to assist with design pattern selection and adaptation
(Peña-Mora and Vadhavkar 1997). Rationale is also used to drive design
when applying the NFR Framework (Chung et al. 2000). In the NFR
Framework, the Adaptability NFR (nonfunctional requirement) was used
as the driving force to design adaptable software architectures
(Subramanian and Chung 2001). This process involves considering
multiple design alternatives and uses and records the rationale. The NFR
Framework was used in the Software Architecture Adaptability Assistant
(SA3) tool to develop adaptable architectures (Subramanian and Chung
2002). The design tradeoffs and rationale are a critical component in
evaluating which alternative architecture is most suitable.

Rationale also plays an important role by documenting where
maintainability (and the related NFRs of flexibility and adaptability) was
involved in decision-making. This information will explain the design and
implementation to the maintainer and help to prevent changes that conflict
with those goals. An example would be documenting where, how, and why
a design pattern is used so that the pattern is not inadvertently broken by
later development.

14.3.2 System Reengineering

Lehman’s second law states that systems being evolved become
increasingly complex unless something is done to reduce that complexity

192 14 Rationale and Software Maintenance

(Lehman 1996). Fowler et al. describe “bad smells” as potential problems
in code, or code structures, that are candidates for refactoring (Fowler et al.
1999). Refactoring involves removing the bad smells to improve the
design of the code. Examples of bad smells include duplicated code,
methods that are too long, and complex conditionals. Another response to
the problem of code deterioration is to built preventative measures into the
development cycle. The Class Deterioration Detection and Resurrection
(CDDR) activity and Code/Class Growth Control (CGC) activity can be
applied at each process iteration to address problems of high coupling and
duplicated code (Subramaniam 2000).

System reengineering involves rewriting legacy systems to either
increase their maintainability, port them to a different platform, increase
reliability, prepare for modifications, or any or all of the above (Sneed
1995). The re-engineering process includes several tasks: reverse
engineering the existing system (recapturing models), determining what
repairs need to be made to the structure, and updating the legacy system
(Nierstrasz et al. 2005). Demeyer et al. (2003) described these tasks in
detail in a series of “re-engineering patterns” that describe approaches to
reverse-engineering the code, testing to support evolution, and migrating
from the legacy systems to re-engineered systems.

Re-engineering usually does not modify the function of original system
or change its architecture (Sommerville 2007). In some cases, however,
more drastic changes are desirable. One example is when reengineering is
performed to migrate the legacy system from its current architecture
towards a component-based one. Mehta and Heineman (2002) developed
an approach to make software more maintainable by transforming it into
fine-grained components where features that change frequently can be
isolated. The components corresponded to system features which were
identified by examining the system’s regression test suite. Code profiling
can be used to detect which code is executed when testing which features.

Rationale can support system re-engineering in several ways. One is in
the negotiation that should take place to determine the advantages and
disadvantages of re-engineering. In some cases, it may be more efficient
and economical to build a new system rather than re-engineer an existing
one. These arguments and the tradeoffs required can be captured in
rationale.

Once the decision has been made to re-engineer, if rationale is available
for the legacy system it would assist with code comprehension by
documenting what decisions were made and why. The rationale may also
capture the original intent behind the decisions and can indicate where
changes may need to be made if the system has been changed to no longer
meet that intent.

14.4 Software Maintenance Support 193

14.4 Software Maintenance Support

14.4.1 Maintenance Prediction

Maintenance prediction involves determining what portions of the software
system are likely to require changes in the future. This information is
valuable because it indicates where developers should concentrate effort
towards making the system more extensible. This information is also
helpful in planning maintenance releases.

Stark et al. (1999) studied 44 software releases for seven products to
study the type, frequency, and impact of requirements changes during
software maintenance. In this study, any approved change request was
considered to be a requirement. They generated a taxonomy of requirement
change types and collected data on the source of the change, when in the
development cycle it was requested, and the time required to make it. They
discovered that it was useful to obtain the intention of the requirement (the
rationale behind it). The requirements taxonomy and the historical
information about how long they took to implement them can be used to
estimate the time needed for future changes of the same type and to assess
the amount of schedule slip occurring if changes were made to scheduled
releases. Information about when in the cycle requirements changes took
place was also helpful in controlling change.

14.4.2 Impact Assessment

When performing software maintenance, it is important to understand the
impact of any changes proposed. The change needs to be assessed to
determine the size, and therefore the cost, of the change. The change also
needs to be assessed to ensure that it is consistent with system requirements,
both functional and nonfunctional. It is not uncommon for proposed changes
to conflict with each other or with the original system goals.

The rationale for the system can assist with impact assessment. The
Software Maintenance Expert System (SMES) (Avellis et al. 1993) is a
blackboard architecture-based system that uses an Assumption-based Truth
Maintenance System (ATMS) (deKleer 1986) to evaluate the impact of
changing a design decision on the rest of the system. In SMES, each
design decision is linked to a design plan that implements it.

More recently, the SEURAT system (Burge and Brown 2006) was
developed to perform impact assessment of changing requirements and

194 14 Rationale and Software Maintenance

assumptions using the system rationale. SEURAT evaluates support for
design alternatives based on the requirements, assumptions, and non-
functional requirements that argue for and against them. If a requirement
or assumption is disabled, the support for the alternatives is re-evaluated
and the maintainer is alerted which decisions may require changes. Non-
functional requirements, stored in an argument ontology (Burge 2005),
each have a priority associated with them which can be modified on a
global level or for a specific decision. This modification will trigger a re-
evaluation and the maintainer alerted if a change might be needed.

Impact analysis, and how it can be supported by rationale, is described
in more detail in Chapter 9 of this book.

14.4.3 Program Comprehension

In order to maintain a piece of software successfully, the maintainers need to
be able to understand it. Program comprehension can be a difficult process,
especially for large software systems. When fixing a bug, understanding new
code can take between 70% (for experienced developers) and 90% (for new
programmers) of the programmer’s time (Eick 1998). When given a
maintenance task, the maintainer needs to find the code relevant to the task,
learn their dependencies, and add or update the needed code (Ko at al.
2005). Maintainers typically use “beacons”—useful code fragments,
comments, or variable/procedure names—to find their way through the
code. Novice programmers, however, do not recognize beacons (Crosby et
al. 2002), which adds to the difficulty of the maintenance task.

Some program comprehension approaches attempt to help with
comprehension of the system as a whole. The Large Software System
Information Environment (LaSSIE) environment (Devanbu et al. 1991)
provides access to the software via a number of different viewpoints by
making use of intelligent indexing and a domain model. The construction of
the knowledge base required by LaSSIE, however, is a manual process.
Evolution is also supported by developing software that incorporates
Intentional Views (Mens et al. 2002). Intentional views group software into
“concerns” using naming conventions and inheritance. Prolog rules are used
to capture those conventions and use them to extract the software for each
view. Automated clustering of software components is supported by the
PROgram Comprehension Combining Semantic and Structural Information
(PROCSSI) system (Maletic and Marcus 2001) which uses Latent Semantic
Indexing (LSI) to compute similarity using variable names, type names, and
comments. Concept analysis (Siff and Reps 1997) is used to infer repeating
design patterns from code (Tonella and Antoniol 1999). This approach finds

14.4 Software Maintenance Support 195

groups of classes with similar structural relationships to each other and can
be applied to find patterns in code without having a pre-defined pattern
library.

Software visualization techniques can be used to support maintenance.
Software visualization can be defined as “the use of the crafts of typography,
graphic design, animation, and cinematography with modern human–
computer interaction and computer graphics technology to facilitate both the
human understanding and effective use of computer software” (Price et al.
1998). Software visualization environments assist with visualizing the
structure of the program, via call graphs and other views, and the behavior.
Behavior visualization can be useful in looking for system bottlenecks as
was demonstrated by the Program Visualization (PV) prototype which
would display execution time and memory use by system components
(Kimelman et al. 1998). Statistics computed from the change history of the
code can be useful in maintaining very large computer systems. The SeeSoft
visualization technique (Eick 1998) uses colors and graphics to visualize
changes made to source code. This can aid in detecting duplicate code, and
determining which code was modified most frequently and most recently.
Animations can be used to view changes over time.

Other approaches are designed to help maintainers find the relevant
code. This is related to the concept assignment problem (Biggerstaff et al.
1993) where program code structures need to be mapped to the human-
oriented domain concepts that they implement. This is a significant
difficulty during maintenance. A study of corrective and perfective
maintenance showed that on average programmers spent 25 (± 9) minutes
out of 70 total inspecting code that was not relevant to their task (Ko et al.
2005). Robillard (2005) developed an algorithm, implemented in an
Eclipse Plug-in, that takes an initial set of task-related elements and returns
other program elements related to that set ranked by interest to the
developer. Feature location approaches can also assist with this process by
mapping features (user-visible sets of requirements) to the source code.
This can be approached using static techniques which use dependency
analyses but do not execute the code and dynamic techniques which
examine what code was executed when running test cases. Static
techniques tend to be imprecise while dynamic techniques only capture
code relevant to the specific inputs given to the program (Koschke and
Quante 2005). Hybrid techniques combine the static and dynamic
approaches. Other methods for finding relative code include program
slicing (Tip 1995), information retrieval techniques (Antoniol et al. 2000),
and data mining over software repositories (Zimmermann et al. 2004).

Rationale can assist with program comprehension in several ways.
Rationale can serve as a way to index from requirements to the code and

196 14 Rationale and Software Maintenance

from the code back to the requirements. Forward tracing, from requirements
to code, can be used to examine where the different requirements are
implemented. Reverse tracing, from code to requirements, illuminates the
intent of the implementation. The relationship between the code and its
requirements is crucial in order to ensure that changes made during
maintenance do not introduce requirements violations.

When performing specific maintenance tasks, the maintainer needs to
determine which code is relevant to the problem being solved. Using the
rationale to index into the relevant source code can significantly decrease
the time required, especially for nonexpert developers (Burge and Brown
2006). In a study performed using SEURAT (Burge 2005), novice Java
programmers without rationale assistance spent significant amounts of
time trying to find the code they needed to modify and were often
sidetracked by class and method names that appeared to be applicable but
were not.

When von Mayrhauser and Vans (1994) studied program
comprehension processes they listed one of their information needs as the
ability to obtain connected domain information and suggested that this be
provided using the design rationale and its ability to connect the
application’s algorithms to the application’s purpose.

14.4.4 Maintenance Recovery

The rationale behind changes made to the software over time is required for
what we will call maintenance recovery—the ability to document and track
maintenance changes. While most re-engineering efforts look at the latest
version of the software, the history of how the system has evolved over time
indicates where “chronic problems” are located (Nierstrasz et al. 2005). In
addition, understanding how a system has evolved can help predict how it
may evolve in the future (Antón and Potts 2001). Software metrics can be
used to analyze the software to detect evolution-critical parts (code that is
likely to require evolution because of poor quality), evolution-prone parts
(typically because they correspond to volatile software requirements), and
evolution-sensitive parts (software that is likely to break during evolution,
typically due to tight coupling) (Mens and Demeyer 2001). A combination
of metrics and software visualization techniques are used in the Evolution
Matrix (Lanza 2001). The Evolution Matrix can be used to visualize changes
in the size of systems and classes throughout multiple evolutions. The
developers of the Beagle maintenance support tool (Godfrey and Tu 2002)
are particularly concerned with understanding invasive change—changes
made to a software system that involve significant changes to the systems

14.4 Software Maintenance Support 197

structure. Beagle supports origin analysis which determines if a software
entity that is in a new version of the software but not the old one is actually
new or if it is an entity (renamed, moved, or modified) from the earlier
version. This information can then be used to build the “evolutionary
history” of the application.

One source of information describing changes made during evolution is
the change history extracted from configuration management tools. This
information can be used to capture both the maintenance history and, if the
reasons behind the changes are documented, the rationale. When
evaluating a systems history it is important to know not only what
changed, but why. Differentiating between evolution-critical, evolution-
prone, and evolution-sensitive portions of the code will be easier if the
reasons why these parts of the system could be extracted from the rationale
as well as being inferred from metrics.

14.4.5 Maintenance Rationale

Rationale can, and should, be captured during maintenance. One reason for
doing so is so that the rationale for maintenance changes can be compared
for rationale for the decisions made during earlier changes to check the
consistency of decision-making criteria. If the criteria differ, that could
signify that new changes may have an adverse affect on the system quality
as identified by the original developers or it could indicate a priority shift
that may necessitate revisiting other earlier decisions.

Rationale can also support collaboration in maintaining very large
systems by allowing maintenance knowledge to be shared between team
members. Loughher and Rodden (1993) built a documentation system to
support capture and sharing of maintenance rationale. They did not use an
argumentation approach to their rationale because they believed that
maintenance rationale is more focused on explanation than deliberation.
Their system worked by allowing source code annotation using a markup
language to link “maintenance comments” to the code. Maintenance
comments can be in text form or simple graphics, such as a flow charts.

The Cooperative Maintenance Conceptual Model (CM2) (Canafora et al.
2000) also captures maintenance rationale. The goal of CM2, and
Cooperative Maintenance Network Centered Hypertextual Environment
(COMANCHE), the system that uses it, is to support collaboration over an
extended period of time by making rationale available to future maintainers.
In the CM2 process, maintenance starts with a maintenance request.
The rationale for the design for the maintenance change, referred to as
“Rationale in the Large,” is stored in the Questions, Options, and Criteria

198 14 Rationale and Software Maintenance

(QOC) notation (MacLean et al. 1989) and the rationale for the change
implementation, or “Rationale in the Small,” is captured as comments in
the code that link the code to a folder (the “Implementation Folder”) for
each maintenance request. The rationale is not in an argumentation
structure but is a natural language description of the change. The
implementation rationale is associated with the QOC option that it
implements via a bidirectional traversal link.

14.5 Summary and Conclusions

A successful software system will spend the majority of its lifespan
undergoing maintenance. As the development time recedes further into the
past, the reasons behind the decisions that formed the product become
increasingly inaccessible. This information, which includes the developers’
initial intent, can be captured in the rationale so that it will be available
when the software requires modification. In addition, captured rationale for
proposed changes can be used to compare that reasoning with the original
requirements to ensure that consistency of goals is maintained.

In this chapter we described some major areas of software maintenance
research and how the capture and use of rationale supports them. The costs
and risks of maintenance are very high. The ability to obtain the deeper
understanding of the software provided by the rationale is invaluable to
assist with this process to minimize these costs and risks.

15 Rationale and Software Reuse

In this chapter, we describe how Software Engineering Rationale (SER)
can be used during many types of software reuse, including how rationale
can assist during Component-Based Software Engineering, with Software
Product Lines, and COTS-based software development.

15.1 Introduction

15.1.1 Software Reuse

Software reuse has long been promoted as a means to deliver software
faster, cheaper, and with higher quality. While this is a worthwhile goal, its
achievement is by no means guaranteed. There are many concerns that
need to be addressed, which vary depending on the type of reuse attempted
and on each specific project to which reuse is applied.

There are many different types and meanings of software reuse. In some
cases, entire systems are reused, in others, segments of code. Reuse does
not just apply to code—requirements, designs, documentation, test plans,
test procedures, any development artifact could potentially be used in
constructing a new system. The reused artifacts can be developed within
the company doing the reusing or can be developed externally and
purchased for use. When reusing code, the code can be treated as a “black
box” or modified to fit a new application. In this chapter, we will refer to
the artifact being reused as the reused “item,” where the item could be
anything that could be reused in multiple software systems.

Reuse has the potential to significantly reduce cost and increase quality
of software systems and to shorten the time to market for applications.
There are some pitfalls though that could trap the unwary. Building new
applications from existing code, components, or applications requires that
these items be well tested and of high quality. If an application uses
components developed by a third party then there is a risk that the third
party may cease to support the component in the future or go out of business

200 15 Rationale and Software Reuse

altogether. There are also evolution issues if the reused item evolves in a
way that introduces incompatibilities. These potential problems should not
discourage reuse but are risks that need to be considered when making
decisions on when and how to use reuse in a development effort.

While reuse is often opportunistic, the most benefit can be derived from
systematic reuse (Schmidt and Buschmann 2003). In systematic reuse, the
reuse is intentional and the items reused have been developed, tested and
shown to be of high quality.

The determination of if, when, and how, to reuse software is a decision-
making process and as such, benefits from the use of rationale when
considering different reuse alternatives. This benefit continues as the
software evolves when rationale can assist in determining if choices made
earlier should be reconsidered and if earlier reuse alternatives might now be
preferable.

15.1.2 Objectives of This Chapter

This chapter discusses different types of reuse and how rationale can
support them. In particular, it focuses on four key types of reuse: patterns,
Component-Based Software Engineering, software product lines, and
COTS-based software development.

15.2 Reuse: Concepts and Categories

There are many ways that software reuse types can be classified and
categorized. Some reuse is opportunistic, such as copying segments of code
from one application to another and modifying as necessary. Other reuse is
planned from the start. The reuse granularity can be small, on the class or
class library level, or large, by reusing entire applications as part of a larger
system. In this section, we will describe some of the more common types of
reuse.

15.2.1 Types of Reuse

Early empirical studies illustrated that the object-oriented paradigm supports
software reuse (Lewis et al. 1991). This reusability was taken one step
further by the definition of Design Patterns (Gamma et al. 1995). Design
Patterns are reusable collection of classes that both capture solutions to
common problems and that are aimed towards designing software in a way

15.2 Reuse: Concepts and Categories 201

that will better support reuse and extension in the future by reducing, or
isolating, dependencies between classes. The patterns serve as reusable
designs and instantiations of these patterns produce reusable code. Some,
such as the Iterator pattern, have been built into class libraries such as the
C++ Standard Template Library. The concept of reusable patterns in
software engineering has been extended beyond design and into process
patterns (Coplein 1995; Ambler 1998), quality patterns (Houdeck and
Kemper 1997), architecture patterns (Gomaa and Farrukh 1998), and more.

Another form of reuse is supported by Component Based Software
Engineering (CBSE). The goal of CBSE is to develop software for less
money and in less time by following a similar model to that in other
engineering fields where new devices are composed of reusable components
often selected from a catalogue. For a software element to be considered a
component it needs to conform to a component model, where the component
model defines how components are composed into applications and how
they communicate with each other. A component also needs to be deployed
independently and composed into applications without requiring
modification or customization. This composition needs to conform to a
composition standard (Councill and Heineman 2001). Example component
models include the Common Object Request Broker Architecture (CORBA)
(Object Management Group 2000; Wang et al. 2001), Microsoft’s
Component Object Model (COM) and its successor .NET (Ewald 2001), and
Enterprise Java Beans (EJB) (Matena and Hapner 1999; Blevins 2001). Web
Services can also be considered a type of component.

Product Line development is a form of reuse where a family of
applications is developed from a code baseline. A software product line is “a
set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way.” (Clements and Northrop 2002). These multiple product
families could support different platforms (operating system, hardware),
different operating environments (different peripherals), differences in
functionality, or support different business processes (Sommerville 2007).

Another common form of reuse is in building products from commercial
off-the-shelf software (COTS) or government off-the-shelf software
(GOTS). Like with CBSE (which can be viewed as a form of COTS
development), the goal is to reduce development time by utilizing software
that is purchased, not built in-house. The success of these efforts depends on
both the availability of suitable COTS systems to incorporate into the new
system and in the flexibility of the requirements for the new system being
developed. It is unlikely that a “perfect match” will be found between
the COTS systems available and the requirements for the new application.

202 15 Rationale and Software Reuse

Other challenges in COTS-based SE are the willingness to be dependent
on the vendor(s) providing the COTS systems. Vendors can discontinue
support (or just give poor support), change the API and introduce
incompatibilities, increase pricing for new releases, and potentially cease
to exist entirely.

15.2.2 Types of Rationale for Reuse

There are several types of rationale that can come into play when
supporting software reuse. One is the reuse candidate rationale—rationale
associated with the reused artifact. The rationale behind the design and
implementation decisions made when building the reusable item would
give crucial insight into its functionality and quality. The rationale could
point out what features of the item support reusability and could also point
out what the overall quality goals were. This information can be invaluable
in determining if the reusable item is suitable for a particular application.
This information is also important as the reusable item evolves. If the
design or implantation is changed in such a way as to “break” the API or
make the application less reusable, that will affect anyone using the item
who needs to stay consistent with upgrades and other new releases. It is
especially important to capture any tradeoffs made between functionality
and generality.

Another type of rationale that is useful is the reuse approach
rationale—rationale for deciding how reuse should take place within a
software application. There are advantages and disadvantages for reusing
software versus building it “from scratch.” It is important to capture these
alternatives and decisions in case they need to be revisited again in future
development iterations or later in system development if goals change. In
some cases, the requirements of the new system will require adjustment in
order to fit the services provided by a reused item. The reasons for these
adjustments should be captured in the rationale for the requirements so that
if issues arise because of the adjustments the developers will know why
the adjustments were made.

Another type of rationale will be the reused component selection
rationale—rationale for selecting between alternative items for reuse. This is
particularly applicable during CBSE and COTS-based development efforts.
The rationale will give insight into the intent of the developers when making
these decisions and can be used to re-evaluate choices as the systems (both
the system being developed and the items being reused) evolve. The
rationale will assist in keeping track of what information needs to be
reviewed periodically as applications change and by providing information

15.3 Applying Rationale 203

on alternatives that can be re-considered if the currently selected ones prove
to no longer be feasible either due to lack of vendor support or changing
requirements.

A final type of rationale is the reuse dependency rationale—rationale
that captures the decisions made in development that are dependent on the
selection of a specific reusable item. This information can be used later to
assess the impact if that item can no longer be used in the system or if it
has significant changes made to it that affect how it is used in the system.

15.2.3 Reusable Rationale

Reusing code, documentation, designs, etc. promises to reduce the amount
of effort required when developing software. In a similar fashion, reusing the
rationale for these items decreases the amount of effort required to capture
rationale for the new system. Having a set of potential alternatives and the
arguments for and against these alternatives will give developers a
significant head-start when they need to make similar decisions in the future.

One methodology to support this is the use of Reusable Rationale
Blocks (RRBs) (Hordijk and Wieringa 2006). RRBs are a collection of
general design decisions, possible design alternatives for each decision,
evaluation criteria, and ratings of each alternative based on that criteria.
The collection of the RRBs forms a “generalized design space.” When new
problems need to be solved, “problem matching” is done against the set of
RRBs to see if this is a decision that needed to be made in the past. If that
is the case, the alternatives and criteria can be examined and adjusted, if
needed, to fit the new problem. The RRBs are a form of reusable design
knowledge and can help guide the designers toward solutions to design
problems.

15.3 Applying Rationale

15.3.1 Rationale and Patterns

As mentioned earlier, many different types of patterns can be used in
software development. Patterns, a concept that initiated with Alexander’s
patterns for architecture (Alexander et al. 1977), typically contain the
description of the problem, a solution, or activities that comprise the solution,
and the consequences, or results, of applying the pattern. These consequences

204 15 Rationale and Software Reuse

can be viewed as the rationale for selecting the pattern. Expressing the
rationale inside a pattern description provides insight into when and how the
pattern should be implemented (Bozheva and Gallo 2006).

The type of pattern best known in Software Engineering is the design
pattern. While design patterns can be a good way to use knowledge of
existing good designs to solve problems, they do need to be used with care.
There is always the risk of building flexibility and extensibility into a
software product that does not necessarily need it. Flexibility and reusability
only bring cost and time savings if these capabilities are needed. Building
software for easy extension and reuse does not come without cost so it is
important to determine if this cost will be justified. If not, you run the risk of
incurring the extra costs involved in carrying around a more complicated
design (Beck 1999). The deliberation behind a decision on whether or not
the flexibility/extensibility provided by a design pattern is needed can be
captured in the rationale. The rationale can then be used to revisit these
decisions if they need to be reconsidered at a later date.

If the decision to use a design pattern has been made, the rationale can
be used to determine which pattern is most appropriate for a given
problem. Gamma et al. (1995) describe several approaches for determining
what design pattern is right for a given problem. Several of these
approaches utilize different forms of rationale for the patterns. These
include the intent for the pattern, given in unstructured text as part of the
pattern catalogue, the applicability, which problems a pattern applies to,
and the consequences, which give some of the tradeoffs involved in
choosing a pattern. The rationale for choosing a pattern should map to the
causes of re-design that the pattern addresses.

The use of rationale to assist in pattern selection was the goal of the
Design Recommendation and Intent Model Extended to Reusability
(DRIMER) system (Peña-Mora and Vadhavkar 1997). DRIMER
implemented the approach of “patterns-by-intent” where a design pattern is
selected using the designers’ intent and then code that implements that
pattern is chosen and adapted, if necessary, based on the constraints for the
system being built. Essentially, the design rationale for the system being
developed is used to drive the pattern selection process and is used as an
index into a repository of reusable code.

One danger with using design patterns is the risk that future developers
working with the code do not recognize the use of the pattern and why it is
important for the development effort. Design Pattern Rationale Graphs
(Baniassad et al. 2003) address this problem by representing the design
patterns, the rationale behind their use, and the source code that
implements these patterns in a graphical format. The pattern graph maps to
the pattern description and the source code graph maps to the implementing

15.3 Applying Rationale 205

source code. The developer, or maintainer, can explore both graphs to
determine what the goals are behind the pattern implementation. The
designer can explore the graphs using both regular expression based search
and node expansion. The pattern graph captures alternative ways to
implement each pattern and the rationale for each choice. During
maintenance, using the DPRG assists the maintainer in exploring what
design goals are relevant to the code that implements the design pattern.

Patterns do not just apply to the software artifacts. Patterns also appear
in software process. Hagge et al. (2006) describe how process patterns
exist for successful requirements engineering (RE) practices and how those
patterns can be reused to support process improvement. The process
patterns themselves follow a structure that is very similar to rationale
where the pattern description giving the problem, solution, context that
guides it, and the experience that supports it maps to rationale where a
question (decision) is posed and an option is considered, with arguments
given for and against it that involve evaluation criteria. A collection of RE
patterns is being saved in the Requirements Engineering Patterns
Repository (REPARE).

Process knowledge is also distributed in pattern form in Agile Patterns
(Bozheva and Gallo 2006). Agile patterns describe alternative ways to
address practices, concepts, and principles encountered and utilized when
applying agile methods. As in RE patterns, the rationale is part of the
pattern description, although the decision criteria do need some further
definition. These patterns can be used as guidelines for activity selection,
as a means for supporting knowledge transfer by providing “past
knowledge” from the software engineers who solved the problem
expressed by the pattern in earlier development efforts.

15.3.2 Rationale and Component-Based Software Engineering

Rationale could be captured and used in making a number of important
decisions in CBSE. For component providers, these include the component
model(s) to support and the granularity of the components. For component
consumers, the decisions include when components should be used, which
components to use, and which component model best suits the application.
Rationale can both support making these decisions and document their
results.

When working with COTS components, the initial difficulty faced is
identifying candidate components. There are a number of possible methods
for finding components. The ideal approach would be for all components
to provide a common description model. While the Internet can be used to

206 15 Rationale and Software Reuse

access multiple component catalogues, the different collections of
components focus on different types of components or different aspects
when describing them (Requile-Romanczuk et al. 2005). The search is also
made difficult when designers may not be able to specify precisely what
they need. This requires flexible retrieval mechanisms to work with the
developer in formulating their requests (Fischer et al. 1991).

It is also important to understand what relationship components have
with each other. Are there component characteristics that are likely to
impact each other? Are there dependencies between components? These
factors are especially important for dynamically configured components,
such as Web Services. It would be valuable to have a way to reason over
these services to determine how they will impact system design (Gannod et
al. 2007).

While components are selected based on the functionality they provide,
there are other characteristics of the component that can influence its
selection. The Unified Specification of Components framework (UnSCom)
(Overhage 2004) extends the concept of design by contract to CBSE. The
composition contracts are specified on multiple contract levels to define
the component interfaces. These levels include both the functionality of the
component and information about component quality.

15.3.3 Rationale and Software Product Lines

Software product lines utilize reuse by creating closely related applications
as application families where portions of the application that are the same
are shared. Application families are described by commonality and by
discriminants, where a discriminant is a requirement that differentiates
between systems (Mannion et al. 1999). These discriminants serve as
decision points where choosing different alternatives results in different
products. The Method for Requirements Authoring and Management
(MRAM) uses a requirements metamodel to describe the requirements that
comprise the application family. Several of the attributes that describe each
requirement can also serve as its rationale. These include stability,
verifiability, complexity, cost, staff-knowledge, and technology. This
information is available to stakeholders who can then look at the impact of
selecting different requirements at the choice points indicated by the
discriminants. MRAM and its supporting metamodel are used by the Tool
for Requirements Authoring and Management (TRAM) to use a set of
application family requirements to select those for a single product and
generate a system model.

15.3 Applying Rationale 207

One challenge in Product Line Engineering is deciding how the product
line should be structured. Planning the product line is also known as
product line scoping. The core task of this process is looking at which
functionality in the product line will have the best return on investment
when reused (Schmid 2002). This process involves many activities that can
best be captured in the rationale for the product line design. The planners
need to investigate different scoping alternatives and their advantages and
disadvantages. This includes looking at tradeoffs between business
objectives and evaluation of risks (Schmid 2002). The rationale can serve
as a basis for negotiation and as input to any cost–benefit analysis that may
be required. The rationale can capture the relative importance of each
evaluation criteria. When the decisions are made, rationale should also be
collected to indicate which portions of each product are meant to be
reusable and which are not.

Knodel and Muthig (2006) developed a process to capture architecture
decisions and their rationale. They focused on these decisions because
decisions made when developing the architecture for the product lines are
especially important because of their strategic value to the organization.
Capturing the key decisions that drive the architecture and the rationale
behind them serves several important goals. The process of capturing and
discussing the rationale provides a mechanism for identifying and
documenting what the important criteria and issues are behind the product
line architecture. This includes prioritizing these criteria and using these
priorities to evaluate the candidate design alternatives. This process also
supports the negotiation performed by the architects and other
stakeholders. The resulting rationale can be used later to defend these
decisions to interested parties who were not actively involved in the
decision-making and can also be invaluable to any new developers who
need to learn about the architecture.

Another decision that needs to be made when designing a software
product line is how it will be configured and managed. Architectures can
be configured at two points in the development process: deployment-time
configuration and design-time configuration (Sommerville 2007).
Deployment-time configuration means that the system can be configured
for a specific customer using configuration files. Design-time
configuration works with the core functionality of the product line but
includes new or modified components in order to support specific product
needs. Rationale can be used to document the advantages and disadvantage
of each approach and the reasons for making this decision. It can also be
used to document how the different product line components meet the
reconfiguration goals to ensure that evolutions to the product line do not
restrict reconfigurability.

208 15 Rationale and Software Reuse

15.3.4 Rationale and COTS-Based Software Engineering

The success of a COTS-based project will depend on a number of key
decisions which should be documented in the rationale. The first decision
is if COTS products should be used at all. Fifteen COTS-based projects in
a NASA environment were studied by Morisio et al. (2000). The goal was
to capture the actual process and to identify what the differences were
between COTS-based and actual development. This study looked at the
decision that determined when COTS-based development is appropriate.
There are tradeoffs that need to be made when determining if it makes
more sense to buy or to build. These include cost, risk, and requirements.
The requirements need to be flexible enough to accommodate some
adjustment in order to conform to available COTS systems. Morisio et al.
recommend that the requirements be sketched out initially with only
enough detail present to choose which COTS products to incorporate.
This needs to be done in view of the danger that Kontio (1996) pointed out
where “fuzzy” initial requirements may lead the decision-making process
to focus on easier to investigate technical issues that may not be as
important as the application requirements when making the COTS
selection.

The other key decision (which is not independent of the first) is which
COTS products should be used. The ability of the system to meet the
application requirements is important but there are also many
nonfunctional requirements that play a role in the project’s success. The
decision-making process will involve investigating the licensing cost of the
product (this can be a significant factor if the product being developed will
be installed at multiple locations or purchased by multiple customers) and
the maturity of the vendor and product. Determining the Technology
Readiness Level (TRL) for each system incorporated is mandated when
developing systems for the United States Department of Defense (DoD
2002). Capturing this and other nonfunctional criteria in the rationale both
documents the selection process and makes it easier to reassess decisions if
criteria or evaluations change over time.

The Off the Shelf Option (OTSO) method (Kontio 1996) was developed
to support a COTS selection process that was more systematic than the ad
hoc methods that are often used. The method defined what tasks had to
occur in the selection process, a hierarchy of evaluation criteria, and a model
of costs and value for the COTS alternatives. Each alternative was given
values for the evaluation criteria and then ranked. The Analytic Hierarchy
Process (AHP) (Saaty 1980) was used to rank the alternatives. In this
process, alternatives are compared in pairs, rather than given some absolute

15.4. Summary and Conclusions 209

evaluation value. The evaluation criteria and their value for each alternative
form the rationale for the COTS alternative selection.

Rationale can also be captured for the process followed to make COTS
technology selections. The Resources-based Approach for COTS
Evaluation and selection (RACE) uses a process model that contains
activities that can take place in COTS evaluation and selection (Mohamed
et al. 2005). The selection process can be customized based on the project
domain. The domain characteristics would form the rationale for process
choices.

15.4. Summary and Conclusions

Software reuse has become an integral part of many, if not most, software
development projects. While the potential cost savings are considerable,
there are also considerable risks towards depending on software delivered
elsewhere. It can also be difficult to identify and select software to reuse
and to integrate the reused items into a new system.

In this chapter, we have presented several common types of reuse and
how rationale could assist in making these efforts more successful. Reuse
should be pursued when possible but involves many decisions that require
considerable thought. The ability to document those decisions in a
structured way through the rationale for the system helps to assure that the
choices made are well justified. The presence of the rationale also provides
invaluable insight to future developers maintaining or reusing the system.

Part 4
Frameworks for Rationale-Based Software
Engineering

The case in support of rationale is a compelling one—the ability to capture
and encode the decision-makers’ intent as part of a knowledge
management strategy aimed at using this knowledge to assist with future
decisions so that we can learn from the past, rather than repeating it (or
repeat it only when past decisions were successful). The importance of
rationale and its potential value has resulted in a significant amount of
research over the past 30 years yet there still remain many obstacles
towards its acceptance and use in practice. Still, advances in technology
have resulted in new opportunities for integrating rationale into practice
and the increasing awareness of the relationship between process and
product quality suggest that the reluctance to invest up-front effort for later
benefit may be lessening.

The challenge is to move rationale outside the laboratory and into
practice. Studies have shown that it takes 15–20 years to mature a
technology (Redwine and Riddle 1985). In order to successfully transition
a technology into practice it is important to understand what both the
obstacles and benefits of that technology are.

In order to build a Rationale Management System (RMS) to support
RBSE, we need to identify where and how rationale can be used in
software development (benefits) and capture these uses, along with
concepts needed to compare rationale approaches and relate them to
software engineering, in a Conceptual Framework (Chapter 16). We also
need to develop an Architectural Framework (Chapter 17) that identifies
issues (obstacles) that must be addressed by an RMS architecture in order
to successfully support software engineering. Past work in rationale has
indicated that it shows great promise in providing significant benefits to
software development and we need to look ahead (Chapter 18) to
determine how those benefits can best be disseminated into software
development approaches, processes, and tools.

16 A Conceptual Framework

Exploiting the full potential of rationale in software engineering requires a
comprehensive understanding of that potential. Such understanding must
be based on a conceptual framework that describes how and where
rationale usage can support SE. This framework should identify where and
how rationale can be used in software projects. It should also provide a set
of concepts for comparing proposed approaches to rationale and for
relating them to the various aspects of software engineering.

16.1 Introduction

16.1.1 What a Conceptual Framework Should Do

Understanding the full value of rationale in software engineering (SE)
requires a conceptual framework that enables description of the ways in
which rationale can support SE. As used here, the term conceptual
framework means a set of ideas and terms for describing the problems in
an application domain and the means for solving them. A conceptual
framework for rationale usage in the domain of software engineering must
do three things: (1) provide connections between concepts of rationale and
concepts of SE to enable description of how rationale can support or fail to
support SE, (2) identify how different rationale approaches differ with
respect to the goals of SE, and (3) identify the goals and success criteria
for rationale usage in SE.

What is needed is a common and unified framework that can relate all
major rationale approaches to SE. This framework should not be expected
to settle the many disputes among the proponents of different approaches,
but it should clarify these disputes by revealing differences and
commonalities amongst rationale approaches. To do this, it must include
terms and ideas that reflect significant similarities and distinctions but
exclude those that do not.

214 16 A Conceptual Framework

16.1.2 Objectives of This Chapter

The overall objective of this chapter is to describe a conceptual framework
that can serve as a basis for both practical use of rationale in SE and for
research on such use. To accomplish this, the chapter will attempt to
describe the essential facts, criteria, and concepts of rationale usage in SE. It
will provide a terminology that organizes these entities into a unified
framework. The framework provided here will not attempt to cover all
concepts of rationale and software engineering. Instead it will focus on just
those needed for using rationale to support SE. This will provide a founda-
tion for methods and software tools that support rationale usage in SE.

The discussion begins with a section describing the general goals of
rationale usage in SE. The next section groups proposed rationale usage
into types of approaches, specific approaches within each type, and
specific methods of usage within each approach. The section after this
explores the range of use of the decision-centric type of approach in SE.
The section following this explores use of the usage-centric type of
approach. Following this is a section on rationale in iterative software
development, then a section on challenges to rationale usage. The chapter
concludes with a brief summary of the intent and contents of the chapter.

16.2 General Goals of Rationale Usage in Software
Engineering

The overall goal of rationale usage in SE is simply to help software
engineers achieve their goals. Typically this means helping the developers,
maintenance personnel, users, and other stakeholders to achieve their goals
as well. The goal of rationale-based software engineering (RBSE), which
is the theme of this book, is to increase the usefulness, usability, and use of
rationale in SE.

Ultimately, the way in which any kind of rationale aids SE is by helping
to improve the quality of its decision-making. In this sense all rationale
usage is prescriptive in that it assumes that the quality of decision-making in
SE is not as good as it could be and that rationale usage can make it better.
Even when rationale is recorded without any intention of influencing
decision-making, it can do so by helping software engineers to remember
what has been decided and why, or by serving as an aid to future projects.

There are two basic ways in which advocates of rationale usage seek to
improve decision-making. One is by providing better information for
decision-makers. The other is by prescribing decision-making processes

16.3 Rationale: Types of Approaches, Specific Approaches, and Methods 215

aimed at eliminating flaws in reasoning and failures to take important
information into account. Advocates of rationale usage typically claim that
it can help to make decision-making better informed, more correct, more
consistent, and/or more complete.

While the ultimate goals of rationale usage are prescriptive, this does
not necessarily mean that they are prescriptive with respect to the decisions
for which rationale is captured. Sometimes they are merely descriptive in
the sense that they seek only to describe, i.e., document, the reasoning
behind these decisions without influencing it. In such cases, the
documented rationale is used to inform other decisions—for which it is
prescriptive. For example, the rationale of designers might be captured
without influencing their decision-making and then used to influence the
decisions of people constructing the artifact. In fact, this approach is
common.

16.3 Rationale: Types of Approaches, Specific
Approaches, and Methods

There are two fundamentally different types of rationale approaches. One
focuses on decision-making by SE personnel, the other on the experiences
of users. Our conceptual framework labels the former type decision centric
and the latter usage centric. Decision-centric approaches model the
reasoning of people involved in decision-making, including what decision
tasks are undertaken, what decision alternatives are considered, how these
alternatives are evaluated and how different decisions are related. Usage-
centric approaches model the reasoning of people about an artifact, such as
software, based on their attempts to use it. This reasoning centers on
evaluations of artifact features as they are experienced in the context of
use.

Within each type of approach there can be one or more specific
approaches. For example, both Issue-Based Information Systems (IBIS)
(Kunz and Rittel 1970) and Questions Options and Criteria (QOC)
(MacLean et al. 1989) are specific approaches within the decision-centric
type of approach to rationale. Similarly, Scenario-Claims Analysis (SCA)
is an approach within the usage-centric type of approach.

There may be several distinct methods of using rationale within a given
rationale approach. For example, there are several methods of using IBIS.
While such methods share commitments to core IBIS concepts, such as the
basic IBIS rationale schema, they may differ on the details of the schema.
Thus, for example, Conklin and his colleagues use the IBIS approach

216 16 A Conceptual Framework

(Conklin and Begeman 1988; Conklin and Burgess-Yakemovic 1996), but
some of the details of their schema differ from Rittel’s.

Another way rationale methods can differ is in whether they are (1)
process-oriented or (2) structure-oriented (Lee and Lai 1996). Process-
oriented methods stick closely to the temporal sequence in which rationale
statements are actually generated; they thus provide a history of the
reasoning process. Structure-oriented methods, on the other hand, abandon
the temporal order of reasoning in favor of its “logical” structure. They
thus provide a sort of idealized model of how ideas relate in rationale.
Conklin and Burgess-Yakemovic (1996) use IBIS in purely a process-
oriented manner, but McCall (McCall 1979b) has shown that IBIS also can
be used in a structure-oriented manner. Other decision-centric approaches
also can differ in their method of use. For example, QOC is strictly
structure-oriented, but DRL and PHI can both be used in either process- or
structure-oriented methods.

16.4 Decision-centric Rationale in Software Engineering

There are two, closely related concepts that provide the most obvious
points of connection between rationale research and SE. These are the
concepts of decision and decision-making. Most of the rationale methods
described in this book deal explicitly with decision-making; and it seems
intuitively clear that software engineering involves the making of many
decisions. The section below provides evidence for this intuition by
looking more closely at the nature of decision-making in rationale
approaches and in SE.

16.4.1 Decision-Making in Rationale Approaches

16.4.1.1 Decision-Making as Question Answering

The rationale approaches that are relevant here are the decision-centric
approaches, six of which were introduced earlier in this book: Issue-Based
Information System (IBIS), Procedural Hierarchy of Issues (PHI) (McCall
1991), Questions, Options and Criteria (QOC), Potts–Bruns (Potts and
Bruns 1988), Decision Representation Language (DRL) (Lee 1991), and
RATSpeak (Burge and Brown 2004). In all these methods (1) decisions are
represented explicitly and (2) all other rationale exists entirely for the pur-
pose of helping to make these decisions. To understand whether and where

16.4 Decision-centric Rationale in Software Engineering 217

rationale approaches can support decision-making in SE, we first need to
understand how these approaches represent decision-making and then to
look at the various aspects of SE to see what decisions might be represented
in this manner.

What counts as decision in decision-centric rationale? While the answer
to this question depends to some degree on which rationale approach we
are talking about, there is nevertheless a criterion that is common to all of
them. For something to be counted as a decision in these methods, it must
be possible to state it as a question to be answered. In fact, all approaches
except DRL represent decisions exclusively as questions. While DRL
sometimes uses other representations for decisions, its inventor (Lee) has
declared that DRL decision tasks are the same entities represented as
questions in QOC and IBIS (Lee and Lai 1996). From this we can infer
that decision tasks in DRL also correspond to the question-based decision
tasks in the Potts–Bruns approach and RATSpeak. This means that any
decision task that is represented in DRL can be paraphrased as a question.
So, for a decision task to be dealt with by any of the decision-centric
rationale methods, it must be capable of being represented as a question.
This provides a convenient means for identifying the parts of SE that are
candidates for use of decision-centric rationale methods.

What needs to be done, then, is to identify the parts of SE that can be
represented as questions to be answered. Once we have done this, we can
take the next step and see whether the types of questions and question-
answering processes featured in SE can be matched with the kinds of
questions and question-answering processes dealt with in different
rationale approaches.

16.4.1.2 Question Answering through Deliberation

The common thread in all decision-centric approaches to rationale is that
decisions are made, i.e., questions are answered, through a process of
deliberation. The transitive verb to deliberate is defined by the Random
House Dictionary of the English Language (Second Edition, Unabridged)
as follows: “to weigh in the mind; consider: to deliberate a question,” but
a more detailed definition is needed here. This is accomplished by
accepting this dictionary definition but defining “to deliberate a question”
as follows: to evaluate one or more proposed answers to a question.
Deliberation in this more precise sense is common to all decision-centric
approaches to rationale.

Almost all decision-centric approaches use argumentation to evaluate
proposed answers. One notable exception is the problem-centered approach
of Lewis, Rieman, and Bell (1996). This approach evaluates proposed

218 16 A Conceptual Framework

answers not by arguing their merits but by testing them using a suite of
problems.

There are two major types of approaches to argumentative evaluation.
One allows arguments for and against the proposed answers as well as
arguments for and against other arguments in a multilevel, directed acyclic
graph (DAG) structure of arguments. This is the approach used by IBIS and
PHI, for example. The other approach to argumentative evaluation
differentiates between the structure of the arguments on proposed answers
and the structure of arguments on other arguments. In particular,
argumentation on proposed answers uses criterion-based evaluation, which
consists of (1) the statement of a criterion, e.g., a goal, and 2) an assessment
of the proposed answers with respect to the stated criterion, these two
elements in effect constituting a single argument for or against the proposed
answer. Arguments for and against other arguments are in the same basic
form as in the other approach to argumentative evaluation, i.e., a DAG of
arguments. QOC and DRL, for example, both use this second approach.

There is one additional aspect of deliberation that is allowed by some
but not all rationale approaches, and that is dependency on the outcome of
other decision-making, i.e., question answering. PHI, DRL, and RATspeak
allow this. In fact, PHI’s overall structure of decisions is based entirely on
such relationships. DRL allows dependencies in the form of several types
of relationships between decisions. RATSpeak also provides a special type
of argument dedicated to representing dependency relationships between
the answers proposed to different questions. Such an argument shows more
specifically than PHI or DRL how one decision can depend on another.
(See Section 16.6 for a more detailed account of dependency relationships
between decisions.)

16.4.2 Question Answering in Software Engineering

16.4.2.1 Questions in Software Engineering

The next thing to do is to list the various aspects of SE and see to what
extent they can be viewed as involving question-answering processes.
There are two categories of such aspects. One category includes types of
software-related activities. The following list of basic activities is adapted
primarily from the Software Engineering Body of Knowledge (SWEBOK)
(Software Engineering Coordinating Committee 2004). Though this
document is by no means universally agreed upon, there is nevertheless
broad consensus that SE involves the following activities:

16.4 Decision-centric Rationale in Software Engineering 219

• Project inception—i.e., determining that a new or revised system
is needed

• Requirements engineering
• Design and redesign
• Construction—i.e., implementation in code
• Testing
• Use
• Maintenance
• Configuration management

The second category lists aspects of SE that deal with relationships
among various activities and stakeholders in a software project:

• Coordination within the SE team
• Collaboration amongst members of the SE team
• Participation of users in development
• Feedback and feedforward between different SE activities
• Management of the overall SE effort for a project

These lists could, of course, be further elaborated to several more levels of
detail, but the current level is adequate for demonstrating that there are
many potential aspects of SE where rationale can find application.

To show that rationale has potential use in the listed aspects of software
engineering, it is sufficient to show that there are questions that these
aspects seek to answer through reasoning. Examples of such questions for
each of these aspects are shown below. The list below only includes
representative examples of the many questions that the aspects might deal
with. The goal here is not to be comprehensive but merely to show that
there are many candidates for rationale usage across a wide spectrum of
SE aspects.

• Software-related activities

o Project inception—i.e., determining that a new or revised
system is needed

 Why do we need a new or renewed system?
 What is the purpose of the system from the

perspective of its stakeholders?
 What is the description of the user organization

and the work that the users will perform for this
organization using the software?

220 16 A Conceptual Framework

 How feasible would the software be technically
and economically?

o Requirements engineering
 What functions should the software fulfill in terms

of users interacting with the system?
 What are the functional and nonfunctional

requirements of the system?
 What are the requirements for the technologies to

be used for constructing and operating the
software?

o Design and redesign
 What is the design of the software architecture to

be—i.e., how is the software organized into
subsystems?

 What are the specific behaviors of these
subsystems to be?

 What is the design of each of these subsystems to
be?

o Construction
 What platform and coding technologies should be

used to construct the system?
 What public and in-house standards should be

adhered to in construction?
 How should the software be constructed to

facilitate verification?
 How should the software be constructed to

facilitate change?
o Testing

 What are the defects and problems with the
constructed software?

 To what extent do the implemented design
features satisfy the stated requirements?
(verification)

 To what extent does the code successfully
implement the design features? (conformance
testing)

 To what extent do the implemented design
features satisfy user expectations? (validation)

 How should the subsystems of the software
architecture be tested?

 How should the integration of the subsystems be
tested?

16.4 Decision-centric Rationale in Software Engineering 221

 What test cases should be used in view of the
given limitations in resources and schedule?

 Which test techniques should be used?
 How can the time between the creation of errors

and their detection through testing be minimized?
o Maintenance

 How can this software best be maintained?
 What enhancements are needed in the software?
 What problems are users having with the

software?
 How can needed modifications to the software be

made without breaking existing functionality or
degrading performance of the system?

 What should the plan be for maintenance of this
software?

 What modifications are needed to keep the
software usable in a changing environment?

 What needs to be done to avoid potential future
faults?

 What needs to be done to reduce the complexity
of this evolving software?

o Configuration management
 What is the plan to be for software configuration

management (SCM)?
 What organizations should be involved in the

SCM process?
 Which organizational entities should be

responsible for which SCM tasks?
 What are the necessary sequences of the SCM

tasks?
 What are the relationships of the SCM tasks to the

project schedule and milestones?
 What tools should be used to support the different

SCM tasks?
 How should the SCM plan be implemented?

• Relationships among stakeholders and activities

o Coordination within the SE team

 What are the potential conflicts between the
decisions and decision criteria used by different
members of the development team?

222 16 A Conceptual Framework

 What are the dependencies between the activities
of the various team members?

 How can team members be kept aware of changes
to decisions about requirements, the design, and
the implementation of the software?

 How can team members be made aware of the
effects of changes on their work?

o Collaboration amongst members of the SE team
 What are the potential conflicts between the

decisions and decision criteria used by different
members of the development team?

 What is the untapped potential for the work of
team members to support the work of other team
members?

 Which members of the SE have knowledge that
would be useful to other members of the team?

o Participation of users in development
 What are user reactions to proposed features of the

software?
 What are user reactions to implemented features

of the software?
 What can be done to motivate users to participate

in the development of the software?
 How can users be made aware of the effects of

proposed changes on their use of the software?
o Feedback and feedforward between different activities

 Does the design of the system satisfy the
requirements?

 Does the constructed software correctly
implement the intended design?

 To what extent does the implemented software
satisfy or fail to satisfy actual user needs?

 Can the architecture of the system adapt to
changes in requirements?

 Does the design of the software facilitate its
construction?

 Does the design of the software facilitate its use?
 Does the design of the software facilitate its

maintenance?
 What does the plan for testing imply for the

design of the system?

16.4 Decision-centric Rationale in Software Engineering 223

 To what extent do the results of testing reveal that
the design of the software has been effective in
preventing the occurrence of errors?

o Management of the overall SE effort for a project
 What should the nature and structure of the project

tasks be?
 What resources should be allocated to which

tasks?
 Which software quality management processes

should be utilized?
 What software lifecycle model should be used?
 What lifecycle processes should be selected for

the project?
 What software methods and tools should be used?
 What should the organizational structure be for

the project?

Few would argue that answering these questions requires anything less
than careful and informed reasoning. As a consequence, each question
represents an opportunity for both rationale capture and delivery. Each is
also a potential candidate for the use of prescriptive rationale methods
designed to improve the thoroughness, consistency, and correctness of
reasoning.

This list of questions shows that rationale usage is in no way limited to
design. In fact, it suggests that design rationale constitutes only a small
minority of the potential types of rationale in SE. It is precisely for this
reason that this book employs the term software engineering rationale
(SER) instead of the traditional term design rationale (DR) as the umbrella
term for research and applications of rationale in SE.

The given list of questions is really just the tip of the iceberg. Each of
the questions listed can lead to many other questions at a greater level of
detail that also need to be answered. And, of course, in addition to the
questions shown above, there are many other questions at the same level of
detail that are not shown here.

16.4.3 Using Decision-centric Rationale in the Full Spectrum of
SER

Being able to state a decision as a question is necessary for applying
decision-centric rationale methods, but is it sufficient? Answering this
question requires knowing whether there are any obstacles for application of

224 16 A Conceptual Framework

a rationale approach or method to particular decision-making tasks. For
rationale approaches in general, the only additional condition is that the
decisions not be based on pure, inexplicable intuition rather than explicit
reasoning. There are also two potential problems that can prevent use of
particular approaches or methods of rationale usage:

1. a given rationale approach or method is intrinsically applicable
only to certain types of decisions,

2. the way decision-making is accomplished in SE is incompatible
with the way decision-making is represented or accomplished in a
given rationale approach or method.

The following sections look at each of these problems.

16.4.3.1 Rationale Approach Restricted to Certain Types of Decisions

IBIS and its PHI derivative have no restrictions as to what kinds of
decisions they can deal with. While Rittel originally intended IBIS only for
use with controversial questions, i.e., those which stakeholders disagreed
about, this restriction has long since been abandoned by most users of
IBIS, including McCall (1979b, 1986), Conklin and his colleagues
(Conklin and Begeman 1988; Conklin and Burgess-Yakemovic 1996), and
Buckingham Shum and his colleagues (Buckingham Shum et al. 2006).

QOC is restricted by its authors to use only for design space questions—
i.e., questions denoting decisions on the features that an artifact should
have (MacLean et al. 1996). This presents an apparent obstacle to the use
of QOC for the full range of decisions in SE. It should be noted however,
that Dutoit and Paech (2000) have shown that QOC can be refined to be
applicable to requirements engineering. Despite the intentions of its
inventors, QOC might turn out to be usable for other many other types of
SE decisions as well; but to date, this has not been demonstrated. The only
feature of QOC that offers any possibility of limiting its range of
application is its method of evaluation. QOC has a requirement that
decision alternatives—called options in the method—be evaluated against
explicitly stated criteria, and it is unclear whether this requirement can be
satisfied for all decisions in SE.

This issue arises again in the case of DRL, because its treatment of
decisions corresponds closely to QOC’s—especially in the use of criterion-
based evaluation of decision alternatives. While Lee never states that DRL
is restricted to the design space decisions that QOC focuses on, the various
examples given for DRL (Lee 1990; 1991; Lee and Lai 1996) deal only
with such decisions. This, however, might merely represent the exclusive

16.4 Decision-centric Rationale in Software Engineering 225

focus on design rationale that characterized the early literature on
rationale.

It is important to note that, in addition to decision problems, DRL also
allows question-answering in its schema, though it provides no schema for
question answering other than the element types question and claim plus
the relationships answers between them. If the entities that DRL labels
decision problems do not in fact represent anything more than the design
space questions found in QOC, it is still possible that DRL could be used
for other types of SE decisions by augmenting its question-answering
schema to allow IBIS-type multilevel argumentation. One simple way to
represent this argumentation would be to use DRL’s claims linked by its
supports and denies relationships. This is a very minor extension of DRL’s
current schema.

16.4.3.2 Decision-Making Processes in SE Incompatible with
Decision-Making Processes in Rationale

The concept of decision-making as defined for decision-centric rationale—
i.e., as question answering—has shown that many decisions in SE are
candidates for rationale usage, but these are candidates only. To
understand whether rationale methods can be applied to them requires
understanding whether the processes of decision-making as they are
represented in rationale approaches and methods is compatible with the
processes of decision-making in SE. In order to answer this question with
respect to any given rationale method it is, first of all, important to know
whether the way in which a rationale approach is to be applied is
descriptive or prescriptive with respect to how that decision is made.
Prescriptive use of a rationale approach dictates certain processes that must
be followed or certain information that must be used in making the
decision. Descriptive use, in contrast, makes no attempt to impose rules
about decision-making processes or what information must be used.
Instead, it merely documents whatever discussion happens to arise, by
categorizing statements according to its schema—e.g., as issues, positions,
arguments, and so forth in the case of IBIS.

A good example illustrating the prescriptive/descriptive distinction is
the IBIS approach. As Rittel originally intended that it be used, IBIS was
strongly prescriptive in the sense that he sought to change the way in
which decisions were made. In particular, Rittel used IBIS to promote the
idea of decision-making as being based on debate of decision alternatives
amongst a wide spectrum of stakeholders. As a consequence, the
generation of alternative positions for each issue was mandated, as was the
generation of arguments for and against both the positions and other

226 16 A Conceptual Framework

arguments. But as time progressed, IBIS was frequently used descriptively
as well. In such cases, it could record alternative positions as well as
arguments for and against positions and arguments if they happened to
arise naturally; but it was not used to direct the discussion.

A prescriptive version of IBIS, or any other rationale approach, might
well be in conflict with certain approaches and methods of software
engineering. So, for example, if a software method refused to recognize
differences of opinion as legitimate among reasonable and informed people,
the prescriptive version of IBIS would clash with it; or if, as in Boehm’s
Spiral method, the emphasis is on resolving differences of opinion quickly
and smoothly—as is the case with the WinWin rationale method (Boehm
and Kitapci 2006)—then Rittel’s original goal of using IBIS to fan the
flames of debate among stakeholders (Rittel 1972a) might well be seen as
counterproductive to the WinWin goal of showing how all stakeholders can
be winners. Prescriptive use of any given rationale method might well
conflict with software engineering methods, but whether they actually
conflict depends on which rationale method is used and which software
method is used. Whether there is in fact a conflict must be worked out on a
case-by-case basis that compares a given rationale method to a given
software method. Unfortunately, such a case-by-case comparison is beyond
the scope of this book.

Where rationale methods are used in a purely descriptive manner, there
can arise no conflict with SE methods. It should be noted, however, that
rationale methods can be used descriptively with respect to some activities
and prescriptively with respect to others. A common example of this is when
rationale methods are used descriptively for rationale capture for one SE
aspect—e.g., design—and prescriptively for rationale delivery with respect
to another SE aspect—e.g., project management. Managers may want to
monitor the activities of designers in a way that does not dictate what the
designer do, while at the same time using the information for management
tasks such as coordinating the work of others with the work of the designers.
This use of rationale is prescriptive with respect to managers in the weak
sense that it informs decisions that they make. Ultimately, rationale is of no
value if it is not prescriptive in the sense of influencing some SE decision-
making in a current or future project. Keeping track of these influences is an
important aspect of rationale usage in SE.

As conceived by its inventors, QOC is purely descriptive and so presents
no possibility of a clash with any SE method. DRL’s author makes no
assertion about whether it should be used prescriptively or descriptively; so
nothing prevents it from being used in a purely descriptive manner. While
both IBIS and PHI were originally intended to be prescriptive, there have
since been many uses of both that are purely descriptive.

16.5 Usage-centric Rationale in Software Engineering 227

Without attempting to enumerate all software methods and how they
might conflict with prescriptive uses of rationale methods, we can
nevertheless describe the types of conflict that could arise. This can be
done by showing the specific prescriptive assumptions of the prescriptive
rationale methods. The only two rationale methods that have prescriptive
modes about the processes by which decisions are made are IBIS and PHI.

Many current users of IBIS use it in prescriptive mode. This includes
the “process-oriented approach” to IBIS advocated by Conklin and
Burgess-Yakemovic (1996) and the IBIS work of Buckingham Shum et al.
(2006) with the Compendium hypertext system. Both uses of IBIS
advocate a constructive disruption of decision-making processes that,
according to Buckingham Shum et al. (1997), is based on the notion that,
“deeper understanding of a domain comes through the discipline of
expressing knowledge within a structural framework, working to articulate
important distinctions and relationships.” The compatibility of these ways
of using IBIS with various SE methods is largely an open question.

PHI originally came with a requirement to use a top-down, breadth-first
approach to raising issues; and this might well conflict with certain SE
methods, but this procedural prescription has been abandoned in later uses
of PHI.

16.5 Usage-centric Rationale in Software Engineering

The primary measure of software quality is its value to its users. Therefore,
an important complement to decision-centric rationale is usage-centric
rationale, which documents the evaluation of a system by its users on the
basis of their experiences in using the system. Perhaps the best way to
document the experience of a user is in terms of a usage scenario, i.e., a
history of the sequence of steps involved in the usage of a system. Carroll
and Rosson have pioneered this type of rationale documentation with the
Scenario-Claims Analysis (SCA) approach.

Understanding the full potential of SCA as a tool for SE requires
answering two questions: where can SCA capture rationale within the
overall SE process? and where can SCA rationale be used within the SE
process? The obvious answer to the first question is that SCA always
captures rationale during use of a system, but this answer can be misleading
if the term use is understood too narrowly. While SCA can capture rationale
during actual use of a fully designed, constructed, and deployed system, this
is by no means the only type of use that is relevant. It can also capture
rationale during use of (1) not-yet-deployed systems, (2) partially constructed

228 16 A Conceptual Framework

systems, (3) design prototypes and (4) prototypes created merely to elicit
requirements. It can even capture rationale from simulated use of not-yet-
constructed designs.

Where can captured SCA rationale be used within the SE process? In
other words, what can SCA rationale be used for? SCA is above all an
evaluation tool; it therefore has three main types of uses: (1) to rate a
single system from the perspective of its users, (2) to determine the best of
several competing systems (or subsystems), and (3) to provide feedback
about use to the SE activities of requirements determination, design,
construction, and maintenance of the system. This feedback, of course, is
aimed at informing and motivating the next iteration of each of these
activities. SCA is thus a crucial driver of change and iteration in these
activities.

The main relationship of SCA to the decision-centric approaches is that
its rationale should be fed back into and become a part of the rationale on
decision-making. SCA’s evaluation goes beyond the evaluation used in
decision-centric rationale in several crucial respects. SCA does not merely
evaluate individual decisions; it evaluates the collection of decisions that
constitute a design. And it does this from the consistent perspective of a
user engaged in a usage scenario. SCA’s evaluation of a design can only
begin after many decisions have been made by the designers. It thus
constitutes an empirical test of those decisions.

16.6 Rationale and Iterative Software Development

Chapter 2, entitled “What Makes Software Different,” pointed out that
software development can be done using iterative processes that are not
feasible in the development of many other types of artifacts. The term
iterative software development is used here to refer to the repeated
construction and use of preliminary versions of software to obtain
feedback that informs requirements determination and design. As used
here, this term encompasses such labels as evolutionary (Rajlich 2006),
incremental (Larman and Basili 2003), and agile development (Larman
2004) as well as Extreme Programming (Beck and Andres 2005). While
iterative software development is not performed on all development
projects, it continues to grow in popularity as a means to address the often
volatile nature of software requirements. It is important, therefore, to ask
what the implications of iterative development are for rationale.

16.6 Rationale and Iterative Software Development 229

16.6.1 A Rationale-Based Account of Iterative Development

Instead of thinking of rationale merely as an add-on to iterative
development processes, it is useful to try to understand iterative
development as itself being a rationale-based and rationale-driven process.
In fact, the motivation for and nature of iterative development can be
explained by the nature of the reasoning processes that underlie the
creation of software. While a complete rationale-based account of iterative
development is beyond the scope of this chapter, the paragraphs below
provide a sketch how such an account can be constructed for some aspects
of iterative development.

The motivation for iterative software development arises in a large part
from the inherent inadequacy of the rationale for development decisions
when these decisions are first made. This inadequacy takes the form of
both incorrectness and incompleteness. Perhaps the most basic way in
which the rationale is incomplete or incorrect is in its listing of user
requirements, which are the grounds for much of a system’s rationale. One
reason for this is that software development takes time, and during this
time user requirements can change. Another reason is that users
themselves do not have explicit knowledge in advance of their own
requirements. There is, for example, the I’ll know it when I see it
(IKIWISI) effect that happens when software is highly interactive. The
effect exists because users cannot anticipate the results of these
interactions and thus cannot predict their needs prior to these interactions.
Yet another reason for the failure to identify the requirements in advance is
that the satisfaction of some requirements can cause others to surface,
because it changes the work environment or the priority of values.

Another reason for the incompleteness of rationale is that this rationale
for decisions is based largely on the desirability or undesirability of the
consequences of proposed decision alternatives. The problem is that there
are important consequences that cannot be foreseen at the time a decision
is initially made. They only become known later. This phenomenon is
sometimes referred to as “The Law of Unintended Consequences.” Once
discovered, these consequences can motivate developers to revise
development decisions.

Unforeseen consequences include some of a decision’s impacts on
subsequent SE activities, for example, impacts of a design decision on the
construction and use of the software. While many of these impacts are
intended, some might not be. A decision to include something as a design
feature has the intended consequence of the implementation of that feature
in code, but it may also have unintended consequences for the construction
of the software. It might, for example, make it more difficult for other

230 16 A Conceptual Framework

features to be implemented; or it might require more time, effort, and
money to implement than had been anticipated.

Of course, not all unintended consequences are negative. For example, it
might turn out that part of the code created to implement a given design
feature can be reused to help implement other features. Often, this
potential for reuse is not recognized until implementation of the given
feature is well underway.

A given design feature might have unforeseen consequences for the use
of the software. Such consequences might include conflict with a user goal
that had not originally been included in the list of requirements. Another
negative consequence for use might be unforeseen effects on user
behavior. For example, it might have originally been thought valuable to
give users considerable control over the visual appearance of documents
they create with the developed software. But if this leads to users spending
excessive amounts of time designing documents for internal distribution,
then the requirements might have to be modified.

There are myriad additional reasons why certain consequences of a
decision only become known after that decision is made. The crucial point is
that once these consequences become known they provide additional
rationale about previously made decisions. They can provide the basis for
additional arguments, evaluation criteria, assessments of decision alternatives
with respect to criteria, additional decision alternatives to consider or even
additional decision tasks. If this additional rationale could significantly
change the quality of the software artifact or the cost of its creation, the
rationale may well motivate decision-makers to reopen already settled
decision tasks—thus producing iteration in the decision-making process.

16.6.2 Principles for Rationale Approaches to Support Iterative
Development

16.6.2.1 A Conceptual Framework for Iterative Reasoning

Certain approaches to rationale in SE are explicitly based on theories of
iterative development. Scenario-Claims Analysis, for example, is based on
a theory of “the task–artifact cycle”; and the WinWin approach to rationale
is based on Boehm’s Spiral Model of software development (Boehm and
Kitapci 2006). However, such approaches tend to be quite specialized. For
example, the former deals only with usage-centric rationale and human–
computer interaction, while the latter deals only with one of the many
methods for iterative software development. These approaches demonstrate

16.6 Rationale and Iterative Software Development 231

the possibility of integrating rationale with iterative development, but they
do not provide a sufficiently general conceptual framework for doing so.

Above all, a general conceptual framework should describe what is
required of a rationale approach for it to be usable in iterative
development. This description should be specific enough not only to
decide whether a given rationale approach is adaptable for use in iterative
development, but also to indicate how it would need to be adapted.

Of special interest is what a conceptual framework has to say about the
use in iterative development of the many rationale approaches that fail to
indicate how they might support such development. These include IBIS,
PHI, Potts–Bruns, QOC, DRL, and RATSpeak. All of these approaches
model rationale entirely around the concept of planning, in the sense of
reasoning about how to act before action takes place. This model is not
compatible with iterative development, in which decisions about
requirements and design lead to action in the form of implementation and
use, which in turn produce rationale that informs further decisions about
requirements and design.

Contrasting with the model of rationale as planning is Schön’s model of
rationale as reflection-in-action (Schön 1983). The latter involves
observing the consequences of actions and then reflecting on, i.e.,
reasoning about, how to modify future actions in view of these
consequences. Schön’s theory, which he calls Reflective Practice, models
practical reasoning as an iterative process of learning through action. This
theory, when combined with planning, provides precisely the foundation
needed for a conceptual framework for rationale in iterative software
development. To be more precise, if decision-making starts as planning
and then follows up with reflection-in-action when the less-than-adequate
consequences of planned decisions are discovered, the result is a model of
reasoning that fits interactive software development.

16.6.2.2 Features of Rationale That Support Iterative Development

The features of rationale that support iterative development are of two
types: required and desirable. The former refers to things without which
rationale simply does not support iterative development. The latter refers
to things that provide richer levels of support for such development. The
discussion below starts with the required features.

Decision-making is not a one-shot process. The single, most basic
feature a rationale approach must have if it is to support iterative software
development is that it must allow the reopening, redeliberation and
redeciding of previously decided decision tasks. These tasks include the

232 16 A Conceptual Framework

determination of what the requirements for the software are, what its
design features are, and how these are implemented.

Feedback is not inhibited. The second requirement is that the rationale
approach should not inhibit the recording of feedback, because feedback is
the most important source of the rationale for iterative development. This
might sound like a trivially obvious requirement until one realizes that
nearly every existing approach to rationale violates it. In particular, as they
are practiced, almost all decision-centric approaches mandate de facto a
sequence in which elements are recorded. For example, they require that
decision tasks be recorded before decision alternatives are recorded and
that decision alternatives be recorded before evaluations are recorded, e.g.,
before evaluation criteria or evaluative arguments are listed. The problem
with these mandated sequences is that feedback can easily take the form of
a piece of rationale that is disallowed by a mandated sequence. For
example, feedback might take the form of an idea for a design feature (an
option in QOC or a position in IBIS) that does not respond to an already
stated decision task (a question in QOC or an issue in IBIS). If feedback is
not to be inhibited, it should be possible to record elements in any
sequence in which they might arise from feedback.

The full spectrum of SER is documented. In addition to the above-listed
requirements, there are possible features of rationale approaches that
provide additional support for the representation and aid of iterative
development. These include the documentation for SE activities other than
design. The documentation of the rationale for requirements determination
enables the representation of the revision of requirements. Given the
crucial role that the volatility of requirements plays in iterative design
(Rajlich 2006), this is especially important. One crucial source of
feedback, and thus of the rationale for iterative development, comes from
the experience of software use. Documentation of usage-centric rationale,
such as is provided by Scenario-Claims analysis, thus provides additional
support for iterative design. Additional feedback comes from construction
and maintenance. Documentation of the decision-centric rationale for these
activities provides additional support for iterative design, because insights
resulting from these activities can become the basis of rationale for
rethinking decisions about requirements, design, and construction. In short,
the more a rationale approach supports the documentation of the full
spectrum of software engineering rationale (SER), the more it supports
iterative software development.

Influence/dependency relationships are documented. Another way in
which a rationale approach can support iterative development is by

16.6 Rationale and Iterative Software Development 233

representing influence relationships—and/or their converse, dependency
relationships—between various SE tasks. These include relationships
between decision tasks, especially between different types of decisions,
including decisions about requirements, design, construction, maintenance,
and testing. The cycle-rich network of these relationships is the mechanism
that drives iteration in development. In addition, this network is crucial for
determining the impacts of changes, which are both a consequence and a
cause of iterative development.

There are several distinct types of influence/dependency relationships
that are of interest. One has to do with the way in which one decision
influences the making of another decision. Typically, this relationship
exists when the former decision helps either to generate or to evaluate
decision alternatives for the latter.

A second type of relationship exists when one decision raises—or leads
to—another decision task. So, for example, deciding that D is to be a
design feature of a software artifact leads to the decision as to how to
implement D. In this case the latter decision task presupposes the decision
to have D as a design feature. If it is later decided that D should not be a
design feature, i.e., the presupposition becomes false, the latter decision
task ceases to be relevant to the project.

A third type of relationship exists when experiences with a task provide
reasons for revisiting previously settled decision tasks. For example,
failure of users to figure out how to use the software to accomplish a
required task could provide a reason for re-examining implementation
decisions or design decisions. On the other hand, the implementation of a
design feature in code might reveal that parts of this code could be reused
for other purposes. This might result in the change of other implementation
decisions. It might also suggest that additional functionality could be
implemented with very little additional effort. This in turn might suggest
that a decision about requirements be revisited to include some of this
additional functionality.

There are many other ways in which experiences with tasks can provide
reasons—and rationale—for previously settled decision tasks. In fact, there
are at least as many ways as there are types of elements in whatever
rationale schema is being used in the given rationale approach. So, for
example, in IBIS these reasons (this feedback) might take the form of a
new issue (decision task), a new position (decision alternative), or a new
argument. In a rationale approach based on a more complex schema, such
as DRL, there will be additional differentiation in the roles that feedback
can play. DRL, for example, enables feedback also to be in the form of a
goal that can serve as an evaluation criterion on a decision alternative.

234 16 A Conceptual Framework

The epistemological status of rationale is documented. To deal with the
iterative processes central to many of the more recent approaches to SE,
existing decision-centric rationale approaches need to be modified.
Fortunately, the modifications needed to implement the features described
above would be straightforward and relatively easy to implement. There is
one crucial caveat, however. Arguments that are based on feedback from
implementation and use often have a different epistemological status than
the arguments made prior to implementation and use. The latter largely
consist of predictions—i.e., hypotheses—about the possible consequences
of action. The former describe the actual consequences of action. When
there is a conflict between them we would generally expect that reports of
actual events will be taken as refuting the predictions. Even if feedback
does not conflict with any argument, it might introduce evaluation criteria
that were not considered in the original decision. This means that, if
feedback argues against the decision on an issue, that issue probably needs
to be reopened.

The crucial point here is that the two different kinds of argument
generally have different levels of credibility. One kind contains speculative
predictions of consequences; the other reports actual consequences. This
asymmetry in credibility raises the question of whether it is misleading to
represent them in the same way in the rationale schema. It may be
important to indicate whether arguments are predictions or tests of
predictions. It might even be important to indicate the source of the
feedback; and doing this would require only minor modifications in the
schemas for decision-centric rationale approaches. If a rationale approach
documents the full spectrum of SER and supports all the dependency
relationships described above, this might by itself provide sufficient
indication of the sources of rationale to determine its credibility.

16.6.3 Supporting Iterative Development by Combining
Decision-centric and Usage-centric Rationale

Usage-centric rationale can be an important driver of iteration in SE. For
decision-centric rationale to reach its full potential in SE, it needs to be
augmented and integrated with usage-centric rationale. Doing this requires
using the rationale from such methods as SCA to inform the evaluation of
decisions in decision-centric approaches. In using rationale derived from
actual usage, its fundamentally empirical character means that it generally
has higher credibility than evaluations based on hypotheses about the
consequences of decisions.

16.7 Challenges to Rationale Usage 235

SCA’s rationale about collections of decisions will only become
available after those decisions are made. It will therefore take the form of
feedback that either confirms those decisions or challenges them and
forces them to be reconsidered.

SCA’s evaluation schema strongly resembles the criterion-based
evaluation schemas of QOC and DRL. All three of these methods deal
with the evaluation of explicit system features based on stated criteria,
with these evaluations being either positive or negative. If the features
described in SCA match the decision alternatives in QOC or DRL,
connecting SCA’s evaluations to QOC’s and DRL’s as feedback should be
straightforward.

16.7 Challenges to Rationale Usage

16.7.1 Solving the Capture Problem

16.7.1.1 The Capture Problem

By far the greatest challenge to making rationale usage practical is the
capture problem (Conklin and Burgess-Yakemovic 1996), i.e., the fact that
it has proved surprisingly difficult to capture rationale in real-world
projects. This is not to say that rationale capture has not been successful,
but rather to point out that the conditions under which it has been
successful are either hard to achieve or not well understood.

The most common cases where rationale capture has worked are when
there are champions of rationale usage within a project team or when
professional rationale documenters or professional documentation
facilitators are available (Conklin and Burgess-Yakemovic 1996).
Unfortunately such champions tend to be in short supply, and the people
who fund projects often do not see the value of paying for professional
rationale documenters or facilitators. When rationale champions and
professionals are not present, the documentation of rationale has typically
been left to those who participate in decision-making. To date, this has
typically meant designers. Unfortunately, these designers have largely
resisted documenting their rationale.

236 16 A Conceptual Framework

16.7.1.2 Analysis of the Problem

There are a number of possible explanations for resistance to rationale
capture. Some researchers point to the intrusiveness of rationale capture as
the problem. One kind of intrusiveness is due to the work required for
capture. Most capture involves designers writing up their rationale in a
given rationale schema. This requires a great deal of work in addition to
the normal work of design.

Other reasons for resistance to capture can include political and legal
factors. Designers might not want their bosses or the public to know the
real reasons for their decisions. They might also want to protect
themselves from potential law suits. And there is the problem that any
argument for a decision can become a double-edged sword that provides
others with a way to attack decisions made.

For descriptive uses of rationale, motivating rationale capture can be a
fundamental problem, because, by definition, the rationale recorded does
not aid those who do the work of recording it. In other words, descriptive
approaches run afoul of Grudin’s principle that collaborative systems tend
to fail when those who do the work are not the beneficiaries of that work
(Grudin 1988). For prescriptive approaches, Buckingham Shum and others
have argued there is a benefit to decision-makers from recording their
rationale (Buckingham Shum et al. 2006), so they should be more
motivated to do it. Yet even here rationale capture has been difficult to
achieve.

Another possible reason for the failure of capture in both descriptive and
prescriptive approaches is that capture might actually be detrimental to
design in ways that go beyond its cost in resources. For example, Fischer
et al. (1996) use Schön’s theory of Reflective Practice to argue that
rationale capture disrupts the intuitive aspects of designers’ thinking. A
more radical position is taken by Shipman and Marshall (1999b) who
argue that semi-formal schemas, such as those used in most rationale
approaches, are themselves the problem. As they see it, all such schemas
are obstacles to information capture.

16.7.1.3 Approaches to Solving the Problem

One possible way of getting capture to work is to convince those who fund
software projects of the value of rationale usage. This might merely
require doing a better job of explaining or demonstrating the benefits to
them. But it may require more, such as decreasing the resistance of
decision-makers to rationale capture, increasing the benefits of such
capture—or both.

16.7 Challenges to Rationale Usage 237

One approach to reducing resistance to rationale capture is to reduce its
intrusiveness into decision-making processes, either by reducing the
amount of work it requires or by reducing its disruptiveness. The
traditional capture process has combined capture with the formalization of
rationale using a schema. A crucial insight motivating many efforts at
reducing intrusiveness is that it is actually the formalization that takes so
much time and effort. If rationale were first captured in “raw” form, it
could be formalized later. This would not in itself reduce the task of
formalization, but it would decompose the problem into two smaller
problems. It would also enable more rationale to be recorded. Of course,
raw rationale would be difficult to retrieve if not structured and indexed.

A number of strategies have been devised for capturing raw rationale in
informal, i.e., schema-free forms and then using various “tricks” for
reducing the effort of formalizing it. For example, Shipman and his
collaborators from Xerox PARC built “spatial hypertext systems” (Shipman
and Marshall 1999a) that enable informal input of information in a 2D space
and then use automated routines to infer the structure of that information
from its spatial arrangement. Reeves created a system that uses a schema-
free approach to capture (Reeves and Shipman 1992). With his system,
designers write their rationale as textual notes in the graphical representation
of a model of the artifact being developed. The design history of the artifact
then becomes the means by which rationale is structured. A different
schema-free and completely nonintrusive approach is used by Myers,
Zumel, and Garcia (1999) (see Chapter 4 of this book, Learning from
Rationale Research in Other Domains). They add semantic information to a
CAD system’s symbol library and then infer the design rationale from the
designer’s use of the system. This approach, however, does not produce
argumentation as such. Another schema-free approach is to capture the
rationale that is naturally elicited as part of informal project communication.
In this case, eliciting rationale is not an extra task for decision-makers. It is
instead a normal and accepted part of the process of collaboration.
Completely automated approaches might then be used to structure this
rationale, for example, by using natural language processing (McCall and
Mistrik 2005). Alternatively, semiautomated approaches can be used such as
Shipman’s incremental formalization (Shipman and McCall 1994).

One approach to reducing the cognitive overhead of capture is to use the
strategy of differential description, in which designers only need to describe
how the rationale for the current project differs from other rationale. One
way to do this uses domain-oriented issue bases in PHI (Fischer et al. 1996).
These contain rationale commonly used in projects in a given domain,
including commonly raised issues, positions, and arguments. Decision-

238 16 A Conceptual Framework

makers then only need to add the information missing, including their
decisions on the issues.

There are other ways in which differential description might be
implemented. One would be by using rationale-annotated cases of similar
projects, such as those provided by the ARCHIE system (Zimring et al.
1995) (see Chapter 4, Learning from Rationale Research in Other
Domains). Another way might be to use design patterns annotated with
rationale (Pena-Mora and Vadhavkar 1997). Of course, differential
description only works for domains where previous design work has been
done and where someone has built collections of issue-based discussion,
precedent cases or design patterns. By definition, this approach is not
useful for unprecedented problems.

16.7.2 Solving the Delivery Problem

To date, almost all delivery of rationale to those who need it has been done
using hypertext-based information systems. One problem with this approach
is that potential users of such a system generally do not search for
information unless they think that there is information in it worth searching
for. But how are they to know that such information exists if they do not
search for it? If new information that would be useful for a given user is
input into such a system, how does that user find out about this?

Hypertext systems have a partial answer to such questions in the form of
associative indexing, i.e., indexing by linking to other information. This
enables new information to be discovered by being linked to other
information that a user knows is relevant to their current concerns. Thus,
for example, a link might help a user discover a newly created argument
against a decision alternative that they favor.

The potential difficulty of the link-based approach is that users do not
discover the link if they are not already using the system. To assure the
discovery of new and relevant information requires not only that users be
using the system but also looking at the information to which the new
information is linked.

One partial solution to this problem is to integrate the rationale
management system into the software used for SE. This would enable the
hybrid system to alert software engineers to the existence of links to
rationale that is relevant to the SE tasks that they undertake when those tasks
are at hand. This is the approach that Burge has used in linking rationale to
source code being edited in the Eclipse IDE (Burge and Brown 2006). As
programmers browse through the code, they are alerted to the existence of
links to rationale relevant to the sections of code they examine.

16.8 Summary and Conclusions 239

Additional functionality may well be needed to compensate for the
limitations of hypertext systems. One example of such functionality is to
provide knowledge-based agents that can alert users to the existence of
rationale relevant to their concerns. Fischer et al. have used this approach
(Fischer et al. 1996) as have McCall and Johnson (1997), but much more
research in this area is needed. Making this approach successful may
require research on modeling stakeholders in SE to understand their
concerns and what rationale is relevant to these concerns.

16.8 Summary and Conclusions

The conceptual framework presented in this chapter has attempted to
describe the concepts and ideas that connect rationale to SE. The intention
has been to show both the potential of rationale to serve the goals of SE
and the challenges to successful use of rationale in software projects. The
framework has described the roles of both decision-centric and usage-
centric rationale approaches in SE. Included in this discussion were
descriptions of limitations and advantages of rationale approaches for
different aspects of the SE process. The framework has also described the
modifications to decision-centric rationale that are needed to make them
fully serve the goals of the iterative approaches to SE that have gained
popularity in recent years. Finally, it has identified and explained the two
crucial challenges to successful rationale usage in practical projects: the
capture problem and the delivery problem. The purpose of the conceptual
framework is to provide a guide for practical use of rationale in real-world
software projects and for research on how to improve rationale
applications.

17 An Architectural Framework

A rationale-based approach to software engineering requires rationale
management systems that can integrate the many types of rationale with
each other and with the processes of creating software engineering
artifacts. Accomplishing this integration in turn requires that such systems
be actively connected with software engineering tools, external
communication sources, and persistent stores of reusable rationale. This
chapter describes an architectural framework for such integrative rationale
management systems.

17.1 Introduction

17.1.1 An Integrative Architecture for Rationale-Based Software
Engineering

Fully implementing rationale-based software engineering (RBSE) will
require the creation of software that can manage rationale effectively to
support software engineering (SE) practice. Such a rationale management
system (RMS) needs to be able to elicit and to record large amounts of
useful rationale, to structure it for ease of comprehension, to index it for
retrieval, and to deliver it to those who need when they need it.
Furthermore, the system needs to do all this in ways that are compatible
with SE processes. This chapter analyzes what this implies for the
architecture of RMSs that support RBSE. The result of this analysis is a set
of recommendations in the form of an architectural framework for RBSE.

An RMS must be able to do three things if it is to support RBSE. The
first is that it must represent all the various types of rationale that occur in
software projects in a form that supports SE. The other two are that it must
make substantial progress in alleviating the rationale capture and rationale
delivery problems. Above all, the capture problem must be effectively
dealt with, for without the ability to capture adequate amounts and types of
software engineering rationale (SER) there will be little value in
representing and delivering rationale.

242 17 An Architectural Framework

The basic approach recommended here for achieving the stated goals
and requirements is to use an integrative architecture for RMSs. This
architecture is integrative in two respects. One is that it integrates the many
different types of SER with each other. The other is that it integrates the
processes of capturing, structuring, and delivering rationale with the
processes of SE, which are largely centered on the creation of various SE
artifacts, including documents, models, and code. The former type of
integration weaves the myriad types of SER into a single argumentative
structure that produces the final software artifacts. The latter type of
integration improves the quantity and quality of the rationale that is
captured and delivered.

This chapter will not attempt to describe a complete software
architecture for an RMS that supports RBSE. Instead it will describe an
architectural framework for such systems. This framework consists of an
abstract description of the essential, common characteristics of an
integrative architecture for RMSs, leaving the “accidental” specifics of the
architectural design to others. While the term architectural framework is
often used in the object-oriented sense to refer to a specific set of classes,
the term is used here in a looser sense to mean a more informal description
of the main features of a software architecture.

17.1.2 Objectives of This Chapter

The main objectives of this chapter are (1) to describe an architectural
framework for RMSs capable of implementing a rationale-based approach
to SE and (2) to explain the reasons for its design. Section 17.2 explains
the need for an integrative approach to rationale management to represent
and to integrate all the various types of SER and to alleviate the problems
of rationale capture and delivery. Section 17.3 describes the integrative
architectural framework itself, starting with an overview of the framework
in Subsection 17.3.1. It then describes the workings of the RMS system in
Subsection 17.3.2 and its connections to external systems and sources in
Subsection 17.3.3. Finally, Section 17.4 summarizes the chapter and draws
conclusions about the use and significance RMSs built using the
architectural framework.

17.2 The Need for an Integrative Approach to Rationale Management 243

17.2 The Need for an Integrative Approach to Rationale
Management

17.2.1 Representing and Integrating All Types of Software
Engineering Rationale

RBSE, by definition, involves the use of the full spectrum of software
engineering rationale (SER). To support RBSE, an RMS must therefore be
capable of simultaneously modeling the rationale for every activity of SE,
including the activities of requirements determination, design,
construction, testing, maintenance, project management, and even the use
of the software. But this is not enough. It must also be capable of modeling
the various relationships that integrate these different types of rationale
into a single network of reasoning that results in the code given to users.
This involves not only integrating various types of decision-centric
rationale, but also integrating these with usage-centric rationale.

17.2.2 Alleviating the Capture and Delivery Problems

17.2.2.1 The Disconnect between Rationale Management and
Software Engineering

The goal of SER research is to use rationale approaches to aid SE. To date,
however, there has been only sporadic and modest success in achieving
this goal. While positive results have been reported in some notable cases,
e.g., Conklin and Burgess-Yakemovic (1996), Buckingham Shum et al.
(2006), it is widely believed among researchers that the effort to achieve
this goal has run into fundamental difficulties, especially in the form of the
rationale capture and delivery problems. Any effort to create RMSs that
can alleviate these difficulties needs be based on ideas about their causes
and how to overcome them.

The position taken in this chapter is that rationale approaches and
management systems generally have not done enough to fit into and
support the practices that software engineers use in developing and
maintaining software systems. Currently, decision-making in software
projects is accomplished through the use of various SE tools combined with
informal communication among project participants. Rationale approaches
and RMSs have often been presented as alternative means for decision-
making, with RMSs being used instead of SE tools and informal
communication being replaced with communication structured according to
a rationale schema. This chapter explores a different strategy in which

244 17 An Architectural Framework

rationale approaches and systems are used to support rather than supplant
existing approaches to decision-making in SE. It is argued here that this
strategy offers the potential of substantially alleviating both the rationale
capture and rationale delivery problems.

Any attempt to support SE practice must be based on an awareness of its
artifact-centered nature. Almost all SE processes, methods, and tools are
aimed at the production of special types of SE artifacts. One type of such
artifacts is executable code, such as prototypes and various versions of the
software product being created. But there are also many nonexecutable
artifacts that are used as means for devising code, including documents
and models of various types. Potts and Bruns (1988) first described the
crucial role of such intermediate artifacts in software design. Among these
artifacts they list, “informal documents describing the functional
specification of the system, architectural sketches, detailed designs,
pseudo-code, structure diagrams, or formal specifications” (Potts and
Bruns 1988). By broadening the scope of rationale from design to the
entire spectrum of SE activities, as this book does, the number and variety
of such artifacts are increased substantially.

Decision tasks in SE generally arise out of the desire to create SE
artifacts. For rationale approaches and systems to support SE practices,
they must contribute to the handling of such decision tasks by engaging
with and supporting the use of SE tools and discussion among project
participants. In particular, RMSs should (1) capture rationale from
discussion and SE tool use and (2) deliver rationale that informs discussion
and the use of SE tools to make decisions.

Unfortunately, many of the RMSs that have been proposed for use in SE
are monolithic, stand-alone systems and, as such, have no computational
interaction or connection with the SE tools or project discussion that are
used to create SE artifacts. Such RMSs are literally out of the loop, and
thus never come into play in the processes of creating SE artifacts.

The irony here is that most rationale approaches and SE processes have
a strong conceptual connection in their common focus on decision-making
processes. But there is no way to exploit this conceptual connection when
RMSs do not have a tangible computational connection to the creation of
SE artifacts. Without this connection there is no way to capture rationale
during SE decision-making, which is when it is generated; and there is no
way to deliver rationale during this decision-making, which it is when it is
needed.

17.2 The Need for an Integrative Approach to Rationale Management 245

17.2.2.2 Integrating Rationale Management with Software Engineering
Decision-Making

For any RMS to be successful in capturing and delivering the rationale for
SE decision-making, it must be integrated into the artifact-centered
decision-making in SE. The only way to guarantee that this happens is to
represent the decision-making about SE artifacts in the rationale. Among
the domain-independent approaches to rationale, such as IBIS, PHI, QOC,
and DRL, the only time decisions about artifacts are made is in the case of
design-space decisions; and in fact, QOC is the only rationale approach
that guarantees that such decisions are dealt with. For rationale to be
integrated with the process of making decisions about SE artifacts those
processes must be represented in the rationale—as what might be called SE
artifact-space analysis by analogy with QOC’s design-space analysis. The
greater the number of artifact-space decisions represented, the more
rationale process are integrated with SE processes. The integration is
complete if the set of artifact-space decisions describe all the SE artifacts.
This is, in fact, very close to what Potts and Bruns proposed when they
advocated the incorporation of representations of SE artifacts into rationale
hyperdocuments (Potts and Bruns 1988; Potts 1996).

It is, however, not enough for an RMS merely to represent decisions
about artifacts. The RMS should be able to guarantee that the state of the
representation of decisions in the rationale always matches the decisions
about artifacts made with SE tools. But this can only happen if there is
some sort of computational connection between the RMS and the tools that
guarantees (1) that a decision made with a tool is immediately updated in
the rationale and (2) that an artifact-space decision made in the RMS is
immediately updated in the SE tool. Even this is not enough. Any new
decision task undertaken using an SE tool must immediately be
represented in the RMS, and vice versa. In fact, to whatever extent the
elements and relationships of the rationale schema are explicitly dealt with
by SE tools, there must be the same sort of mutual updating so the
representation of the decision-making processes in the rationale matches
the state of these processes in the SE tools.

17.2.2.3 An Integrative Approach to Capturing Rationale

An integrative approach to rationale capture is one that enables capture
during the creation of SE artifacts. To the extent that such artifacts are
produced using SE software tools, this means that it must be possible to
capture rationale about a decision task while that task is being accom-
plished using the tool. To the extent that these artifacts are created by

246 17 An Architectural Framework

means of communication among project participants, an effort should be
made to capture this communication, because it provides a valuable source
of project rationale. Such capture can be accomplished by making
recordings or written records of meetings and computer-mediated
communication.

Though extracting and structuring rationale from records of
communication presents challenges, it also has decisive advantages for
alleviating the capture problem. The reason is that, unlike almost all other
modes of capture, stating rationale in communications to other project
participants is not perceived by decision-makers as extra work beyond the
normal work of decision-making. This is because such communication is
the central means by which collaboration in groups takes place. The
consequence is that decision-makers tend not to resist stating rationale as
part of collaborative communication.

Three major modes of rationale capture should be possible: unprompted,
prompted, and automated. Unprompted capture means that the person
stating the rationale spontaneously decides to enter rationale of some type.
Prompted capture means that the person using the tool states rationale in
response to a prompt of some type, e.g., in response to a statement by
someone else or a request for rationale of a certain type. Both informal,
unstructured rationale input and schema-based rationale input should be
supported in both unprompted and prompted capture.

To the extent that the processes of making decisions about SE artifacts are
represented in the rationale and automatically updated by the RMS in the
manner described in Subsection 17.2.2.2, the rationale for decision-making
in SE will be automatically captured by the RMS. Decisions and decision
tasks are likely to be captured in this way. Dependency relationships might
also be captured automatically. But verbal argumentation is likely to be
captured only by the decision-makers voluntarily entering this
argumentation or by mining records of communications between project
personnel for relevant argumentation. Though the capture of all the relevant
rationale is generally not possible using automated techniques, the amount
of rationale that can be captured in this way should greatly reduce the burden
on decision-makers for documenting their rationale.

17.2.2.4 An Integrative Approach to Structuring Rationale

An integrative approach to structuring rationale is one that enables
structuring to take place during the creation of SE artifacts. While both
unprompted and prompted modes of structuring should be supported, the
main opportunities for reducing the work of structuring come from the use
of automated means. To the extent that decision-making is tool-based,

17.2 The Need for an Integrative Approach to Rationale Management 247

there are opportunities for structuring rationale by associating it with
decisions and artifacts, i.e. by decision-based indexing and artifact-based
indexing. The former can be accomplished by automatically linking
rationale to automatically generated representations of the decisions being
made, the latter by linking rationale to the particular artifact being created
or modified. In addition, by keeping a version history of the decisions,
rationale can be further structured by associating it with a particular
moment in that history. Dependency relationships among decisions and
among artifacts might also be captured automatically and used to structure
the rationale associated with those decisions and artifacts.

To the extent that rationale is part of project communication, the
inherent structure of that communication can be used to automatically
structure rationale. For example, communication typically involves turn-
taking, and this can be used to give a basic structure to rationale. Threaded
discussion provides additional structure. Structuring within individual
textual “utterances” can to some extent be done using natural language
processing techniques, e.g., as in the work of McCall and Mistrik (2005),
though this research is still in its early stages. Finally, structuring in the
form of linking to relevant keywords and subject headings can be done
using well-establish techniques of information retrieval.

17.2.2.5 An Integrative Approach to Delivering Rationale

An integrative approach to delivering rationale is one that enables delivery
to take place during the creation of SE artifacts. To the extent that SE
artifacts are created using SE tools this implies not only delivery of
rationale during the use of tools but also delivery of rationale relevant to
the use of those tools in the decision-making about SE artifacts. Decision-
based and artifact-based indexing play a decisive role in enabling this
integrative approach to delivery. To the extent that project communication
is computer mediated, delivery should be possible by means of the
communication systems being used. Providing rationale relevant to the
rationale contained in communications between project participants
requires the ability to understand the content of that rationale. It has not yet
been adequately demonstrated how to do this automatically; so this aspect
of integrative delivery will have to wait for such a demonstration.

The way in which integrative delivery of rationale can help to solve the
delivery problem is by going beyond the traditional approach of browse-
and-query. This approach requires the person doing the browsing and
query-based searching to know that they need information (rationale), that
the needed information is in the documented rationale, and how to retrieve
that information. Unfortunately, it is common not to know these things.

248 17 An Architectural Framework

The way integrative delivery can help is by using the nature of the decision
task at hand and the identity of the artifact being created to do two things:

1. alert project personnel to the availability of documented rationale
that they have not yet seen but that is relevant to the decision task at
hand or to the artifact they are currently creating

2. retrieve and display that rationale.

 A crucial point about the delivery of relevant rationale is that there is no
reason to restrict where this rationale comes from. In addition to looking
for useful rationale in the documented rationale for the current project, it
might well be that such rationale can be retrieved from other sources. In
particular, there are a number of approaches to creating persistent stores of
reusable rationale, including pattern-based, issues-based, and case-based
approaches. Utilizing such external sources of rationale not only has the
potential to enhance the value of rationale delivery, it also has the potential
to reduce the amount of rationale that needs to be captured and structured
in the current project. The principle here is differential description: it is
only necessary to capture the differences between the current project’s
rationale and the rationale retrievable from external stores. Where the
current project uses rationale from external stores, the only things needed
are links to that external rationale.

17.3 Framework of an Integrative Architecture for
Rationale Management in Software Engineering

17.3.1 An Overview of the Framework

The architectural framework consists of a hypermedia-based RMS with
connections to three types of external entities: (1) SE tools, (2)
communication systems and sources, and (3) persistent stores of reusable
rationale. The RMS itself manages hyperdocuments containing linked
collections of rationale nodes and nodes representing SE artifacts. The
external connections enable (1) acquisition of rationale from external
systems and sources, (2) automated structuring of rationale using
connections to external systems and artifacts, and (3) the delivery of
rationale through external systems. The activities of the RMS and its
connections are explained in Subsections 17.3.1, 17.3.2, and 17.3.3.

The architectural framework is integrative not in the sense of requiring
integration but rather in the sense of facilitating it. There are two types of
integration that the architectural framework facilitates. One is the integration

17.3 Framework of an Integrative Architecture for Rationale Management in
Software Engineering 249

of the rationale for all the various activities of SE, including requirements
determination, design, construction, testing, use, and maintenance. The
other is the integration of the creation and use of rationale with the creation
and use of SE artifacts.

The architectural framework dictates that the RMS be capable of
managing a linked collection of hyperdocuments associated with different
SE activities. For each such activity, the framework enables the
construction of the sort of hybrid hyperdocuments of both rationale and
artifact nodes first suggested by Potts and Bruns (1988) and later
elaborated by Potts (1996).

However, the hybrid hyperdocuments proposed here go beyond those of
Potts and Bruns in two important respects. One is that, in addition to
representing the sorts of intermediate artifacts that Potts and Bruns
discussed, the new hybrids can also represent executable artifacts, i.e.,
code. The second respect in which the hybrids proposed here are different
is that they enable the computational coupling of hyperdocument nodes
and links to the parts and structure of actual SE artifacts. This coupling
makes possible the automatic capture and structuring of rationale (1)
through the use of SE tools and (2) from records of communication
between project participants. It also makes possible the delivery of relevant
rationale during the use of tools and computer-mediated communication.

17.3.2 Workings of the Rational Management System

17.3.2.1 Representation

To support RBSE fully, the RMS must represent the rationale and associated
artifacts for every aspect of SE, including requirements engineering, design,
construction, testing, use, maintenance, and project management. Since the
set of artifacts associated with each aspect of SE is likely to be different, and
since different aspects of SE might use different SE methods, it must be
possible to use a different schema in representing the rationale and artifacts
for each aspect. To integrate the various aspects of SE into a coherent
overall SE process, it must also be possible to establish links between the
models of rationale for the individual aspects. In particular, it must be
possible to establish dependency relationships between the various aspects
and to support these relationships with computation.

The RMS should be capable of constructing hyperdocuments for all of
the schema-based, argumentative rationale approaches currently found in
the literature. These include IBIS (Kunz and Rittel 1970), PHI (McCall
1990), QOC (MacLean et al. 1991), DRL (Lee 1991), RATSpeak (Burge

250 17 An Architectural Framework

and Brown 2004) and Scenario-Claims Analysis (Carroll and Rosson
1996), as well as the various SE-specific approaches, such as WinWin
(Boehm and Kitapci 2006), TEAM (Lacaze et al. 2006), and REMAP
(Ramesh and Dhar 1992). In addition, the RMS must make it possible for
software engineers to invent new schemas and to arbitrarily modify
schemas to accommodate information that is specific to particular software
projects, SE aspects, SE artifacts, SE methods, and the problem-solving
styles of software engineers.

The RMS should have the ability to create typed and labeled links and
nodes with content in every major type of medium, including text, sound,
and 2D and 3D graphics and animation. It must be possible to establish
links not only between nodes but also between nodes and links. One
specific reason for doing this is to be able to represent rationale approaches
like QOC that require this. The more general reason is because, as Lee has
pointed out (Lee 1991), links correspond to claims. Since they are claims,
it should be possible to comment on them and reason about them in
various ways. This requires linking rationale nodes to the links being
discussed.

The RMS should be an open hypermedia system with the capability of
associating nodes and links with external content created in external systems.
In particular, it should be possible to use external content as the content of
nodes. It also should be possible to link directly to external content.

17.3.2.2 Computation

The central mechanism for realizing the integration that is the hallmark of
the integrative architecture is the use of dependency relationships,
including both ordinary links and computed dependencies. These
relationships and their computational support integrate the collections of
rationale for different SER activities with each other and with the artifact-
centered decision-making processes of SE.

To support integration, the RMS needs have the capability of
establishing and supporting computable dependencies between the states
of different nodes. It should be possible to use any algorithm to compute
these dependencies. Ideally, there should be support for users establishing
and editing basic computable dependencies, such as those based on
algebraic formulas and conditional statements.

Supporting integration also requires that the RMS should support
traceability of both computed and noncomputed dependency relationships.
The RMS should also support what–if computation with computable
dependencies. It must also be possible to establish computable dependencies
of internal content on external content. Where external systems allow it, it

17.3 Framework of an Integrative Architecture for Rationale Management in
Software Engineering 251

should also be possible to establish computational dependencies of
external content on the content of RMS hyperdocuments.

17.3.2.3 Display and Input

To support the use of various rationale approaches, the RMS should provide
standard hypermedia display capabilities, including outline-formatted
display of node structure and content in the manner of JANUS (Fischer at al.
1996) and PHIDIAS (McCall et al. 1994) as well as graph-based displays in
the manner of gIBIS (Conklin and Begeman 1988), SIBYL (Lee 1990), and
Compendium (Shum et al. 2006). The RMS should be able to alert users to
the existence of rationale associated with a particular decision task, artifact
or condition and then display the relevant rationale.

As is typical of hypermedia systems, the input of content to
hyperdocuments should be possible using editors for various media, these
editors being part of the RMS or external systems. Editors should be
provided for node content, hyperdocument structure, and schemas. To
support all major approaches to capture, both prompted and unprompted
input should be possible. Both schema-driven and free-form structuring of
input should also be supported.

17.3.2.4 Additional Capabilities

To support SE practice, the RMS should enable multiuser creation, editing
and display of representations of rationale and artifacts as well as
hyperdocument structure and schemas. To do this, it must provide
communication and shared workspaces for members of groups of project
participants—e.g., members of a development team working on the design
of a particular subsystem.

To support an integrative approach to the capture, structuring, and
delivery of rationale, the RMS must also support the creation and browsing
of a version history of the creation of hyperdocuments. It should be possible
to attach rationale and commentary at any point in the version history.

17.3.3 Integration with External Systems

17.3.3.1 Integration with Software Engineering Tools

To support an integrative approach to the capture, structuring, and delivery
of rationale, one type of connection that should be possible between a
hyperdocument and an artifact is computationally coupling of nodes with

252 17 An Architectural Framework

SE artifacts, including those artifacts that are parts of other artifacts. This
coupling means that a change in the state of an SE artifact, such as a part of
document or model, can automatically result in a change in the state of a
node in the hyperdocument. This coupling enables the content and existence
of the actual artifact to be reflected automatically in the content and
existence of a node that represents it. In other words, the creation, deletion,
and change of the content of an artifact, or part of an artifact, could
automatically be reflected in the creation, deletion or change in the content
of the corresponding node. Coupling in the other direction would mean that
a change in the node is reflected in a change in the corresponding artifact.
This coupling is likely to be harder to achieve but is useful where possible.

The second type of connection that should be possible between a
hyperdocument and an SE artifact is that the structure of the artifact should
be coupled with the links in such a way that a change in the structure of the
artifact is automatically reflected in the structural connections between
nodes in the hyperdocument. Coupling in the other direction is useful but
likely to be harder to achieve.

The computational coupling of hyperdocuments to artifacts is the
mechanism that enables the automatic capture and structuring of rationale
from the use of software tools in making SE decisions. In particular, it
enables any decision tasks, decision alternatives, and final decisions to be
reflected automatically in corresponding hyperdocument nodes with
appropriate links between these nodes. It also enables the automatic
modeling of the state of the artifacts at any given time. When combined with
the version history capability of the RMS, this makes it possible to have a
history of the evolution of the SE artifact as it is created and modified. Such
a history by itself suggests much of the rationale for the final form of the
artifact, but it also provides a useful way of automatically structuring and
indexing rationale by the states of the artifact’s evolution.

17.3.3.2 Integration with Communications Systems and Sources

While the RMS needs to provide communication capabilities for group
creation of rationale through argumentative discourse, these capabilities
cannot fully satisfy the communication needs for a project group. In
particular, it is naïve to suppose that all group communication can be
mediated by structured argumentative discourse. There need to be multiple
additional channels for communication, including informal discussion and
meetings. Some of this communication is likely to be computer mediated, if
for no other reason than that an increasing percentage of all human
communication is computer mediated. To the extent that project-related
communication is computer mediated, it is a near certainly that it will

17.3 Framework of an Integrative Architecture for Rationale Management in
Software Engineering 253

involve discussion that includes a substantial amount of project-related
rationale. Given the current difficulty of capturing rationale, this
communication is a valuable source of rationale, although mining records of
communication for this rationale presents a number of technical challenges.
The most accessible form of computer-mediated communication is text and
may involve email, chat or other modes of text-based communication.
Audio- and video-based communication is more difficult to access, but is
still of potentially great value as a record of project decisions and the
reasoning underlying them.

Some important communication is face to face rather than computer
mediated. Meetings are the most important example, but even here, digital
records of this communication are easy to make in the form of text, audio
or video. Such records may well constitute important records of the history
and rationale of a software project. Currently, audio and video records of
face-to-face communication need to be analyzed manually; text, however,
can be partially analyzed using automated or computer-assisted means. In
the future, of course, analysis of audio and video will also be more
computer supported. While indexing and structuring such records is
difficult and possibly labor intensive, there is no doubt that these records
contain large amounts of project rationale.

To support the integration of rationale management with the processes
of SE decision-making, the RMS should incorporate automated or semi-
automated techniques for mining records of communications among
project personnel for relevant rationale. This support should include means
for analyzing and indexing records of meetings and computer-mediated
communication. Since the techniques for this sort of mining of
communication are still in their infancy, the further description of the
required functionality remains a task for future research.

Ideally support for integration of rationale management with SE
decision-making should also provide support for the delivery of rationale
that is relevant to computer-mediated communication. But once again, this
is a task for future research.

17.3.3.3 Integration with Persistent Stores of Reusable Rationale

The third major type of connection between the RMS and external systems
is the linkage to external stores of reusable rationale. There are two major
reasons for this linkage. The first is to improve SE decision-making by
informing it with rationale that project participants would not think of on
their own. The second reason is that the retrieval of relevant rationale from

254 17 An Architectural Framework

external stores offers the potential of alleviating the rationale capture
problem by obviating the need for the capture of some rationale.

The main functionality needed for the retrieval rationale from external
stores is the ability to browse and to query the systems which manage
external stores of rationale. The sorts of queries that are useful are those
that can retrieve rationale that is relevant to decision tasks that the current
software project is attempting to deal with. The RMS should also provide
means for its users to select and record which search results are relevant to
the current project and to link such rationale to the rationale for this
project.

17.4 Summary and Conclusions

Implementing a rationale-based approach to software engineering requires
the use of rationale management systems having an integrative
architecture. Such an architecture makes two types of integration possible.
One type is integration with each other of the rationale associated with
different software engineering activities, including requirements
determination, design, construction, use, maintenance, and project
management. This integration uses dependency relationships to organize
the different collections rationale into an integral body of reasoning that
shapes the code that is delivered to customers. The other type is the
integration of the processes of creating, structuring, and delivering
rationale with the processes of creating software engineering artifacts,
including documents, models, and code. This type of integration makes it
easier to capture, structure, and deliver large quantities of software
engineering rationale.

The architectural framework presented here basically describes a
conventional hypermedia-based RMS with a few added capabilities. It is
these added capabilities that are responsible for the integration that is the
hallmark of the architecture. The two crucial capabilities are (1) the ability
to connect to external systems and sources of information and (2) the
provision of computational support for static and computed dependency
relationships. While these capabilities may sound simple, they might not
be simple to implement. Nevertheless, their implementation is likely to be
crucial for the success of a rationale-based approach to software
engineering.

18 Rationale-Based Software Engineering:
Summary and Prospect

This chapter summarizes the main points of this book and looks at the
prospects for rationale to aid software engineers in dealing with the
problems of future software development. It concludes that, while the
potential of rationale to aid software engineering is great, several crucial
issues must be resolved if this potential is to be realized.

18.1 Introduction

18.1.1. Rationale as an Aid to Software Engineering

Moore’s Law and the Internet have fueled an exponential explosion of
technology that is unprecedented in human history. Public demand for
digital technologies currently appears insatiable. As a consequence,
computing and digital communication are spreading to nearly every aspect
of life and to nearly every part of the world. But this technological
revolution is dependent in every part and at every stage on the creation of
software capable of harnessing the power of digital hardware to meet
human needs. And this is where the revolution is running into trouble.

Software developers have not been able to keep up with increases in
hardware capabilities, and the current rate of success for software projects
is disturbingly low. Yet the demands placed on developers continue to
increase relentlessly. Software is growing in scale, complexity, variety,
and longevity. Change in technologies and user needs is unceasing. As a
consequence, software developers urgently need new approaches and tools
for handling the challenges of future software projects. Rationale-Based
Software Engineering (RBSE) can play a crucial role in helping to meet
these challenges.

256 18 Rationale-Based Software Engineering: Summary and Prospect

18.1.2 Objectives of This Chapter

This book makes a case for RBSE as a crucial part of research in software
engineering (SE) and as an essential part of future software development
and maintenance. In previous chapters, the book has explained what RBSE
is, what its potential value is for SE, what its research challenges are, and
how these challenges might be met. The intention of this final chapter is to
provide a summary of the previous chapters and a look at the future
prospects of RBSE as a way of meeting the challenges of future SE
practice.

Section 18.2 presents a summary of the book that describes its overall
goals and how it attempts to achieve those goals. Section 18.3 reviews
some of the challenges facing future software development. Section 18.4
then looks at the potential contribution of rationale-based software
engineering to meeting these challenges. Section 18.5 describes two
challenges that in turn need to be met if this potential is to be realized.
Finally Section 18.6 briefly summarizes the chapter.

18.2 Summary of the Book

This book makes a case for a rationale-based approach to SE, i.e., an
approach that attempts to capture and use rationale to increase the quality
of SE. To do this, it explains what RBSE is, describes a wide range of
ways of using rationale to aid SE, and presents frameworks meant to guide
future work in the field. It also argues that RBSE provides software
engineers with an invaluable tool for dealing with the increasingly difficult
problems of developing and maintaining software.

Part 1 of the book introduces the basic concepts and ideas underlying
RBSE. Most of the rest of the book describes issues associated with various
uses of rationale in SE. Part 2 of the book describes uses for rationale in
relations to such general activities as presentation, evaluation, collaboration,
and decision-making. Part 3 describes uses of rationale in various activities
within the software lifecycle: requirements engineering, design, testing,
maintenance and reuse. Finally, Part 4 presents ideas meant to serve as
guides for future work on RBSE, including a conceptual framework and
suggestions for the architecture of rationale management systems.

The authors paint a portrait of a field of research that is just hitting its
stride. It is a field that has gotten beyond the naïve mistakes of its
formative years and now appears to be converging on an understanding of
its problems and how to solve them. The variety, breadth, and depth of the
research are considerable, and new ideas continue to emerge regularly.

18.2 Summary of the Book 257

The book goes to considerable lengths to survey the literature on
rationale in SE and other relevant domains. But it also provides a number
of new ideas. Above all, it proposes shifting the focus of research in SE
from design rationale (DR) to software engineering rationale (SER), so as
to emphasize the capture and use of rationale in every aspect of SE and
every part of the software lifecycle. It also describes how these various
types of SER might work together in the context of the overall SE process.

While the literature on SER is rich, it suffers from a sort of tower of
Babel of conflicting terminology. This situation makes it extremely
difficult to compare the many approaches that have been proposed and
applied. This book has therefore sought to devise a consistent naming
scheme for the common elements and relationships of rationale without
favoring any one rationale approach over the others. Basic terminology is
established early in the book and then used and elaborated to create a
consistent conceptual framework for discussing the variety of phenomena
described in the research literature.

While staying relatively neutral, or ecumenical, in the choice of a
conceptual framework for the field, this book has not maintained neutrality
in all areas. Comparisons and analyses of different rationale approaches
have sometimes pointed out their potential limitations or advantages. Such
judgments might be controversial, but wherever the book has made them
there has been attempt to provide convincing rationale for them. At very
least, this rationale should provide those who disagree with those
judgments a basis for arguing against them.

In the debate over the status of the rationale capture problem, the book
has favored those who believe that the traditional approaches to rationale
capture are not sufficient and that additional approaches are needed. In
particular, in describing an architectural framework for rationale
management systems (RMSs), the book has argued against the use of
traditional stand-alone RMSs and in favor of systems that derive rationale
from connections with SE tools, communications among project
participants, and external stores of reusable rationale. A similar argument
is made for dealing with the problem of delivering rationale to those who
need it.

258 18 Rationale-Based Software Engineering: Summary and Prospect

18.3 The Challenges of Future Software Development

18.3.1 Managing Change

There are a number of major problems that software engineers need to solve
if software development is to be successful in coping with the emerging
challenges. Perhaps the most pressing of these problems is coping with
change. The hallmark of future software creation will be change, and
software engineering will itself need to change if it is to succeed.

There are two central sources of change. One is the extraordinary,
continuing change in hardware capabilities. This is partly due to the
explosive growth of the computational power and memory capacity of
hardware due to Moore’s Law, but is also taking the form of a fundamental
change to parallel processing. Adding to this is the continuing growth and
evolution of the Internet, which has created the possibility of a wide
variety of new types of software applications.

A second major source of change is the volatility of user requirements
(Rajlich 2006), though ultimately it may be the growth in technology that
causes much of this volatility. The understanding of requirements can
change within the timeframe for developing a single version of a software
product. But as products increasingly go through version after version, the
change in user requirements become a major engine of the redesign of
systems. Already, most of the design currently done by developers is re-
design, and the need for redesign is likely to increase dramatically in
coming years. Ultimately, the ongoing changes in requirements may be
propelled by the fact that the satisfaction of the requirements of users and
organizations fundamentally changes the environment in which they work,
and this changed environment creates new needs and suggests new
possibilities that lead to new requirements. Where and when this process
ends—and where it is taking society in general and SE in particular—are
anyone’s guess.

18.3.2 Managing the Increasing Scale, Complexity, and
Longevity of Software Projects

Technological possibilities and customer demand are driving developers to
create software of increasingly complex and diverse functionality. This in
turn is leading to larger development teams with increasingly diverse types
of expertise. This creates problems of coordination, collaboration, and

18.4 The Promise of Rationale-Based Software Engineering 259

management. When project teams are small, as they have been in many
well-known projects in the past, little or no formal management and
communication are needed, because there is a great deal of shared tacit
knowledge. Collaboration and coordination are easily accomplished using
informal communication. Management can be highly informal. In large
and diverse development teams, however, there is little tacit knowledge
that is shared by all team members. Coordination and collaboration are
crucial but difficult. The management of such teams requires more explicit
and formalized communication and procedures.

If team members do not understand how their decisions depend on
decisions made by others—and vice versa—the stage is set for the creation
of serious errors in design, redesign, testing, implementation, and
maintenance. The rationale for every activity in the software lifecycle
depends on other lifecycle activities. Good design depends on decisions
about requirements, which may in turn depend on the experiences of users
of the system. Good design may also depend on experience in
implementing and maintaining previous versions of a system. Similarly,
decisions about maintenance and redesign require an understanding of the
decisions about requirements and the previous design of the system—so
that crucial functionality does not become broken as a side-effect of
maintenance or redesign.

18.4 The Promise of Rationale-Based Software
Engineering

The goal of Rationale-Based Software Engineering is to use rationale to
improve every activity of software development and use. There are two
ways it can do this: by informing these activities and by improving the
reasoning processes underlying them, i.e., by making these processes more
thorough, consistent, and correct. Every stakeholder in a software project,
including developers, clients, and users, should be a potential source of
rationale as well as a potential user of rationale information and methods.
Every decision-maker in a development team should be aware of the way
in which the decisions of others in the team affect their work, especially
the way such decisions have consequences for their own decision-making.
In addition, all decision-makers should have the chance to learn from the
rationale of those who have faced similar decisions in past projects.
Decision-making in every activity in development, from requirements
engineering to design, to testing, to implementation, to maintenance,
would be improved by rationale information and methods.

260 18 Rationale-Based Software Engineering: Summary and Prospect

18.4.1 Rationale and the Management of Change

There are several ways in which rationale can help in managing change.
One is by showing how decisions throughout the spectrum of SE activities
depend on assumptions, requirements, and other decisions. This makes it
possible to understand both the direct and indirect effects of any changes
in those assumptions, requirements or decisions. This in turn provides
crucial information for deciding how to make changes and even whether
they are worth making.

A second way in which rationale aids the management of change is by
providing records of the intent behind the decisions that shaped the
previous state of the software. This rationale helps in preserving the intent
of those earlier decisions. This can aid in deciding how to implement
change without violating the original intent of those decisions; and when
required changes do violate that intent, rationale can help in fixing
problems by guiding the generation and selection of alternative means for
satisfying that original intent.

Rationale from the construction and use of the software can provide
feedback that alerts requirements engineers, designers, and managers to the
need for change. In particular, user-centric rationale methods, such as
Scenario-Claims Analysis and Case-Based Design Aids, can play a
decisive role in detecting needs to changes in requirements, design, and
construction. Decision-centric rationale can also play a vital role in
detecting the need for change by encouraging the participation of users and
clients in the SE process. It does this by making the decision-making
processes of software engineers transparent to users and clients, i.e., open
for inspection and evaluation. This tends to provoke responses from those
users and clients, thus encouraging their participation. In fact, this use of
decision-centric rationale was one of the main motivations for Rittel’s
pioneering work in design rationale (Rittel 1972a).

Finally, rationale helps to manage change by documenting the intent of
the changes themselves, so that these changes and their intent are not
violated by future revisions. This is especially important when those
making future changes are not the same people who made earlier
changes. The importance of rationale in this case is due to the fact that
changes are often made to decisions only after the initial, intuitive
decisions failed to live up to expectations. The lesson about the failure of
those earlier decisions results from hard-won experience and is, by
definition, counterintuitive. So if those responsible for making future
changes do not have access to the rationale for previous changes, they are
very likely to “correct” them by restoring the decisions to their original,
“intuitive” but erroneous states. In such cases, recording the rationale for

18.5 Challenges for Rationale-Based Software Engineering 261

changes is even more important than recording the rationale for the
original, “intuitive” decisions.

18.4.2 Using Rationale to Manage the Increasing Scale,
Complexity, and Longevity of Software Projects

18.4.2.1 Using Rationale to Promote Coordination and Collaboration

Decision-centric rationale can play a role in promoting coordination and
collaboration amongst the members of a project team. This works for the
same reason that it works in facilitating participation, namely, that
revealing the reasoning behind a decision enables others to critically
evaluate that reasoning and thus participate intelligently in the decision-
making. Ultimately, collaboration and rationale management are mutually
beneficial and interdependent, because (1) communicating rationale is the
basis for collaboration and (2) collaborative communication is the best
available source of rationale.

18.4.2.2 Using Rationale for Managing Large and Diverse Project
Teams

If extensive amounts of rationale are generated by all the members of a
project team, then managers of the project have a crucial means for
monitoring all aspects of the development effort. It can become clear when
projects are slipping behind schedule and in what areas they are slipping.
Potential conflicts of decisions can be spotted before too much work is
invested in building on or implementing flawed or inconsistent decisions.
The need for additional collaboration may become clear to managers
before it is clear to the potential collaborators themselves.

18.5 Challenges for Rationale-Based Software
Engineering

For the potential of Rationale-Based Software Engineering to be realized a
number of research challenges must be met. One is that researchers need to
continue to explore the role of rationale in SE activities that go beyond
design and requirements engineering. Another is that much more research
is needed on methods and systems for rationale management in support of
iterative approaches to development, including incremental, evolutionary,

262 18 Rationale-Based Software Engineering: Summary and Prospect

and agile development as well as Extreme Programming. Such research is
still in its infancy. Meeting these challenges will require a great deal of
work, but does not appear particular problematic.

By contrast there are two research challenges that have been known about
for more than a decade but with respect to which there has, until recently,
been little progress: the capture problem and the delivery problem.

18.5.1 Addressing the Capture Problem

Rationale-Based Software Engineering offers considerable promise, but
there is also a substantial amount of work that has to be done before this
promise can be realized. The problem that has proved to be by far the most
challenging is the so-called capture problem. The name is somewhat
misleading, because what most researchers mean when they talk about the
capture problem is a collection of three things: eliciting rationale from
decision-makers, structuring that rationale—e.g., according to a given
conceptual schema—and recording that rationale in a structured form.
People tend to mentally combine these three things because rationale capture
has traditionally involved doing all three at essentially the same time.

The thing that makes rationale capture hard to accomplish is the
structuring. This process tends to be highly labor intensive and may
actually disrupt the thinking involved in decision-making (Fisher et al.
1996); so decision-makers are often unwilling to do it. As a consequence,
it often happens that little rationale is captured.

Though the difficulty of the capture problem should not be
underestimated, it must also be said that software development appears to be
changing in a way that favors capture. As software systems have become
larger, more complicated, and increasingly critical (business critical, mission
critical, and safety critical), the need to rigorously define, monitor, and adapt
the software development process has increased. As software development
organizations increase the repeatability and rigor of their processes, such as
by operating at the higher levels of the Capability Maturity Model (CMM)
(Paulk et al. 1993), the percentage of time spent in tasks that do not involve
writing code, such as documenting the software and collecting metrics, has
increased. While this probably has not resulted in developers enjoying those
tasks more, they are viewed as necessary in order to achieve the goal of
producing high quality software. The replacement for the CMM, the
Capability Maturity Model Integration (CMMI) (CMMI Team 2006) has
recognized the importance of rationale to software decision-making by
defining the Decision Analysis and Resolution (DAR) process area. DAR
recommends that a process be put in place to use alternatives and their

18.5 Challenges for Rationale-Based Software Engineering 263

rationale to evaluate “high risk” decisions. This suggests that for some types
of software systems, rationale capture may be required for at least some
decisions.

While software development appears to changing in some ways that
favors capture, it is not yet clear that these changes, if they continue, will
be enough to enable the capture problem to be substantially solved. It
seems foolish to rely on such changes alone. Additional techniques are
needed to reduce the barriers to capture. Above all, the central problem is
the daunting amount of work that needs to be done to structure rationale
and index it for retrieval. This work inhibits capture when traditional
techniques are used in which software developers are required to structure
their own rationale according to a given schema.

18.5.1.1 Exploiting the Unique Characteristics of Software
Development to Ameliorate the Capture Problem

Amid the dire warnings about the future of software development, there is
one interesting piece of good news. The larger and more diverse
development teams that are increasingly common in future software
development will be far better sources of the software engineering rationale
that will aid them in performing their jobs. The reason for this is that larger
and more diverse teams inevitably require more explicit communication to
collaborate and coordinate their activities, and informally stated rationale is
a major part of all such communication. This means that there will be more
rationale captured as a side-effect of the normal development processes, at
least in raw, unstructured form, as a side-effect of the normal development
processes. This provides the possibility that at least some project rationale
might be captured automatically.

The problem, of course, is that in its raw form rationale is difficult to
retrieve and comprehend. For such rationale to be of real value, it must be
structured for comprehension and indexed for retrieval. The crucial
question then becomes whether this structuring and indexing can be
accomplished without excessive investment of time, money and human
resources. Answering this question positively is a crucial challenge for
future research on rationale.

It should be remembered that software development differs from the
development of almost all other artifacts in that every part of the software
lifecycle takes place on the computer—including system use and all
activities of software development. This means that rationale can be
captured from communication amongst all stakeholders in the project,
including users; it also means that this captured rationale can be structured
by being linked to the structure of the artifact itself, i.e., the structure of the

264 18 Rationale-Based Software Engineering: Summary and Prospect

software. These factors reduce the work of eliciting and recording rationale
as well as the work of structuring and indexing it.

Schneider (Schneider 2006) has shown how rationale might be captured
and structured as by-product of using of software engineering tools. Myers
and her co-workers have used a different approach to capture rationale as
by-product of computer-based tool use (Myers et al. 1999). While this
latter research was on the design of physical artifacts, it seems applicable
to every aspect of SE that uses computer-based tools. This means it is not
only applicable to software design but to the full spectrum of decision-
making in SE.

18.5.1.2 Reusing Rationale to Reduce the Need for Capture

The basic idea behind the reuse of rationale is that since it so much work to
elicit, structure, and record rationale from scratch, it would be good if
software engineers could take advantage of the fact that other decision-
makers had already gone to the trouble of doing this for their own project
rationale. That way software engineers could “copy, paste and edit” their
rationale rather than having to think up all the rationale from scratch. This
would enable them to save their energy and resources—such as time,
money, and manpower—for the parts of their project that were unique. In
other words, they would reuse rationale for the same basic reasons that we
seek to re-use code rather than code everything from scratch.

The simplest way of reusing rationale is in the case of redesign, in
which one can simply use the rationale for the previous version of the
software being redesigned. This rationale would have to be altered, but it
would still be the rationale with the closest fit to the current task. The only
problem with this strategy is that it presumes that someone will have
already put in the work of eliciting, structuring, and recording the relevant
rationale. It would be good if one could start a new software project by
using the rationale for another project as a starting point.

Despite the unique features of each project, there are often important
commonalities between projects. Many of the same decision tasks,
decision alternatives, and evaluation argumentation are often found in
prior projects. Even if the constellation of factors is different for each
project, there are still similar parts of the rationale. A previous project can
help to make sure that the crucial topics are dealt with using this crucial
information. So, even if the solutions to two projects are quite different,
there may still be crucial overlaps in the rationale used.

There are a number of ways of reusing rationale. One is to build a case
library of prior projects. This is, in effect, a type of case-based reasoning.

18.5 Challenges for Rationale-Based Software Engineering 265

A fundamentally different approach to reusing rationale would be to use
rationale associated with the reusable information known as design
patterns. A number of researchers have worked on this already and there is
likely to be much more work in this area in the future. Yet another
approach would be to use Domain-Oriented Issue Bases (DOIBs), such as
those used by the JANUS (Fischer at al. 1996) and PHIDIAS (McCall et
al. 1992) systems. DOIBs feature the issues, positions, arguments, and
dependency relationships that commonly arise in the various project within
a given application domain. While no one has attempted to build DOIBs
using argumentative approaches other than PHI (McCall 1991), there
seems to be no principled reason why this could not be done.

18.5.1.3 Future Work on the Capture Problem

While there are many approaches for addressing the capture problem that
appear to have promise, the effectiveness of these approaches remains to
be demonstrated. Even if they are highly successful, they will still leave
much of the capture problem unsolved. While there are also reasons to
believe that software development is changing in ways that favor capture,
there is still no guarantee that these changes will make capture practical in
a significant percentage of practical projects. It seems, therefore, that the
capture problem is likely to remain the central challenge for the success of
RBSE for the foreseeable future.

18.5.2 Addressing the Delivery Problem

Better means are needed for getting rationale to those who need it, when
they need it. This might be done by improving the ways in which rationale
is indexed for retrieval. It might also be done by integrating rationale
retrieval into the various tools used for decision-making throughout
software development.

Improving retrieval ultimately cannot solve the entire rationale delivery
problem adequately. Retrieval only works when someone thinks to search
for the information in an information system. Often people do not realize
that a system contains information that affects their decision-making. So
there need to ways for people to be alerted to the existence of information
they need even when they do not know to ask for it. Some such alerting
mechanisms have been developed for special situations (Fischer et al.
1996; Burge and Brown 2006), but more mechanisms and mechanisms of
greater generality need to be developed.

266 18 Rationale-Based Software Engineering: Summary and Prospect

In SE every decision-making and usage experience takes place on a
computer, and a high percentage of the communication amongst
stakeholders in a project is mediated by computer. In addition to aiding
rationale capture, this would also facilitate rationale delivery. If rationale
that refers to a part or feature of the software being developed were actually
linked to the part or feature, it would be easy to retrieve that rationale by
using the software itself as an index to it. Ideally this would work best if
both the source code and the running code could be used to retrieve the
rationale in this manner. It should also be noted that the same piece of
rationale might be linked to several different parts of code and at several
different levels of grouping in the hierarchy of code features or parts.

Linking rationale to the software itself also provides a way of alerting
members of the software team to the existence of newly created rationale
that are relevant to their interests. Generally, each member’s responsibility
for software features/parts is clearly assigned. These assignments can be
used to alert the members of the team to the existence of new rationale that
affects the decisions for which they are responsible. This strategy is similar
to the one used by PHIDIAS’s knowledge-based agents to alert team
members to potential opportunities for collaboration (McCall et al. 1997)
as well as Burge’s strategy in the SEURAT system (Burge and Brown
2006).

Another approach could use dependency relationships between
decisions to alert team members to changes in decisions on which their
own decisions depend. For the design decisions that implement certain
requirements, this approach could be used to alert the designer when those
requirements are modified in any way, or even when the rationale for those
requirements is modified. This approach could also alert programmers who
implement certain design features about any change in those features or in
the rationale for those features. A variation of this approach might alert the
designer to the addition of new requirements, and alert programmers to the
addition of new features to the design of the system.

18.6. Summary and Conclusions

Rationale-Based Software Engineering has a great deal to offer software
engineers to help them cope with emerging problems in software
development. Realizing this potential will require improvements in the
way rationale is captured and delivered to those who need it. However, the
unique features of software development and the progress made in
rationale research make it clear that substantial improvement in these areas

18.6. Summary and Conclusions 267

is achievable. In fact, because of the way in which software development
differs from the development of other artifacts, software engineering is
likely to succeed in using rationale management before any other field that
seeks to design and construct artifacts.

Bibliography

Abbattista F, Lanubile F, Mastelloni G, Visaggio G (1994) An experiment on the
effect of design recording on impact analysis. In: Müller A, Georges A (eds)
Proceedings of the International Conference on Software Maintenance. IEEE
Computer Society, pp 253-259

Agrawal H, Horgan JR (1990) Dynamic program slicing. In: Proceedings of the
ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, White Plains, New York, pp 246-256

Alexander C, Ishikawa S, Silverstein M, King I, Angel S, Jacobson M (1977) A
Pattern Language: Towns, Buildings, Construction, Oxford University Press,
Oxford

Alford, MW, Lawson JT (1979) Software Requirements Engineering
Methodology (Development). RADC-TR-79-168, US Air Force, Rome Air
Development Center, Griffiss AFB, New York, NY

Ali-Babar M, Gorton I, Kitchenham BA (2006) A framework for supporting
architecture knowledge and rationale management. In: Dutoit AH, McCall R,
Mistrík I, Paech B (eds) Rationale Management in Software Engineering.
Springer, pp 237-254

Ali-Babar M, Gorton I (2007) A tool for managing software architecture
knowledge, In: the Workshop on the Sharing and Reusing Architectural
Knowledge at the International Conference on Software Engineering,
Minnesota.

Ambler SW (1998) Software Process Patterns, Cambridge University Press and
Reasoning (KR2002). pp 375-384

Andréka H, Ryan M, Schobbens PY (2002) Operators and laws for combining
preference relations. J Logic Comput 12(1):13-53

ANSI/IEEE (1987) ANSI/IEEE Standard for Software Unit Testing, ANSI/IEEE
Std 1008-1987

Antón AI, Dempster JH, Siege DF (2000) Deriving goals from a use case based
requirements specification for an electronic commerce system. In: Proceedings
of the Sixth International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ), Stockholm, Sweden, pp 10-19

Antón AI, Potts C (2001) Functional paleontology: system evolution as the user
sees it. In: Proceedings of the 23rd International Conference on Software
Engineering, Toronto, Canada, pp 421-430

Antón, AI, Potts C (1998) The use of goals to surface requirements for evolving
systems. In: Proceedings of the 20th international Conference on Software
Engineering. pp 157-166.

270 Bibliography

Antoniol G, Canfora G, de Lucia A, Casazza G (2000) Information retrieval
models for recovering traceability links between code and documentation. In:
Proceedings of the International Conference on Software Maintenance. pp 40-
51

Arrow KJ (1963) Social Choice and Individual Values, 2nd edn, Wiley, New York
Avellis G, Borzacchini L, Cavallo A, Cotugno P, De Mastro G (1993) A

blackboard architecture for intelligent assistance in software maintenance. In:
Proceedings of the 6th International Workshop on Computer-Aided Software
Engineering, Singapore, pp 180-189

Baker ER (2001) Which way, SQA?. IEEE Softw 18(1):16-18
Bañares-Alcántara R, King MP, Ballinger G (1995) Egide: a design support

system for conceptual chemical process design. In: AI System Support for
Conceptual Design: Proc. of the 1995 Lancaster International Workshop on
Engineering Design, Springer-Verlag, New York, pp 138-152

Baniassad ELA, Murphy GC, Schwanninger C (2003) Design pattern rationale
graphs: Linking design to source. In: Proceedings of the 25th International
Conference on Software Engineering (ICSE 2005), May 3–10, pp 352–362

Bass L, Clements P, Kazman R (2003) Software Architecture in Practice, 2nd edn.
Addison-Wesley, NY

Bass L, Clements P, Nord RL, Stafford J (2006) Capturing and using rationale for
a software architecture. In: Dutoit AH, McCall R, Mistrík I, Paech B (eds)
Rationale Management in Software Engineering, Springer, pp 255-272

Beck K (1999) Extreme Programming Explained: Embrace Change, Addison-
Wesley, NY

Beck K (2002) Test-Driven Development: By Example, Addison-Wesley, NY
Beck K, Andres C (2005) Extreme Programming Explained: Embrace Change,

2nd edn, Addison Wesley, Boston
Bennett KH, Rajlich VT (2000) Software maintenance and evolution: A roadmap.

In: Finkelstein, A (ed) The Future of Software Engineering, 22nd ICSE.
Limerick, Ireland, pp 73-87

Bertolino A (2007) Software testing research: achievements, challenges, dreams.
In: Proceedings of the 29th International Conference on Software Engineering,
Minneapolis, Minnesota, pp 85-103

Biggerstaff TJ, Mitbander BG, Webster D (1993) The concept assignment
problem in program understanding. In: Proceedings of the 15th International
Conference on Software Engineering. Baltimore, Maryland, pp 482-498

Blackorby C, Donaldson D, Mongin P (2000) Social aggregation without the
expected-utility hypothesis. UBC Department of Economics Discussion Paper
no. 00-18

Blevins D (2001) Overview of the Enterprise JavaBeans component model. In:
Councill B, Heineman G (eds) Component-based Software Engineering,
Addison-Wesley, Upper Saddle River, pp 589-606

Boehm B (1979) Software engineering: R&D trends and defence needs. Research
Direction in Software Technology, Wegner P. (ed) MIT Press, Cambridge
MA, pp 1-9

 Bibliography 271

Boehm B (1986) A spiral model of software development and enhancement. In:
ACM SIGSOFT Software Engineering Notes. 11(4):22-42

Boehm B (2006a) A view of 20th and 21st century software engineering. In:
Proceedings of the 28th international Conference on Software Engineering,
Shanghai, China, pp 12-29

Boehm B (2006b) Value-based software engineering: overview and agenda. In:
Biffl S, Arum A, Boehm B, Erdogmus H, Grunbacher P (eds) Value-Based
Software Engineering, Springer, pp 3-14

Boehm B, Bose P (1994) A collaborative spiral software process model based on
Theory W. In: Proceedings of the 3rd International Conference on the
Software Process, Reston, VA, pp 59-68

Boehm B, Bose P, Horowitz E, Lee MJ (1995) Software requirements negotiation
and renegotiation aids. In: Proceedings of the 17th international Conference
on Software Engineering. Seattle,Washington, pp 128-142

Boehm B, Brown J, Kaspar H, Lipow M, MacLeod G, Merrit M (1979)
Characteristics of Software Quality. TRW Series of Software Technology vol
1. North-Holland

Boehm B, Egyed A (1998) Software requirements negotiation: some lessons
learned. In: Proceedings of the 20th international Conference on Software
Engineering. Kyoto, Japan, IEEE Computer Society, pp 503-506

Boehm B, In H (1996) Identifying quality-requirement conflicts. IEEE Software.
13(2):25-35

Boehm B, Kitapci H (2006) The WinWin approach: using a requirements
negotiation tool for rationale capture and use. In: Dutoit A, McCall R, Mistrík
I, Paech B (eds) Rationale Management in Software Engineering, Springer, pp
173-190

Boehm B, Ross R (1989) Theory W software project management: principles and
examples. IEEE Transactions on Software Engineering. 15(7):902-916

Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software
quality. In: Proceedings of the 2nd International Conference on Software
Engineering. San Francisco, California, pp 592-605

Boehm B, Bose P, Horowitz E, Lee MJ (1995) Software requirements negotiation
and renegotiation aids: A Theory-W based spiral approach. In: Proceedings
ICSE-17 (International Conference on Software Engineering), pp 243-253
IEEE Computer Society

Bohner SA, Arnold RS (1996) An introduction to software change impact
analysis. In: Bohner SA, ArnoldRS (eds) Software Change Impact Analysis.
IEEE Computer Society, pp 1-28

Booth R (2002) Social contraction and belief negotiation. In: Proceedings of the
Eighth International Conference on Principles of Knowledge Representation
and Reasoning (KR2002), pp 375-384

Bosch J (2004) Software architecture: The next step. Proc. 1st European Workshop
Software Architecture (EWSA 04), Springer, pp 194-199

Bose P (1995) A model for decision maintenance in the WinWin collaboration
framework. In: Proceedings of the 10th Conference on Knowledge Based
Software Engineering. Boston, MA, pp 105-113

272 Bibliography

Bose P (1998) Change analysis in an architectural model: A design rationale based
approach. In: Proceedings ISAW3 (International Software Architecture
Workshop), Orlando, Florida, pp 5-8

Bozheva T, Gallo M (2006) Defining Agile Patterns. In: Dutoit A, McCall R,
Mistrík I, Paech B (eds) Rationale Management in Software Engineering,
Springer, pp 373-390

Brooks FP (1995) The mythical man-month. Anniversary Edition, 2nd edn
Reading, MA: Addison-Wesley

Bruegge B, Dutoit AH (2004) Object-Oriented Software Engineering Using UML,
Patterns, and Java. 2nd edn. Prentice Hall, NJ

Bruegge B, Dutoit A (2000) Object-Oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice Hall, NJ

Buckingham Shum S (2007), Hypermedia discourse: Contesting networks of ideas
and arguments, Keynote Address, In: Proceedings of 15th International
Conference on Conceptual Structures, Sheffield, UK, July 2007. Lect Notes
Comput Sci. 4604:29-44.

Buckingham Shum S, Hammond N (1994) Argumentation-based design rationale:
What use at what cost? Int J of Human–Computer Studies, 40(4), 603-652

Buckingham Shum S, MacLean A, Bellotti VME, Hammond NV (1997)
Graphical Argumentation and Design Cognition, Human-Comput Interact.
12(3):267-300

Buckingham Shum S, Selvin AM, Sierhuis M, Conklin EJ, Haley CB, Nuseibeh B
(2006) Hypermedia support for argumentation-based rationale: 15 years on
from gIBIS and QOC. In: AH, McCall R, Mistrik I, Paech B (eds) Rationale
Management in Software Engineering, Springer-Verlag: Berlin, pp 111-132

Budgen D (2003) Software design, 2nd edn Addison-Wesley, Harlow, England
Burge J, Brown DC (2002) Integrating design rationale with a process model, In:

Workshop on Design Process Modeling. Artificial Intelligence in Design ‘02.
Cambridge, UK

Burge JE (2005) Software Engineering Using design RATionale. Ph.D. thesis,
Worcester Polytechnic Institute

Burge JE, Brown DC (2000) Inferencing over design rationale. In: Artificial
Intelligence in Design ‘00, Gero J (ed) Kluwer Academic, pp 611-629

Burge JE, Brown DC (2006) Rationale-based support for software maintenance.
In: Dutoit AH, McCall R, Mistrik I, Paech B (eds) Rationale Management in
Software Engineering, Springer, Germany, pp 273-296

Burge JE, Brown DC (2007) Supporting requirements traceability with rationale,
GTC’07: International Symposium on Grand Challenges in Traceability,
March 2007, Slade, KY

Burge JE, Brown DC (2003) Rationale support for maintenance of large scale
systems. In: Proceedings of the Workshop on Evolution of Large-Scale
Industrial Software Applications (ELISA), ICSM ‘03, Amsterdam,
Netherlands

Burge JE, Brown DC (2004) An integrated approach for software design checking
using rationale. In: Design Computing and Cognition ‘04, Gero J (ed) Kluwer
Academic, pp 557-576

 Bibliography 273

Burge JE, Cross V, Kiper J, Maynard-Zhang P, Cornford S (2006) Enhanced
design checking involving constraints, collaboration, and assumptions. In:
Gero J (ed) Proceedings of the Conference on Design, Computing, and
Cognition. Eindhoven Netherlands, pp 655-674

Burnstein I (2003). Practical Software Testing, Springer Professional Computing
Canfora G, Casazza G, De Lucia A (2000) A Design rationale based environment

for cooperative maintenance. Int J Soft Eng Know Eng 10(5):627-645
Canfora G, Cerulo L (2006) Fine grained indexing of software repositories to

support impact analysis. In: Proceedings of the 2006 International Workshop
on Mining Software Repositories, Shanghai, China, pp 105-111

Capilla R, Nava F, Duenas JC (2007) Modeling and documenting the evolution of
architectural design decisions. In: the Proceedings of the Workshop on
Sharing and Reusing Archtectural Knowledge at the International Conference
of Software Engineering (ICSE), Minneapolis, Minnesota

Capilla R, Nava F, Pérez S, Dueñas JC (2006) A web-based tool for managing
architectural design decisions. In: Proceedings of the Workshop on Sharing
and Reusing Architectural Knowledge. ACM Digital Library. Softw Eng
Notes 31 (5)

Carroll J (2000) Making use: scenario-based design of human–computer
interaction, MIT press, Cambridge, MA

Carroll J, Rosson MB (1996) Deliberated evolution: stalking the View Matcher in
design space. In: Moran TP, Carroll JM (eds) Design rationale: Concepts,
techniques, and use. Lawrence Erlbaum, Mahwah, NJ, pp 107-145

Carroll JM, Rosson M (1992) Getting around the task-artifact cycle: how to make
claims and design by scenario. ACM Trans Infor Syst 10(2):181-212

Carroll JM, Rosson MB, Chin G Jr, Koenemann J (1998) Requirements
development in scenario-based design. IEEE Trans Soft Eng. 24(12):1156-
1170

Carroll JM, Mack, RL (1985) Metaphor, computing systems, and active learning.
Int J of Man-Machine Stud, 22:39-58

Carroll JM (1995) Scenario-based design: Envisioning work and technology in
system development. New York: Wiley

Carroll JM, Alpert SR, Karat J, Van Deusen, MD, Rosson MB (1994) Capturing
design history and rationale in multimedia narratives. In: Proceedings of
CHI’94: Human Factors in Computing Systems. Boston. New York: ACM
Press/Addison-Wesley, pp 192-197

Carroll JM, Rosson MB, Convertino G, Ganoe C (2006) Awareness and teamwork
in computer-supported collaborations. Interac Comput, 18: 21-46

Chaib-Draa B, Dignum F (2002) Trends in agent communications language.
Comput Intel, 18(2):89-101

Chapin N (2000) Software maintenance types—a fresh view. In: Proceedings of the
International Conference on Software Maintenance, San Jose, CA, pp 247-252

Charette RN (1996) Large-scale project management is risk management. IEEE
Soft 13(4): 110-117

274 Bibliography

Chaudron MRV, Groote JF, van Hee KM, Hemerik C, Somers LJAM, Verhoeff T
(2004) Software Engineering Reference Framework. Technical Report CS-
Report 04-039, Computer Science Reports, Department of Mathematics and
Computer Science, Eindhoven University of Technology, Eindhoven, The
Netherlands

Chernak Y (2001) Validating and improving test-case effectiveness. IEEE Soft
18(1):81-86

Chewar CM, Bachetti E, McCrickard DS, Booker J (2005) Automating a design
reuse facility with critical parameters: lessons learned in developing the
LINK-UP System. In: Jacob R, Limbourg Q, Vanderderonckt J (eds)
Computer-Aided Design of User Interfaces IV. Kluwer Academic, pp 235-246

Chung L, Nixon B, Yu E (1996) Dealing with change: an approach using non-
functional requirements. Requirements Eng 1(4):238-260

Chung L, Nixon BA (1995) Dealing with non functional requirements: three
experimental studies of a process-oriented approach. In: Proceedings of the
17th International Conference on Software Engineering, pp 25-37

Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-functional requirements in
software engineering, Kluwer Academic

Chung L, Yu E (1998) Achieving system-wide architectural qualities. In:
Proceedings of the OMG-DARPAMCC Workshop on Compositional Software
Architectures

Cimitile A, Lanubile F, Visaggio G (1992) Traceability based on design decisions.
In: Proceedings of the Conference on Software Maintenance, Orlando,
Florida, pp 309-317

Clapp J (1993) Getting started on software metrics. IEEE Soft 10(1):189-109, 117
Clark A (1987) From folk psychology to naïve psychology. Cogn Sci 11:139-154
Cleland-Huang J, Settimi R, BenKhadra O, Berezhan E, Christina S (2005) Goal

centric traceability for managing non-functional requirements. In: Proceedings
of the International Conference on Software Engineering, St Louis, pp 362-
371

Clemen RT, Reilly T (2001) Making Hard Decisions. Duxbury, Forest Grove, CA
Clemen RT, Winkler RL (1999) Combining probability distributions from experts

in risk analysis, Risk Analy 19:187-203
Clements P, Bachmann, Bass L, Garlan, Ivers J, Little R, Nord R, Stafford J

(2002) Documenting software architecture: Views and beyond, Addison-
Wesley

Clements P, Northrop L (2002) Software Product Lines Practices and Patterns,
Addison-Wesley

CMMI Product Team (2006) CMMI For Development. Version 1.2. CMU/SEI-
2006-TR-008

Coleman JS (1990) The Foundations of Social Theory. Cambridge, MA: Harvard
University Press

view_qm.html
CMU (2002) Quality measures taxonomy http://www.sei.cmu.edu/str/taxonomies/

 Bibliography 275

Conklin EJ, Burgess-Yakemovic KC (1996) A process-oriented approach to
design rationale. In: Moran T, Carroll J (eds) Design Rationale Concepts,
Techniques, and Use. Lawrence Erlbaum Associates, pp 393-427

Conklin J, Begeman M (1988) gIBIS: A hypertext tool for exploratory policy
discussion, ACM Trans on Office Inform Syst, 6(4):303-331

Conklin J, Burgess-Yakemovic K (1995) A process-oriented approach to design
rationale. In: Design rationale concepts, techniques, and use, Moran T, Carroll
J (eds). Lawrence Erlbaum Associates, pp. 293-428

Conklin J, Burgess-Yakemovic K (1991) A process-oriented approach to design
rationale, Human-Computer Interaction, 6: 357-291

Connolly T, Jessup L, Valacich J (1990) Effects of anonymity and evaluative tone
on idea generation in computer-mediated groups. Manage Sci 36(6): 689-703

Councill B, Heineman G (2001) Definition of a software component and its
elements. In: Councill B, Heineman G (eds) Component-Based Software
Engineering, Addison-Wesley, Upper Saddle River, pp 5-20

Crosby ME, Scholtz J, Wiedenbeck S (2002) The roles beacons play in
comprehension for novice and expert programmers. In: Kuljis K, Baldwin L,
Scoble R (eds) Proceedings of the Psychology of Programming Interest
Group, Brunel University, pp 58-73

Cross N (2003) Evidence from protocol and other formal studies of design
activity. In: Eastman C, McCracken M, Newstetter W (eds), Knowing and
Learning to Design: Cognitive Perspectives in Design Education, Amsterdam:
Elsevier

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process
for large systems. Commun ACM 31(11):1268-1287

Cysneiros LM, Leite JCSP (2001) Using UML to reflect non-functional
requirements. In: Proceedings of the 11th CASCON, November, IBM
Canada, Toronto, pp 202-216

Cysneiros LM, Leite JCSP (2004) Nonfunctional requirements: from elicitation to
conceptual models. IEEE Trans on Softw Eng, 30(5):328-350

Darimont R, Delor E, Massonet P, van Lamsweerde A (1997) GRAIL/KAOS: an
environment for goal-driven requirements engineering. In: Proceedings of the
19th International Conference on Software Engineering. ACM, New York,
NY, pp 612-613

de Boer RC, Farenhorst R, Clerc V, van der Ven JS, Lago P, van Vliet H (2006) A
model for structuring software architecture project memories, In: Proceedings
of the 8th International Workshop on Learning Software Organizations

De Grace P, Stahl LH (1998) Wicked problems, righteous solutions: a catalogue
of software engineering paradigms, Yourdon

de Kleer J (1986) An assumption-based truth maintenance system. Artif Intell
28(2): 127-162

de la Garza J, Alcantara P (1997) Using parameter dependency network to
represent design rationale. J Comput Civil Eng 2(2):102-112

DeMarco T, Lister TR (1999) Peopleware: Productive projects and teams, 2nd
edn, New York: Dorset House

276 Bibliography

Demeyer S, Ducasse S, Nierstrasz O (2003) Object-Oriented Reengineering
Patterns, Morgan Kaufmann

Department of Defense (2002) Mandatory Procedures for Major Defense
Acquisition Programs (MDAPS) and Major Automated Information System
(MAIS), DoD 5000.2-R

Devanbu P, Brachman R, Selfridge P, Ballard B (1991) Lassie: a knowledge-
based software information system. In: Commun ACM 34(5):34-49

Dick J (2005) Design traceability. IEEE Softw 22(6):14-16
Dijkstra EW (1972) The humble programmer. Communications of the ACM

15(10):859-866
Dijsktra EW (1989) On the cruelty of really teaching computer science. Commun

ACM 32(12):1398-1404
Do H, Rothermel G, Kinneer A (2006) Prioritizing JUnit test cases: An empirical

assessment and cost-benefits analysis. Empir Softw Eng 11:33-70
Domeshek E, Kolodner JL (1996) The Designers’ Muse: Providing Experience to

Aid Conceptual Design of Complex Artifacts. In Maher ML and Pu P (eds),
Issues and Applications of Case-Based Reasoning to Design, Lawrence
Erlbaum Associates: Mahwah, NJ, pp 11-38

Doyle J (1979) A truth maintenance system. Artif Intell 12(3): 231-272
Druffel LE, Buxton JN (1980) Requirements for an Ada programming support

environment: Rationale for Stoneman, In: Proceedings COMPSAC Chicago,
pp 66-72

Dutoit AH, Paech B (2000) Supporting Evolution: Using Rationale in Use Case
Driven Software Development, Proceedings of the Sixth International
Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ’2000), Stockholm, Sweden

Dutoit A, McCall R, Mistrik I, Paech B (eds) (2006a) Rationale Management in
Software Engineering, Springer Verlag, Heidelberg

Dutoit A, McCall R, Mistrík I, Paech B (2006b) Rationale management in
software engineering: Concepts and techniques. In: Dutoit A, McCall R,
Mistrík I, Paech B (eds) Rationale Management in Software Engineering,
Springer-Verlag, pp 1-48

Egyed A, Grunbacher P (2004) Identifying requirements conflicts and
cooperation: How quality attributes and automated traceability can help. IEEE
Software. 21(6):50-58

EIA (1998) Electronic Industries Alliance. Systems Engineering Capability Model
(EIA/IS-731). Washington, DC

Eick S (1998) Maintenance of large systems. In: Stasko J, Dominigue J, Brown M,
Price B (eds) Software Visualization: Programming as a Multimedia
Experience. The MIT Press, pp 315-328

Eickelmann NS, Ruffolo F, Baik J, Anant A (2002) An Empirical Study of
Modifying the Fagan Inspection Process and the Resulting Main Effects and
Interaction Effects Among Defects Found, Effort Required, Rate of
Preparation and Inspection, Number of Team Members and Product 1st Pass
Quality. In: Proceedings of the 27th Annual NASA Goddard Software
Engineering Workshop (Sew-27’02), pp 58-64

 Bibliography 277

Erdogmus H, Favaro J, Halling M (2006) Valuation of software initiatives under
uncertainty: concepts, issues, and techniques. In: Biffl S, Aurum A, Boehm B,
Erdogmus H, Grunbacher P (eds) Value-Based Software Engineering,
Springer, pp 39-66

Ewald T (2001) Overview of COM+, In: Councill B, Heineman G (eds)
Component-based Software Engineering, Addison-Wesley, Upper Saddle
River, pp 573-588

Fabian A, Wahid S, Bhatia S, McCrickard DS (2006) Creating an Interactive
Learning Environment with Reusable HCI Knowledge. In: Proceedings of the
World Conference on Educational Multimedia/Hypermedia and Educational
Telecommunications (ED-MEDIA ‘06), Orlando FL, June, pp 2314-2322

Falessi D, Beker M, Cantone G (2006) Design decision rationale: experiences and
steps ahead towards systematic use. In: Proceedings of the Workshop on the
Sharing and Reuse of Architectural Knowledge, Torino, Italy

Favaro J (1996) When the pursuit of quality destroys value. IEEE Soft 13(3):93-95
Filman RE (1998) Achieving ilities. In: Proceedings of the Workshop on

Compositional Software Architectures, Monterey, CA, USA
Finkelstein A, Kramer J (2000) Software engineering: a roadmap. In: Proceedings

of the Conference on the Future of Software Engineering, ICSE 2000,
Limerick, Ireland, pp 3-22

Finkelstein AC, Gabbay D, Hunter A, Kramer J, Nuseibeh B (1994) Inconsistency
handling in multiperspective specifications. IEEE Trans Softw Eng 20(8):569-
578

Fischer G, Morch A (1988) CRACK: A critiquing approach to cooperative kitchen
design. In: Proceedings of the International Conference on Intelligent
Tutoring Systems (Montreal, Canada), ACM Press, New York, pp 176-185

Fischer G, Henninger S, Redmiles D (1991) Cognitive tools for locating and
comprehending software objects for reuse. In: Proceedings of the 13th
International Conference on Software Engineering, Austin, Texas, pp 318-328

Fischer G, Lemke A, McCall R, Morch A (1996) Making argumentation serve
design. In: Moran T, Carroll J (eds) Design Rationale Concepts, Techniques,
and Use, Lawrence Erlbaum Associates, pp 267-294

Fischer G, McCall R, Morch A (1989) JANUS: Integrating hypertext with a
knowledge-based design. In: Proceedings of Hypertext ‘89, pp 105-117

Fisher R, Ury W (1981) Getting to Yes. Houghton-Mifflin
Fitzpatrick G (2003) The locales framework: understanding and designing for

wicked problems. Fitzpatrick G, Series: Computer Supported Cooperative
Work, vol 1, Springer Verlag, New York

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: Improving
the Design of Existing Code, Addison-Wesley

Fowler M (2003) UML distilled, 3rd edn, New York: Addison-Wesley.
Fox J, Das S (2000) Safe and Sound Artificial Intelligence in Hazardous

Applications, AAAI Press
France RB, Ghosh S, Dinh-Trong T, Solberg A (2006) Model-driven development

using UML 2.0: Promises and pitfalls. Computer 39(2):59-66

278 Bibliography

Frankl P, Hamlet D, Littlewood B, Strigini L (1997) Choosing a testing method to
deliver reliability. In: Proceedings of the 19th International Conference on
Software Engineering, Boston, Massachusetts, pp 68-78

Fuggetta A (2000) Software process: a roadmap. In: Proceedings of the Conference
on the Future of Software Engineering, Limerick, Ireland, pp 25-34

Gallagher KB, Lyle JR (1991) Using program slicing in software maintenance. In:
IEEE Trans Softw Eng 17(8):751-761

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA

Gannod G, Burge J, Urban S (2007) Issues in the design of flexible and dynamic
service-oriented systems. In: Proceedings of the International Workshop on
Systems Development in SOA Environments. Co-located with ICSE,
Minneapolis, MN.

Gibson VR, Senn JA (1989) System structure and software maintenance
performance. Commun ACM 32(3):347-358

Gilboa I, Samet D, Schmeidler D (2004) Utilitarian aggregation of beliefs and
tastes. J Polit Econ 112(4):932-938

Godfrey M, Tu Q (2002) Tracking structural evolution using origin analysis. In:
Proceedings of the International Workshop on Principles of Software
Evolution, Orlando, Florida, pp 117-119

Goldenson DR, Gibson DL (2003) Demonstrating the impact and benefits of
CMMI: an update and preliminary results. CMU/SEI-2003-SR-009

Gomaa H, Farrukh GA (1998) Composition of software architectures from
reusable architecture patterns. In: Proceedings of the 3rd International
Workshop on Software Architecture, Orlando, Florida, pp 45-48

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability
problem. In: Proceedings of the 1st Int. Conf. on Requirements Engineering,
IEEE Computer Society Press, pp 94-101

Gruber TR, Russell DM (1996) Generative design rationale: beyond the record
and reply paradigm, In: Moran T, Carroll J (eds) Design Rationale Concepts,
Techniques, and Use, Lawrence Erlbaum Associates, Mahwah, NJ, pp 323-
349

Grudin J (1988) Why CSCW applications fail: Problems in the design and
evaluation of organizational interfaces. Proceedings of the CSCW ‘88
Conference on Computer-Supported Cooperative Work, ACM, New York, pp
85-93

Grudin J (1996) Evaluating opportunities for design capture In: Moran T, Carroll J
(eds) Design Rationale Concepts, Techniques, and Use, Lawrence Erlbaum
Associates, Mahwah, NJ, pp 453-470

Grudin J (1994) Groupware and social dynamics: Eight challenges for developers.
Commun ACM 37(1):92-105

Grünbacher P, Boehm B (2001) EasyWinWin: a groupware-supported
methodology for requirements negotiation. In: Proceedings of the 8th
European Software Engineering Conference.Vienna, Austria, ACM Press, pp
320-321

 Bibliography 279

Grundy J, Hosking J, Mugridge R (1998) Inconsistency management for multiple-
view software development environments. In: IEEE Transactions on Software
Engineering. 24(11):960-981

Guindon R (1990) Knowledge Exploited by Experts During Software System
Design, Int J Man-Machine Stud 33: 279-304

Hagge L, Houdek F, Lappe K, Paech B (2006) Using patterns for sharing
requirements engineering process rationales. In: Dutoit A, McCall R, Mistrík
I, Paech B (eds) Rationale Management in Software Engineering, Springer, pp
409-426

Hall T, Rainer A, Baddoo N, Beecham S (2001) An empirical study of
maintenance issues within process improvement programmes in the software
industry. In: Proc. of the International Conference on Software Maintenance.
Florence, Italy, pp 422-430

Harrold MJ (2000) Testing: a roadmap. In: Proceedings of the Conference on the
Future of Software Engineering. Limerick, Ireland, pp 61-72

Harsanyi J (1955) Cardinal welfare, individualistic ethics, and interpersonal
coparisions of utility. J Polit Econ 63:309-321

Hayes JH, Dekhtyar A, Sundaram SK (2005) Improving after-the-fact tracing and
mapping: supporting software quality predictions. IEEE Softw22(6):30-37

Haynes, S (2006) Three studies of design rationale as explanation, Dutoit A,
McCall R, Mistrík I, Paech B (eds) Rationale Management in Software
Engineering. Springer Verlag, Heidelberg, pp 53-71

Herbsleb JD (1999) Metaphorical representation in collaborative software
engineering. ACM Work Activities Coordination and Collaboration
Conference: WACC 99. San Francisco, New York: ACM, pp 117-126

Hild M, Jeffrey R, Risse M (1998) Preference aggregation after Harsanyi. In:
Salles M, Weymark J (eds) Justice, Political Liberalism, and Utilitarianism.
Cambridge: Cambridge University Press

Hirsch M (2002) Making RUP agile. In: OOPSLA 2002 Practitioners Reports,
Seattle, Washington, ACM, New York, NY

Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in
software projects. IEEE Softw18(4):58-66

Hordijk W, Wieringa R (2006) Reusable rationale blocks: improving quality and
efficiency of design choices. In: Dutoit A, McCall R, Mistrík I, Paech B (eds)
Rationale management in software engineering, Springer, pp 353-371

Hudlicka E (1997) Summary of knowledge elicitation techniques for requirements
analysis. Course Material for Human Computer Interaction, Worcester
Polytechnic Institute

Hull MC, Jackson K, Dick J (2002) Requirements Engineering. Springer-Verlag.
London, UK

Humphrey W (1995) A Discipline for Software Engineering, Addison-Wesley,
Reading, MA

Humphrey W (2000) The Personal Software Process. CMU/SEI-2000-TR-022
IEEE (1990) IEEE standard glossary of software engineering terminology. IEEE

Std 610.12-1990

280 Bibliography

IEEE (1993) IEEE Std 610.12-1990. IEEE Standard Glossary of Software
Engineering Terminology. IEEE

IEEE (1998) IEEE Standard for Software Maintenance. IEEE Std 1219-1998
IEEE (2000) IEEE Std 1471-2000. Recommended Practice for Architectural

Descriptions of Software-Intensive Systems, IEEE
IEEE (2004a) Guide to the Software Engineering Body of Knowledge

(SWEBOK) 2004 edn, IEEE
IEEE (2004b) IEEE standard for software verification and validation. IEEE Std

1012-2004
IEEE/EIA (1996) Software life cycle processes. ISO/IEC 12207.0-1996
Jacobson I, Booch G, Rumbaugh J (1999) The Unified Software Development

Process, Addison-Wesley Publishing Co
Jackson M (2007), Specialization in Software Engineering. Keynote paper. To

appear in: Proceedings of 14th Asia Pacific Software Engineering Conference
(APSEC 2007), Nagoya, Japan, 5-7 December 2007, IEEE Computer Society

Jensen RW, Tonies CC (1979) Software Engineering. Prentice Hall, NJ
Jung H, Kim S, Chung C (2004) Measuring software product quality: a survey of

ISO/IEC 9126. IEEE Softw, 21(5):88-92
Juristo N, Moreno AM, Strigel W (2006) Guest editors’ introduction: Software

testing practices in industry. IEEE Softw 23(4):19-21
Kahn H (1962) Thinking about the unthinkable, New York: Horizon
Kahneman D, Tversky A (2000) Choices, Values, and Frames, New York:

Cambridge University Press
Kajiko-Mattsson M (2001) The state of documentation practice within corrective

maintenance. In: Proceedings of the International Conference on Software
Maintenance, pp 354-363

Karacapilidis N, Papadias D (2001) Computer supported argumentation and
collaborative decision making: the HERMES system. Inform Syst, 26(4):259-
277

Karat J, Carroll JM, Alpert SR, Rosson MB (1995) Evaluating a multimedia
history system as support for collaborative design. In: Nordby K, Helmersen
P, Gilmore D, Arnesen S (eds) Proceedings of Human-Computer Interaction
— INTERACT’95 Lillehammer, Norway, London: Chapman and Hall, pp
346-353

Karau SJ, Williams KD (1993) Social loafing: A meta-analytic review and
theoretical integration. J Personality Soc Psychol 65(4): 681-706

Karlsson J, Ryan K (1997) A cost-value approach to prioritizing requirements.
IEEE Softw14(5):67-74

Kazman R, Asundi J, Klein M (2003) Quantifying the value of architecture design
decisions: lessons from the field, Proceedings ICSE-25 (International
Conference on Software Engineering), Portland, OR: IEEE Computer Society,
pp 557-562

Kelly T, Littman J (2001) Lessons in Creativity from IDEO, America’s Leading
Design Firm. New York: Doubleday

 Bibliography 281

Kimelman D, Rosenburg B, Roth T (1998) Visualization of dynamics in real
world software systems. In: Stasko J, Dominigue J, Brown M, Price B (eds)
Software Visualization: Programming as a Multimedia Experience. The MIT
Press, pp 293-314

King JMP, Bañares-Alcántara R (1997) Extending the scope and use of design
rationale records. Artif Intell Eng Des Anal Manuf11:155-167

Kirschner, PA, Buckingham Shum, SJ, Carr, CS (eds) (2003) Visualizing
Argumentation. London: Springer

Kitchenham B, Linkman S (1998) Validation, verification, and testing: Diversity
rules. IEEE Softw. 15(4):46-49

Kitchenham BA, Travassos GH, von Mayhauser A, Niessink F, Schneidewind NF,
Singer J, Takada S, Vehvilainen R, Yang, H (1999) Towards an ontology of
software maintenance, J Softw Maintenance: Res Practice 11:365-389

Klein GA (1998) Source of power: How people make decisions. Cambridge, MA:
MIT Press

Klein GA (1997a) Developing expertise in decision making. Thinking and
Reasoning 3(4):337-352

Klein M (1997b) An exception handling approach to enhancing consistency,
completeness and correctness in collaborative requirements capture.
Concurrent Eng Res Appl 5(1):37-46

Klein M, Kazman R (1999) Attribute-Based Architectural Styles. CMU/SEI-99-
TR-022. Software Engineering Institute, Carnegie Mellon University,
Pittsburg, PA

Kleppe J, Warmer J, Bast W (2003) MDA explained, the model driven
architecture: practice and promise, Addison-Wesley

Knodel J, Muthig D (2006) The role of rationale in the design of product line
architectures – a case study from industry. In: Dutoit A, McCall R, Mistrík I,
Paech B (eds) Rationale Management in Software Engineering, Springer, pp
297-312

Knuth DE (1992) Literate programming. Stanford, California: Center for the
Study of Language and Information, CSLI Lecture Notes, no. 27

Ko AJ, Aung H, Myers BA (2005) Eliciting design requirements for maintenance-
oriented IDEs: a detailed study of corrective and perfective maintenance tasks.
In: Proceedings of the 27th international Conference on Software
Engineering. St. Louis, MO, pp 126-135

Kolodner J (1993) Case-based reasoning. Morgan Kaufmann Publishers, San
Mateo, California

Kontio J (1996) A case study in applying a systematic method for COTS selection
In: Proceedings of the 18th International Conference on Software
Engineering. Berlin, Germany, pp 201-209

Koschke R, Quante J (2005) On dynamic feature location. In: Proceedings of the
20th IEEE/ACM international Conference on Automated Software
Engineering. Long Beach, CA, pp 86-95

Kraut RE, Streeter LA (1995) Coordination in software development,
Communications of the ACM, 38(3), 69-81

282 Bibliography

Kraut RE (2003) Applying social psychological theory to the problems of group
work. In J.M. Carroll (ed), HCI Models, theories, and frameworks: Toward a
multidisciplinary science. San Francisco: Morgan-Kaufmann, pp 325-356

Kruchten P (1999) The Rational Unified Process: An Introduction, Addison-
Wesley

Kunz W, Rittel HWJ (1970) Issues as elements of information systems, Working
Paper 131, Center for Urban and Regional Development, University of
California, Berkeley

Kuusela J, Savolainen J (2000) Requirements engineering for product families. In:
Proceedings of the 22nd International Conference on Software Engineering,
Limerick, Ireland, pp 61-69

Lai VS, Wong BK, Cheung W (2002) Group decision making in a multiple
criteria environment: A case using the AHP in software selection, Eur J Oper
Res 137:134-144

Lam W, Shankararaman V (1999) Requirements change: a dissection of mana-

Lammers S (1986) Programmers at Work. Microsoft Press, Redmond,
Washington.

Lanza M (2001) The evolution matrix: recovering software evolution using
software visualization techniques. In: Proceedings of the 4th International
Workshop on Principles of Software Evolution. Vienna, Austria, pp 37-42

Larman C (2004) Agile and Iterative Development: A Manager’s Guide, Addison-
Wesley, New York

Larman C, Basili VR (2003) Iterative and incremental development: A brief
history, IEEE Computer, IEEE, pp 47-56

Latane B, Bourgeois, MJ (2001) Dynamic social impact and the consolidation,
clustering, correlation, and continuing diversity of culture. In: Hogg MA,
Tindale RS (eds) Blackwell Handbook of Social Psychology: Group
Processes. Oxford, UK: Blackwell

Lave J, Wenger E (1991) Situated Learning. Legitimate Peripheral Participation,
Cambridge, UK: University of Cambridge Press

Lave J (1988) Cognition in practice: Mind, Mathematics and Culture in Everyday
Life. New York: Cambridge University Press

Law J, Rothermel G (2003) Whole program Path-Based dynamic impact analysis.
In: Proceedings of the 25th International Conference on Software
Engineering, Portland, Oregon, pp 308-318

Lawson B (1979) Cognitive Strategies in Architectural Design. Ergonomics 22(1):
59-68

Leavitt HJ (1951) Some effects of certain communication patterns on group
performance. J Abnorm Soc Psychol 46:38-50.

Lee J (1990) SIBYL: A tool for managing group decision rationale. Proceedings
of the 1990 ACM Conference on Computer-Supported Cooperative Work,
ACM, New York, pp 79-92

Lee J (1991) Extending the Potts and Bruns model for recording design rationale.
In: Proceedings of the 13th International Conference on Software
Engineering, Austin, TX, pp 114-125

gement issues. In: Proceedings of the 25th Euromicro Conference, p. 2244

 Bibliography 283

Lee J, Lai KY (1996) What’s in design rationale? In: Moran T, Carroll J (eds)
Design Rationale Concepts, Techniques, and Use. Lawrence Erlbaum
Associates, pp 21-51

Lee J (1990) SIBYL: A qualitative design management system, In: Winston PH,
Shellard, S (eds) Artificial Intelligence at MIT: Expanding frontiers, pp. 104-
133, Cambridge MA: MIT Press

Lehman MM (1996) Laws of software evolution revisited. In: Montangero C (ed.)
Lecture Notes In Computer Science, vol. 1149. Springer-Verlag, London, pp
108-124

Lehman MM (2005) The role and impact of assumptions in software development,
maintenance, and evolution. In: Proceedings of the IEEE International
Workshop on Software Evolvability. Budapest, Hungary, pp 3-14

Lehman MM, Frenández-Ramil J (2006) The role and impact of assumptions in
software engineering and its products. In: Dutoit AH, McCall R, Mistrik I,
Paech B (eds) Rationale Management in Software Engineering. Springer,
Germany, pp 311-328

Lewis C, Rieman J, Bells B (1996) Problem-centered design for expressiveness.
In: Moran TP, Carroll JM (eds) Design Rationale, Concepts, Techniques and
Use, Lawrence Erlbaum Associates, Mahwah, New Jersey, pp 147-184

Lewis JA, Henry SA, Kafura DG, Schulman RS (1991) An empirical study of the
object-oriented paradigm and software reuse. In: Proceedings of OOPSLA, pp
184-196

Lientz BP, Swanson, EB (1988) Software maintenance management. Addison-
Wesley

Lindquist C (2005) Fixing the requirements mess. CIO Magazine. 15 November,
http://www.cio.com/archive/111505/require.html

Liskov, Guttag (1986) Abstraction and specification in program development,
MIT Press, Cambridge

Lloyd P, Scott P (1994) Discovering the design problem. Des Stud 15(2): 125-140
Lougher R, Rodden T (1993) Group support for the recording and sharing of

maintenance rationale. Softw Eng J 8(6):295-306
Lozano-Tello A, Gomez-Perez A (2002) BAREMO: How to choose the

appropriate software component using the analytic hierarchy process. In:
Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering, pp 781 - 788

Mackay WE, Ratzer AV, Janecek P (2000) Video artifacts for design: Bridging
the gap between abstraction and detail. In: ACM DIS 2000: Conference on
Designing Interactive Systems. Brooklyn, New York, New York: ACM, pp
72-82

MacLean A, Young RM, Bellotti VME, Moran T (1996) Questions, Options and
Criteria. In: Moran TP, Carroll JM (eds) Design Rationale, Concepts,
Techniques and Use. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp
53-106

MacLean A, Young RM, Bellotti VME, Moran T (1991) Questions, Options and
Criteria: Elements of design space analysis. J Human–Comput Interact 6:201-
250

284 Bibliography

MacLean A, Young RM, Moran TP (1989) Design rationale: the argument behind
the artifact. In: Proceedings of the SIGCHI conference on human factors in
computing systems: wings for the mind. ACM Press, pp 247-252

Madsen KH (1994) A guide to metaphorical design. Commun ACM 37(12):57-62
Maletic JI, Marcus A (2001) Supporting program comprehension using semantic

and structural information. In: Proceedings of the 23rd International
Conference on Software Engineering. Toronto, Canada, pp 103-112

Mannion M, Keepence B, Kaindl H, Wheadon J (1999) Reusing single system
requirements from application family requirements. In: Proceedings of the
International Conference on Software Engineering. Limerick, Ireland, pp 453-
462

Manola F (1999) Providing Systematic Properties (Ilities) and Quality of Service
in Component-Based Systems. Technical report, Object Services and
Consulting, Inc

Martin J (1991) Rapid Application Development. Macmillan, NY
Matena V, Hapner M (1999) Enterprise JavaBeans specification. v1.1. Sun

Microsystems, java.sun.com/products/ejb/docs.html
Mayer B (1997) Object-oriented software construction, 2nd edition, Prentice-Hall
Maynard-Ried II P, Shoham Y (2001) Belief fusion: aggregating pedigreed belief

states. Journal of Logic, Language and Information. Kluwer Academic
Publishers. 10:183-209

McAndrews DR (2000) The Team Software Process (TSPSM): An Overview and
Preliminary Results of Using Disciplined Practices. Technical Report
CMU/SEI-2000-TR-015

McCall R (1979a) On the structure and use of issue systems in design, Doctoral
Dissertation 1978, University of California, Berkeley, University Microfilms

McCall R (1979b) Final Report for Project STIEC (Scientific and Technical
Information in the European Community), Studiengruppe für
Systemforschung, Heidelberg

McCall R (1986) Issue-Serve Systems: A Descriptive Theory of Design, In:
Design Methods and Theories, vol 20, no 3, DMG, San Luis Obispo, pp 443-
458

McCall R (1991) PHI: a conceptual foundation for design hypermedia. Des Stud
1:30-41

McCall R, Bennett P, Johnson E (1994) An overview of the Phidias II HyperCAD

Computer Aided Design in Architecture. A. Harfmann, M. Fraser (eds),
Association for Computer Aided Design in Architecture, pp. 63-74

McCall R, Johnson E (1997) Using argumentative agents to catalyze and support
collaboration in design. Autom Constr 6(4):299-309

McCall R, Bennett P, d’Oronzio P, Ostwald J, Shipman F, Wallace N (1990)
Phidias: A PHI-Based Design Environment Integrating CAD Graphics into
Dynamic Hypertext. In: Proceedings of the European Conference on
Hypertext (ECHT 1990)

McCall R, Bennett P, d’Oronzio P, Oswald J, Shipman FM III, Wallace N (1992)
PHIDIAS: Integrating CAD graphics into dynamic hypertext. In: Streitz N,

system”, In: Proceedings of the 1994 Conference of The Association for

 Bibliography 285

Rizk A, André J (eds) Hypertext: Concepts, Systems and Applications,
Cambridge University Press, New York, NY, pp 152-165

McCall R, Mistrik I, Schuler W (1981) An Integrated Information and
Communication System for Problem Solving. Proceedings of the Seventh
International CODATA Conference. Pergamon, London

McCall R, Mistrik I (2005) Capture of software requirements and rationale
through collaborative software development. Requirements Engineering for
Sociotechnical Systems, Mate JL and Silva A (eds) Information Science,
Hershey, PA, pp 303-317

McKerlie D, MacLean A (1993) QOC in action (abstract): using design rationale
to support design. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Amsterdam, The Netherlands ACM, New
York, NY, pp 519

Mehta A, Heineman GT (2002) Evolving legacy system features into fine-grained
components. In: Proceedings of the 24th International Conference on
Software Engineering. Orlando, Florida, pp 417-427

Mellor SJ, Clark AN, Futagami T (2003) Guest editors’ introduction: Model-
driven development. IEEE Softw 20(5):14-18

Mens K, Mens T, Wermelinger M (2002) Supporting software evolution with
intentional software views. In: Proceedings of the International Workshop on
Principles of Software Evolution. Orlando, Florida, pp 138-142

Mens T, Demeyer S (2001) Future trends in software evolution metrics. In:
Proceedings of the 4th International Workshop on Principles of Software
Evolution, Vienna, Austria, pp 83-86

Meyer T, Ghose AK, Chopra S (2001). Multi-agent context-based merging. In:
Proceedings of Common Sense 2001: The Fifth Symposium on Logical
Formalizations of Commonsense Reasoning, New York, USA, May 2001

Meyer B (1997) Object-Oriented Software Construction, 2nd ed. Prentice-Hall
Mockus A, Fielding RT, Herbsleb JD (2002) Two Case Studies of Open Source

Software Development: Apache and Mozilla. ACM Trans Softw Eng
Methodol 11(3):209-346

Mohamed A, Ruhe G, Eberlein A (2005) Decision support for customization of
the COTS selection process. In: Proceedings of 2nd International Workshop
on Models and Processes for the Evaluation of COTS Components
(MPEC’05). 27th International Conference on Software Engineering. St.
Louis, Missouri, pp 1-4

Mongin P (1998) The paradox of the Bayesian experts and state-dependent utility
theory. J Math Econ 29(3):331-361

Morisio M, Seaman C, Parra A, Basili VR, Condon S, Kraft S (2000)
Investigating and improving a COTS-Based software development process.
In: Proceedings of the 22nd International Conference on Software
Engineering. Limerick, Ireland, pp. 32-41

Myer B (1988) Object Oriented Software Construction, Prentice Hall
Myers KL, Zumel NB, Garcia PE (1999) Automated capture of rationale for the

detailed design process. In: Proceedings of the Eleventh National Conference

286 Bibliography

on Innovative Applications of Artificial Intelligence (IAAI-99), AAAI, Menlo
Park, CA, pp 876-883

Narayanan NH, Kolodner JL (1995) Case libraries in support of design education:
the DesignMuse Experiences, Proceedings of the 25th Annual Frontiers in
Education Conference, IEEE Press

Nentwich C, Emmerich W, Finkelstein A, Ellmer E (2003) Flexible consistency
checking. ACM Trans Softw Eng Methodol 12(1):28-63

Newman MW, Landay JA (2000) Sitemaps, Storyboards, and Specifications: A
Sketch of Web Site Design Practice. In Proceedings of Designing Interactive
Systems: DIS 2000. New York, NY. pp 263-274, August 17-19, 2000

Ng TH, Cheung SC, Chan WK, Yu YT (2006) Toward effective deployment of
design patterns for software extension: a case study. In Proceedings of the
2006 International Workshop on Software Quality. Shanghai, China, pp 51-56

Ngo-The A, Ruhe G. (2005) Decision Support in Requirements Engineering, In:
Arum A, Wohlin C (eds) Engineering and Managing Software Requirements.
Springer, pp 267-286

Nierstrasz O, Ducasse S, Gǐrba T (2005) The story of moose: an agile reengineering
environment. In: Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Lisbon, Portugal, pp 1-10

Nuseibeh B (1997) Ariane 5 Who Dunnit? IEEE Softw 14(3):15-16
Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In:

Proceedings of the Conference on the Future of Software Engineering.
Limerick, Ireland, pp 35-46

Nuseibeh B, Easterbrook S, Russo A (2000) Leveraging Inconsistency in Software
Development. Computer 33(4):24-29

Oberto R (2002) FAIR/DART Option #2. Advanced Projects Design Team.
NASA Jet Propulsion Laboratory

Object Management Group (2000) The Common Object Request Broker:
Architecture and Specification Version 2.4

Oinas-Kukkonen H (1988) Evaluating the usefulness of design rationale in CASE.
Eur J Inform Syst, 7(3):185-191

OMG (2005a) UML Object Constraint Language (OCL) Specification. v2.0. The
Object Modeling Group

OMG (2005b) UML Superstructure. v2.1.1, The Object Modeling Group
Ossher H, Tarr P (1999) Multi-dimensional Separation of Concerns in

Hyperspace, Tech. Report RC 21453(96717), IBM, TJ Watson Research
Center, NY

Overhage S (2004) UnSCom: A standardized framework for the specification of
software components. In: Weske M, Liggesmeyer P (eds) Object-Oriented and
Internet-Based Technologies, 5th Annual International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a
Networked World. Lecture Notes in Computer Science (LNCS) 3263,
Springer, pp 169-184

Parnas DL, Clements PC (1986) A Rational Design Process: How and why to fake
it. IEEE Trans Softw Eng SE-12(2):251-257

 Bibliography 287

Parsons S (2001) Qualitative Methods for Reasoning under Uncertainty, MIT
Press

Parsons S, Hunter A (1998) A review of uncertainty handling formalisms. In:
Hunter A, Parsons S (eds) Applications of Uncertainty Formalisms. Lecture
Notes In Computer Science, vol. 1455. Springer-Verlag, London, pp 8-37

Patterson DA (2005) 20th Century vs. 21st Century C&C: The SPUR Manifesto,
The President’s Letter, Communications of the ACM, Vol 48, No 3, pp 15-16

Paulk MC, Curtis B, Chrissis MB, Weber CV (1993) Capability Maturity Model
for Software, Version 1.1. CMU/SEI-93-TR-024

Payne C, Allgood CF, Chewar CM, Holbrook C, McCrickard DS (2003)
Generalizing Interface Design Knowledge: Lessons Learned from Developing
a Claims Library. IEEE International Conference on Information Reuse and
Integration (IRI 2003), Las Vegas, pp 362-369

Pelled L, Eisenhardt K, Xin K (1999) Exploring the black box: An analysis of
work group diversity, conflict, and performance. Admin Sci Q 44:1-28

Peña-Mora F, Sriram D, Logcher R (1995) Design rationale for computer-
supported conflict mitigation. ASCE J Comput in Civil Eng 9(1):57-72

Peña-Mora F, Vadhavkar S (1997) Augmenting design patterns with design
rationale. Artif Intell Eng Des, Anal Manuf 11(2): 93–108

Pennock D, Maynard-Ried II P, Giles CL, Horvitz E (2000) A normative
examination of ensemble learning algorithms. In: Proceedings of the 17th
International Conference on Machine Learning, pp 735-742

Pigoski TM (1996) Practical Software Maintenance. Wiley
PMBOK (2003) A Guide to the Project Management Body of Knowledge. Project

Management Institute Standards Committee, IEEE Std 1490-2003
Pollice G, Augustine L, Lowe C, Madhur J (2003) Software Development for

Small Teams: a Rup-Centric Approach. Addison Wesley Longman
Potts C (1996) Supporting software design: integrating design methods and design

rationale. In: Moran TP, Carroll JM (eds) Design rationale: concepts,
techniques, and use. Lawrence Erlbaum Associates, Mahwah, New Jersey, pp
295-321

Potts C, Bruns (1988) Recording the reasons for design decisions, In: Proceedings
of the 10th International conference on software engineering, Singapore, pp
418-427

Potts C (1989) A generic model for representing design methods, Proc. 11th Int.
Conf. Software Eng., Pittsburgh, IEEE Comp. Soc. Press

Potts C, Takahashi K, Anton A (1994) Inquiry-based requirements analysis, IEEE
Softw 11(2):21-32

Prechelt L, Unger B, Tichy WF, Brössler P, Votta LG (2001) A controlled
experiment in maintenance comparing design patterns to simpler solutions.
IEEE Trans Softw Eng 27(12):1134-1144

Price B, Baecker R, Small I (1998) An introduction to software visualization. In:
Stasko J, Dominigue J, Brown M, Price B (eds) Software Visualization:
Programming as a Multimedia Experience. The MIT Press, pp 3-27

288 Bibliography

Queille J, Voidrot J, Wilde N, Munro M (1994) The impact analysis task in
software maintenance: a model and a case study. In: Proceedings of the
International Conference on Software Maintenance, Victoria, BC, pp 234-242

Rajlich V (2006) Changing the software paradigm. Commun ACM 49(8):67-70
Ramesh B, Dhar V (1992) Supporting systems development by capturing

deliberations during requirements engineering, IEEE Trans Softw Eng 18(6),
498-510

Ramesh B, Dhar V (1994) Representing and maintaining process knowledge for
large-scale systems development, EEE Expert 9(2):54-60

Ramires J, Antunes P, Respício A (2005) Software requirements negotiation using
the software quality function deployment. In: Fuks H, Lukosch S, Salgado A
(eds) Groupware: Design, Implementation, and Use. Lecture Notes in
Computer Science. Vol. 3706, Heidelberg, Springer-Verlag, pp 308-324

Ramler R, Biffl S, Grunbacher P (2006) Value-based management of software
testing. In: Biffl S, Aurum A, Boehm B, Erdogmus H, Grunbacher P (eds)
Value-Based Software Engineering, Springer

Randal B, Buxton JN (1970) Software engineering techniques: A report on a
conference sponsored by the NATO Science Committee, NATO

Rasmussen J (1974) The human data processor as a system component: Bits and
pieces of a model. Riso-M-1722. Roskilde, Denmark: Danish Atomic Energy
Commission

Raymond E (2001) The Cathedral and the Bazaar. Revised Edition. O’Reilly
Redwine S, Riddle W (1985). Software technology maturation, In: Proc. of the 8th

ICSE, pp 189-200
Reeves B, Shipman FM III (1992) Supporting communication between designers

with artifact-centered evolving information spaces In: Proceedings of the 1992
ACM Conference on Computer-Supported Cooperative Work, November 1-4,
Toronto, Ontario, Canada, pp 394-401

Reiss SP (2002) Constraining software evolution. In: Proceedings of the
International conference on Software maintenance, Montreal, Quebec Canada,
pp 162-171

Reiss SP, Kennedy CM, Wooldridge T, Krishnamurthi S (2003) CLIME: an
environment for constrained evolution demonstration description. In:
Proceedings of the 25th International Conference on Software Engineering.
Portland, Oregon, pp 818-819

Reitman WR (1965) Cognition and Thought.: An Information Processing
Approach. New York: Wiley

Réquilé-Romanczuk A, Cechich A, Dourgnon-Hanoune A, Mielnik J (2005)
Towards a knowledge-based framework for COTS component identification.
In: Proceedings of the Second international Workshop on Models and
Processes for the Evaluation of Off-the-Shelf Components. St. Louis,
Missouri, ACM Press, New York, NY, pp 1-4

Riesbeck C, Schank R (1989) Inside Case-Based Reasoning. Lawrence Erlbaum.
Hillsdale, NJ

 Bibliography 289

Rittel H (1980) APIS: A concept for an argumentative planning information
system. Working paper 324, Institute of Urban and Regional Development,
University of California, Berkeley

Rittel H, Weber M (1973) Dilemmas in a general theory of planning. Policy
Sciences 4: 155-169

Rittel H (1972a) On the planning crisis: Systems analysis of the first and second
generations. Bedriftsokonomen, Norway, 8:390-396

Rittel H. (1972b) Son of Rittelthink, DMG Newsletter 3-10 Berkeley: University
of California.

Robillard MP (2005) Automatic generation of suggestions for program
investigation. In: Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Lisbon, Portugal, pp 11-20

Roman G (1985) A taxonomy of current issues in requirements engineering.
Computer, 18(4):14-22

Rosson MB, Alpert SA (1990) The cognitive consequences of object-oriented
design. Human-Computer Interaction, 5:345-379

Rosson MB, Carroll JM (1996) The reuse of uses in Smalltalk programming.
ACM Trans Computer-Human Inter, 3(3):219-253

Rothermel G, Elbaum S (2003) Putting Your Best Tests Forward. IEEE Softw
20(5):74-77

Royce WW (1970) Managing the development of large software systems:
concepts and techniques. In: Proceedings of IEEE WESTCON, Los Angeles,
California, pp 1-9

Saaty TL (1980) The Analytic Hierarchy Process, McGraw-Hill, New York
Saiedian H, Dale R (2000) Requirements engineering: making the connection

between the software developer and customer. Inform Softw Technol 42:419-
428

Schmid K (2002) A comprehensive product line scoping approach and its
validation. In: Proceedings of ICSE. Orlando, Florida, pp 593-603

Schmidt DC (2006) Guest editor’s introduction. Model-Driven Engineering.
Computer 39(2):25-31

Schmidt DC, Buschmann F (2003) Patterns, frameworks, and middleware: their
synergistic relationships. In: Proceedings of the 25th International Conference
on Software Engineering. Portland, Oregon, IEEE Computer Society,
Washington, DC, pp 694-704

Schneider K (2006) Rationale as a by-product, In: Rationale Management in
Software Engineering, Dutoit A, McCall R, Mistrik I, Paech B (eds) Springer
Verlag, Heidelberg, pp 91-109

Schön D (1983) The Reflective Practitioner. How Professionals Think in Action.
Basic Books, New York

Schultz DJ (1979) A case study in system integration using the Build approach. In:
Proceedings of the 1979 Annual Conference. pp 143-151

Scriven M (1967) The methodology of evaluation. In: Tyler R, Gagne R, Scriven
M (eds) Perspectives of Curriculum Evaluation, Rand McNally, pp 39-83

290 Bibliography

SEI (1997) Integrated Product Development Capability Maturity Model, Draft
Version 0.98. Pittsburgh, PA: Enterprise Process Improvement Collaboration
and Software Engineering Institute, Carnegie Mellon University

Shafer G (1976) A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey

Sharp H, Finkelstein A, Galal G (1999) Stakeholder Identification in the
Requirements Engineering Process. In: Proceedings of the 10th International
Workshop on Database and Expert Systems Applications, pp 387

Shipman FM III, McCall R (1994) Supporting knowledge-base evolution with
incremental formalization. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Boston, Massachusetts, United States,
pp 285-291

Shipman F, McCall R (1997) Integrating different perspectives on design
rationale: Supporting the emergence of design rationale from design
communication, Artif Intell Eng Des, Anal, Manuf 11(2):141-154

Shipman FM III, Marshall CC (1999a) Formality considered harmful:
Experiences, emerging themes, and directions on the use of formal
representations in interactive systems. Computer-Supported Cooperative
Work 8(3):333-352

Shipman FM III, Marshall CC (1999b) Spatial hypertext: An alternative to
navigational and semantic links. ACM Comput Surv 31(4):1-5

Siff M, Reps T (1999) Identifying modules via concept analysis. IEEE Trans
Softw Eng 25(6):749-768

Sim S, Duffy A (1994) A new perspective to design intent and design rationale.
In: Workshop Notes for Representing and Using Design Rationale. Artificial
Intelligence in Design. pp 4-12

Simon HA (1957) Models of Man: Social and Rational. New York: Wiley
Singer J (1998) Practices of software maintenance. In: Proc. of the International

Conference on Software Maintenance (ICSM’98). Bethesda, Maryland, USA,
pp 139-145

Smith RP, Tjandra P (1998) Experimental observation of iteration in engineering
design. Res Eng Des 10(2):107-117

Sneed H (1995) Planning the reengineering of legacy systems. IEEE Softw.
12(1):24-34

Sneed HM (2001) Impact analysis of maintenance tasks for a distributed object-
oriented system. In: Proceedings of the IEEE International Conference on
Software Maintenance, Florence, Italy, pp 180-189

Software Engineering Coordinating Committee (2004) Guide to the Software
Engineering Body of Knowledge (SWEBOK), IEEE Computer Society

Sommerville I (2007) Software Engineering. 8th edn, Addison Wesley
Spanoudakis G, Zisman A (2001) Inconsistency management in software

engineering: survey and open research issues. In: Handbook of Software
Engineering and Knowledge Engineering 1, World Scientific, pp 329-380

Srivastava A, Thiagarajan J (2002) Effectively prioritizing tests in development
environment. In: Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis. Roma, Italy, pp 97-106

 Bibliography 291

Stahl T, Volter M (2006) Model-driven software development, Wiley, NY
Stark GE, Oman P, Skillicorn A, Ameele A (1999) An examination of the effects

of requirements changes on software maintenance releases. J Softw
Maintenance 11(5):293-309

Stobie K (2005) Too darned big to test. Queue 3(1):30-37
Stone M (1961) The linear opinion pool. Ann Math Stat 32:1339-1342
Subramaniam GV (2000) Object model resurrection — an object oriented

maintenance activity. In: Proceedings of the 22nd International Conference on
Software Engineering. Limerick, Ireland, pp 324-333

Subramanian N, Chung L (2001) Software architecture adaptability: an NFR
approach. In: Proceedings of the 4th International Workshop on Principles of
Software Evolution. Vienna, Austria, pp 52-61

Subramanian N, Chung L (2002) Tool support for engineering adaptability into
software architecture. In: Proceedings of the International Workshop on
Principles of Software Evolution. Orlando, Florida, pp 86-96

Sutcliffe AG, Carroll JM (1999) Designing claims for reuse in interactive systems
design. Int J Human-Comput Stud 50(3):213-241

Tang A, Han J (2005) Architecture rationalization: A methodology for
architecture verifiability, traceability and completeness. Proc. 12th Annual
IEEE Int. Conf. and Workshop on the Engineering of Computer Based
Systems (ECBS’05), pp 135-144

Tang A, Jin Y, Han J (2005a) A rationale-based architecture model for design
traceability and reasoning. J Sys Softw 80:918-934

Tang A, Jin Y, Han J, Nicholson A (2005b) Predicting change impact in
architecture design with Bayesian Belief Networks. In: proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture, pp 67-76

Tang A, Babar M, Gorton I, Han J (2006) A survey of architecture design
rationale. J Sys Softw 79:1792-1804

Tarr P, Clarke LA (1998) Consistency management for complex applications. In:
Proceedings of the 20th International Conference on Software Engineering,
Kyoto, Japan, pp 230-239

Taylor RN, van der Hoek A (2007) Software Design and Architecture: The once
and future focus of software engineering. In: 2007 Future of Software
Engineering. International Conference on Software Engineering. Minneapolis,
MN, pp 226-243

Thayer RH, Dorfman M (1990) Introduction, issues, and terminology. In: Thayer
RH, Dorfman M (eds) System and Software Requirements Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1st edn, pp 1-3

Thelin T, Runeson P, Wohlin C (2003) An experimental comparison of usage-
based and checklist-based reading. IEEE Trans Softw Eng 29(8):687-702.

Tip F (1995) A survey of program slicing techniques. J Prog Lang 3(3):121-189
Tonella P, Antoniol G (1999) Object oriented design pattern inference. In:

Proceedings of the IEEE International Conference on Software Maintenance,
pp 230-238

Toulmin S (1958) The Uses of Argument. Cambridge University Press,
Cambridge

292 Bibliography

Turner M, Budgen D, Brereton P (2003) Turning software into a service. IEEE
Comput 36(10):38-44

Tyree J, Akerman A (2005) Architecture decisions: Demystifying architecture.
IEEE Softw 22(2):19-27

van Lamsweerde A (2001) Goal-oriented requirements engineering: a guided tour.
In: Proceedings of the 5th IEEE International Symposium on Requirements
Engineering, Toronto, pp 249-263

van Lamsweerde A (2003) From system goals to software architecture. In:
Bernardo M, Inverardi P (eds) Formal Methods for Software Architectures,
Springer-Verlag

van Lamsweerde A (2004) Goal-oriented requirements engineering: a roundtrip
from research to practice. In: Proceedings of the 12th International Conference
on Requirements Engineering, Tokyo, Japan, pp 4-8

van Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented
requirements engineering. IEEE Trans Softw Eng Special Issue on Exception
Handling 26(10): 978-1005

Vetschera R (2006) Preference-based decision support in software engineering. In:
Biffl S, Aurum A, Boehm B, Erdogmus H, Grunbacher P (eds) Value-Based
Software Engineering, Springer, pp 67-89

Vincenti W (1990) What engineers know and how they know it. John Hopkins
University Press

Voas JM, Miller KW (1995) Software testability: the new verification. IEEE
Softw 12(3):17-28

von Mayrhauser A, Vans AM (1994) Comprehension processes during large scale
maintenance. In: Proceedings of the 16th International Conference on
Software Engineering. Sorrento, Italy, pp 39-48

Wahid S, Smith J.L, Berry B, Chewar CM, McCrickard, DS (2004) Visualization
of Design Knowledge Component Relationships to Facilitate Reuse.
Proceedings of the 2004 IEEE International Conference on Information Reuse
and Integration (IRI ‘04), Las Vegas NV, November, pp 414-419.

Walker RJ, Holmes R, Hedgeland I, Kapur P, Smith A (2006) A lightweight
approach to technical risk estimation via probabilistic impact analysis. In:
Proceedings of the 2006 International Workshop on Mining Software
Repositories, Shanghai, China, pp 98-104

Wallin P, Fröberg A, Axelsson A (2007) Making decisions in integration of
automotive software and electronics: A method based on ATAM and AHP,
In: Proceedings SEAS’07 (Fourth International Workshop on Software
Engineering for Automotive Systems), IEEE Computer Society, pp 5

Wang L, Tan KC (2005) Software testing for safety-critical applications. IEEE
Instrum Measure Mag 8(2):38-47

Wang N, Schmidt D, O’Ryan C (2001) Overview of the CORBA component
model. In: Councill B, Heineman G (eds) Component-Based Software
Engineering, Addison-Wesley, Upper Saddle River, pp 557-571

Wang X, Xiong G (2001) Design rationale as part of corporate technical memory,
In: International Conference on Systems, Man, and Cybernetics, Tucson, AZ:
3:1904-1908

 Bibliography 293

Weick KE (1995) Sensemaking in organizations. Sage: Thousand Oaks, CA
Weiser M (1981) Program slicing. In: Proceedings of the 5th International

Conference on Software Engineering, San Diego, California, pp 439-449
Weizenbaum, J (1966) ELIZA—A computer program for the study of natural

language communication between man and machine. Comm ACM 9(1):36-35
Wellman MP (1990) Fundamental concepts of qualitative probabilistic networks.

Artif Intell 44:257-303
Wenger E (1998) Communities of practice: Learning, meaning, and identity. New

York: Cambridge University Press
Whitehead J (2007) Collaboration in Software Engineering: A Roadmap. In: 2007

Future of Software Engineering, International Conference on Software
Engineering. Minneapolis, MN, pp. 214-225

Whittaker S, Schwarz H (1995) Back to the Future: Pen and Paper Technology
Supports Complex Group Coordination, in Proceedings of ACM
CHI’95Conference on Human Factors in Computing Systems, pp 495-502

Workshop on Multi-Dimensional Separation of Concerns, International
Conference on Software Engineering 2000, http://www.research.ibm.com/
hyperspace/workshops/icse2000

Zadeh LA (1965) Fuzzy sets. Inform Control 8:338-353
Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst

1:3-28
Zhu L, Gorton I (2007) UML profiles for design decisions and non-functional

requirements. In: Proceedings of the Workshop on the Sharing and Reusing of
Architectural Knowledge, at the International Conference of Software
Engineering (ICSE), Minneapolis, Minnesota.

Zimmermann T, Weisgerber P, Diehl S, Zeller A (2004) Mining version histories
to guide software changes. In: Proceedings of the 26th International
Conference on Software Engineering, pp 563-572

Zimring CM, Do ED, Domeshek ED, Kolodner JL (1995) Supporting case-study
use in design education: A computational case-based design aid for
architecture. In: Mohsen JP (ed.) Computing in Civil Engineering:
Proceedings of the Second Congress. New York: American Society of Civil
Engineers, pp 1635-1642

Ziv H, Richardson DJ, Klosch R (1996) The uncertainty principle in software
engineering. Technical Report UCI-TR-96-33, University of California, Irvine

Glossary

abstraction
A view of an object that focuses on the information relevant to a

particular purpose and ignores the remainder of the information [IEEE Std
610.12-1990]
adaptability

Adaptability concerns the ease of altering a system to meet the needs of
a user [Randal and Buxton 1970]
adaptive maintenance

Changes made to the software during maintenance that do not change its
functionality
agile methods

Software development methods that use iterative development to
provide a more agile response to changing requirements
analysis

The phase in the software lifecycle that analyzes the system
requirements in order to build a model describing the application domain
analysis of design

A process that provides a view of the design process that is not
otherwise available
Analytic Hierarchy Process (AHP)

A decision-making technique where alternatives are evaluated by
making a series of pairwise comparisons
anthropomorphism

Software analysis and design method that involves metaphorically
thinking about software components as animate
anti-model

Vivid characterizations of features and outcomes that a problem solver
or decision-makers definitely wants to avoid
architectural description

A collection of products to document an architecture [IEEE Std 1471-
2000]

296 Glossary

architectural design

The result of the process of defining a collection of hardware and
software components and their interfaces to establish the framework for
the development of a computer system [adapted from IEEE Std 610.12-

architectural framework
Describes the elements of a concrete architecture in terms of

components, connectors, and dependencies
architectural style

A family of architectures constrained by component/connector
vocabulary, topology, and semantic constraints [adapted from Garlan and
Shaw 1993]
architectural tactic

A transformation of an architecture to achieve particular quality
attribute goals
architecturally significant requirements (ASR)

 Software requirements that have broad cross-functional implications
such performance, usability, maintainability, and security. These include
nonfunctional requirements (NFRs) and quality attributes
architecture

Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution [IEEE Std 1471-2000].
Architecture is a description (model) of the basic arrangement and
connectivity of parts of a system (either a physical or a conceptual object
or entity) [ISO 15704 1999]
architecture decision

A high-level design decision that an architect or designer takes to satisfy
the functional and nonfunctional requirements of a system
architecture description

A collection of products to document an architecture [IEEE Std 1471-
2000]
artifact

The result of any activity in the software lifecycle such as requirements,
architecture model, design specifications, source code, and test scripts
[http://w3.umh.ac.be/genlog/SE/SE-contents.html]
assumption

A proposition that is believed to be, but not known to be, true
Attribute-based Architectural Styles (ABASs)

Architectural styles associated with an attribute reasoning framework
associated with a quality attribute

1990]

Glossary 297

awareness (in collaboration)

Relevant knowledge about collaborators; for example, their identity,
activity, goals and expectations, and focus of attention. Effective
collaboration requires awareness
bad smell

Code structures that signal potential problems or poor designs that
indicate the need for refactoring
basic software

basic functions, like an operating system, or perform elementary tasks such
as a compiler [Chaudron et al. 2004]
benchmark

A benchmark is a set of tests used to compare the performance of

black-box reuse
A kind of reuse where a component is reused without changing anything

within the component
black-box testing

Software testing that looks only at the inputs and expected outputs and
is not aware of the internal contents of the code
business case

the decision to develop the system, together with an analysis of the
development and operational cost of the system, and of the benefits of the
system and the revenues it might generate [Chaudron et al. 2004]
Capability Maturity Model (CMM)

A process model developed by the Software Engineering Institute to
assess the maturity of a software organization’s process by classifying it
into one of five levels
Capability Maturity Model Integration (CMMI)

A replacement for the CMM that assesses the maturity level for 22
process areas
Computer-Aided Software Engineering (CASE)

The use of software tools to assist in the development and maintenance
of software
classical decision model

Decision model in which solution alternatives are exhaustively
enumerated, analyzed, and contrastively evaluated

[http://w3.umh.ac.be/genlog/SE/alternative tools, methods, or techniques
SE-contents.html]

Software that is used by the computer hardware to give the system its

Description of the system in terms of the stakeholders that have to make

298 Glossary

common ground

The knowledge shared by interlocutors or collaborators. Effective
collaboration requires periodic verification of common ground
commonalities

The set of features or properties of a component (or system) that are the
same, or common, between systems [http://w3.umh.ac.be/genlog/SE/SE-
contents.html]
community of practice

Groups of actors that share values, norms, concepts, behavior scripts,
and strategies pertaining to a domain of human endeavor
compatibility

The ability of two or more systems or components to perform their
required function while sharing the same hardware or software
environment [IEEE Std 610.12-1990]
component

A component is a self-contained piece of software with clearly defined
interfaces and explicitly declared context dependencies [Stahl and Volter
2006]
Component-Based Software Engineering (CBSE)

A software engineering approach that builds software systems from re-
usable software components
conceptual framework (or frame of reference)

Establishes terms and concepts pertaining to the content and use of a
specific architectural descriptions
confirmation bias

Tendency of human decision-makers to seek and prize data that
confirms their decisions over data that disconfirms their decisions
consistency

The degree of uniformity, standardization, and freedom from
contradiction among the documents or parts of a system or component
[IEEE Std 610.12-1990]
consistency management

The process of managing the consistency between the different software
artifacts developed during the software development process
coordination

Self-management among collaborators to ensure that individual
contributions can be synthesized into effective wholes
corrective maintenance

Software maintenance changes that are made in order to repair defects

Glossary 299

correctness

The ability of software products to perform their exact tasks, as defined
by their specification [Meyer 1997]
Commercial Off-the-Shelf (COTS)

Software products that are purchased rather than custom made
criterion-based evaluation

A way of evaluating a decision alternative or artifact feature which
consists of (1) the statement of a criterion, e.g. a goal, and (2) an
assessment of the alternative or feature with respect to the stated criterion,
these two elements in effect constituting a single argument for or against
the alternative or feature
decision-centric rationale approaches

Rationale approaches that deal with the rationale for decision-making in
artifact creation
Decision Representation Language (DRL)

Lee’s revision and extension of the Potts and Bruns approach to
rationale. DRL’s schema corresponds roughly to a superset of QOC’s
schema and has dependency relationships between elements. Like QOC,
DRL uses a form of criterion-based evaluation
defect

A problem in a software artifact that causes it to be incorrect
deliberate (verb)

To consider what the answer to a question should be and, more
specifically, to evaluate one or more proposed answers to a question
design (noun)

An artifact description that is detailed enough to be used to construct
that artifact
design pattern

Names, abstracts, and identifies the key aspects of a common design
structure that make it useful for creating a reusable object-oriented design
[Gamma et al. 1995]
design rationale (DR)

 DR is the reasoning underlying the creation and use of artifacts
design space decisions

Decisions as to what features that an artifact will have
Design Space Analysis

Representation of a set of design space decision tasks together with their
decision alternatives and the evaluations of these alternatives
domain-oriented issue base (DOIB)

PHI-based collections of issues, positions, arguments, and subissues that
commonly arise in a particular design domain

300 Glossary

detailed design

 The result of the process of refining and expanding the preliminary
design of a system or component to the extent that the design is
sufficiently complete to be implemented [IEEE Std 610.12-1990]
domain

An area of knowledge or activity characterized by a set of concepts and

enhancive maintenance
Software maintenance changes that are made to add additional features

or otherwise improve a software system
extensibility

The ease of adapting software products to changes of specification
[IEEE Std 610.12-1990]
extreme programming (XP)

A popular agile method that proposes taking software best practices “to
the extreme”
familiarity bias

Tendency of human decision-makers to consider familiar data and
interpretations as typical
fixation

Tendency of designers to make solution decisions before adequately
understanding the full problem space, and then to disproportionate adduce
confirmatory evidence to justify and maintain those decisions
flexibility

The case with which a system or component can be modified for use in
application or environments other than those for which it was specifically
designed [IEEE Std 610.12-1990]
framework
 A generic structure that can be adapted or extended via systematic
extension or configuration [adapted from Stahl and Volter 2006]
functional design

The result of the process of defining the working relationships among
the components of a system [IEEE Std 610.12-1990]
functional requirement

A requirement that describes functionality that the system must provide
in order to be acceptable to the customer
functionality

The extent of services provided by a system [adapted from Mayer 1997]
generality

The degree to which a system or component performs a broad range of
functions [IEEE Std 610.12-1990]

terminology understood by practitioners in that area [Booch et al., 1990]

Glossary 301

generative paradigm

An alternative devised by Gruber and Russell to the “record and replay”
paradigm used by almost all other approaches to rationale. Rather than
recording rationale, the generative paradigm involves recreating it after the
fact by deriving it from various data obtained automatically during design
glass-box testing

Software testing based on information about the structure of the code.
Examples would be branch or path testing
hypermedia (hypertext)

Information structure consisting of nodes of content including link
anchors to other nodes of content
iconic models

Graphical models in Euclidean space of artifacts that will occupy
Euclidian space when constructed
ility

A quality attribute, or nonfunctional requirement. The name comes from
the form of many requirements such as scalability, reusability,
modifiability, etc.
implementation

The software lifecycle phase where the software (i.e., the source code) is
written
ill-structured problem

Term used by Reitman and later by Simon to refer to open-ended
problems, like software design, that cannot be uniquely decomposed into

inconsistency
A state in which two or more overlapping elements of different software

models make assertions about aspects of the system they describe which
are not jointly satisfiable [Spanoudakis and Zisman 2001]
incremental delivery

A software development process where the software is developed and
delivered in increments rather than as one completed system at the end of
development
inspection

A verification technique that involves reviewing the software artifacts to
look for defects
integrated rationale

Rationale for a software system that is stored with or as part of the
software that it describes and explains

verifiable steps. See also “wicked problems”

302 Glossary

integration testing

Tests performed to ensure that the subsystems that comprise a software
system work correctly together
interaction

interface

types of the messages that are exchanged and the order in which this may
occur [Chaudron et al. 2004]
Issue-Based Information System (IBIS)

A way of modeling argumentation; it was invented by Rittel in 1970.
See also “wicked problems”
Knowing-in-Action

In Schön’s theory of Reflective Practice, the process of performing tasks
in an intuitive, nonreflective manner that involves unselfconscious
engagement in the task at hand
Lehman’s laws

Eight laws that describe how software systems evolve
maintenance

Software modifications made to systems after they have been delivered
to the customer
metaphor (in software design)

A direct comparison of a software component to a physical object (desk
top), a social institution (library), an animate entity (garbage collector),
etc. to assist in comprehension and communication. See also

metrics
Measurements of software properties or processes used to evaluate the

software and/or the process by which it was developed
model

data models that give a static view and process models that give a dynamic
view [Chaudron et al. 2004]
model (with concurrent multiple views of RBSE)

Describes logical organization, dynamic behavior, software
organization, process decomposition, and physical realization
Model-Driven Architecture (MDA)

In MDA, models are the central elements of the software development
process. The main goal is to transform platform-specific models, possibly
automatically, into platform-independent models [Kleppe et al. 2003]

The mutual influence of two actors and/or components. Interaction is
performed via an interface [Chaudron et al. 2004]

For two components, or a component and an external actor, a model of

“anthropomorphism”

A formal representation of an aspect of a system. Typical examples are

Glossary 303

model-driven development

Software developed by first building a model of the system and then
transforming it into the code
multiscale visualization

Visualizations with qualitatively/structurally distinct levels of zoom
narrative

An informal design rationale representation in which stories or scenarios
describe how and why a design decision was reached, or how and why a
user experienced a design system
naturalistic decision-making

Decision-making methodology that emphasizes identifying and
leveraging the strengths of human decision-making, instead of merely
remediating weaknesses and fallacies
nonfunctional requirement (NFR)

Software requirements that describe desirable properties of the software
that do not map to specific functionality but instead apply to the system as
a whole
ontology

A set of entities, their definitions, and the relationships between them
Open-source software

Software where the source code is freely available for use and
modification
open–closed principle

A class that follows the open-closed principle is open to extension and
closed to modification
operational environment

The environment in which the software is operating after delivery
Pareto optimality

A solution that cannot be improved further by one criteria without
worsening in another
pattern mining

A process of extracting and documenting architecturally significant
information from patterns to support the architecture design and evaluation
process
perfective maintenance

Changes to improve a software system that are not in response to defects
Personal Software Process (PSP)

A methodology for improving individual software process by collecting
and using metrics captured during software development on an individual
basis

304 Glossary

platform

A set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any
application supported by that platform can use without concern for the
details of how the functionality provided by the platform is implemented
[Kleppe et al. 2003]
portability

The property of a system which permits it to be mapped from one
environment to a different environment [Randal and Buxton 1970]
post-specification traceability

The ability to trace from a software requirement forward to the code that
implements it and the tests that verify it has been implemented
Potts–Bruns rationale approach

A modification of IBIS for use in software design. The crucial
innovation of their approach is to include in their schema elements that
represented “intermediate artifacts,” i.e., the various models, documents,
and prototypes produced during design to represent the software being
designed
pre-specification traceability

The ability to trace from a software requirement backward to the
customer request that it responds to
preventative maintenance

Changes to a software system to avoid anticipated future problems
problem-based evaluation

Informal design rationale approach in which a set of problem scenarios
are used to evaluate a design proposal analytically
Procedural Hierarchy of Issues (PHI)

A refinement of IBIS whose main innovation is to show that frequently
a decision on one issue depends on the decisions made on others. PHI
models rationale as a quasihierarchical structure of issues linked by
dependency relationships
product line

A collection of existing and potential products that address a coherent
business area and share a set of similar characteristics. All these products
are made by the same process and for the same purpose, and differ only in
style, model or size [http://w3.umh.ac.be/genlog/SE/SE-contents.html]
program comprehension

The process of understanding the source code of a software system

Glossary 305

quality assurance

An approach to ensure that the software product, and the processes used
to develop it, conform to the software specification and other required
standards and procedures
Questions, Options, and Criteria (QOC)

A rationale approach resembling IBIS but not derived from it. Like
IBIS, QOC centers on decision tasks that are represented as questions, but
unlike IBIS, QOC deals only with “design space” questions, i.e. those that
determine features of the designed artifact, rather than the wider range of
questions dealt with by IBIS. QOC’s main innovation is the use of
criterion-based evaluation in the first level of argumentation of decision
alternatives (options)
Rapid Application Development (RAD)

A software development process that makes heavy use of Computer
Aided Software Engineering (CASE) tools to build software systems
quickly
rationale approach

A way of modeling and using rationale
rationale database

Structured repository of reusable rationales, accessible via type of
system, application, scenario, issue, position, argument, etc.
Rationale Based Software Engineering (RBSE)
 Research on and use of rationale capture and delivery to support every
aspect of software engineering.
rationale capture problem

The difficulty of capturing rationale in a structured form. This is
considered by many to be the main impediment to widespread use of
rationale approaches in artifact creation in general and software
development in particular

rationale management
 The capture, representation, retrieval, and use of the reasoning behind
decisions made during the system development process
rationale management system

Software tools developed to support rationale management
RATSpeak

Burge’s extension of DRL to make it more suitable for software
engineering. RATSpeak introduces new types of elements into its schema
and provides an argument ontology tailored to software engineering. These
additions enable automated checking and inference making

306 Glossary

recognition-primed decision model

Expert decision model in which situations are rapidly classified and
addressed as exemplars of known prototypes
re-engineering

Rewriting all or part of an existing software system to improve its
quality. This typically refers to a legacy system currently in use that is no
longer maintainable.
refactoring

Making modifications to code to correct “bad smells” and to prepare the
code for future extension. Refactoring does not add or change functionality
Reflection-in-Action

In Schön’s theory of Reflective Practice, the process of explicitly
reflecting on why an intuitive performance of a task broke down, i.e., led
to unforeseen results
Reflective Practice

Schön’s theory that design and other practical problem solving activities
consist of repeated alternation between two processes that he labeled
Knowing-in-Action and Reflection-in-Action
regression testing

Repeating earlier tests on a previously tested product to ensure that new
modifications have not introduced defects into existing code
requirement

A property that is demanded to be fulfilled by a software system
[adapted from Chaudron et al. 2004]
requirements elicitation

Obtaining requirements from various system stakeholders by a variety
of techniques including interviews, observation, and prototyping
requirements engineering

The process of eliciting and documenting software requirements to
ensure completeness and consistency
requirements traceability

The ability to trace the impact of a requirement on the delivered system
in order to ensure that all requirements have been satisfied
reuse

Using existing code when building a new system. This may or may not
involve modifying that code
reverse engineering

Using the source code to create the specification and models that
describe the system

Glossary 307

satisficing

Evaluation metric used in problem solving and decision-making in
which the first acceptable solution is adopted. Contrasts with optimization
Scenario Claims Analysis (SCA)

Informal design rationale in which core user interactions afforded by a
software system are described by scenarios and implicit design tradeoffs in
the scenarios (claims)
semantic inference

Inferences that use the semantics of the items being analyzed. In the
case of rationale, it means inferencing over the contents and not just the
structure.
Service-oriented development

Systems are built around a Service Oriented Architecture (SOA) using
loosely coupled distributed services that can be accessed transparently of
their platform implementation
situated cognition

Approach to analyzing human thought that regards the actors and
objects of social and material contexts as constitutive resources
social capital

A sense of generalized reciprocity within a social group
social loafing

The tendency of people to work less hard when working in the context
of others doing the same work
Software Engineering (SE)

The development and maintenance of software by the systematic
application of engineering techniques in the software domain [adapted
from IEEE Std 610.12-1990]
Software Engineering Institute (SEI)

A federally funded (USA) software engineering research center that
conducts software engineering research in a number of areas that include
software architecture, software product lines, and software process
improvement
Software Engineering Rationale (SER)

 SER emphasizes that rationale models are used during all activities of
software development, including requirements engineering, architectural
design, implementation, testing, and system deployment
Software Process (SP)

A related set of activities and processes that are involved in developing
and evolving a software system [Sommerville 2007]

308 Glossary

software process improvement

Evaluating and modifying a software development process to achieve a
higher level of repeatability, maturity, and performance
solution-first bias

Tendency of designers to rapidly frame a solution to a problem they do
not yet fully understand
Spiral model

A software lifecycle model that utilizes iteration where each trip around
the spiral involves determining objectives, assessing risk, developing the
current phase of the product, and planning the next phase
stakeholder

Anyone who has interest in the success of the software project
syntactic inference

Inference over rationale that looks only at the structure of the
argumentation and not at the contents
system

A generic term for a group of interrelated, interdependent or interacting
elements serving a collective purpose [Chaudron et al. 2004]
system architecture

The fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the principles
governing its design and evolution [IEEE Std 610.12-1990]
system engineering

The process of developing a system that must fulfill a certain purpose
using the systematic application of engineering techniques, and of which
software engineering is a part, provided the system has a software
subsystem [Chaudron et al. 2004]
team software process

A methodology for working in teams that includes a framework for
managing, tracking, and reporting on the team’s performance
test case

A software testing document that consists of the input for and expected
result of running the test
Test-driven development

A software development methodology where unit tests are written first
and then the code is written to pass the test
traceability

The degree to which a relationship can be established between two or
more products of the development process [adapted from IEEE Std
610.12-1990]

Glossary 309

testing

Executing a piece of software to look for defects
traditional approach to rationale capture

The approach in which rationale is structured according a given
rationale schema as it is recorded
Unified Modeling Language (UML)

A standardized specification language for object modeling
[http://www.omg.org/uml]
Unified Process (UP)

A software development framework utilizing incremental and iterative
development. The Unified Process contains four phases: inception,
elaboration, construction, and transition
unit testing

Testing the smallest testable pieces of source code
usage-centric rationale approaches

Rationale approaches that deal with rationale derived from the
experiences of users as they use artifacts
validation

Ensuring that the software system conforms to its specification
Value-based Software Engineering

A theory of software development where the emphasis is on providing
value to all the system stakeholders
verification

Ensures that the software system is fit for its intended use
view

A view is a representation of a whole system from the perspective of a
related set of concerns [IEEE Std 1471-2000]
viewpoint

A viewpoint is a specification of the conventions for constructing and
using a view. Typical viewpoints are structure, behavior, functionality,
security, distribution, performance, usability, usefulness, and reliability
[IEEE Std 1471-2000]
V-model

A software development lifecycle model where each development stage
is paired with the corresponding verification stage
war-room (in design)

A dedicated design workroom in which analyses and artifacts are pinned
to the walls
Waterfall model

A sequential software development model where development flows
from one stage to the next

310 Glossary

white-box testing

Software testing that is based on information about the structure of the
code. Examples would be branch or path testing.
wicked problems

Rittel’s theory of problems of artifact creation as fundamentally open-
ended and potentially controversial. According to Rittel, such problems
cannot be solved using a strictly scientific approach or purely automated
methods. Instead, their solution requires methods that support creative
human problem solving by means of an “argumentative approach.”
Wicked problems theory was used to justify Rittel’s pioneering work on
design rationale

Index

“throw one away”, 69
.NET, 201
 “accidental war” scenario, 75
“fake” a rational design process, 74

A

Additive Sum Methods, 96
agile, 262
analysis, 175
Analytic Hierarchy Process (AHP), 97,

208
anti-models, 73
Apache, 134
applicability, 86
ARCHIE, 238
architectural framework, 242
architecture, 25
architecture decisions, 207
Argument Ontology, 11, 86, 181, 194
argumentation, 100, 217
argumentative approach, 6
arguments, 80
artifact-based indexing, 247
artifact-space analysis, 245
assessment, 175
associative indexing, 238
Assumption-based Truth Maintenance

System (ATMS), 193
assumptions, 18, 99, 118, 190, 260
Attribute-Based Architectural Styles

(ABAS), 127

B

bad smells, 119, 192
beacons, 194
Beagle maintenance support tool, 196
belief fusion, 98

black-box testing, 178
bottom-up testing, 179
browse-and-query, 247
Bugzilla, 134

C

C++ Standard Template Library, 201
CAD-CAM, 27
Capability Maturity Model (CMM), 39,

136
Capability Maturity Model Integration

(CMMI), 136
capture, 55, 223, 244
capture problem, 262
Case-Based Design Aids (CBDAs), 62
Case-Based Reasoning (CBR), 35, 61
case libraries, 64
challenges, 255
champions, 235
change, 18, 258
change analysis, 66, 116
claims, 86
claims repository, 86, 87
classical decision model, 69
code profiling, 192
cohesion, 190
collaboration, 219, 258
Commercial Off-The-Shelf software

(COTS), 32, 115, 133, 178, 201, 208
Common Object Request Broker

Architecture (CORBA), 201
communication, 253, 259
communities of practice, 75
Compendium, 42, 97, 178, 251
complexity, 70, 255
component, 182, 201
Component-Based Software

Engineering (CBSE), 134, 201, 205

312 Index

Component Object Model (COM), 201
Computer-Aided Design (CAD), 26, 51,

237
Computer-Aided Software Engineering

(CASE), 26, 133
computer supported collaborative work,

26
computer-mediated communication, 253
concept analysis, 194
concept assignment problem, 195
conceptual framework, 213, 256
configuration management, 221
confirmation bias, 68
consistency, 113, 121
consistency checking, 45
consistency management, 113
context, 71
Cooperative Maintenance Conceptual

Model (CM2), 197
Cooperative Maintenance Network

Centered Hypertextual Environment
(COMANCHE), 197

coordination, 219, 258
corrective maintenance, 189
cost–benefit tradeoffs, 70
coupling, 190
CRACK, 51
criteria, 70, 81
CVS, 135

D

deadlock, 70
debug testing, 176
Decision Analysis and Resolution

(DAR), 44, 136
decision-making, 15, 215
decision problems, 225
Decision Representation Language

(DRL), 6, 49, 94, 122, 216, 245
decision trees, 99
decision-based indexing, 247
decision-centric, 215
decision-centric rationale, 260
decision-making, 67, 118, 178, 244
delivery problem, 262
Dempster–Shaefer, 99
dependency relationship, 233, 265
descriptive, 15, 215, 225
design argumentation, 81
design decision stereotype, 88

design decisions, 83
design features, 100
design history, 85
design metaphors, 56
Design Pattern Rationale Graphs, 204
Design Patterns, 35, 64, 119, 190, 200,

204, 265
Design Rationale (DR), 38, 223, 257
Design Rationale in Value Engineering

(DRIVE), 59
Design Recommendation and Intent

Model (DRIM), 94
Design Recommendation and Intent

Model Extended to Reusability
(DRIMER), 191, 204

design solution, 81
design space, 224
Design Space Analysis (DSA), 59, 245
DesignMuse, 62
Dialogue Mapping, 42
differential description, 237, 248
Dijkstra, 176
directed acyclic graph (DAG), 218
documentation, 76, 81
domain-oriented construction kit, 51
Domain-Oriented Issue Bases (DOIBs),

64, 265

E

Eclipse, 29, 54, 89, 134, 238
effort, 62
emergent requirements, 68
empirical evaluation, 101
enhancive maintenance, 190
ensemble learning, 98
enthememes, 11
evaluation, 175
evolution, 187
Evolution Matrix, 196
evolutionary, 261
explosive growth, 258
Extreme Programming (XP), 132, 228,

262

F

Fagan Inspections, 177
familiarity bias, 68
Feature location, 195
feedback, 232

Index 313

Firefox, 134
fixation, 69
formalization, 237
functional specification, 88
future software development, 263

G

generative paradigm, 56
generative rationale, 13
Goal-Centric Traceability (GCT), 117
Government Off-The-Shelf software

(GOTS), 201
graphical IBIS (gIBIS), 42, 74, 82, 97,

251

H

HERMES, 96
hierarchical decomposition, 71
human error, 73
human–computer interaction (HCI), 65
hyperdocuments, 64, 245
hypertext, 63

I

iconic models, 54
idealizations, 74
IKIWISI, 229
ilities, 117
impact assessment, 120, 193
inconsistency, 121
incremental, 20, 261
incremental delivery, 131
incremental development, 181
incremental formalization, 237
Indented Text IBIS (itIBIS), 42
indeterminacy, 70
influence diagrams, 99
influence relationships, 233
InfoRat, 95
informal notations, 89
inspection, 175
Integrated Product Development

Capability Maturity Model (IPD-
CMM), 136

integration testing, 179
integrative architecture, 242
integrative delivery, 247
intent, 129, 182

interaction scenarios, 100
Interactive Development Environments

(IDEs), 26, 88
intermediate artifacts, 244
Internet, 255
intrinsic evaluation, 101
intrusiveness, 236
intuitive decisions, 260
Issue-Based Information Systems

(IBIS), 5, 25, 42, 49, 74, 79, 94, 215,
245

issues, 80
iteration, 32, 43
iterative approaches, 261
Iterative models, 131
iterative software development, 228

J

JANUS, 35, 51, 88, 251
Java Package Explorer, 89

K

KBDS, 95
Knowing-in-Action, 52
knowledge management, 184
knowledge transfer, 19

L

LaSSIE (Large Software System

Information Environment), 194
Latent Semantic Indexing (LSI), 194
Law of Continuing Change, 113
legacy systems, 192
Lehman’s laws, 187
linear opinion pool, 98
LINK-UP (Leveraging Integrated

Notification Knowledge with
Usability Parameters) system, 86

Linux, 134
longevity, 255

M

maintainability, 178
maintenance, 17, 28, 46, 129, 181, 221
maintenance prediction, 193
maintenance recovery, 196
management, 259

314 Index

managing change, 260
memory aid, 14
mental models, 72
Method for Requirements Authoring and

Management (MRAM), 206
metrics, 184, 196
Microelectronics and Computer

Technology Corporation (MCC), 49
MicroStation95, 57
MIKROPLIS, 50
Model-Based Reasoning (MBR), 61
model dependency descriptors, 120
model-driven development (MDD), 135
Moore’s Law, 255
Mozilla, 134
multi-scale data structures, 87

N

narrative, 84
naturalistic decision-making, 67
network presentation of rationale, 81
NFR Framework, 117, 191
non-functional requirement (NFR), 88,

117, 175, 177

O

Open-source software development, 134
open–closed principle, 191
operational testing, 176
operations and maintenance (OEM), 190
options, 81
OTSO method, 208

P

Pareto Optimality, 97
participation, 260
path-based impact analysis, 120
patterns, 203
Personal Software Process (PSP), 137
PHI-based Design Intelligence

Augmentation System (PHIDIAS),
35, 50, 251

positions, 80
possibility theory, 99
Potts and Bruns, 8
prescriptive, 15, 214, 225
presentation, 44
problem-based evaluation, 85

Procedural Hierarchy of Issues (PHI), 6,
216, 245

process, 81
process improvement, 188
process patterns, 205
process-oriented, 6, 216
process-oriented approach, 6
PROCSSI, 194
product Line, 201
Product Line Engineering, 206
program change histories, 120
program comprehension, 194, 195
program slicing, 120
project management, 18, 41
project planning, 126
prompted capture, 246
prototype, 33
pseudo-code, 244
Program Visualization (PV), 195

Q

Quality Assurance, 183, 189
quality requirements, 127
questions, 81
Questions, Options, and Criteria (QOC),

6, 49, 81, 94, 198, 215, 245

R

Raison d-Etre project, 85
randomized testing, 181
Rapid Application Development (RAD),

133
rapid prototyping, 133
Rational Software, 132
Rational Unified Process (RUP), 132
rationale, 73
Rationale Construction Framework

(RCF), 57
rationale databases, 86
Rationale Management System (RMS),

4, 47, 88, 241
rationale base, 86
Rationale-Based Software Engineering

(RBSE), 4, 47
RATSpeak, 6, 29, 49, 61, 86, 95, 114,

216
recognition-primed decision model, 72
redesign, 264
refactoring, 119

Index 315

reflection, 73
Reflection-in-Action, 52, 231
Reflective Practice, 52, 231
regression test suite, 192
regression testing, 179, 181
reliability, 182
Representation and Maintenance of

Process Knowledge (REMAP), 88,
95, 118, 250

requirements, 220, 266
requirements elicitation, 127
requirements traceability, 127, 179
research challenges, 256
Resources-based Approach for COTS

Evaluation and selection (RACE),
209

reusable rationale, 253
Reusable Rationale Blocks (RRBs), 203
reuse, 19, 47, 199
re-use of rationale, 264
reverse engineering, 192
review, 175
rich traceability, 46

S

satisficing, 72
scale, 255
scenario-based design, 100
Scenario-Claims Analysis (SCA), 6, 30,

45, 66, 84, 93, 215, 227, 260
scenarios, 84
schema, 225
SE tools, 257
SeeSoft visualization technique, 195
semantic inference, 121
semiformal notations, 82
service-oriented development, 135
SHARED-DRIM, 97
SHaring and Reusing Architectural

Knowledge (SHARK), 46
SIBYL, 99, 122, 251
situated cognition, 73
sketches, 244
SoftGoal Interdependency Graph (SIG),

117
Software Architecture Adaptability

Assistant, 191
software engineering, 37
Software Engineering Body of

Knowledge (SWEBOK), 38, 218

Software Engineering Rationale (SER),
4, 38, 50, 79, 263

Software Engineering Using RATionale
(SEURAT), 12, 60, 86, 95, 117, 133,
193

software integrity, 176
software lifecycle, 46, 125, 263
software lifecycle model, 223
Software Maintenance Expert System

(SMES), 193
software product lines, 206
Software Quality Characteristics Tree,

180
software visualization, 195
solution-first bias, 69
source code call graph, 120
spatial hypertext systems, 237
Spiral Model, 34, 131
SPUR, 21
stakeholder, 35, 42, 224
stand-alone RMS, 257
standards, 175
stories, 72
story-based rationales, 75
storyboard scenarios, 85
structured argumentative discourse, 252
structure-oriented, 216
structure-oriented approach, 6
suite of problems, 12
symbolic models, 54
system testing, 179
Systems Engineering Capability Model

(SECM), 136

T

tactics, 180
TEAM, 250
Team Software Process (TSP), 137
Technical Risk Estimation (TRE) tool,

120
Technology Readiness Level (TRL), 208
terminology, 257
test case prioritization, 179
test cases, 183
test coverage, 177, 181
Test-Driven Development, 178
testability, 180
Test-First Development, 178
testing, 28, 175, 220
testing integrity, 183

316 Index

the task-artifact cycle, 34
Theory-W, 42, 132
threaded discussion, 247
tool, 81
Tool for Requirements Authoring and

Management (TRAM), 206
top-down testing, 179
Toulmin, 94
Tower-of-Babel, 257
traceability, 17, 116
tradeoffs, 84
traditional approaches, 257
Truth Maintenance Systems (TMSs),

100

U

uncertainty, 98
Unified Modeling Language (UML), 88,

135
Unified Software Development Process,

132
Unified Specification of Components

framework, 206
unit testing, 128, 178
unprompted capture, 246
urban planning, 25

usage scenario, 227
usage-centric, 215

V

validation, 128
validity, 86
Value-Based Software Engineering, 100
value-based, 185
verification, 128, 220
Verification and Validation (V&V), 128,

175
V-model, 130

W

war-room, 82
waterfall model, 129
Web Services, 135, 201
Weighted Sum Method (WSM), 96
what–if? reasoning, 72
wicked, 84
wicked problems, 5
win conditions, 132
WinWin, 34, 94, 178, 226, 250
workflows, 84

	ForewordBas.pdf
	ForewordColin.pdf
	Part 1.pdf
	ch-01.pdf
	ch-02.pdf
	ch-03.pdf
	ch-04.pdf
	ch-05.pdf
	Part 2.pdf
	ch-06.pdf
	ch-07.pdf
	ch-08.pdf
	ch-09.pdf
	Part 3.pdf
	ch-10.pdf
	ch-11.pdf
	ch-12.pdf
	ch-13.pdf
	ch-14.pdf
	ch-15.pdf
	Part-IV.pdf
	ch-16.pdf
	ch-17.pdf
	ch-18.pdf

