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Foreword 

The Search for Meaning 

 
At the risk of appearing to exaggerate, I will argue that the pursuit of 
rationale in engineering is nothing less than a search for meaning. On the 
face of it, capturing, recording, and perusing rationale in support of 
software engineering is a worthy software management activity, whose 
benefits are well documented and accepted. Indeed chapters of this book 
speak to this issue. However, there is a more significant reason for the 
pursuit of rationale: a desire to make sense of the world – to explain it and 
to explain its behavior, both expected and unexpected. Weick calls this 
sensemaking, and of course is right insofar as the world makes ‘sense’. 
Wouldn’t it be grand if we were able to understand why the world is 
structured as it is, and why artifacts in the world have been engineered to 
behave the way they do? Sometimes, the reasons why are straightforward: 
an engineer solving a problem in the world may recognize it as a normal 
problem that he has encountered before, the solution of which is well 
understood, tried, and tested. The rationale for his engineering solution in 
this case is mostly reusable – after all he is engaging in normal 
engineering, in normal design (Vincenti 1990). 

But what if the problem encountered is radical? Well, Vincenti tells us 
that we need to engage in radical engineering, in radical design. The 
consequence of this is that we should expect to fail in our first attempts at a 
solution, but strive to learn from our failures, so that future encounters 
with our radical problem become more normal. 

It is in this transition from radical to normal that rationale research 
offers attractive opportunities for advancing the state of the art in software 
engineering, and offers an intellectual umbrella for breaking new ground in 
this area. This umbrella needs to cover both problem analysis in pursuit of 
stakeholder requirements, and engineering design in pursuit of solutions to 
those requirements. Research on the relationship between requirements 
and design, on managing traceability and software evolution, and 
ultimately on assuring the quality of software engineering solutions, all sit 
comfortably under this umbrella. 
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However, there is a difficulty, observed by Jackson (Jackson 2007). As 
we specialize and strive to evolve the discipline of software engineering 
into normal engineering, we find that much normal design rationale is 
hidden, perhaps lost in time, when imaginable alternative solutions were 
considered and discarded. We then find ourselves back to where we 
started: trying to make sense of what we have already, trying to understand 
the reasons why the normal design we have before us is the way it is. 
Weick writes:  

Sensemaking is about such things as placement of items into 
frameworks, comprehending, redressing surprise, constructing 
meaning, interacting in pursuit of mutual understanding, and 
patterning. (Weick 1995, p.6) 
 
My colleague Simon Buckingham Shum (2007) has taken Weick’s 

message to heart, and has made sensemaking the centerpiece of his 
framework for constructive argumentation and explanatory rationale. 

A book such as this is important because the development of software is 
engineering and not science. It is not enough simply to understand why 
software behaves the way it does, but rather how it can be built – rationally  

(Parnas and Clements 1986), or at least systematically – to behave as 
intended. We need the framework offered by this volume to develop such 
meaningful software. 

 
Bashar Nuseibeh 
Professor of Computing and Director of Research 
The Open University, UK 



Foreword 

Design Rationale: Retrospect and Prospect 

 

Danish philosopher Soren Kierkegaard once said that life can only be 
understood backwards but must be lived forward. He might easily have 
been talking about the software design process. In a software project, many 
developers work together on a system development effort, some of them 
only for some phases of the project, and few with an overview of the entire 
system. As a system emerges from this process, it has to be explained for 
future designers, maintenance programmers, and others. Some of the logic, 
the rationale for the way the system is, may have been apparent from the 
beginning. But in many cases, the trajectory of all the little decisions that 
contribute to the way a system is when it is released may only be apparent 
in retrospect when tied together in a deliberate activity of sensemaking and 
documentation. 

It is not supposed to be this way. Software engineering textbooks and 
process improvement manuals exhort us to have well-defined requirements 
and a core architectural vision that drive the details forward. Such 
requirements and architectural features must be documented and 
internalized by project staff so that everyone appreciates the significance 
and impact of changes. But the real life of software projects is not so 
simple. Stakeholders change their minds. The business context of a system 
changes during its development. As infrastructure technology changes, 
new implementation opportunities become available. Architectural 
commitments have to be changed or diluted as their consequences become 
apparent. People simply forget what they are doing and develop different 
styles in how they work and implement software that may conflict. 
Kierkegaard, of course, was not a software architect. His struggle was not 
with customers, users, and intransigent or imperfect fellow developers, but 
19th century institutions, repression, and hypocrisy. But the consequences 
of both struggles are the same: we cannot always make sense of what is 



viii      Foreword 

going on when we are in the middle of things until after the smoke has 
cleared. And the root causes are essentially the same too: the world is 
complex, and people are only human. 

Design rationale research started in the 1980s from the recognition that 
the results of design often do not make sense to those outside the design 
team, but have to be made sense of to foster better understanding during 
the ongoing process of maintenance and feature evolution. There were two 
strands to this research emerging from different communities, and these 
strands persist to the present day. In a nutshell, the difference between 
them goes back to Kierkegaard’s comment: if we have to make a choice 
between the two alternative modes of sense making, should we try to make 
design easier to explain in retrospect, or should we make it more 
transparent and reflective while it is going on? These answers led to 
retrospective rationale research and prospective rationale research. 

In the retrospective rationale community, the concern was primarily 
how to document large-scale software architectures or standards. Since an 
architecture is a stable foundation for a continually evolving system, and 
standards are expected to endure over generations of many systems 
produced by many organizations, it is essential to document the 
architecture and standards and the reasons behind them. Architectures and 
standards are the types of thing that we are stuck with once we make a 
commitment to them and then come to depend on for a myriad of detailed 
decisions. They are therefore high-risk commitments. 

The first notable example of the use of rationale in after-the-fact 
documentation came from the team led by David Parnas, who used the 
avionics software of the A-7 aircraft as a microcosm for exploring design 
specification and documentation techniques (Parnas and Clements 1986). 

The A-7 work has had an influence in more recent efforts and methods, 
such as the Software Engineering Institute (SEI) architecture initiative 
(Clements et al. 2002). Different but similarly motivated efforts have led to 
architectural decision support technologies such as the Architecture Design 
Decision Support System (ADSS) (Capilla et al. 2007). There is a general 
consensus emerging that the documentation of rationale, whatever form it 
takes, should be tightly bound to the documentation about the architecture 
itself. For example, Zhu and Gorton (2007) devised a Unified Modeling 
Language (UML) profile for adding rationale information to standard 
UML design diagrams. In this way, the rationale is a first-class part of the 
documentation, not an addendum or collection of low-value notes. 

In the standards community, it has become almost universal to 
document the rationale for parts of a standard, often in terms of 
comparisons between what the standard requires and plausible but inferior 
alternatives. A pioneering example of this in software engineering was the 
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documentation and rationale for the Ada programming language and 

layered structure (Druffel and Buxton 1980). 
The explanatory role of retrospective rationale documentation means 

that it is not critical that the rationale be historically accurate. Designers 
might well have had considerations in mind that led to architecture 
decisions that no longer seem relevant in retrospect. Conversely, making 
sense of the overall sweep of the architectural design process in retrospect, 
it may be clear that reasons were prominent that were not completely 
apparent at the time. Reasons given may be a white lie, they may 
oversimplify or distort that convoluted process that people went through. 
They may even be self-serving or apologetic, designed to protect the 
authors from criticism. After the fact, these factors may not be important to 
maintenance programmers or designers of later releases. An approximate, 
simplified and glossed rationale, even one that is somewhat distorted, may 
be more suitable for supporting the concerns of these professionals than 
documentation that more faithfully describes the agonizing process of 
decision-making that the developers actually went through. 

In keeping with this, creative and constructive distortion of the design 
decision-making process is another property of retrospective rationale: it 
has to be carefully crafted. Like the documentation of the architecture’s 
form, the documentation of its rationale is expected to endure and become 
part of the project’s knowledge base as the project goes forward. It 
therefore makes economic sense to invest resources and time in writing 
rationale documents and clearly articulating them. 

In contrast, another community came to design rationale research in the 
1980s. These researchers had been inspired by the pioneering work of 
Horst Rittel and other design theorists in their attempts to provide structure 
to collaborative decision-making among designers and other stakeholders, 
particularly in community architecture and urban planning projects, when 

characterized by dispute about what the problem actually is and how one 
would recognize whether it had been solved. Thus, a wicked problem is 
not just hard; its very nature is contested and cries out for discussion. In 
this second tradition of design rationale research, therefore, an emphasis 
was placed on semi-structured representations of ongoing issues, positions, 
and arguments. The emphasis was on supporting problem formulation and 
decision-making as they occurred rather than seeking to justify decisions 
for people who came after. 

Such support is support for design rationale, though, for two reasons. 
The first reason is definitional: the rationale for a decision consists of the 

a particularly good example of the analysis of why the environment had a 
programming support environment. The latter (code named “Stoneman”) is 

the problems they faced were “wicked”. A wicked problem is 
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reasons why it was chosen. These reasons do not have to be documented 
with a future consumer, such as a maintenance programmer, in mind. Even 
if nobody were to read the rationale in the future, its documentation and 
value during the unfolding of the design would not make it any the less a 
record of rationale. A second reason for this type of ongoing decision-
making support counting as rationale is more practical: the information 
may well be useful in the future by accident, even though that may not be 
the motivation for its capture. 

two streams of research. Both streams emphasize care and professionalism 
during design. But the careful audience analysis, crafting, and writing of 
rationale documentation in the retrospective rationale tradition emphasizes 
that the recording of rationale is a significant part of a project and should 
be budgeted for and rewarded. In contrast, the capturing of design rationale 
in the prospective rationale tradition implies that rationale documentation 
is a fortuitously gathered by-product of another activity. That other 
activity, collaborative design argumentation and decision-making, may be 
serious, it may be planned and budgeted, and it may be highly structured in 
its processes. But the rationale produced is expected to be immediately 
valuable, and any later benefits that accrue from it should not require any 
further planning or writing. These benefits should come for free. 

Probably the most influential prototype prospective rationale 
management system was gIBIS (Conklin and Begeman 1988), which 
although it never created a major user community, was used in NCR for 
the development of hotel and restaurant support systems (Conklin and 
Burgess-Yakemovic 1991), and the IBIS argumentation model at its core 
has been extremely influential as the baseline for representation of nearly 
all rationale. 

In parallel to the use of rationale capture in software engineering, a 
similar argumentation model based on explicit decision criteria was 
influencing research into user interface design in the human–computer 
interaction (HCI) community (Maclean et al. 1989). Here the design 
decisions were typically more local in scope, such as in the choice of 
alternative user interface widgets or menu structures to support a user’s 
task. The model used, Design Space Analysis, based on questions, options, 
and criteria, rather than the issues, positions and arguments of IBIS, 
emphasized the making of choices between mutually exclusive options and 
was based on explicit and frequently quantitative criteria. The design 
problems addressed were therefore constrained and clearly specified. 
While they may have been subtle and far reaching in their impact on 
usability, they were anything but wicked problems in the sense defined 
above. 

In fact, the term “capture” reveals a fundamental difference between the 
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More recent research in prospective design rationale in software 
engineering tends to emphasize quantitative criteria for choosing among 
alternatives, and the normal targets of these decisions are architectural 
choices such as the distribution of services across a network. Recent work 
in software engineering economics represents an attempt to make these 
design decisions rigorous in the same way that financial decisions in 
business can be based on rigorous projections and risk models (Boehm et 
al. 1995; Bose 1998). Typical of the decision-making methods and models 
that are incorporated into such work are Cost–Benefit Analysis (e.g., 
Kazman et al. 2003) and the Analytical Hierarchy Process (e.g., Lozano-
Tello and Gomez-Perez 2001; Wallin et al. 2007).  

In software engineering, other than the early, limited experiments with 
gIBIS, prospective design rationale research foundered for several years, 
possibly because the unique qualities of software design were largely 
neglected. The increasingly complex argumentation models could have 
applied to the design of anything. In customizing design rationale 
representations to software engineering, a key early insight was that 
software design methods are sets of heuristics for making requirements, 
design, and implementation decisions, not just software notations. Object-
oriented methods, for example, provide guidelines for the identification of 
objects and their responsibilities and guidelines for refactoring when these 
early decisions lead to reorganization. Such methods essentially 
encapsulate reusable design knowledge. Before the widespread adoption of 
object-oriented methods, the methodology community was rather 
fragmented, and so extensions of design rationale representations to 
software methods tended to focus on illustrative methods. Among these 
were Potts and Bruns’s (1988) adaptation of the Liskov and Guttag 

Jackson System Development (JSD), and the later incorporation of goal-
based and scenario-based representations of system requirements into the 
Inquiry Cycle model of prospective rationale (Potts et al. 1994). 

In addition to design methods, which tend to focus on generic design 
decisions, domain-specific issues can also arise that can be captured and 
represented as reusable rationale. An early example of this was Belotti’s 
(1993) attempt to integrate theoretical and practitioner perspectives on HCI 
guidelines through Design Space Analysis. More recent work has included 
domain-specific architectural rationale for automotive software 
engineering (Wallin et al. 2007). 

Not satisfied with the attachment of design rationale to design artifacts 
represented by these methodological extensions or by the introduction of 
explicit and often quantitative criteria in the Design Space Analysis 
community in HCI, some researchers sought to extend the rationale models 

abstraction-based design method, the Potts (1989) treatment of Jackson’s 
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in such a way that some decisions could be made automatically or 
dependencies between decisions could be computed and maintained 
consistently (Ali Babar and Gorton 2007; Lee 1991; Lee and Lai 1991; 
Wang and Xiong 2001) by means of an elaborate and formal data model 
for design rationale information and its relationship to elements in the 
design itself. It is not clear to what extent the benefits of such 
computational support outweigh the burden of recording the rationale 
information in such a rigorous and necessarily fine-grained fashion. Nor is 
it clear whether the structure of such models can be easily maintained as 
the design and its rationale change. Such approaches do promise to be 
extremely valuable when coupled with a formal theory of design change 
and configuration management. 

Recently, however, the focus has returned to reusable software 
engineering knowledge and rationale. The entire software patterns 
community (Gamma et al. 1995) can be regarded as engaged in a quest to 
produce a corpus of rationale documents that discuss design patterns, the 
issues that arise when they are used, the arguments for when they are 
appropriate and when they cause problems, how they interact, and 
illustrations of their use. Debating whether a pattern library is a generic 
library of design artifacts or a rationale library seems rather fruitless, since 
the design alternatives faced by a designer, criteria and considerations that 
affect the decisions, illustrative solutions, and warnings about interactions 
are so inextricably interwoven. The role of rationale is woven through the 
patterns literature, although it has a secondary role to the capturing of 
artifact knowledge. A more explicit role for rationale can be seen in 
Baniassad et al.’s (2003) Design Pattern Rationale Graph (DPRG), a tool 
for linking designs and implementations through rationale information.  

Thus, much of the development of work in the prospective design 
rationale tradition can be seen to be aimed at producing information that 
can be used subsequently, not just as an aid to decision-making in the 
moment. Such subsequent uses may include specific rationale information 
to be referred to later in the same project, or it may even take the form of 
more generic lessons learned that can be applied across projects. 

There have been few comprehensive reviews on design rationale, and 
none of monograph length. The theoretical models of design rationale, the 
phases of the design process during which they are useful, the domain-
specific contexts in which they can be applied, and evidence of practicality 
have been lacking. Only one software engineering textbook, that of 
Bruegge and Dutoit (2004) makes a thorough attempt to integrate design 
rationale into the software engineering process. 

As we enter the third decade of design rationale research, however, now 
is a good time to take stock. Everyone acknowledges that designing is 
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difficult, that it involves many people often over long periods of time who 
need explicit records of who did what, when, and for what reasons. The 
support for design rationale and its integration into software engineering 
processes has not yet reached the mainstream of software engineering 
writing and practice, and it is time that it did. Or as Kierkegaard also said: 
truth always rests with the minority. 
 
Colin Potts 
Associate Professor in the School of Interactive Computing 
Georgia Institute of Technology, USA 



Preface 

The most distinctive thing about humans is not the thumb, of course. It is 
design. Unlike any other animal, we incessantly and dramatically reshape 
both ourselves and our environment. We design ourselves through 
innovating concepts, language, culture, and other practices, and we design 
almost everything around us. It is telling that we now speak of “natural” 
places on the Earth to distinguish the few places we have not (yet!) 
redesigned. 

Among the most complex, diverse, and pervasive things that humans 
design are software systems. The history of software design is almost 
entirely a history of trying to catch up with complexity and diversity. As 
we look back to the 1960s the notion of what was then called the “software 
crisis” seems almost amusing. At that time, barely a decade after the 
invention of software, it was recognized that the complexity and diversity 
of software systems was being elaborated far more rapidly than were 
engineering techniques to manage software development. What is amusing 
is that this was (optimistically) called a crisis, as if it were a temporary 
threat that would in the course of time be rectified. 

But this never happened. Instead the software crisis became chronic. It 
became the context for the software industry and for software engineering. 
And by now, as almost every system is, incorporates, or fundamentally 
depends upon software, as software systems have become utterly pervasive, 
the software crisis has really become an epoch in human history. 

No one is very happy about this, and from time to time manifestations of 
the ongoing software crisis bubble up into dramatic mass media reports 
about how vital defense systems are fundamentally unverifiable, about 
how medical systems make it more or less inevitable than surgeons will 
kill their patients, about how banking systems occasionally share account 
information with unknown hackers, and so forth.   

What are we to do? There are many answers, many approaches, but 
none of them is a “silver bullet” (as Fred Brooks vividly put it). The most 
obvious approach, and quite likely the most powerful, is to explicitly 
describe and justify the design, implementation, and use of software 
systems, and to do this routinely, iteratively, and regularly throughout the 
software development process. We call this “Rationale-Based Software 
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Engineering.” It is not a new idea, though in some areas there are new 
tools and techniques. Rather, it is an essential idea that has been around, 
that we cannot afford to lose track of, and that perhaps can be pushed to 
greater fruition now. In this book, we try to bring together a broad 
discussion of rationale and focus on aspects of the very old and very 
weighty challenge of the software crisis. 

Book Overview 

This book consists of four parts. Part 1 sets the context for the work and 
describes why Software Engineering Rationale (SER) and Rationale-Based 
Software Engineering (RBSE) are essential contributors toward improving 
the software development process. Part 2 describes how Software 
Engineering Rationale can be used to support software development. Part 3 
describes how RBSE can be applied throughout the software engineering 
lifecycle as well as supporting software reuse. Part 4 presents architectural 
and conceptual frameworks for RBSE as well as our vision of future 
directions for RBSE research. 

Part 1: Introduction 

So why capture rationale? Before making a case for why SER capture and 
use should be an essential part of software development, it is important to 
first define what it is. Part 1 defines rationale and sets the context for the 
remainder of the book. 

Chapter 1, “What is Rationale and Why Does it Matter” provides an 
initial discussion of the scope and value of rationale in software engineering. 
An initial introduction of previous work on rationale is provided and we 
make our initial case for why rationale is useful during software engineering. 

Chapter 2, “What Makes Software Different” describes some of the key 
differences between applying rationale to software engineering and applying 
rationale to other domains. This includes both opportunities for use in 
software engineering that are lacking when developing other artifacts as well 
as some of the unique challenges posed by software development. 
Specifically, we look at the role of the computer in software development 
versus physical artifact development as well as the implications of the 
necessity to support iteration in software development on rationale 
management. 

Chapter 3, “Rationale and Software Engineering” introduces both 
Software Engineering and Software Engineering Rationale (Dutoit et al. 



2006b). Rationale has a role to play in defining software processes, 
supporting software project management, and as a mechanism to both 
document and guide decision-making throughout the software process. 

Chapter 4, “Learning from Rationale Research in Other Domains” 
describes key rationale research in other domains and its implication to 
software engineering. The chapter focuses on four areas: domain-oriented 
design environments using Procedural Hierarchy of Issues (PHI) (McCall 
1991); automating design rationale capture in Computer-Aided Design, 
more specifically that using the Rationale Construction Framework (Myers 
et al. 1999); rationale support via Parameter Dependency Networks and 
DRIVE (de la Garza and Alcantara 1997); and how Case-Based Reasoning 
(CBR) systems such ARCHIE (Zimring et al. 1995) relate to rationale. 

Chapter 5, “Decision-Making in Software Engineering” examines the 
role that human decision-making has in software engineering. The chapter 
describes naturalistic decision-making and Klein’s recognition-primed 
decision model (Klein 1998), which addresses some of the problems with 
classical decision making by proposing a strategy more consistent with 
observations of human decision-makers, where the first acceptable 
alternative is selected.  The chapter concludes with a discussion of 
rationale as a resource for decision-making and how rationale relates to 
both the classical and naturalistic views. 

Part 2: Uses of Rationale 

There is little or no point in capturing rationale if there are not ways in 
which it can be used. Part 2 describes some key uses of rationale in 
software development. 

Chapter 6, “Presentation of Rationale” looks at rationale presentation. 
The two major classes of presentation formats, semiformal and informal, 
are described. The chapter then describes new opportunities for 
presentation provided by reusable rationale databases, multiscale 
presentation, and development tool integration. 

Chapter 7, “Evaluation” describes how rationale can be used for 
evaluation from two angles. The first is how argumentation-based rationale 
can be used for decision evaluation by evaluating the consistency and 
completeness of the rationale as well as evaluating support for 
development alternatives taking into account decision criteria, input from 
multiple developers, and uncertainty. The second approach to evaluation 
describes scenario-based evaluation as supported by scenario-based design 
(Carroll and Rosson 1992). 

xvii Preface
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Chapter 8, “Support for Collaboration” discusses rationale and 
collaboration from two perspectives. The first is how the highly 
collaborative nature of software development supports the development, 
codification, and use of rationale. The need for collaborators to justify their 
decisions to each other is a key source of rationale. The other is how 
rationale supports collaboration by encouraging the exchange of 
information and awareness of the goals of team members. 

Chapter 9, “Change Analysis” identifies the important role that rationale 
can play in assessing the impact of changing requirements, design criteria, 
and assumptions on a software system. By explicitly recording the impact 
that those elements had on the decisions involved and relating the results 
of the decision-making process to the artifacts that instantiate them, the 
rationale can be used to detect where changes will be required if 
requirements, criteria, and assumptions change. In addition, rationale can 
also capture crucial inter-decision dependencies and alert the developer if 
one of those dependencies is later violated. 

Part 3: Rationale and Software Engineering 

In software engineering, decision-making is not restricted to only part of 
the process. There are critical decisions to be deliberated throughout the 
lifecycle of the software system. Part 3 describes how rationale supports 
the various stages of the software lifecycle and how rationale research 
relates to other software engineering research that also supports those 
stages.   

Chapter 10, “Rationale and the Software Lifecycle” gives a brief 
introduction to the stages of software development and how rationale can 
be utilized. The topic of lifecycle modeling is then introduced and the 

approaches. The chapter concludes with a discussion of how rationale 
supports process improvement initiatives. 

Chapter 11, “Rationale and Requirements Engineering” describes 
rationale’s contribution to requirements engineering. This includes how 
rationale can support the requirements definition process by assisting with 
requirements elicitation, achieving consensus on requirements, identifying 
requirements inconsistency, and supporting requirement prioritization. 
Rationale’s role in requirements traceability and the relationship between 
rationale and nonfunctional requirements is also described. The chapter 
concludes with how rationale can assist in adapting to changing 
requirements, one of the major challenges in software engineering. 

v-model is described as well as how rationale can be applied to iterative 
application of rationale to sequential models, such as waterfall and the



Chapter 12, “Rationale and Software Design” describes design rationale 
as applied to software design. The chapter begins with a description of the 
nature and importance of software design rationale, both that generated by 
the designers while designing and that generated during construction and 
use. Two fundamentally different types of decisions are described—design 
space decisions and rationale for non-design-space decisions that represent 
a deeper reflection on the design process. We conclude with a look at some 
specific approaches to rationale as applied to software design and software 
architecture. 

Chapter 13, “Rationale and Software VV&T” defines verification and 
validation and then describes the issues involved in the major types of 
software tests—inspection, unit testing, integration testing, and system 
testing. The role of rationale in software testing is described by focusing 
on three major uses: the contribution of rationale to testability, rationale’s 
contribution to test case prioritization, and using rationale to support 
component testing and selection.  

Chapter 14, “Rationale and Software Maintenance” describes how 
rationale can be used to support software maintenance. The chapter 
describes four areas where rationale can support maintenance: 
maintenance prediction, impact assessment, program comprehension, and 
maintenance rationale. The chapter then concludes with a discussion of 
why rationale should also be captured during software maintenance and 
some existing research that supports the capture of maintenance rationale. 

Chapter 15, “Rationale and Software Reuse” begins with a description 
of key software reuse concepts and categories, along with defining types of 
rationale that support reuse. The chapter then describes several ways that 
rationale has been, or can be, applied to assist with software re-use. 

Part 4: Frameworks for Using Rationale in Software 
Engineering 

In this part, we take a look ahead. In order to support Rationale-Based 
Software Engineering, it is necessary to have frameworks to define the key 
concepts and architectural needs for Rationale Management Systems. In 
this part, we define a conceptual framework and architectural framework 
to support Rationale-Based Software Engineering. 

Chapter 16, “A Conceptual Framework for Rationale-Based Software 
Engineering” describes the goals of conceptual frameworks in general, 
followed by what is needed by a conceptual framework for rationale use in 
software engineering. To support the decision-centric approaches, we 
define a taxonomy of software decisions that could be answered using 
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SER. To support usage-centric approaches, we describe how Carroll and 
Rosson’s (1992) Scenario Claims Analysis (SCA) rationale can be applied 
to software engineering. We conclude with a discussion of the implications 
of iteration, a summary of current challenges to rationale use, and propose 
some potential solutions. 

Chapter 17, “An Architectural Framework for Rationale-Based Software 
Engineering” describes the key features needed for a Rationale 
Management System (RMS) to support software engineering. This 
includes the model management subsystem (which includes support for 
capture and formalization), the underlying hypermedia substrate, and the 
necessary integrations between RMS and external software development 
support systems. 

Chapter 18, “Rationale-Based Software Engineering: Summary and 
Prospect” serves two purposes. First, it summarizes the work presented in 
this book and its implications for future rationale research and use. We 
then look at some key future challenges to software development and 
conclude with a discussion of both the promises of and challenges to 
Rationale-Based Software Engineering. 
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Part 1 
Introduction  

Rationale research, which has been going on since the 1970s, initially 
focused on design rationale – the reasons behind decisions made when 
designing. This is an appropriate term in many domains where a physical 
artifact is first designed and then manufactured. While there is a phase in 
most software engineering (SE) lifecycles that produces a software design 
(design as a noun), the act of designing (design as a verb)—making the 
decisions that affect that design and how it is realized in the software 
system—takes place throughout the software development process.   In 
order to make this distinction clear, in this book we refer to rationale as 
Software Engineering Rationale (SER), as defined in Dutoit et al. (2006b) 
and refer its use as a key aspect of the software process as Rationale-Based 
Software Engineering (RBSE). 

The first step towards RBSE is an understanding of what rationale is and 
how it can help us meet the critical challenges that software engineering 
faces (Chapter 1). Software is not the same as hardware and these 
differences affect both what the rationale is (structure and content) and 
how rationale can be used (Chapter 2). These differences provide both 
opportunities, such as the ability to directly link rationale to the artifacts 
that it describes, and challenges, such as the need to support iteration.  

software development process/methodology, management strategy, and 
how the software will be verified, validated, and even deployed.  

The rationale research described here builds on work that started with 
Rittel’s Issue-Based Information system (IBIS) (Kunz and Rittel 1970), 
initially applied to urban planning. Those proposing approaches to 
applying rationale to SE would be doing their research a disservice by not 
learning from the experience of applying rationale to other domains 
(Chapter 4). And finally, it is important to understand that decision-
making, in particular human decision-making, lies at the heart of software 
engineering and how RBSE supports that process (Chapter 5). 

SER can have many roles in supporting software engineering (Chapter 3).
The decisions where rationale should be captured include not only those
occurring during development but also those affecting the choice of 



1 What is Rationale and Why Does It Matter? 

As the term is used here, rationale is the reasoning underlying the creation 
and use of artifacts. Software engineering research on rationale aims to 
devise methods and systems for managing rationale throughout the 
software engineering process. Managing rationale includes eliciting it, 
recording it, indexing it for retrieval, editing it, and retrieving it for those 
who need it. Recorded rationale can play a valuable role in every stage of 
the software lifecycle and for every participant in that lifecycle. It can help 
developers to create better software by enabling them to learn from the 
successes and failures of the past. It can facilitate coordination and 
collaboration within development teams, aid in identification and analysis 
of requirements, as well as design, testing, and maintenance. It can even 
help users to understand the systems they use. 

1.1 Introduction 

1.1.1 The Scope and Value of Rationale in Software 
Engineering 

As used here, the term rationale denotes the reasoning underlying the 
creation and use of artifacts. Rationale research seeks ways of aiding 
decision-makers by creating explicit records of this reasoning. Most other 
types of research on decision-making, by contrast, seek to create formal, 
computational methods for deriving decisions. Rationale research 
primarily deals with informal and semiformal, verbal reasoning; but it does 
not ignore formal reasoning and computation, both because humans 
sometimes use these in reasoning about decisions and because they can 
augment human reasoning. While rationale is primarily verbal, various 
kinds of graphics can play crucial supporting roles. Not all rationale can be 
made explicit. Nevertheless, researchers generally appear to believe even 
incomplete records of rationale can improve the quality of artifacts. 
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To date, almost all research on rationale in various application domains 
has dealt solely with design rationale, i.e., the reasoning within the design 
process. In fact, the term design rationale is often used as if it were the 
only subject of rationale research. But to understand the full meaning and 
importance of the term rationale, one must look further. Design is only 
part of the larger process of artifact creation, and rationale-based decision-
making is found in every other part of that process. It is found, for 
example, in the determination of requirements, the construction of the 
artifact, the maintenance of that artifact, and the administration of the 
overall creation process. 

This chapter and this book deal with the full potential of rationale in 
software engineering (SE), i.e., not only in design but in all parts of the 
software lifecycle and all aspects of SE. Since the term design rationale 
does not encompass the full scope of reasoning about decisions in SE, the 
term software engineering rationale (SER) is used here instead. Rationale-
based Software Engineering (RBSE) research investigates concepts, 
theories, approaches, methods, and software needed to realize the full 
potential of SER to aid SE. The typical approach to realizing this potential 
is to create rationale management systems (RMSs), i.e., software that aids 
in the elicitation, recording, structuring, indexing, retrieval and distribution 
of SER to stakeholders in software projects. 

This chapter argues that a rationale-based approach will be essential for 
meeting the current and future challenges of SE. Software developers and 
maintainers currently find themselves deluged with problems that severely 
tax their abilities, and yet the future looks even more challenging. Many 
current software projects fail completely, and many others achieve only 
partial success. Nevertheless, software projects continue to grow 
relentlessly in number, variety, scale, complexity, longevity, and 
technological requirements as developers attempt to keep up with 
competitors, customer demands and new hardware capabilities. 

Software engineers are currently wrestling with the issue of how SE will 
need to adapt to meet the challenges of the future. We argue that these 
challenges make it crucially important that participants in software projects 
understand the reasoning of others involved in such projects. Absence of 
such understanding creates the risk of serious errors in requirements, 
design, implementation, maintenance, redesign, coordination, and project 
management. Achieving such understanding requires the use of software 
engineering tools that manage rationale. 
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1.1.2 Objectives of This Chapter 

The first objective of this chapter is to explain what rationale is. The second 
is to explain how SE will derive crucial benefits from a rationale-based 
approach. To explain what rationale is, Section 1.2 provides a rough sketch 
of research in rationale. To explain why rationale matters for SE, Section 1.3 
begins by looking at ways in which rationale can be useful for artifact 
creation in general. It then lists various ways in which rationale can aid 
software engineering in particular. It looks at the problems facing future 
software engineers and discusses ways in which rationale management can 
alleviate these problems. Finally, Section 1.4 summarizes the chapter and 
indicates where to find further information on the nature of rationale 
research in SE and why it matters. 

1.2 A Rough Sketch of Research on Rationale 

The general goal of rationale research is to use records of rationale to 
improve the processes of creating artifacts of various kinds, including 
physical artifacts such as buildings, cities, and machines as well as cognitive 
artifacts such as software and governmental policy. To support this goal 
rationale research has sought to develop methods and software that enable 
  

• the elicitation of useful rationale from its authors 
• the recording of useful rationale 
• the structuring and indexing of rationale to aid its retrieval 
• retrieval of rationale when it is useful 
• delivery of that rationale to those for whom it is useful  
• use of the rationale by those people 

 
A good way to get a rough preliminary understanding of subsequent 
approaches to rationale management methods is to view them as either 
variations on Issue-Based Information Systems (IBIS) (Kunz and Rittel 
1970) or fundamental alternatives to it. This implies comparing these 
approaches to IBIS. This, of course, pre-requires at least a basic 
understanding of IBIS—which is where we shall begin. 

1.2.1 Argumentative Approaches to Rationale  

Rittel’s pioneering work on design rationale was motivated by his theory 
of wicked problems (Rittel and Weber 1972), an idea that has also 
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influenced SE in other ways (Budgen 2003; De Grace and Stahl 1998; 
Fitzpatrick 2003). Rittel saw design problems as wicked in the sense that 
they presented fundamental difficulties that could not be overcome using 
either strictly scientific methods or purely automated methods such as 
those of artificial intelligence and optimization theory (Rittel 1972a). 
Instead, they required new types of methods that supported creative human 
problem solving (Rittel 1980) by means of what he called an 
argumentative approach (Rittel 1972a). In this approach, every step in 
problem solving can be seen as part of an inquiry that involves 
questioning, proposing ideas, and subjecting them to critical discussion 
from the viewpoints of different stakeholders. Rittel devised IBIS to 
implement this argumentative approach. A number of other rationale 
methods have either modified Rittel’s approach or invented their own 
argumentative methods from scratch. Procedural Hierarchy of Issues (PHI) 
(McCall 1979b; McCall 1991), Decision Representation Language (DRL) 
(Lee 1991), and RATSpeak (Burge and Brown 2004) are examples of the 
former. Questions, Options, and Criteria (QOC) (MacLean et al. 1991) and 
Scenario-Claims Analysis (SCA) (Carroll and Rosson 1996) are examples 
of the latter. 

1.2.1.1 IBIS 

IBIS structures rationale using a fixed conceptual schema featuring given 
element types and given relationships between them. The schema divides 
rationale into processes of deciding various issues, stated in the form of 
questions. Proposed decision alternatives for an issue are called positions, 
and reasoning about the merits of the positions is represented as arguments 
for or against (1) the positions or (2) other arguments. The decision taken 
on an issue is its resolution. Relationships of various kinds link issues to 
each other. Figure 3.1 shows how IBIS could be used to document 
preliminary discussion on one issue in a project on creation of a rich 
internet application. In addition to dealing with design of system features, 
issues in IBIS can deal with any other topic in artifact development that 
can be phrased as a question to be answered. 

IBIS has most often been used to structure design discussion as it takes 
place. But at times it has been used to retrospectively give structure to 
free-form design discourse. Sometimes these retrospective descriptions 
reflect the actual history (temporal sequence) of the discussion; sometimes 
they are idealized accounts that ignore history in favor of a more “logical” 
organization of the rationale. The former is called a process-oriented 
approach, the latter a structure-oriented approach. 
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Issue: What programming technology should we use to implement 
the client for our Rich Internet Application? 

Position 1: AJAX (Asynchronous JavaScript and XML) 
Arguments on this position: 

Against: AJAX still has problems with some older browser 
versions. 

For: This approach makes good use of W3C standards. 
Arguments on this argument: 

Against: AJAX makes it difficult to meet the 
guidelines of the W3C’s Web 
Accessibility Initiative. 

Against: Some kinds of AJAX use in-line 
frames, which are not part of the 
W3C’s XHTML 1.1 recommendation. 

Position 2: Flex/Flash (with ActionScript) 
Arguments on this position: 

For: Flash has more than 98% browser penetration. 
For: Flash is almost completely platform independent. 
Against: Flash technology is proprietary and thus could change 

rapidly in ways that would be detrimental to our 
project. Public standards tend to put the brakes on 
such rapid change. 
Arguments on this argument: 

Against: Flash’s enormous installed base 
makes it extremely unlikely that it 
would change in such a way as to 
break existing applications. 

Against: The ActionScript Virtual Machine was 
donated to the Mozilla Foundation 
and is now the basis for the Tamarin 
open source project. 

Against: Flex is also an open source project. 
Position 3: Silverlight 

Arguments on this position: 
For: Silverlight will work across IE, Firefox and Safari browsers. 
For: Silverlight is compatible with AJAX and can make AJAX 

development easier through use of the Atlas technology. 

Fig. 3.1.  Partial discussion of one IBIS issue is shown here in outline format 

Certain general features of IBIS are shared by most other argumentative 
approaches to rationale. These include the following: 

  
1. Using a fixed conceptual schema of elements and relationships 

between pairs of them 
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2. Dividing rationale into the reasoning about individual decision-
making tasks (called issues in IBIS) 

3. Representing decision-making tasks as questions to be answered 
4. Proposing decision alternatives for each decision-making task 

(called positions in IBIS) 
5. Evaluating the proposed decision alternatives by stating and 

considering pros and cons of these alternatives (called arguments 
on positions in IBIS) 

6. Evaluating the evaluations by stating and considering pros and 
cons (called arguments on arguments in IBIS) 

7. Deciding a decision task by selecting one decision alternative on 
the basis of its evaluation 

8. Using several relationships to link the separate decision-making 
processes (called inter-issue relationships in IBIS) 

 
We will look briefly at a number of other argumentative methods: 
  
• PHI (Procedural Hierarchy of Issues) (McCall 1979b; 1991),  
• revisions of IBIS by Potts and Bruns (Potts and Bruns 1988; Potts 

1996) 
• QOC (Questions, Options, and Criteria) (MacLean et al. 1996) 
• DRL (Decision Representation Language) (Lee 1991; Lee and Lai 

1996) 
• RATSpeak (Burge and Brown 2004) 
• Scenario-Claims Analysis (Carroll and Rosson 1996; Carroll 

2000) 
 
All except the last of these approaches can usefully be viewed as variations 
on some of the ideas introduced by IBIS, though it should be noted that 
QOC was not derived from IBIS. Scenario-Claims Analysis represents a 
fundamental departure from the other approaches. 

1.2.1.2 PHI 

PHI is a refinement of IBIS and its main innovation is to show that 
frequently the decision on one issue depends on the decisions made on 
others. For example, the decision on the issue in Figure 3.1 could depend 
on the decision on the issue, “Is it important that our project adhere to 
W3C standards?” PHI models rationale as a connected graph of issues 
linked by such dependency relationships. This structure tends to be 
roughly hierarchical, thus the name Procedural Hierarchy of Issues, and 
has a root issue representing the project as a whole. The root issue of the 
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project for Figure 3.1 might be, “What is our web-based CAD system to 
be?” Such an issue has three crucial properties: (1) the process of deciding 
this issue is the development project in its entirety, (2) the final decision on 
this issue is a representation of the final, constructed artifact, and (3) the 
decision on this issue depends on the decisions to all the other issues in the 
project. 

1.2.1.3 Potts and Bruns 

Inspired in part by Conklin’s and Begeman’s use of IBIS (Conklin and 
Begeman 1988) in their gIBIS hypertext system, Potts and Bruns (1988) 
modified IBIS for use in software design. The crucial innovation of their 
approach was to include in their schema elements that represented 
“intermediate artifacts,” i.e., the various models and documents produced 
during design to represent the software being designed. In other words, 
their schema was not exclusively a rationale schema, but rather a hybrid 
schema containing both rationale and artifact elements. This approach 
created design histories in the form of a collection of linked intermediate-
artifact and rationale nodes. 

Besides adding intermediate-artifact nodes, Potts and Bruns also made 
some modifications to IBIS itself. Instead of having separate argument 
elements, they represented all argumentation on a given decision (issue) in 
a single justification statement. They also argued that to put IBIS to 
practical use in software design, it would have to be tailored to specific 
software design methods. They give an example of this that shows how it 
could be adapted to work with Liskov and Guttag’s software design 
method (1986). 

Potts (1996) went on to elaborate the original Potts and Bruns approach 
to give a general account of how IBIS-based rationale could be used to 
support software methods. In particular, he argued that methods could 
themselves be modeled as recurring, method-specific collections of issues 
combined with method-specific types of intermediate-artifact nodes. He 
supported this argument by providing accounts of how three specific 
software methods could be represented in this manner. 

The Potts and Bruns approach was to inspire the creation of DRL (Lee 
1990), which in turn inspired the creation of RATSpeak (Burge and Brown 
2004). Many SE-specific approaches to rationale also adopt the idea 
originated by Potts and Bruns of using hybrid artifact-rationale schemas 
(see Chapter 12: Rationale and Software Design), and a number of the 
recommendations of this book center on this idea as well (See, for 
example, Chapter 17: An Architectural Framework).  
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1.2.1.4 QOC 

Like IBIS, QOC centers on decision tasks that are represented as questions 
and evaluates proposed decision alternatives, called options. QOC, however, 
only deals with “design space” questions, i.e., those that determine features 
of the designed artifact. Thus, there are many issues that IBIS and PHI can 
deal with but that QOC does not attempt to deal with. 

QOC’s main innovation is a finer level of granularity of elements in the 
evaluation of alternative answers to questions. Instead of an IBIS-type 
argument on a proposed alternative, QOC uses a pairing of a criterion and 
an evaluation of the alternative with respect to the criterion. This is 
especially significant for software engineering, because (1) software 
requirements can be represented as criteria and (2) doing so enables the 
tracing of requirements to specific features of the artifact. Also significant 
is the fact that two other rationale methods discussed in this section, 
namely DRL and Scenario-Claims Analysis, have also opted for the QOC 
style of evaluation rather than the IBIS style. QOC and DRL do, however, 
allow IBIS-type arguments for and against the criterion-based evaluations. 

The authors of QOC do not use the method to model rationale as it is 
being generated and do not attempt to structure designers’ thought 
processes using the QOC schema. Instead, they use the method merely for 
retrospective documentation of design rationale. In other words, they use a 
structure-oriented rather than a process-oriented approach. 

1.2.1.5 DRL 

DRL revises and extends the approach of Potts and Bruns (1988). DRL’s 
schema corresponds roughly to a superset of QOC’s that also has 
dependency relationships between elements, including some derived from 
PHI. DRL has a finer-grained schema than other approaches and is thus 
more “expressive.” While it does not always represent decision tasks as 
questions, DRL uses a semantically equivalent form. Examples of DRL in 
the literature deal only with the “design space” decisions like QOC, but it 
seems in principle that DRL could be applied to the larger range of 
decision tasks dealt with by IBIS. 

In devising DRL Lee objected to the Potts and Bruns approach of 
merging the many arguments of IBIS into a single “justification” 
statement. But Lee also abandoned the argument category in favor of one 
called claims. At first, a claim appears to be a single sentence rather than 
the multi-sentence, multi-premise syllogism that the laws of logic require 
an argument to be. This might give the erroneous impression that 
arguments are being broken into their constituent premises (claims). In 
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reality, however, the DRL claims that are used to evaluate other claims are 
enthememes, that is, multi-premised arguments in which all but one of the 
premises are left unstated because their existence is clear from common 
sense. In other words, such claims are really just an elliptical form of 
argument in which only one of the premises is stated. In fact, enthememes 
are common in all argumentative discussion, regardless of which rationale 
schema is used. The problem with replacing the argument category with 
the claim category is that it is not at all clear that all arguments can be 
stated as enthymemes. 

1.2.1.6 RATSpeak 

Burge and Brown (2006) describe RATSpeak as an extension of DRL that is 
designed to make it more suitable for use in software engineering. But some 
of the RATSpeak revisions make it more like IBIS. In particular, it reinstates 
arguments as elements of the rationale schema in addition to claims. 

RATSpeak introduces a number of new categories of elements into its 
schema to enable a greater amount of automated checking and inference-
making than would be possible with DRL. For example, requirements, 
assumptions, and background knowledge are introduced as element types. 
In addition, it adds an argument ontology consisting of a hierarchy of 
argument types tailored to the domain of software engineering. This 
ontology is used for automated checking of the rationale for correct form. 

RATSpeak contains a crucial innovation in the form of a special type of 
argument that describes dependencies between alternatives on different 
decision tasks. These arguments enable the description of how adoption of 
an alternative on one decision might help or hinder the adoption of an 
alternative on a different decision. No other argumentative approach 
described here enables the recording of such dependencies between 
alternatives—though PHI and DRL can represent dependencies between 
decision tasks. This makes RATSpeak especially valuable for change 
analysis and iterative approaches to software engineering. It also suggests 
that other argumentative schemas are inherently incomplete. 

1.2.1.7 Scenario-Claims Analysis 

Scenario-Claims Analysis (SCA) is strictly for the design of human–
computer interaction. It uses scenarios of software use to evaluate system 
features with respect to users’ goals. Like QOC and DRL, SCA evaluates 
features as positive or negative with respect to goals, but unlike other 
approaches, it does not represent decision tasks or decision alternatives. It 
only represents (1) system features, (2) use-based criteria/goals by which 
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they are evaluated, and (3) users’ positive or negative evaluations of the 
features against those criteria. It does not use deeper levels of 
argumentation on these evaluations, but since these goal-based evaluations 
are themselves arguments for or against the features, SCA must be counted 
as an argumentative approach. SCA is the only rationale method to deal 
explicitly with usage scenarios; as such, it is the most user-centered of the 
rationale approaches. It is also the only argumentative approach to show 
how rationale fits into an iterative process of design. In short, SCA 
represents a fundamentally different view of rationale for design. 

1.2.2 Rationale Methods That Go Beyond Argumentation 

1.2.2.1 Structuring Rationale Using Artifact Structure 

One common way of documenting rationale uses the structure of the 
designed artifact rather than the structure of an argumentative schema to 
organize rationale. In fact, this is simplest and least labor intensive way of 
recording rationale (Lee and Lai 1996). In the design of physical artifacts, 
this can be done by simply linking textual rationale to a digital model of 
the artifact being designed, as has been done by Reeves and Shipman 
(1992) and by Domeshek and Kolodner (1996). In software development, 
this can be done by linking textual rationale directly to sections of code as 
has been done by Schneider (2006). It should be noted that some schema-
based software systems for argumentative rationale, such as SEURAT 
(Software Engineering Using RATionale) (Burge and Brown 2004), also 
make it possible to link rationale directly to the artifact, which in the case 
of SEURAT is the source code. This shows that there is no inherent 
conflict in structuring an rationale both around its argumentative structure 
and the structure of the artifact. 

1.2.2.2 Problem-Based Evaluation 

Lewis, Riemann, and Bell (1996) present a novel approach for evaluating 
alternative features of an artifact. They describe their own software design 

proposals for a programming environment they were designing. They 
evaluate a design proposal by looking at how well it could be used to solve 
the problems in the suite. Their work suggests that argumentation may not 
be the only, or even the best, means of evaluating alternatives in all cases. 
This challenges the sufficiency of the argumentative approaches that 
currently dominate rationale research. While the notion of problem-based 

process as using a suite of problems for conceptual testing of different 
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evaluation suggests an interesting direction for future work on rationale in 
software design, it does not yet constitute a generally applicable rationale 
method. 

1.2.2.3 Generative Rationale 

Gruber and Russell (1996) argue that argumentative schemas prejudge 
what information will be needed later by software engineers. No advance 
collection of rationale, they claim, could answer all of the questions that 
might later be raised about the rationale for an artifact. Rather than having 
designers create highly detailed models of their rationale, they argue that it 
would be better to collect engineering data and models during the project 
and then later use these to deduce the rationale behind the artifact in 
response to questions that arise about it. This claim constitutes an 
interesting hypothesis about possible future approaches to rationale for 
software development; but, as is the case with the above-described 
problem-based evaluation, it does not yet constitute a generally applicable 
rationale method. 

In the end, then, it is primarily to the argumentative approaches that we 
must look for viable approaches to documenting design rationale. The one 
nonargumentative approach that is viable is that in which rationale is 
structured according to the structure of the artifact being designed, e.g., the 
software. Typically, this means that pieces of the rationale that discuss a 
part of the artifact are associated with that part of the artifact in some way. 
There are several ways in which this can be done. One is by linking parts 
of the rationale to corresponding parts in a model of the artifact. Another 
way to do this in software development is to link parts of the rationale to 
parts of the artifact itself, i.e., either in the source code or the runtime 
(compiled/interpreted) code. 

1.3 Why Rationale Matters 

Rationale matters because it is useful for artifact creation in general and 
for software engineering in particular. We will first look at the former and 
then at the latter. 

1.3.1 The Usefulness of Rationale for Artifact Creation 

There are two ways in which rationale documentation methods can be 
useful for artifact creation. The first and most basic is by providing a 



14      1 What is Rationale and Why Does It Matter? 

record of the reasoning associated with decision-making. The second is by 
actively shaping the process of reasoning about decisions. The following 
sections look at each of these in turn. 

1.3.1.1 The Usefulness of Rationale as a Record of Decision-Making 

There are two respects in which a record of the reasoning in decision-
making can be useful. One is by serving as a memory aid for those who 
participated in the decision-making. The other is by informing those who 
did not participate but are affected by the decisions. 

Rationale as a memory aid. For those who participate in making given 
decisions, having records is important because of a tendency to forget what 
was decided and why. Correctly remembering all the rationale for the 
decisions in a project is generally more than any individual can do. This is 
especially true in large and complex projects, in which hundreds or even 
thousands of decisions are made. 

Documented rationale also provides a crucial resource in case decisions 
need to be revisited. This often happens when, after decisions have already 
been made, they are discovered to have undesirable consequences. It can 
also happen when new features need to be added to an artifact, or when the 
artifact needs to be redesigned. On the other hand, documented rationale 
can prevent decisions from being pointlessly revisited, which can happen 
when the rationale for them is forgotten. 

Sometimes artifact creators find themselves facing decision tasks similar 
to ones in prior projects they have worked on. In such cases, they often 
feel that it would be useful to know how they arrived at those previous 
decisions. Unfortunately, they also often find that they cannot precisely 
recall their own prior rationale. Documented rationale serves as a valuable 
memory aid in these cases as well. 

Rationale as information for other stakeholders. Documenting rationale 
for decisions can also help people who do not participate in making those 
decisions but who nevertheless have a stake in what is decided. Such 
stakeholders include those who must implement the decisions, those who 
need to coordinate their own decision-making with the given decisions and 
those who manage the processes of artifact development and maintenance. 
The rationale for a given decision typically indicates what the goals and 
evaluation criteria of the decision-makers are; this information enables 
others participating in development or maintenance to make sure their own 
efforts do not conflict with those goals and criteria. 

One important use of rationale as information exists when people join or 
leave a decision-making team. There is a tendency for new team members 
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to challenge decisions made before they arrived. This can be unnecessarily 
disruptive if the new team members base their challenges on ignorance of 
the rationale for decisions. It is therefore useful to require new team 
members to examine the documented rationale for decisions before 
challenging them. And when people have left a project, it is no longer 
possible to ask them about their rationale for past decisions, so having 
documentation of their rationale becomes crucial. 

1.3.1.2 The Usefulness of Rationale as an Aid to Decision-Making 

In addition to the value of simply recording it, rationale can be useful by 
aiding decision-making. There are two, mutually compatible approaches to 
doing this. One is by providing information that helps people to make 
better decisions. Since this information aids decision-making, it is by 
definition rationale. The goal of this first approach might be described as 
informed decision-making. The information used to aid design might come 
from feedforward from earlier decisions or feedback from later decisions, 
implementation, or use of the artifact. It might also come from previous 
projects. 

The second approach to aiding decision-making is to prescribe the 
process by which the reasoning about decisions proceeds. This is typically 
done in an effort to make rationale more thorough, consistent, or carefully 
argued. The goal of this approach might be described as well-reasoned 
decision-making. Typical procedural prescriptions include making sure 
that alternatives are considered for every issue, that all such alternatives 
are evaluated by the relevant criteria, that the arguments both for and 
against the alternatives are considered, and that the argumentation is 
representative of the full range of stakeholders. 

1.3.1.3 The Descriptive and Prescriptive Roles of Rationale 

With respect to any given decision or set of decisions a rationale approach 
can play a purely descriptive role, a purely prescriptive role or a combined 
prescriptive–descriptive role. In a purely descriptive role, a rationale 
approach merely seeks to record the reasoning of decision-makers and 
does not seek to influence that reasoning or the decisions made. When 
used in this way with respect to some decision-making tasks a rationale 
approach typically seeks to improve other types of decision-making tasks. 
For example, it is common to find approaches that seek to record the 
rationale of designers not to influence the design but to influence 
construction, maintenance or project management. 
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When a rationale approach seeks to influence a given type of activity, 
such as requirements determination or project management, then it is, by 
definition, prescriptive with respect to that activity. As a consequence, 
rationale approaches are generally prescriptive with respect to one or more 
such activities.  

A rationale approach would be purely prescriptive with respect to a 
given set of decisions if it only sought to improve the reasoning of the 
associated decision-makers without keeping records of their reasoning. For 
example, QOC records design rationale as a way of improving the 
decision-making in software construction, yet it does not record the 
reasoning of software architects or programmers who do the decision-
making about construction. QOC is thus purely prescriptive with respect to 
the decision-making in construction. Similarly, Scenario-Claims Analysis 
uses the rationale of users to inform the design of human–computer 
interaction (HCI) but does not record the reasoning of those who design 
this interaction. It thus plays a purely prescriptive role with respect to HCI 
decision-making. 

A rationale approach is both prescriptive and descriptive with respect to 
decisions when it seeks both to influence the reasoning of the associated 
decision-makers and to record their reasoning. IBIS, for example, is often 
used as a procedure for running design meetings to make sure decision-
makers look at a wider range of decision alternatives (positions) and wider 
range of arguments both for and against the proposed alternatives. Having 
elicited this wider range of rationale, IBIS makes sure that it is 
documented so that it is not lost. When used in this manner IBIS is 
prescriptive–descriptive with respect to design decisions. 

It should also be pointed out that a rationale approach might start out 
merely as a way of describing the rationale for a given set of decisions—
such as design decisions—then later become prescriptive with respect to 
that same set of decisions by serving as a memory aid for the decision-
makers—i.e., the designers.    

1.3.2 The Usefulness of Rationale for Software Engineering 

1.3.2.1 Possible Uses of Rationale in Software Engineering 

One way to quickly get an idea of the value of rationale for software 
engineering is to look at the range of its possible uses. The outline shown 
below is by no means complete, but it gives an idea of this range. 
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Uses of Rationale in Software Engineering: 
• Supporting requirements engineering 

1. Supporting identification of requirements 
2. Supporting explanation/evaluation of requirements 
3. Supporting revision of existing requirements 

a. By providing feedback from design, implementation, 
and use 

4. Supporting addition of new requirements 
a. By providing feedback from design, implementation, 

and use 
5. Helping requirements engineers make better decisions by 

informing those decisions and improving the reasoning 
underlying them 

a. By providing records of the decisions and reasoning 
about requirements from past projects 

• Supporting design 
1. Providing traceability of requirements to design decisions and 

vice versa 
2. Helping designers make better decisions by informing those 

decisions and improving the reasoning underlying them 
a. By providing feedback from implementation, 

maintenance, and use to validate requirements 
b. By providing rationale behind design patterns 
c. By providing records of the design decisions and 

reasoning from past projects 
• Supporting implementation of software 

1. Providing traceability of requirements and design decisions to 
implementation decisions and vice versa 

2. Helping implementers make better decisions by informing those 
decisions and improving the reasoning underlying them 

a. By providing rationale for implementation patterns 
b. By providing records of the implementation decisions 

and reasoning from past projects 
• Supporting software maintenance 

1. Helping maintainers to make better decisions by informing 
those decisions and improving the reasoning underlying them 

a. By helping maintainers to understand the rationale for 
the requirements of users, the decisions of designers, 
and the implementation decisions of programmers 

b. By providing feedback from the use of the software to 
make it clear when maintenance is needed 
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c. By providing historical records of the rationale for 
maintenance decisions   

• Supporting project management 
1. Making it possible for managers to understand when decisions 

are being made by various participants in the software project, 
why those decisions are being made, and who is likely to be 
affected by those decisions 

2. Helping project managers to make better decisions by informing 
those decisions and improving the reasoning underlying them 

a. By providing historical records of the rationale for 
management decisions 

b. By providing records of the rationale for management 
of past projects 

• Supporting use 
1. Providing rationale as explanations of the functioning of 

complex software systems  
• Supporting the work of groups 

1. Using rationale as a vehicle for communication amongst 
different kinds of experts and stakeholders in a project 

2. Exposing differing points of view amongst stakeholders 
3. Facilitating participation of stakeholders and collaboration 

among team members by making the decision-making process 
“transparent” and open to inspection 

4. Making it clear when the decisions of a given group of people 
supports or interferes with the decisions of others 

5. Building consensus 
a. By providing greater transparency—nobody is hiding 

anything 
b. By exposing conflicting points of view early in the 

process so that they can be negotiated 
c. By revealing areas of agreement, so that they can serve 

as starting points for building consensus 
• Supporting change 

1. Helping to detect when change is needed 
a. By providing a record of assumptions that could 

become invalid in the future, including assumptions 
about facts, requirements, means, constraints, and 
evaluation criteria 

b. By providing feedback that shows when decisions have 
produced unforeseen consequences that in turn suggest 
revisiting and revising decisions 
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c. By providing information from users that indicate new 
or newly discovered requirements 

2. Helping to cope with current changes and to prepare for future 
changes 

a. By showing the network of dependencies among 
decisions that indicate how the effects of a given design 
change can ripple through the design of the software 

b. By showing which team members’ work will be 
affected by changes 

c. By showing the goals and evaluation criteria for the 
current version of the software, and thus indicating 
goals and criteria that a redesigned system should also 
satisfy 

d. By providing a record of decision alternatives and their 
evaluations to facilitate the redesign of the system  

3. Supporting the management of change, by showing its effects 
on the work of individuals and groups as well as on the 
expenditure of time and money 

• Supporting software reuse 
1. Providing explanations for what code is designed to achieve as 

well as why it is designed and implemented the way it is 
• Supporting knowledge transfer 

1. Enabling learning from the successes, failures, and ideas of past 
software projects 

2. Validating designs 
3. Collecting, organizing, and delivering reusable knowledge for 

development and maintenance 
4. Supporting training and education 
5. Supporting research on real-world software engineering projects 

1.3.2.2 Rationale and the Future of Software Engineering 

To understand why rationale matters for SE, it is not enough to know the 
range of its possible SE applications. It is also crucial to know the value of 
these applications in view of the profound challenges now facing the SE 
field.  

The challenges that software engineering faces. The current state of 
software development is not good. Developers have been unable to keep 
up with the dramatic progress in hardware resulting from Moore’s Law 
and the spread of the Internet throughout the world and into every aspect 
of people’s lives. It is not enough to urge software developers to do a 
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better job, because they already find themselves coping with difficulties 
that tax their abilities severely. 

Unfortunately, current trends indicate that the future will be even more 
challenging. Software progress will increasingly lag behind hardware 
progress. As developers scramble to keep up with new technologies, rising 
customer expectations, and aggressive competitors, they will find that the 
development tasks they face are getting progressively more difficult. 
Software projects will continue to grow relentlessly in number, variety, 
scale, complexity, and longevity. This will make coping with any given 
amount of change increasingly difficult, but it will also dramatically 
increase the amount of change that must be coped with. 

The issue of the increasing longevity of systems by itself represents in a 
microcosm the future difficulties awaiting developers. This increasing 
longevity results from the initial success of software systems. Successful 
systems stay on the market and go through version after version. This long 
life of systems creates a host of problems. As systems get older they tend 
to increase in functionality, driven by the pressure of new hardware 
capabilities, increases in user expectations for functionality, and the need 
to keep up with competitors. Additional functionality increases the size 
and complexity of systems, thus making it progressively more difficult to 
maintain the systems and add new features without breaking existing 
functionality or angering the installed bases of users who are used to 
previous versions. Typically, systems grow in this incremental manner 
until further growth becomes too difficult, at which point the systems are 
comprehensively redesigned and reimplemented.  

The picture that emerges is one in which software goes through many 
cycles of redesign and reimplementation over the many years of its life. 
Each such cycle creates the dangers that (1) good ideas in the system’s 
design and implementation will be lost and that (2) hard-won lessons about 
how not to design and implement the system will be forgotten. Predicted 
future increases in software scale and complexity increase these dangers 
dramatically. 

In addition to the above-listed problems, Patterson (2005) has argued 
that future creators of software face additional challenges due to the legacy 
of a 20th century value system that is profoundly unsuited to 21st century 
software development. In the 20th century the priorities were faster and 
cheaper computers and communication. These priorities generated the 
current problems of lack of security, privacy, and reliability. Of course, 
cheaper software only meant cheaper to purchase, not cheaper to install, 
operate, and maintain. Adding to these problems is the fact that the 
increased speed and capacity of systems was used almost exclusively to 
add features to software rather than make it easier to use. Patterson 
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therefore calls for 21st century developers to abandon their 20th century 
values of cost and performance and in favor of what he calls the “SPUR” 
challenges: security, privacy, usability, and reliability. 

But the SPUR challenges are not the only problem. Patterson points out 
that there are many other crucial challenges facing 21st century developers. 
He lists two important examples: 

 
• Extending web search to all information, including multimedia 

information, and to all people, including those outside the first world 
• Adapting software, including operating systems, programming 

languages, databases, and applications, to massively parallel 
microprocessors. 

 
The upshot of the various challenges that Patterson identifies is the 
necessity for fundamental redesign of almost all the software currently in 
use, as well as redesign of the software engineering process itself to 
support the new priorities of 21st century software. 

How rationale can help in meeting these challenges. Software 
engineering appears to be headed into a future characterized by incessant 
change and repeated redesign of software systems that have grown greatly 
in scale and complexity. Change and redesign invariably create the risk of 
side-effects that damage the quality of a system, as for example, when 
existing good features become lost or broken. But such unintended and 
undesirable side-effects can be much more easily avoided if those making 
changes to the system understand the rationale underlying the systems 
they are changing. The justifications for existing features help redesigners 
and maintainers to understand what aspects of a system need to remain 
constant and how a system can change while still achieving the goals of 
previous versions. 

When development teams are small and when the history of the 
software is short, there might appear to be little need for documentation of 
the rationale behind the decisions that went into its creation. Those who 
change the systems are likely to be the same people who created it to begin 
with. In such cases, the rationale underlying the system can be accessed 
through memory and informal communication with other project 
participants. 

But when software is older, larger, and more complex, the need for 
documentation of rationale is more obvious, because it becomes difficult 
or impossible to know all the system rationale without documentation. The 
people doing redesign, reimplementation, and maintenance are unlikely to 
be members of the original development team. Without documentation of 
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rationale, the current developers and maintainers have little or no access to 
the rationale of those who worked on the system previously. Without 
knowledge of this rationale, the chances are great that redesign and re-
implementation will result in serious errors and that attempted 
improvements will actually degrade the system. 

Future software developers and maintainers will be greatly aided in their 
work if they have an understanding of the rationale behind the systems 
they seek to improve. Tools that provide this understanding must be 
integrated into the environments that software engineers use to create and 
maintain software. In particular, these tools must be capable of managing 
and delivering relevant rationale to software engineers when and where 
they need it. A central goal of rationale research in SE is to create tools 
that enable the use of rationale throughout the SE process and thus make 
possible a rationale-based approach to software engineering. 

1.4 Summary and Conclusions 

Rationale research studies the reasoning underlying the creation and use of 
artifacts. It seeks ways of aiding decision-makers by creating, storing, and 
retrieving explicit records of this reasoning. While this research has until 
recently focused almost exclusively on rationale for design, attention has 
begun to shift to the many other parts of the artifact lifecycle where 
rationale-based decision-making plays crucial roles. To understand fully 
what rationale is and why it matters, it is necessary to understand all of 
these roles. 

Starting with Rittel’s IBIS (Kunz and Rittel 1970), the dominant theme 
in rationale research has been modeling the argumentative structure of 
rationale. Almost all argumentative approaches—including IBIS, PHI, the 
Potts–Bruns approach, QOC, DRL, and RATSpeak—have modeled the 
evaluation by decision-makers of decision alternatives using 
argumentation. Scenario-Claim Analysis has been unique in modeling the 
evaluation by users of features of designed artifacts during scenarios of 
artifact use. More detailed treatments of these and many other approaches 
are found in other chapters of this book. In addition, a detailed overview of 
current research on rationale in software engineering can be found in the 
book, Rationale Management in Software Engineering (Dutoit, McCall, 
Mistrik, and Paech eds. 2006a). 

Rationale matters for SE, first of all, because it has a wide spectrum of 
uses to aid decision-making and other activities throughout the software 
lifecycle. But in addition, rationale matters because the ways in which it 
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aids SE have great value in meeting the profound challenges that are 
facing the future of software engineering. In particular, rationale is 
especially useful for dealing with large-scale high-functionality software 
projects characterized by constant change and repeated redesign. 



2 What Makes Software Different 

Research on rationale in software engineering was originally inspired by 
research on rationale for the design of physical artifacts. While there is still 
much that software engineering can learn from the latter, it is important to 
recognize that the process of software development differs in crucial ways 
from the processes of developing physical artifacts. These differences have 
important consequences for the successful implementation of rationale 
management. One consequence is that software development has unique 
and urgent problems that rationale management can do much to solve. 
Another is that the ways in which software differs from a physical artifact 
provide unique advantages for implementing rationale management in 
software engineering. 

2.1 Introduction 

2.1.1 Rationale for Software Artifacts versus Rationale for 
Physical Artifacts 

Rationale research and applications have been conducted not only in 
software engineering (SE), but also in a variety of other fields, including 
mechanical engineering, civil engineering, architecture (building design), 
architectural engineering, urban design, city planning, and policy making. 
Almost all of these fields deal with the creation of physical artifacts, such 
as machines, bridges, buildings, and cities. 

Research on rationale for decision-making began in architecture 
(building design) and urban planning with Rittel’s work on IBIS (Kunz 
and Rittel 1970). The initial adoption of this work for use in software 
engineering (Conklin and Begeman 1988; Potts and Bruns 1988) was 
based on the notion that there are crucial commonalities between the 
processes of creating software and the processes of creating physical 
artifacts like buildings and cities. This notion derives some additional 
plausibility from the fact that design patterns (Gamma et al. 1995), which 
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have found such widespread acceptance in SE, were also originally 
invented for use in creating buildings and cities (Alexander et al. 1977). In 
Chapter 4 we discuss what software engineering can still learn from work 
on rationale for physical artifacts. In the current chapter, however, we 
concentrate on the differences between the task of devising effective 
rationale management for SE and the comparable task in physical artifact 
development. In particular, we argue that these differences are crucial for 
the success of rationale-based software engineering for two reasons. One is 
that software engineering has unique problems that can be alleviated with 
rationale management. The other is that it also has unique advantages that 
aid the implementation of rationale management. 

2.1.2 Objectives of This Chapter 

The central objective of the chapter is to point out important differences 
between software development and the development of physical artifacts, 
i.e., differences that have crucial significance for making rationale 
management a practical reality in software development. Section 2.2 
describes the special roles of the computer in software engineering and 
how these create unique opportunities for effective rationale management 
in software development. Section 2.3 looks at the role of iteration in 
software development and how this differs decisively from its role in the 
development of most physical artifacts. This difference creates 
opportunities for rationale management in software development but it also 
calls for approaches to rationale management that go beyond those created 
for physical artifacts. Finally, Section 2.4 summarizes the ways in which 
software development is different and the significance of this fact for 
rationale-based software engineering. 

2.2 The Roles of the Computer 

Where the activities of an artifact’s lifecycle involve using computers, it 
becomes possible to employ rationale management software to greatly 
facilitate the capture, editing, structuring and retrieval of rationale. This is 
especially true when rationale management functionality is integrated into 
software used in decision-making, such as CAD systems (Fischer et al. 
1996), CASE systems (Oinas-Kukkonen 1988), and programming IDEs 
(Burge and Brown 2004) as well as systems for computer-supported 
collaborative work (McCall and Johnson 1997). There appears to be a 
broad consensus that without software support rationale management is 
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generally infeasible except for very small projects. As a consequence, in 
complex, real-world projects the question of whether a lifecycle activity is 
computer supported becomes decisive for determining the viability of 
rationale management in conjunction with that activity. The sections that 
follow argue that in this respect SE has dramatic advantages over fields 
that aim to create physical artifacts.   

2.2.1 Comparison of the Roles of the Computer in the 
Lifecycles of Physical and Software Artifacts 

The development processes for physical and software artifacts have a 
number of important similarities. Both involve the identification and 
analysis of requirements as well as design processes that center on the 
creation of models of the artifact being developed. In both domains, the 
computer has gained an increasingly important role in supporting design 
and requirement-related processes, and it is plausible in both cases that in 
the future all aspects of these processes might come to be computer 
supported. 

In those aspects of the artifact lifecycle that are not related to 
requirements or design there are profound differences between the roles of 
the computer with respect to software and physical artifacts. These 
differences derive from the simple fact that physical artifacts do not 
require computers for their existence while software artifacts do. Though 
computers can in certain cases play a role in the construction of physical 
artifacts, as with computer-aided design computer-aided manufacturing 
(CAD-CAM), computers are not necessary for the construction of most 
physical artifacts. Furthermore, they are never sufficient for the 
construction of any physical artifacts because non-digital, physical means 
must always be employed. Functioning software artifacts, however, cannot 
be constructed without the use of computers. In fact, the use of computers 
is both necessary and sufficient for the construction of software. We might 
write code using pencil and paper, but this code does not become software 
until it can be used by computers. 

The role of the computer also differs in the use of physical and software 
artifacts. There do exist some computer-mediated ways of using physical 
artifacts, such as by means of telerobotic systems that move around or 
through physical artifacts and make it possible for human users to 
manipulate them. However, using artifacts in this computer-mediated way 
is, of course, rare. Almost invariably, the use of physical objects is by 
purely non-digital, physical means. Software artifacts, by contrast, can 
only be used through the use of computers. 
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The differences in construction and use in turn imply differences in the 
roles of computers in maintenance and testing. After all, maintenance 
involves construction, and testing involves at least simulated use. 
Maintenance of physical objects necessarily involves physical means, and 
in fact the use of computers in testing and maintenance of physical 
artifacts is still relatively uncommon and seems likely to remain so for 
many years to come. With software, however, neither maintenance nor 
testing of constructed artifacts is possible, or even conceivable, without the 
use of computers. The result is that the computer is invariably much more 
heavily used in the maintenance and testing of software than in the 
maintenance and testing of physical artifacts.  

In summary, when it comes to the construction, testing, maintenance, 
and use of artifacts, there is a profound difference between the roles that 
computers play with respect to physical artifacts and software artifacts. 
Computers are ubiquitous in these aspects of the software lifecycle, yet 
they are rarely used in these aspects of the lifecycle of physical artifacts. If 
this ubiquity is combined with the increasing role of computers in software 
requirements engineering and design, we see that the computer will 
eventually be ubiquitous in all aspects of the software lifecycle, i.e., in all 
aspects of SE. 

The intent here is not to downplay or to diminish the importance of the 
computer in the development of physical artifacts, but merely to point out 
that the role of the computer in the software lifecycle goes substantially 
beyond the role of the computer in the lifecycle of physical artifacts. 
Software differs from physical artifacts in having the computer as a 
common medium for every aspect of its creation and existence, including 
design, implementation, testing, use, and maintenance. 

2.2.2 The Significance for Rationale Management in Software 
Engineering 

2.2.2.1 General Implications for Support of Software Engineering 
Rationale 

The differences between the roles of computers in the respective lifecycles 
of physical and software artifacts have crucial implications for support of 
rationale. The greater role of computers in the construction, testing, use, 
and maintenance of software means that there are greater possibilities of 
using rationale in these activities. In other words, SE has the potential for 
using rationale in more lifecycle activities than do fields that specialize in  
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the development of physical artifacts. This potential has two parts: many 
more places where rationale can be captured and many more places where 
it can be used to improve the artifact creation process.  

The ubiquity of the computer in the software lifecycle has important 
implications for rationale-based software engineering, though research on 
some of these implications is still in its early stages. One such implication 
is the potential for extending rationale research beyond the current focus 
on design and requirements engineering to other activities in the software 
lifecycle. Another implication of this ubiquity is the potential for 
computer-mediated communication, collaboration, and participation 
involving participants in development, maintenance, and use of software. 
Such communication provides a rich source for the capture of rationale 
(Shipman and McCall 1997) as well as an excellent vehicle for the 
delivery of rationale to those who need it. This sort of communication can 
provide feedback from construction and use that informs iterative and 
incremental approaches to design and requirements engineering. It can also 
provide valuable feedforward about requirements and design intent that 
informs construction, maintenance, and use. 

2.2.2.2 Linking Software Artifacts to Their Rationale 

One important consequence of the ubiquity of the computer in the software 
lifecycle is that the rationale about some feature or characteristic of the 
system can be directly linked to the part of the software that implements that 
feature or characteristic. This has a number of implications for rationale 
management. One is that the artifact can be used as a way of rapidly 
accessing rationale. For example, Burge uses source code in the Eclipse IDE 
to alert programmers to the existence of rationale about individual pieces of 
code (Burge and Brown 2004). This is, of course, made possible by 
augmenting Eclipse with rationale management functionality. With this sort 
of augmented IDE, the artifact can in effect be used as a way of indexing 
rationale. Though Burge also uses her RATSpeak schema for structuring 
rationale, some, such as Schneider (2006), use linkage of rationale to 
software as a substitute for the use of a schema. This has the potential to 
eliminate the need for a schema, which in turn has the potential of 
dramatically reducing the amount of work required for capture of 
rationale—or at least the rationale associated with construction decisions. 

Yet another potential value of linking rationale to software is that it 
provides a basis for checking whether the decisions about the 
requirements, design, and implementation correspond to the as-built state 
of the code. Such checking might even be partially or completely 
automated. Automated checking would require that the computer be able 
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to “understand” the denotation of the textual descriptions of decisions in 
the rationale for requirements, design, and implementation. 

It might be argued that the linking of the rationale to the artifact is not 
really something that makes software development different from the 
development of physical artifacts, because with CAD systems, rationale 
could be linked to the digital model of the physical artifact. A crucial 
difference, however, arises when the artifact is actually constructed and 
put into use. A physical artifact has no intrinsic ability to have rationale 
linked to it—since the rationale is digital and the artifact is not. Of course, 
someone might devise a way of linking rationale to various parts of a 
physical artifact—using, RFIDs, bar codes or some as-yet-unknown 
technology. The crucial point, however, is that such linking is inherently 
much simpler and easier to accomplish with software than with a building 
or some other physical artifact.  

The relative ease of linking rationale to software artifacts implies that a 
person constructing, modifying or reusing software could easily have 
access to the rationale behind the design and the requirements as well as 
the rationale of others who have worked on the system—and, in fact, to the 
rationale of every stakeholder associated with the system’s creation, 
revision, and use. Furthermore, if the links to rationale are preserved when 
the code is compiled, then even users could have access to rationale for the 
software. In fact, Haynes (2006) has advocated and experimented with 
using design rationale that is linked to compiled software to explain the 
functionality of complex systems to their users. 

2.2.2.3 Using Networked Computers to Capture and Retrieve 
Stakeholders’ Rationale 

The fact that the networked computer is the ubiquitous platform for every 
activity in the software lifecycle, including the implementation and use of 
the software, means that all the stakeholders for a software project, including 
the developers, maintainers, and users, could in principle input their own 
rationale at any time and retrieve the rationale created by any and all other 
stakeholders at any time. Rationale methods for doing this already exist. 
Carroll’s Scenario-Claims Analysis approach is already well suited to 
capturing user evaluations of system features in the context of use. And the 
decision-centered approaches to argumentative rationale, including IBIS, 
PHI, QOC, DRL, and RATSpeak are well suited to documenting the 
rationale of the development and maintenance teams. What needs to be done 
is to create software systems that can support this full spectrum of rationale 
management. This will require a great deal of work, but the potential is 
there. No type of physical artifact development offers such potential. 
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In fact, if communication amongst the stakeholders is integrated into the 
software environments for development, maintenance, and use, such 
communication could be automatically captured and used as a basis for the 
system’s rationale. This by itself would go a long way towards solving one 
crucial part of the capture problem, which has been the main obstacle to 
practical use of rationale management—that part being the recording of 
substantial amounts of rationale. In fact, in addition to acquiring large 
quantities of rationale, this would enable acquiring rationale from the 
entire spectrum of stakeholders in the project. The advantages this would 
offer for collaboration, coordination, and project management can hardly 
be overestimated. 

The other part of the capture problem actually has nothing to do with 
capture per se. It is the problem of structuring and indexing captured 
rationale. Without this, the rationale cannot be effectively retrieved when 
needed. This part of the problem might well be solved with the help of the 
sort of artifact-based structuring described above. 

Implementing a practical system that all stakeholders would actually use 
for capturing, structuring, indexing, and retrieving rationale would be an 
extremely ambitious task, and one that might be still more complex than 
the above description suggests. However, it is possible for software 
engineering in a way that simply does not exist for other fields that seek to 
aid the development of physical artifacts. This fact alone suggests that 
there is more hope for success in creating a truly rationale-based software 
engineering than for implementing a rationale-based approach to any field 
of physical artifact development.  

With physical artifacts, the rationale for their development ultimately 
becomes disconnected from that artifact, which means there is a natural 
tendency for that rationale to become inaccessible to people who use these 
artifacts or try to learn from their development. With software there exists 
the possibility for rationale to be permanently bound to the software it 
discusses and thus be available to all who have access to the software 
regardless of how much time has passed. This would facilitate both the 
reuse of the software and the design of similar software in the future. 

The permanent connection of software to its rationale would facilitate 
learning from previous projects and even the development of cumulative 
stores of rationale that are not only added to over many years, but that are 
also progressively refined in their detail, completeness, consistency, 
organization, and indexing as they mature. This learning would, of course, 
be greatly enhanced if the rationale included extensive feedback from 
users, so that future developers could judge whether the expectations of the 
developers about the quality of the software were matched by the 
experiences of the users. Such stores of rationale could serve as 
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organizational memories for project teams, companies, and the software 
engineering field as a whole. 

2.3 Iteration in Development 

2.3.1 The Role of Iteration in Different Types of Development 

Iteration has historically been the subject of radically different points of 
view in software engineering. Early on, many campaigned against it; more 
recently, many have campaigned for it under such various labels as 
“incremental,” “evolutionary,” “agile” and, of course, “iterative” 
development. One does not have to take sides in this controversy to 
recognize that iteration is possible in software development to an extent 
and in ways not found in the development of most other kinds of artifacts, 
especially larger-scale physical artifacts such as buildings and cities. In 
fact, it is precisely the manifest possibility of iterative approaches to 
software development that has enabled it to be the subject of controversy 
amongst software engineers. 

Independent of the iterative approaches currently being promoted in SE, 
it is clear that iteration, in the sense of repeatedly learning from experience 
with constructed systems, is already deeply rooted in conventional 
software development. This is especially clear in the cases of commercial 
off-the-shelf (COTS) and open-source software. Such products generally 
have great longevity and go through many different release versions, each 
of which may be preceded by alpha and beta versions.  Their development 
is characterized many iterations of redesign, recoding and patching, all 
informed by feedback from constructers, users and maintainers of previous 
versions. 

If, however, we look at the role of iteration in the development of large-
scale physical artifacts such as buildings, a dramatically different picture 
emerges. While there is good deal of iteration in the virtual world of CAD 
models, there is relatively little iteration in the real world of the constructed 
artifact itself—especially in comparison with SE. One important reason for 
this appears to be that the costs of changes in construction would be 
excessive as a fraction of the overall cost of the project. Another reason is 
that an incremental approach in which large artifacts, such as buildings, are 
partially constructed, then inhabited, and then later refined seems to be both 
dangerous and infeasible for a variety of reasons. For example, while people 
can continue using an old software version while a new one is being 
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constructed, constructing a new version of a building would probably 
require evacuation of the building. Thus, the concept of version, in the sense 
of a constructed artifact, plays no significant role. 

Like version, the concept prototype also has little or no role in the 
development of large physical artifacts. The only real use for prototypes, in 
the sense of full-scale functioning artifacts, is for possible testing of a few 
small parts of the final design—for example, a prototype of a wall panel 
for a building being created. Full-scale usable prototypes of a building are 
generally out of the question; they are simply too expensive. These facts 
rule out iterative development of buildings, in the sense in which this term 
is used in software engineering. 

2.3.2 Implications of Iteration for Rationale Management in 
Software Engineering 

2.3.2.1 The Importance of Rationale in Iterative Development 

Each iteration in an iterative development process introduces change into 
the software system. As a minimum there is change in the construction of 
the system, but there may also be changes in the design and even in the 
requirements. Before any such change is made it is important to know 
what the rationale was for the previous state of the system, because this 
can help to avoid breaking or losing functionality when changes are 
implemented. Records of the dependencies between design decisions are 
especially important because they enable developers both to predict the 
consequences of changes and to cope with these consequences.  If 
developers do not have a solid knowledge of rationale, there is the danger 
that the software will, over many iterations, “drift” and lose the integral 
unity of its design and construction. It might then “grow like topsy,” 
becoming progressively more disorganized and less robust.  

2.3.2.2 The Absence of Explicit Iteration in Most Approaches to 
Rationale 

Both the possibility and current popularity of iteration (Rajlich 2006) in 
software development make it important to ask what its implications might 
be for rationale management in software engineering. Unfortunately, 
almost all argumentative approaches to rationale management in software 
engineering—including IBIS, PHI, QOC, DRL, and RATSpeak—fail to 
provide any explicit account of how they would deal with iterative 
development. These approaches base decision-making on a purely verbal 
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process of argumentative deliberation. There is no explicit role for action, 
construction, versions, prototypes, testing, use, experience or empirical 
evidence. This, however, does not necessarily mean that they cannot be 
used in iterative software development. It merely means that they have not 
yet indicated how they would do so. In fact, it seems that lessons learned 
from experience with constructed and released software could easily be 
incorporated into argumentation; but there has been little discussion in the 
literature about how this would work. Until more literature is generated on 
this subject, it will up to each development team to determine how to use 
these rationale methods in the context of iterative software development. 
However, Chapter 16 of this book, entitled “A Conceptual Framework”,  
attempts to partially remedy this problem by giving a theoretical account 
of how rationale might support iterative software development. 

There are some approaches to rationale that currently deal with iteration 
explicitly. One of these is Scenario-Claims Analysis (SCA), which Carroll 
and Rosson (1996) devised explicitly to support what they describe as 
“deliberated evolution” in “the task–artifact cycle.” In addition, the Win–
Win rationale method is explicitly tied to Boehm’s Spiral Model of 
software development (Boehm and Kitapci 2006).  

2.3.2.3 Rationale as a Means for Benefiting from Lessons Learned 

If software development is an inherently iterative process in which 
software is improved through experience with constructed systems, then it 
is largely a process of learning. One crucial opportunity for improving the 
quality of future software development is to make sure that the hard-won 
lessons learned from iterative development efforts are available for future 
development efforts. Documenting rationale behind current development 
provides a means for doing this. It is crucial not merely to document the 
reasons for the decisions taken but also the arguments against those 
decisions, the alternatives to the decisions, and the argumentation on these. 
Without this sort of documentation it is easy to fall into the trap of being 
seduced by intuitive but mistaken solution ideas. Without documentation 
of why bad ideas are bad, we doom future generations of developers to 
find out the hard way that these ideas are bad. 

If future developers can learn the lessons of previous developers without 
having to repeat their experiences, it would seem that the amount of 
iteration required in development might be reduced. Only time and 
experience with documented rationale will tell if this is the case. 

To maximize the benefits of lessons from the past, we need long-term 
storage of rationale and widespread access to that rationale. Ideally, we 
need cumulative stores of rationale that grow and evolve through use. A 
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number of approaches are possible, including rationale centered on design 
patterns (Pena-Mora and Vadhavkar 1997; Hagge et al. 2006), domain-
oriented issue-bases such as those used by JANUS (Fischer et al. 1996) 
and PHIDIAS (McCall et al. 1992), and approaches based on Case-Based 
Reasoning, such as that used in the ARCHIE system (Kolodner 1993) (see 
Chapter 4 of this book, “Learning from Rationale Research in Other 
Domains”).  

2.4 Summary and Conclusion 

Rationale research began in fields that dealt with the development of large-
scale physical artifacts, such as buildings and cities. The development of 
software differs from the development of such physical artifacts in ways 
that are crucial for the success of rationale management in software 
engineering. The ubiquitous role of the computer in every aspect of the 
software lifecycle gives software engineering the potential to capture 
rationale from every type of stakeholder in a development project and to 
enable each of those stakeholders to retrieve rationale from every other 
stakeholder. No comparable potential exists in physical artifact 
development. In addition, because the software artifact is constructed and 
used on the computer, the rationale from stakeholders can be linked to the 
sections of the software, thus enhancing retrieval and potentially easing the 
work of capturing, structuring, and indexing rationale. 

Finally, the inherently iterative nature of much modern software 
development creates both challenges and opportunities for software 
engineers. The challenges include modifying rationale methods to reflect 
the iterative reasoning processes in this development. The opportunities 
include the capability of learning from past development efforts through 
the building of cumulative stores of rationale that grow and evolve through 
use in the context of development. 



3 Rationale and Software Engineering  

Software engineering, the process of developing software-intensive 
systems, is a complex area. This chapter introduces software engineering 
as well as the potential benefits in capturing, maintaining, and reusing 
rationale to support it. 

3.1 Introduction 

3.1.1 Software Engineering 

According to the IEEE (IEEE 1993), software engineering is “the 
application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the 
application of engineering to software.” A more detailed definition of 
software engineering, and the one that we use during this book, was 
provided by Finkelstein and Kramer (2000): 

SE focuses on: the real-world goals for, services provided by, 
and constraints on such systems; the precise specification of 
system structure and behavior, and the implementation of these 
specifications; the activities required in order to develop an 
assurance that specifications and real-world goals have been met; 
the evolution of such systems over time and across system 
families. It is also concerned with the processes, methods and 
tools for the development of software intensive systems in an 
economic and timely manner. 

Both the IEEE and the Finkelstein and Kramer definitions stress the 
necessity for a disciplined process of software development. This 
discipline is what puts the “engineering” in software engineering.  
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3.1.2 Software Engineering Rationale     

Much of the research on rationale has addressed design rationale (DR). In 
domains such as engineering design, most critical decisions are made at 
design time and that is when the majority of the rationale is captured and 
used. During software development, while most development 
methodologies include a phase called design, decisions that drive software 
development are made throughout the process. We therefore view rationale 
as something that can be captured and used at all stages. In this book we 
use the term software engineering rationale (SER) to encompass all 
different types of rationale in many SE processes (Dutoit et al. 2006b) and 
to serve as a base for examining how SER can support the entire software 
engineering process. 

3.1.3 Objectives of This Chapter 

This chapter begins with a description of how rationale can be used to help 
define and implement the software process. This is then followed by a 
description of how rationale can support project management. The 
remainder of the chapter introduces how and when rationale can be used in 
software development. 

3.2  Rationale and the Software Process 

3.2.1 Software Process Definition and Implementation 

In order for software development to be performed in a systematic and 
disciplined approach, it is necessary to follow some defined software 
engineering process. There is no single software development process that 
fits all types of software development. Instead, the software process used 
should be chosen, or defined, to best meet the organizational needs of the 
software developers as well as any process requirements that may be 
mandated by the client. According to the IEEE Software Engineering Body 
of Knowledge (SWEBOK ) (IEEE 2004a), software engineering process 
(SEP) definition/development can be broken into four sub-areas:  (1) 
Process Implementation and Change, (2) Process Definition, (3) Process 
Assessment, and (4) Process and Product Measurement.   
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The Process Implementation and Change subarea defines what needs to 
be known in order to either implement a new software engineering process 
or to change an existing one. This includes the definition of the 
infrastructure needed for process management, determining how the process 
will be managed, and selecting an appropriate quality improvement model. 

The Process Definition subarea involves selecting the appropriate 
software lifecycle model, the software lifecycle process, determining the 
appropriate notation to describe the software process, adapting the selected 
process to meet the needs of the specific organization, and determining 
how, or what portions of, the process can be automated using process 
support tools. 

The Process Assessment subarea utilizes assessment models. The 
Capability Maturity Model (CMM) (SEI 1997) and CMMI (CMMI 2006) 
are two examples. Process assessment also requires process assessment 
methods that can use information about the process to give it a rating, or 
“score.” 

Finally, the Process and Product Measurement subarea describes the 
need to measure process outcomes (its success at meeting process 
outcomes) and to perform product measurement to look at its size, 
structure, and quality. Of course, deciding what data to collect is 
insufficient; it is also necessary to decide how to assess the quality of the 
measurement results. A rigorous quality improvement process also 
involves collecting measurement data over time into a repository, 
modeling the information, and determining how the information can be fed 
back into the process on future projects. 

3.2.2 Rationale and SE Process Decision-Making 

We will describe the role of rationale in the software lifecycle and in 
software process improvement later in the book. Here, we will address 
how rationale can support the process definition process described in the 
SWEBOK as outlined above. Determining what the appropriate software 
development process is, and how that process should be managed and 
measured, involves making a number of very crucial decisions. The 
decision-making process involves determining the software process goals, 
the alternative means for achieving those goals, and evaluating those 
means to determine which alternatives best suit the goals of the specific 
organization and project.  

Process Implementation and Change. In order to implement a new 
process, or change an existing one, many decisions must be made. What 
are the requirements for the new/adapted process? What changes should be 
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made to the current process infrastructure? How is the process going to be 
managed? Which quality improvement model best suits the needs of the 
project? The rationale for the choices made when making these decisions 
can be used to determine if the reasons for these choices are consistent 
with project goals. It can also be compared with that from prior projects to 
see where past processes can be reused or adapted to meet new process 
needs.   

Process Definition. The choice of process, and how rigorous that process 
should be, will have a significant impact on the software project. There are 
tradeoffs that need to be made between having a well-defined and 
rigorously monitored process and the cost and time that this may entail. 
Software life-cycle models are not “one size fits all.” Selecting the 
appropriate model for a specific project involves careful examination of 
alternative lifecycles and their advantages and disadvantages relative to the 
needs of the organization. There are also many choices that need to be 
made when deciding if, and how, the process requires adaptation to meet 
specific organizational goals. It is important that adaptations are consistent 
with the goals of the lifecycle and do not counter its advantages.  Process 
automation is also an area where decisions must be made. If automation is 
a high priority, it may prove to be a key driver in selecting the software 
process. The process may be chosen based on the tool support available 
and what that tool support is likely to cost.  

Rationale should be recorded for the reasons behind the choices made. 
The explicit articulation of tradeoffs made will ensure that the choices are 
made for the right reasons and, if these decisions are revisited for future 
development efforts, that the effort that went into making these crucial 
decisions can be assist in making the correct decisions in the future.    

Process Assessment.  The choice of how a process will be assessed may 
or may not be under the control of the software development organization. 
In either case, the standards used to evaluate the software process can be 
captured in the rationale as criteria used to assess the other decisions made 
during the process definition process. The process outcomes identified will 
be the main criteria used to determine the process measurement strategy. 

Process Measurement. There are many aspects to the software process 
and product that could measured during development.   The question is, 
which of these should be measured in order to assess the software projects 
success at achieving process outcomes. Again, there are tradeoffs to be 
made between the time and effort it takes to perform process and product 
measurement against the value of the information obtained. Choices may 
be made based on tool support available to assist in this effort.  
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Capturing the rationale for these decisions can help to clarify what 
measurement options should be considered and what the reasons are for 
choosing them. The knowledge captured in the form of rationale can also 
assist future projects when they need to make similar decisions.    

3.3 Rationale and Project Management 

The Project Management Institute defines project management as “the 
application of knowledge, skills, tools, and techniques to project activities to 
meet project requirements” (PMBOK 2003). This definition is rather general 
but it is commonly understood that good project management is essential to 
ensuring that a project meets its goals of delivering quality software on time 
and within budget. Management needs to work successfully with the client 
to ensure that their needs are understood and met while also working with 
the developers to ensure that they have the knowledge and resources 
necessary to successfully develop the software product. 

As in software development, rationale can play multiple roles. Rationale 
can assist with guiding and capturing the decision-making process when 
developing the management strategy for a project. As with software 
development processes, there is not one management solution that will 
work under all circumstances. Processes used in the past require tailoring 
to meet the needs of specific projects and the skills of specific teams. 
Rationale captured for management choices in the past can be used to 
determine if those choices are still valid for future projects. 

Examples of some management choices include: 
• Status reporting requirements for project teams 
• Project team structure (size, distribution of responsibility, 

communication strategy) 
• Necessity of hiring consultants with key technical expertise 
• Frequency and duration of status meetings 
• Role of software tools in the software project 

Criteria for making these choices might include: 
• Team member expertise and experience 
• Team familiarity—experience of team members with each other 
• Value of permanent employees learning new technology for future 

projects 
• Budget provided for tool aquisition 
• Management experience 
• Customer flexibility (in terms of both deliverables and schedule) 
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It is critical that these key management decisions be made based on an 
understanding of the criteria that impact their success. Using the rationale 
to capture and evaluate these decisions helps to ensure that the 
management strategy selected best suits the needs of the client, product, 
and team. 

Rationale can also assist with many project management or related 
tasks. Charette (1996) states that “large project management is risk 
management.” The identification of risks is a crucial factor in successful 
software development. Capturing these risks, alternative mitigation 
strategies proposed, and the mitigation strategy used serves to both clarify 
the risk management process for the current project as well as form a 
knowledge base of risks, strategies, and outcomes for use in future 
projects. 

Another aspect of software development where project management 
plays a key role is in the reconciliation of stakeholder viewpoints. Theory-
W (Boehm and Ross 1989) is a software project management theory where 
the main goal is to “make everyone a winner.” Theory W is based on 
Fisher and Ury’s (1981) negotiation approach, where a key part of the 
negotiation involves identifying options and evaluating those using 
objective criteria. In Theory W, the key to a successful negotiation is to 
identify the stakeholder win conditions and to find options that create the 
win–win situations. The generation of these options and win–conditions is 
supported using the WinWin support system (Boehm et al. 1995). The 
information captured in WinWin is, in essence, the rationale behind the 
software requirements (Boehm and Kitapci 2006). 

One of the more successful uses of argumentation-based rationale is to 
assist with structuring discussion during project meetings. The Issue-Based 
Information System (IBIS) notation (Kunz and Rittel 1970) is the basis of 
several systems applied to capture discussions in meetings. The indented 
text IBIS (itIBIS) system was used at NCR to capture project team 
meetings (Conklin and Burgess-Yakemovic 1996). This helped to focus 
discussion and point out potential problems with the requirements. 
Converting the textual rationale into a graphical form (gIBIS) exposed 
several problems with the proposed design that would probably not have 
been detected otherwise.  The use of IBIS to aid in collaboration has 
continued with the Compendium project (Buckingham Shum et al. 2006) 
to perform “Dialogue Mapping.” In their approach, a trained facilitator 
uses Compendium to capture discussion in an IBIS format during 
meetings. The results of the discussion can be displayed in real time to 
allow meeting participants to view, and reflect on, the discussion taking 
place.  
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3.4 Rationale and Software Development  

The previous sections described how rationale can assist with defining the 
software development process and in managing the implementation of that 
process. Here, we highlight uses of rationale during the software 
development process by describing why rationale is needed, what some of 
the uses of rationale are, when rationale can be used during the process, 
and finally how it can be used. These areas are our primary focus during 
the remaining chapters of this book. 

3.4.1 Why Capture Software Engineering Rationale? 

Earlier in this book we defined rationale and its importance in software 
engineering. The success of any software project is dependent on the right 
choices being made during its development.  

Software engineering contains many key challenges that can be 
addressed by the capture and use of rationale: 

• Software system longevity. Software systems have been shown to remain 
in operation longer than the original developers probably anticipated. 
This longevity, and the need to continually evolve software to keep it 
viable, means that it is essential to understand the reasons behind 
development decisions made years earlier. 

• The Iterative nature of software development. Many current software 
development processes utilize some form of iteration in order to 
increase their ability to adapt to changing requirements and technology. 
As development progresses, criteria appearing in the later iterations may 
affect decisions made in the earlier ones. The rationale can help to 
assess the impact of the changing criteria and guide the developer in 
making changes that implement the new functionality with minimum 
risk to that implemented earlier. 

• Stakeholder involvement. There are many different stakeholders in a 
software development effort who have their own, sometimes conflicting, 
goals for the system. For example, the customer is concerned with the 
functionality provided by the system; the end user is concerned with 
how well it helps them perform their tasks and how easy it is to learn 
and use; the developers are concerned with how difficult it will be to 
implement; the managers are concerned with how long implementation 
will take and how much it will cost; all stakeholders are concerned with 
the reliability of the delivered system; etc. Capturing the decision-
making process, and the stakeholders having input into that process, can 



44      3 Rationale and Software Engineering 

serve as a basis for negotiation. Rationale also captures how the 
different stakeholder priorities affect the developed system.   

• Knowledge transfer. Significant amounts of expert knowledge are 
involved in the development of a large software system. This is 
information that will be lost if it is not documented, particularly at times 
of high turnover in the software industry. Rationale can serve as a key 
component in an organization’s knowledge management strategy. 

• Increasing size and complexity of software systems. Software systems 
have long since passed the point where their design is simple enough to 
exist in the heads of their developers. Rationale can assist as a “memory 
aid” to assist developers in remembering why they made their earlier 
decisions. Rationale can also be used to index into the code and 
documentation to determine the impact of changing decisions on the 
software. 

3.4.2 What are the Uses of Software Engineering Rationale?  

In order to convince software developers that capturing rationale is worth 
their time and effort (and convincing software managers that capturing 
rationale is worth some additional up-front costs), it is essential that the 
rationale is useful both during the initial requirements and design stages 
and later as the software is maintained and reused. We have identified 
several key areas of rationale use: 

• Presentation. The use that immediately comes to mind for rationale is 
its ability to document the decision-making process. The ability to 
browse through, or query, the rationale-base to learn more about the 
decisions can assist developers in learning about the software, 
preventing the duplication of past work, and avoiding errors. The 
usefulness of the presented rationale will be dependent on the method of 
presentation. Ideally, presentation should be done within the same tools 
that are already in use to develop the software. The developer will be far 
more likely to know that the rationale is available and take it into 
account when making decisions if they do not need to use an additional 
tool. 

• Evaluation. The CMMI (CMMI 2006) Decision Analysis and 
Resolution (DAR) process area stesses the importance of performing a 
“formal evaluation” of selected issues by evaluating alternative 
solutions (that address those issues) against criteria. Rationale can 
support this type of calculation by providing detailed information about 
the solution alternatives and their relationship to the decision criteria 
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(such as requirements, quality attributes, and assumptions). This 
information can be used to rate or rank the alternatives to evaluate the 
quality of the decision results. Rationale also supports usability 
evaluation, as demonstrated by the Scenario-Claims Analysis approach 
(SCA) (Carroll and Rosson 1992).  

• Collaboration. Later in this book we describe how software 
development is almost always collaborative work. Rationale’s 
importance to collaboration during software engineering was 
highlighted in Jim Whitehead’s talk as part of the Future of Software 
Engineering track of the 2007 International Conference on Software 
Engineering (Whitehead 2007). Whitehead views architecture and 
design as “argumentative proceses” and proposes rationale capture, in 
the form of “collaborative argumentation” as an effective means of 
supporting these processes. The ability for rationale to support and 
capture this the negotiation required during software development has 
been demonstrated by many approaches, such as the WinWin (Boehm et 
al 1995) and Compendium (2006) systems described earlier.  

• Change analysis. As mentioned earlier, software development is an 
iterative process. Software requires change both during the development 
process, as more information is learned about the requirements and 
incorporated into the software, and afterwards as it enters the 
maintenance and evolution stage of its life. Software may require 
changing for a multitute of reasons but one thing remains certain—the 
need to understand how the proposed changes impact the existing 
software. This includes both determining where the changes need to be 
made and also how those changes may affect the ability of the software 
to meet the requirements, quality criteria, etc. that were the basis of the 
decisions made during its initial development. With appropriate tool 
support, rationale can be used to identify change location and change 
impact. Rationale-based consistency checking can aid in consistency 
management—an ongoing process during software development and 
maintenance. 

3.4.3 When can Software Engineering Rationale be Used in 
Software Development?  

As mentioned earlier, rationale can support many aspects of software 
development and is not constrained to the design stage. These aspects 
include the “standard” development stages of requirements, design, etc. 
and also the cross-cutting areas of project management and reuse. 
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• The software lifecycle. Rationale can play a role in any of the software 
lifecycles selected to guide the software development process. Rationale 
also has a role in software process improvement, as mentioned earlier in 
this chapter.  

• Requirements engineering. Rationale is involved in software 
requirements in several ways. One is in requirements elicitaiton and 
documentation.   The rationale is a natural place to capture the 
relationship between the software requirements captured during 
elicitation and the source of those requirements. This provides a “rich 
traceability” back to the original customer requirements (Dick 2005; 
Hull et al. 2002). As with all aspects of software development, 
negotiation plays a role in requirements engineering as all stakeholders 
need to agree on what the requirements are. This negotiation and the 
parties involved can be captured in the requirements rationale. 
Requirements also appear in the rationale for the system as the 
arguments for and against alternatives. Capturing this information, and 
associating it with the code that implements the alternatives, is a form of 
requirements traceability (Burge and Brown 2007). 

• Software design. Since much rationale research has been in the area of 
design rationale, it is no surprise that rationale for software design, and 
more specifically software architecture, is an active research area.  
Software architecture, while traditionally thought of in terms of 
components and connectors, is seen by some as “a composition of 
architectural design decisions” (Bosch 2004). This decision-centric view 
has encouraged more research into capturing the knowledge behind 
those decisions, as shown by workshops such as that on SHaring and 
Reusing Architectural Knowledge (SHARK). 

• Software verification and validation. This is an area where the capture 
and use of rationale remains largely unexplored. Still, decision-making 
in software engineering does not stop when the development is 
complete. The planning and execution of an effective testing strategy 
requires making complex tradeoffs between cost and quality to ensure 
that the software meets the needs of its users while keeping testing costs 
under control. Rationale for the choices made when selecting testing 
methodologies and tools should be captured so that it will be available 
for use by subsequent projects or if the testing strategy of the current 
project requires re-evaluation. 

• Software maintenance. One of the areas where the availability of 
rationale can be most valuable is during software maintenance. The 
challenge of software maintenance is ensuring that software evolves 
without damage to, or reduction in, the functionality needed by its users. 
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This is difficult because the maintainers may not be the same people 
who initially developed the code and often have a steep learning curve 
to understand an unfamiliar piece of software. The ablity to utilize the 
past experience of software developers via access to their rationale 
supports these goals. 

• Software reuse. Reuse has often been refered to as “the holy grail” of 
software engineering. The ability to reuse software systems or 
components has shown great promise in allowing software delivery with 
fewer defects, higher quality, and in significantly less time. There are 
many types and levels of software reuse and, while all have advantages, 
reuse is not without its risk. Rationale can play several roles in reuse. 
One is to support decision-making about if and when reuse is 
appropriate for any given project. There may be some cases where the 
risk outweighs the benefits. Another use is to capture the reasons behind 
the decisions on what should be reused. There may be several reuse 
alternatives that should be examined. Rationale can also be used to 
evaluate reuse candidates. If the rationale behind those candidates is 
available, this information would provide valuable insight into the 
decisions that went into their design. 

3.4.4 How Can We Support Software Engineering Rationale Use 
in Software Development? 

In order for Rationale-Based Software Engineering to live up to its 
promise, we need to develop Rationale Management Systems that support 
its capture and use. As in any software development project, the first step 
is to identify the requirements. What are the uses of rationale that such a 
system needs to support? How does rationale, as we currently understand 
it, support software engineering and when does it fall short? How do we 
address those shortcomings?  

Later in this book we provide two frameworks, one defining the key 
concepts in Rationale-Based Software Engineering and their relationships 
(the Conceptual Framework) and one that provides a framework for RMS 
development that supports the key features of RBSE needed to support 
software development (the Architectural Framework).  

3.5 Summary and Conclusions 

Rationale can play many roles throughout the software development pro-
cess, both descriptive—by providing a richer view into the decision-making 
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process, and prescriptive—by guiding that process and evaluating its results.  
There is however a small literature of doom-and-gloom discussions that 
dismiss the value of rationale relative to its cost, some even implying that 
the additional cost could make the difference between software project 
success or failure (Grudin 1996). Cost is an important factor in the equation, 
but it not a simple linear factor. Indeed, most nihilistic accounts of rationale 
describe development projects where rationale practices were implemented 
narrowly, manually, and incompletely. 

Rationale provides technical leverage throughout all the processes and 
activities of software development. A broad approach to capture and reuse 
of rationale is required to enjoy multiplicative benefits of pervasive 
rationale practices. Software tools to support partial automation of 
rationale management can reduce the cost side of the equation even 
further. Finally, implementing rationale practices thoroughly in 
development organizations is critical. Process improvement efforts such as 
the CMM and CMMI involve rigorous documentation of software 
development that takes both time and effort. Initial studies on the CMMI 
(Goldenson and Gibson 2003) show that many of the companies studied 
showed cost, schedule, and quality improvement after adopting the 
processes. 

When rationale practices are adopted broadly and with appropriate tool 
support, and when they are adopted thoroughly in development 
organizations, rationale has the potential to yield benefits that far outweigh 
its costs. 



 

 

4 Learning from Rationale Research in Other 
Domains 

While the issues of rationale usage in software engineering (SE) often differ 
crucially from those of rationale usage in other domains, there is still the 
possibility of learning a great deal from research on other domains. This is 
suggested by the fact that rationale research in SE originally derived from 
Rittel’s much earlier rationale research in architecture (building design), 
urban planning, and policy making. In addition to this work, which is still 
not widely known in SE circles, there is research on rationale that has been 
going on in various engineering disciplines for as long as 20 years. All of 
this work provides potentially valuable lessons for SE researchers and 
developers. This chapter will look at some examples of this work that could 
have important implications for rationale research in SE. 
 

4.1 Introduction 

4.1.1 Research on Rationale in other Domains 

Research on design rationale began with Rittel’s Issue-Based Information 
System (IBIS) (Kunz and Rittel 1970) and its applications to urban planning, 
architecture (building design), and governmental policy making in the 1970s 
and 1980s. By the late 1980s software engineers at the Microelectronics and 
Computer Technology Corporation (MCC) were looking at adapting Rittel’s 
method to their own field and developing appropriate computer support 
(Conklin and Begeman 1988; Potts and Bruns 1988). Since then many other 
researchers involved with software engineering (SE), human–computer 
interaction (HCI), and other software-related related fields have created 
various rationale approaches, including QOC (MacLean, Young and Moran 
1989), DRL (Lee 1991), RATSpeak (Burge and Brown 2004), and many 
others. Most of these approaches continue the basic tradition started by 
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Rittel, while suggesting various modifications meant to go beyond Rittel’s 
IBIS and better fit rationale to the SE domain. 

Chapter 2 of this book emphasizes that there are some crucial 
differences between the problems of rationale usage in the SE domain and 
rationale usage in the domains of physical artifact creation. At the same 
time, there continues to be a considerable overlap in the issues facing 
rationale researchers in these two types of domains. This suggests that 
researchers in these domain types might still have much to learn from each 
other. This chapter explores this topic by presenting some examples of 
rationale research in design and engineering. 

4.1.2 Objectives of This Chapter 

 
Rather than attempting a comprehensive survey of rationale research in 
other domains, this chapter will concentrate on examples of such research 
that raise important issues for research on rationale support in SE. For 
these examples, the issues raised mostly have to do with the way in which 
they use computers to support rationale; therefore, this chapter will go into 
more detail on the rationale management software systems than is 
generally the case in the remainder of the book. 

The approaches and systems described in the chapter all deal with the 
rationale for design. For the examples discussed, this chapter will first 
identify crucial functionality that they bring to the support of rationale, 
functionality not currently found in rationale management systems for SE. 
Connections to existing research on software engineering rationale (SER) 
will then be identified. The potential advantages of adopting this 
functionality in SER support systems will then be discussed; and potential 
challenges to implementing this functionality in SE will be described. 

4.2 Domain-Oriented Design Environments Using PHI  

4.2.1 PHIDIAS and JANUS 

The PHIDIAS (PHI-based Design Intelligence Augmentation System) 
project (McCall et al. 1990) began in 1985 with the goal of adding a CAD 
subsystem to the MIKROPLIS hypertext software. MIKROPLIS (McCall 
et al. 1981; McCall 1991) was a hypertext authoring system devised in the 
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early 1980s to support the PHI variant (McCall 1991) of IBIS (Kunz and 
Rittel 1970). In this project, fundamental issues arose about how the 
integration of CAD graphics and PHI rationale should work from the 
standpoint of human–computer interaction (HCI). These issues were 
ultimately settled not by working directly on PHIDIAS but by working on 
the JANUS system. 

JANUS combined the functionality of the CRACK system (Fischer and 
Morch 1988) for kitchen design with hypertext functionality needed for 
PHI-based design rationale. CRACK enabled designers to create kitchen 
layouts using a domain-oriented construction kit. A construction kit is a 
collection of graphical building blocks that can be dragged and dropped 
into place in a CAD system. A construction kit is domain oriented if its 
building blocks represent high-level domain concepts, such as walls, 
windows, stoves, sinks, etc. rather than low-level computer graphics 
concepts such as points, lines, and shapes. Domain-oriented construction 
kits were used because they enabled designers to rapidly and intuitively 
build designs. Such a construction kit is, in essence, simply a conventional 
CAD symbol library to which semantics had been added so that each type 
of building block indicates what type of real-world object it denotes—e.g., 
window, door, stove or sink. 

In CRACK the semantic information of the building block is used by a 
critiquing system that “looks over the shoulders” of designers as they work 
and points out violations of rules of thumb for kitchen design. An example 
of such a critique might be, “do not put the stove in front of a window.” 
The rationale for this critique is that placing a stove in front of a window 
creates several potential problems: (1) a person might reach over the stove 
to open or close the window, thus creating the risk that the person might 
knock over a pot or lean into the flame of burner on the stove; (2) curtains 
in the window might catch fire; (3) the windows might get greasy; (4) 
someone cooking at a stove might get distracted by looking out the 
window. CRACK, however, did not display this rationale for users; it only 
displayed a brief critiquing message. 

CRACK was meant as an improvement over an expert system approach 
in the sense that it empowered users by both providing expert advice but 
allowing those users to ignore this advice when they chose. The problem 
with CRACK was that, although it presented advice, it did not present the 
rationale behind that advice. Users were thus often uncertain about whether 
to follow the advice and how to act if they chose not to follow the advice. 
This deficiency was remedied by creating a new system, called JANUS, that 
combined the CRACK functionality with hypertext functionality that 
displayed the rationale for each critique using PHI. The new system had two 
fundamentally different kinds of functionality: support for constructing 
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designs (using construction kits) and support for design rationale. It was 
therefore named JANUS, after the Roman god with two faces. 

JANUS presented the rationale for critiques in the form of domain-
oriented issue base (DOIB) structured using PHI. These are collections of 
issues, positions, arguments, and subissues that commonly arise in a 
particular design domain. DOIBs had been developed since the late 1970s for 
a variety of domains including the design of residences, lunar and Martian 
habitats, neighborhood shopping areas, health care policy, and information 
retrieval systems. The JANUS system’s DOIB provided issue-based 
information that was relevant to a wide range of kitchen design projects. 

JANUS was successful not only in further empowering its users; it also 
answered the crucial questions raised in the PHIDIAS project about how 
and when to integrate support for rationale with support for CAD. After 
the JANUS system was implemented and judged successful, it was 
realized that these successes were actually implied by Schön’s theory of 
Reflective Practice (Schön 1983). 

Schön had viewed design as consisting of a repeated alternation between 
two processes, that he labeled Knowing-in-Action and Reflection-in-Action. 
Knowing-in-Action is the process of intuitively creating the form of a 
design—e.g., using pencils or CAD systems. It is a nonreflective process of 
unselfconscious engagement in the task of forming the design. This process 
continues until there is a breakdown of intuition when something unexpected 
happens. In conventional design, breakdowns correspond to the designer 
realizing that something is wrong with the design or that some unforeseen 
opportunity has arisen for improving the design. Once a breakdown has 
occurred, the designer changes to the mental process Schön calls Reflection-
in-Action. This consists of reflecting on how to deal with the breakdown 
situation. This is a process of critical thinking in which the reasoning behind 
the design becomes explicit and it cannot be done simultaneously with the 
intuitive process of Knowing-in-Action. Once the designer has determined 
how to deal with the breakdown, Knowing-in-Action takes over again and 
implements the solution to the breakdown. 

The JANUS group saw the intuitive construction of designs using con-
struction kits as a clear example of Knowing-in-Action. Critiques corres-
ponded to potential breakdowns. The PHI-based presentation of rationale for 
critiques provided support for the designers’ Reflection-in-Action. 

The JANUS functionality was integrated into PHIDIAS and then 
additional functionality was added. JANUS’s hypertext functionality was 
implemented using the Document Examiner, which supported display of 
rationale but provided no support for authoring. Because PHIDIAS was 
based on MIKROPLIS, it also supported authoring of rationale, thus 
enabling designers to add their rationale to the DOIB used by the system. 
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This authoring of rationale was accomplished using a prototyping 
mechanism that enabled creation of a virtual copy of the DOIB. This 
enabled designers to add there rationale to the DOIB and even edit the 
DOIB without actually altering the original DOIB itself. 

PHIDIAS also expanded the kind of knowledge-based critiquing 
available. In addition to critics that fired when designers positioned 
construction kit building blocks in the model of the designed artifact, 
PHIDIAS provided critics and rationale for the selection of building blocks 
from alternatives. PHIDIAS also provided knowledge-based agents that 
alerted members of design teams to potential conflicts between their work 
and the work of other designers in the team (McCall and Johnson 1997). 
PHIDIAS was applied to a variety of design domains, including the layout 
of computer networks in buildings, the design of lunar habitats and, of 
course, kitchen design. 

4.2.2 Discussion 

Critiquing is the most prominent feature of JANUS and PHIDIAS, but it is 
not the most important in its implications for rationale research in SE. The 
most important is the theory of Reflective Practice that these systems 
support. A central tenet of this theory is that it is a mistake to attempt to 
explicitly record the rationale for the process of Knowing-in-Action. This 
means that the traditional approach to rationale capture cannot be made to 
work for this part of the design process. The reason for this, according to 
Schön, is that forcing humans to make the reasoning behind Knowing-in-
Action explicit would prevent Knowing-in-Action from taking place. But, if 
Knowing-in-Action cannot happen, then neither can design, at least 
according to Schön. The significance of this claim is that, if true, (1) it 
would go a long way towards explaining why it has proved so difficult to 
capture design rationale, and (2) it would imply that the traditional approach 
to the capture of design rationale can only succeed in capturing part of the 
reasoning that goes into decision-making in design. This does not mean, 
however, that capture is not possible, merely that it is not possible if one 
asks the person engaging in Knowing-in-Action to record the rationale. Such 
capture might effectively be accomplished by another person or by 
automated means such as those used by Myers et al. and described below. 

One important contribution of critiquing is that it alerts decision-makers 
to the existence of rationale for a decision task without their having to ask 
whether it exists. This is a valuable contribution that makes it less likely 
that decision-makers will miss valuable information. However, critiquing 
is not the only mechanism that can do this. PHIDIAS also employs other 
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mechanisms that detect what task designers are engaged in and alert the 
designer to rationale for this task, thus implementing a general sort of task-
based indexing of rationale in addition to its critiquing. Burge has 
implemented mechanisms in the Eclipse IDE that alert implementers to the 
existence of rationale relevant to particular pieces of code that they look at. 
This is somewhat similar to the task-based indexing in PHIDIAS, but there 
is the question of whether Burge’s approach could be extended to include 
more general task-based indexing for SE. 

One feature of both PHIDIAS and JANUS appears to have 
straightforward application to every activity of SE: the use of Domain-
Oriented Issue Bases (DOIBs). Because any decision task can be 
represented as an issue, DOIBs would seem to be applicable to decision 
tasks of all types, including those for requirements determination, design, 
construction, testing, and maintenance. 

Adapting the critiquing of JANUS and PHIDIAS to SE support systems 
presents an interesting challenge. This sort of critiquing is heavily dependent 
on CAD systems’ use of iconic models. Iconic models are graphical models 
in 2D or 3D Euclidean space of artifacts that occupy 3D Euclidean space. In 
iconic models there is a natural correspondence—or natural mapping—
between parts of the model and the parts of the real-world object it 
represents. In addition, the placement of a single element into an iconic 
model implies the existence of a whole battery of relationships with other 
elements in the model. These relationships include distance between 
elements, whether they are lined up vertically, horizontally or at an angle, 
whether they are collinear—and so forth. All the critics in JANUS and 
PHIDIAS are based on these implied relationships. 

The only place that SE uses iconic models is in the design of graphical 
user interfaces (GUIs). This is therefore the one area where the approaches 
used in JANUS and PHIDIAS—as well as other systems described in this 
chapter—might find direct application to software projects. 

Software designers generally create and use symbolic models rather than 
iconic models. By definition, the denotation relationships between 
elements of a symbolic model and the artifact it represents are arbitrary 
social conventions. Symbolic models can, however, come to feel like they 
also have a natural mapping if the relationships between symbols and real 
objects are truly standard, i.e., something universally accepted within a 
large group of people. The more software designers use models with 
standardized semantic meaning, the more natural this mapping will seem. 

An open research question is whether the sort of rich collection of 
implied relationships found in iconic models can also be found in symbolic 
models. Since these models often take the form of graphs, it may well be 
that graphic theory might provide a way of deducing such relationships. 
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Perhaps conceptual schemas dealing with the types of elements and 
relationships amongst them could be used as the basis of critiquing in 
symbolic models. Whether a significant set of critics for SE can be 
developed remains to be demonstrated. 

4.3 Automating the Capture of Design Rationale with CAD 

4.3.1 The Rationale Capture Problem 

This book emphasizes repeatedly that the biggest challenge facing the use 
of rationale in real-world projects is the rationale capture problem. This is 
the fact that it is extremely difficult to capture rationale in a real-world 
setting. The hallmark of this problem is that those involved in design and 
other SE activities often seem reluctant to record their rationale. Why this 
should be and what to do about it are controversial questions in current 
rationale research in SE as well as in other fields where rationale research 
is done. 

Researchers in increasing numbers have come to the conclusion that the 
capture problem results from the intrusive and time-consuming nature of 
the traditional approach to rationale capture. In this approach, rationale 
must be structured according a given schema, such as IBIS, DRL or QOC, 
in order to be recorded. In other words, the initial recording of the rationale 
is in a structured form. There is little debate about the fact that this 
structuring process is labor intensive, but some claim that it is also 
disruptive to the free flow of intuitive and creativity thought in problem 
solving. Marshall and Shipman see all mandatory structuring as inhibiting 
user input (Marshall and Shipman 1999), and Fischer and his colleagues 
use Schön’s theory of Reflective Practice to argue that the explicitly 
structured reflection interferes with the intuitive problem-solving process 
that Schön calls Knowing-in-Action. 

On the other side of the debate are those who acknowledge that the 
capture process is intrusive and labor intensive but argue that it is worth it 
because of the benefits from having captured rationale and even from the 
process of structuring it. In the latter case, advocates of the traditional 
approach claim that the structuring process helps artifact developers to 
improve the consistency and thoroughness of their reasoning.   
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4.3.2 Solution Approach: Automating the Capture of Rationale 

Myers, Zumel, and Garcia have done research on rationale for the design 
of physical artifacts (Myers et al. 1999), and they are among those who see 
the traditional approach as the central cause of the capture problem. Their 
strategy for solving this problem is to automate rationale capture to the 
greatest extent possible. In other words, they seek to use automated 
computer methods to capture rationale in a manner that is so unobtrusive 
that a designer can be completely unaware that capture is taking place. 
More specifically, they adopt the generative paradigm of Gruber and 
Russell (1996) and attempt to derive rationale from data obtained during 
design. Interestingly, they do not use the argument for this approach given 
by Gruber and Russell, which is that it is not possible during design to 
predict what rationale will be needed later. Instead, they use the argument 
that the unobtrusiveness of the approach is the decisive factor. 

Myers and her collaborators adopt the approach of first recording the 
behavior of designers using a CAD system and secondly inferring from 
these records both a design history and design intent. A design history is an 
account of what designers did and when they did it; design intent is why 
they did what they did. The goal here is not to automate all rationale 
capture, but instead to automate capture of “important but low-level 
aspects of the design process,” so that designers can limit their 
documentation efforts to the higher-level, “creative and unusual aspects” 
(Myers et al. 1999).  The central insight on which their approach is based 
is that CAD systems often enable designers to perform operations on 
artifacts that are semantically meaningful in the application domain.  

To derive a design history, they capture records of the atomic actions 
possible with the CAD system and then attempt to infer designers’ 
behavior at higher levels of abstraction (lower levels of granularity). They 
derive a hierarchical account of designer behavior in terms of episodes 
created by grouping atomic actions. They also characterize the artifact in 
hierarchical terms as assemblies, subassemblies, and other groupings of 
parts. From these hierarchies of behavior and artifact structure they deduce 
what decision tasks designers are undertaking and what decision 
alternatives they are exploring. These decision tasks all have to do with 
determining features of the artifact; so they correspond to questions in 
QOC rather than the more general concept of issues in IBIS. The decision 
alternatives thus correspond to QOC options. It should be noted, however, 
that the analyses of Myers et al. make no reference to QOC or any other 
rationale schema. 

To derive design intent, they use artificial intelligence (AI) techniques 
that speculate on user motives using so-called design metaphors and a 
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formally stated set of requirements for the artifact. Design Metaphors are 
sequences of designer activities that suggest explanations for these 
activities.  

4.3.3 Implementation: The Rationale Construction Framework 

Rationale Construction Framework (RCF) to implement and test their 
ideas about automatic capture of design rationale. RCF has three main 
components: 

 
• An enhanced CAD tool 
• A Monitoring module 
• A Rationale Generation module (RGM) 

 
The CAD tool used was the commercially available MicroStation95, 
which had capabilities for modeling in the domain of electromechanical 
design, in which the ideas for automated rationale capture were to be 
tested. This tool was enhanced to enable designers to indicate the semantic 
type of graphical objects together with type-specific semantic attributes. 
For example, a given graphical object might be assigned the semantic type 
gear and given gear-specific attributes such as number of teeth and gear 
ratio. A second augmentation of the CAD tool added a set of analysis 
programs linked directly to objects in the CAD drawing. A third 
augmentation added the ability for designers to select graphical objects 
from a predefined library of semantically meaningful graphical objects. 

The Monitoring module in RCF unobtrusively tracks the operations of 
the designer with the CAD system. Those operations that are relevant to 
design rationale are then passed on to the RGM in real time. Such 
operations include the creation, deletion, and modification of design 
objects, the selection of such object from the library and their use as parts 
of other objects, as well as the assignment of semantic information to 
objects. Undoing and redoing are also passed on to the RGM as is the use 
of analysis programs. 

The RGM performs the majority of the inference done by the RCF 
system. It constructs a symbolic model of the artifact being designed. It 
then uses this model and the design event log received from the 
Monitoring module together with a formally specified set of design 
requirements and the design metaphors to construct the design rationale. 

To derive design intent, the RGM focuses on explaining the changes to 
the artifact model during design. Design metaphors play a major role in 

Myers, Zumel, and Garcia created a software system called the 
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explaining these changes. Two examples of such metaphors are refinement 
and part substitution.  Other metaphors help to identify important 
relationships between object that are not formally indicated in the model. 
Such metaphors can detect when objects are created, modified, and deleted 
together. 

Identification of relationships between design requirements and the 
changes in design objects also plays a crucial role in deriving design intent. 
Specifically, RCF constructs hypotheses that such changes are attempts to 
satisfy requirements. Such hypotheses can be constructed with or without 
domain-specific background knowledge, though the latter provides richer 
accounts of design intent. Once hypotheses are constructed, they can then 
be supported or undermined by further evidence collected as the design 
effort proceeds. 

Myers, Zumel, and Garcia (1999) describe the testing of RCF in a 
project aimed at designing a three-degree-of-freedom surgical robot arm. 
The system recorded and analyzed design activities from initial design 
through multiple stages of refinement. RCF was successful in describing 
designer activities at several levels of abstraction, identifying stages where 
the designer concentrated on revisions of particular parts or subassemblies, 
identifying the results of design tradeoffs, and in explaining key changes in 
the design.  

4.3.4 Discussion 

The rationale capture problem is of such importance for the future of 
rationale usage that a claim to capture a significant portion of it 
automatically cannot be ignored. The work on the RCF looks like a 
promising extension of research on domain-oriented design environments. 
Myers et al. have used the same sort of semantically meaningful 
components found in the construction kits of JANUS and PHIDIAS, 
information used by those systems to identify design decision tasks, 
decision alternatives and decisions taken. However, RCF’s abilities to 
identify and characterize designer activities and to speculate on the reasons 
for them goes far beyond what JANUS and PHIDIAS can offer. The RCF 
approach provides a way of capturing rationale for the intuitive Knowing-
in-Action that Schön claims is disrupted by the explicit reflection that 
traditional rationale capture requires. 

RCF, like JANUS and PHIDIAS, relies on the natural semantic mapping 
available in the iconic models that CAD systems create. This means that 
there is a question about how well the RCF approach would transfer to the 
purely symbolic models that are used in software design. However, to the 
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degree that the symbols used in software design models are genuine 
standards and not the arbitrary creations of individual designers, transfer 
would seem to be possible. 

If transfer of the principles of RCF to software design is possible, the 
benefits would be considerable. Of prime importance, of course, is that it 
might solve at least part of the capture problem. But in addition, RCF’s 
emphasis on rationale for explaining changes has crucial implications for 
change analysis as well as the iterative and evolutionary methods of 
software development. 

4.4 Parameter Dependency Networks as Design Rationale 

4.4.1 The DRIVE System and Parameter Dependency Networks 

de la Garza and Alcantara (1997) describe a software system, called 
Design Rationale in Value Engineering (DRIVE), that provides additional 
computer support to aid designers who document their rationale. As is 
often the case, the additional computer support requires a higher level of 
formalization of rationale than is common with most rationale 
management approaches. The DRIVE approach, however, can be viewed 
as a simple extension of the formalization required for Design Space 
Analysis in QOC. 

The DRIVE system enables designers of physical artifacts to create 
dependency relationships between the parameters of objects found in a 
model of a physical artifact that is being designed. Such dependencies can 
then be used as rationale for design decisions made using a CAD 
subsystem. More specifically, these dependencies constitute rules—or 
more accurately, rules of thumb—for design decisions. These rules can 
then be used to critique the decisions that the designer makes using CAD. 
The DRIVE system uses these rules to detect conflicts created by decisions 
and then alerts the designer to the existence of the conflicts as they use the 
CAD subsystem. The designer can then either resolve the conflicts 
immediately or postpone their resolution. Conflict resolution is 
accomplished by altering the design, altering the dependency rule or 
canceling the dependency rule for a specific CAD decision. 

There are two types of parameter dependencies that DRIVE supports. 
One type is the dependency of the value of a parameter (attribute) of an 
object on the value of a parameter of an object, where either the 
parameters are different or the objects are different or both. The second 
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type is a dependency of a parameter constraint on the values of other 
parameters. There are also two ways in which dependencies can be 
represented: as mathematical formula or as an if–then rule. The following 
is an example of an if–then dependency of a parameter constraint on a 
parameter value as it would be expressed in the DRIVE system (de la 
Garza and Alcantara 1997): 

If [Mechanical Room]:[General Function] 
    Is equal to “House Mechanical Equipment” 
Then [Mechanical Room]:[Fire Resistance Rating] 
    (minimum value) is not less than 2 hours 
 

In ordinary language this rule says that, if the general function of a 
“Mechanical Room” is to house mechanical equipment, then this room 
should have a fire resistance rating of at least 2 hours. It should be noted 
that in DRIVE each such rule is accompanied by natural language text that 
explains the rule and can provide additional arguments for them. 

4.4.2 Discussion 

4.4.2.1 How DRIVE’s Parameter Dependency Networks Relate to 
Other Approaches to Rationale 

DRIVE’s treatment of rationale resembles QOC’s Design Space Analysis 
in the sense that it deals only with rationale for features of the designed 
artifact. However, DRIVE’s description of artifact features is more specific 
than QOC’s. QOC only provides a textual description of a feature, but 
DRIVE provides a three-part feature description: (1) a type of object, (2) a 
parameter (i.e., an attribute) of the object, and (3) one or more allowed 
values of that parameter. While QOC, like DRL, evaluates a proposed 
artifact feature by means of assessments with respect to criteria, DRIVE 
assesses a proposed decision about a parameter value by means of other 
parameter values. 

The DRIVE system resembles both JANUS and PHIDIAS in its use of a 
critiquing system that delivers textual rationale to designers of physical 
artifacts as they work in a CAD system. The crucial innovations of DRIVE 
are (1) the use of parameter dependency networks as the basis for 
critiquing and (2) enabling designers to create their own critiquing rules. 

The dependency relationships used by de la Garza and Alcantara in 
DRIVE are more specific that the dependency relationships used by Burge 
in RATSpeak and her SEURAT software. Burge’s dependencies are 
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natural language arguments that do not enable the computation of values 
and constraints as in DRIVE, and of course, DRIVE’s parameter 
dependency networks are far more specific than the dependency network 
between decisions (issues) that PHI uses to structure rationale. 

As with JANUS, PHIDIAS, and the Rationale Capture Framework of 
Myers et al., DRIVE depends on the natural association of semantic 
meaning with the graphical objects used in the CAD system, i.e., the 
natural mapping of iconic models. This is crucial because the critiquing 
depends on the rules applying to classes of objects. In DRIVE, this is, in 
effect, accomplished using is-a and has-a relationships, though the actual 
implementation of these concepts is domain dependent and complex. 

4.4.2.2 Significance for Software Engineering Rationale 

DRIVE’s use of algebraic formulas for dependencies seems unlikely to 
find extensive application in SE, but its if–then dependencies would seem 
to have a wide range of applications in SE. They constitute a more specific 
and more computable version of the argumentative dependencies between 
decision alternatives found in RATSpeak. This is especially significant in 
view of the fact that RATSpeak was created in an attempt to tailor DRL to 
the needs of software engineers who do maintenance. The if–then 
computational dependencies used in DRIVE are especially promising for 
change analysis, which is one of the most important and popular uses of 
rationale in SE. Investigating the potential value of parameter dependency 
networks should therefore be an important topic for future research on 
software engineering rationale.  

4.5 Case-Based Reasoning as Design Rationale  

4.5.1. From Automated Case-Based Reasoning to Case-Based 
Design Aids  

Case-Based Reasoning (CBR) (Riesbeck and Schank 1989; Kolodner 
1993) began as a branch of artificial intelligence (AI) research. It was 
meant as an alternative to the dominant AI approach, sometimes called 
Model-Based Reasoning (MBR). MBR had run into well-known 
difficulties, and CBR researchers thought their approach offered a way 
around many of these difficulties. MBR is about reasoning from principles, 
often in the form of rules or productions. Roughly speaking, CBR does not 
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reason from principles but from similarity of a current problem to cases of 
previously solved problems.  

CBR originally dealt with the creation of automated systems that 
mimicked the human ability to use knowledge of prior cases to deal with 
new kinds of problems, but it eventually became clear that the number and 
complexity of cases it could deal with in a completely automated manner 
was quite limited (Narayanan and Kolodner 1995). To address these 
problems, Kolodner began to look at developing nonautomated CBR 
systems that aided human problem solvers in complex problem domains. 
The idea was that, by learning how to aid humans who solved complex 
problems, CBR researchers would get better insights about how these 
problem solvers use large collections of complex and often incomplete 
cases. These insights could ultimately be used to improve fully automated 
CBR systems. 

The primary applications domain chosen for study was architectural 
design, i.e., the design of buildings. Kolodner and her computer-science 
colleagues at Georgia Tech worked with faculty and students in the 
Department of Architecture at that institution to create Case-Based Design 
Aids (CBDAs) and populate them with information about buildings. This 
effort resulted in a number of systems, including two versions of the 
ARCHIE CBDA for building design and DesignMuse, a generalized 
authoring tool for creating CBDAs for different domains of physical 
artifact design. Originally the building domain was restricted to the design 
of courthouses, but it was later expanded to deal with libraries and tall 
buildings. 

CBDAs are case libraries for design, i.e., “structured, indexed and 
searchable databases of analyzed case studies” (Narayanan and Kolodner 
1995) containing descriptions and evaluations of existing designs, e.g. the 
designs of existing buildings. The descriptions are typically represented 
using multiple media, including text and graphics. The purpose of a CBDA 
is to provide information about lessons learned from the experiences of 
previous designs so that current designers can avoid the pitfalls of past 
projects and benefit from solution ideas that have proved successful in 
such projects. 

CBDAs contain cases structured around four major categories of 
information: descriptions, problems, stories, and responses. Descriptions are 
multimedia representations of designed physical artifacts. In ARCHIE these 
take the form of annotated CAD drawings of floor plans, elevations, and 
sections of buildings, as well as sketches, photographs, and animations.  

Problems are descriptions of unresolved conflicts that are common and 
persistent in a type of building. The following is an example of a problem 
statement: 
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Clerestories [narrow, horizontal bands of windows just 
beneath a ceiling] and skylights can help light large interior 
spaces, but they can also cause costly environmental problems. 
They can create hot spots in warm weather and increase air-
conditioning costs (Zimring et al. 1995). 

 
Stories are brief representations, in text and other media, of how the 

problem or a solution has manifested itself in a particular building. The 
following is an example of a story about a solution for the above-given 
problem: 

 
In the Gwinnett County Courthouse clerestories and skylights 

were used to illuminate the interior atriums. The high, angled 
skylights are made of tinted glass. The depth and tinting of the 
skylights helps prevent direct sunlight from flooding the building 
(Zimring et al. 1995). 

 

Responses are general strategies a designer might consider for resolving 
the problems. There can be many suggested responses for each problem. 
The following is an example of a multipoint response to the above 
problem: 

 
Use tinted glass where possible. Use clerestories rather than 

skylights. Angle and inset skylights to block direct sun. Use 
electronically moveable/controllable louvers (Zimring et al. 
1995). 

 
There can be many such responses to a problem.  

CBDAs enable designers to retrieve information either by using special 
case-based retrieval mechanisms or by browsing using hypertext links. 
One of the special retrieval mechanisms automatically retrieves relevant 
cases based on the designer’s description of a current problem’s goals and 
constraints. The other uses an induction algorithm that clusters cases to 
build a hierarchical index. Hypertext links in ARCHIE and other CBDAs 
connect design descriptions to stories, stories to problems, and problems to 
responses (Zimring et al. 1995.)  

There can be many stories for a given problem. The same is true for problems
and responses. 
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4.5.2 Discussion 

4.5.2.1 Design Case Libraries as Design Rationale 

The creators of ARCHIE and other CBDAs make no claim that the 
information in these systems is design rationale (DR); yet there seems to 
be little reason to doubt that it is. After all, the cased-based information in 
ARCHIE deals with design problems, design solutions, and solution 
strategies. It includes descriptions and evaluations of designed artifacts. Its 
sole function is to provide information that can help designers to make 
better decisions, i.e., to aid designers’ reasoning. And, as with almost all 
other rationale approaches, the information in a CBDA is organized as a 
hyperdocument of links and nodes of text and graphics.  

While case-based information about design clearly must be counted as 
design rationale, it differs profoundly from all other known types of design 
rationale hyperdocuments, including those based on IBIS, PHI, QOC, 
DRL, SCA or any of the SE-specific approaches currently in existence. 
CBDAs provide a fundamentally different perspective on how to go about 
collecting, structuring, indexing, retrieving, and using design rationale. 
And this new perspective comes with a solid intellectual pedigree in 
cognitive science and computer science. No picture of research on 
rationale would be complete if it omitted the work on CBDAs like 
ARCHIE. A crucial task for future rationale research will be to fit case-
based design rationale into the overall landscape of rationale approaches. 

4.5.2.2 Design Case Libraries as an Alternative Approach to Reuse of 
Rationale  

In the rationale research literature there have been two main approaches to 
reuse of rationale. One is the addition of rationale to design patterns. The 
other is the use of domain-oriented issue bases (DOIBs). Design case 
libraries represent a third fundamental alternative. 

One way to attempt to understand the crucial differences between the 
three alternative approaches to rationale reuse is to compare the ways in 
which they use generalization and specificity when reasoning about new 
projects. Rationale linked to patterns represents an attempt to create 
generalized stores of reasoning, in other words, collections of rationale that 
involve generalizations that apply to many specific design projects. This 
can be seen as reasoning from principles, the central notion of MBR in AI 
research. Case libraries for design, however, are based on a fundamentally 
different approach to reasoning, namely CBR, which involves reasoning 
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from cases of previous, specific projects to draw conclusions about a 
current, specific project.  

DOIBs involves a type of reasoning that falls in between the MBR-type 
of reasoning of pattern-based rationale and the CBR reasoning of case-
based design rationale. Where it sits in between MBR and CBR depends 
on which of two distinct modes a DOIB is used in. One mode attempts to 
create collection of texts—including issues, positions, and arguments—
that can be reused as is in many projects. This mode is exemplified by the 
use of the DOIB for kitchen design in JANUS. In its reuse of unmodified 
information in many specific projects this mode is like pattern-based 
rationale except that there is no claim of either completeness or correctness 
for the texts in the DOIB.  

A second mode of use of DOIBs is provided by the virtual copying of 
hypermedia networks that is available in PHIDIAS. This enables the 
creation of a new DOIB by making and modifying a virtual copy of the 
original DOIB using the prototyping inheritance mechanism in PHIDIAS. 
This is typically used to create a more specific DOIB than the original, in 
particular, one tailored to a specific project. This mode of DOIB usage is 
in between the general-to-specific reasoning of pattern-based rationale and 
the specific-to-specific reasoning of case-based design rationale, because it 
uses generalized information but adapts it to a particular project. 

There is also a third way in which the hypermedia network inheritance 
functionality of PHIDIAS can be used. In this approach a new project-
specific issue base is created by virtually copying and modifying a previous 
project-specific issue base. This approach takes a significant further step 
towards the type of reasoning used in cased-based design rationale, but the 
schema for issue-based rationale remains dramatically different from the 
schema for cased-based rationale of CBDAs like ARCHIE. 

4.5.2.3 The Relevance of Case-Based Design Rationale to Software 
Engineering 

Despite the fact that CBDAs have been created only for the domain of 
physical artifact design, there seems to be no fundamental reason why they 
could not be applied to software design and perhaps even to the full 
spectrum of development and maintenance activities in SE. Given the fact 
the case-based approach to rationale is so fundamentally different from 
other rationale approaches, exploring its potential for SE would seem to be 
an important topic for research in software engineering rationale. 

Where case-based design rationale would appear to have special 
promise is in the design of human–computer interaction (HCI), because it 
is fundamentally a user-centric, rather than decision-centric, approach to 
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rationale. Currently, there is only one user-centered approach to rationale 
that is usable for this purpose, namely Scenario-Claims Analysis (SCA). In 
fact, the current heavy emphasis on both static and animated graphical 
representation of artifacts in CBDAs would be directly applicable to a case 
library of HCI designs. Such a case-based approach to interface design 
might be a useful complement to SCA, though it also seems possible that 
the two approaches might be integrated. 

Of course, most of SE does not deal with the creation of an intrinsically 
graphical artifact as is the case with both physical artifact design and HCI 
design. However, software design, like the design of physical artifacts, 
does involve the use of models that have a graphical representation. Such 
models can be annotated and could easily have problems, stories, and 
responses associated with them. While these models are purely symbolic 
in nature and do not have the natural mapping to the artifacts they 
represent that iconic models like floor plans have to buildings, this does 
not seem to constitute an insurmountable obstacle to the creation of 
CBDAs for SE. 

4.6 Summary and Conclusions 

There are fundamental issues to be resolved before much of the research 
on rationale in domains of physical artifact design can be applied to the 
design of software; but the ideas in this research are important enough that 
the effort to resolve these issues seems worthwhile. Above all, it is the 
value of this work in the areas of rationale capture and change analysis 
that recommends it to software engineers. It seems ironic that the work on 
change analysis has made such progress in physical artifact design, where 
there is generally much less change—especially change due to iteration 
and evolutionary development—than is characteristic of software design. It 
seems appropriate that software engineers endeavor to learn and benefit 
from this progress. 

Finally, it is interesting to note that all of the projects described in this 
chapter in some way apply insights from artificial intelligence (AI) 
research to the support of rationale. In particular, all but one of these 
projects—the one based on Case-Based Reasoning—bring active 
computational aids to support the capture and retrieval of rationale in 
artifact creation. This suggests that researchers in SE should seek to 
answer the questions of what other ideas from AI and what other 
computational aids might support rationale not only in software design but 
in the full spectrum of SE activities. 



5 Decision-Making in Software Engineering 

This chapter examines human decision-making, its role in software 
engineering, and the role that rationale can play in the decision-making 
that occurs within software engineering.  

5.1 Introduction 

5.1.1 General 

Software engineering can be conceived of as decision-making. Software 
designers work their way through the software development process 
essentially by making a series of decisions. Each of these decisions can 
itself be analyzed as a complex episode of problem solving. Each decision 
depends on a substantial amount of knowledge and/or conjecture; each is 
highly constrained by prior decisions, and exerts substantial downstream 
constraint on future decisions. 

5.1.1 Objectives of this Chapter 

In this chapter, we first describe decision-making problems, both generally 
and with respect to software engineering. Focusing on the weaknesses of 
human decision-making is a traditional approach in psychology and decision 
science, and leads immediately to ideas about how to support and improve 
human decision-making—specifically to avoid those characteristic 
weaknesses. 

We then consider decision-making in software engineering as 
naturalistic decision-making in the sense of this term used by Klein 
(1997a). Klein makes the important observation that humans are actually 
quite accomplished decision-makers, as evidenced by our successful 
performance in many complex and risky task circumstances. Naturalistic 
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decision-making focuses on identifying and analyzing the strengths of 
human decision-making.  

Finally, we consider rationale as a resource for and an outcome of 
human decision-making, specifically in the context of software 
engineering. Decisions that have already been made, and whose 
consequences can therefore be observed and assessed, are the best possible 
guidance we can have for future decisions.  

5.2 Decision-Making Problems 

5.2.1 Where Decisions Go Wrong 

During the 1970s and 1980s, Kahneman, Tversky, and their colleagues 
conducted an impressive series of investigations into human decision-
making (Kahneman and Tversky 2000). The core contribution of this work 
is a detailed inventory and analysis of about two-dozen characteristic 
biases of human decision-making. For example, the confirmation bias is 
the tendency of human decision-makers to seek and prize data that 
confirms their decisions over data that disconfirms their decisions. The 
familiarity bias is the tendency of human decision-makers to consider 
familiar data and interpretations as typical. 

It is easy to see how such biases could undermine decision-making 
outcomes. Consider the confirmation bias. Initial decisions are frequently 
based on inadequate or misleading data just because better data takes more 
time to identify, collate, and interpret, and accordingly becomes available 
later in the course of investigation. For example, so-called emergent 
requirements are often critical, but identified only after initial prototypes 
have been developed (Brooks 1995). If data that enter the decision process 
“late” are employed primarily to confirm initial decisions, poor decisions 
will tend to be confirmed, not eliminated. In such a process, emergent 
requirements will rarely trigger a change of direction in system develop-
ment, which is arguably their primary raison d’être. 

The familiarity bias would cause a software engineer to weigh his or her 
own professional experience too highly, misinterpreting what is personally 
familiar, but possibly idiosyncratic, as being universal. For example, a 
designer might justify a decision by asserting that people in general need 
and desire a particular feature or function, when it is only the designer that 
actually experiences this need or preference. At the root of the familiarity 
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bias is the assumption on the part of decision-makers that they are more or 
less just like everyone else. 

Nigel Cross (2003) comprehensively surveyed empirical studies of 
designers, and identified several further biases that appear to be specialized 
for human decision-making and problem solving in the context of design. 
The strongest of these is the solution-first bias, the tendency of designers 
to rapidly frame a solution to a problem they do not yet fully understand.  
This initial solution is then used as a vehicle to explore the problem further 
(see also Lawson 1979; Carroll 2000). Interestingly, the solution-first bias 
is actually more pronounced in the strategies of more experienced 
designers than it is in the work activity of less experienced designers 
(Lloyd  and Scott 1994).  

It easy to deduce that the solution-first bias and the confirmation bias 
jointly entail a behavior pattern in which designers rapidly make solution 
decisions before adequately understanding the full problem space, and then 
disproportionately adduce confirmatory evidence to justify what was quite 
likely an ill-considered decision. Indeed, Cross (2003) reviews 
considerable evidence of this pattern, which he calls fixation, from many 
design domains, including software engineering (Guindon 1990). He also 
reviews evidence that decision fixation causes poor design results (Smith 
and Tjandra 1998). 

5.2.2 Poor Decisions in Software 

With respect to the characteristic weaknesses of human decision-making, 
there is no reason to think that software is special. Brooks’ (1995) classic 
discussion of emergent requirements in the IBM System 360 project is a 
clear instance of solution-first design aggravated by the confirmation bias, 
leading to poor design decisions. His famous conclusion that designers 
need to be prepared to “throw one away” is a strategic orientation to 
managing these characteristic biases. 

However, decision-making is not a topic that is energetically focused 
upon in software engineering research. For example, Ngo-The and Ruhe 
(2005) surveyed the requirements engineering technical literature for the 
five years 2000–2005 and found only 44 articles that addressed decision-
making. In general, software engineering has approached decision-making 
normatively—seeking to avoid the pitfalls of human decision-making 
biases by enforcing structured models for decision processes. The classical 
decision model (e.g., Janis and Mann 1979) is not so much a model of how 
people actually and naturally make decisions as a prescription for how 
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decision-makers ought to make decisions. Table 5.1 enumerates a typical 
version of this model. 

 

Table 5.1. Classical decision model 

 
1. Exhaustively survey and enumerate alternatives 
2. Identify criteria and cost–benefit tradeoffs for evaluating alternatives 
3.Weigh each criterion (iterate until weightings are complete and consis-

 tent) 
4. Rate alternatives: for each of the top alternatives, follow entailments 

 of contingencies and interactions with respect to linked decisions 
5. Pick best alternative 
 

At first encounter, this model seems impressively comprehensive. It 
presents an algorithm for making an optimal decision. Who could ask for 
more? Ironically then, it has come as a surprise to many research and 
practitioners that this model is both impossible to implement and 
fundamentally inadequate.  

The model is impossible to implement because in any decision domain 
of reasonable complexity, most of the steps enumerated in Table 5.1 
cannot be carried out. Thus, for most software engineering decisions, one 
cannot enumerate a priori the space of possible alternatives. Indeed, in 
many complex decision domains, discovering new alternatives—at least 
novel variants of known types of solution strategies—is routine, and often 
required. Moreover, it is often not practical to take an enumeration 
approach because doing so would take too long, or consume too many 
other resources, chiefly human effort. 

The problems do not stop there. Identifying criteria and cost–benefit 
tradeoffs is clearly important for evaluating alternatives. However, it is 
often not possible to identify a set of criteria that are strong enough (in the 
sense of measurement theory) and mutually orthogonal to guarantee that a 
complete and consistent weighting is possible, let alone practical.  

The classical model of Table 5.1 is suitable for modeling decision-
making in highly constrained circumstances, such as certain games. The 
algorithmic nature of the model facilitates explicit computational modeling 
of such decision-making, and has played an important role in decision-
making agents (Chaib-Draa and Dignum 2002). However, in real-world 
decision-making, such as the decision-making in software engineering, the 
classical model leads to indeterminacy and deadlock. 
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5.3 Naturalistic Decision-Making 

5.3.1 Background 

The classical model of decision-making is not only impossible to 
implement, it is inadequate: it fails to identify, describe, and explain 
anything about some of the most important aspects of human decisions and 
decision-making. As discussed earlier, Rittel (Rittel and Webber 1973) 
observed that decision-makers in urban planning often became lost in a 
web of decisions they could not keep track of, and were overwhelmed by 
wicked problems that fundamentally had no optimal solution, and indeed 
offer only a set of variously unattractive compromises. Rational, 
hierarchical decomposition methods cannot solve such problems: there is 
no single correct decomposition, and the combinatorics of problem 
features overwhelm any exhaustive analysis. 

Gary Klein (1998), from whom we have taken the term naturalistic 
decision-making, describes vividly how he embarked on a 15-year 
program of research on decision-making. The first thing he noticed was 
that everything he had expected—based largely on the classical model—
was wrong. For example, real expert decision-makers do not even try to 
enumerate all alternatives, and indeed they often make decisions 
instantaneously, without even considering a single alternative course of 
action.  

Although studies of decision-making biases and other decision-making 
problems provide an important source of guidance in understanding 
decision-making in real domains, such as software development, these 
studies are themselves biased in a peculiar way. In order to eliminate the 
complicating influences of domain semantics, tacit expert knowledge, and 
of overlearned professional practices, psychologists and decision theorists 
often study simplistic and contrived problems.  

However, this can be seen as just another bias: After all, a contrived 
puzzle context is a context. It is a serious—and open—question whether 
the lessons gained from studying a puzzle context can be generalized to 
other contexts such as software development. Real decisions are embedded 
in workflows, data gathering, conversation, and planning. They are almost 
always based on inadequate information, unclear and sometimes 
contradictory goals, time and other resource pressure, and relatively high 
costs of failure. Decisions are typically made in dynamic circumstances; if 
the decision-maker hesitates, the problem has changed. Decisions are not 
answers to puzzles printed on a page. 
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A second worrisome characteristic in “classical” studies of decision-
making is their focus on bias and error. Of course, understanding these 
pathologies of human decision-making is vitally important for designing 
instruction and support for decision-makers, but it is not the whole story. 
Humans may be biased in characteristic ways, but they are also quite good 
at decision-making.  

5.3.2 The Recognition-Primed Decision Model 

These two lines of critique come together in Klein’s (1998) recognition-
primed decision model. In this model, expert decision-making is chiefly a 
matter of classification. Experts experience situations as exemplars of 
known prototypes. If they make such a classification, and cannot 
immediately reject the classification as specious, then they know what to 
do from past experience. If they do reject a classification, they examine the 
next-most-likely classification, and so on. 

Klein calls the recognition-primed decision strategy “satisficing,” after 
Simon (1957). The strategy selects the first acceptable alternative. This 
contrasts sharply with the five-step classical decision model enumerated in 
Table 5.1. Klein’s model involves a variety of sophisticated intellectual 
mechanisms such as intuitions (through which the decision-maker 
apprehends the situation holistically as a pattern in time, and evaluates 
qualitative expectations about change), analogical reasoning (in which the 
decision-maker deliberately sees aspects of the problem situation 
counterfactually or metaphorically in order to reason more creatively), and 
mental simulation (in which the decision-maker steps through an analog 
mental model to assess decision consequences and trajectories). However, 
most notably and importantly, Klein’s model actually accords with 
observations of expert human decision-makers, such as firefighting, air 
traffic control, aircraft operations, obstetric medicine, software engineering, 
and crisis management. 

Decision-makers recognize current circumstances as instances of 
patterns they have encountered before. They build models of current 
situations to support further exploration through what–if reasoning, with 
the objective of understanding the situation just well enough to identify a 
satisfactory and actionable option. These models are very rich in the sense 
that they incorporate a huge amount of expert domain knowledge, but they 
are often quite informal. Stories and analog mental models are often used 
because they can incorporate a lot of the expert’s knowledge, yet still be 
flexible and open to further elaboration and development.  
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Klein reports that these models are sometimes anti-models in the sense 
that they vividly present features of the problem context or of alternative 
outcomes that the decision-maker wants to avoid. This is a highly adaptive 
natural strategy of decision-making. The Danish ergonomist Jens 
Rasmussen (1974) emphasized that that error is inevitable in tasks of any 
complexity, and that one of the most effective strategies for curtailing the 
consequences of human error is to make error as visible as possible.  Anti-
models are cognitive tools through which experts decision-makers regulate 
their own potential decision-making errors. 

Klein’s ideas about naturalistic decision-making are highly compatible 
with a broader revisionist movement in contemporary social, cognitive, 
and behavioral science that has urged greater attention to what people do 
in real situations, sometimes called “situated cognition” (e.g., Lave 1988).  
The leading idea in situated cognition is that social and material contexts 
are resources for human cognition and action. To take a favorite example, 
it is much easier to reason about lumps of butter for a cookie recipe than it 
is to carry out multiplication of fractions. In this view, it is simply 
idealistic to analyze decision-making without considering that real 
decisions are characteristically complex problem solving carried out in 
near-real time, high uncertainty, and high downside risk simultaneously 
constrained by political, social, organizations, human, technological, 
functional, temporal, budgetary, and other resource factors. As we noted in 
Chapter 1, rationale is a tool for benefiting from lessons learned. 

5.4 Rationale as a Resource for Decision-Making 

When people make decisions, they are accountable. All decision-makers 
know that they may be asked why a decision was made the way it was, 
why an alternative was selected, or why a different alternative was not 
selected. The answer to such “why questions” is the decision rationale. If 
we think of the software development process as a lattice of decisions, 
unfolding in time, then rationale is the justification for each of those 
decisions. 

Codifying and maintaining rationales can provide guidance in decision-
making by helping to evoke reflection and self-criticism. Codified 
rationale can be useful subsequently by summarizing the patterns and the 
lessons of ones professional experience, and that of other professionals. 
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5.4.1 Classical Decision-Making 

The classical decision model (Table 5.1) begins with an exhaustive 
enumeration of alternative decision outcomes. Rationale provides 
evaluation criteria and cost–benefit tradeoffs for evaluating these 
alternatives, as well as guidance in weighing each of the decision criteria, 
and using them to rate the alternatives. 

As we have already observed, complex decision-making does not, and 
cannot, follow this model. Nevertheless, as in other intellectual endeavors, 
ideal models have their place. As Parnas and Clements (1986) cleverly put 
it, there are good reasons to “fake” a rational design process. They note 
that ideal descriptions are often simplified to make important concepts and 
relationships more salient (cf. acceleration in the physics of frictionless 
planes). They note that idealizations can provide standards for reference, 
rather than standards anyone would or could actually follow. In this way, 
idealizations can help to create and sustain a professional practice—even 
though they do not exemplify actual practice.  

Much work on design rationale in software engineering follows this 
model. For example, in one of few empirical studies of rationale in 
software engineering, Conklin and Burgess-Yakemovic (1991) showed 
that an explicit Issue-Based Information System (Rittel and Webber 1980) 
rationale—visualized with their gIBIS tool—enabled several actual 
software errors to be identified. However, the rationale was created 
through a deliberate and effortful research manipulation, not through the 
routine and authentic practices of software engineers. The rationale was 
presented with an extremely powerful (for the 1980s) graphical 
visualization system. And the rationale was ultimately used effectively 
through a quirky procedural machination: because of a software upgrade, 
the rationale database had to be hand-transcribed into a new storage 
format, and it was during this transcription that the software errors were 
discovered.  

Conklin and Burgess-Yakemovic did not study naturalistic software 
development: their study gives no reason for us to hope that software 
engineers can actually be coaxed into creating or using Issue-Based 
Information Systems, and surely they did not intend to propose that 
transcribing rationale databases by hand should be a routine step in making 
use of them. Rather, they studied a research model that in effect faked a 
rational process. However, the study showed that under idealized 
circumstances it is possible both to capture and use rationale. This is an 
important contribution, and has made this study a widely used pedagogical 
case. 
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5.4.2 Naturalistic Decision-making 

Naturalistic decision-making emphasizes the semantics and dynamics of 
real-world contexts of decision-making, and the considerable domain 
knowledge and skill of expert decision-makers. This is far more than merely 
the logical warrant, and the line of reasoning for decision outcomes, as it is 
in classical decision-making. Rationale in naturalistic decision-making 
includes the circumstances in which the decision rationales were noticed and 
developed, the personal experiences, stories, professional beliefs, and values 
of the persons who articulated the rationales, the methods they used, and the 
specific instances of observed or conjectured system behavior and user 
interaction that were employed in developing the rationale. 

But how could that sort of rationale be captured and used? Klein (1998) 
suggests that the stories about episodes of practice shared among expert 
decision-makers are an important transmission medium for the patterns 
that experts recognize so quickly in actual decision-making. Wenger 
(1998) describes stories as a typical vehicle in professional communities of 
practice to share results about ways of doing things. Indeed, in the late 
1940s Herman Kahn had described the “accidental war” scenario in which 
an isolated nuclear error precipitates all-out war, a story that guided Cold 
War geopolitics for 50 years (Kahn 1962).  

Carroll et al. (1994) videotaped stories from members of a development 
team at 6-month intervals over a 2-year project. Team members generally 
found it enjoyable to share their accounts of how issues were identified 
and analyzed, how project decisions were made, and what challenges were 
currently being faced. Interestingly, different team members often told 
fundamentally inconsistent stories. A digitized database of the stories was 
found to be especially useful in helping to quickly orient new team 
members (Karat et al. 1995). Constructing this video database of informal 
story-based rationales was arduous, though digital media tools have 
improved considerably since 1992.  

The more general lesson is that, in order to emerge from and to 
effectively assist naturalistic decision-making in software engineering, 
rationales need to be well integrated into the social activities of learning 
and performance in software development. Stories are a good example of a 
naturalistic strategy for rationale, because narrative is so fundamentally 
human—as evidenced by dreams, myth, folklore, and everyday human 
social interaction. Other complementary strategies involve integrating the 
creation of and access to rationale into debuggers, bug-trackers and other 
software development tools and environments. 

Naturalistic decision-making entails a different epistemological stance 
toward rationale than classical decision-making. It does not necessarily 
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(and we would argue it definitely should not) reject the logic-based and 
schematic rationales of classical decision-making; rather it encompasses 
these and much more with respect to the situations in which rationale and 
its use is embedded. 

5.5 Summary and Conclusions 

Design rationale is both a natural strength and weakness of human 
decision-makers. From the standpoint of naturalistic decision-making, 
humans have a strong desire to understand the causal dynamics of 
outcomes. Humans are not satisfied with faits accomplis; they want to 
know why. However, rationale—whatever else it may be—is 
documentation, and if software engineers and their users agree on 
anything, it is that most documentation is too much trouble to write or to 
read. 

The resolution of this yin–yang of rationale is to acknowledge that 
rationale is an essential resource for reliable and effective human decision-
making. Good decisions in any domain require support for sharing and 
developing best practices. A key challenge in designing rationale is to 
evoke the interest of decision-makers in understanding and assimilating 
explanations of prior decisions, while not overwhelming them with 
information, or information management tasks.  



Part 2 
Uses for Rationale  

One of the major stumbling blocks in rationale research has been the fear 
that rationale may not be worth the cost of its capture. With the continuing 
emphasis on software quality and process improvement, the development 
community has become more aware that software development is not only 
about producing code and that the upfront costs of a more rigorous process 
result in downstream savings. The question is, how can the rationale be 
used and do the uses justify its cost? 

The first use that comes to mind for rationale is the most simple—
presenting the rationale to the software developer or maintainer when they 
need it. The presentation of rationale (Chapter 6) helps the developer learn 
about the software and the criteria that guided its development, and helps 
them to avoid errors in future decisions. 

Rationale supports the ability to evaluate decisions (Chapter 7) to ensure 
that the choices made during development are the ones that best meet the 
needs of the system stakeholders. The importance of this evaluation is 
highlighted in the CMMI’s inclusion of the Decision Analysis and 
Resolution process area (CMMI Team 2006).  

Software development is a highly collaborative process since most 
systems are well outside the size and scope where they can be developed 
by only a few people. The support for collaboration provided by rationale 
(Chapter 8) has been demonstrated by field studies (Conklin and Burgess-
Yakemovic 1991) and was highlighted in a talk on collaboration presented 
at the Future of SE track of the 2007 International Conference on SE 
(Whitehead 2007).  

Unlike with hardware, software engineering rationale can be directly 
connected to the artifacts that it describes. These connections allow 
rational to support change analysis (Chapter 9) by identifying interdecision 
dependencies and showing the developer how changes in decisions affect 
the software. This, and the other uses described in this chapter, clearly 
indicates that rationale has the potential to provide software development 
assistance that far outweighs the cost and effort required to capture it. 



 

 

6 Presentation of Rationale 

This chapter examines issues of presentation for software engineering 
rationale (SER). The substance, the content of rationale, is always 
mediated by some presentation. The presentation could be free form, 
natural language text, or a formal, symbolic language; it could be printed 
sheets of paper, or three-dimensional displays in a virtual environment. 
The presentation of rationale has its own effects on the utility of rationale 
as an information resource in software development. 

6.1 Introduction 

6.1.1 General 

The ingenuity and effort of creating a sound and comprehensive rationale 
is only worthwhile if people can use it. The use of rationale is always 
mediated by its presentation.  The presentation of a rationale can be 
relatively formal and symbolic, for example, using types and logic with 
labeled links, or it can be relatively informal, such as free text or even a 
videotaped interview with a designer explaining his or her design. Various 
approaches to presenting rationale themselves have rationales. One 
significant advantage for Software Engineering Rationale (SER) 
presentation is that, unlike hardware devices, the designed artifacts 
themselves are stored electronically. This supports the potential to attach 
the rationale for the artifact directly to the artifact in ways that are 
impossible in other design domains. 

6.1.2 Objectives of This Chapter 

This chapter describes the main line of development of the IBIS (for Issue-
Based Information System) notation for rationales, from the early 
innovations of Kunz and Rittel (1970), through work on hypertext and 
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hypermedia rendering of IBIS graphs, through to studies of the use of IBIS 
and IBIS-derived approaches to presenting rationale. One of the key issues 
that emerges from this line of research is that there is a tradeoff between the 
discipline and clarity that one obtains from casting a design discussion into 
as IBIS presentation, and the inflexibility and cumbersome aspects of 
working with IBIS. In part, these tradeoffs led to a turn toward informal 
presentations of rationale in the mid-1990s and subsequently. Today, 
reconciling these approaches, and enhancing them through new techniques 
in information visualization, seems feasible, and perhaps even more 
necessary as the role of the software developer expands to include end users. 

6.2 Codifying Rationale Semiformally 

6.2.1 The rationale for rationale notations 

Discussions of rationale quite appropriately tend to start with Kunz and 
Rittel’s (1970) concept of Issue-Based Information Systems (IBIS). IBIS 
presents rationale as a structured discourse of arguments that support or 
oppose positions that themselves correspond to issues. This results in a 
straightforward and explicit relational decomposition of issues, positions, 
and arguments. However, IBIS quickly gets more complex: arguments can 
support or oppose other arguments as well as positions, and in particular, a 
given argument can support/oppose arguments that pertain to other 
positions on other issues. Issues have many interrelationships; one issue 
can illustrate another issue, generalize another issue, resolve another issue, 
etc. Thus, the hierarchy of issues, positions, and arguments is actually a 
network. 

The key insight of IBIS can be regarded as essentially presentational: 
Kunz and Rittel emphasized that in planning and design problem solving 
the key ideas, the “solutions”, were often “there” in plain view, but not 
always identified, weighed, and valued appropriately. IBIS makes explicit 
how the elements of a complex problem solving process interrelate. It 
presents the underlying argumentation as a graph of related propositions so 
that planners and designers can have more precise discussions. 

An IBIS presentation of the status of a design rationale makes public 
what issues are currently identified and how they are related. This can 
focus disagreements and discussions and make them more productive. For 
example, a debate about what the positions are with respect to an issue is 
very different from that of how various arguments support or oppose a set 
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of positions. It is efficient to distinguish between these two sorts of 
debates, among others.  

An IBIS presentation of a design process can also be a generative tool. 
Laying out the network of currently identified issues, positions, and 
arguments, helps to suggest further issues that need to be raised, or further 
relations among issues already identified; it makes clear what positions have 
been identified for each issue, perhaps suggesting positions that still need to 
be articulated. Setting out the arguments for every position shows which 
positions are better supported than others, suggesting where attention can be 
focused to strengthen and/or eliminate some of the current positions. 

problem solving process, and poses a detailed agenda for further discussion 
and action. It seeks to improve the outcome of deliberative processes by 
highlighting divergence and even controversy. It gathers and integrates the 
knowledge distributed among members of a planning or design project, 
organizing the knowledge with respect to its relevance to the project. It 
makes the bases of eventual decisions more transparent and auditable. 

The network presentation of rationale, first developed as IBIS, has 
become a standard visualization for subsequent rationale projects—even 
those that construe the content of rationale in ways different from IBIS.  
For example, Questions, Options, and Criteria (QOC) is a variant of IBIS 
that seeks to document a design solution, as opposed to the discussion 
process that led to the solution (MacLean et al. 1989). Thus, where Kunz 
and Rittel (1970) wanted to capture and present the actual issues, positions, 
and alternatives as they were discussed in a design process, including parts 
that ultimately had no tangible impact on the final design solution, QOC 
seeks to present only the design argumentation that justifies the design 
solution. MacLean, Young and Moran (1989) saw QOC rationales 
themselves as a form of designed documentation for a design solution. 
Nevertheless, QOC rationales are typically presented in graphs that are 
isomorphic to IBIS graphs: design questions (essentially, IBIS issues), the 
options that address them (essentially, IBIS positions), and the criteria for 
assessing options (essentially, IBIS arguments).  

 

6.2.2 Hypermedia Presentations of Rationale 

IBIS was originally conceived as a paper-based information technology. 
However, as IBIS argument networks get larger and more complex, they 
become very difficult to read and edit in paper: they are too large for 
standard-sized sheets of paper, and as they change and grow, pages 

Thus, an IBIS presentation both explicitly codifies the current state of a 
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become cluttered with crossing lines, erasures, and annotations, and purely 
paper representations are not convenient to save, and very difficult to share 
with remote collaborators or to adapt and reuse in subsequent projects.  

IBIS has been incorporated into design war-room practices in which a 
design problem is analyzed and managed through paper-and-string 
representations pinned to the walls of a workroom (Newman and Landay 
2000; Whittaker and Schwarz 1995). Wall-sized pin-up representations are 
large enough to display nontrivial IBIS graphs, and, relative to paper, they 
are easily edited. However, rooms are expensive and cumbersome in their 
own ways as representational media: they cannot be saved for subsequent 
reference or reuse, and they cannot be shared with remote collaborators. 

The advent of hypertext and hypermedia in the mid-1980s provided a 
breakthrough in the presentation of IBIS rationales. Conklin and Begeman 
(1988) described graphical IBIS (gIBIS), a browsing and editing tool for 
navigating and managing vast rationale networks. This tool provided many 
of the navigation and maintenance affordances of a wall-sized pin-up 
display, but rendered them accessible through a workstation user interface. 
This made possible saving, sharing, and reusing IBIS graphs.  

Many hypermedia and hypertext tools for presenting rationale have been 
developed. For example, McKerlie and MacLean (1993) prototyped a 
hypermedia QOC rationale browser that incorporated documents, 
diagrams, images, and other media types directly into the nodes of a QOC 
graph.  

6.2.3 Using Semiformal Rationales 

Semiformal rationales lie in the gray area between notations with known 
properties and free-form expressions of rationale. Through the nearly 40 
years of experience with IBIS and its descendants, there has always been a 
tension between beliefs that the discipline of categories and links could 
help to focus design thinking and beliefs that the notation could be an 
awkward distraction from the substance of design thinking. Indeed, 
Conklin and Begeman (1988) reported both patterns among their early 
users.  

One of the benefits of semiformal notations is that they project a 
template structure onto design argumentation, highlighting gaps, and 
thereby helping to further articulate requirements. Because gIBIS was 
actually implemented and used (albeit mainly in research laboratory 
software development projects), it helped to identify some of the second-
order challenges for rationale browsers—challenges that could only 
become apparent through the real use of rationale presentation tools. 
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Conklin and Begeman (1988) noted, for example, that the use of gIBIS 
helped to identify some specific problems having to do with the fact the 
IBIS does not represent design decisions per se. Decisions are critical events 
in design discussions; they resolve sets of positions on an issue, selecting 
one position and rejecting the others. The chosen positions are often 
embodied as a solution element (e.g., a specific piece of code). Conklin and 
Begeman (1988) observed that users had to keep track of design decisions 
and their associated solution elements outside the gIBIS system.  

Conklin and Begeman considered indicating selected positions through 
display highlighting, to distinguish them visually from the rejected 
positions. However, one deficiency of this approach is that the rationale for 
the decision itself—as distinct from the rationale for the position as a 
response to a given issue—cannot be represented. A more comprehensive 
approach, also discussed by Conklin and Begeman (1988), is to create a 
separate layer of meta-argumentation for discussion about nodes and 
groups of nodes in an IBIS graph. This approach obviously adds a great 
deal more complexity. 

In the early 1990s, influential empirical studies of the use of semi-
formal rationales presented through hypermedia browsers identified 
substantial cognitive and social obstacles (Buckingham Shum and 
Hammond 1994). Indeed, these specific studies were assimilated to a more 
general critique of efforts to support intellectual work directly with formal 
and semiformal knowledge representations (Grudin 1994; Shipman and 
Marshall 1999a). Recent work on semiformal rationales presented through 
hypermedia browsers has focused on providing a richer vocabulary of 
categories and data types, and more flexible user interactions (Buckingham 
Shum et al. 2006.). 

6.3 Codifying Rationale Informally 

The tradition of rationale presentations inaugurated by IBIS focused on 
constrained symbolic descriptions. This was intended to benefit analysts 
and designers by providing a relatively precise description language as 
well as a discipline for using the language. However, for the most part this 
is more of an intention, a vision of what rationale could be, rather than an 
achievement tout court.  

The semiformal notations, such as the standard IBIS graphs, do not 
actually provide very much descriptive constraint, and to the extent they 
do provide constraint—as in the example of including no category for 
decisions, the constraint were sometimes found to be inappropriate. 
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Nevertheless, pursuing even a programmatic interest in constrained 
descriptions is different, eschewing such concerns. Starting in the mid-
1990s, less formal approaches to rationale became more common.  

Many of these less formal approaches to rationale were part of a 
concurrent rethinking of software design, and a turn toward less formal 
approaches to specifications and other software design representations 
(Carroll 1995; Fowler 2003). A central characteristic of these approaches 
was (1) a focus on narrative: stories of workflows and other organizational 
processes, scenarios of user interaction, and use cases of system interactions, 
and (2) a deliberate compromise of semantic precision for conceptual 
richness. Thus, where IBIS tried to impose (albeit programmatically) 
conceptual austerity on planning and design—the most “wicked” of problem 
types, in Rittel’s famous term—these latter approaches took the more 
naturalistic stance of confronting the wickedness first. 

Scenario-Claims Analysis (SCA) conceptualizes the rationale for 
interactive software systems as a collection of natural language 
propositions (claims) that are implicit in the usage scenarios afforded by 
the system (Carroll and Rosson 1992; Carroll 2000). The propositions are 
used to identify tradeoffs in the rationale for the system. Consider a simple 
scenario in which a person is trying to copy text using an information 
system that grays out currently inappropriate/disabled menu items. Going 
to the Edit menu before selecting the text to be copied, the person finds 
Copy grayed out, but after selecting the text, the Copy command is no 
longer grayed out, and the operation can be completed. This scenario 
illustrates a claim that graying out is an effective visual signal for currently 
inappropriate/disabled commands. This claim also helps identify potential 
tradeoffs, downsides of the graying-out technique; for example, the user 
might not make the right interpretation; the grayed-out command might 
just seem to be broken in the software, instead of suggesting that its 
argument needs to be specified. 

SCA rationales are usually presented in tables, not as IBIS graphs, but in 
fact there is an obvious, though perhaps rough, mapping between the two: 
each scenario in SCA presents an issue, or possibly a nexus of related 
issues. The design artifacts described in the scenario (such as the graying-
out technique) are positions that respond to the issue or issues, and the 
claim tradeoffs are arguments for and against these positions. Of course 
there are also differences: a user interaction scenario is both more complex 
and more narrow than an IBIS issue. For example, scenarios often present 
more than one issue, and generally illustrate only a single position for a 
given issue, not a range of possible positions responding in various ways to 
the issue. A similar comparison can be carried out for other scenario-based 
approaches such as Lewis, Reimann, and Bell’s (1996) problem-based 
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evaluation approach in which a set of problem scenarios are identified, 
each presenting one or more issues, and then used to analytically evaluate 
a set of design proposals (positions) via an informal walkthrough 
(producing a set of arguments for the positions). 

Other contemporaneous efforts at naturalistic capture and presentation of 
rationales explored narrative frameworks that were even less schematic than 
scenarios. Some of this work captured ethnographic design history material. 
For example, the Raison d’Etre project captured and presented the individual 
rationales and understanding of project members at specific points in time 
during a software development project. A dozen core members of a software 
product design team were recurrently interviewed during a 12-month period. 
The developers were individually asked about the goals and approaches of 
the project. A video database of about a thousand short clips was created 
(Carroll 2000; Carroll et al. 1994). The video clips could be browsed and 
retrieved using a set of tags (e.g., <project vision>). 

This project showed that there is an abundance of rationale generated 
every day in software development. However, it also showed that there is 
only a partial convergence and consensus as to why decisions were taken, 
or even about what decision were taken. Developers were very interested 
to review and discuss the database of interview clips, but the most practical 
application of the Raison d’Etre materials was to help new project 
members get better oriented to the issues that the project had faced, the 
diversity of positions that had been taken, and arguments that had been 
advanced for those positions. 

Mackay, Ratzer, and Janecek (2000) also employed video to capture and 
present design requirements, concepts, and rationales. Their approach 
focused on documenting a system in use by videotaping both expert users 
and novices in actual work contexts. They also videotaped design meetings 
in which new design proposals were described and critiqued. Finally, they 
used these real materials to plan and construct animated storyboard 
scenarios showing how particular design proposals might be implemented 
and how they might change the system in use. 

6.4 Directions 

The original challenge in presenting rationales was the complexity and 
vastness of the considerations that can bear on wicked problems of 
planning and design. The IBIS notation brought an order to research on 
this challenge, but the challenge remains. Today, software technology 
advances in databases, and more generally in information repositories, and 
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in data visualization present new opportunities for developments in 
managing rationale. 

6.4.1 Reusable Rationale Databases 

Since the early 1990s, papers on design rationale have suggested the 
possibility of repositories or libraries of rationale. Indeed, one argument 
that could be made for semiformal design rationale notations is that they 
provide a rubric for structuring and retrieving rationale elements in such 
repositories.  Such repositories could improve the cost–benefit balance for 
developing rationales in three distinct ways: they amortize the costs of 
developing comprehensive design rationales by permitting many authors to 
contribute rationale, they could improve the validity and applicability of 
rationales by moving the level of design discourse beyond single projects 
and into the entire software design community, and they could increase the 
benefits of developing rationales by allowing many developers to access 
and use rationales once they are created. 

Sutcliffe and Carroll (1999) defined a structural schema for claims to 
facilitate claim retrieval and reuse. Their schema includes a series of 
labeled slots for each claim, including parent claims, projected usage 
scenarios, design effects, upsides, downsides, issues, dependencies, 
evaluation data, and basis in theory. Developers could search or browse a 
claims repository using the values of these slots. Chewar et al. (2005) 
adopted this proposal and developed a rationale repository to support the 
design of notification systems (interactive interface displays like Really 
Simple Syndication (RSS) clients that run in background of a primary task 
and notify users of updates). Their Leveraging Integrated Notification 
Knowledge with Usability Parameters (LINK-UP) system presents claims 
for typical notification system scenarios. On-going evaluation of the use of 
LINK-UP by novice designers has been encouraging (see also Fabian et al. 
2006; Payne et al. 2003). 

The Software Engineering Using RATionale (SEURAT) system (Burge 
and Brown 2004) uses the RATSpeak representation (Burge and Brown 
2003) implemented as a reusable rationale database schema. When 
rationale is required for a new project, the initial rationale-base is 
populated with the required schema tables and a fully populated Argument 
Ontology that contains a hierarchy of reasons for making software 
decisions. SEURAT has only been used as a single-user system. The 
relational database would make it straightforward for multiple users to 
contribute rationale but there are other SEURAT capabilities, such as the 
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ability to associate that rationale with the code, that cannot be distributed 
using the current implementation. 

6.4.2 Multi-Scale Presentations of Rationale  

All of the standard presentations of rationale articulate a great amount of 
structure at basically a single level. This is obvious in the vast networks 
that gIBIS tried to manage through hypermedia browsing. However, in 
some ways this does not reflect the structure of a rationale space as 
designers and users experience it. Some issues, positions, and arguments 
are first-order elements of the design argument; others are subordinate. 
However, these relations are not necessarily clear or even codified at all in 
standard IBIS graphs.  

This could be seen as an example of multiscale data structures. For 
example, in a map of the world the continents and oceans are always 
visible, but the Hudson River may or may not be visible at that scale. 
However, in a map of the state of New York, the Hudson River is always 
visible, but the individual streets in the town of Ossining (located on the 
river) would most likely not be visible, though they would be on a map of 
Ossining or of Westchester County. The point is that map data is 
understood to be multi-scale data, and is typically presented in multiscale 
presentations. 

Analogously, rationale data might be organized so that the coarsest scale 
would present only the leading issues, positions, and arguments. However, 
one could drill down to finer scales to see the subordinate issues, positions, 
and arguments. The multiscale concept is most typically discussed with 
respect to visualization techniques, as illustrated by maps. Perhaps its 
application to presentations of rationale should be pursued especially with 
respect to visualizations of design argumentation (e.g., Kirschner et al. 2003).  

Wahid et al. (2004) describe a simple but concrete example from their 
claims repository work: they visualize a central claim as surrounded by 
concentric orbits of supporting or otherwise related claims. The user can 
filter the visualization to see only the core claim, or to see only the core 
claim with its most related claims, or to see the maximum map of related 
claims. 

6.4.3 Integrated Presentation 

As stated earlier, the capture and use of rationale for software development 
has a significant advantage over rationale for other domains. Since software 
is stored entirely electronically, the rationale can be attached directly to the 
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artifacts that it describes. This is aided significantly by progress in software 
development environments that have emphasized the ability to integrate and 
extend the various tools used in developing software. These tools include 
word processors used to write and access documentation, UML editing tools 
used in design, and the Interactive Development Environments used to write, 
edit, compile, and debug the code. The extensibility of software 
development environments has also benefited from the increasing 
availability and use of open-source applications in these environments, 
which provide even more flexibility and openness in customizing the 
environment to support and accommodate rationale. 

One of the issues in the capture and use of rationale is the need for 
developers to record and use their rationale as part of their normal 
development process. The need to have to use a separate tool for rationale 
has been a deterrent toward doing this. When examining past scenarios 
where rationale could have been beneficial in saving time or money, one 
question arises: would the person who could have benefited from the 
rationale have actually looked at it? Would they have even known that it 
existed? While rationale does have some benefit as a generative tool, it 
should not be treated as “write-only” documentation.  

Software design is often documented using the Unified Modeling 
Language (UML). Zhu and Gorton (2007) developed a UML profile that 
models design decisions in UML and captures the relationships (support, 
break, help, hurt) between the decisions and nonfunctional requirements 
(NFRs). UML stereotypes were used to model each of these elements. The 
design decision stereotype describes the decision, design rules applying to 
the system components, design constraints, the set of architectural 
elements (such as UML classes) the decision refers to, and the rationale (in 
an unspecified format). The NFR stereotype gives attributes specific to that 
NFR, and the relationship stereotype describes any constraints that apply 
to that relationship. The profile supports consistency checking between 
design decisions and related architectural elements. 

When building a Rationale Management System, one issue that must be 
addressed is how and when the developer should be informed that there is 
rationale available. Systems working in domains that are more constrained 
than software, such as the JANUS system (Fischer et al. 1989) which 
supported kitchen design, served as critics that presented rationale when the 
designers’ actions appeared to contradict rules embedded in the system. The 
user is informed of the presence of rationale when they make a decision that 
appears to be incorrect. Rationale is also used interactively within a design 
environment in the Representation and Maintenance of Process Knowledge 
(REMAP) system (Ramesh and Dhar 1992) where the rationale behind the 
functional specification is used to help make design choices. 
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While rationale can be used prescriptively to assist with designing, it is 
also valuable when used descriptively by providing insight into why the 
system is implemented the way it is. The user is more likely to be aware 
of, and read, the rationale behind the code if the rationale is integrated 
either directly into the code that they are modifying or the environment 
that they are modifying it with. The SEURAT system (Burge and Brown 
2004) integrated rationale capture and presentation into the Eclipse 
(www.eclipse.com) development framework. The rationale argumentation 
structure was displayed in a tree format within an Eclipse “view.” In 
addition, three standard Eclipse views were extended/used to show the 
presence of rationale: the Java Package Explorer was augmented by an 
icon overlay on every file that had associated rationale, rationale 
associations were stored as Eclipse “bookmarks”, and each bookmark 
giving an association was shown in the editor used to modify code. The 
bookmarks could be used to jump directly from the rationale alternative to 
the code that implemented it. The goal behind the integration was to 
reduce the likelihood of a developer or maintainer working with code 
while oblivious to the presence of the rationale that could assist them. 

6.5 Summary and Conclusions 

Probably the two greatest innovations in presenting rationale are still the 
original information schema of IBIS and the gIBIS hypermedia browser 
for IBIS graphs. Some of the dichotomies that have structured research and 
development on rationale presentations during the past several decades 
have dissolved. For example, the distinction between semiformal notations 
and informal notations seemed paradigmatic in the early 1990s, but will 
probably matter less as information systems increasingly create structure 
out of content, and thus do not need to force structural constraints on the 
humans that use them. Thus, the presentation of rationale—how it appears 
to its human users—will tend to matter more in the future.  



7 Evaluation 

Software Engineering Rationale (SER) can play several roles in supporting 
system evaluation. One is to support the evaluation of decision alternatives 
by providing the means to capture the arguments for and against each 
alternative. The rationale can be used to automatically calculate support for 
alternatives and present it to the developer to assist them in making, or 
revising, their decisions. Rationale also supports usability evaluation by 
providing a process for analyzing use scenarios via Scenario-Claims 
Analysis (SCA) (Carroll and Rosson 1992; Carroll 2002). In this chapter, 
we discuss a number of approaches for using rationale to evaluate the 
alternatives to assist with decision-making and also how SCA supports 
usability evaluation. 

7.1 Introduction 

7.1.1 Argumentation-Based Rationale 

7.1.1.1 Decision-Making in SE 

Developing a software system requires making many different types of 
decisions. Decision-making consists of generating alternative solutions, or 
approaches, identifying the reasons for and against these alternatives with 
respect to evaluation criteria, and selecting the “best” alternative based on 
these reasons and criteria.  

Decisions made during software development affect many aspects of the 
development process and the developed product: 

• Product decisions – What is being developed? Who should it be 
marketed to? Who is the customer/user? What are the requirements? 
Where does the system need to run? 
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• Process decisions – How should the system be developed? What 
process model should be followed? When should versions be released? 
What level of documentation needs to be produced? What is the testing 
strategy? 

• Management decisions – How should the development team be 
structured? Who should be on it? What resources should be made 
available to the project?  

• Development decisions – What development tools should be used? What 
components can be integrated? What is the system architecture? What 
are the data structures?  

These are only a few examples of the many different decisions and 
decision types that need to be made. The results of each decision may be 
important to a different collection of stakeholders. For example, a system 
user would be interested in decisions regarding functionality but not as 
concerned with process models or data structures. 

Each decision also has several different types of criteria that influence 
alternative selection. These criteria include functional requirements, non-
functional requirements, assumptions, dependencies, risk, and constraints. 
The degree to which an alternative meets or fails to meet criteria may vary 
as well as the certainty in that evaluation. The decision-making task is 
further complicated by criteria differing in importance. 

7.1.1.2 Rationale and Decision Support 

The information generated and used during decision-making consists of 
decisions required, alternatives considered, reasons for and against the 
alternatives, and the criteria used for evaluation. This information forms 
the rationale for the choices made as a software system is developed and 
maintained.  The rationale can be used to evaluate these choices and 
support the human decision-maker by advising them if their decisions are 
inconsistent with the rationale that they recorded. 

The rationale can both be evaluated itself and used to support evaluation 
of the decisions made. Evaluating the rationale itself involves syntactic 
checks on the structure of the rationale and semantic checks that analyze 
its content (Conklin and Burgess-Yakemovic 1996). An example of a 
syntactic check would be to look for missing information, such as 
decisions where alternatives were not chosen, while semantic checks 
would look for contradictions in reasoning, such as arguments that are 
used to both support and refute an alternative.  

Evaluating the decisions made involves using the rationale to indicate 
which alternatives are preferable over other alternatives and why. The 
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method of evaluation and the inputs to each method vary depending on the 
complexity of the problem and the types of information available. 
Decisions may involve looking at different types of criteria (functional and 
nonfunctional requirements, assumptions, constraints, etc.), conflicting 
opinions from multiple decision-makers, uncertainty, shifting priorities, 
and missing or incomplete data. The evaluation of an alternative may 
change over time as well so there also needs to be a way to determine 
when re-evaluation is necessary. 

Selecting an evaluation method requires tradeoffs between the amount of 
information required to use a method, the computational requirements (if 
evaluation is computer assisted), and the required rigor. The value of the 
evaluation is directly dependent on the ability to capture the rationale in 
sufficient detail to support the method chosen. This chapter will describe 
several alternative methods for computer-assisted evaluation of 
argumentation-based rationale in order to augment human decision-making. 

7.1.2 Scenario-Based Rationale 

starting point of design. Scenarios describe how the user goes about 
performing a task using the artifact that is being designed. Scenarios are 
valuable because they are a way to take knowledge about system use that 
is tacit, such as assumptions, and make it concrete (Carroll 2000).  
Scenario- Claims Analysis (SCA) is the process of analyzing scenarios to 
extract “claims”—implicit causal relations that describe the desirable and 
undesirable consequences of design features described in the scenario 
(Carroll 2000). These claims describe the rationale behind the scenario—
why the scenario operates the way that it does. Later in this chapter we will 
describe how SCA can be used in evaluation.  

7.1.3 Objectives of This Chapter 

This chapter discusses the evaluation of and using argumentation rationale 
as well as using rationale generated during scenarios-claims analysis for 
system evaluation. For the argumentation evaluation, this chapter looks at 
two types of evaluation: evaluation of the rationale itself for completeness 
and correctness and using the rationale to evaluate decision alternatives. 
For alternative evaluation, it concentrates on three issues: comparing the 
alternatives, combining inputs from multiple developers, and handling 
uncertainty.  The focus is primarily on computational evaluation using 
argumentation. The scenarios-claims analysis section describes how 

Scenario-based design (Carroll and Rosson 1992) uses scenarios as the 
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analyzing scenarios to extract claims is a form of evaluation that can be fed 
into the development of testing scenarios to gather evaluation data. 

7.2 Evaluating the Rationale 

argumentation. This format is a natural way to express the decisions, 
alternatives, and arguments and can be read easily by people and 
interpreted by computers. There are many argumentation formats which 
date back to Toulmin’s warrants, claims, datums, backings, and rebuttals 
(Toulmin 1958).  These include the Issue-Based Information System 
(IBIS) notation (Kunz and Rittel 1970), Questions, Options, and Criteria 
(QOC) (MacLean et al. 1989), the Decision Representation Language 
(DRL) (Lee 1991), WinWin (Boehm and Ross 1989), the Design 
Recommendation and Intent Model (DRIM) (Peña-Mora et al. 1995), and 
numerous notations that extend these representations and Rationale 
Management Systems that use them.  

In this section we describe two types of evaluation of the rationale: 
checking the rationale for completeness and checking the rationale for 
correctness. 

7.2.1 Completeness 

Completeness checking over the rationale looks primarily at the syntax 
checks, or what Conklin and Burgess-Yakemovic referred to as “well-
formedness checks” on the syntax and structure (Conklin and Burgess-
Yakemovic 1995).  Completeness checking typically does not ensure that 
all the rationale for the system has been collected but instead checks to see 
if there are any holes in the rationale that is present.  

There are many possible checks, or inference, that can be performed on 
the rationale. The availability of these checks depends on the richness of 
the representation format. There are some checks, however, that can be 
made over most argumentation-based formats. These include: checks to 
ensure that there are alternatives proposed for each issue/decision, checks 
to see if an alternative has been selected for each issue/decision, checks to 
see if alternatives are selected that do not have any arguments (in either 
direction), and checks to see if alternatives are selected that only have 
arguments objecting to them with none in support.   

Many rationale representations take the form of semiformal 
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7.2.2 Correctness 

While syntactic inference looks at the structure of the rationale, semantic 
inference looks at the contents. The ability to do this is limited—
comparing information within the rationale requires that a common 
vocabulary be used. The Knowledge-Based Design System (KBDS)  
(Bañares-Alcántara et al. 1995; King and Bañares-Alcántara 1997), which 
extends IBIS, used keywords to check argument consistency. Inferencing 
over Rationale (InfoRat) (Burge and Brown 2000) created a common 
vocabulary of arguments. SEURAT’s RATSpeak (Burge 2005), an 
extension of DRL, extended this vocabulary into an argument ontology 
that described a hierarchy of reasons for making software decisions at 
different levels of abstraction. Using a common vocabulary within 
arguments allows for inferences that look for contradictions such as using 
the same argument for and against an alternative.  

Some rationale representations, such as RATSpeak, capture 
dependencies between alternatives. These relationships can be used to 
check if there is a dependency violation where an alternative is chosen that 
conflicts with another selected alternative or requires an alternative that 
has not been selected. If the requirements are explicitly captured in the 
rationale, the rationale can also be used to detect if an alternative has been 
selected that has an argument indicating that it violates a requirement. 
Some representations, such as RATSpeak and REMAP (Ramesh and Dhar 
1992) represent requirements as explicit types of rationale entities. QOC 
and DRL can do this less directly by having QOC’s critieria and DRL’s 
goals contain requirements. 

Another type of semantic inference is to detect if there have been any 
tradeoff violations. Many arguments captured in rationale describe 
qualities that are “traded off” when making decisions. Known tradeoffs 
that apply at a system-wide level can be captured as “background 
knowledge” in InfoRat (Burge and Brown 2000) and SEURAT (Burge and 
Brown 2004). An example of a software tradeoff would be the ease of 
coding an alternative versus its flexibility.  In most cases, the more flexible 
design is likely to be more difficult to implement initially. The rationale 
can be evaluated to check to see if there were alternatives with arguments 
that claim flexibility where there were no opposing arguments warning of 
the potentially longer development time. The rationale can also be checked 
to ensure that alternatives do not claim to be flexible and easy to 
implement. The developer can override the results of these inferences in 
cases where there are exceptions to the general rule. 
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7.3 Evaluating the Decisions 

Software development decisions are often multidimensional, i.e., decision 
outcomes involve multiple dimensions. Vetschera (2006) states four 
contributors to multidimensionality: alternatives impact multiple criteria, 
uncertainty of alternative outcomes, multiple stakeholders, and alternative 
outcomes that vary over time. The rationale can serve as inputs to many 
different evaluation methods. In this section we will describe some of the 
methods and issues and how rationale has been, or can be, used to support 
them.  

7.3.1 Comparing Alternatives 

There are many possible methods that can be used to compare alternatives. 
The choice of method depends on the information available as input (i.e., 
the richness of the rationale representation and the fidelity of the data) and 
the results of tradeoffs between computational complexity and semantic 
justification of the results. Methods require extensive calculation, 
evaluations for each criteria, multiple pairwise comparisons (which do not 
scale well if the number of alternatives is large), or quantitative 
measurements (which may not be available).  

The simplest evaluation involves arguments that are either for or against 
an alternative. The support for the alternative consists of the difference in 
the pro and con arguments divided by the total number of arguments (Fox 
and Das 2000). This method assumes that all arguments are equally 
important.  

Many evaluation methods fall into the category of Additive Sum 
Methods (Vetschera 2006) where the alternative utility is calculated using 
a weighted value for each argument. The simplest form, Weighted Sum 
Method (WSM), is used by several rationale-based systems including 
HERMES (Karacapilidis and Papadias 2001), InfoRat (Burge and Brown 
2000), and SEURAT (Burge and Brown 2004; Burge and Brown 2006).  
In these systems, each argument is given a weight to indicate its relative 
importance. Assigning these importance values is not a simple task—the 
values could be given relative to the specific decision or could apply 
system wide. In HERMES, the evaluation involves the sum of the weights 
in favor minus the sum of the weights against. In InfoRat and SEURAT, 
the weight is applied to (multiplied by) a numerical amount indicating the 
degree to which the alternative affects the criteria. Additive Sum Methods 
can be evaluated for sensitivity to any of the weight values by plotting the 
result when expressed as a function of that weight (Vetschera 2006). 



7.3 Evaluating the Decisions      97 

Determining the appropriate weights can be difficult and the results of the 
summations do not always accurately reflect the utility. Vetschera (2006) 
demonstrates that a summation of weights may result in avoiding 
compromise alternatives. He suggests correcting this by adding an 
additional partial utility function to each argument in addition to the 
weight. This would be especially valuable when different types of 
arguments are involved. A violation to a functional requirement, for 
example, should have a significantly higher impact on the decision than 
other types of arguments.   

The Analytic Hierarchy Process (AHP) (Saaty 1980) is another method 
for comparing alternatives.  In this method, pairwise comparisons are 
performed between all alternatives examined against all relative criteria. 
As with the other weighted methods, criteria are given different weights. 
AHP has been applied to software engineering decision problems such as 
prioritizing software requirements (Karlsson and Ryan 1997) and choosing 
software products (Lai et al. 2002). This method requires that the same 
criteria be used to weigh each alternative. The significant disadvantage to 
this method is that it does not scale well when comparing large numbers of 
alternatives. 

7.3.2 Combining Inputs from Multiple Developers 

Rationale can be a valuable tool for collaboration and negotiation. This 
was demonstrated with gIBIS (Conklin and Burgess-Yakemovic 1995), 
Compendium (Buckingham Shum et al. 2006), and SHARED-DRIM 
(Peña-Mora et al. 1995). The argumentation can serve as a natural medium 
for the different contributors, or stakeholders, in a project to state their 
views on alternatives under consideration. This does pose an interesting 
challenge for evaluation: how can conflicting beliefs and opinions be 
aggregated? Factors that contribute to the difficulty include the differing 
expertise of developers and differing degrees of confidence in evaluations. 
There could potentially be arguments refuting and supporting other 
arguments as developers debate each other’s arguments. The developers 
may not disagree with the arguments themselves but may not agree with 
information such as the importance of the argument criteria, the degree to 
which the alternative meets the criteria, or the plausibility of the argument.  

Combining conflicting beliefs has been an important topic of research in 
economics, statistics, and artificial intelligence. How can conflicting 
beliefs be combined to reach some version of Pareto optimality? There are 
numerous impossibility theories (Arrow 1963; Mongin 1998; Blackorby et 
al. 2000) but also many approaches that avoid impossibility by methods 



98      7 Evaluation 

that include restricting the Pareto condition (Gilboa et al. 2004) and 
understanding that not  all expert opinions should carry the same weight 
(Maynard-Zhang and Lehman 2003). 

As with other evaluation methods, the belief combination method used 
will depend on the type of information available and the amount of 
computation that needs to be performed.  

The field of economics has studied this issue when looking at preference 
aggregation (Andreka et al. 2002; Hild et al. 1998; Harsanyi 1955). 
Lexicographic ordering is another method used to combine preference 
operations (Andreka et al. 2002). Clemen and Winkler (1999) describe 
many different methods for combining probability distributions from 
multiple experts when performing risk analysis/assessment. These methods 
include the linear opinion pool (Stone 1961), which uses a weighted sum 
incorporating the “quality” of each expert and Bayesian updating (Winkler 
1968). In AI, combining beliefs is necessary when performing ensemble 
learning (Pennock et al. 2000) and when merging information from 
multiple data sources (Booth 2002; Meyer et al. 2001).  

The most promising methods are those that take advantage of information 
about the experts—their level of expertise, their experience, their reliability, 
and potentially even their influence. When experts disagree and their 
negotiation is captured in the rationale, they are unlikely to be given equal 
weight in the decision-making process and it is important to utilize this 
information when proposing decisions.  Knowledge about the expert 
providing the information can be used to provide a “pedigree” for the 
information. This pedigree information is used in belief fusion (Maynard-
Ried II and Shoham 2001) to combine beliefs from different experts.  

7.3.3 Handling Uncertainty 

Software decision-making needs to address the uncertainty surrounding the 
development process. Uncertainty can refer to many things: vagueness, 
imprecision, inconsistency, incompleteness, or ambiguity (Parsons 2001). 
Ziv et al. (1996) describe four domains where uncertainty is an issue: 
requirements analysis, transitioning from requirements to design and code, 
uncertainty in re-engineering, and uncertainty in reuse. This uncertainty 
can come from many sources. Three examples are the problem domain 
(“real world”), the solution domain, and the humans participating in the 
development process (Ziv et al. 1996). Lehman and Fernández-Ramil 
(2006) are concerned with the impact of assumptions which may change 
over time. When assumptions that were the basis of software decisions no 
longer hold they can result in system failure. A high-profile example of 
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this is the loss of the Ariane 5 rocket (Nuseibeh 1997; Lehman and 
Fernández-Ramil 2006). Decisions must also be made in the presence of 
incomplete information and may require revisitation later in the process 
when more is known about the problem. 

The presence and role of uncertainty in making software decisions can 
be captured in the rationale. Systems such as REMAP (Ramaesh and Dhar 
1994) and SEURAT (Burge and Brown 2006) explicitly represent 
assumptions in the rationale.  SEURAT supports the ability to disable an 
assumption and re-evaluate the support level for any alternatives referring 
to it. If the assumption refers to an event that is expected to be true at some 
point in time, it should be given a time stamp to remind the designer that 
the decision should be re-examined (Burge et al. 2006). 

The need to gather additional information can be captured in the form of 
questions as is done in DRL/SIBYL (Lee and Lai 1996) and SEURAT. 
These systems use questions to describe what information is required to 
make a decision or evaluate an argument and to indicate, if known, the 
likely sources of that information. SEURAT will report all unanswered 
questions as errors until they are resolved. 

 Uncertainty in arguments is captured in DRL, SEURAT, and the 
Knowledge-Based Decision System (KBDS) (King and Beñares-Alcántara 
1997) using plausibility, or uncertainty, values for each position. SEURAT 
and KBDS use these values, along with weights applied to each criteria, to 
rank the alternatives. 

Using a plausibility value as a weighting factor in a weighted sum 
evaluation is one approach to incorporating the effect of uncertainty in 
evaluation. There are numerous other approaches that can also be used. 
Parsons and Hunter (1998) divide formalisms for uncertainty handling into 
two “camps”—the “numerical camp” that uses quantitative methods and 
the “symbolic camp” that uses logical, or qualitative, methods. 

Numerical, or quantitative, measures include those based on probability 
theory, evidence theory, such as Dempster–Shaefer (Shafer 1976), and 
possibility theory (Zadeh 1978), based on fuzzy sets (Zadeh 1965). These 
methods share several drawbacks: the potential difficulty in obtaining the 
“numbers” (probabilities, possibilities, and distributions), the risk of 
comparing different types of beliefs, and the possibly significant 
computational expense (Parsons and Hunter 1998).  

Two quantitative methods frequently used in decision-making are 
influence diagrams and decision trees (Clemen and Reilly 2001). Influence 
diagrams capture the decision structure as decisions, change events, the 
desired outcome (payoff node), and intermediate consequences/calculation 
nodes. The different alternatives, outcomes, and consequences are present 
as tables within the nodes. Decision trees express this information more 
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explicitly in the structure where decisions branch to choices and “chance 
events” branch to outcomes. Decision trees are often used to compute the 
“Expected Value” of a decision. Decision trees have been used to support 
Value Based Software Engineering by calculating the value of a software 
project (Erdogmus et al. 2006). 

Qualitative methods are those that work either without numeric 
information or with only some numeric information (Parsons 2001). In 
some cases, these methods are variants on quantitative methods. 
Qualitative Probabalistic Networks (Wellman 1990; Parsons 2001) are a 
variant on influence diagrams where the influence of one node on another 
is expressed qualitatively as being positive or negative.   

Defeasible reasoning is a form or reasoning that accounts for the need to 
retract initial conclusions when new information is obtained (Parsons 
2001). Parsons describes three forms of defeasible reasoning: logic, 
probability, and argumentation.  Argumentation can support reasoning 
under uncertainty either by calculating the “safety” of arguments based on 
the presence of counterarguments or by adding a confidence factor 
indicating the degree to which the argument is believed to be true (Parsons 
and Hunter 1998).  

The ability to re-evaluate beliefs (in our case, in the form of alternative 
evaluations) in the face of changing assumptions is similar to work done 
using Truth Maintenance Systems (TMSs) (Doyle 1979; de Kleer 1986). In 
rationale-based systems, changing assumptions and NFR priorities can be 
used to re-evaluate alternatives to indicate where changes might be 
advisable. This process would probably stop short of actually retracting the 
selection of alternatives but would instead inform the developer of the 
potential problems. 

7.4 Scenario-Based Evaluation 

an informal and holistic working representation in requirements analysis 
and design. The scenarios depict user interactions observed, predicted, and 
proscribed, and provide a medium for exploring first-order consequences 
and interactions of envisioned design features. For example, one obstacle 
to code reuse is that it is often difficult for programmers to find examples 
of how a given object or module is to be reused; thus, they must work 
directly from code definitions, which is a strong deterrent to reuse (Rosson 
and Carroll 1996). In designing support for code reuse, one might envision 

As described earlier, scenario-based design uses interaction scenarios as 
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and analyze a scenario in which part of the documentation for software 
objects and modules is pointers to commented example uses of that code. 

The scenario might be the starting point for a design solution (e.g., part 
of the programming environment), but it also helps to evoke and evaluate 
rationale. For every design feature in an envisioned scenario, one can 
identify desirable and undesirable consequences. Thus, providing example-
based usage documentation is indeed a resource to programmers: they 
quickly learn to borrow usage protocol directly from example uses 
(Rosson and Carroll 1996). This is an upside consequence of the design 
solution. However, there are also downsides, risks, or costs entailed by the 
design solution: positing new documentation raises the question of who 
will create and maintain the documentation, and of how and where it will 
be stored and accessed. 

Evaluating a design solution and its rationale by analyzing interaction 
scenarios is an example of what Scriven (1967) called intrinsic evaluation. 
Intrinsic evaluation assesses solution properties analytically, instead of 
empirically measuring performance characteristics. Intrinsic evaluation is 
often more illuminating than empirical evaluation, since it constructs an 
arbitrarily rich decision space of implicit tradeoffs. Intrinsic evaluation can 
also be less expensive, but it is always less definitive in that it cannot 
determine the exact cost parameters in the tradeoffs. In the example of 
reuse documentation, the analysis identified valid desirable and 
undesirable consequences of the design solution, but only a large-scale 
implementation could show whether the benefits outweigh the costs.  

7.5 Summary and Conclusions 

Here we have described two ways that SER can be used to support 
software evaluation: supporting decision-making by evaluating decision 
alternatives and supporting usability evaluation through scenarios claims 
analysis. There are many different types of decisions made during software 
development for which rationale can be captured. This rationale can then 
be used to evaluate these decisions to ensure that choices made do not 
contain flaws that can be detected via computation. This evaluation is not 
necessarily used to make the final decision but can be used as a 
verification step. Evaluation is also an important aspect of change analysis 
that provides a means for accessing the impact of changing criteria on the 
recommended decisions. Scenarios and SCA evaluate how the system 
supports its goals in operation by providing a framework for evaluating 
usability based on the scenarios and the accompanying usability rationale.  



8 Support for Collaboration 

This chapter examines collaboration with respect to design rationale. On 
the one hand, this is a discussion of how collaboration can support the 
development, codification, and use of design rationale. On the other hand, 
it is a discussion of how rationale supports collaboration in design and 
development  

8.1 Introduction 

8.1.1 General 

wish to accomplish projects that are too large and complex for a single 
person.  Although this is the fundamental basis for collaboration in all 
human endeavors, it is not always a simple matter of adding team members 
to tackle ever-greater challenges. Indeed, one of the classics of software 
engineering, Brooks’ Mythical Man-Month (1975), took its title from the 
mistaken notion that software team productivity scales linearly with the 
number of team members. Brooks analyzed his own experience managing 
the development of the IBM Operating System 360 software, a project in 
which he concluded that the addition of team members eventually reduced 
productivity. 

8.1.2 Objectives of This Chapter 

rationale. First, it observes that software development is almost always 
collaborative, for the simple reason that most software projects are too big 
for solitary individuals ever to successfully tackle. This raises a set of 
specific challenges: collaboration aggregates individual efforts, but it also 
creates new sources of work for people in teams, and new risks for the 

People work together in software design and development because they 

This chapter surveys the relationship between collaboration and design 
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products of teamwork. We then consider how collaboration supports 
rationale in software development—by encouraging team members to 
explicitly articulate their goals and plans, and therefore to create the 
possibility of a discussion about reasons, and by supporting a culture of 
software development to conventionalize and leverage social mechanisms 
like anthropomorphic metaphors and software patterns. Finally, we 
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s 
collaborators, and coordination among collaborators, especially with 
respect to making progress in uncertainty.  

8.2 Software Development as Collaborative Work 

8.2.1 Collaboration Is Inescapable 

tackle large and complex projects: Brooks estimated that Operating System 
360 took 5000 person-years. Quite simply, there is just too much work to 
do in many projects for one person to ever be able to carry them out. But 
the issue is more than one of mere additions. 

Collaboration is well integrated into human psychology and sociology.  
For example, groups of people generate more ideas and higher-quality 
ideas than disaggregated individuals. People with different skills and 
experience often experience synergies in collaboration; that is, together 
people can develop solutions that no one of them could have conceived of 
or executed individually (Kelly and Littman 2001). 

During its brief history, software engineering has developed as a 
pervasively collaborative work practice. Developing a substantial software 
system requires many specialized skills. The tasks of system 
development—requirements identification and analysis, architectural 
specification, software design, implementation, testing—involve a great 
diversity of skills. Individual software professionals cannot be expert in all 
or even most of these skills. Indeed, software professionals typically 
devote a significant fraction of their professional effort to keeping up to 
date with just one or two of these professional skill sets.  

The tasks of software development are at least partially decomposable, 
as suggested—perhaps a bit optimistically—by traditional waterfall 
models of system development. Thus, modern software development 
regularly involves divisions of labor and coordination of specialized 

The most basic driver for collaborative work is the human ambition to 
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contributions. This entails fairly elaborate and articulated specializations in 
software project management, in addition to the primary skills of software 
development.   

Furthermore, labor economics and the worldwide distribution of skills 
have produced a global distributed paradigm for software development. 
Today, many systems are developed by collections of technical teams 
scattered throughout the world, each providing some specific capabilities, 
and sometimes having little or no direct contact other teams. Such far-
flung projects were unprecedented only a few years ago, and still 
constitute an area of intense innovation in collaborative work. 

In this context, the example of Operating System 360 begins to appear 
an unrealistically simple case: the OS 360 software only had to run on one 
hardware configuration, and was developed by a colocated team; most of 
the designers and developers worked in direct physical proximity.  

 8.2.2 Collaboration Entrains Challenges 

that adding people to a project does not enhance the total effort linearly. 
The basic reason for this is that collaboration itself is work. Two people 
chopping down a tree must share their plans and coordinate their efforts 
just to survive, let alone to experience a productivity boost. This sharing 
and coordination diverts and subtracts time and effort from the primary 
task. Thus, the tree may be cut down faster than either person alone could 
do it, but it is never cut down twice as fast. 

The challenge of collaborative work is considerably greater than 
suggested by the tree-cutting example. When people work in groups, they 
tend to work less hard than they do when working as individuals—a 
phenomenon called “social loafing” (Karau and Williams 1993). Social 
loafing is especially prevalent when people perceive that their contribution 
to a collective outcome is not unique, that someone else could do the work 
just as well, or when they believe that their loafing will not be evident to 
their co-workers. 

When people pool their ideas, when they collectively brainstorm and 
develop new ideas, they tend to adjust their contributions toward positions 
taken by others they perceive to be competent or powerful, or toward 
existing majority opinions—the status quo. This tendency to conform 
undermines the extent to which collaborative intellectual activity can 
generate more and better ideas, and over time causes groups to become 
more homogenous and less effective (Latane and Bourgeois 2001). 

The notion of a man-month—or person-month—is mythical in the sense 
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However, diversity in groups also entails collaborative challenges. 
People with different technical backgrounds commonly have different 
fundamental values and beliefs; they can find it difficult to appreciate one 
another’s contributions, or even understand what is being contributed 
(Pelled et al. 1999). Thus, diversity in collaborative groups frequently 
leads to conflicts, often very deep, value-based conflicts. 

Phenomena like social loafing and conformity/conflict have significant 
derivative effects on group dynamics. Derogatory terms like “slacker” and 
“overachiever” reveal the tensions that can be created in a group over 
social loafing. Effective group performance requires a foundation of 
common ground, that is, shared knowledge about local context, 
conventions, and co-reference to enable efficient and reliable interactions. 
Sustained group performance requires the development of trust and 
generalized reciprocity, sometimes called social capital (Coleman 1990).  

Many of the challenges of collaboration are inherent tradeoffs; they can 
be addressed, and perhaps balanced, but not solved tout court. For 
example, designating a “coordinator” to receive and direct all group 
communications can improve group problem solving efficiency, but 
decreases satisfaction with the group activity (Leavitt 1951). Similarly, 
including a “skeptic” in brainstorming allows groups to produce more and 
better ideas, but also decreases members’ satisfaction with the group 
activity (Connolly et al. 1990).  

These collaborative challenges are as old as human organizations, but 
they are exacerbated by the very nature of knowledge work like software 
design and development. In knowledge work the interim work products, 
sometimes even the final work products, can be quite insubstantial; they 
are plans and strategies, architectures, algorithms, and heuristics. The 
products of knowledge work are also typically arcane; indeed, software 
systems are possibly the best example there is of this. 

8.3 Collaboration Supports Rationale 

collaborative interactions of various software professionals ineluctably and 
naturally externalize rationales, though often incompletely. Collaborative 
interactions in software development also shape the software development 
process in ways that favor rationale.  

Collaboration is an important social resource for design rationale. The 
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8.3.1 Collaboration Externalizes Rationales 

documentation activity within the software development lifecycle, and it is 
certainly true that design rationale can be a kind of documentation. 
Incorporating rationale into formal documentation activities is useful and 
efficient, since rationale provides causal foundation for other categories of 
documentation such as final specifications, reference, and maintenance 
manuals, and user documentation like online help and tutorials.  

However, rationale is more broadly the reasoning that occurs throughout 
design and development, whenever and however it is codified and used. 
One of the most important consequences of collaborative work is that co-
workers must articulate and externalize knowledge, assumptions, and 
reasoning that otherwise might remain tacit. If you watch one programmer 
at work, you would most likely get little insight into programming. The 
work activity is mostly mental, and the occasional external inscriptions 
that are produced are quite arcane, but if you watch two programmers 
collaborating, you see quite a lot about programming. More specifically, 
you see quite a lot of rationale. 

Software development is a complex, intellectual task in which there are 
never singularly correct solutions. More typically, there are many 
satisfactory solutions, each entailing a variety of partially understood 
tradeoffs and side-effects. Elsewhere in this book we have characterized 
these problems as wicked (Rittel and Weber 1973) or ill-structured 
(Reitman 1965). When people work on this kind of task collaboratively 
there is lots to talk about, indeed, lots to analyze, justify, and debate.  

As Kraut (2003) put it, this kind of collaborative work follows a “trust-
supported” heuristic in which group performance can be only as good as 
the second-best member. Groups pool and weigh different perspectives; 
they identify and repair errors in candidate solutions and the rationale for 
candidate solutions. Producing a solution requires both the technical 
enterprise of identifying and developing a proposal, but also the social 
enterprise of convincing one’s colleagues.  

An old chestnut of software engineering is that no-one wants either to 
produce or to use documentation. But in collaborative contexts, in which 
one must obtain the support of colleagues in order to make a technical 
decision, there is no shortage of design rationale. Indeed, the culture of 
software development work has evolved a variety of mechanisms to 
capture, preserve, and discuss these materials, such as commenting and 
literate programming (Knuth 1992), bug reports and frequently asked 
questions (FAQ) forums, and indeed the entire spectrum of Usenet 

The creation of design rationale is often conceived of as a 
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communities. Collaboration in software development unavoidably and 
voluminously generates rationale.  

8.3.2 Software Development Communities of Practice 

profession, but it is a profession that is all about the skills and practices of 
constructing software. Software professionals have developed a culture of 
software development—communication and work practices to coordinate 
work and to teach and coach one another (Curtis et al. 1988; DeMarco and 
Lister 1999; Lammers 1988). For example, software developers frequently 
talk about software components and their interactions in explicitly 
anthropomorphic terms; thus, a component is said to know things—such as 
how to put a file on the print queue—or to expect things from other 
components (e.g., Herbsleb 1999; Madsen 1994). In this sense, software 
development is a community of practice (Lave and Wenger 1991).  

One could regard the cultural practices of software developers as 
curiosities, but in fact social practices emerge, evolve, and persist because 
they add something to human activity. Thus, it seems prudent to consider 
how the ways software professionals talk about and construct software—
particularly those work practices that are not taught in formal education or 
encouraged by industry standards, corporate policies, or managerial 
directives—may reveal important characteristics about how experts think 
about software, and how they coordinate software development work. 

In this light, consider the issue of anthropomorphic and other 
metaphorical language. Formal education and normative practices in 
software engineering have traditionally placed high value on explicit and 
correct representations such as specification languages, programming 
languages, and a variety of diagrams. Notably these formal representations 
are pretty much strictly declarative; they describe the structures and 
interactions in a software design and implementation. Classic articles on 
computer science education by Dijsktra (1989), among others, have 
specifically argued against metaphorical language. 

Why then would software developers employ anthropomorphic and other 
metaphorical language? Carroll and Mack (1985) argued that metaphorical 
representations clarify new domains by leveraging concepts that are already 
known, while at the same time highlighting mismatches in the mapping  
of old-to-new, and thereby flagging conceptual problems that need attention. 
Rosson and Alpert (1990) suggested that the anthropomorphic metaphors  
of object-oriented design facilitate upstream communication among 
developers by reducing the need for explicit point-by-point clarification and 

Software development is diverse and somewhat fragmented as a 
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refinement entailed by more explicit representations. For example, saying 
that software component A knows about software component B is both 
succinct and rich. It conveys that the behavior of A depends in some way on 
the behavior of B, and that the specific nature of the contingency is either 
not yet known or not needed for present purposes.  

Herbsleb (1999) elaborated this conjecture by noting that the strategy of 
anthropomorphic representation allows software developers to leverage 
“naïve psychology” (Clark 1987)—the near-universal understandings that 
humans share about animate entities. Naïve psychology allows people to 
reason what an animate entity must have known to have acted as it did, or 
what it is trying to do given its behavior and knowledge. In other words, it 
bundles declarative understanding of what is happening with direct 
perception of its rationale—that is, how an entity is able to do what it does 
and why. It is believed that naïve psychology capabilities were selected in 
evolution because individuals who could draw these inferences were better 
able to succeed in the early social world (Clark 1987).   

Herbsleb (1999) analyzed a corpus of 1800 system behavior 
descriptions identified in a series of software engineering domain analyses. 
The domain analyses involved teams of 3–5 experts analyzing message-
passing protocols in telephony or switch maintenance software. Herbsleb 
found that 70% of the behavior descriptions were metaphorical. Each 
domain analysis involved a series of meetings; for each series, Herbsleb 
analyzed one early meeting, one meeting from the middle of the series, and 
one of the final meetings. He found that, through the course of the three 
domain analysis meetings, teams of software engineers came to rely 
increasingly on certain of these metaphorical descriptions—the ones 
derived from naïve psychology. That is, metaphors were not used as 
ephemeral ice-breakers, to replaced with more proper and explicit 
descriptions. Instead, they became established in the domain analysis as a 
sort of local technical language for the teams.  

Communities of practice are social mechanisms for the codification and 
social transmission of practices and their rationales. Collaborative software 
development work requires sharing extraordinarily complex information 
fluently. Software development has evolved as a community of practice to 
leverage naïve psychology via anthropomorphic metaphors, selectively 
hiding and emphasizing information, while bundling description and 
rationale. Another example of this in contemporary software practice is 
pattern languages (Gamma et al. 1995). Both simplify and speed 
communication in software collaborations by leveraging rationale.  
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8.4 Rationale Supports Collaboration 

role of rationale in software development is motivated and facilitated by 
collaborations among professionals, but rationale also supports 
collaboration. It provides a compelling management tool for keeping 
projects on track spanning time, distance, and organizational change. It 
facilitates awareness of one’s team members, contributing to the 
development of common ground and trust, and it facilitates coordination, 
particularly in project contexts of high uncertainty.  

8.4.1 Awareness  

needs to know many things about one’s collaborators (Carroll et al. 2006): 
Who are they? What do they want to do? What are they doing now? What 
tools are they using? To what other resources do they have access? Who 
do they work with? What are they thinking about? What do they know? 
What do they expect? What are they planning to do in the near future? 

accomplished evolving over time? 
This may seem like a long list, but in fact it is quite incomplete. 

Consider the issue of coordinating nuances in vocabulary. A user interface 
designer and a software architect may both support prioritizing design 
elegance; they may even be able to talk at length about how and why this 
objective is important. But in practice, they may have entirely different 
notions of what elegance is. If goals are not adequately analyzed and 
codified, this kind of failure of common ground can quickly lead to 
conflict, putting the collaboration and the project outcome at risk.  

Of course the mere fact that different professional perspectives differ 
with respect to technical concepts and skills, values and priorities, and so 
forth is not the problem. Indeed, such differences are required for a 
successful large-scale software project, or any other large-scale human 
endeavor. Professional diversity can be, should be, and often is a resource 
to a software development team. The challenge is to efficiently recognize 
and effectively manage these differences.  

This is where rationale can help. To the extent that people share 
concepts, skills, values and priorities, they can more easily create and 

The relationship between rationale and collaboration is reciprocal. The 

In order to collaborate effectively in a large and complex project one 

interaction? What do they value? What criteria will they use to evaluate 
joint outcomes? How is their view of the shared plan and the work 

past? What disciplinary biases and assumptions do they bring to this 
What sorts of significant relevant experiences have they had in the 
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develop common ground and trust. This is the essence of a community of 
practice (Lave and Wenger 1991), as discussed earlier in this chapter. 
When team members do not share disciplinary concepts, skills, values and 
priorities - as in the example of the user interface designer and the software 
architect discussing elegance, they need to construct common ground 
socially by exchanging perspectives and attaining mutual understanding. 
(Analogous points could be made for social structures other than discipline 
and community of practice, such as culture and ethnicity.) Members of a 
software development team can construct common ground by sharing their 
goals and visions for a project, their ideas about how to turn these into 
plans and actions, what they most value, and what they think they can 
contribute to the project.  

A great variety of groupware tools are being developed, deployed, and 
investigated to provide awareness support in collaborative work, for 
example, tools for online discussion about, or direct annotation of project 
objects, various activity visualizations, personal profiles and social 
networks, and activity integrators (Carroll et al. 2006). All of these tools 
help to codify bits of rationale; many have the effect of making personal 
rationales more permanently accessible to other team members, or more 
closely integrated with project data objects. They help people share more 
of their reasoning and their reasons with one another, and that helps them 
collaborate more effectively. 

8.4.2 Coordination 

organizations, Kraut and Streeter (1995) found that informal discussion 
among team members was both the most valued and the most used 
coordination technique among the 18 coordination techniques they studied. 
Curiously, they also found that members of the software teams they 
studied valued informal interaction more than they actually engaged in it. 
More generally, Kraut and Streeter found that less formal coordination 
mechanisms—such as group meetings, discussions with one’s manager, 
requirement reviews, design reviews, and customer testing—mechanisms 
that bring to light diverse viewpoints, were judged as valuable given the 
extent to which they were used, whereas more formal coordination 
mechanisms—like status reviews, code inspections, CASE tools, data 
dictionaries, milestone schedules, and source code—were judged as not 
valuable relative to the extent to which they were used. 

In this investigation, the rated importance of informal and social 
coordination mechanisms in large software projects was strongest during 

In their empirical study of collaborative coordination in large software 
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periods of high uncertainty, such as in requirements and early design. In 
other words, the easy exchange of rationale, facilitated by less formal 
coordination mechanisms such as meetings and discussions, was critical to 
collaboration among software developers in high uncertainty, upstream 
stages. 

Kraut and Streeter also noted a somewhat alarming tendency for 
projects to increasingly de-emphasize informal interaction through the 
course of development. Managers tended to prefer formal coordination 
mechanisms, and to shift towards these when possible. 

Kraut and Streeter concluded that an important potential advantage in 
software management would be to devise better tools and techniques to 
enhance informal and interpersonal communication among team members 
throughout the development process. They noted that many of the most 
prominent and celebrated techniques in software engineering, such as 
formal specification languages, are designed to minimize interpersonal 
communication. These may satisfy a manager’s desire for formal 
coordination mechanisms, but they do not facilitate the easy exchange of 
rationale and were rated by developers as valueless relative to their use. 

8.5 Summary and Conclusions 

rationale. First, it observed that software development is almost always 
collaborative work, for the simple reason that most software projects are 
too big for solitary individuals ever to successfully tackle. This raises a set 
of specific challenges: collaboration aggregates individual efforts, but it 
also creates new sources of work for people in teams, and new risks for the 
products of team work. We then considered how collaboration supports 
rationale in software development:  by encouraging team members to 
explicitly articulate their goals and plans, and therefore to create the 
possibility of a discussion about reasons, and by supporting a culture of 
software development to conventionalize and leverage social mechanisms 
such as anthropomorphic metaphors and software patterns. Finally, we 
consider how rationale supports collaboration in software development—
by supporting awareness of how the project is meaningful to one’s 
collaborators, and coordination among collaborators, especially with 
respect to making progress in uncertainty.  

This chapter surveys the relationship between collaboration and design 



9 Change Analysis 

Keeping track of how changes in decisions require changes in other 
decisions is crucial in design and development. By capturing decision tasks 
and decision alternatives in the rationale, and by recording the 
dependencies between these decisions, we can help to anticipate the effects 
of changes and identify the different kinds of interdecision dependencies. 
In this chapter we explain the implications of change analysis for rationale 
usage and rationale support systems in software engineering. 

9.1 Introduction 

9.1.1 Issues with Change in Software Development 

In any successful system, change is inevitable. This is expressed in 
Lehman’s first law of Continuing Change: a program that is being used in 
the real world will need to change or will become less and less useful in 
that real-world environment (Lehman 1996). Changing a software system, 
particularly one that is in operation, is a difficult proposition. There are 
several questions that are raised when a change is proposed: 

• How will the change impact the software and related artifacts 
(requirements, design, code, testing)? What are the likely costs and risks 
involved?  

• Is this change consistent with system requirements (functional and non-
functional)? How will the consistency (or inconsistency) be managed? 

These suggest approaching change analysis from two directions: impact 
assessment, where the change is analyzed to determine the extent, cost, 
and risk of the change, and consistency management, where the change is 
analyzed to determine if it is consistent with the requirements and goals for 
the software system. Consistency management also includes managing 
inconsistency in a system. While inconsistency is undesirable, there are 
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cases where it may be best to leave inconsistency in place to avoid 
committing to its resolution too early (Nuseibeh et al. 2000). 

Rationale can assist with impact assessment by linking requirements, 
decisions, and implementation. Rationale can assist with consistency 
management by providing the intent behind earlier decisions that should 
serve as a basis for the consistency checks. Rationale also supports change 
analysis by providing a means for documenting the intent of the changes 
themselves. 

The amount of support that can be provided by the rationale depends on 
both its availability and structure. One example, which we will use to 
illustrate our points, is the RATSpeak notation defined for the SEURAT 
system (Burge and Brown 2004). The SEURAT rationale uses a semi-
structured argumentation format that captures four types of arguments for 
and against decision alternatives: arguments referring to requirements, 
arguments referring to claims (nonfunctional requirements), arguments 
referring to assumptions, and arguments describing dependencies between 
alternatives. Figure 9.1 shows a portion of this argumentation structure. 

 
 

Alternative

Argument 
• importance 

Requirement 
• importance 

Alternative Assumption
• importance 
• confidence 

Claim 
• importance 
• amount 

Argument  
Ontology 

NFR 

NFR NFR 

argued by 

addresses 
satisfies 
violates 

supports 
denies 

supports 
denies 

presupposes 
opposes 

maps to 

Instantiation 
(if selected) 
instantiated 

 
Fig. 9.1. Rationale argumentation structure 
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This is one example of a semistructured argumentation format and is 
shown here to illustrate the types of arguments that are considered when 
making software decisions.  

9.1.2 Objectives of This Chapter 

This chapter describes the sources and types of changes made to software 
over the course of a system’s lifetime and how these changes can be 
assisted by rationale. The chapter then focuses on two issues where 
rationale can support software change: change impact assessment and 
consistency management. 

9.2 Types of Software Changes 

There are many reasons why software requires modification. Changes 
come from an initial source, or cause. Reasons for needing to make a 
change can be broken into several, not mutually exclusive, categories: 

• Requests – a change can be requested by the (or a) customer, system 
users, or management. 

• Defects – a change can be a response to a defect in the system. 
• Operational environment – a change can be due to some change in the 

environment in which the software is operated. This would include 
changes in hardware configurations and changes in any laws/policies 
that would affect the software while in operation. 

• Development resources – a change could be due to a change in 
resources available for future development of the system. This would 
include changes in personnel available to work on the project and 
changes in COTS or other component suppliers. 

• Political environment – this could refer to the environment at the 
development company or the client company.  

The proposed change, which often requires retracting a previously made 
decision for a decision task and selecting (or proposing) an alternative 
decision, needs to be analyzed to determine if the change affects the 
functional requirements (added functionality, changed functionality, or 
removed functionality), nonfunctional requirements (quality goals for the 
system have been changed), assumptions used in making development 
decisions, the structure of the system itself (adaptive or preventative 
maintenance changes required for future enhancements), or require fixes to 
defects in the software that do not derive from errors in requirements. 
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Part of the change analysis process should also involve an assessment to 
determine if the change should be performed, deferred, or rejected. The 
change may conflict with current system requirements in a way that cannot 
be resolved. A requested change may be desirable for some system 
customers or users and undesirable for others. The potential cost of the 
change must be weighed against the expected benefit.  The change may be 
evaluated as necessary but deferred to a later date. The arguments for and 
against making the change can be captured in the rationale for the request. 
This is especially crucial for changes that are rejected—it is not unlikely 
that the issue will be raised again in the future and having the reasons for 
the decision available will be crucial in determining if the initial rejection 
is still valid or should be reconsidered. 

9.2.1 Functional Requirement Change 

Functional requirements may require change for many reasons. Requests 
for additional functionality are a common type of change and adding or 
enhancing system functionality results in new requirements. Requirements 
may also require modification. There may be cases where the original 
requirement needs to be relaxed or strengthened. The requirement may 
have initially been ambiguous or incorrect, resulting in software defects.  

The rationale can assist in requirement change in several ways. For 
additions, the rationale for the additions should be captured to assist future 
developers/maintainers if the requirement needs modification in the future. 
Implementing the new functionality will require decisions on how that 
implementation should be done. The rationale for the design and imple-
mentation alternatives that are proposed should refer to the new require-
ments and to any existing requirements affected by the proposed changes. 

For modified requirements, the rationale for the requirement will provide 
the intent behind the initial version of the requirement. This information 
should be taken into consideration in determining if and how the 
requirement is modified. The rationale can also provide traceability to 
decisions made during design and implementation that were made based on 
the original requirement. This can point out places where these decisions 
should change. The requirement may also be associated with arguments for 
and against alternatives considered and rejected when building the system. If 
the requirement has been changed, some of these alternatives may merit 
reconsideration. 

Traceability from requirements to decision alternatives, as captured in 
the rationale, can be used to determine the effect of removing an 
alternative.  Choosing a notation that supports this can then be used by a 
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Rationale Management System to indicate which alternatives are argued 
by the requirements and by recomputing alternative support if a 
requirement is removed or disabled and reporting if this action should 
result in reconsidering previous alternative selections. One example of a 
system that utilizes this information to predict change impact is SEURAT 
(Burge and Brown 2006).  

Rationale should also be captured for the change. This provides a 
history of how the software has been modified over time and for what 
reasons. An evolution history can be used to determine where problems 
have frequently occurred in the software (Nierstrasz et al. 2005) and to 
predict what future evolutions may be needed (Antón and Potts 2001). The 
ability to capture the historical information provides process-oriented 
rationale (Conklin and Burgess-Yakemovic 1991) where the focus is on 
using rationale to capture a history of the design process rather than a 
representation of the “design space.” 

9.2.2 Nonfunctional Requirement Change 

Nonfunctional requirements (NFRs) are qualities or characteristics that are 
desirable for the system being developed. They are also known as the 
“ilities” (Filman 1998) and include scalability, reusability, maintainability, 
etc. NFRs can be viewed as characteristics that constrain how, or how 
well, the system provides its functionality. 

The importance of an NFR may change over the lifetime of a system. 
This could be in response to a change in how the software is used. For 
example, the number of expected users may increase, necessitating a 
stronger focus on the scalability of an application. Change may also be 
needed based on user feedback. If the users are unhappy with the 
performance of an application then any decisions made that affect system 
performance may need to be reconsidered.   

If the rationale has captured the impact of NFRs on design and 
implementation decisions, the rationale can be used to evaluate the impact 
of changing NFR priorities. In SEURAT, NFR priority, or importance, can 
be changed and used to recomputed support for alternatives captured in the 
rationale (Burge and Brown 2006). The NFR Framework (Chung et al. 
2000) was used in the Goal-Centric Traceability (Cleland-Huang et al. 
2005) approach. Impact analysis was performed using a SoftGoal 
Interdependency Graph (SIG) by propagating changes made to goal 
contributions through the graph. The graph is linked to the functional 
model captured in UML. 



118      9 Change Analysis 

Rationale should also be captured for changes in NFR priorities. This 
can be used to analyze how these priorities changed over time to help 
predict future changes to the current system and potentially to predict 
changes to other, similar, systems. 

9.2.3 Changing Assumptions 

Software decisions are often based on, or at least influenced by, 
assumptions. Unlike requirements, assumptions are not entities that must 
be true about the developed product but are entities that are believed to be 
true about the environment in which it must operate. An assumption may 
be made because developers are working with incomplete information or 
information that they are aware is likely to change over time. Some 
assumptions have a strong temporal component, as shown in rationale for a 
spacecraft design where designers made decisions assuming that certain 
technologies will be available in the future when the spacecraft is actually 
built (Oberto 2002). 

The gradual change in validity of assumptions over time is a key driver 
of software evolution (Lehman 2005).  This indicates a need to be able to 
easily assess their impact on the software product in order to respond to, or 
even anticipate, these changes. This can be supported by capturing these 
assumptions, and their role in software decision-making, in the rationale.  
In cases where an assumption is known to have an “expiration date”, such 
as the spacecraft example mentioned earlier, it should be possible to use 
the rationale to alert the developers/maintainers when that date approaches 
so they can re-evaluate these assumptions to determine if they still hold 
(Burge et al. 2006).  When an assumption is known to no longer be valid, 
the rationale can be used to determine its impact on the system by viewing 
its relationship with selected alternatives. The removal of the assumption 
can also be used to recalculate alternative support and alert the 
developer/maintainer if the change in assumptions should require 
reconsideration of alternative selections (Burge and Brown 2006). A more 
prescriptive approach to assumptions is taken by the REMAP system 
(Ramesh and Dhar 1994). In REMAP, the rationale is used to help the user 
select from design object alternatives in a design library. If an assumption 
that guided an earlier choice is retracted, the affected design object is 
automatically retracted and a new one is selected by the system. 

If new assumptions are involved in system changes these assumptions 
should be captured in the rationale so that this information will be 
available to use if the assumptions no longer hold in the future.  
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9.2.4 Structural Changes 

Sometimes software changes are required in order to make the software 
more maintainable. These changes are referred to as perfective (IEEE 
1998) or preventative (Lientz and Swanson 1988) maintenance. Such 
changes are often necessary as evolving systems become increasingly 
complex (Lehman 1996) over time. These changes could be refactorings to 
remove “bad smells” in code (Fowler et al. 1999) or major system 
reengineering efforts (Sommerville 2007) where much of the application is 
rewritten. Rationale can support both of these efforts. 

When code is modified, the presence of the rationale associated with it 
can be used to provide the author’s intent. This additional insight can help 
prevent defects from being introduced due to misunderstandings of the 
original implementation. One of the authors of this book experienced this 
first hand when a coworker made a software change that removed what 
they thought was a defect in the code and introduced (or more likely, 
reintroduced) a timing error that damaged the hardware the code was 
controlling.  

Rationale is also useful in documenting the structural changes and the 
reasons behind them. Design Patterns (Gamma et al. 1995) can be of great 
assistance in writing code that is more easily extensible, but if patterns are 
not documented they may be “broken” in subsequent modifications to the 
code, negating their value. Relating the actual changes to the reasons for 
making them can also assist with traceability if structural changes lead to 
defects. 

9.2.5 Defect Correction 

Some software changes are in response to defects in the software 
discovered during testing or operation. The defect may have arisen from 
misinterpreting a requirement, making a poor design or implementation 
choice, or be a simple coding error.  

In the first two cases, the rationale can provide a link to where the defect 
may have been introduced. This is of considerable assistance since finding 
the relevant code can take a significant portion of the repair time (Ko at al. 
2005). If the problem can be traced to a misinterpretation of a requirement, 
the rationale can be used to determine what decisions were based on the 
presence of the requirement and point the way towards the 
implementation. Similarly, if the problem was introduced by a bad 
decision, the rationale will indicate where the decision was implemented 
and also what some alternatives might have been. For coding errors, 
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rationale associated with the code is useful in explaining the relevant code 
and may help to prevent modifications that conflict with the developers’ 
intent and introduce additional defects. 

9.3 Change Impact Assessment 

When a software change is proposed, there are two decisions that require 
impact assessment. The first is if the change should take place at all. It is 
possible that the proposed modifications may conflict with other system 
requirements and may not be beneficial to the majority of system users. It 
is also possible that the proposed modifications may be desirable but not 
enough to outweigh their costs. The second decision is the decision of how 
to make the modification; there may be more than one alternative that 
should be considered. 

Both of these decisions require some level of impact assessment to 
determine what effect the proposed change will have on the current 
system. This assessment can be made more quickly and accurately if the 
maintainers are given the rationale behind the development decisions. This 
was shown in a study that compared impact assessment using only source 
code, standard documentation, and model dependency descriptors 
(Abbattista et al. 1994). This study showed that using the model 
dependency descriptors (Cimitile et al. 1992), which contained rationale, 
increased impact assessment accuracy.  

There are many approaches to determining impact at the code level. 
These include analyzing the source code call graph (Bohner and Arnold 
1996), static and dynamic program slicing (Weiser 1981; Agrawal and 
Horgan 1990; Gallagher and Lyle 1991), path-based impact analysis (Law 
and Rothermel 2003), program change histories (Canfora and Cerulo 2006; 
Zimmerman et al. 2004), and approaches that use multiple techniques such 
as the Technical Risk Estimation (TRE) tool which uses dependency 
structure and change history (Walker et al. 2006) to predict how change 
will propagate.  These approaches evaluate the impact starting with a set of 
predicted code changes or by detecting similarity to prior changes. 

Another approach to impact analysis is to provide traceability between 
related artifacts through metadata describing their relationships. An 
example of this is the software repository developed by Sneed (2001). This 
repository captures concept models, code models, and test models. The 
relationships captured in these models are used to determine the impact of 
a proposed change. 
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Rationale is another form of metadata about the software and can also 
support impact analysis. Most impact analysis techniques require 
identification of a set of “trigger” objects (Queille et al. 1994) that indicate 
where the change will start. This can be difficult if the change originates at a 
high level such as a change in NFR priority or the invalidation of a key 
assumption. The rationale mapping the NFRs, requirements, and assumptions 
can assist with detecting which objects are involved. The rationale can also 
be used to detect similar changes that occurred in the past by comparing 
rationale for the currently proposed change and the past changes.  

9.4 Consistency Management 

One of the challenges in developing and evolving large software systems is 
to maintain consistency when possible and to manage inconsistency when 
consistency is not possible. There are numerous approaches toward software 
consistency that look at consistency in requirements (Klein 1997b), code 
(Tarr and Clarke 1998), views/perspectives (Finkelstein et al. 1994; Grundy 
et al. 1998) and between software artifacts (Riess 2002; Nentwich et al. 
2003). These approaches utilize constraints to check for consistency. 

In some cases it is not possible, or even desirable, to eliminate 
inconsistency. Tolerating inconsistency may be necessary if inconsistencies 
are too expensive to repair, if the information required to resolve the 
inconsistency is not known at the current stage of the development, or if it is 
too early in the process to make the design decisions required for resolution. 
The inconsistency can be ignored, and revisited at a later date, deferred until 
a later time, circumvented by changing the rule that indicated the 
consistency was present (if the inconsistency is an exception or if the rule is 
incorrect), or partially resolved (Nuseibeh et al. 2000).  

Software engineering rationale provides another tool in consistency and 
inconsistency management. While other tools look for inconsistency 
between developed artifacts, rationale can also be used to detect 
inconsistencies in the decision-making process and the developers’ 
reasoning. For example, semantic inference is performed over the rationale 
captured in InfoRat (Burge and Brown 2000) and SEURAT (Burge and 
Brown 2006) to look for selected alternatives where their arguments were 
contradictory.  In SEURAT, NFR priorities can be assigned at a global 
level and propagated through the rationale to evaluate alternatives and 
report if selections were inconsistent with overall system goals. If the 
global priority is not applicable to a specific decision it can be overridden 
and these overrides are saved so they can be reported on if necessary.  
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Results of rationale-based consistency checks do not have to be resolved 
immediately.  In SEURAT, they are reported as warnings and can be 
overridden if necessary. As with priority overrides, this information is 
stored so the override can be removed later if necessary. Rationale can also 
support the ability to record questions that come up during the decision-
making process that need to be resolved before the decision can be made. 
These questions support inconsistency management by providing the 
developers with the means to indicate explicitly where more information is 
required before an inconsistency can be resolved. The ability to capture 
questions and information on potential methods for their resolution is 
supported by the Decision Representation Language (DRL) (Lee 1991) for 
use in SIBYL and was also implemented in SEURAT (Burge and Brown 
2006). 

9.5 Summary and Conclusions 

Software systems undergo many different types of changes during their 
lifetimes for a variety of reasons. Change comes with risk: risk that the 
change is incompatible with decisions made earlier, risk that changes are 
implemented incorrectly or incompletely, risk that change introduces 
inconsistency into the system. These risks can be mitigated by the presence 
and use of rationale. The rationale describes decisions made earlier and the 
intent behind the developers’ choices. This information is invaluable when 
these decisions change and can help to prevent problems such as repeating 
past mistakes, introducing conflicts with earlier choices, and using 
reasoning that is inconsistent with earlier efforts.  

In this chapter we described how rationale can be used to support the 
different types of changes made to software systems and how it supports 
two key aspects of change analysis: change impact assessment and 
consistency management. The success of making a change to a software 
system is directly affected by the depth of knowledge the modification is 
based on. This knowledge is greatly enhanced by rationale that indicates 
not only what the system does but why. 



Part 3 
Rationale and Software Engineering 

The importance of rationale in software engineering is underscored by 
rationale being featured as a key activity in recent talks on the Future of 
Software Engineering (Taylor and van der Hoek 2007;Whitehead 2007) 
and by rationale being featured as part of one of the process areas in the 
Software Engineering Institute’s Capability Maturity Model Integration: 
Decision Analysis and Resolution (CMMI Team 2006).  

Decisions are made throughout the software development process 
ranging from deciding how customer requests can be translated into 
software requirements to deciding when and how to adapt software in 
operation and on to when a system is ready for retirement (Chapters 10–
14). The rationale behind those decisions documents the developers’ intent 
and keeps this information from being lost forever due to attrition, 
reassignment, or by simply being forgotten.  

An important aspect to software development that cross-cuts 
development phases is reuse (Chapter 15). As software increases in 
complexity and cost, it becomes critical to avoid “reinventing the wheel” 
and to utilize existing software applications to save time, by buying instead 
of building, to save money, since the price to purchase an off-the-shelf 
application is often less than building it yourself, and to increase 
reliability, by working with applications that have already received 
extensive evaluation. Still, while reuse can potentially meet these valuable 
goals, it is not without its dangers. Deciding when and how reuse should 
be utilized, and what the best candidates for reuse are, must be carefully 
deliberated.   

The ability of a software system to fulfill the needs of its stakeholders is 
directly dependent on the degree to which those needs were taken into 
account by the developer. By capturing the decisions made during 
development and relating the alternatives chosen to the stakeholder needs, 
it is possible to use this Software Engineering Rationale to assess the 
ability of the software to meet those needs. This is the essence of 
Rationale-Based Software Engineering. 



10 Rationale and the Software Lifecycle 

Software development can be modeled using a number of different 
lifecycle, or process, models. These include the waterfall model, the spiral 
model, the Unified Process, the V-Model, and others. In this chapter, we 
will describe these models and how rationale capture and use supports the 
development process followed in each of them. 

10.1 Introduction 

10.1.1 Software Engineering Process 

The software engineering process and the software lifecycle are closely 
related concepts. The software lifecycle refers to the stages of software 
development that take place over the lifetime of the software. The Institute 
for Electrical and Electronics Engineers/Electronic Industries Association 
(IEEE/EIA) defines the primary lifecycle processes to be acquisition, 
supply, development, operation, and maintenance (IEEE/EIA 1996). There 
are also supporting processes and organizational lifecycle processes 
(IEEE/EIA 1996). Supporting processes include documentation, 
configuration management, quality assurance, verification, validation, joint 
review, audit, and problem resolution. Organizational lifecycle processes 
include management, infrastructure, improvement, and training. While the 
International Organization for Standardization/International Electrotechnical 
Commission (ISO/IEC) standards described earlier take a high view, the 
most typically mentioned lifecycle stages encompass the development and 
maintenance lifecycle processes and include requirements analysis and 
specification, design, implementation, integration, verification and 
validation (testing), installation/deployment, maintenance, and retirement. 
Software lifecycles are modeled by a variety of software process models that 
define how the development stages progress. The lifecycle model defines the 
“skeleton and philosophy” of the process (Fuggetta 2000).  
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The software process is what controls and monitors the development 
described by the lifecycle model. The software process is defined by 
Fuggetta (2000) to be “the coherent set of policies, organizational 
structures, technologies, procedures, and artifacts that are needed to 
conceive, develop, deploy, and maintain a software product.” 

Rationale can play a role in software process by capturing the reasons 
behind both process and product decisions. The product rationale captures 
the reasons for decisions that directly impact the delivered product, while 
the process rationale describes the reasons behind the process selected to 
guide the product development. Process decisions are important because 
the process chosen needs to fit the size of the project, the experience level 
of the development team, and the development tools available. 

10.1.2 Objectives of This Chapter 

In this chapter, we describe the stages of the software development life-
cycle and how rationale applies to each of them. We also describe a 
number of software lifecycle models. We conclude with a section on 
software process improvement. 

10.2 Development Activities and Rationale 

The software lifecycle consists of a number of stages of software develop-
ment. In this section, we briefly describe a typical set of development stages 
and how rationale can be captured and used in each of them.   

10.2.1 Project Planning and Management 

While project planning and management is listed first among the stages, 
planning and management are ongoing activities throughout the 
development process. Project planning involves many decisions: delivery 
date, staffing needs, budget, milestones, deliverables, etc. These decisions 
involve many tradeoffs. For example, one tradeoff might be assessing the 
importance of short time-to-market versus the amount of functionality 
provided or the quality level of that functionality (how much time to spend 
on validation and verification). These decisions and the reasons for the 
choices made should all be captured in the rationale. The process of 
recording deliberation during planning as rationale assists with 
collaboration and negotiation. 
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Management decisions can also be captured in the rationale for the 
project. Rationale can support collaboration, risk management, success 
criteria reconciliation, process improvement, and knowledge management. 

10.2.2 Requirements 

Requirements engineering is arguably the most crucial stage in the 
software lifecycle. Failing to capture and refine requirements adequately is 
considered to be a leading cause of project failure (Alford and Lawson 
1979; Hofmann and Lehner 2001).  Rationale can support requirements 
elicitation by capturing reasons behind requirements and allowing 
comparison with stakeholder needs, enabling requirements negotiation by 
capturing the deliberation process, assisting inconsistency management by 
allowing comparison of priorities across requirements, and in requirements 
prioritization, a key element of Value-Based Software Engineering 
(Boehm 2006b) by associating priorities to the criteria behind each 
requirement, both functional and non-functional. 

Rationale can also play a large role in requirements traceability by 
providing the means to associate the decisions made later in the 
development process with the requirements that drive them. This applies to 
both the functional requirements as well as nonfunctional ones. Both types 
of requirement can appear in arguments for and against alternatives that 
are captured in the rationale. 

10.2.3 Design 

Much of the research involving rationale has been in the area of design 
rationale—the reasons behind design decisions. In software, there are 
several levels of design that take place depending on the size of the system 
being built. High-level design is often referred to as architectural design. 
This stage involves designing or selecting the software architecture. The 
choice of architecture is often driven by the “quality requirements” (non-
functional requirements) of the system. For example, Attribute-Based 
Architectural Styles (ABAS) (Klein and Kazman 1999) associate software 
architectural styles with quality attributes such as performance, 
availability, and modifiability.  

The design process progresses from the high-level decisions made when 
performing architectural design into the lower-level decisions in detailed 
design as classes, or modules, are designed. The rationale can be used to 
capture the decisions made at this point in the process and eventually 
linked to the code that will implement the alternatives selected. 
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10.2.4 Implementation 

Implementation involves translating the design into the executable source 
code. There are still decisions made during this part of the process and the 
rationale for these decisions should be captured. The rationale can be 
evaluated to ensure that the reasons chosen are consistent with those given 
at earlier stages of development. The rationale can also be used during 
software maintenance to describe why the software was implemented the 
way it was and to help prevent new decisions from counteracting those 
intentions. 

10.2.5 Verification and Validation 

In order to ensure that the developed system provides the functionality 
needed by the customer and that it meets its specification, it needs to be 
tested. The evaluation process is typically described as verification and 
validation (V&V).  While we often describe this stage as occurring after 
implementation, in reality V&V activities should take place all the way 
through the development process. Test planning should be started when the 
project planning is performed, requirements should be examined to ensure 
that they are testable, unit testing should be performed during 
implementation, system testing is performed prior to deployment, and 
regression testing (as well as any new tests) must be performed when 
changes are made during maintenance. 

Boehm gave an often-cited definition of the difference between 
validation and verification—validation asks “are we building the right 
product?” and verification asks “are we building the product right?” 
(Boehm 1979; Sommerville 2007). Verification involves ensuring that the 
software conforms to its specification while validation involves checking 
that the software does what the customer needs it to do. 

Rationale can support software testing by providing insight into how 
quality factored into software decisions. This information can be used to 
determine where testing efforts should be concentrated. Collecting 
rationale for the testing effort itself would be useful in assisting with 
making testing decisions and in using the reasons behind testing choices 
and the results of these decisions to point out testing strengths and 
weaknesses that can be applied to future projects. 
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10.2.6 Maintenance 

A successful software system is likely to require some form of maintenance 
over its lifetime. These changes can be challenging, especially if the original 
developers are not available. This is an area where rationale is especially 
valuable. Knowing the intent behind the decisions made when developing 
the software can help to prevent problems or inconsistencies being 
introduced during maintenance. If the rationale captures the assumptions 
made when initially building the system it can be used during maintenance 
to suggest where changes need to be made if those assumptions change. This 
assistance is provided in the Software Engineering Using RATionale 
(SEURAT) system (Burge and Brown 2006).   

10.2.7 Retirement 

If, or when, to retire a software system is potentially the last decision that 
needs to be made during the system’s lifetime. The decision on whether to 
repair (maintain) or replace a system needs to be well thought out.  This 
deliberation can be supported by and captured with rationale. The rationale 
for the decision would also be valuable if the retired system ends up being 
reinstated or reused later. 

10.3 Software Lifecycle Models 

There are a number of different categorizations for software lifecycle 
process models. Here we have chosen to break them into three categories: 
sequential models where development typically proceeds linearly through 
the phases, iterative models where iteration is built into the models, and a 
third category for models that do not fit into either of the two categories or 
that span categories. 

10.3.1 Sequential Models 

10.3.1.1 Waterfall Model 

The waterfall model was originally defined by Royce (1970). In this 
model, development proceeds through the stages in a sequential fashion as 
shown in Figure 10.1. Each stage (shown as a box in the figure) needs to 
complete before the next stage can begin. The example shown here 
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includes feedback loops indicating that it is possible to go back to make 
modifications to work done earlier if necessary. The stages vary slightly 
between different depictions of the model but typically include 
requirements, design, implementation, and testing, and may also include 
maintenance, deployment, and retirement. 

 
 

 
Fig. 10.1. Waterfall Model 

The waterfall model has fallen somewhat out of favor. The separate stages 
are seen as being inflexible and less responsive to changing requirements. 
The model does, however, have the advantage that it is easy to assess 
where in the process a software project is, something not always clear with 
more iterative methods. This model resembles models used in other kinds 
of engineering projects and is often used when the software is part of a 
larger systems engineering project (Sommerville 2007). 

Each of the stages captured in the waterfall model will include many 
decisions that will have a large impact on the later stages. Capturing the 
rationale for these decisions will help to ensure that decisions made in later 
stages will be consistent with earlier ones. 

10.3.1.2 V-Model 

The V-model is similar to the waterfall model but also includes the 
verification activities and how they relate to development stages. A key 
difference between the V-model and the waterfall model is that the level of 
abstraction is explicit (Bruegge and Dutoit 2004). Figure 10.2 shows a 
simplified V-model, adapted from Bruegge and Dutoit (2004) and Jensen 
and Tonies (1979). As with the waterfall model, capturing rationale can 
help with the traceability of decision criteria throughout the process. 
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Fig. 10.2. V-Model 

 

10.3.2 Iterative Models 

Iterative models differ from sequential ones in that they depend on the 
software being built in a series of iterations. In this section we briefly 
describe some of the more common models. 

10.3.2.1 Incremental Delivery 

Incremental delivery consists of portioning the system into a series of 
releases. The initial requirement development and architectural design is 
done for the system as a whole but the functionality is delivered 
incrementally.  This method has several advantages including making the 
software available to the users earlier, gaining experience with early 
increments to help refine requirements for later ones, reducing the risk of 
project failure, and ensuring that the most important functionality 
(typically developed in the earlier increments) receives the most testing 
(Sommerville 2007). 

10.3.2.2 Spiral Model 

The Spiral Model, developed by Boehm (1986), depicts the software 
development process as a series of increasingly more developed prototypes. 
The spiral moves through four quadrants. The first quadrant looks at 
objectives, alternatives, and constraints on the next development cycle. The 
second quadrant evaluates the alternatives proposed in the first quadrant and 
identifies and resolves risks. The third quadrant develops and verifies that 
level of the product (the prototype), and the fourth plans out the next phase 
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or phases. This model both explicitly addresses risk and, by the alternative 
identification and evaluation steps in the first two quadrants, the rationale.  

Rationale is supported in the Theory W (win-win) extensions to the spiral 
model (Boehm and Bose 1994). In Theory W, stakeholders are identified for 
each revolution through the spiral along with their “win conditions.” These 
win conditions are used in defining objectives, constraints, and alternatives. 
The win conditions and the alternatives generated during the spiral model 
process form the rationale for the system. 

10.3.2.3 Unified Process 

The Rational Unified Process (RUP) (Kruchten 1999) and its more general 
form, the Unified Software Development Process (Jacobsen et al. 1999), 
consists of four phases, with multiple iterations taking place during each 
phase. The four phases are inception, where the initial business case is 
defined; elaboration, where requirements and risks are defined; construction, 
where the system is designed, programmed, and tested; and transition where 
the system is moved into its operational environment (Sommerville 2007). 
Within each of these phases, there are nine core workflows: business 
modeling, requirements, analysis and design, implementation, test, 
deployment, project management, configuration and change management, 
and environment. The amount of effort spent in each of these workflows 
depends on the development phase. For example, more time is spent on 
business modeling and requirements in the inception and elaboration phases 
and less in the construction and transition phases. Similarly, the amount of 
implementation slowly increases in the first two phases, which may involve 
simple prototypes, reaching its highest level in the construction phase when 
the actual system is built. The Rational Unified Process was developed by 
Rational Software and is supported by its products. 

The Unified Process is a generic and comprehensive process that 
attempts to cover all aspects of software development. Because of its 
comprehensive nature, it can be seen as being too unwieldy for smaller 
development projects. The process can, however, be adapted to work with 
smaller projects (Hirsch 2002; Pollice et al. 2003).  Process rationale can 
be captured to document how the process was tailored, and why. This 
information can then be used to transfer the lessons learned to future 
software projects using the same or similar processes. 

10.3.2.4 Extreme Programming 

Extreme Programming (XP) can be viewed as a variant on incremental 
delivery (Sommerville 2007).  The extreme in extreme programming does 
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not indicate “daredevil programming” but instead refers to taking existing 
best practices to the extreme (Beck 1999). The development process is a 
collaborative one between the customer and the developer where 
functionality is described as a series of stories (similar to use cases) and 
where each release chooses the set of stories that are viewed as the most 
important. Releases are developed using test-first development and pair-
programming.  

The goal of XP is to center the development process on coding and to try 
to develop releases that are as simple as possible and to plan on refactoring 
later if necessary. The danger of this is the difficulty of knowing where 
short-cuts were made that may need to be re-examined in later releases. 
Documenting the rationale for the decisions made in earlier iterations can be 
used to detect where alternatives were chosen in the interest of expediency 
that may require change as requirements are added or refined. The value of 
this is demonstrated by the Software Engineering Using RATionale 
(SEURAT) system (Burge and Brown 2006) where non-functional 
requirement priorities can be modified and used to detect where earlier 
choices should be reconsidered. A rationale-based support system such as 
SEURAT can be used during XP to detect candidates for refactoring. 

10.3.3 Other Models 

10.3.3.1 Rapid Application Development 

The goal of Rapid Application Development (RAD) is to build software 
products more quickly, and with higher quality, than can be done using 
more traditional software life-cycle approaches (Martin 1991). This is 
accomplished by taking advantage of Computer-Aided Software 
Engineering (CASE) tools and fourth-generation language tools. RAD is 
an approach that can be used to build data-intensive business applications 
(Sommerville 2007) by exploiting commonalities between these systems: 
forms needed for data input and display, database access, commonly used 
office applications such as word processors and spreadsheets, and report 
generation. Many RAD projects are a form of COTS-based development 
projects because they link together existing Commercial Off-the-Shelf 
(COTS) applications to provide the required functionality (Sommerville 
2007). RAD is often confused with rapid prototyping but the key 
difference is that rapid application development is intended to build the 
final system while a prototype is typically built to gain a better 
understanding of system requirements or available technology. 
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The success of a RAD development effort hinges on the selection of the 
tools, products, and COTS applications used in its construction. There may 
need to be compromises made to adjust system requirements so that they 
can be supported by these tools and components. Capturing rationale for 
the choices made and alternatives considered assists the selection process 
by making the reasons for selection and any tradeoffs made explicit. The 
rationale, and the alternatives captured in it, is also useful if subsequent 
versions of the system need to reconsider these decisions. RAD systems 
run the risk of dependence on third-party software where the vendor may 
go out of business, stop supporting the product, or raise licensing fees. 
These vendor changes may necessitate a change in the system to avoid 
problems. 

10.3.3.2 Component-Based Software Engineering 

The Component-Based Software Engineering (CBSE) development 
process builds software products out of reusable components. The goal is 
to make software engineering more like other engineering disciplines 
where parts are ordered from a catalog and configured using well-defined 
interfaces in order to create a new product. CBSE relies on the availability 
of components and on being able to adapt requirements, when necessary, 
to work with these components. CBSE is not strictly a process or a life-
cycle. The components can be developed and used within any of the life-
cycle models described here. 

Rationale can be used during CBSE by both component providers and 
consumers. For component providers, the component rationale can 
describe both functional and nonfunctional capabilities of the component. 
For component consumers, the rationale can be used to find a component 
that best matches the functional and nonfunctional requirements of the 
system under development. 

10.3.3.3 Open-Source Software Development 

Open-source software development involves multiple software developers 
working together over the Internet to build software systems where the 
code is freely available to all. This has resulted in a number of successful 
software projects including the Linux operating system (www.linux.org), 
the Apache web server (www.apache.org), and Mozilla project products 
(www.mozilla.org) such as the Firefox browser and the Bugzilla bug-
tracking system. There have also been open-source projects with corporate 
support, such as IBM’s Eclipse development framework 
(www.eclipse.org). The unifying attribute of these systems that has made 
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them successful is that they are all systems that the developers want to be 
able to use themselves. Successful projects result from developers solving 
problems that they are excited about (Raymond 2001). 

Since open-source development is a highly collaborative process where 
developers can come and go from the project at will, the capture and use of 
rationale could play a significant role in the success of these efforts. 
Successful open-source projects such as Apache and Mozilla make heavy 
use of version control systems, such as CVS, and bug tracking (Mockus et 
al.  2002). These systems capture the reasons behind software changes that 
could be included in their rationale. Capturing the intent behind the 
software modifications can be used to help guide the developers as the 
system evolves. 

10.3.3.4 Model-Driven Development 

Models have been used to assist with software development for many 
years. The simplest definition of model-driven development (MDD) is to 
built a model of a system that is then transformed into the system itself 
(Mellor et al. 2003). A more specific view is to develop domain models for 
application areas and use those to develop system architectures (Boehm 
2006a). Models used in MDD can be developed using UML (France et al. 
2006) or domain-specific modeling languages (DSMLs) that define 
relationships between domain concepts along with semantics and 
constraints (Schmidt 2006).  

The usefulness of these models would be increased if they were 
developed with rationale attached. This would assist in selecting the 
appropriate model for the problem that the system is solving and could also 
help to determine when tailoring the model would be appropriate or not. 

10.3.3.5 Service-Oriented Development 

In service-oriented development applications are built using stand-alone 
services that can be executed on distributed computers (Sommerville 
2007). Services are accessed via a service registry which is used to find 
applicable services. When a service is found by an application, the 
application is then bound to that service.  A key aspect of service-oriented 
development is the ability to perform “ultra-late-binding” where the 
service is located and bound dynamically (Turner et al. 2003). Web 
services are an example of the service oriented development paradigm.  

The uses of rationale in service oriented development are similar to 
those in CBSE: the rationale can be used as part of the selection criteria 
used when discovering service providers. For example, the Web services 
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stack framework proposed in (Turner et al. 2003) includes a non-functional 
description level that provides a non-functional description of a service. 
These protocols would then provide the rationale for selecting the service. 

10.4. Software Process Improvement 

As described earlier, the quality of software products is related to the 
quality of the software process. In this section, we describe two process 
improvement initiatives: the CMM and CMMI process improvement 
framework and the Personal Software Process.  

10.4.1 CMM 

The Software Engineering Institute (SEI) developed the Capability 
Maturity Model (CMM) (Paulk et al. 1993) to define software maturity 
levels. These levels are initial, repeatable, defined, managed, and 
optimizing. At the initial level, the process is undefined and unpredictable. 
At the repeatable level there are policies and procedures in place for the 
software process. Companies working at the defined level have 
documented and standardized procedures that work across the 
organization. At the managed level metrics are collected to assess the 
quality of the software process and at the optimizing level this information 
is fed back into the process to improve it. 

The Capability Maturity Model has been replaced with Capability 
Maturity Model Integration (CMMI) (CMMI Team 2006). The CMMI 
integrates the software CMM with the Systems Engineering Capability 
Model (SECM) (EIA 1998) and the Integrated Product Development 
Capability Maturity Model (IPD-CMM) (SEI 1997). The CMMI has two 
representations—a staged model that assesses the organizations process at 
one of five discrete levels (similar to the CMM) and a continuous model 
where different process areas within an organization can be ranked at 
different capability levels. The capability levels are incomplete, performed, 
managed, defined, quantitatively managed, and optimizing. There are 24 
process areas defined within the CMMI. Examples are project planning, 
requirements management, and configuration management.  

Rationale capture and use is related to the CMMI Decision Analysis and 
Resolution process area. This process consists of defining a “formal 
evaluation process” for evaluating decision alternatives. This process 
includes identifying the alternatives, determining the evaluation criteria, 
selecting and using the evaluation method, and selecting the alternatives 
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based on the criteria (CMMI Team 2006). The evaluation process used on 
a project should determine which categories of decision will require formal 
evaluation (such as high-risk decisions) and how the evaluation will be 
performed and documented. 

10.4.2 Personal Software Process 

The Personal Software Process (PSP) (Humphrey 1995) arose from 
applying the CMM to small software projects. The CMM focuses on 
improving the process of software development organizations and the PSP 
extends that focus to improving the process of individual software 
engineers. The PSP follows the principles that each developer needs to 
base their process on data that they collect on their own performance, the 
developers need to follow a defined and measured process, developers 
need to be responsible for the quality of their work, and that defects should 
be avoided if possible, fixed as soon as they are detected, and that the right 
way to do the job will be the fastest and cheapest (Humphrey 2000). 

The PSP follows a process improvement cycle where individual 
developers capture metrics on their job performance: time spent and 
defects introduced and removed. These metrics are then used to improve 
their performance. The PSP provides detailed forms and scripts to use 
during the development process.  

The Team Software Process (TSP) (McAndrews 2000) extends the PSP 
to developing software in teams. The TSP addresses four causes of project 
failure: lack of training in planning, development, and quality practices; 
the focus on schedule rather than quality; the lack of a formal team-
building process; and unrealistic project plans damaging motivation.  The 
TSP defines how Level 5 of the CMM can be put into practice. 

Neither the PSP nor TSP calls for the recording of rationale as part of 
the process. The success of these approaches, however, indicates that 
emphasizing quality over schedule concerns leads to more successful 
projects. The addition of rationale to the collected data would add to this 
success by providing additional insight into the development process that 
can then be used to tune these processes during future development.  It is 
clear from the results of PSP/TSP projects that spending time up front to 
collect data ends up improving the process and not having the detrimental 
effect on schedule that is so often feared. 



138      10 Rationale and the Software Lifecycle 

10.5. Summary and Conclusions 

The incentive behind the defining, modeling, and monitoring of the 
software lifecycle is to increase quality and decrease costs.  Software 
process models have evolved from sequential models towards more 
iterative ones in order to be more responsive to changes in software 
requirements. The importance of a defined and monitored software process 
has been highlighted by process improvement efforts such as the CMMI 
and the PSP.  

The capture and use of rationale should be an integral part of any 
development process. The usual software artifacts produced during 
development only describe what was done and not why. Knowing the 
information behind the decisions can provide much-needed insight when 
these decisions are the basis of future ones. The reasons for making 
decisions that are captured in the rationale are often nonfunctional 
requirements that affect overall software quality. The rationale can provide 
a way to evaluate that quality and support quality improvement.  

Much of the opposition to the capture and use of rationale has been the 
view that it is difficult and time consuming to collect.  This argument can 
be used against most forms of documentation but it is rare to find anyone 
who does not believe that documenting software will not save money in 
the long run. As software processes become more rigorous, the cost of 
collecting rationale will continue to become less of an issue compared to 
the savings provided by the defect reduction and requirement conformance 
provided by the improved processes. 



11 Rationale and Requirements Engineering 

Many of the decisions that have the greatest impact on the software 
development process are made during requirements analysis. Software 
Engineering Rationale (SER) can support this process by providing the 
ability to capture the decisions and reasons behind them, starting at these 
earliest phases.  SER also supports requirements traceability throughout 
the process by directly mapping the development options chosen to the 
requirements that provide their rationale and by providing rationale for the 
requirements, thereby mapping requirements back to their source. In this 
chapter, we describe how rationale can support requirements engineering. 

11.1 Introduction 

11.1.1 Requirements Engineering 

needs of its intended customer. This means that the software developers 
must determine what the requirements are for the software system. The 
process of identifying requirements, analyzing them to obtain additional 
requirements, documenting them in a specification, and validating that 
specification to ensure that it meets user needs is known as requirements 
engineering (Saiedian and Dale 2000).  In provisioned systems (systems 
developed under contract), the requirement specification serves as the 
basis for the development contract; in product development, requirements 
are written based on market analysis and are expected to change if 
necessary (Kuusela and Savolainen 2000).  

Inadequate or deficient software requirements are considered the leading 
cause of project failure (Alford and Lawson 1979; Hofmann and Lehner 
2001). Lindquist (2005) states that analysts report the percentage of project 
failures resulting from poor requirements management to be greater than 
70%.  The management problem is especially difficult on systems where 
the requirements are not stable. It is well known that the later in the 

The key to every successful software project is its ability to meet the 
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development process a requirement changes the higher the cost to make 
the change will be. Agile development methodologies, such as Extreme 
Programming (Beck 1999), have been created to “flatten the curve” and be 
more responsive to changing requirements. 

Requirements are typically broken into two categories: functional 
requirements that describe what the system should do (functions performed 
or features implemented) and nonfunctional requirements (NFRs) that 
describe qualities that the developed system should have. NFRs are often 
referred to as “ilities” (Filman 1998) since NFRs include qualities such as 
usability, scalablity, reusability, testability, maintainability, etc. 
Nonfunctional requirements are difficult to test and verify because they 
tend to cross-cut functionality of the system and also because they are 
often difficult to quantify. While they do not describe the functionality 
desired by the stakeholders they do have a direct impact on how satisfied 
the stakeholders are likely to be with the final product. Some NFRs 
involve the development process. Examples of these would be 
affordability, maintainability, and flexibility.  

11.1.2 Objectives of This Chapter 

This chapter discusses some of the key areas of requirements engineering 
(RE) and how they can be supported by the capture and use of rationale. In 
particular, the chapter focuses on obtaining requirements, requirements 
traceablity, approaches using nonfunctional requirements, goal-based 
requirements engineering and how rationale can support requirements 
change. 

11.2 Obtaining Requirements 

11.2.1 Requirements Elicitation 

The first challenge faced in RE is the difficult task of eliciting requirements 
from the system stakeholders. Stakeholders are typically referred to as being 
anyone who is involved in the project or “whose interest the project affects” 
(Hoffman and Lehner 2001). This is a very broad category and can include 
the users, developers, marketers, procurers, QA, and any others who might 
be affected by the use of the system. Sharp et al. (1999) identify four groups 
of “baseline” stakeholders: users (those who interact with or control the 
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software and those who use products of the system), developers, legislators 
(anyone providing guidelines for operation), and decision-makers (managers 
and finance people in both the developer and user organizations).  

After stakeholders are identified, the next challenge is obtaining the 
requirements. There are many challenges encountered in this process, 
including stakeholders having difficulty expressing what they want or 
making technically unrealistic demands; stakeholders describing 
requirements in the language of their domain, which may not be familiar to 
the analyst; conflicts in stakeholder requirements; political factors 
affecting requirements; and the possibility of the business environment 
changing (Sommerville 2007). The requirements specification can be 
viewed as a “wish list” for the different groups of stakeholders where the 
requirements rising from different stakeholder views may be inconsistent 
or contradictory (Kuusela and Savolainen 2000). 

Requirements can be obtained using many methods. These include 
structured or unstructured interviews, observing the system in use (if the 
new system replaces an existing one), rapid prototyping to get user 
feedback, and collaborative approaches such as Joint Application 
Development (JAD) (Bruegge and Dutoit 2000). The stakeholders may 
have a difficult time articulating their requirements. The more expert a 
user is at performing a task, the higher the chance that they will be 
performing at least parts of it “automatically,” making it more difficult for 
them to describe those steps to another person. This necessitates a 
combination of direct and indirect elicitation techniques where direct 
techniques are used to obtain information that can easily be expressed 
verbally and indirect techniques are used to obtain information that cannot 
be easily expressed verbally (Hudlicka 1997). 

One thing that is typically not done during requirements elicitation is 
capturing the rationale behind the requirements. There may be many 
system features identified for potential incorporation into a software 
system. The rationale can capture the tradeoffs between these features 
along with the consequences, both desirable and undesirable, of 
incorporating or not incorporating each of them (Carroll et al. 1998).  

The rationale would also be a logical place to capture the source of the 
requirement. Knowing which stakeholders, and which stakeholder category 
they fit into, would be useful if questions arise about the requirement that 
require clarification. Knowing the requirement source would assist in the 
prioritization of the requirement by identifying the interested parties. 
Rationale can also associate requirements identified and refined during the 
requirements engineering process with the original customer requirements 
and provide “rich traceability” (Dick 2005; Hull et al. 2002). The rationale 
would also provide the intent behind the requirement, or the stakeholder 
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goal(s) that the requirement addresses.  The mapping of goals to 
requirements can be used later to determine which requirements would 
require adjustment if the goals change later in the development process. The 
rationale would also be a place where dependencies or conflicts between 
requirements can be identified. Knowing the source and intent of each 
conflict will be useful when determining the best way to resolve conflict and 
inconsistency. 

11.2.2 Achieving Consensus 

An important part of the RE process is the negotiation that needs to take 
place between the various stakeholders. The different groups approach the 
system from different viewpoints and may have conflicting goals. The 
rationale for the requirements is a key element in the negotiation process 
by providing a means for identifying conflicts and explicitly stating the 
arguments of all participants.  The collection process itself was found to be 
useful during field trials using itIBIS and gIBIS (the textual and graphical 
versions of the Issue-Based Information Systems approach) (Conklin and 
Burgess-Yakemovic 1995). Structured rationale capture assisted with team 
communication by making meetings more productive. The Compendium 
approach (Shum et al. 2006) is an IBIS-based collaboration support system 
that is used to capture stakeholder needs via a “dialogue map” that aids in 
collaboration by structuring discussion and capturing the “meanings and 
ideas” of the group. 

The role of rationale in requirements negotiation is a key element in the 
WinWin approach to requirements negotiation (Boehm and Kitapci 2006; 
Boehm and Bose 1994). An ontology defining the rationale in WinWin 
was developed by Bose (1995) and describes what the attributes are for the 
WinWin rationale elements (Winconditions, Options, Issues, and 
Agreements). The goal of the WinWin approach is to make “winners” of 
the system’s stakeholders. The EasyWinWin tool assists in group 
facilitation to aid in determining what the win conditions are, prioritizing 
the win conditions, identifying what the issues are, and capturing the 
decision rationale (Grünbacher and Boehm 2001). Experiments performed 
using students demonstrated that the WinWin approach assisted with 
distributed collaboration, aided in cooperation, reduced friction between 
team mates, and helped the students to focus on the key issues (Boehm and 
Egyed 1998). There are more than 100 real-world projects that have used 
EasyWinWin (Boehm and Kitapci 2006).  
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An alternative approach to requirements negotiation and validation is 
the Software Quality Function Deployment (SQFD) approach (Ramires et 
al. 2005). SQFD builds a matrix that gives correlation values between 
specifications and requirements where the stakeholders provide the 
correlation values. The MEG groupware tool was built to support SQFD 
and added rationale, in an adapted IBIS format, to the SQFD matrix. The 
IBIS component captures stakeholder positions and arguments. The 
evaluation of the requirements is achieved using a majority voting scheme 
where votes are weighted depending on how each stakeholder participated 
in past decisions (Win-Win, Win-Lose, or Lose-Lose).  

11.2.3 Requirements Inconsistency 

Since requirements are obtained from a variety of stakeholders and 
sources, there is a risk that inconsistencies may arise. It is important to 
identify inconsistencies so they can be handled appropriately, whether 
through resolution, avoidance, deterring, or ignoring (Nuseibeh et al. 
2000). There are a number of approaches to performing consistency 
checking in requirements. The C-Re-CS system (Klein 1997b) captures 
requirements and their rationale in a semantic net structure. The system 
contains exception management services that check for completeness, 
correctness, and consistency in the requirements; identify problem 
diagnosis using a knowledge base of general requirements problems; and 
identify potential resolutions to the problems based on past knowledge of 
general problems. The knowledge base is structured as a taxonomy of 
diagnoses from more general to more specific that is traversed similarly to 
a decision tree based on questions and answers.  

Reiss (2002) has developed a constraint-based, semiautomatic 
maintenance support system that works on the abstracted code, code, 
design artifacts, or metadata to assist with maintaining consistency 
between artifacts. The CLIME software development environment checks 
for consistency between UML class diagrams and source code; between 
UML interaction diagrams and code; test cases to source code (to ensure 
unit tests have been run if a method was modified); documentation to 
source code; source code to documentation; and also checks code and 
documentation to ensure that certain preset standards (such as naming 
conventions) are followed (Reiss et al. 2003). 
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11.2.4 Requirements Prioritization 

Recent work on Value-Based Software Engineering has begun to address 
the problem that software development efforts treat each requirement (and 
other development artifacts) as if they were of equal value (Boehm 2006b). 
In reality, some requirements are more important to the stakeholders than 
others. When decisions need to be made to decide what requirements 
should be implemented first or should be given the most resources, it 
would make sense to base these decisions on the relative value of the 
requirements and prioritize them. 

Karlsson and Ryan (1997) propose using a cost-value approach to 
prioritize software requirements. This method uses the Analytic Hierarchy 
Process (AHP) (Saaty 1990) to perform pairwise comparisons of the 
requirements. Customers and users use AHP to provide relative value and 
software engineers use AHP to provide relative cost. This is an effective 
method for determining priorities but does have scalability issues for large 
numbers of requirements. 

Rationale can also be used to assist with the requirements prioritization 
process. The rationale behind each requirement can capture the underlying 
intent behind the requirement. The Software Engineering Using 
RATionale (SEURAT) tool (Burge and Brown 2006) allows the rationale 
for each requirement to be captured. This rationale can serve as a basis for 
negotiating requirement importance and could potentially be used to 
compute rankings for the alternatives.  

11.3 Requirements Traceability 

Requirements traceability typically refers to the ability to trace from the 
requirements all through the development process. The goal of traceability 
is to ensure that all system requirements are met.  Requirements 
traceability is a key element in requirements management and is required 
to assess the impact and consequences of requirements changes (Nuseibeh 
and Easterbrook 2000).  

Requirements can be traced in two directions. Tracing a requirement 
backwards refers to tracing back from the requirements specification to the 
origins of the requirement. Tracing a requirement forwards traces from 
specification through implementation and test. These two directions are 
referred to as Pre-RS traceability and Post-RS traceability, respectively 
(Gotel and Finkelstein 1994). The rationale for the requirements and for 
the developed system can aid in both kinds of traceability. 
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Pre-specification traceability is one of the more neglected forms of 
traceability (Gotel and  Finkelstein 1994). The ability to know the origins 
of a requirement can be used later on if the requirement needs further 
clarification. Unfortunately, this information is often difficult to obtain. 
One way to track the origin of a requirement would be through the 
rationale for the requirement. The rationale would provide information on 
who argued for (or against) its inclusion and what the reasons behind the 
choice were. This information can be very useful in future development if 
the requirements need to change.  

Post-specification traceability is what most developers think about when 
they think about requirements traceability—the ability to trace from the 
requirements through to the test cases in order to ensure that the software 
system meets its specification. Rationale can assist with post-specification 
traceability. The requirements, both functional and nonfunctional, can 
appear in the arguments for and against the many decisions made when 
designing and implementing the software. Each alternative chosen would 
eventually map to some development artifact, whether a section of a 
document, elements in a UML diagram, or the code itself. The arguments 
for choosing that alternative consist of requirements and nonfunctional 
requirements. The mapping from the alternative to its implementation 
would then provide traceability to those requirements. An example of this 
is the SEURAT system (Burge and Brown 2006), which captures 
traceability between code elements and alternatives. 

The “rich traceability” proposed by Hull et al. (2002) supports both pre- 
and post-specification traceability by representing requirements at different 
levels—stakeholder requirements, system requirements, and design 
requirements. Rich traceability contains “satisfaction arguments” that can 
be supported by domain knowledge as well as information from other 
sources such as the output of modeling tools. These satisfaction arguments 
indicate how requirements relate to each other, in particular they capture 
when all of the requirements at one level are necessary to satisfy 
requirements at the level above (conjunction) or if any one requirement is 
needed (disjunction). For example, it may be necessary that all of a set of 
system requirements must be satisfied to satisfy the stakeholder 
requirement they relate to or it may only be necessary that one be satisfied. 

Nonfunctional requirement (NFR) traceability is also important. The 
relationship between rationale and NFRs is described in the following 
section. Surveys of NFR traceability approaches can also be found in 
Hayes et al. (2005) and Cleland-Huang et al. (2005). 
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11.4 Rationale and Nonfunctional Requirements 

While functional requirements describe the function of a system or device, 
nonfunctional requirements describe how the system or device should 
accomplish that function given “the constraints of a non-ideal world” 
(Thayer and Dorfman 1990).  Nonfunctional requirements often refer to 
software quality and are related to Boehm et al.’s “Quality 
Characteristics.” (Boehm et al. 1979). Roman (1985) describes NFRs as 
restricting the types of solutions under consideration. NFRs are not directly 
related to specific system components and often involve aggregate system 
behavior (Manola 1999). Research involving nonfunctional requirements 
and their impact on software development is taking place in a number of 
areas, many of which fall into the category of “separation of concerns” 
(Workshop 2000; Ossher and Tarr 1999). Concerns can fall into many, 
often overlapping, categories and can describe concerns about features, 
requirements, extensibility, performance, and reliability.  Many categories 
of concerns have been proposed but the common thread is that each 
category describes attributes of a system that “cross-cut” the system’s 
structure and/or functionality. 

Functional requirements describe the functionality that a system needs 
to provide in order to satisfy the needs of its stakeholders. Nonfunctional 
requirements describe how well the system needs to perform that 
functionality or, in some cases, how the development effort needs to 
proceed in order to meet the needs of the customer and the developing 
organization. One way that the NFRs can be captured during requirements 
engineering and throughout development is in the rationale for the system.  
The NFRs would appear as arguments for and against different alternatives 
considered. The rationale can be analyzed to assess the impact of various 
NFRs on the software product and to determine how the decisions made 
might change if NFR priorities change. 

11.4.1 Nonfunctional Requirement Categorization 

When working with NFRs, it is often useful to work with a set vocabulary, 
or ontology, of terms. In rationale-based systems, a common vocabulary of 
keywords is needed to support semantic inference (Burge and Brown 2000). 
There are several different ways that NFRs have been organized or grouped. 
Bruegge and Dutoit (2000) referred to NFRs as “design goals” and broke 
them down into five groups: performance, dependability, cost, maintenance, 
and end-user criteria. Chung et al. (2000) provide an unordered list of NFRs 
and also hierarchies of NFRs for performance and auditing.  
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Some categorizations emphasize NFRs that relate to software quality 
and have formed quality measure hierarchies. The ISO/IEC 9126 software 
product quality standards (Jung et al. 2004) give six characteristics 
(functionality, reliability, usability, efficiency, maintainability, and 
portability) as well as 27 subcharacteristics. The CMU Quality Measures 
Taxonomy (CMU 2002) organizes quality measures into Needs 
Satisfaction Measures, Performance Measures, Maintenance Measures, 
Adaptive Measures, and Organizational Measures.  

11.4.2 The NFR Framework 

The view that quality characteristics are important when developing a 
software system was the driving force behind the development of the NFR 
Framework (Chung and Nixon 1995). The NFR Framework uses 
nonfunctional requirements, represented as Softgoals, to drive the software 
design process (Chung et al. 2000). This process produces the design, 
because the process is driven by the NFRs—its rationale. The NFRs are 
represented in a softgoal interdependency graph. The graph allows 
traceability from requirements to design decisions and from design 
decisions back to the requirements considered (Chung and Yu 1998).  If 
requirements are changed, the goal graph can capture a historical record 
that relates new requirements to the old ones (Chung et al. 1996). 

Cysneiros and Leite (2004, 2001) focused on how NFRs could be 
incorporated into the conceptual models represented in UML. They chose to 
create two views of the system: an NFR view, built on the NFR Framework 
(Chung et al. 2000) and a functional view, captured in UML. These two 
views should be connected at “convergence points.” A Language Extended 
Lexicon (LEL) was built to contain the vocabulary used for the functional 
requirements and links to the NFRs. The LEL is generated first and is used 
in constructing the functional and nonfunctional views.  

The NFR Framework was also used to support the Goal-Centric 
Traceability (Cleland-Huang et al. 2005) approach. Goal-Centric 
Traceability consists of four phases: goal modeling, impact detection, goal 
analysis, and decision-making. The goal modeling phase uses Chung’s 
Softgoal interdependency graph (SIG) (Chung et al. 2000) to capture the 
NFRs and tradeoffs. Impact detection automatically creates links between 
the SIG elements and a functional model of the system captured in UML 
class diagrams using ontological keywords. Goal analysis propagates 
changes made to the goal contributions by the user through the SIG to 
determine their impact. 
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11.4.3 SEURAT Argument Ontology and NFR Prioritization 

The ability to inference over the rationale has many different uses. One 
use, demonstrated in the SEURAT system (Burge and Brown 2006), is to 
evaluate the impact of changing priorities over the life-time of a system. 
This capability was supported by the use of an Argument Ontology (Burge 
2005). This ontology, based on the NFR taxonomies described earlier 
(Bruegge and Dutoit 2000; Chung et al. 2000; CMU 2002; Jung et al. 
2004) and extended to incorporate additional criteria, contains a hierarchy 
of reasons for making software decisions. The base elements of this 
ontology are Affordability Criteria, Adaptability Criteria, Dependability 
Criteria, End-User Criteria, Needs Satisfaction Criteria, Maintainability 
Criteria, and Performance Criteria. The hierarchy then subdivides these 
items into more detailed criteria (up to four levels deep). The Argument 
Ontology contains 277 terms and is documented in Burge (2005).  

SEURAT uses the rationale to re-evaluate the support for each decision 
whenever the importance (priority) of an element in the argument ontology 
changes. This can show which (and how many) alternatives may need to 
be reconsidered. Another use of rationale supported by SEURAT is to 
detect relationships between functional requirements and the NFRs in the 
Argument Ontology. This can be done by looking for the ontology entries 
that appear in arguments along with the functional requirements. This may 
indicate a relationship between the goals depicted in the ontology and the 
functional requirements.  

The rationale can also be used to analyze the reasons for and against the 
decisions made in order to determine how, and by how much, the goals 
determined during the requirements engineering process ended up 
influencing the final system. This is something that can be done during 
development to ensure that the program is staying on track and that the 
decisions are made in accordance with customer priorities and also after 
development to learn what might be the important factors to consider when 
developing future systems. 

11.4.4 NFRs and Conflict Representation and Detection 

and FRs can be used to identify conflicts between requirements. In the case 
of NFR-to-NFR conflicts, it is important to determine how these 
requirements interact to avoid situations where one is met at the expense of 
another. This need to achieve “balance of attribute satisfaction” was the 
impetus behind the Quality Attribute Risk and Conflict Consultant 

The relationships between NFRs and the relationships between NFRs 
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(QARCC) (Boehm and In 1996). Given a win condition generated using 
WinWin, QARCC uses a knowledge base of architecture (product) and 
process strategies for achieving quality attributes to check for conflicts. 
The knowledge base identifies the positive or negative impact that an 
architecture strategy has on affected quality attributes. The quality 
attributes are stored in a hierarchy where attributes at the highest level of 
abstraction, the “primary quality attributes” are mapped to stakeholder 
roles.  Conflict detection is supported by the rationale captured in 
SEURAT by storing tradeoffs between quality attributes as background 
knowledge that is then used to detect conflicts. This differs from the 
approach used in QARCC by capturing the tradeoffs directly and not 
relative to a specific architectural decision.  

Egyed and Grünbacher (2004) use the quality attributes to detect 
conflicts in functional requirements. In their approach, functional 
requirements have requirement attributes that relate to qualities such as 
efficiency, usability, and security. A cooperation and conflict model gives 
the relationships between qualities (positive, negative, or no effect). If a 
requirement has quality attributes that conflict with those of another 
requirement, that may indicate a conflict between the two requirements. 
This approach in and of itself would likely generate numerous false 
positives so it is augmented with trace analysis to only report conflicts 
between requirements that effect the same part of the code. The traces are 
generated by running the test scenarios that test each requirement. 

11.5 Goal-Based Requirements Engineering 

Requirements engineering can be viewed as the process of transforming 
stakeholder needs, or goals, into requirements that describe the system that 
will meet those names or goals. Even in cases where the stakeholders 
explicitly express their requirements, the system may be more successful if 
the goals behind those requirements can be expressed so that alternative 
ways to meet those goals can be explored (Antón and Potts 1998).  In this 
section, we will look at two approaches involving goals: Goal-Based 
Requirements Analysis (GBRAM) (Antón and Potts 1998) and Goal 
Oriented Requirements Engineering (GORE) (van Lamsweerde 2001). 

11.5.1 Goal-Based Requirements Analysis 

goal analysis and goal refinement. In goal analysis, the analyst explores 
In GBRAM (Antón and Potts 1998), goals are defined in two phases: 
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various information sources to identify possible goals and classify them 
according to goal dependencies. In goal refinement, the goal set is pruned 
if necessary, goals are analyzed to identify obstacles towards the goals, and 
goals are operationalized (turned into formal requirements).  

Specifications and scenarios, sometimes in the form of use cases, 
(Antón et al. 2000) are used as in puts to the goal identification process. 
One method used to identify goals is to look for verbs such as “avoid” or 
“improve” that are then followed by a desirable or undesirable condition. 
These verbs are also uses to categorize goals into categories based on the 
verb used. This categorization is used to separate user goals from system 
goals. User goals are identified as “achieve” goals while system goals 
(how the system responds to the user goals) are identified as “make” goals. 
The categorization differentiates between providing capability and 
providing information by using “notify” and “inform” to describe 
providing information and using “provide” and “allow” to describe 
providing capability (Antón et al. 2000). The goal categorizations used 
vary depending on the domain.  The CommerceNet Web Server project 
described in Antón and Potts (1998) used avoid, ensure, improve, increase, 
keep, know, maintain, make, and reduce while the e-commerce system 
analyzed in Antón et al. (2000) used allow, achieve, make, provide, 
inform, ensure, and notify as the goal categories. 

11.5.2 Goal-Oriented Requirements Engineering 

Goal-oriented requirements engineering (GORE) focuses on the use of 
goals to drive requirements engineering (van Lamsweerde 2001; van 
Lamsweerde 2004).  Goals can be functional goals, which are then used to 
build use cases and other “operational models” or quality goals that 
describe “preferred behavior” and are used to compare different 
alternatives as well as posing constraints (van Lamdsweerde 2004).  The 
level of abstraction can also vary from high-level goals that are strategic to 
low-level goals that describe technical concerns (van Lamsweerde 2001). 

The Keep All Objectives Satisfied (KAOS) method (van Lamsweerde 
and Letier 2000) represents goals and obstacles (undesirable conditions) in 
a formal temporal logic. The KAOS construct specification consists of two 
levels: a semantic net layer declaring the concept and its relationship with 
other concepts and a formal assertion layer that gives a formal definition. 
The second, formal, layer is optional and is used for formal reasoning 
while the semantic net layer supports modeling, traceability, and reuse. 
The goal specification defines the goal, and the property it should hold 
(achieve, cease, maintain, avoid), what other objects are involved, the parent 
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goal, subgoals that it should be refined to, and an informal description of 
the goal. The specification also contains the formal layer expressed in 
temporal logic. While goals describe desired behaviors, obstacles describe 
undesirable behaviors. Obstacles can be broken into five types: non-
satisfaction obstacles that keep goals from being satisfied; non-information 
obstacles that obstruct information dissemination; inaccuracy obstacles 
that obstruct object state consistency; hazard obstacles that interfere with 
safety goals; and threat obstacles that interfere with threat goals.  

van Lamsweerde and Letier (2000) define a requirements elaboration 
method that elaborates and operationalizes goals while also defining 
obstructions to those goals. This process starts with elaboration, where 
goals are refined; object capture that determines what objects are involved 
(objects can be entities, relationships, or events); operation capture that 
finds object state transitions; operationalization, which determines pre and 
post conditions; and finally responsibility assignments to identify 
alternative assignments and select alternatives based on nonfunctional 
goals. Obstacles and alternative resolutions are identified during the 
elaboration phase. 

The GORE process is also supported by a software environment, Goal-
Driven Requirements Analysis, Integration, and Layout (GRAIL), which 
supports editing, semantic checking, and views (Darimont et al. 1997). 
GRAIL contains a text editor for requirements acquisition and to check 
syntax and semantics. GRAIL can also present a graphical view of the 
specification.  

11.5.3 Relationship to Rationale 

These methodologies both utilize rationale. In GBRAM (Antón and Potts 
1998), the rationale for requirements provided by the stakeholder is used 
during the refinement process to determine if there are additional 
requirements that need to be generated. As the refinement process 
proceeds, the rationale is tracked so that any unresolved issues can be 
monitored and eventually resolved. Each requirement generated in the 
GBRAM process is annotated with rationale: the questions, answers, 
alternatives, and scenarios that were generated and used during refinement.  

Defining requirements using the GORE method produces the rationale 
for the requirements in the form of the goals that they were derived from. 
The goal hierarchy that resulted in the final requirement definition can be 
traced back to determine the rationale.  

There are a number of places within the methodology where decisions 
need to be made. One is in the assignment of responsibility for the terminal 



152      11 Rationale and Requirements Engineering 

goals to “agents”: entities (humans, programs, devices, etc.) that perform 
operations or agents that monitor an object. Assumptions are defined as 
terminal goals that are assigned to “agents in the environment”, while 
requirements are defined as terminal goals that are assigned to “agents in 
the software” (van Lamsweerde and Leiter 2000).  The alternatives are 
captured in the GORE process and the selection criteria can be captured as 
well. 

There are also alternative resolutions to obstacles defined during the 
goal elaboration phase. The resolution strategies range from obstacle 
elimination to obstacle tolerance (van Lamsweerde and Leiter 2000). The 
choice of resolution strategy depends on the likelihood and severity of the 
obstacle. The alternative resolutions and reasons for resolution selection 
should be documented in the rationale. 

11.6 Adapting to Changing Requirements 

As stated earlier, failure to manage requirements, or more specifically 
manage requirements change, is a major cause of project failure. Managing 
requirements change requires addressing the following issues: identifying 
(the need for) change, impact analysis, determining when changes conflict, 
negotiation, prioritizing changes, change measurement, risk assessment, 
change estimation, planning (scheduling), and change learning (Lam and 
Shankararaman 1999). 

These issues are strongly related to each other. For example, negotiation 
is heavily involved when determining the need for change, prioritizing 
changes, and scheduling change. Rationale has been shown to be an 
effective strategy in supporting negotiation by allowing the views of all the 
participants to be captured in a formal or semiformal manner. The ability 
to use the rationale in evaluating alternatives can be helpful in 
prioritization as well, especially if the rationale captures the importance of 
different evaluation criteria.  

Impact analysis and risk analysis are closely related. A requirement 
having a higher impact on the system will bring a higher risk. If the 
requirement is a change to an existing one, the rationale could be used to 
determine what parts of the system were affected by the original 
requirement so that those could be modified. This is supported by systems 
such as SEURAT (Burge and Brown 2006) which use requirements as part 
of the argumentation and map the selected alternatives to the code that 
implements them. The ability to perform impact assessment also assists 
with change measurement since the impact on the system is related to the 
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amount of change needed. The impact assessment results will assist with 
change estimation as well. 

One issue that rationale is especially helpful with is supporting the 
process of determining when changes conflict. The rationale records the 
intent behind the current choices made in a system and should also capture 
what tradeoffs were made.  New requirements can be assessed against 
known tradeoffs. Another use of rationale is to avoid repeating mistakes 
that occurred in the past. If a change is proposed that was rejected earlier, 
the rationale will capture that decision and inform the analyst that there is a 
potential problem.  

The goal of “change learning” is to collect information about changes 
that have occurred so that when similar changes happen in the future, 
information about that change will “reduce surprise” (Lam and 
Shankararaman 1999). Change information for a change, or type of 
change, can be captured in its rationale. The rationale would provide the 
reasons for the change, how it was made, and other pertinent information 
such as cost. Rationale also helps with learning by providing the intent 
behind the original requirements. 

11.7 Summary and Conclusions 

Requirements engineering is a crucial component of all software 
developments. The ability to successfully capture stakeholder needs and 
represent them in a way that they can then be used to drive software 
development has a significant impact on the success of software projects.  

In this chapter, we describe the requirements engineering process and 
some key aspects including requirements elicitation, negotiation, 
prioritization, and traceability. We also discuss research in nonfunctional 
requirements and goal-based requirements engineering. These areas have 
strong ties to rationale. By using NFRs to drive system design, the NFR 
framework captures the rationale for each decision. Goal-based 
requirements engineering examines the goals that drive each requirement, 
i.e., its rationale.  

Because of the criticality of requirements, and the high costs incurred if 
requirements are incorrect, incomplete, or mismanaged, capturing the 
rationale for the requirements should be a necessary step in the RE 
process.  
 



12 Rationale and Software Design 

More has been written about software design rationale than about any 
other topic in research on software engineering rationale. Much work has 
gone into identifying the value of design rationale for software developers, 
maintainers, and users; but realizing this value requires that approaches to 
rationale capture and delivery be successfully integrated into the processes 
of software design. This chapter looks at the complexities of this task and a 
variety of approaches that researchers have adopted for dealing with them.  

12.1 Introduction 

A crucial goal of Rationale-Based Software Engineering is to effectively 
capture and use rationale throughout software design. Both capture and use 
of design rationale present problems for researchers and practitioners, 
though the challenges of rationale capture are by far the more challenging. 
To solve these problems, it is crucial to understand how processes of 
rationale capture and use relate to what software designers do. More 
specifically, it necessary to understand how decision-centric and usage-
centric approaches to rationale fit into, or fail to fit into, the processes of 
software design. 

The processes that practicing software designers use are varied. Some 
are the product of their personal experiences and beliefs. Some are 
prescribed by design methods that they subscribe to. Some are dictated by 
the SE tools that designers use. The variety of processes in use is likely to 
continue increasing as methods and tools evolve over the coming decades. 

Given the variety of design processes and rationale approaches, the 
question arises as to how to go about discussing the fit of rationale 
approaches to design. A comparison of all rationale approaches with all 
design processes is clearly beyond the scope of this chapter. Instead, the 
chapter will look for underlying principles of fit and misfit. 
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12.1.1 The Nature and Importance of Software Design Rationale 

12.1.1.1 The Nature of Software Design Rationale 

Software design rationale (SDR) is the reasoning used in making decisions 
about the design of software. Most of the literature on design rationale 
deals exclusively with the elicitation and structuring of rationale from 
designers. But to understand fully the issues of SDR, it is important to 
recognize that not all the rationale used by the designers in a given 
software project is generated by those designers. Some of this rationale 
comes from stakeholders involved in SE activities other than design and 
includes information about requirements as well as feedback from 
construction and use of prototypes and earlier versions of the software. 
This externally generated rationale can also include information about the 
rationale for and outcomes of earlier projects. 

12.1.1.2 The Importance of Software Design Rationale 

Support for the capture and use of rationale generated by designers is 
important because it can improve design and other SE activities, such as 
construction, maintenance (Burge and Brown 2006), and the management 
of software projects. It can also facilitate coordination and collaboration in 
development teams as well as participation by users in development. The 
argument has also been made that it can aid the users of software in 
understanding complex, high-functionality systems (Haynes 2006). 

Also important, however, is the design rationale that is not generated by 
a project’s designers. Systematic use of such externally generated rationale 
provides an intelligence augmentation (IA) strategy, i.e., a way of 
augmenting the rationale of designers to enhance the quality of their design 
efforts. Externally generated rationale includes feedback from construction 
and use, which is one of the driving forces behind iterative approaches to 
software design and development. Enriching this feedback and other 
external sources of rationale might be the most promising means for 
helping designers to cope with the increasingly pressing problems of 
software development described in Chapter 1. 

12.1.2 Objectives of This Chapter 

The main objective of this chapter will be to identify the underlying 
principles of fit and misfit between rationale approaches and design 
processes. It will do this by means of two kinds of analysis. The first is a 
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general, theoretical analysis of rationale approaches and design processes. 
The second is an analysis of concrete examples of attempts to integrate 
rationale approaches into software design processes. 

Subsection 12.2 looks in a general, theoretical way at the issues of 
relating rationale approaches to software design processes. Subsection 
12.2.1 looks at the ways in which decision-centric and usage-centric 
approaches to rationale fit into design. Subsection 12.2.2 deals with ways 
in which prescriptive and descriptive roles of rationale approaches can 
support and conflict with design. Subsection 12.2.3 examines how the 
roles of rationale for design space analysis and deeper reflection relate to 
each other and to the design process. 

Section 12.3 looks at specific approaches to tailoring rationale 
approaches to software design. Subsection 12.3.1 surveys a variety of 
approaches that researchers have devised for integrating rationale into the 
design of software architecture. Subsection 12.3.2 then speculates on what 
this highly diverse research suggests in the way of principles for fitting 
rationale processes into the processes of design software architecture.   

Finally, Section 12.4 summarizes the chapter and draws conclusions 
about the state of research on software design rationale. 

12.2 Relating Rationale Approaches to Software Design 
Processes 

In determining how rationale approaches relate to design processes, we can 
make good use of three basic distinctions: between decision-centric and 
usage-centric rationale, between the descriptive and prescriptive roles of 
rationale approaches, and between the rationale for design space analysis 
and deeper reflection. These distinctions reveal important information 
about the compatibility of rationale approaches and design processes. 

12.2.1 Decision-centric and Usage-centric Rationale 
Approaches 

Decision-making is the concept that most obviously connects SDR to 
software design processes. This section will therefore start by looking at 
the decision-centric approaches, which explicitly represent decision-
making processes. The results of this analysis will then be used to analyze 
the usage-centric rationale approaches, which do not represent such 
processes. 
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12.2.1.1 Decision-centric Rationale and Design Processes 

What makes it possible to see the fundamental connection between 
decision-centric rationale processes and design processes is the fact that 
both deal with decision-making. In particular, both deal with decision tasks 
and the evaluation of proposed decisions as a way of arriving at decisions. 
Typically, both also deal with decision alternatives, i.e., multiple, 
alternative, proposed decisions. These things might be represented 
differently in a given rationale approach and a given design process used 
by a software designer; nevertheless, understanding their equivalence 
makes it possible to see the crucial similarities and differences between the 
rationale approach and the design process. 

The next crucial similarity is that each decision-centric rationale 
approach and each design process necessarily has a way of evaluating 
proposed decisions, i.e., decision alternatives. Finally, we can see that each 
decision task can, and usually does, have a decision to adopt one of the 
proposed decision alternatives. 

If we look at this model of decision-making we can see that practically 
everything a software designer does is part of some decision-making 
process of this type. We can also see that every decision-centric approach 
to rationale models decision-making in this way. As a consequence, the 
question of how and where such approaches to rationale fit into design 
appears simple to answer: they fit everywhere into design processes and 
they fit well.  

 The problem is that this notion of an extensive and deep fit between 
decision-centric rationale and design process is hard to reconcile with the 
reality of the rationale capture problem. The fact that this problem is 
currently the greatest obstacle to the use of rationale approaches in 
software projects seems to suggest a fundamental misfit of some sort 
between rationale approaches and design process. This section will attempt 
to understand this dilemma by looking for ways in which rationale 
approaches can come into conflict with design processes. But first it will 
look at how usage-centric rationale fits into the overall design process. 

12.2.1.2 Usage-centric Rationale and Software Design Processes 

According to the definition given above, something can count as SDR only 
if it plays a role in helping to make design decisions. This might seem to 
suggest that only decision-centric rationale approaches deal with SDR, but 
this is not the case. A crucially important use of usage-centric rationale 
approaches—such as Scenario-Claims Analysis (SCA) (Carroll and Rosson 
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1996)—is to provide rationale that informs the decision-making of 
designers. 

The contribution of usage-centric rationale approaches like SCA is to 
recognize that organizing rationale around decisions is not the best way to 
elicit and characterize some of the rationale needed for making appropriate 
design decisions. A design must largely be judged in terms of its 
consequences for its users, and the best way to identify these consequences 
is to document the evaluation of system features by users as they interact 
with the system. This information can then be fed back to the system 
designers in the form of argumentation rationale that prompts them to 
revise their decisions about the design of the system. Thus, usage-centric 
rationale, such as that produced by SCA, gets its value for design by 
informing design decision-making, but it does so by providing feedback 
that gets designers to change their previous decisions. SCA is thus part of 
an iterative design process that Carroll and Rosson have labeled “the task–
artifact cycle.” So ultimately, a complete account of SDR must show how 
usage-centric rationale becomes part of the evaluation of decision 
alternatives in decision-centric rationale for software design. 

12.2.2 Prescriptive and Descriptive Roles of Rationale 
Approaches 

The distinction between the prescriptive and descriptive roles of rationale 
approaches, explained in Chapter 1, reveals various ways in which these 
approaches can be compatible or incompatible with design processes. 
Rationale approaches can play various descriptive and prescriptive roles in 
design, and these roles intrude into the design process in different ways 
and to different degrees. The intrusiveness of rationale approaches is an 
especially important topic because it is at the center of a controversy 
amongst rationale researchers about the difficulties of getting rationale 
approaches used in practice. The focus of this controversy is the rationale 
capture problem, which is widely regarded as the main obstacle to 
practical application of rationale. One side of this controversy advocates 
the use of traditional approaches to capture, which tend to be relatively 
intrusive. The other side, which has emerged over the past decade or so, 
argues that the intrusiveness of traditional approaches to capture is the 
main cause of the capture problem. Making sense of this controversy 
requires a detailed understanding of the varieties of prescriptive and 
descriptive roles of rationale and the ways in which they intrude into 
design. This subsection starts by looking at the prescriptive roles and then 
looks at the descriptive roles. 
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However, before describing the intrusiveness of rationale approaches it 
is important to state some words of caution. It would be a mistake to 
regard intrusion into design as necessarily bad. There is no way to improve 
design without altering it, and this means intruding into it. Even if one 
believes that the intrusiveness of rationale methods has been the central 
barrier to rationale capture, it would be foolish to conclude that designers 
are against all intrusions into design. After all, this would imply that they 
were opposed to the idea that design could be improved. 

12.2.2.1 Prescriptive Rationale Approaches and Design Processes 

Prescriptive approaches to design rationale attempt to alter the thinking of 
designers in order to improve design. While the intention of such 
approaches is to be useful to designers, there exists the possibility that they 
will interfere with the way designers prefer to work. In fact, one possible 
explanation for the difficulties in getting designers to adopt rationale 
approaches is that they do not like being told how to do their jobs. But 
before accepting such a glib explanation, it is prudent to look more closely 
at the varieties of prescriptive roles and how they affect design.  

Two ways rationale approaches can be prescriptive. Rationale 
approaches can be prescriptive by informing design, i.e., by providing 
information for designers to think about in making decisions; or they can 
be prescriptive by prescribing processes for designers to follow in making 
decisions. An example of the former is the approach of Fischer et al. 
(1996) (described in Chapter 4 of this book) which uses knowledge-based 
critics to supply designers with information from a collection of rationale 
structured using the PHI variant of IBIS. An example of the latter is the 
process-oriented approach to IBIS advocated by Conklin and Burgess-
Yakemovic (1996). 

Intrusiveness of these two ways of being prescriptive. The approach of 
informing design represents a relatively minor intrusion into the design 
process. Thus, in the work of Fischer et al. the design process is only 
intruded into briefly and intermittently when critics detect violations of 
rules of thumb for design and display rationale to help designers determine 
whether it makes more sense to follow the rules or break them. 

By contrast, the approach of prescribing processes is a much greater 
intrusion on the design process. Thus, in the work by Conklin and Burgess-
Yakemovic, designers are restricted to what these authors call “‘legal moves 
in the IBIS design conversation” (Conklin and Burgess-Yakemovic 1996) 
throughout the design process. They describe the use of IBIS to structure 
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meetings, but IBIS can also be used to structure the work of individual 
designers. 

It is clear that, in principle, prescriptive approaches to rationale should 
be able to justify their intrusiveness by their benefits to designers. All 
prescriptive uses of rationale in design are, by definition, aimed at aiding 
designers. The question seems to be what types and degrees of intrusions 
designers are likely to regard as worthwhile.   

 Conklin and Burgess-Yakemovic as well as others, e.g., Shum et al. 
(2006), have reported many cases where designers found that the use of 
process-prescribing rationale methods produced higher-quality design. 
Despite such reports, it is clear that effective rationale capture remains a 
largely unsolved problem. So it is important to see if there are additional 
ways in which rationale might conflict unacceptably with processes that 
designers choose to use. 

Ways in which designers might view intrusiveness as bad. There are 
two respects in which a prescriptive rationale approach can dictate how 
decisions are made. The first is that it can require the use of a conceptual 
schema for categorizing and interrelating the rationale used in decision-
making. For example, when IBIS is used in a prescriptive approach, its 
schema requires that rationale be stated in the form of issues, positions, 
arguments, and resolutions and that these elements be linked together only 
in certain ways using a given set of relationships. Other rationale schemas 
have similar requirements when used in this prescriptive manner. 

There are a number of reasons that designers might have for viewing 
schema-based approaches to decision-making as undesirable. They might 
feel that a given schema does not fit their individual, and perhaps highly 
skilled, modes of reasoning about design. Or they might be committed to 
using a software design method or tool that does not allow rationale to be 
organized according to the given schema. 

Much of the rationale literature has been devoted to devising new schemas, 
and not infrequently this work is based on a claim that the difficulties of 
rationale capture derive from mismatches between schemas previously used 
and the way in which designers naturally organize their thoughts. Ironically, 
there is little or no evidence that changing the schema has resulted in more 
effective capture of rationale. This suggests that the problem might not be 
any particular schema, but the use of schemas in general. 

Schön’s theory of Reflective Practice suggests that the use of a rationale 
schema fundamentally conflicts with some of the cognitive processes 
required for design. Schön argues that designers alternate between two 
complementary types of processes: an intuitive process of action and a 
rational process of reflection. A cornerstone of his theory is that a designer 
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can only engage in one of these processes at a time. Using a rationale 
schema to structure design thinking is a kind of rationale reflection. Thus, 
the attempt to use schema-based rationale throughout the design process is 
in effect an attempt to turn all of design into rationale reflection. According 
to Schön this makes design impossible. It should be noted that Marshall and 
Shipman have made a similar but more general argument about the 
counterproductive nature of schemas for human–computer interaction 
(Shipman and Marshall 1999a). 

Intrusiveness of elicitation and structuring procedures. There is a 
second respect in which a prescriptive approach to rationale can dictate the 
way in which decisions are made, and that is by prescribing the procedures 
used for eliciting and structuring rationale. These procedures can also 
conflict with the processes that designer prefer to use, either because they 
prefer to think in a given way or because they are committed to using 
software design methods or tools that conflict with the elicitation and 
structuring procedures mandated by the prescriptive approach to rationale. 

Temporal intrusiveness. Wherever a prescriptive rationale approach does 
not conflict with the processes designer prefer to use, there might seem to be 
no obstacle to using the approach in conjunction with the preferred design 
processes; but there is one more problem that is potentially a “show-
stopper.” The problem is that using any rationale that involves having the 
designer document rationale or even participate in the documentation of 
rationale is likely to be very time consuming. There are two questions that 
need to be answered before the documentation of rationale can be justified. 
One is whether the designers have enough time to participate in the 
documentation. The other is whether having the designers spend time on this 
documentation is of greater value than having them spend that time on 
design itself. The latter question indicates that it is not enough to consider 
the absolute cost of documenting rationale; it is necessary to consider the 
lost opportunity costs of such documentation. It seems likely that the 
inability to answer these two questions in the affirmative has played a large 
role in limiting the capture of rationale in real-world software projects. 

12.2.2.2 Descriptive Rationale Approaches and Design Processes 

In retrospect, it might seem obvious that procedurally prescriptive rationale 
approaches are inherently intrusive on design processes; and this might 
create the expectation that when playing a purely descriptive role rationale 
approaches would necessarily be less intrusive. Things are not that simple, 
however, because designers often do not state their rationale, much less 
document it, when they design. Obtaining a detailed record of their rationale 
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might therefore require a concerted effort to elicit it from them and to record 
it. This effort has the potential for being highly intrusive on the design 
process. As a consequence, researchers who feel that intrusiveness is the root 
of the capture problem have sought various ways of describing designers’ 
rationale in ways that are less intrusive. 

highly intrusive approach to eliciting rationale is to systematically 
interrogate designers about what decisions they make and the reasoning for 
each decision. This approach becomes maximally intrusive when it uses a 
rationale schema and dictates the order in which statements are elicited. 
Such an approach is nearly as intrusive as the most aggressive procedurally 
prescriptive approaches but has the further disadvantage of offering no 
obvious payoff to designers as a motivation for them to tolerate the 
intrusion. 

The approach of systematic interrogation can be done either in process-
oriented or structure-oriented mode, i.e., either to produce a history of the 
design process or a “logically” structured record of design rationale 
without any indication of the process by which it was produced. In the 
former case it intrudes on every step of the design process. In the latter 
case it can be done in retrospect and so could be intrusive only in the sense 
of requiring designers’ time. Of course, there may be some question about 
how accurate such retrospective accounts of rationale are likely to be. 

Perhaps the most extreme example of intrusive elicitation of rationale 
using a purely descriptive approach was found in the use of PROTOCOL, 
the first software designed exclusively as a rationale management system 
(McCall 1979a). This system used a systematic interrogation approach 
based on the PHI schema and had a fixed order in which statement types 
were elicited. The approach was applied recursively in the sense that each 
response became the subject of further interrogation, in a manner 
somewhat reminiscent of the Eliza system (Weizenbaum 1966). A 
rationale elicitation session only ended when users were unable or 
unwilling to give further responses. While the system was highly effective 
in eliciting large quantities of rationale, users generally found the 
experience extremely tiring and few were willing to repeat it. Someone 
observing this effect commented that the system had given a whole new 
meaning to “exhaustive enumeration” (McCall 1979a).    

The QOC approach is much less intrusive than the approaches described 
above. It is exclusively targeted at describing the rationale for design—
usually software design—and employs a structure-oriented approach. It 
uses a schema in eliciting rationale, but apparently does not dictate the 
precise order in which statement types are stated. Most important of all is 

Intrusiveness of various approaches to describing rationale. One 
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the fact that QOC does not intrude into the design process directly, because 
it is not used while design is taking place. 

QOC can, however, indirectly intrude on design to various degrees, 
depending on how it is used. The authors of QOC insist that that the 
rationale for a project should itself be designed, so the crucial question is 
how much the designers themselves need to be involved in this process. 
The more designers are involved in designing the design rationale, the 
more time will be required of them and, consequently, the more temporally 
intrusive QOC will be on design. Users of the QOC approach, however, 
might minimize this intrusiveness by eliciting only the raw rationale from 
the designers and employing other people, e.g. rationale experts, to refine 
and design this rationale. 

Descriptive approaches lend themselves to highly unobtrusive capture, 
including both automated capture and automated structuring of rationale. 
The work of Myers et al. (1999) (described in Chapter 4) uses a 
completely nonintrusive approach that captures rationale by recording the 
actions of designers using a CAD system. Schneider (2006) does a similar 
kind of nonintrusive capture of rationale from software engineers as a by-
product of their use of development tools. McCall and Mistrik (2005) use 
natural language processing to capture and structure rationale from 
communications between software designers and prospective system users. 
Also, it should be mentioned that the approach proposed by Gruber and 
Russell (1996), i.e., retrospectively reconstructing rationale rather than 
attempting to record it, is also completely nonintrusive. 

12.2.3 Rationale for Design Space Analysis and Deeper 
Reflection 

We can distinguish two fundamentally different types of decisions that 
designers make: design-space decisions and other design decisions. The 
former decide what the features of the artifact will be; the latter do not. 
Much of the literature on design rationale in all fields has focused on 
design space decisions so exclusively as to give the impression that these 
are the only decisions designers deal with. But there are many other 
decisions that they make that do not directly decide system features but 
nevertheless have a profound, albeit indirect, affect on what features a 
system has. These decisions reflect a deeper level of reflection on factors 
that influence the design of the system. 

The decision-making processes associated with deeper reflection provide 
an important mechanism for improving the quality of software design.  
It is therefore important to understand the role that rationale approaches  
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can play in supporting this sort of reflection. If a design process that 
software designers generally use does not explicitly support this sort of 
reflection, employing a rationale approach that promotes such reflection may 
enable the designers to improve the quality of their decisions. 

12.2.3.1 Rationale for Design Space Analysis  

The term design space analysis was coined by MacLean et al. (1996) to 
describe the sort of rationale-based decision-making represented in their 
Questions, Options and Criteria (QOC) approach to design rationale. This 
approach documents the evaluation of proposed alternative answers to 
design questions. The questions they deal with are those whose answers 
represent features of the artifact being designed—usually software. 
Answering these questions amounts to making decisions about what 
features the artifact will have. To distinguish such questions from other 
types of questions dealt with in design, we will call the QOC-type 
questions design-space decisions. The set of chosen answers to all design 
space decisions in a project thus constitutes the complete design of the 
artifact. A crucial point for relating rationale to design is that design space 
decisions represent the points where rationale meets the representation of 
the artifact being designed.  

Other decision-centric rationale approaches, such as Issue-Based 
Information Systems (IBIS) (Kunz and Rittel 1970) and Procedural 
Hierarchy of Issues (PHI) (McCall 1990), can also represent the rationale for 
Design Space Analysis, though their schema for representing the evaluation 
of alternatives differs from QOC’s. Unlike QOC, IBIS and PHI can also deal 
with design questions that do not correspond to design-space decisions. 

The Decision Representation Language (DRL) (Lee 1990) resembles 
QOC in many ways, especially in its evaluation schema. Examples in the 
literature of the decisions that it deals with have been limited to design 
space decisions; yet the author of the system (Lee) makes no claim about 
its use being restricted to design space analysis. It seems reasonable to give 
DRL the benefit of the doubt and assume that it can also be used for other 
kinds of design decisions. 

12.2.3.2 Rationale for Deeper Reflection 

Design space decisions are not the only kind of decisions made in the part 
of the development process known as design. This can be seen by looking 
at decisions in the way that IBIS does: any decision to be made can be 
represented as a question to be answered; and any design question that 
needs to be answered represents a decision to be made. There are many 
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important questions that can arise in design that do not have answers 
describing features of the artifact being designed.  

Rittel listed a number of major categories of design questions, or issues 
as he called them (Kunz and Rittel 1970). These included the following: 

• Factual issues—including questions about what is, was or will 
be the case 

• Deontic issues—including questions about what should be or 
ought to the case 

• Explanatory issues—including questions about why something 
is the case or what causes something to be the case or what a 
term means or what effects something has 

The decisions on these issues typically do not directly describe artifact 
features, and yet they occur as part of the overall design effort and can 
decisively influence the design of the artifact. 

An example of a factual issue would be, “Which rich Internet 
application (RIA) technology is likely to become dominant over the next 
five years?” An example of a deontic issue would be, “Should we be 
buying or building the graphics functionality that we need?” Examples of 
explanatory issues would include questions like “Why has security been so 
hard to achieve for previous versions of this software?”, “How are we 
interpreting the meaning of the term Rich Internet Application in our 
project?” and “What does this requirement really mean?” 

There are a number of different roles for non-design-space decisions in 
the larger design process. Often these roles are made clear by the 
circumstances in which such decisions arise. For example, some of these 
decisions arise from the attempt to generate decision alternatives. “How 
has this decision been made in other projects?” and “If cost were not a 
concern, what are all the conceivable ways we might try to accomplish this 
task?” are examples that have the role of helping to generate decision 
alternatives. Although both of these questions have answers that describe 
artifact features, they are not design space decisions, because they do not 
decide that the artifact should definitely have any specific feature. 

Often non-design-space decisions arise out of argumentative evaluation 
of decision alternatives. In collaborative design, for example, it is quite 
common for one designer to challenge a statement made by another; and 
sometimes these challenges are elevated to the status of non-design-space 
decisions that are decided by the whole group. This can happen because 
any statement that someone makes can be questioned, i.e., literally become 
the basis of a question about it. In fact, in any reasoning about a design 
space, questions can arise that are crucial for the design of the system but 
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which are not design space decisions in the sense of having answers that 
decide features of the artifact being designed. 

Some non-design-space decisions take the form of metadecisions, i.e., 
decisions about the decision-making process itself. Examples of such 
questions include, “Which decision should we make first?” and “How 
much time should we allocate to making this decision?” 

Decisions that occur during the design process but that are not design-
space decisions gain there relevance to the design process only by 
influencing design-space decision-making. The non-design-space 
decisions—such as the ones categorized by Rittel—are relevant to design 
only if they inform design space decisions, i.e., influence the reasoning 
about design-space decisions. This indicates that, although rationale for 
non-design-space decisions is not directly about design-space decisions, it 
is always indirectly about such decisions. 

A useful way of looking at the rationale for non-design-space decisions 
is that it represents deeper reflection on the design process than is 
represented in the rationale of design space decisions. Rationale on the 
non-design-space decisions is especially important because it enables the 
deeper thinking about design that produces more thoughtfully designed 
artifacts that are of higher quality.  

12.3 Specific Approaches that Integrate Rationale into 
Software Design 

12.3.1 Rationale and Software Architecture 

Software architecture is the one area of software engineering where 
rationale is most explicitly mentioned as an area of research. One reason 
may be the criticality of decisions made at this stage. As Bass et al. (2003) 
describe it:  

Software architecture manifests the earliest design decisions about a 
system, and these early bindings carry weight far out of proportion 
to their individual gravity with respect to the system’s remaining 
development, its deployment, and its maintenance life. It is also the 
earliest point at which design decisions governing the system to be 
built can be analyzed. 

The criticality of these early decisions indicates the grave importance 
that they be made with careful deliberation and remain consistent with the 
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criteria identified by system stakeholders during requirements elicitation 
and analysis.  

The importance of design decisions to architecture can be taken one step 
further—the architecture can be viewed as more than a collection of 
components and their relationships but rather as “a composition of 
architectural design decisions” (Bosch 2004). Tyree and Ackerman (2005) 
feel that architectural decisions are the key to “demystifying architecture 
products” and describe several places where traditional architectural 
approaches “break down.” They point out that the lack of rationale results 
in system stakeholders continually needing to ask for answers to the same 
questions. These decision-centric views of software architecture lead 
naturally to decision-centric views on its rationale.  

Not content with assuming that rationale is useful, Tang et al. (2006) 
surveyed architects to determine their opinions on the usefulness of 
rationale. The survey results showed that 85.1% of the architects surveyed 
considered rationale as important (4 or 5 on a 1–5 Likert scale). Other 
interesting results were that 74% of the architects did not remember the 
reasons behind their own design decisions and that 80% agree that if the 
design rationale is not present they may not understand why a design was 
created without the assistance of the original designer. 

12.3.1.1 Rationale and Architectural Decision Documentation 

While it is encouraging to see rationale as a part of architectural design 
research, for the most part this information is delegated to a descriptive 
role where schema-based rationale appears in, and is defined by, a decision 
model or decision template. The information that populates the 
architectural knowledge repositories is for the most part provided manually 
by the designer as part of the architecture design process.  

A number of architectural knowledge research projects stress the 
importance of rationale and capture it by including it as part of an 
architecture decision template that is filled in by the architect. Tyree and 
Ackerman (2005) proposed an architecture decision description template 
based on the Representation and Maintenance of Process Knowledge 
(REMAP) (Ramesh and Dhar 1992; Rhamesh and Dhar 1994) and 
Decision Representation Language (Lee 1990) rationale representations. 
The template expresses the decision, its status, assumptions, constraints, 
positions (alternatives) considered, arguments, and implications, and 
related decisions, requirements, artifacts, and principles. 

Templates are also used in the PAKME knowledge management tool 
(Ali-Babar and Gorton 2007). PAKME stores design options, and their  
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rationale, as “design option cases” that can be used to support case-based 
reasoning. A selected design option is represented as an architecture 
decision. Both design options and architecture decisions have rationale, 
also captured with the assistance of a template. Their rationale “describes 
the reasons for an architectural decision, justification for it, tradeoffs made, 
and argumentation leading to the design decision.” (Ali-Babar and Gorton 
2007) and is described using a template (not described in the paper) based 
on those defined by Tyree and Ackerman (2005) and in the Views and 
Beyond (Clements et al. 2002) approach. 

The Views and Beyond template is extended by Bass et al. (2006) by 
adding a causal graph of rationale that provides causal relationships 
between decisions. They also describe how a structural graph of rationale 
can capture rationale for each architectural element. The rationale focuses 
on the architectural elements’ responsibilities with respect to achieving 
functional requirements and quality attributes. It also relates the 
architectural elements to the design decision alternatives. These two 
graphs provide two different ways of looking at the design—as a series of 
decisions (the causal graph) and as the result of making those decisions—
the software structure. 

An example of a model using rationale is the one developed under the 
GRIFFIN (a GRId For information about architectural knowledge) 
contract that structures software architecture project memories (de Boer et 
al. 2006). This model captures rationale as the alternatives proposed for a 
decision topic that are ranked based on concerns addressed in a particular 
viewpoint and that influence the decision topic. A major goal of their 
model is to “associate know-how, or rationale, with the know-what and 
know-how contained in design artifacts.” 

The Architecture Design Decision Support System (ADDSS) (Capilla et 
al. 2006) also utilizes a model that contains rationale. Their model (Capilla 
et al. 2007) contains several attributes that could be interpreted as rationale: 
the mandatory rationale attribute, recording the reason for making the 
decision, as well as several optional attributes providing alternatives, 
assumptions, pros/cons, quality attributes, and a decision category. Another 
interesting optional attribute is iteration—this provides support for tracking 
decisions to the “architectural iteration” in which it was made. 

Zhu and Gorton (2007) model design decisions using the Unified 
Modeling Language (UML) (OMG 2005b) profiles and the Object 
Constraint Language (OCL) (OMG 2005a). Rationale is attached to the 
model by adding the rationale description as a UML tag (a mechanism for 
adding descriptive information to the model) on the relationship between 
design decisions and the nonfunctional requirements. Many believe that the 
UML is the closest thing to a standard in software engineering and it is 
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surprising that more approaches are not utilizing it for capturing rationale 
(although many approaches use it as a notation for describing their 
schemas). 

Several approaches define their own ontologies, or notations, for 
rationale. The DAta Model for Software Architecture Knowledge 
(DAMSAK) (Ali-Babar et al. 2006) defines design rationale as containing 
the following elements: description, comment, constraint, assumption, 
strength, weakness, cost, benefit, complexity, unresolved issues, 
justification, rule, context, tradeoffs, arguments, and other information, all 
text fields with the assumption of unresolved issues (which is an integer 
which must map to something else). Krutchen et al. (2006) define a rich 
ontology of design decisions. This ontology captures rationale directly as a 
textual description and indirectly through relationships between design 
decisions. The relationships defined in their ontology are quite 
comprehensive: constrains, forbids, enables, subsumes, conflicts-with, 
overrides, comprises, is an alternative to, is bound to, and is related to.  

Archium (van der Ven et al. 2006) captures design decisions in a 
template-like format that either uses, or bears a strong resemblance to, Java 
annotations. The fields of their template are not called rationale, but 
capture alternative solutions along with their constraints, consequences, 
pros, and cons. There is also a place in the template to identify tradeoffs. 

The Architecture Rationale and Elements Linkage (AREL) model (Tang 
et al. 2007) captures three types of rationale: qualitative rationale, 
arguments for and against design decisions; quantitative rationale that 
describes the costs, benefits, and risks of each design option; and a third 
type, the alternative architecture rationale, to describe design options that 
were discarded. The qualitative rationale (QLR) is captured using a 
template and contains the issues, assumptions, constraints, strengths, 
weaknesses, tradeoffs, risks (and non-risks), the assessment and decision, 
and any other supporting information required to make a decision. The 
quantitative rationale (QNR) represents cost, benefit, and risk using an 
Architecture Cost Index (taking into account costs such as development, 
maintenance, and platform support), Architecture Benefit Index (which 
combines requirement priority and how well the decision satisfies it), 
Outcome Certainty Risk (how likely the architecture will be to meet its 
outcomes) and the Implementation Certainty Risk (the risk of 
implementation issues causing problems). The alternative architecture 
rationale (AAR) contains all the information in architectural rationale 
except for alternatives that have been rejected (Tang and Han 2005). 
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12.3.1.2 Using Rationale to Support Software Architecture 

The main emphasis of most of the approaches described appears to be 
using rationale descriptively as part of design decision documentation. 
There are approaches, however, that take a more prescriptive approach. 
For example, the PAKME architectural management system (Ali-Babar 
and Gorton 2007) described uses rationale as part of its “design option 
cases” that support case-based reasoning and the reuse of the rationale. 
This can be viewed as a means of informing design, by providing 
information that would be useful to the designers. 

The Decision Goals and Alternatives (DGA) Design Decision Rationale 
(DDR) technique (Falessi et al. 2006) both supports design decision 
documentation and supports design decision-making. The DGA provides a 
decision documentation process that first has the decision-maker refine 
objectives, constraints, and subgoals and a second stage that takes the 
designer through the “enaction” of decision phases where the designer 
assigns scores to the relevant attributes identified in the earlier phase. The 
scores provide the importance that an attribute has to the decision task at 
hand. This is an example of a rationale approach of prescribing processes. 

The Architecture Rationale and Element Linkage (AREL) system 
described earlier can support several uses for rationale that support design 
modification and understanding, rather than assisting with the design 
activity itself. AREL has been extended to create the eAREL system (Tang 
et al. 2006) to support architecture evolution. This is done by storing a 
current version of each architecture element (AE) and architecture rationale 
(AR) as well as one or more “historical versions.” The links between the 
ARs and AEs provide traceablity forward, to perform impact assessment, 
backward, to provide root-cause analysis, and over time, to analyze the 
evolution of decisions and/or architectural elements. Change impact 
prediction to assess the effect of system requirements or decisions 
changing is also provided by a version of the system where AREL is 
modeled as a Bayesian Belief Network (BBN) (Pearl 1988) where the nodes 
of the network are architecture elements (requirements and decisions) or 
architecture rationale (the reason for making a decision) (Tang et al. 
2005b). In the AREL BBN, the links represent causal relationships. 
Architecture element nodes have two possible states: stable or volatile, 
indicating if it is likely to change, and architecture rationale nodes have the 
two states of valid or invalid. Conditional probability tables give the 
probabilities of different combinations of these states. The BBN supports 
two kinds of reasoning: predictive reasoning where the network is used to 
predict the effect of an architectural design change by changing the state of 
an architectural element to volatile, and diagnostic reasoning where a non-
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root node is set to volatile and the posterior probabilities of its ancestors 
are evaluated to determine possible causes for the change. 

12.3.2 Strategies for Fitting Rationale into Architectural Design 
Processes 

Almost all of the described approaches focus on fitting rationale into the 
processes of designing software architecture. But at first glance these 
approaches are so varied that it may seem hard to discover any common 
strategies for fitting rationale to design. A closer look, however, does 
reveal some basic trends. One of these is that more than half the 
approaches focus on the integration of rationale models with models of 
architectural artifacts to make hybrid rationale–artifact models. 

There are two basic kinds of software architecture artifacts. One kind is 
the architecture itself and the various design space decisions that it consists 
of. As van der Ven et al. (2006) point out, these decisions are where 
rationale and architecture meet. This means they are also where rationale 
processes and the processes of software architecture must also meet.  

The other kind of software architecture artifact consists of the many 
things that software architects create to do the work of design. These 
include things like patterns, tactics, scenarios, findings, and design 
histories. A number of the papers integrate rationale and such artifacts into 
hybrid models. PAKME does this for the stated purpose of integrating 
rationale into the processes of software architecting, and this appears to be 
the motivation for other approaches doing this as well. In general it seems 
that the more rationale can be tied to the creation of such artifacts, the 
more rationale processes can be fitted into the processes of designing 
software architecture. 

Another trend is the reliance on the modeling of dependency 
relationships among decisions as a type of rationale. Sometimes this is 
little more than a reinvention of the dependencies found in rationale 
approaches such as PHI, DRL, and RATSpeak (Burge and Brown 2004). 
In other cases, a fundamentally different approach is taken to modeling 
dependencies. Most notably different is the AREL system’s use of 
dependencies based on Bayesian Belief Networks. Regardless of how 
dependencies are modeled, the purposes for modeling them seem to be the 
same: traceability and predicting the consequences of change. These 
purposes are so important to SE that using rationale to model them fits 
rationale processes more closely to SE processes. 

Other, more minor trends are the use of automatic capture of rationale 
and the introduction of more elaborate and quantitative modes of evaluation 
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into rationale. The former seems aimed at reducing the potential conflict 
between rationale and software engineering processes. The latter bring 
evaluation of decision alternatives more in line with the types of evaluation 
used in SE.   

12.4 Summary and Conclusions 

Effective capture and use of rationale in software design requires that 
rationale approaches be skillfully fitted into the processes that software 
designers use. Arranging for a good fit is a complex undertaking that 
requires a detailed understanding of how approaches to representing, 
capturing, and delivering rationale can support or conflict with software 
design. This chapter has used two methods for coming to such an 
understanding. The first was a theoretical analysis of various types and 
roles of design rationale and the way these affect software design. The 
second was a look at a variety of approaches that researchers have devised 
for fitting rationale into the design of software architecture. The theoretical 
analysis focused on the potential difficulties and benefits of rationale 
capture and use. The survey of research focused on the modifications of 
rationale schemas to include representation of SE artifacts, dependency 
networks, and more elaborate modes of evaluation, all of which work to 
increase the fit between rationale and software design processes. 

The complexity of the topic of fitting rationale into design and the great 
variety of approaches to doing so both suggest that much more research 
can and should be done on this topic if a broad consensus on approaches to 
design rationale is to be reached. At the same time, they make it clear that 
enormous progress has been made over the early days of rationale research 
when it was naïvely assumed that successful capture and use of design 
rationale in SE was a simple matter and that simple approaches would 
suffice. What is also clear is that researchers on design rationale have 
made progress not only in understanding the problems they face but also in 
solving them.  



13 Rationale and Software Verification, 
Validation, and Testing 

Designing and developing effective verification, validation, and testing 
strategies is always a challenge. The testing strategy needs to take into 
account the crucial balance between cost and quality and make appropriate 
tradeoffs depending on the specific project. In this chapter, we will 
investigate whether the presence of Software Engineering Rationale (SER) 
can assist in determining how and what to test. 

13.1 Introduction 

13.1.1 Verification, Validation, and Testing 

One of the most important parts of the software development process is 
Verification and Validation (V&V). The goal of V&V is to provide an 
assessment of the ability of the software both to meet its requirements and 
to satisfy the needs of the user (IEEE 2004b).  Verification refers to 
assessing the software’s conformance to its specification while validation 
refers to ensuring that the software fulfils the customers’ expectations 
(Sommerville 2007). As Barry Boehm (1979; Sommerville 2007) puts it, 
validation asks “Are we building the right product?” and verification asks 
“Are we building the product right?” 

The V&V process encompasses assessment, analysis, evaluation, review, 
inspection, and testing (IEEE 2004b). Software, which includes 
documentation as well as code, can be assessed statically, through 
inspections or other analysis techniques, or dynamically through software 
testing.  There are many reasons why inspection should be done in addition 
to testing. Inspection can find errors that might be masked by other problems 
during testing, can be performed before the software is complete, and  
can assess nonfunctional requirements such as conformance to standards and 
the choice of algorithms (Sommerville 2007). Testing is still necessary to  
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ensure the software runs and to assess performance, scalability, reliability, 
and other qualities during operation. Testing continues to become more 
difficult as increasingly powerful systems (at the same price) provide the 
ability to run increasingly complex software (Stobie 2005). 

The process of ensuring that the software conforms to its specification, 
as well as the evaluation of the development process itself, falls under the 
category of software quality assurance (SQA) (IEEE 1990). Quality 
assurance involves planning for how quality will be achieved and 
measured. QA strategies vary between organizations with some planning 
for quality from the start and monitoring progress while others view SQA 
as simply being testing, an approach to SQA compared to “locking the 
barn door after the horse has escaped” (Baker 2001). 

13.1.2 Software Testing Issues 

One of the most famous software engineering phrases comes from 
Dijkstra: “program testing can be a very effective way to show the 
presence of bugs, but it is hopelessly inadequate for showing their 
absence” (Dijkstra 1972). This highlights the primary difficulty of 
software testing—it is impossible to ensure that there are no errors. The 
presence of errors is inevitable. Error probabilities for experienced 
programmers are around 1% (one in 100 lines of code) and increase for 
less experienced developers (Wang and Tan 2005). Testing can account for 
a significant percentage of the development effort (Juristo et al. 2006).  

There are many decisions that need to be made when developing a 
testing strategy. One is the level of software integrity required. IEEE 1012-
2004 (IEEE 2004b) defines four integrity levels ranging from level four, 
where if the software does not run correctly there may be significant 
consequences (loss of life, equipment, or money) to level one where the 
consequences of failure are minor. Since software testing can be very 
expensive and time consuming, it is important to determine how rigorous 
the effort should be and if there may be more important considerations 
such as time to market that should take precedence.   

Decisions also have to be made about what types of testing to perform. 
Some researchers break testing down into two types: debug testing and 
operational testing (Frankl et al. 1997). This fits with two primary reliability 
testing goals—to find and remove defects in the software and to evaluate the 
ability of the software to operate as expected. Debug testing is more 
effective at finding defects but may result in focusing testing resources in 
finding problems that may never appear operationally. Operational testing 
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evaluates the system under realistic conditions but may not find rare, but 
possibly catastrophic, problems that may occur under extreme conditions. 

The number of tests, or test cases, is also an issue where cost/reliability 
tradeoffs must be made.  Exhaustive testing of all possible inputs is almost 
always prohibitively expensive. Test cases need to be chosen carefully so 
that the level of testing is appropriate for the integrity level of the system 
as well as achieving sufficient test coverage. 

13.1.3 Objectives of This Chapter 

This chapter provides a brief introduction into some components of 
software VV&T and describes some ways that rationale could contribute 
to each of them. That description is then followed by a discussion of how 
rationale would support software testability, test case prioritization, and 
component selection and testing. We then conclude by examining how 
rationale captured for test planning and strategy selection could be used to 
support future development efforts. 

13.2 Types of Software VV&T 

13.2.1 Inspection 

Inspection, of code or other software artifacts, is an important component 
of the VV&T process. As stated earlier, inspection can find problems that 
testing often cannot. Inspection can also be employed at the early stages of 
system development to detect specification and design errors. If these 
errors cannot be detected and removed, the resulting system is likely to be 
poorly structured with faults due to the design flaws (Kitchenham and 
Linkman 1998).  

Numerous studies have been performed to compare the effectiveness of 
inspections versus testing. Formal inspections (also known as Fagan 
Inspections) have been shown to be 7.4 times more productive (looking at 
the ratio of errors found to effort expended) than testing (Eickelmann et al. 
2002).  

Inspection and rationale can work together in a number of ways. As with 
exhaustive testing, exhaustive inspections may not be feasible for many 
projects. If rationale is available, it can be used to help determine where  
the inspection efforts should be focused. The rationale for a software system 
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can point out where the nonfunctional requirements best addressed by 
inspection (such as maintainability) were used to drive the decision-making 
process. The rationale can also point out where these non-functional 
requirements were not considered. If maintainability, for example, was not 
considered for some software artifacts and it should have been, those 
artifacts should be inspected. 

Inspections can also be used to assist in rationale capture by requiring 
that the rationale be inspected along with the software artifacts it applies 
to. The inspectors can ask questions such as:  

• Were alternatives considered? 
• Were criteria used to drive the decision-making process appropriately? 

Were items given the correct priorities relative to overall system goals? 
• Were there any assumptions made that need to be documented in the 

rationale?  

Incorporating rationale capture into the inspection process makes 
rationale capture an integral part of the development process. It also helps to 
focus the collection on areas that were considered crucial enough to merit 
inspection. Also, since inspection is a collaborative activity, it ensures that 
the decisions made are reviewed and ensures that input from team members 
other than the primary developer are taken into consideration. Several 
rationale-based systems have been shown to be helpful in keeping meetings 
on track and in supporting collaboration and negotiation. Examples include 
WinWin (Boehm and Kitapci 2006) for requirements negotiation and 
Compendium for meeting facilitation (Buckingham Shum et al. 2006). 

13.2.2 Unit Testing 

Unit tests are tests performed on the “smallest possible testable software 
component” where units can be classes, small commercial off-the-shelf 
(COTS) components, in-house components, or procedures/functions 
(Burnstein 2003). These tests are typically performed by the software 
developer. Unit testing consists of three phases: planning, test set 
acquisition, and test set measurement (execution and evaluation) 
(ANSI/IEEE 1987). In Test-Driven Development (TDD) (Beck 2002), also 
known as Test-First Development, the unit tests are written before the code. 
The ability to do this is supported by unit testing frameworks like JUnit 
(http://www.junit.org). 

For unit testing, one key decision is how many tests to write. As with 
other forms of testing, exhaustive testing is not possible. The techniques of 
white (or glass) box testing can be utilized—tests should be written to 
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cover all paths, as well as black-box testing—creating equivalence classes 
to test different types of inputs and to ensure that boundary conditions are 
covered. Test case prioritization is also important; running higher-priority 
unit test cases first has been shown to increase fault detection rates (Do et 
al. 2006; Rothermel and Elbaum 2003). 

13.2.3 Integration Testing 

Integration testing refers to testing that is performed as the various 
components that make up the system are combined. There are many 
different methods that can be used during integration. The method chosen 
depends on the process used to develop the system and when components 
are available for integration. As a general rule, the “big bang” approach 
where all components are integrated together at once is to be avoided 
because it makes it more difficult to isolate which component is 
responsible when an error is detected (Schultz 1979).  

 Alternatives to the “big bang” approach include bottom-up testing, 
where lower-level components are tested first, top-down testing, where the 
higher-level components, starting with the user interface, are tested first, 
and other variants, such as sandwich testing, which performs testing of the 
top and bottom levels in parallel using the components in the middle layer 
(Bruegge and Dutoit 2004). One heuristic used to evaluate different 
integration strategies is to ensure that the “most important components” 
receive the most testing.  

The rationale can help with determining the integration strategy in 
several ways. One is by its support for requirements traceability. If 
requirements are used as arguments for selecting decision alternatives that 
then map to the code implementing these alternatives, this mapping can 
show what portions of the software apply to which requirements. This is 
useful to know when assessing the criticality of components. 
Nonfunctional requirements can also appear in the rationale and can be 
used to assess criticality.  

13.2.4 System Testing 

System testing is a general category that refers to a variety of different 
types of tests that could be performed on the system as a whole. One type 
of system testing is the Acceptance Test—tests that demonstrate to the 
customer that the system functions as required.  

Regression testing is another form of testing that works with the system 
as a whole. Regression tests are performed on a system when changes are 
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made during software maintenance. The goal is to ensure that new changes 
added do not break any of the existing functionality. Regression testing 
can be very expensive so it is often necessary to perform only a subset of 
the possible tests. The use of rationale to support regression testing is 
described later in this chapter. 

There are also a number of specialized tests that can be performed on the 
completed system. These could look at aspects such as system performance, 
reliability, security, and other nonfunctional system characteristics. 
Performance alone contains many different subtests including stress testing 
(testing the number of “requests”), volume testing (data amount), security 
tests, timing tests (checking timing constraints), and recovery tests (the 
ability to recover from failures) (Bruegge and Dutoit 2004). The rationale 
can be used to help determine how the different types of testing should be 
performed by identifying areas of the system where those aspects were 
considered during development. This assists in targeting the tests to areas 
where failures are likely to be the most critical. 

13.3 Rationale Support for Software VV&T 

13.3.1 Rationale and Testability 

Since testing is both difficult and costly, developers should be thinking 
about how testability could be designed into their software. The IEEE 
Standard Glossary of Software Engineering Terminology (IEE 1990) defines 
testability as follows: “The degree to which a system or component 
facilitates the establishment of test criteria and the performance of tests to 
determine whether those criteria have been met.”  Knowing the testability of 
a software component can help guide testing by indicating how difficult it 
will be to find defects in that component and using that information to 
determine the “testing intensity” (Voas and Miller 1995).  

Rationale can support testability in two ways. The first is by encouraging 
developers to provide rationale for their decisions and by offering testability 
attributes as reasons for considering one alternative over another. Boehm 
(1979) included testability characteristics in his Software Quality 
Characteristics Tree. The characteristics identified are communicativeness 
(understandable inputs and outputs), self-descriptiveness (well documented, 
traceable), and structuredness (well organized). Bass et al. (2003) define 
testability “tactics” that can be used to design for testability at the 
architecture level. These include information recording and playback 
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capability, separating the interface from the implementation, providing 
specialized interfaces for use by test harnesses, and building in monitors to 
save state information. Burge (2005) included testability attributes in the 
SEURAT Argument Ontology such as function visibility, minimizing 
variable reuse, providing triggers, supporting instrumentation, and providing 
re-entry points.  If developers use a rationale support system to assist in their 
decision-making this could increase awareness of testability criteria as 
reasons for their decisions. In addition, the presence of the rationale would 
reduce the risk of software maintainers making design decisions that limit 
testability by modifying the software in ways that conflict with prior 
testability goals. Since functionality supporting testability, such as 
instrumentation and re-entry points, tends to cross-cut much of the system 
functionality, the ability to trace from the code to the traceability goal is 
especially useful. 

The rationale describing the testability of the software can then be used to 
help set the testing intensity, as described by Voas and Miller (1995). If the 
component has been designed to be easier to test it may require fewer test 
cases to provide sufficient confidence in its correctness. If the component 
did not consider testability and the rationale indicates that it is critical, this 
would indicate that a higher testing intensity will be warranted. 

13.3.2 Rationale and Test Case Prioritization 

A key component in both incremental development and software 
maintenance is regression testing—repeating earlier tests to ensure that 
new modifications have not harmed existing functionality or quality. 
Regression testing can be both time consuming and expensive so it is often 
not possible to repeat the entire set of tests for each modification. There 
may even be cases where if the new modification is critical enough, such 
as an emergency patch for a fatal error or security flaw, and where time is 
limited, the number of tests run is significantly constrained to the point 
where some tests that would normally be run are not (Srivastava and 
Thiagarajan 2002). The need to perform regression testing both effectively 
and efficiently requires some form of test case prioritization. A second 
goal of prioritization is to find problems as early as possible during 
regression testing so they can be corrected. 

There are a number of testing goals that can drive test case prioritization. 
Some examples include achieving test coverage quickly, testing frequently 
used features first, and early defect detection (Rothermel and Elbaum 2003). 
Studies have shown that prioritization techniques consistently outperform 
randomized testing (Rothermel and Elbaum 2003).  
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The presence of rationale can supplement methods for test case selection 
by providing a link between the software and the quality attributes that 
need to be assessed when changes are made. When a change is introduced 
into the code base, the quality attributes used to drive the original decisions 
can indicate the qualities that need to be evaluated after a change has been 
made. Traceability links between functional requirements and the code, 
also captured in rationale, can help in the determination of which functions 
are most critical and should receive retesting earliest in the test suite.  

13.3.3 Rationale, Testing, and Component Selection 

Many software development projects are making use of reused or 
purchased components. While there are many advantages to this approach, 
it does introduce additional difficulty into software testing. One goal of 
COTS or component-based development is to reduce costs and increase 
reliability. This is dependent on the reliability of the components chosen. 
While this software may have been extensively tested, that testing may not 
have been performed under the same circumstances as it will be used in a 
new product. For a component to be trusted, the component provider needs 
to have tested it in all possible configurations and independently of a 
specific context of use (Harrold 2000).  

Rationale can be of considerable support during the component 
selection and evaluation process. Rationale is often described as the way to 
capture intent (Sim and Duffy 1994). The success of COTS and 
component-based development efforts hinges on the compatibility of the 
intended use of the component from the component provider and the 
component consumer perspectives. If the rationale for component 
development is provided, that information would be invaluable to the 
consumer. Avoiding selection of a poorly suited component is the first step 
in avoiding component-introduced defects. 

Assuming that the component appears to be suitable, the rationale can 
also be of assistance if the rationale for the component provider’s testing 
strategy is available. Did the tests focus on specific qualities such as 
performance and reliability? Has the component provider designed their 
component to support ease of testing? Are test harnesses for the component
provided? The more information available about how the component was
tested, the greater the consumer confidence will be. The component
consumer can examine the rationale behind the testing strategy used by the 
provider to ensure that it is a good fit with what they need and except from
the component. 
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13.4 Software Testing Rationale 

Quality Assurance and software VV&T require careful planning in order 
to determine appropriate strategies and tools. As with the rest of software 
development, the decision problems encountered, the alternatives 
considered, and the final decisions made can be captured as rationale. 
Bertolino (2007) identifies six questions identifying any approach to 
software testing: why (the test objective), how (test selection), how much 
(test adequacy), what (levels of testing), where (testing context), and when 
in the product lifecycle. The answers to these questions form the testing 
strategy and can be captured in the testing rationale.  

13.4.1 Testing Rationale 

A good VV&T strategy is unlikely to be something that just happens—
there needs to be careful planning to determine what the testing priorities 
are and how to assess test effectiveness. As with other types of planning, 
there will be many decisions made that can be captured in the rationale. 
Capturing test development rationale is useful in negotiating priorities for 
the current development effort and also in determining testing strategies 
for subsequent efforts. The combination of test history and rationale for the 
strategies chosen would be very helpful in determining if those strategies 
were successful and how they should be modified. 

As mentioned earlier, there are many tradeoffs that must be made during 
VV&T planning. For example, what level of testing integrity (IEEE 
2004b) is required? Is time to market more important than quality? It is 
important that projects determine what quality means for them and what 
costs they are able to incur to achieve it. If pursued incorrectly, quality can 
“destroy value” of a product (Favaro 1996). 

Test case selection is another area where decisions need to be made. 
What is an appropriate granularity level for test cases? Small cases are 
easier to prioritize but add to the cost of test suite management (Rothermel 
and Elbaum 2003). The rationale is a natural place to capture these and 
other testing tradeoffs. Similarly, the choice of integration strategy and 
which types of system tests are run are also decisions that should be 
justified in the rationale. Rationale for inspection decisions can also be 
captured—what was inspected and using which technique? There are many 
different techniques for reading code, all of which are based on their own 
assumptions about code inspections (Thelin et al. 2003). The rationale can 
record the reasons for the choice of technique so that they can be compared 
to those of the project’s overall QA strategy. 
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Rationale should also capture the reasons behind the choice of metrics 
collected. While metrics are a valuable mechanism for assessing software 
quality, they can be expensive and time consuming to collect.  The value 
of metrics in achieving quality goals and monitoring high-risk areas needs 
to be balanced against the cost of collecting the metrics data (Clapp 1993). 
The project goals and their relationship to the metrics collected can be 
captured in the rationale. The type of metrics collected may also be 
influenced by the tool support available to aid in collection. This 
information should also be collected in the rationale so that if tool 
availability or preferences change it will be easy to determine if this should 
result in a corresponding change in which metrics are collected. 

13.4.2 Uses for Testing Rationale 

where one of the primary goals is to capture the expertise utilized during a 
software project. While valuable during a single project, a key goal is to be 
able to share knowledge between projects. One way towards this goal from 
the testing perspective would be to perform a retrospective examination of 
testing strategies with the goal of applying the lessons learned to future 
projects. For example, test case selection is likely to involve making 
assumptions about how effective each case will be at finding defects 
(Chernak 2001). Analyzing the actual effectiveness and comparing it against 
the initial assumptions will help determine if those assumptions were valid. 
That information can then be fed into test planning on subsequent projects. 

Testing rationale can also make a valuable contribution to the QA 
process for a project. The rationale can be evaluated to determine if the 
reasons behind the testing decisions were consistent with the overall 
project goals. It can also be used to evaluate how well supported the 
selected decision alternatives were. Requiring that rationale be collected 
for testing decisions to be used as part of the quality assessment may 
encourage test planners to put more thought into choosing their strategy 
than they might have otherwise. 

13.5 Summary and Conclusions 

Software VV&T is crucial in ensuring the quality of delivered software. 
Developing and carrying out an appropriate strategy can be both difficult 
and expensive.  There are many decisions that need to be made regarding 
what needs to be testing and how that testing should be performed. Not all 

Rationale capture can be viewed as a form of knowledge management 
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tests are of equal value and the costs and risks need to be examined as part 
of a “value-based” testing strategy (Ramler et al. 2006).  

Rationale can support software testing as both an input to and an output 
of VV&T. As an input, the rationale provides the intent behind the 
software decisions. This could highlight potential weakness that should be 
evaluated as well as indicating some of the types of tests that might be 
appropriate given the nonfunctional requirements that guided specific 
decisions. The testability of a piece of software can be explicitly captured 
in the rationale. As an output, rationale for decisions made on how and 
what to test can be compared later with the eventual outcomes of that 
testing to provide insight into how testing processes can be improved for 
future projects. 



14 Rationale and Software Maintenance 

Software maintenance can be a very expensive part of the software 
development process. Anyone working in the software industry during the 
years leading up to the year 2000 (Y2K) is all too familiar with the often 
unexpectedly long lifespan of many software systems. The difficulties of 
maintaining these systems are acerbated because the original developers 
are often not available. Software Engineering Rationale (SER) would 
provide insight into why the system is the way it is by giving the reasons 
behind the decisions made during design and implementation. Rationale 
could help to indicate where changes might be needed during maintenance 
if design goals change and help the maintainer to avoid repeating earlier 
mistakes by explicitly documenting alternatives that were tried earlier that 
did not work. In this chapter we will look at these and other ways that 
rationale can assist with software maintenance. 

14.1 Introduction 

14.1.1 Software Maintenance and Evolution 

Software maintenance refers to “the modification of a software product 
after delivery to correct faults, to improve performance or other attributes, 
or to adapt the product to a modified environment” (IEEE 1998). This 
process is often referred to as software evolution, although evolution can 
be considered to be only one phase in a software maintenance cycle that 
also includes servicing (minor changes made when the system is no longer 
capable of being evolved), phase out, and close down (Bennett and Rajlich 
2000). Lehman’s laws state that if a system is not evolved, it becomes less 
satisfactory to the users and is perceived to have declining quality 
(Lehman 1996). 

If a software system is successful, it could potentially spend a large 
percentage of its lifetime in the maintenance stage and maintenance costs 
could be significant. Costs appear to be increasing over time, with lifecycle 
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costs devoted to maintenance rising from 40% in the early 1970s to 90% in 
the early 1990s, with 80% of these costs going for system improvements 
(Pigoski 1996). Despite its importance, this is an area that requires more 
attention. Unfortunately, software development is often driven by cost and 
schedule with no incentive for the software developers to build maintainable 
software (Pigoski 1996). In 2001, a study was performed to study process 
improvement efforts in industry (Hall et al. 2001). Qualitative data was 
collected from 13 companies using focus groups and quantitative data was 
collected from 85 companies using questionnaires. The study showed that 
formal process improvement models did not sufficiently address 
maintenance. Kajko-Mattson (2001) and a class of software maintenance 
students studied 18 organizations in Sweden to assess how well they met a 
set of documentation requirements, many of which were intended to support 
software maintenance, and demonstrated that there needed to be 
improvement. Problems with software documentation, which is often out of 
date, may be why software maintainers often do not trust the documentation 
and get most of their information from the source code (Singer 1998). 

One way to potentially decrease the cost and risk of software 
maintenance would be to capture and use the rationale behind decisions 
made during design and implementation. Maintainers would no longer 
need to guess at the developers’ intent but instead could take advantage of 
developer knowledge when making maintenance decisions. 

14.1.2 Objectives of This Chapter 

This chapter describes the software maintenance process and how it is 
supported by rationale. It defines the types of software maintenance and 
then focuses on two main areas: how maintenance can be improved and 
how maintenance can be supported. Maintenance improvement involves 
both designing the code to be more maintainable and re-engineering 
existing code for maintainability. Maintenance support involves predicting 
where maintenance will be required, evaluating the impact of proposed 
maintenance changes, understanding the software being maintained, and 
studying the history of how the software has evolved over time. 

14.2. Types of Software Maintenance 

Software maintenance involves maintaining more than just the code. The 
most commonly mentioned types are the four given by Lientz and 
Swanson (1980): corrective (repairing faults), adaptive (changes that do not 



14.2. Types of Software Maintenance      189 

add functionality but adapt the software to changes in the environment), 
perfective (updates to add functionality), and preventative maintenance 
(changes to make the software more maintainable in the future). Chapin 
(2000) took a wider approach and identified 12 types of software 
maintenance: training, consultive, evaluative, reformative, updative, 
groomative, preventive, performance, adaptive, reductive, corrective, and 
enhancive. The first five types do not involve modifying the software but 
instead affect how the stakeholders or developers interact with it (training, 
consultive, evaluative) or update the software documentation (reformative, 
updative).  

For any type of maintenance, several activities need to take place. 
Kitchenham et al. (1999) list four activities: investigation, modification, 
management, and quality assurance. Investigation involves impact 
assessment to determine what impact the change will have, modification is 
the change itself, management encompasses all management activities 
including configuration management, and quality assurance includes 
testing and other activities that must take place to ensure that the changes 
do not damage product quality. Figure 14.1 shows questions arising during 
these activities that could be answered by the rationale. 

 

Investigation Modification

Management

Quality Assurance

Rationale: 
-Where does the 
change need to be 
made? 
-What impact will 
the change have? 
 

Rationale: 
-Where have most 
changes been 
made in the past? 
-Should it be 
maintained or re-
engineered? 
 

Rationale: 
-What are the 
criteria for my 
change? 
-Does this change 
conflict with 
anything? 
-Has this been tried 
before? 
 

Rationale: 
-What were the 
original quality 
criteria? 
-Are these still true 
now? 
-Will the 
maintenance 
changes still 
conform to these 
criteria? 
  

Fig. 14.1. Rationale support for maintenance activities  

Software maintenance changes can be needed for many reasons. 
Corrective maintenance is necessary when a problem is detected in the 
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software. Enhancive maintenance is necessary when requirements are added 
to meet customer needs. Another reason for making changes involves 
assumptions. Over time, assumptions that were made during development 
can become invalid. This invalidation is a major driver for software 
evolution (Lehman 2005). When these changes are made, it is important to 
understand how they impact the software and its ability to meet customer 
requirements. Rationale can assist with this by relating the code being 
modified to the requirements and assumptions that drove its design. 

The software maintenance process is also affected by who performs the 
maintenance. In some cases, this is not the original developers. It is not 
uncommon on large projects to award separate contracts for operations and 
maintenance (OEM). If the maintainers do not have access to the original 
developers it is quite possible that the rationale will provide the only 
insight into the original developers’ intent.  

14.3 Improving Maintainability 

Not all software systems are equally maintainable. Ideally, systems should 
be designed with maintenance in mind with a well-documented, easily 
extensible design. Using maintainability as a design goal and documenting 
it in the system rationale is a step in the right direction. Not all systems, 
however, can or should be maintained. If the system quality is low but the 
system is still crucial to the business using it then it should be  
re-engineered to improve its quality (Sneed 1995). 

14.3.1 Designing for Maintenance 

Many of the goals of good software design, such as reducing coupling and 
increasing cohesion, are intended to make it easier to extend the software 
more easily. Studies have shown that system structure does have an effect 
on the time required for and accuracy of software maintenance (Gibson 
and Senn 1989). This indicates that maintenance costs could be reduced if 
software is designed so that it can be more easily modified later. 

The ability to extend software easily was one of the driving forces 
behind Design Patterns (Gamma et al. 1995). Design Patterns are solutions 
to common problems that reduce or isolate dependencies between classes. 
Examples of patterns that are especially valuable during maintenance are 
the Facade pattern, which isolates clients from the code that provides 
services to them by providing a single class as an interface, the Adaptor 
pattern, which creates a “wrapper” around the interface of a component or 
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system so that clients only access the controlled wrapper interface, and the 
Mediator pattern, which uses a single Mediator class to control how 
underlying classes work together so that they are not dependent on each 
other’s interfaces. 

One of the goals of writing extensible software is to follow the “Open-
Closed Principle” (Myer 1988). The open-closed principle states that 
software should be “open for extension” but “closed for modification”, i.e. it 
should be possible to extend the software without modifying existing code. 
A study performed using the State design pattern showed that following it 
correctly results in code that follows the Open-Closed principle (Ng et al. 
2006). Design patterns can result in more complicated designs. Prechelt et 
al. (2001) performed an experiment to determine if maintenance time was 
reduced by using a pattern rather than a simpler solution. In most tasks 
studied, the pattern was shown to be beneficial but there were cases where 
the simpler solution had fewer errors or took less time to maintain.  

Rationale can contribute toward better designed software in several 
ways. One is in the selection of design patterns. The Design 
Recommendation and Intent Model Extended to Reusability (DRIMER) 
system used rationale to assist with design pattern selection and adaptation 
(Peña-Mora and Vadhavkar 1997). Rationale is also used to drive design 
when applying the NFR Framework (Chung et al. 2000). In the NFR 
Framework, the Adaptability NFR (nonfunctional requirement) was used 
as the driving force to design adaptable software architectures 
(Subramanian and Chung 2001). This process involves considering 
multiple design alternatives and uses and records the rationale. The NFR 
Framework was used in the Software Architecture Adaptability Assistant 
(SA3) tool to develop adaptable architectures (Subramanian and Chung 
2002). The design tradeoffs and rationale are a critical component in 
evaluating which alternative architecture is most suitable. 

Rationale also plays an important role by documenting where 
maintainability (and the related NFRs of flexibility and adaptability) was 
involved in decision-making. This information will explain the design and 
implementation to the maintainer and help to prevent changes that conflict 
with those goals. An example would be documenting where, how, and why 
a design pattern is used so that the pattern is not inadvertently broken by 
later development.  

14.3.2 System Reengineering 

Lehman’s second law states that systems being evolved become 
increasingly complex unless something is done to reduce that complexity 
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(Lehman 1996). Fowler et al. describe “bad smells” as potential problems 
in code, or code structures, that are candidates for refactoring (Fowler et al. 
1999). Refactoring involves removing the bad smells to improve the 
design of the code. Examples of bad smells include duplicated code, 
methods that are too long, and complex conditionals. Another response to 
the problem of code deterioration is to built preventative measures into the 
development cycle. The Class Deterioration Detection and Resurrection 
(CDDR) activity and Code/Class Growth Control (CGC) activity can be 
applied at each process iteration to address problems of high coupling and 
duplicated code (Subramaniam 2000).  

System reengineering involves rewriting legacy systems to either 
increase their maintainability, port them to a different platform, increase 
reliability, prepare for modifications, or any or all of the above (Sneed 
1995). The re-engineering process includes several tasks: reverse 
engineering the existing system (recapturing models), determining what 
repairs need to be made to the structure, and updating the legacy system 
(Nierstrasz et al. 2005). Demeyer et al. (2003) described these tasks in 
detail in a series of “re-engineering patterns” that describe approaches to 
reverse-engineering the code, testing to support evolution, and migrating 
from the legacy systems to re-engineered systems. 

Re-engineering usually does not modify the function of original system 
or change its architecture (Sommerville 2007). In some cases, however, 
more drastic changes are desirable. One example is when reengineering is 
performed to migrate the legacy system from its current architecture 
towards a component-based one. Mehta and Heineman (2002) developed 
an approach to make software more maintainable by transforming it into 
fine-grained components where features that change frequently can be 
isolated. The components corresponded to system features which were 
identified by examining the system’s regression test suite. Code profiling 
can be used to detect which code is executed when testing which features.  

Rationale can support system re-engineering in several ways. One is in 
the negotiation that should take place to determine the advantages and 
disadvantages of re-engineering. In some cases, it may be more efficient 
and economical to build a new system rather than re-engineer an existing 
one. These arguments and the tradeoffs required can be captured in 
rationale.  

Once the decision has been made to re-engineer, if rationale is available 
for the legacy system it would assist with code comprehension by 
documenting what decisions were made and why. The rationale may also 
capture the original intent behind the decisions and can indicate where 
changes may need to be made if the system has been changed to no longer 
meet that intent.  



14.4 Software Maintenance Support      193 

14.4 Software Maintenance Support 

14.4.1 Maintenance Prediction 

Maintenance prediction involves determining what portions of the software 
system are likely to require changes in the future. This information is 
valuable because it indicates where developers should concentrate effort 
towards making the system more extensible. This information is also 
helpful in planning maintenance releases. 

Stark et al. (1999) studied 44 software releases for seven products to 
study the type, frequency, and impact of requirements changes during 
software maintenance.  In this study, any approved change request was 
considered to be a requirement. They generated a taxonomy of requirement 
change types and collected data on the source of the change, when in the 
development cycle it was requested, and the time required to make it. They 
discovered that it was useful to obtain the intention of the requirement (the 
rationale behind it). The requirements taxonomy and the historical 
information about how long they took to implement them can be used to 
estimate the time needed for future changes of the same type and to assess 
the amount of schedule slip occurring if changes were made to scheduled 
releases. Information about when in the cycle requirements changes took 
place was also helpful in controlling change.   

14.4.2 Impact Assessment 

When performing software maintenance, it is important to understand the 
impact of any changes proposed. The change needs to be assessed to 
determine the size, and therefore the cost, of the change. The change also 
needs to be assessed to ensure that it is consistent with system requirements, 
both functional and nonfunctional. It is not uncommon for proposed changes 
to conflict with each other or with the original system goals. 

The rationale for the system can assist with impact assessment. The 
Software Maintenance Expert System (SMES) (Avellis et al. 1993) is a 
blackboard architecture-based system that uses an Assumption-based Truth 
Maintenance System (ATMS) (deKleer 1986) to evaluate the impact of 
changing a design decision on the rest of the system. In SMES, each 
design decision is linked to a design plan that implements it. 

More recently, the SEURAT system (Burge and Brown 2006) was 
developed to perform impact assessment of changing requirements and 
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assumptions using the system rationale. SEURAT evaluates support for 
design alternatives based on the requirements, assumptions, and non-
functional requirements that argue for and against them. If a requirement 
or assumption is disabled, the support for the alternatives is re-evaluated 
and the maintainer is alerted which decisions may require changes. Non-
functional requirements, stored in an argument ontology (Burge 2005), 
each have a priority associated with them which can be modified on a 
global level or for a specific decision. This modification will trigger a re-
evaluation and the maintainer alerted if a change might be needed. 

Impact analysis, and how it can be supported by rationale, is described 
in more detail in Chapter 9 of this book. 

14.4.3 Program Comprehension 

In order to maintain a piece of software successfully, the maintainers need to 
be able to understand it.  Program comprehension can be a difficult process, 
especially for large software systems. When fixing a bug, understanding new 
code can take between 70% (for experienced developers) and 90% (for new 
programmers) of the programmer’s time (Eick 1998). When given a 
maintenance task, the maintainer needs to find the code relevant to the task, 
learn their dependencies, and add or update the needed code (Ko at al. 
2005). Maintainers typically use “beacons”—useful code fragments, 
comments, or variable/procedure names—to find their way through the 
code. Novice programmers, however, do not recognize beacons (Crosby et 
al. 2002), which adds to the difficulty of the maintenance task.   

Some program comprehension approaches attempt to help with 
comprehension of the system as a whole. The Large Software System 
Information Environment (LaSSIE) environment (Devanbu et al. 1991) 
provides access to the software via a number of different viewpoints by 
making use of intelligent indexing and a domain model. The construction of 
the knowledge base required by LaSSIE, however, is a manual process. 
Evolution is also supported by developing software that incorporates 
Intentional Views (Mens et al. 2002). Intentional views group software into 
“concerns” using naming conventions and inheritance. Prolog rules are used 
to capture those conventions and use them to extract the software for each 
view. Automated clustering of software components is supported by the 
PROgram Comprehension Combining Semantic and Structural Information 
(PROCSSI) system (Maletic and Marcus 2001) which uses Latent Semantic 
Indexing (LSI) to compute similarity using variable names, type names, and 
comments. Concept analysis (Siff and Reps 1997) is used to infer repeating 
design patterns from code (Tonella and Antoniol 1999). This approach finds 
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groups of classes with similar structural relationships to each other and can 
be applied to find patterns in code without having a pre-defined pattern 
library. 

Software visualization techniques can be used to support maintenance. 
Software visualization can be defined as “the use of the crafts of typography, 
graphic design, animation, and cinematography with modern human–
computer interaction and computer graphics technology to facilitate both the 
human understanding and effective use of computer software” (Price et al. 
1998). Software visualization environments assist with visualizing the 
structure of the program, via call graphs and other views, and the behavior. 
Behavior visualization can be useful in looking for system bottlenecks as 
was demonstrated by the Program Visualization (PV) prototype which 
would display execution time and memory use by system components 
(Kimelman et al. 1998). Statistics computed from the change history of the 
code can be useful in maintaining very large computer systems. The SeeSoft 
visualization technique (Eick 1998) uses colors and graphics to visualize 
changes made to source code. This can aid in detecting duplicate code, and 
determining which code was modified most frequently and most recently. 
Animations can be used to view changes over time. 

Other approaches are designed to help maintainers find the relevant 
code. This is related to the concept assignment problem (Biggerstaff et al. 
1993) where program code structures need to be mapped to the human-
oriented domain concepts that they implement. This is a significant 
difficulty during maintenance. A study of corrective and perfective 
maintenance showed that on average programmers spent 25 (± 9) minutes 
out of 70 total inspecting code that was not relevant to their task (Ko et al. 
2005). Robillard (2005) developed an algorithm, implemented in an 
Eclipse Plug-in, that takes an initial set of task-related elements and returns 
other program elements related to that set ranked by interest to the 
developer. Feature location approaches can also assist with this process by 
mapping features (user-visible sets of requirements) to the source code. 
This can be approached using static techniques which use dependency 
analyses but do not execute the code and dynamic techniques which 
examine what code was executed when running test cases. Static 
techniques tend to be imprecise while dynamic techniques only capture 
code relevant to the specific inputs given to the program (Koschke and 
Quante 2005). Hybrid techniques combine the static and dynamic 
approaches.  Other methods for finding relative code include program 
slicing (Tip 1995), information retrieval techniques (Antoniol et al. 2000), 
and data mining over software repositories (Zimmermann et al. 2004). 

Rationale can assist with program comprehension in several ways. 
Rationale can serve as a way to index from requirements to the code and 
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from the code back to the requirements. Forward tracing, from requirements 
to code, can be used to examine where the different requirements are 
implemented. Reverse tracing, from code to requirements, illuminates the 
intent of the implementation. The relationship between the code and its 
requirements is crucial in order to ensure that changes made during 
maintenance do not introduce requirements violations.  

When performing specific maintenance tasks, the maintainer needs to 
determine which code is relevant to the problem being solved.  Using the 
rationale to index into the relevant source code can significantly decrease 
the time required, especially for nonexpert developers (Burge and Brown 
2006). In a study performed using SEURAT (Burge 2005), novice Java 
programmers without rationale assistance spent significant amounts of 
time trying to find the code they needed to modify and were often 
sidetracked by class and method names that appeared to be applicable but 
were not.  

When von Mayrhauser and Vans (1994) studied program 
comprehension processes they listed one of their information needs as the 
ability to obtain connected domain information and suggested that this be 
provided using the design rationale and its ability to connect the 
application’s algorithms to the application’s purpose.  

14.4.4 Maintenance Recovery 

The rationale behind changes made to the software over time is required for 
what we will call maintenance recovery—the ability to document and track 
maintenance changes. While most re-engineering efforts look at the latest 
version of the software, the history of how the system has evolved over time 
indicates where “chronic problems” are located (Nierstrasz et al. 2005). In 
addition, understanding how a system has evolved can help predict how it 
may evolve in the future (Antón and Potts 2001). Software metrics can be 
used to analyze the software to detect evolution-critical parts (code that is 
likely to require evolution because of poor quality), evolution-prone parts 
(typically because they correspond to volatile software requirements), and 
evolution-sensitive parts (software that is likely to break during evolution, 
typically due to tight coupling) (Mens and Demeyer 2001). A combination 
of metrics and software visualization techniques are used in the Evolution 
Matrix (Lanza 2001). The Evolution Matrix can be used to visualize changes 
in the size of systems and classes throughout multiple evolutions. The 
developers of the Beagle maintenance support tool (Godfrey and Tu 2002) 
are particularly concerned with understanding invasive change—changes 
made to a software system that involve significant changes to the systems 
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structure. Beagle supports origin analysis which determines if a software 
entity that is in a new version of the software but not the old one is actually 
new or if it is an entity (renamed, moved, or modified) from the earlier 
version. This information can then be used to build the “evolutionary 
history” of the application. 

One source of information describing changes made during evolution is 
the change history extracted from configuration management tools. This 
information can be used to capture both the maintenance history and, if the 
reasons behind the changes are documented, the rationale. When 
evaluating a systems history it is important to know not only what 
changed, but why. Differentiating between evolution-critical, evolution-
prone, and evolution-sensitive portions of the code will be easier if the 
reasons why these parts of the system could be extracted from the rationale 
as well as being inferred from metrics.  

14.4.5 Maintenance Rationale 

Rationale can, and should, be captured during maintenance. One reason for 
doing so is so that the rationale for maintenance changes can be compared 
for rationale for the decisions made during earlier changes to check the 
consistency of decision-making criteria. If the criteria differ, that could 
signify that new changes may have an adverse affect on the system quality 
as identified by the original developers or it could indicate a priority shift 
that may necessitate revisiting other earlier decisions.  

Rationale can also support collaboration in maintaining very large 
systems by allowing maintenance knowledge to be shared between team 
members. Loughher and Rodden (1993) built a documentation system to 
support capture and sharing of maintenance rationale. They did not use an 
argumentation approach to their rationale because they believed that 
maintenance rationale is more focused on explanation than deliberation. 
Their system worked by allowing source code annotation using a markup 
language to link “maintenance comments” to the code. Maintenance 
comments can be in text form or simple graphics, such as a flow charts.  

The Cooperative Maintenance Conceptual Model (CM2) (Canafora et al. 
2000) also captures maintenance rationale. The goal of CM2, and 
Cooperative Maintenance Network Centered Hypertextual Environment 
(COMANCHE), the system that uses it, is to support collaboration over an 
extended period of time by making rationale available to future maintainers. 
In the CM2 process, maintenance starts with a maintenance request.  
The rationale for the design for the maintenance change, referred to as 
“Rationale in the Large,” is stored in the Questions, Options, and Criteria  
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(QOC) notation (MacLean et al. 1989) and the rationale for the change 
implementation, or “Rationale in the Small,” is captured as comments in 
the code that link the code to a folder (the “Implementation Folder”) for 
each maintenance request.  The rationale is not in an argumentation 
structure but is a natural language description of the change. The 
implementation rationale is associated with the QOC option that it 
implements via a bidirectional traversal link.  

14.5 Summary and Conclusions 

A successful software system will spend the majority of its lifespan 
undergoing maintenance. As the development time recedes further into the 
past, the reasons behind the decisions that formed the product become 
increasingly inaccessible. This information, which includes the developers’ 
initial intent, can be captured in the rationale so that it will be available 
when the software requires modification. In addition, captured rationale for 
proposed changes can be used to compare that reasoning with the original 
requirements to ensure that consistency of goals is maintained.  

In this chapter we described some major areas of software maintenance 
research and how the capture and use of rationale supports them. The costs 
and risks of maintenance are very high. The ability to obtain the deeper 
understanding of the software provided by the rationale is invaluable to 
assist with this process to minimize these costs and risks. 



15 Rationale and Software Reuse 

In this chapter, we describe how Software Engineering Rationale (SER) 
can be used during many types of software reuse, including how rationale 
can assist during Component-Based Software Engineering, with Software 
Product Lines, and COTS-based software development. 

15.1 Introduction 

15.1.1 Software Reuse 

Software reuse has long been promoted as a means to deliver software 
faster, cheaper, and with higher quality. While this is a worthwhile goal, its 
achievement is by no means guaranteed. There are many concerns that 
need to be addressed, which vary depending on the type of reuse attempted 
and on each specific project to which reuse is applied. 

There are many different types and meanings of software reuse. In some 
cases, entire systems are reused, in others, segments of code. Reuse does 
not just apply to code—requirements, designs, documentation, test plans, 
test procedures, any development artifact could potentially be used in 
constructing a new system. The reused artifacts can be developed within 
the company doing the reusing or can be developed externally and 
purchased for use. When reusing code, the code can be treated as a “black 
box” or modified to fit a new application. In this chapter, we will refer to 
the artifact being reused as the reused “item,” where the item could be 
anything that could be reused in multiple software systems. 

Reuse has the potential to significantly reduce cost and increase quality 
of software systems and to shorten the time to market for applications. 
There are some pitfalls though that could trap the unwary. Building new 
applications from existing code, components, or applications requires that 
these items be well tested and of high quality. If an application uses 
components developed by a third party then there is a risk that the third 
party may cease to support the component in the future or go out of business 
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altogether.  There are also evolution issues if the reused item evolves in a 
way that introduces incompatibilities. These potential problems should not 
discourage reuse but are risks that need to be considered when making 
decisions on when and how to use reuse in a development effort. 

While reuse is often opportunistic, the most benefit can be derived from 
systematic reuse (Schmidt and Buschmann 2003). In systematic reuse, the 
reuse is intentional and the items reused have been developed, tested and 
shown to be of high quality.  

The determination of if, when, and how, to reuse software is a decision-
making process and as such, benefits from the use of rationale when 
considering different reuse alternatives. This benefit continues as the 
software evolves when rationale can assist in determining if choices made 
earlier should be reconsidered and if earlier reuse alternatives might now be 
preferable. 

15.1.2 Objectives of This Chapter 

This chapter discusses different types of reuse and how rationale can 
support them. In particular, it focuses on four key types of reuse: patterns, 
Component-Based Software Engineering, software product lines, and 
COTS-based software development.  

15.2 Reuse: Concepts and Categories 

There are many ways that software reuse types can be classified and 
categorized. Some reuse is opportunistic, such as copying segments of code 
from one application to another and modifying as necessary. Other reuse is 
planned from the start. The reuse granularity can be small, on the class or 
class library level, or large, by reusing entire applications as part of a larger 
system. In this section, we will describe some of the more common types of 
reuse. 

15.2.1 Types of Reuse 

Early empirical studies illustrated that the object-oriented paradigm supports 
software reuse (Lewis et al. 1991). This reusability was taken one step 
further by the definition of Design Patterns (Gamma et al. 1995). Design 
Patterns are reusable collection of classes that both capture solutions to 
common problems and that are aimed towards designing software in a way 
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that will better support reuse and extension in the future by reducing, or 
isolating, dependencies between classes. The patterns serve as reusable 
designs and instantiations of these patterns produce reusable code. Some, 
such as the Iterator pattern, have been built into class libraries such as the 
C++ Standard Template Library. The concept of reusable patterns in 
software engineering has been extended beyond design and into process 
patterns (Coplein 1995; Ambler 1998), quality patterns (Houdeck and 
Kemper 1997), architecture patterns (Gomaa and Farrukh 1998), and more. 

Another form of reuse is supported by Component Based Software 
Engineering (CBSE). The goal of CBSE is to develop software for less 
money and in less time by following a similar model to that in other 
engineering fields where new devices are composed of reusable components 
often selected from a catalogue.  For a software element to be considered a 
component it needs to conform to a component model, where the component 
model defines how components are composed into applications and how 
they communicate with each other. A component also needs to be deployed 
independently and composed into applications without requiring 
modification or customization. This composition needs to conform to a 
composition standard (Councill and Heineman 2001). Example component 
models include the Common Object Request Broker Architecture (CORBA) 
(Object Management Group 2000; Wang et al. 2001), Microsoft’s 
Component Object Model (COM) and its successor .NET (Ewald 2001), and 
Enterprise Java Beans (EJB) (Matena and Hapner 1999; Blevins 2001). Web 
Services can also be considered a type of component.  

Product Line development is a form of reuse where a family of 
applications is developed from a code baseline. A software product line is “a 
set of software-intensive systems sharing a common, managed set of 
features that satisfy the specific needs of a particular market segment or 
mission and that are developed from a common set of core assets in a 
prescribed way.” (Clements and Northrop 2002). These multiple product 
families could support different platforms (operating system, hardware), 
different operating environments (different peripherals), differences in 
functionality, or support different business processes (Sommerville 2007).  

Another common form of reuse is in building products from commercial 
off-the-shelf software (COTS) or government off-the-shelf software 
(GOTS). Like with CBSE (which can be viewed as a form of COTS 
development), the goal is to reduce development time by utilizing software 
that is purchased, not built in-house. The success of these efforts depends on 
both the availability of suitable COTS systems to incorporate into the new 
system and in the flexibility of the requirements for the new system being 
developed. It is unlikely that a “perfect match” will be found between  
the COTS systems available and the requirements for the new application.  
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Other challenges in COTS-based SE are the willingness to be dependent 
on the vendor(s) providing the COTS systems. Vendors can discontinue 
support (or just give poor support), change the API and introduce 
incompatibilities, increase pricing for new releases, and potentially cease 
to exist entirely. 

15.2.2 Types of Rationale for Reuse 

There are several types of rationale that can come into play when 
supporting software reuse. One is the reuse candidate rationale—rationale 
associated with the reused artifact. The rationale behind the design and 
implementation decisions made when building the reusable item would 
give crucial insight into its functionality and quality. The rationale could 
point out what features of the item support reusability and could also point 
out what the overall quality goals were. This information can be invaluable 
in determining if the reusable item is suitable for a particular application. 
This information is also important as the reusable item evolves. If the 
design or implantation is changed in such a way as to “break” the API or 
make the application less reusable, that will affect anyone using the item 
who needs to stay consistent with upgrades and other new releases. It is 
especially important to capture any tradeoffs made between functionality 
and generality.  

Another type of rationale that is useful is the reuse approach 
rationale—rationale for deciding how reuse should take place within a 
software application. There are advantages and disadvantages for reusing 
software versus building it “from scratch.” It is important to capture these 
alternatives and decisions in case they need to be revisited again in future 
development iterations or later in system development if goals change. In 
some cases, the requirements of the new system will require adjustment in 
order to fit the services provided by a reused item. The reasons for these 
adjustments should be captured in the rationale for the requirements so that 
if issues arise because of the adjustments the developers will know why 
the adjustments were made.  

Another type of rationale will be the reused component selection 
rationale—rationale for selecting between alternative items for reuse. This is 
particularly applicable during CBSE and COTS-based development efforts. 
The rationale will give insight into the intent of the developers when making 
these decisions and can be used to re-evaluate choices as the systems (both 
the system being developed and the items being reused) evolve. The 
rationale will assist in keeping track of what information needs to be 
reviewed periodically as applications change and by providing information 
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on alternatives that can be re-considered if the currently selected ones prove 
to no longer be feasible either due to lack of vendor support or changing 
requirements. 

A final type of rationale is the reuse dependency rationale—rationale 
that captures the decisions made in development that are dependent on the 
selection of a specific reusable item. This information can be used later to 
assess the impact if that item can no longer be used in the system or if it 
has significant changes made to it that affect how it is used in the system. 

15.2.3 Reusable Rationale 

Reusing code, documentation, designs, etc. promises to reduce the amount 
of effort required when developing software. In a similar fashion, reusing the 
rationale for these items decreases the amount of effort required to capture 
rationale for the new system. Having a set of potential alternatives and the 
arguments for and against these alternatives will give developers a 
significant head-start when they need to make similar decisions in the future.  

One methodology to support this is the use of Reusable Rationale 
Blocks (RRBs) (Hordijk and Wieringa 2006). RRBs are a collection of 
general design decisions, possible design alternatives for each decision, 
evaluation criteria, and ratings of each alternative based on that criteria. 
The collection of the RRBs forms a “generalized design space.” When new 
problems need to be solved, “problem matching” is done against the set of 
RRBs to see if this is a decision that needed to be made in the past. If that 
is the case, the alternatives and criteria can be examined and adjusted, if 
needed, to fit the new problem. The RRBs are a form of reusable design 
knowledge and can help guide the designers toward solutions to design 
problems. 

15.3 Applying Rationale 

15.3.1 Rationale and Patterns 

As mentioned earlier, many different types of patterns can be used in 
software development. Patterns, a concept that initiated with Alexander’s 
patterns for architecture (Alexander et al. 1977), typically contain the 
description of the problem, a solution, or activities that comprise the solution, 
and the consequences, or results, of applying the pattern. These consequences 
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can be viewed as the rationale for selecting the pattern. Expressing the 
rationale inside a pattern description provides insight into when and how the 
pattern should be implemented (Bozheva and Gallo 2006).  

The type of pattern best known in Software Engineering is the design 
pattern. While design patterns can be a good way to use knowledge of 
existing good designs to solve problems, they do need to be used with care.  
There is always the risk of building flexibility and extensibility into a 
software product that does not necessarily need it. Flexibility and reusability 
only bring cost and time savings if these capabilities are needed. Building 
software for easy extension and reuse does not come without cost so it is 
important to determine if this cost will be justified. If not, you run the risk of 
incurring the extra costs involved in carrying around a more complicated 
design (Beck 1999). The deliberation behind a decision on whether or not 
the flexibility/extensibility provided by a design pattern is needed can be 
captured in the rationale. The rationale can then be used to revisit these 
decisions if they need to be reconsidered at a later date.  

If the decision to use a design pattern has been made, the rationale can 
be used to determine which pattern is most appropriate for a given 
problem. Gamma et al. (1995) describe several approaches for determining 
what design pattern is right for a given problem. Several of these 
approaches utilize different forms of rationale for the patterns. These 
include the intent for the pattern, given in unstructured text as part of the 
pattern catalogue, the applicability, which problems a pattern applies to, 
and the consequences, which give some of the tradeoffs involved in 
choosing a pattern. The rationale for choosing a pattern should map to the 
causes of re-design that the pattern addresses. 

The use of rationale to assist in pattern selection was the goal of the 
Design Recommendation and Intent Model Extended to Reusability 
(DRIMER) system (Peña-Mora and Vadhavkar 1997). DRIMER 
implemented the approach of “patterns-by-intent” where a design pattern is 
selected using the designers’ intent and then code that implements that 
pattern is chosen and adapted, if necessary, based on the constraints for the 
system being built. Essentially, the design rationale for the system being 
developed is used to drive the pattern selection process and is used as an 
index into a repository of reusable code. 

One danger with using design patterns is the risk that future developers 
working with the code do not recognize the use of the pattern and why it is 
important for the development effort. Design Pattern Rationale Graphs 
(Baniassad et al. 2003) address this problem by representing the design 
patterns, the rationale behind their use, and the source code that 
implements these patterns in a graphical format. The pattern graph maps to 
the pattern description and the source code graph maps to the implementing 
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source code. The developer, or maintainer, can explore both graphs to 
determine what the goals are behind the pattern implementation. The 
designer can explore the graphs using both regular expression based search 
and node expansion. The pattern graph captures alternative ways to 
implement each pattern and the rationale for each choice. During 
maintenance, using the DPRG assists the maintainer in exploring what 
design goals are relevant to the code that implements the design pattern. 

Patterns do not just apply to the software artifacts. Patterns also appear 
in software process. Hagge et al. (2006) describe how process patterns 
exist for successful requirements engineering (RE) practices and how those 
patterns can be reused to support process improvement. The process 
patterns themselves follow a structure that is very similar to rationale 
where the pattern description giving the problem, solution, context that 
guides it, and the experience that supports it maps to rationale where a 
question (decision) is posed and an option is considered, with arguments 
given for and against it that involve evaluation criteria. A collection of RE 
patterns is being saved in the Requirements Engineering Patterns 
Repository (REPARE). 

Process knowledge is also distributed in pattern form in Agile Patterns 
(Bozheva and Gallo 2006). Agile patterns describe alternative ways to 
address practices, concepts, and principles encountered and utilized when 
applying agile methods. As in RE patterns, the rationale is part of the 
pattern description, although the decision criteria do need some further 
definition. These patterns can be used as guidelines for activity selection, 
as a means for supporting knowledge transfer by providing “past 
knowledge” from the software engineers who solved the problem 
expressed by the pattern in earlier development efforts. 

15.3.2 Rationale and Component-Based Software Engineering 

Rationale could be captured and used in making a number of important 
decisions in CBSE. For component providers, these include the component 
model(s) to support and the granularity of the components. For component 
consumers, the decisions include when components should be used, which 
components to use, and which component model best suits the application. 
Rationale can both support making these decisions and document their 
results. 

When working with COTS components, the initial difficulty faced is 
identifying candidate components. There are a number of possible methods 
for finding components. The ideal approach would be for all components 
to provide a common description model. While the Internet can be used to 
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access multiple component catalogues, the different collections of 
components focus on different types of components or different aspects 
when describing them (Requile-Romanczuk et al. 2005). The search is also 
made difficult when designers may not be able to specify precisely what 
they need. This requires flexible retrieval mechanisms to work with the 
developer in formulating their requests (Fischer et al. 1991). 

It is also important to understand what relationship components have 
with each other. Are there component characteristics that are likely to 
impact each other? Are there dependencies between components? These 
factors are especially important for dynamically configured components, 
such as Web Services. It would be valuable to have a way to reason over 
these services to determine how they will impact system design (Gannod et 
al. 2007).   

While components are selected based on the functionality they provide, 
there are other characteristics of the component that can influence its 
selection. The Unified Specification of Components framework (UnSCom) 
(Overhage 2004) extends the concept of design by contract to CBSE. The 
composition contracts are specified on multiple contract levels to define 
the component interfaces. These levels include both the functionality of the 
component and information about component quality.   

15.3.3 Rationale and Software Product Lines 

Software product lines utilize reuse by creating closely related applications 
as application families where portions of the application that are the same 
are shared. Application families are described by commonality and by 
discriminants, where a discriminant is a requirement that differentiates 
between systems (Mannion et al. 1999). These discriminants serve as 
decision points where choosing different alternatives results in different 
products. The Method for Requirements Authoring and Management 
(MRAM) uses a requirements metamodel to describe the requirements that 
comprise the application family. Several of the attributes that describe each 
requirement can also serve as its rationale. These include stability, 
verifiability, complexity, cost, staff-knowledge, and technology. This 
information is available to stakeholders who can then look at the impact of 
selecting different requirements at the choice points indicated by the 
discriminants. MRAM and its supporting metamodel are used by the Tool 
for Requirements Authoring and Management (TRAM) to use a set of 
application family requirements to select those for a single product and 
generate a system model. 
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One challenge in Product Line Engineering is deciding how the product 
line should be structured. Planning the product line is also known as 
product line scoping. The core task of this process is looking at which 
functionality in the product line will have the best return on investment 
when reused (Schmid 2002). This process involves many activities that can 
best be captured in the rationale for the product line design. The planners 
need to investigate different scoping alternatives and their advantages and 
disadvantages. This includes looking at tradeoffs between business 
objectives and evaluation of risks (Schmid 2002). The rationale can serve 
as a basis for negotiation and as input to any cost–benefit analysis that may 
be required. The rationale can capture the relative importance of each 
evaluation criteria. When the decisions are made, rationale should also be 
collected to indicate which portions of each product are meant to be 
reusable and which are not.   

Knodel and Muthig (2006) developed a process to capture architecture 
decisions and their rationale. They focused on these decisions because 
decisions made when developing the architecture for the product lines are 
especially important because of their strategic value to the organization. 
Capturing the key decisions that drive the architecture and the rationale 
behind them serves several important goals. The process of capturing and 
discussing the rationale provides a mechanism for identifying and 
documenting what the important criteria and issues are behind the product 
line architecture. This includes prioritizing these criteria and using these 
priorities to evaluate the candidate design alternatives. This process also 
supports the negotiation performed by the architects and other 
stakeholders. The resulting rationale can be used later to defend these 
decisions to interested parties who were not actively involved in the 
decision-making and can also be invaluable to any new developers who 
need to learn about the architecture. 

Another decision that needs to be made when designing a software 
product line is how it will be configured and managed. Architectures can 
be configured at two points in the development process: deployment-time 
configuration and design-time configuration (Sommerville 2007). 
Deployment-time configuration means that the system can be configured 
for a specific customer using configuration files. Design-time 
configuration works with the core functionality of the product line but 
includes new or modified components in order to support specific product 
needs. Rationale can be used to document the advantages and disadvantage 
of each approach and the reasons for making this decision. It can also be 
used to document how the different product line components meet the 
reconfiguration goals to ensure that evolutions to the product line do not 
restrict reconfigurability. 
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15.3.4 Rationale and COTS-Based Software Engineering 

The success of a COTS-based project will depend on a number of key 
decisions which should be documented in the rationale. The first decision 
is if COTS products should be used at all. Fifteen COTS-based projects in 
a NASA environment were studied by Morisio et al. (2000). The goal was 
to capture the actual process and to identify what the differences were 
between COTS-based and actual development. This study looked at the 
decision that determined when COTS-based development is appropriate. 
There are tradeoffs that need to be made when determining if it makes 
more sense to buy or to build. These include cost, risk, and requirements. 
The requirements need to be flexible enough to accommodate some 
adjustment in order to conform to available COTS systems. Morisio et al. 
recommend that the requirements be sketched out initially with only 
enough detail present to choose which COTS products to incorporate.  
This needs to be done in view of the danger that Kontio (1996) pointed out 
where “fuzzy” initial requirements may lead the decision-making process 
to focus on easier to investigate technical issues that may not be as 
important as the application requirements when making the COTS 
selection. 

The other key decision (which is not independent of the first) is which 
COTS products should be used.  The ability of the system to meet the 
application requirements is important but there are also many 
nonfunctional requirements that play a role in the project’s success. The 
decision-making process will involve investigating the licensing cost of the 
product (this can be a significant factor if the product being developed will 
be installed at multiple locations or purchased by multiple customers) and 
the maturity of the vendor and product. Determining the Technology 
Readiness Level (TRL) for each system incorporated is mandated when 
developing systems for the United States Department of Defense (DoD 
2002). Capturing this and other nonfunctional criteria in the rationale both 
documents the selection process and makes it easier to reassess decisions if 
criteria or evaluations change over time. 

The Off the Shelf Option (OTSO) method (Kontio 1996) was developed 
to support a COTS selection process that was more systematic than the ad 
hoc methods that are often used. The method defined what tasks had to 
occur in the selection process, a hierarchy of evaluation criteria, and a model 
of costs and value for the COTS alternatives. Each alternative was given 
values for the evaluation criteria and then ranked. The Analytic Hierarchy 
Process (AHP) (Saaty 1980) was used to rank the alternatives. In this 
process, alternatives are compared in pairs, rather than given some absolute 
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evaluation value. The evaluation criteria and their value for each alternative 
form the rationale for the COTS alternative selection. 

Rationale can also be captured for the process followed to make COTS 
technology selections. The Resources-based Approach for COTS 
Evaluation and selection (RACE) uses a process model that contains 
activities that can take place in COTS evaluation and selection (Mohamed 
et al. 2005). The selection process can be customized based on the project 
domain. The domain characteristics would form the rationale for process 
choices.  

15.4. Summary and Conclusions 

Software reuse has become an integral part of many, if not most, software 
development projects. While the potential cost savings are considerable, 
there are also considerable risks towards depending on software delivered 
elsewhere. It can also be difficult to identify and select software to reuse 
and to integrate the reused items into a new system. 

In this chapter, we have presented several common types of reuse and 
how rationale could assist in making these efforts more successful. Reuse 
should be pursued when possible but involves many decisions that require 
considerable thought. The ability to document those decisions in a 
structured way through the rationale for the system helps to assure that the 
choices made are well justified. The presence of the rationale also provides 
invaluable insight to future developers maintaining or reusing the system. 



Part 4  
Frameworks for Rationale-Based Software 
Engineering 

The case in support of rationale is a compelling one—the ability to capture 
and encode the decision-makers’ intent as part of a knowledge 
management strategy aimed at using this knowledge to assist with future 
decisions so that we can learn from the past, rather than repeating it (or 
repeat it only when past decisions were successful). The importance of 
rationale and its potential value has resulted in a significant amount of 
research over the past 30 years yet there still remain many obstacles 
towards its acceptance and use in practice. Still, advances in technology 
have resulted in new opportunities for integrating rationale into practice 
and the increasing awareness of the relationship between process and 
product quality suggest that the reluctance to invest up-front effort for later 
benefit may be lessening. 

The challenge is to move rationale outside the laboratory and into 
practice. Studies have shown that it takes 15–20 years to mature a 
technology (Redwine and Riddle 1985).  In order to successfully transition 
a technology into practice it is important to understand what both the 
obstacles and benefits of that technology are. 

In order to build a Rationale Management System (RMS) to support 
RBSE, we need to identify where and how rationale can be used in 
software development (benefits) and capture these uses, along with 
concepts needed to compare rationale approaches and relate them to 
software engineering, in a Conceptual Framework (Chapter 16). We also 
need to develop an Architectural Framework (Chapter 17) that identifies 
issues (obstacles) that must be addressed by an RMS architecture in order 
to successfully support software engineering.  Past work in rationale has 
indicated that it shows great promise in providing significant benefits to 
software development and we need to look ahead (Chapter 18) to 
determine how those benefits can best be disseminated into software 
development approaches, processes, and tools. 



16 A Conceptual Framework  

Exploiting the full potential of rationale in software engineering requires a 
comprehensive understanding of that potential. Such understanding must 
be based on a conceptual framework that describes how and where 
rationale usage can support SE. This framework should identify where and 
how rationale can be used in software projects. It should also provide a set 
of concepts for comparing proposed approaches to rationale and for 
relating them to the various aspects of software engineering. 

16.1 Introduction 

16.1.1 What a Conceptual Framework Should Do  

Understanding the full value of rationale in software engineering (SE) 
requires a conceptual framework that enables description of the ways in 
which rationale can support SE. As used here, the term conceptual 
framework means a set of ideas and terms for describing the problems in 
an application domain and the means for solving them. A conceptual 
framework for rationale usage in the domain of software engineering must 
do three things: (1) provide connections between concepts of rationale and 
concepts of SE to enable description of how rationale can support or fail to 
support SE, (2) identify how different rationale approaches differ with 
respect to the goals of SE, and (3) identify the goals and success criteria 
for rationale usage in SE. 

What is needed is a common and unified framework that can relate all 
major rationale approaches to SE. This framework should not be expected 
to settle the many disputes among the proponents of different approaches, 
but it should clarify these disputes by revealing differences and 
commonalities amongst rationale approaches. To do this, it must include 
terms and ideas that reflect significant similarities and distinctions but 
exclude those that do not. 
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16.1.2 Objectives of This Chapter  

The overall objective of this chapter is to describe a conceptual framework 
that can serve as a basis for both practical use of rationale in SE and for 
research on such use. To accomplish this, the chapter will attempt to 
describe the essential facts, criteria, and concepts of rationale usage in SE. It 
will provide a terminology that organizes these entities into a unified 
framework. The framework provided here will not attempt to cover all 
concepts of rationale and software engineering. Instead it will focus on just 
those needed for using rationale to support SE. This will provide a founda-
tion for methods and software tools that support rationale usage in SE. 

The discussion begins with a section describing the general goals of 
rationale usage in SE. The next section groups proposed rationale usage 
into types of approaches, specific approaches within each type, and 
specific methods of usage within each approach. The section after this 
explores the range of use of the decision-centric type of approach in SE. 
The section following this explores use of the usage-centric type of 
approach. Following this is a section on rationale in iterative software 
development, then a section on challenges to rationale usage. The chapter 
concludes with a brief summary of the intent and contents of the chapter. 

16.2 General Goals of Rationale Usage in Software 
Engineering 

The overall goal of rationale usage in SE is simply to help software 
engineers achieve their goals. Typically this means helping the developers, 
maintenance personnel, users, and other stakeholders to achieve their goals 
as well. The goal of rationale-based software engineering (RBSE), which 
is the theme of this book, is to increase the usefulness, usability, and use of 
rationale in SE.  

Ultimately, the way in which any kind of rationale aids SE is by helping 
to improve the quality of its decision-making. In this sense all rationale 
usage is prescriptive in that it assumes that the quality of decision-making in 
SE is not as good as it could be and that rationale usage can make it better. 
Even when rationale is recorded without any intention of influencing 
decision-making, it can do so by helping software engineers to remember 
what has been decided and why, or by serving as an aid to future projects. 

There are two basic ways in which advocates of rationale usage seek to 
improve decision-making. One is by providing better information for 
decision-makers. The other is by prescribing decision-making processes 
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aimed at eliminating flaws in reasoning and failures to take important 
information into account. Advocates of rationale usage typically claim that 
it can help to make decision-making better informed, more correct, more 
consistent, and/or more complete. 

While the ultimate goals of rationale usage are prescriptive, this does 
not necessarily mean that they are prescriptive with respect to the decisions 
for which rationale is captured. Sometimes they are merely descriptive in 
the sense that they seek only to describe, i.e., document, the reasoning 
behind these decisions without influencing it. In such cases, the 
documented rationale is used to inform other decisions—for which it is 
prescriptive. For example, the rationale of designers might be captured 
without influencing their decision-making and then used to influence the 
decisions of people constructing the artifact. In fact, this approach is 
common. 

16.3 Rationale: Types of Approaches, Specific 
Approaches, and Methods 

There are two fundamentally different types of rationale approaches. One 
focuses on decision-making by SE personnel, the other on the experiences 
of users. Our conceptual framework labels the former type decision centric 
and the latter usage centric. Decision-centric approaches model the 
reasoning of people involved in decision-making, including what decision 
tasks are undertaken, what decision alternatives are considered, how these 
alternatives are evaluated and how different decisions are related. Usage-
centric approaches model the reasoning of people about an artifact, such as 
software, based on their attempts to use it. This reasoning centers on 
evaluations of artifact features as they are experienced in the context of 
use. 

Within each type of approach there can be one or more specific 
approaches. For example, both Issue-Based Information Systems (IBIS) 
(Kunz and Rittel 1970) and Questions Options and Criteria (QOC) 
(MacLean et al. 1989) are specific approaches within the decision-centric 
type of approach to rationale. Similarly, Scenario-Claims Analysis (SCA) 
is an approach within the usage-centric type of approach. 

There may be several distinct methods of using rationale within a given 
rationale approach. For example, there are several methods of using IBIS. 
While such methods share commitments to core IBIS concepts, such as the 
basic IBIS rationale schema, they may differ on the details of the schema. 
Thus, for example, Conklin and his colleagues use the IBIS approach 
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(Conklin and Begeman 1988; Conklin and Burgess-Yakemovic 1996), but 
some of the details of their schema differ from Rittel’s.  

Another way rationale methods can differ is in whether they are (1) 
process-oriented or (2) structure-oriented (Lee and Lai 1996). Process-
oriented methods stick closely to the temporal sequence in which rationale 
statements are actually generated; they thus provide a history of the 
reasoning process. Structure-oriented methods, on the other hand, abandon 
the temporal order of reasoning in favor of its “logical” structure. They 
thus provide a sort of idealized model of how ideas relate in rationale. 
Conklin and Burgess-Yakemovic (1996) use IBIS in purely a process-
oriented manner, but McCall (McCall 1979b) has shown that IBIS also can 
be used in a structure-oriented manner. Other decision-centric approaches 
also can differ in their method of use. For example, QOC is strictly 
structure-oriented, but DRL and PHI can both be used in either process- or 
structure-oriented methods. 

16.4 Decision-centric Rationale in Software Engineering 

There are two, closely related concepts that provide the most obvious 
points of connection between rationale research and SE. These are the 
concepts of decision and decision-making. Most of the rationale methods 
described in this book deal explicitly with decision-making; and it seems 
intuitively clear that software engineering involves the making of many 
decisions. The section below provides evidence for this intuition by 
looking more closely at the nature of decision-making in rationale 
approaches and in SE. 

16.4.1 Decision-Making in Rationale Approaches 

16.4.1.1 Decision-Making as Question Answering 

The rationale approaches that are relevant here are the decision-centric 
approaches, six of which were introduced earlier in this book: Issue-Based 
Information System (IBIS), Procedural Hierarchy of Issues (PHI) (McCall 
1991), Questions, Options and Criteria (QOC), Potts–Bruns (Potts and 
Bruns 1988), Decision Representation Language (DRL) (Lee 1991), and 
RATSpeak (Burge and Brown 2004). In all these methods (1) decisions are 
represented explicitly and (2) all other rationale exists entirely for the pur-
pose of helping to make these decisions. To understand whether and where 
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rationale approaches can support decision-making in SE, we first need to 
understand how these approaches represent decision-making and then to 
look at the various aspects of SE to see what decisions might be represented 
in this manner. 

What counts as decision in decision-centric rationale? While the answer 
to this question depends to some degree on which rationale approach we 
are talking about, there is nevertheless a criterion that is common to all of 
them. For something to be counted as a decision in these methods, it must 
be possible to state it as a question to be answered. In fact, all approaches 
except DRL represent decisions exclusively as questions. While DRL 
sometimes uses other representations for decisions, its inventor (Lee) has 
declared that DRL decision tasks are the same entities represented as 
questions in QOC and IBIS (Lee and Lai 1996). From this we can infer 
that decision tasks in DRL also correspond to the question-based decision 
tasks in the Potts–Bruns approach and RATSpeak. This means that any 
decision task that is represented in DRL can be paraphrased as a question. 
So, for a decision task to be dealt with by any of the decision-centric 
rationale methods, it must be capable of being represented as a question. 
This provides a convenient means for identifying the parts of SE that are 
candidates for use of decision-centric rationale methods. 

What needs to be done, then, is to identify the parts of SE that can be 
represented as questions to be answered. Once we have done this, we can 
take the next step and see whether the types of questions and question-
answering processes featured in SE can be matched with the kinds of 
questions and question-answering processes dealt with in different 
rationale approaches. 

16.4.1.2 Question Answering through Deliberation 

The common thread in all decision-centric approaches to rationale is that 
decisions are made, i.e., questions are answered, through a process of 
deliberation. The transitive verb to deliberate is defined by the Random 
House Dictionary of the English Language (Second Edition, Unabridged) 
as follows: “to weigh in the mind; consider: to deliberate a question,” but 
a more detailed definition is needed here. This is accomplished by 
accepting this dictionary definition but defining “to deliberate a question” 
as follows: to evaluate one or more proposed answers to a question. 
Deliberation in this more precise sense is common to all decision-centric 
approaches to rationale. 

Almost all decision-centric approaches use argumentation to evaluate 
proposed answers. One notable exception is the problem-centered approach 
of Lewis, Rieman, and Bell (1996). This approach evaluates proposed 
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answers not by arguing their merits but by testing them using a suite of 
problems. 

There are two major types of approaches to argumentative evaluation. 
One allows arguments for and against the proposed answers as well as 
arguments for and against other arguments in a multilevel, directed acyclic 
graph (DAG) structure of arguments. This is the approach used by IBIS and 
PHI, for example. The other approach to argumentative evaluation 
differentiates between the structure of the arguments on proposed answers 
and the structure of arguments on other arguments. In particular, 
argumentation on proposed answers uses criterion-based evaluation, which 
consists of (1) the statement of a criterion, e.g., a goal, and 2) an assessment 
of the proposed answers with respect to the stated criterion, these two 
elements in effect constituting a single argument for or against the proposed 
answer. Arguments for and against other arguments are in the same basic 
form as in the other approach to argumentative evaluation, i.e., a DAG of 
arguments. QOC and DRL, for example, both use this second approach. 

There is one additional aspect of deliberation that is allowed by some 
but not all rationale approaches, and that is dependency on the outcome of 
other decision-making, i.e., question answering. PHI, DRL, and RATspeak 
allow this. In fact, PHI’s overall structure of decisions is based entirely on 
such relationships. DRL allows dependencies in the form of several types 
of relationships between decisions. RATSpeak also provides a special type 
of argument dedicated to representing dependency relationships between 
the answers proposed to different questions. Such an argument shows more 
specifically than PHI or DRL how one decision can depend on another. 
(See Section 16.6 for a more detailed account of dependency relationships 
between decisions.) 

16.4.2 Question Answering in Software Engineering 

16.4.2.1 Questions in Software Engineering 

The next thing to do is to list the various aspects of SE and see to what 
extent they can be viewed as involving question-answering processes. 
There are two categories of such aspects. One category includes types of 
software-related activities. The following list of basic activities is adapted 
primarily from the Software Engineering Body of Knowledge (SWEBOK) 
(Software Engineering Coordinating Committee 2004). Though this 
document is by no means universally agreed upon, there is nevertheless 
broad consensus that SE involves the following activities: 
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• Project inception—i.e., determining that a new or revised system 
is needed 

• Requirements engineering 
• Design and redesign 
• Construction—i.e., implementation in code 
• Testing 
• Use 
• Maintenance 
• Configuration management 
 

The second category lists aspects of SE that deal with relationships 
among various activities and stakeholders in a software project: 

 
• Coordination within the SE team 
• Collaboration amongst members of the SE team 
• Participation of users in development 
• Feedback and feedforward between different SE activities 
• Management of the overall SE effort for a project 

 
These lists could, of course, be further elaborated to several more levels of 
detail, but the current level is adequate for demonstrating that there are 
many potential aspects of SE where rationale can find application. 

To show that rationale has potential use in the listed aspects of software 
engineering, it is sufficient to show that there are questions that these 
aspects seek to answer through reasoning. Examples of such questions for 
each of these aspects are shown below. The list below only includes 
representative examples of the many questions that the aspects might deal 
with. The goal here is not to be comprehensive but merely to show that 
there are many candidates for rationale usage across a wide spectrum of 
SE aspects. 

• Software-related activities 

o Project inception—i.e., determining that a new or revised 
system is needed 

 Why do we need a new or renewed system? 
 What is the purpose of the system from the 

perspective of its stakeholders? 
 What is the description of the user organization 

and the work that the users will perform for this 
organization using the software? 
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 How feasible would the software be technically 
and economically?  

o Requirements engineering 
 What functions should the software fulfill in terms 

of users interacting with the system? 
 What are the functional and nonfunctional 

requirements of the system? 
 What are the requirements for the technologies to 

be used for constructing and operating the 
software? 

o Design and redesign 
 What is the design of the software architecture to 

be—i.e., how is the software organized into 
subsystems? 

 What are the specific behaviors of these 
subsystems to be? 

 What is the design of each of these subsystems to 
be? 

o Construction 
 What platform and coding technologies should be 

used to construct the system? 
 What public and in-house standards should be 

adhered to in construction? 
 How should the software be constructed to 

facilitate verification? 
 How should the software be constructed to 

facilitate change? 
o Testing 

 What are the defects and problems with the 
constructed software? 

 To what extent do the implemented design 
features satisfy the stated requirements? 
(verification) 

 To what extent does the code successfully 
implement the design features? (conformance 
testing) 

 To what extent do the implemented design 
features satisfy user expectations? (validation) 

 How should the subsystems of the software 
architecture be tested? 

 How should the integration of the subsystems be 
tested? 
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 What test cases should be used in view of the 
given limitations in resources and schedule? 

 Which test techniques should be used? 
 How can the time between the creation of errors 

and their detection through testing be minimized? 
o Maintenance 

 How can this software best be maintained? 
 What enhancements are needed in the software? 
 What problems are users having with the 

software? 
 How can needed modifications to the software be 

made without breaking existing functionality or 
degrading performance of the system? 

 What should the plan be for maintenance of this 
software? 

 What modifications are needed to keep the 
software usable in a changing environment? 

 What needs to be done to avoid potential future 
faults? 

 What needs to be done to reduce the complexity 
of this evolving software? 

o Configuration management 
 What is the plan to be for software configuration 

management (SCM)? 
 What organizations should be involved in the 

SCM process? 
 Which organizational entities should be 

responsible for which SCM tasks? 
 What are the necessary sequences of the SCM 

tasks? 
 What are the relationships of the SCM tasks to the 

project schedule and milestones? 
 What tools should be used to support the different 

SCM tasks? 
 How should the SCM plan be implemented? 

 
• Relationships among stakeholders and activities 

 
o Coordination within the SE team 

 What are the potential conflicts between the 
decisions and decision criteria used by different 
members of the development team? 
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 What are the dependencies between the activities 
of the various team members? 

 How can team members be kept aware of changes 
to decisions about requirements, the design, and 
the implementation of the software? 

 How can team members be made aware of the 
effects of changes on their work? 

o Collaboration amongst members of the SE team 
 What are the potential conflicts between the 

decisions and decision criteria used by different 
members of the development team? 

 What is the untapped potential for the work of 
team members to support the work of other team 
members?  

 Which members of the SE have knowledge that 
would be useful to other members of the team? 

o Participation of users in development 
 What are user reactions to proposed features of the 

software? 
 What are user reactions to implemented features 

of the software? 
 What can be done to motivate users to participate 

in the development of the software? 
 How can users be made aware of the effects of 

proposed changes on their use of the software? 
o Feedback and feedforward between different activities 

 Does the design of the system satisfy the 
requirements?  

 Does the constructed software correctly 
implement the intended design? 

 To what extent does the implemented software 
satisfy or fail to satisfy actual user needs? 

 Can the architecture of the system adapt to 
changes in requirements? 

 Does the design of the software facilitate its 
construction? 

 Does the design of the software facilitate its use? 
 Does the design of the software facilitate its 

maintenance? 
 What does the plan for testing imply for the 

design of the system? 
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 To what extent do the results of testing reveal that 
the design of the software has been effective in 
preventing the occurrence of errors? 

o Management of the overall SE effort for a project 
 What should the nature and structure of the project 

tasks be? 
 What resources should be allocated to which 

tasks? 
 Which software quality management processes 

should be utilized? 
 What software lifecycle model should be used? 
 What lifecycle processes should be selected for 

the project? 
 What software methods and tools should be used? 
 What should the organizational structure be for 

the project? 
 

Few would argue that answering these questions requires anything less 
than careful and informed reasoning. As a consequence, each question 
represents an opportunity for both rationale capture and delivery. Each is 
also a potential candidate for the use of prescriptive rationale methods 
designed to improve the thoroughness, consistency, and correctness of 
reasoning. 

This list of questions shows that rationale usage is in no way limited to 
design. In fact, it suggests that design rationale constitutes only a small 
minority of the potential types of rationale in SE. It is precisely for this 
reason that this book employs the term software engineering rationale 
(SER) instead of the traditional term design rationale (DR) as the umbrella 
term for research and applications of rationale in SE. 

The given list of questions is really just the tip of the iceberg. Each of 
the questions listed can lead to many other questions at a greater level of 
detail that also need to be answered. And, of course, in addition to the 
questions shown above, there are many other questions at the same level of 
detail that are not shown here. 

16.4.3 Using Decision-centric Rationale in the Full Spectrum of 
SER 

Being able to state a decision as a question is necessary for applying 
decision-centric rationale methods, but is it sufficient? Answering this 
question requires knowing whether there are any obstacles for application of 
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a rationale approach or method to particular decision-making tasks. For 
rationale approaches in general, the only additional condition is that the 
decisions not be based on pure, inexplicable intuition rather than explicit 
reasoning. There are also two potential problems that can prevent use of 
particular approaches or methods of rationale usage: 
 

1. a given rationale approach or method is intrinsically applicable 
only to certain types of decisions, 

2. the way decision-making is accomplished in SE is incompatible 
with the way decision-making is represented or accomplished in a 
given rationale approach or method. 

 
The following sections look at each of these problems. 

16.4.3.1 Rationale Approach Restricted to Certain Types of Decisions 

IBIS and its PHI derivative have no restrictions as to what kinds of 
decisions they can deal with. While Rittel originally intended IBIS only for 
use with controversial questions, i.e., those which stakeholders disagreed 
about, this restriction has long since been abandoned by most users of 
IBIS, including McCall (1979b, 1986), Conklin and his colleagues 
(Conklin and Begeman 1988; Conklin and Burgess-Yakemovic 1996), and 
Buckingham Shum and his colleagues (Buckingham Shum et al. 2006). 

QOC is restricted by its authors to use only for design space questions—
i.e., questions denoting decisions on the features that an artifact should 
have (MacLean et al. 1996). This presents an apparent obstacle to the use 
of QOC for the full range of decisions in SE. It should be noted however, 
that Dutoit and Paech (2000) have shown that QOC can be refined to be 
applicable to requirements engineering. Despite the intentions of its 
inventors, QOC might turn out to be usable for other many other types of 
SE decisions as well; but to date, this has not been demonstrated. The only 
feature of QOC that offers any possibility of limiting its range of 
application is its method of evaluation. QOC has a requirement that 
decision alternatives—called options in the method—be evaluated against 
explicitly stated criteria, and it is unclear whether this requirement can be 
satisfied for all decisions in SE. 

This issue arises again in the case of DRL, because its treatment of 
decisions corresponds closely to QOC’s—especially in the use of criterion-
based evaluation of decision alternatives. While Lee never states that DRL 
is restricted to the design space decisions that QOC focuses on, the various 
examples given for DRL (Lee 1990; 1991; Lee and Lai 1996) deal only 
with such decisions. This, however, might merely represent the exclusive 
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focus on design rationale that characterized the early literature on 
rationale. 

It is important to note that, in addition to decision problems, DRL also 
allows question-answering in its schema, though it provides no schema for 
question answering other than the element types question and claim plus 
the relationships answers between them. If the entities that DRL labels 
decision problems do not in fact represent anything more than the design 
space questions found in QOC, it is still possible that DRL could be used 
for other types of SE decisions by augmenting its question-answering 
schema to allow IBIS-type multilevel argumentation. One simple way to 
represent this argumentation would be to use DRL’s claims linked by its 
supports and denies relationships. This is a very minor extension of DRL’s 
current schema. 

16.4.3.2 Decision-Making Processes in SE Incompatible with 
Decision-Making Processes in Rationale 

The concept of decision-making as defined for decision-centric rationale—
i.e., as question answering—has shown that many decisions in SE are 
candidates for rationale usage, but these are candidates only. To 
understand whether rationale methods can be applied to them requires 
understanding whether the processes of decision-making as they are 
represented in rationale approaches and methods is compatible with the 
processes of decision-making in SE. In order to answer this question with 
respect to any given rationale method it is, first of all, important to know 
whether the way in which a rationale approach is to be applied is 
descriptive or prescriptive with respect to how that decision is made. 
Prescriptive use of a rationale approach dictates certain processes that must 
be followed or certain information that must be used in making the 
decision. Descriptive use, in contrast, makes no attempt to impose rules 
about decision-making processes or what information must be used. 
Instead, it merely documents whatever discussion happens to arise, by 
categorizing statements according to its schema—e.g., as issues, positions, 
arguments, and so forth in the case of IBIS. 

A good example illustrating the prescriptive/descriptive distinction is 
the IBIS approach. As Rittel originally intended that it be used, IBIS was 
strongly prescriptive in the sense that he sought to change the way in 
which decisions were made. In particular, Rittel used IBIS to promote the 
idea of decision-making as being based on debate of decision alternatives 
amongst a wide spectrum of stakeholders. As a consequence, the 
generation of alternative positions for each issue was mandated, as was the 
generation of arguments for and against both the positions and other 
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arguments. But as time progressed, IBIS was frequently used descriptively 
as well. In such cases, it could record alternative positions as well as 
arguments for and against positions and arguments if they happened to 
arise naturally; but it was not used to direct the discussion. 

A prescriptive version of IBIS, or any other rationale approach, might 
well be in conflict with certain approaches and methods of software 
engineering. So, for example, if a software method refused to recognize 
differences of opinion as legitimate among reasonable and informed people, 
the prescriptive version of IBIS would clash with it; or if, as in Boehm’s 
Spiral method, the emphasis is on resolving differences of opinion quickly 
and smoothly—as is the case with the WinWin rationale method (Boehm 
and Kitapci 2006)—then Rittel’s original goal of using IBIS to fan the 
flames of debate among stakeholders (Rittel 1972a) might well be seen as 
counterproductive to the WinWin goal of showing how all stakeholders can 
be winners. Prescriptive use of any given rationale method might well 
conflict with software engineering methods, but whether they actually 
conflict depends on which rationale method is used and which software 
method is used. Whether there is in fact a conflict must be worked out on a 
case-by-case basis that compares a given rationale method to a given 
software method. Unfortunately, such a case-by-case comparison is beyond 
the scope of this book. 

Where rationale methods are used in a purely descriptive manner, there 
can arise no conflict with SE methods. It should be noted, however, that 
rationale methods can be used descriptively with respect to some activities 
and prescriptively with respect to others. A common example of this is when 
rationale methods are used descriptively for rationale capture for one SE 
aspect—e.g., design—and prescriptively for rationale delivery with respect 
to another SE aspect—e.g., project management. Managers may want to 
monitor the activities of designers in a way that does not dictate what the 
designer do, while at the same time using the information for management 
tasks such as coordinating the work of others with the work of the designers. 
This use of rationale is prescriptive with respect to managers in the weak 
sense that it informs decisions that they make. Ultimately, rationale is of no 
value if it is not prescriptive in the sense of influencing some SE decision-
making in a current or future project. Keeping track of these influences is an 
important aspect of rationale usage in SE. 

As conceived by its inventors, QOC is purely descriptive and so presents 
no possibility of a clash with any SE method. DRL’s author makes no 
assertion about whether it should be used prescriptively or descriptively; so 
nothing prevents it from being used in a purely descriptive manner. While 
both IBIS and PHI were originally intended to be prescriptive, there have 
since been many uses of both that are purely descriptive.  
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Without attempting to enumerate all software methods and how they 
might conflict with prescriptive uses of rationale methods, we can 
nevertheless describe the types of conflict that could arise. This can be 
done by showing the specific prescriptive assumptions of the prescriptive 
rationale methods. The only two rationale methods that have prescriptive 
modes about the processes by which decisions are made are IBIS and PHI. 

Many current users of IBIS use it in prescriptive mode. This includes 
the “process-oriented approach” to IBIS advocated by Conklin and 
Burgess-Yakemovic (1996) and the IBIS work of Buckingham Shum et al. 
(2006) with the Compendium hypertext system. Both uses of IBIS 
advocate a constructive disruption of decision-making processes that, 
according to Buckingham Shum et al. (1997), is based on the notion that, 
“deeper understanding of a domain comes through the discipline of 
expressing knowledge within a structural framework, working to articulate 
important distinctions and relationships.” The compatibility of these ways 
of using IBIS with various SE methods is largely an open question. 

PHI originally came with a requirement to use a top-down, breadth-first 
approach to raising issues; and this might well conflict with certain SE 
methods, but this procedural prescription has been abandoned in later uses 
of PHI. 

16.5 Usage-centric Rationale in Software Engineering 

The primary measure of software quality is its value to its users. Therefore, 
an important complement to decision-centric rationale is usage-centric 
rationale, which documents the evaluation of a system by its users on the 
basis of their experiences in using the system. Perhaps the best way to 
document the experience of a user is in terms of a usage scenario, i.e., a 
history of the sequence of steps involved in the usage of a system. Carroll 
and Rosson have pioneered this type of rationale documentation with the 
Scenario-Claims Analysis (SCA) approach. 

Understanding the full potential of SCA as a tool for SE requires 
answering two questions: where can SCA capture rationale within the 
overall SE process? and where can SCA rationale be used within the SE 
process? The obvious answer to the first question is that SCA always 
captures rationale during use of a system, but this answer can be misleading 
if the term use is understood too narrowly. While SCA can capture rationale 
during actual use of a fully designed, constructed, and deployed system, this 
is by no means the only type of use that is relevant. It can also capture 
rationale during use of (1) not-yet-deployed systems, (2) partially constructed 
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systems, (3) design prototypes and (4) prototypes created merely to elicit 
requirements. It can even capture rationale from simulated use of not-yet-
constructed designs.  

Where can captured SCA rationale be used within the SE process? In 
other words, what can SCA rationale be used for? SCA is above all an 
evaluation tool; it therefore has three main types of uses: (1) to rate a 
single system from the perspective of its users, (2) to determine the best of 
several competing systems (or subsystems), and (3) to provide feedback 
about use to the SE activities of requirements determination, design, 
construction, and maintenance of the system. This feedback, of course, is 
aimed at informing and motivating the next iteration of each of these 
activities. SCA is thus a crucial driver of change and iteration in these 
activities. 

The main relationship of SCA to the decision-centric approaches is that 
its rationale should be fed back into and become a part of the rationale on 
decision-making. SCA’s evaluation goes beyond the evaluation used in 
decision-centric rationale in several crucial respects. SCA does not merely 
evaluate individual decisions; it evaluates the collection of decisions that 
constitute a design. And it does this from the consistent perspective of a 
user engaged in a usage scenario. SCA’s evaluation of a design can only 
begin after many decisions have been made by the designers. It thus 
constitutes an empirical test of those decisions. 

16.6 Rationale and Iterative Software Development 

Chapter 2, entitled “What Makes Software Different,” pointed out that 
software development can be done using iterative processes that are not 
feasible in the development of many other types of artifacts. The term 
iterative software development is used here to refer to the repeated 
construction and use of preliminary versions of software to obtain 
feedback that informs requirements determination and design. As used 
here, this term encompasses such labels as evolutionary (Rajlich 2006), 
incremental (Larman and Basili 2003), and agile development (Larman 
2004) as well as Extreme Programming (Beck and Andres 2005). While 
iterative software development is not performed on all development 
projects, it continues to grow in popularity as a means to address the often 
volatile nature of software requirements. It is important, therefore, to ask 
what the implications of iterative development are for rationale. 
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16.6.1 A Rationale-Based Account of Iterative Development 

Instead of thinking of rationale merely as an add-on to iterative 
development processes, it is useful to try to understand iterative 
development as itself being a rationale-based and rationale-driven process. 
In fact, the motivation for and nature of iterative development can be 
explained by the nature of the reasoning processes that underlie the 
creation of software. While a complete rationale-based account of iterative 
development is beyond the scope of this chapter, the paragraphs below 
provide a sketch how such an account can be constructed for some aspects 
of iterative development. 

The motivation for iterative software development arises in a large part 
from the inherent inadequacy of the rationale for development decisions 
when these decisions are first made. This inadequacy takes the form of 
both incorrectness and incompleteness. Perhaps the most basic way in 
which the rationale is incomplete or incorrect is in its listing of user 
requirements, which are the grounds for much of a system’s rationale. One 
reason for this is that software development takes time, and during this 
time user requirements can change. Another reason is that users 
themselves do not have explicit knowledge in advance of their own 
requirements. There is, for example, the I’ll know it when I see it 
(IKIWISI) effect that happens when software is highly interactive. The 
effect exists because users cannot anticipate the results of these 
interactions and thus cannot predict their needs prior to these interactions. 
Yet another reason for the failure to identify the requirements in advance is 
that the satisfaction of some requirements can cause others to surface, 
because it changes the work environment or the priority of values. 

Another reason for the incompleteness of rationale is that this rationale 
for decisions is based largely on the desirability or undesirability of the 
consequences of proposed decision alternatives. The problem is that there 
are important consequences that cannot be foreseen at the time a decision 
is initially made. They only become known later. This phenomenon is 
sometimes referred to as “The Law of Unintended Consequences.” Once 
discovered, these consequences can motivate developers to revise 
development decisions. 

Unforeseen consequences include some of a decision’s impacts on 
subsequent SE activities, for example, impacts of a design decision on the 
construction and use of the software. While many of these impacts are 
intended, some might not be. A decision to include something as a design 
feature has the intended consequence of the implementation of that feature 
in code, but it may also have unintended consequences for the construction 
of the software. It might, for example, make it more difficult for other 
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features to be implemented; or it might require more time, effort, and 
money to implement than had been anticipated. 

Of course, not all unintended consequences are negative. For example, it 
might turn out that part of the code created to implement a given design 
feature can be reused to help implement other features. Often, this 
potential for reuse is not recognized until implementation of the given 
feature is well underway. 

A given design feature might have unforeseen consequences for the use 
of the software. Such consequences might include conflict with a user goal 
that had not originally been included in the list of requirements. Another 
negative consequence for use might be unforeseen effects on user 
behavior. For example, it might have originally been thought valuable to 
give users considerable control over the visual appearance of documents 
they create with the developed software. But if this leads to users spending 
excessive amounts of time designing documents for internal distribution, 
then the requirements might have to be modified. 

There are myriad additional reasons why certain consequences of a 
decision only become known after that decision is made. The crucial point is 
that once these consequences become known they provide additional 
rationale about previously made decisions. They can provide the basis for 
additional arguments, evaluation criteria, assessments of decision alternatives 
with respect to criteria, additional decision alternatives to consider or even 
additional decision tasks. If this additional rationale could significantly 
change the quality of the software artifact or the cost of its creation, the 
rationale may well motivate decision-makers to reopen already settled 
decision tasks—thus producing iteration in the decision-making process. 

16.6.2 Principles for Rationale Approaches to Support Iterative 
Development  

16.6.2.1 A Conceptual Framework for Iterative Reasoning 

Certain approaches to rationale in SE are explicitly based on theories of 
iterative development. Scenario-Claims Analysis, for example, is based on 
a theory of “the task–artifact cycle”; and the WinWin approach to rationale 
is based on Boehm’s Spiral Model of software development (Boehm and 
Kitapci 2006). However, such approaches tend to be quite specialized. For 
example, the former deals only with usage-centric rationale and human–
computer interaction, while the latter deals only with one of the many 
methods for iterative software development. These approaches demonstrate 
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the possibility of integrating rationale with iterative development, but they 
do not provide a sufficiently general conceptual framework for doing so. 

Above all, a general conceptual framework should describe what is 
required of a rationale approach for it to be usable in iterative 
development. This description should be specific enough not only to 
decide whether a given rationale approach is adaptable for use in iterative 
development, but also to indicate how it would need to be adapted. 

Of special interest is what a conceptual framework has to say about the 
use in iterative development of the many rationale approaches that fail to 
indicate how they might support such development. These include IBIS, 
PHI, Potts–Bruns, QOC, DRL, and RATSpeak. All of these approaches 
model rationale entirely around the concept of planning, in the sense of 
reasoning about how to act before action takes place. This model is not 
compatible with iterative development, in which decisions about 
requirements and design lead to action in the form of implementation and 
use, which in turn produce rationale that informs further decisions about 
requirements and design. 

Contrasting with the model of rationale as planning is Schön’s model of 
rationale as reflection-in-action (Schön 1983). The latter involves 
observing the consequences of actions and then reflecting on, i.e., 
reasoning about, how to modify future actions in view of these 
consequences. Schön’s theory, which he calls Reflective Practice, models 
practical reasoning as an iterative process of learning through action. This 
theory, when combined with planning, provides precisely the foundation 
needed for a conceptual framework for rationale in iterative software 
development. To be more precise, if decision-making starts as planning 
and then follows up with reflection-in-action when the less-than-adequate 
consequences of planned decisions are discovered, the result is a model of 
reasoning that fits interactive software development. 

16.6.2.2 Features of Rationale That Support Iterative Development  

The features of rationale that support iterative development are of two 
types: required and desirable. The former refers to things without which 
rationale simply does not support iterative development. The latter refers 
to things that provide richer levels of support for such development. The 
discussion below starts with the required features. 

Decision-making is not a one-shot process. The single, most basic 
feature a rationale approach must have if it is to support iterative software 
development is that it must allow the reopening, redeliberation and 
redeciding of previously decided decision tasks. These tasks include the 
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determination of what the requirements for the software are, what its 
design features are, and how these are implemented. 

Feedback is not inhibited. The second requirement is that the rationale 
approach should not inhibit the recording of feedback, because feedback is 
the most important source of the rationale for iterative development. This 
might sound like a trivially obvious requirement until one realizes that 
nearly every existing approach to rationale violates it. In particular, as they 
are practiced, almost all decision-centric approaches mandate de facto a 
sequence in which elements are recorded. For example, they require that 
decision tasks be recorded before decision alternatives are recorded and 
that decision alternatives be recorded before evaluations are recorded, e.g., 
before evaluation criteria or evaluative arguments are listed. The problem 
with these mandated sequences is that feedback can easily take the form of 
a piece of rationale that is disallowed by a mandated sequence. For 
example, feedback might take the form of an idea for a design feature (an 
option in QOC or a position in IBIS) that does not respond to an already 
stated decision task (a question in QOC or an issue in IBIS). If feedback is 
not to be inhibited, it should be possible to record elements in any 
sequence in which they might arise from feedback.  

The full spectrum of SER is documented. In addition to the above-listed 
requirements, there are possible features of rationale approaches that 
provide additional support for the representation and aid of iterative 
development. These include the documentation for SE activities other than 
design. The documentation of the rationale for requirements determination 
enables the representation of the revision of requirements. Given the 
crucial role that the volatility of requirements plays in iterative design 
(Rajlich 2006), this is especially important. One crucial source of 
feedback, and thus of the rationale for iterative development, comes from 
the experience of software use. Documentation of usage-centric rationale, 
such as is provided by Scenario-Claims analysis, thus provides additional 
support for iterative design. Additional feedback comes from construction 
and maintenance. Documentation of the decision-centric rationale for these 
activities provides additional support for iterative design, because insights 
resulting from these activities can become the basis of rationale for 
rethinking decisions about requirements, design, and construction. In short, 
the more a rationale approach supports the documentation of the full 
spectrum of software engineering rationale (SER), the more it supports 
iterative software development. 

Influence/dependency relationships are documented. Another way in 
which a rationale approach can support iterative development is by 
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representing influence relationships—and/or their converse, dependency 
relationships—between various SE tasks. These include relationships 
between decision tasks, especially between different types of decisions, 
including decisions about requirements, design, construction, maintenance, 
and testing. The cycle-rich network of these relationships is the mechanism 
that drives iteration in development. In addition, this network is crucial for 
determining the impacts of changes, which are both a consequence and a 
cause of iterative development. 

There are several distinct types of influence/dependency relationships 
that are of interest. One has to do with the way in which one decision 
influences the making of another decision. Typically, this relationship 
exists when the former decision helps either to generate or to evaluate 
decision alternatives for the latter.  

A second type of relationship exists when one decision raises—or leads 
to—another decision task. So, for example, deciding that D is to be a 
design feature of a software artifact leads to the decision as to how to 
implement D. In this case the latter decision task presupposes the decision 
to have D as a design feature. If it is later decided that D should not be a 
design feature, i.e., the presupposition becomes false, the latter decision 
task ceases to be relevant to the project. 

A third type of relationship exists when experiences with a task provide 
reasons for revisiting previously settled decision tasks. For example, 
failure of users to figure out how to use the software to accomplish a 
required task could provide a reason for re-examining implementation 
decisions or design decisions. On the other hand, the implementation of a 
design feature in code might reveal that parts of this code could be reused 
for other purposes. This might result in the change of other implementation 
decisions. It might also suggest that additional functionality could be 
implemented with very little additional effort. This in turn might suggest 
that a decision about requirements be revisited to include some of this 
additional functionality.  

There are many other ways in which experiences with tasks can provide 
reasons—and rationale—for previously settled decision tasks. In fact, there 
are at least as many ways as there are types of elements in whatever 
rationale schema is being used in the given rationale approach. So, for 
example, in IBIS these reasons (this feedback) might take the form of a 
new issue (decision task), a new position (decision alternative), or a new 
argument. In a rationale approach based on a more complex schema, such 
as DRL, there will be additional differentiation in the roles that feedback 
can play. DRL, for example, enables feedback also to be in the form of a 
goal that can serve as an evaluation criterion on a decision alternative. 
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The epistemological status of rationale is documented. To deal with the 
iterative processes central to many of the more recent approaches to SE, 
existing decision-centric rationale approaches need to be modified. 
Fortunately, the modifications needed to implement the features described 
above would be straightforward and relatively easy to implement. There is 
one crucial caveat, however. Arguments that are based on feedback from 
implementation and use often have a different epistemological status than 
the arguments made prior to implementation and use. The latter largely 
consist of predictions—i.e., hypotheses—about the possible consequences 
of action. The former describe the actual consequences of action. When 
there is a conflict between them we would generally expect that reports of 
actual events will be taken as refuting the predictions. Even if feedback 
does not conflict with any argument, it might introduce evaluation criteria 
that were not considered in the original decision. This means that, if 
feedback argues against the decision on an issue, that issue probably needs 
to be reopened. 

The crucial point here is that the two different kinds of argument 
generally have different levels of credibility. One kind contains speculative 
predictions of consequences; the other reports actual consequences. This 
asymmetry in credibility raises the question of whether it is misleading to 
represent them in the same way in the rationale schema. It may be 
important to indicate whether arguments are predictions or tests of 
predictions. It might even be important to indicate the source of the 
feedback; and doing this would require only minor modifications in the 
schemas for decision-centric rationale approaches. If a rationale approach 
documents the full spectrum of SER and supports all the dependency 
relationships described above, this might by itself provide sufficient 
indication of the sources of rationale to determine its credibility. 

16.6.3 Supporting Iterative Development by Combining 
Decision-centric and Usage-centric Rationale 

Usage-centric rationale can be an important driver of iteration in SE. For 
decision-centric rationale to reach its full potential in SE, it needs to be 
augmented and integrated with usage-centric rationale. Doing this requires 
using the rationale from such methods as SCA to inform the evaluation of 
decisions in decision-centric approaches. In using rationale derived from 
actual usage, its fundamentally empirical character means that it generally 
has higher credibility than evaluations based on hypotheses about the 
consequences of decisions. 
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SCA’s rationale about collections of decisions will only become 
available after those decisions are made. It will therefore take the form of 
feedback that either confirms those decisions or challenges them and 
forces them to be reconsidered. 

SCA’s evaluation schema strongly resembles the criterion-based 
evaluation schemas of QOC and DRL. All three of these methods deal 
with the evaluation of explicit system features based on stated criteria, 
with these evaluations being either positive or negative. If the features 
described in SCA match the decision alternatives in QOC or DRL, 
connecting SCA’s evaluations to QOC’s and DRL’s as feedback should be 
straightforward. 

16.7 Challenges to Rationale Usage  

16.7.1 Solving the Capture Problem 

16.7.1.1 The Capture Problem 

By far the greatest challenge to making rationale usage practical is the 
capture problem (Conklin and Burgess-Yakemovic 1996), i.e., the fact that 
it has proved surprisingly difficult to capture rationale in real-world 
projects. This is not to say that rationale capture has not been successful, 
but rather to point out that the conditions under which it has been 
successful are either hard to achieve or not well understood.  

The most common cases where rationale capture has worked are when 
there are champions of rationale usage within a project team or when 
professional rationale documenters or professional documentation 
facilitators are available (Conklin and Burgess-Yakemovic 1996). 
Unfortunately such champions tend to be in short supply, and the people 
who fund projects often do not see the value of paying for professional 
rationale documenters or facilitators. When rationale champions and 
professionals are not present, the documentation of rationale has typically 
been left to those who participate in decision-making. To date, this has 
typically meant designers. Unfortunately, these designers have largely 
resisted documenting their rationale.  
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16.7.1.2 Analysis of the Problem 

There are a number of possible explanations for resistance to rationale 
capture. Some researchers point to the intrusiveness of rationale capture as 
the problem. One kind of intrusiveness is due to the work required for 
capture. Most capture involves designers writing up their rationale in a 
given rationale schema. This requires a great deal of work in addition to 
the normal work of design.  

Other reasons for resistance to capture can include political and legal 
factors. Designers might not want their bosses or the public to know the 
real reasons for their decisions. They might also want to protect 
themselves from potential law suits. And there is the problem that any 
argument for a decision can become a double-edged sword that provides 
others with a way to attack decisions made. 

For descriptive uses of rationale, motivating rationale capture can be a 
fundamental problem, because, by definition, the rationale recorded does 
not aid those who do the work of recording it. In other words, descriptive 
approaches run afoul of Grudin’s principle that collaborative systems tend 
to fail when those who do the work are not the beneficiaries of that work 
(Grudin 1988). For prescriptive approaches, Buckingham Shum and others 
have argued there is a benefit to decision-makers from recording their 
rationale (Buckingham Shum et al. 2006), so they should be more 
motivated to do it. Yet even here rationale capture has been difficult to 
achieve. 

Another possible reason for the failure of capture in both descriptive and 
prescriptive approaches is that capture might actually be detrimental to 
design in ways that go beyond its cost in resources. For example, Fischer 
et al. (1996) use Schön’s theory of Reflective Practice to argue that 
rationale capture disrupts the intuitive aspects of designers’ thinking. A 
more radical position is taken by Shipman and Marshall (1999b) who 
argue that semi-formal schemas, such as those used in most rationale 
approaches, are themselves the problem. As they see it, all such schemas 
are obstacles to information capture. 

16.7.1.3 Approaches to Solving the Problem 

One possible way of getting capture to work is to convince those who fund 
software projects of the value of rationale usage. This might merely 
require doing a better job of explaining or demonstrating the benefits to 
them. But it may require more, such as decreasing the resistance of 
decision-makers to rationale capture, increasing the benefits of such 
capture—or both. 
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One approach to reducing resistance to rationale capture is to reduce its 
intrusiveness into decision-making processes, either by reducing the 
amount of work it requires or by reducing its disruptiveness. The 
traditional capture process has combined capture with the formalization of 
rationale using a schema. A crucial insight motivating many efforts at 
reducing intrusiveness is that it is actually the formalization that takes so 
much time and effort. If rationale were first captured in “raw” form, it 
could be formalized later. This would not in itself reduce the task of 
formalization, but it would decompose the problem into two smaller 
problems. It would also enable more rationale to be recorded. Of course, 
raw rationale would be difficult to retrieve if not structured and indexed. 

A number of strategies have been devised for capturing raw rationale in 
informal, i.e., schema-free forms and then using various “tricks” for 
reducing the effort of formalizing it. For example, Shipman and his 
collaborators from Xerox PARC built “spatial hypertext systems” (Shipman 
and Marshall 1999a) that enable informal input of information in a 2D space 
and then use automated routines to infer the structure of that information 
from its spatial arrangement. Reeves created a system that uses a schema-
free approach to capture (Reeves and Shipman 1992). With his system, 
designers write their rationale as textual notes in the graphical representation 
of a model of the artifact being developed. The design history of the artifact 
then becomes the means by which rationale is structured. A different 
schema-free and completely nonintrusive approach is used by Myers, 
Zumel, and Garcia (1999) (see Chapter 4 of this book, Learning from 
Rationale Research in Other Domains). They add semantic information to a 
CAD system’s symbol library and then infer the design rationale from the 
designer’s use of the system. This approach, however, does not produce 
argumentation as such. Another schema-free approach is to capture the 
rationale that is naturally elicited as part of informal project communication. 
In this case, eliciting rationale is not an extra task for decision-makers. It is 
instead a normal and accepted part of the process of collaboration. 
Completely automated approaches might then be used to structure this 
rationale, for example, by using natural language processing (McCall and 
Mistrik 2005). Alternatively, semiautomated approaches can be used such as 
Shipman’s incremental formalization (Shipman and McCall 1994). 

One approach to reducing the cognitive overhead of capture is to use the 
strategy of differential description, in which designers only need to describe 
how the rationale for the current project differs from other rationale. One 
way to do this uses domain-oriented issue bases in PHI (Fischer et al. 1996). 
These contain rationale commonly used in projects in a given domain, 
including commonly raised issues, positions, and arguments. Decision-
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makers then only need to add the information missing, including their 
decisions on the issues. 

There are other ways in which differential description might be 
implemented. One would be by using rationale-annotated cases of similar 
projects, such as those provided by the ARCHIE system (Zimring et al. 
1995) (see Chapter 4, Learning from Rationale Research in Other 
Domains). Another way might be to use design patterns annotated with 
rationale (Pena-Mora and Vadhavkar 1997). Of course, differential 
description only works for domains where previous design work has been 
done and where someone has built collections of issue-based discussion, 
precedent cases or design patterns. By definition, this approach is not 
useful for unprecedented problems.  

16.7.2 Solving the Delivery Problem 

To date, almost all delivery of rationale to those who need it has been done 
using hypertext-based information systems. One problem with this approach 
is that potential users of such a system generally do not search for 
information unless they think that there is information in it worth searching 
for. But how are they to know that such information exists if they do not 
search for it? If new information that would be useful for a given user is 
input into such a system, how does that user find out about this? 

Hypertext systems have a partial answer to such questions in the form of 
associative indexing, i.e., indexing by linking to other information. This 
enables new information to be discovered by being linked to other 
information that a user knows is relevant to their current concerns. Thus, 
for example, a link might help a user discover a newly created argument 
against a decision alternative that they favor. 

The potential difficulty of the link-based approach is that users do not 
discover the link if they are not already using the system. To assure the 
discovery of new and relevant information requires not only that users be 
using the system but also looking at the information to which the new 
information is linked. 

One partial solution to this problem is to integrate the rationale 
management system into the software used for SE. This would enable the 
hybrid system to alert software engineers to the existence of links to 
rationale that is relevant to the SE tasks that they undertake when those tasks 
are at hand. This is the approach that Burge has used in linking rationale to 
source code being edited in the Eclipse IDE (Burge and Brown 2006). As 
programmers browse through the code, they are alerted to the existence of 
links to rationale relevant to the sections of code they examine. 
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Additional functionality may well be needed to compensate for the 
limitations of hypertext systems. One example of such functionality is to 
provide knowledge-based agents that can alert users to the existence of 
rationale relevant to their concerns. Fischer et al. have used this approach 
(Fischer et al. 1996) as have McCall and Johnson (1997), but much more 
research in this area is needed. Making this approach successful may 
require research on modeling stakeholders in SE to understand their 
concerns and what rationale is relevant to these concerns. 

16.8 Summary and Conclusions 

The conceptual framework presented in this chapter has attempted to 
describe the concepts and ideas that connect rationale to SE. The intention 
has been to show both the potential of rationale to serve the goals of SE 
and the challenges to successful use of rationale in software projects. The 
framework has described the roles of both decision-centric and usage-
centric rationale approaches in SE. Included in this discussion were 
descriptions of limitations and advantages of rationale approaches for 
different aspects of the SE process. The framework has also described the 
modifications to decision-centric rationale that are needed to make them 
fully serve the goals of the iterative approaches to SE that have gained 
popularity in recent years. Finally, it has identified and explained the two 
crucial challenges to successful rationale usage in practical projects: the 
capture problem and the delivery problem. The purpose of the conceptual 
framework is to provide a guide for practical use of rationale in real-world 
software projects and for research on how to improve rationale 
applications.  



17 An Architectural Framework  

A rationale-based approach to software engineering requires rationale 
management systems that can integrate the many types of rationale with 
each other and with the processes of creating software engineering 
artifacts. Accomplishing this integration in turn requires that such systems 
be actively connected with software engineering tools, external 
communication sources, and persistent stores of reusable rationale. This 
chapter describes an architectural framework for such integrative rationale 
management systems.  

17.1 Introduction 

17.1.1 An Integrative Architecture for Rationale-Based Software 
Engineering 

Fully implementing rationale-based software engineering (RBSE) will 
require the creation of software that can manage rationale effectively to 
support software engineering (SE) practice. Such a rationale management 
system (RMS) needs to be able to elicit and to record large amounts of 
useful rationale, to structure it for ease of comprehension, to index it for 
retrieval, and to deliver it to those who need when they need it. 
Furthermore, the system needs to do all this in ways that are compatible 
with SE processes. This chapter analyzes what this implies for the 
architecture of RMSs that support RBSE. The result of this analysis is a set 
of recommendations in the form of an architectural framework for RBSE. 

An RMS must be able to do three things if it is to support RBSE. The 
first is that it must represent all the various types of rationale that occur in 
software projects in a form that supports SE. The other two are that it must 
make substantial progress in alleviating the rationale capture and rationale 
delivery problems. Above all, the capture problem must be effectively 
dealt with, for without the ability to capture adequate amounts and types of 
software engineering rationale (SER) there will be little value in 
representing and delivering rationale. 
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The basic approach recommended here for achieving the stated goals 
and requirements is to use an integrative architecture for RMSs. This 
architecture is integrative in two respects. One is that it integrates the many 
different types of SER with each other. The other is that it integrates the 
processes of capturing, structuring, and delivering rationale with the 
processes of SE, which are largely centered on the creation of various SE 
artifacts, including documents, models, and code. The former type of 
integration weaves the myriad types of SER into a single argumentative 
structure that produces the final software artifacts. The latter type of 
integration improves the quantity and quality of the rationale that is 
captured and delivered. 

This chapter will not attempt to describe a complete software 
architecture for an RMS that supports RBSE. Instead it will describe an 
architectural framework for such systems. This framework consists of an 
abstract description of the essential, common characteristics of an 
integrative architecture for RMSs, leaving the “accidental” specifics of the 
architectural design to others. While the term architectural framework is 
often used in the object-oriented sense to refer to a specific set of classes, 
the term is used here in a looser sense to mean a more informal description 
of the main features of a software architecture.  

17.1.2 Objectives of This Chapter 

The main objectives of this chapter are (1) to describe an architectural 
framework for RMSs capable of implementing a rationale-based approach 
to SE and (2) to explain the reasons for its design. Section 17.2 explains 
the need for an integrative approach to rationale management to represent 
and to integrate all the various types of SER and to alleviate the problems 
of rationale capture and delivery. Section 17.3 describes the integrative 
architectural framework itself, starting with an overview of the framework 
in Subsection 17.3.1. It then describes the workings of the RMS system in 
Subsection 17.3.2 and its connections to external systems and sources in 
Subsection 17.3.3. Finally, Section 17.4 summarizes the chapter and draws 
conclusions about the use and significance RMSs built using the 
architectural framework. 
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17.2 The Need for an Integrative Approach to Rationale 
Management 

17.2.1 Representing and Integrating All Types of Software 
Engineering Rationale 

RBSE, by definition, involves the use of the full spectrum of software 
engineering rationale (SER). To support RBSE, an RMS must therefore be 
capable of simultaneously modeling the rationale for every activity of SE, 
including the activities of requirements determination, design, 
construction, testing, maintenance, project management, and even the use 
of the software. But this is not enough. It must also be capable of modeling 
the various relationships that integrate these different types of rationale 
into a single network of reasoning that results in the code given to users. 
This involves not only integrating various types of decision-centric 
rationale, but also integrating these with usage-centric rationale. 

17.2.2 Alleviating the Capture and Delivery Problems 

17.2.2.1 The Disconnect between Rationale Management and 
Software Engineering 

The goal of SER research is to use rationale approaches to aid SE. To date, 
however, there has been only sporadic and modest success in achieving 
this goal. While positive results have been reported in some notable cases, 
e.g., Conklin and Burgess-Yakemovic (1996), Buckingham Shum et al. 
(2006), it is widely believed among researchers that the effort to achieve 
this goal has run into fundamental difficulties, especially in the form of the 
rationale capture and delivery problems. Any effort to create RMSs that 
can alleviate these difficulties needs be based on ideas about their causes 
and how to overcome them. 

The position taken in this chapter is that rationale approaches and 
management systems generally have not done enough to fit into and 
support the practices that software engineers use in developing and 
maintaining software systems. Currently, decision-making in software 
projects is accomplished through the use of various SE tools combined with 
informal communication among project participants. Rationale approaches 
and RMSs have often been presented as alternative means for decision-
making, with RMSs being used instead of SE tools and informal 
communication being replaced with communication structured according to 
a rationale schema. This chapter explores a different strategy in which 
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rationale approaches and systems are used to support rather than supplant 
existing approaches to decision-making in SE. It is argued here that this 
strategy offers the potential of substantially alleviating both the rationale 
capture and rationale delivery problems. 

Any attempt to support SE practice must be based on an awareness of its 
artifact-centered nature. Almost all SE processes, methods, and tools are 
aimed at the production of special types of SE artifacts. One type of such 
artifacts is executable code, such as prototypes and various versions of the 
software product being created. But there are also many nonexecutable 
artifacts that are used as means for devising code, including documents 
and models of various types. Potts and Bruns (1988) first described the 
crucial role of such intermediate artifacts in software design. Among these 
artifacts they list, “informal documents describing the functional 
specification of the system, architectural sketches, detailed designs, 
pseudo-code, structure diagrams, or formal specifications” (Potts and 
Bruns 1988). By broadening the scope of rationale from design to the 
entire spectrum of SE activities, as this book does, the number and variety 
of such artifacts are increased substantially. 

Decision tasks in SE generally arise out of the desire to create SE 
artifacts. For rationale approaches and systems to support SE practices, 
they must contribute to the handling of such decision tasks by engaging 
with and supporting the use of SE tools and discussion among project 
participants. In particular, RMSs should (1) capture rationale from 
discussion and SE tool use and (2) deliver rationale that informs discussion 
and the use of SE tools to make decisions. 

Unfortunately, many of the RMSs that have been proposed for use in SE 
are monolithic, stand-alone systems and, as such, have no computational 
interaction or connection with the SE tools or project discussion that are 
used to create SE artifacts. Such RMSs are literally out of the loop, and 
thus never come into play in the processes of creating SE artifacts.  

The irony here is that most rationale approaches and SE processes have 
a strong conceptual connection in their common focus on decision-making 
processes. But there is no way to exploit this conceptual connection when 
RMSs do not have a tangible computational connection to the creation of 
SE artifacts. Without this connection there is no way to capture rationale 
during SE decision-making, which is when it is generated; and there is no 
way to deliver rationale during this decision-making, which it is when it is 
needed. 
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17.2.2.2 Integrating Rationale Management with Software Engineering 
Decision-Making 

For any RMS to be successful in capturing and delivering the rationale for 
SE decision-making, it must be integrated into the artifact-centered 
decision-making in SE. The only way to guarantee that this happens is to 
represent the decision-making about SE artifacts in the rationale. Among 
the domain-independent approaches to rationale, such as IBIS, PHI, QOC, 
and DRL, the only time decisions about artifacts are made is in the case of 
design-space decisions; and in fact, QOC is the only rationale approach 
that guarantees that such decisions are dealt with. For rationale to be 
integrated with the process of making decisions about SE artifacts those 
processes must be represented in the rationale—as what might be called SE 
artifact-space analysis by analogy with QOC’s design-space analysis. The 
greater the number of artifact-space decisions represented, the more 
rationale process are integrated with SE processes. The integration is 
complete if the set of artifact-space decisions describe all the SE artifacts. 
This is, in fact, very close to what Potts and Bruns proposed when they 
advocated the incorporation of representations of SE artifacts into rationale 
hyperdocuments (Potts and Bruns 1988; Potts 1996). 

It is, however, not enough for an RMS merely to represent decisions 
about artifacts. The RMS should be able to guarantee that the state of the 
representation of decisions in the rationale always matches the decisions 
about artifacts made with SE tools. But this can only happen if there is 
some sort of computational connection between the RMS and the tools that 
guarantees (1) that a decision made with a tool is immediately updated in 
the rationale and (2) that an artifact-space decision made in the RMS is 
immediately updated in the SE tool. Even this is not enough. Any new 
decision task undertaken using an SE tool must immediately be 
represented in the RMS, and vice versa. In fact, to whatever extent the 
elements and relationships of the rationale schema are explicitly dealt with 
by SE tools, there must be the same sort of mutual updating so the 
representation of the decision-making processes in the rationale matches 
the state of these processes in the SE tools. 

17.2.2.3 An Integrative Approach to Capturing Rationale 

An integrative approach to rationale capture is one that enables capture 
during the creation of SE artifacts. To the extent that such artifacts are 
produced using SE software tools, this means that it must be possible to 
capture rationale about a decision task while that task is being accom-
plished using the tool. To the extent that these artifacts are created by 
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means of communication among project participants, an effort should be 
made to capture this communication, because it provides a valuable source 
of project rationale. Such capture can be accomplished by making 
recordings or written records of meetings and computer-mediated 
communication.  

Though extracting and structuring rationale from records of 
communication presents challenges, it also has decisive advantages for 
alleviating the capture problem. The reason is that, unlike almost all other 
modes of capture, stating rationale in communications to other project 
participants is not perceived by decision-makers as extra work beyond the 
normal work of decision-making. This is because such communication is 
the central means by which collaboration in groups takes place. The 
consequence is that decision-makers tend not to resist stating rationale as 
part of collaborative communication. 

Three major modes of rationale capture should be possible: unprompted, 
prompted, and automated. Unprompted capture means that the person 
stating the rationale spontaneously decides to enter rationale of some type. 
Prompted capture means that the person using the tool states rationale in 
response to a prompt of some type, e.g., in response to a statement by 
someone else or a request for rationale of a certain type. Both informal, 
unstructured rationale input and schema-based rationale input should be 
supported in both unprompted and prompted capture. 

To the extent that the processes of making decisions about SE artifacts are 
represented in the rationale and automatically updated by the RMS in the 
manner described in Subsection 17.2.2.2, the rationale for decision-making 
in SE will be automatically captured by the RMS. Decisions and decision 
tasks are likely to be captured in this way. Dependency relationships might 
also be captured automatically. But verbal argumentation is likely to be 
captured only by the decision-makers voluntarily entering this 
argumentation or by mining records of communications between project 
personnel for relevant argumentation. Though the capture of all the relevant 
rationale is generally not possible using automated techniques, the amount 
of rationale that can be captured in this way should greatly reduce the burden 
on decision-makers for documenting their rationale.  

17.2.2.4 An Integrative Approach to Structuring Rationale 

An integrative approach to structuring rationale is one that enables 
structuring to take place during the creation of SE artifacts. While both 
unprompted and prompted modes of structuring should be supported, the 
main opportunities for reducing the work of structuring come from the use 
of automated means. To the extent that decision-making is tool-based, 
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there are opportunities for structuring rationale by associating it with 
decisions and artifacts, i.e. by decision-based indexing and artifact-based 
indexing. The former can be accomplished by automatically linking 
rationale to automatically generated representations of the decisions being 
made, the latter by linking rationale to the particular artifact being created 
or modified. In addition, by keeping a version history of the decisions, 
rationale can be further structured by associating it with a particular 
moment in that history. Dependency relationships among decisions and 
among artifacts might also be captured automatically and used to structure 
the rationale associated with those decisions and artifacts. 

To the extent that rationale is part of project communication, the 
inherent structure of that communication can be used to automatically 
structure rationale. For example, communication typically involves turn-
taking, and this can be used to give a basic structure to rationale. Threaded 
discussion provides additional structure. Structuring within individual 
textual “utterances” can to some extent be done using natural language 
processing techniques, e.g., as in the work of McCall and Mistrik (2005), 
though this research is still in its early stages. Finally, structuring in the 
form of linking to relevant keywords and subject headings can be done 
using well-establish techniques of information retrieval. 

17.2.2.5 An Integrative Approach to Delivering Rationale 

An integrative approach to delivering rationale is one that enables delivery 
to take place during the creation of SE artifacts. To the extent that SE 
artifacts are created using SE tools this implies not only delivery of 
rationale during the use of tools but also delivery of rationale relevant to 
the use of those tools in the decision-making about SE artifacts. Decision-
based and artifact-based indexing play a decisive role in enabling this 
integrative approach to delivery. To the extent that project communication 
is computer mediated, delivery should be possible by means of the 
communication systems being used. Providing rationale relevant to the 
rationale contained in communications between project participants 
requires the ability to understand the content of that rationale. It has not yet 
been adequately demonstrated how to do this automatically; so this aspect 
of integrative delivery will have to wait for such a demonstration. 

The way in which integrative delivery of rationale can help to solve the 
delivery problem is by going beyond the traditional approach of browse-
and-query. This approach requires the person doing the browsing and 
query-based searching to know that they need information (rationale), that 
the needed information is in the documented rationale, and how to retrieve 
that information. Unfortunately, it is common not to know these things. 
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The way integrative delivery can help is by using the nature of the decision 
task at hand and the identity of the artifact being created to do two things: 

1. alert project personnel to the availability of documented rationale 
that they have not yet seen but that is relevant to the decision task at 
hand or to the artifact they are currently creating 

2. retrieve and display that rationale. 

 A crucial point about the delivery of relevant rationale is that there is no 
reason to restrict where this rationale comes from. In addition to looking 
for useful rationale in the documented rationale for the current project, it 
might well be that such rationale can be retrieved from other sources. In 
particular, there are a number of approaches to creating persistent stores of 
reusable rationale, including pattern-based, issues-based, and case-based 
approaches. Utilizing such external sources of rationale not only has the 
potential to enhance the value of rationale delivery, it also has the potential 
to reduce the amount of rationale that needs to be captured and structured 
in the current project. The principle here is differential description: it is 
only necessary to capture the differences between the current project’s 
rationale and the rationale retrievable from external stores. Where the 
current project uses rationale from external stores, the only things needed 
are links to that external rationale. 

17.3 Framework of an Integrative Architecture for 
Rationale Management in Software Engineering 

17.3.1 An Overview of the Framework 

The architectural framework consists of a hypermedia-based RMS with 
connections to three types of external entities: (1) SE tools, (2) 
communication systems and sources, and (3) persistent stores of reusable 
rationale. The RMS itself manages hyperdocuments containing linked 
collections of rationale nodes and nodes representing SE artifacts. The 
external connections enable (1) acquisition of rationale from external 
systems and sources, (2) automated structuring of rationale using 
connections to external systems and artifacts, and (3) the delivery of 
rationale through external systems. The activities of the RMS and its 
connections are explained in Subsections 17.3.1, 17.3.2, and 17.3.3. 

The architectural framework is integrative not in the sense of requiring 
integration but rather in the sense of facilitating it. There are two types of 
integration that the architectural framework facilitates. One is the integration 
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of the rationale for all the various activities of SE, including requirements 
determination, design, construction, testing, use, and maintenance. The 
other is the integration of the creation and use of rationale with the creation 
and use of SE artifacts. 

The architectural framework dictates that the RMS be capable of 
managing a linked collection of hyperdocuments associated with different 
SE activities. For each such activity, the framework enables the 
construction of the sort of hybrid hyperdocuments of both rationale and 
artifact nodes first suggested by Potts and Bruns (1988) and later 
elaborated by Potts (1996).  

However, the hybrid hyperdocuments proposed here go beyond those of 
Potts and Bruns in two important respects. One is that, in addition to 
representing the sorts of intermediate artifacts that Potts and Bruns 
discussed, the new hybrids can also represent executable artifacts, i.e., 
code. The second respect in which the hybrids proposed here are different 
is that they enable the computational coupling of hyperdocument nodes 
and links to the parts and structure of actual SE artifacts. This coupling 
makes possible the automatic capture and structuring of rationale (1) 
through the use of SE tools and (2) from records of communication 
between project participants. It also makes possible the delivery of relevant 
rationale during the use of tools and computer-mediated communication. 

17.3.2 Workings of the Rational Management System 

17.3.2.1 Representation 

To support RBSE fully, the RMS must represent the rationale and associated 
artifacts for every aspect of SE, including requirements engineering, design, 
construction, testing, use, maintenance, and project management. Since the 
set of artifacts associated with each aspect of SE is likely to be different, and 
since different aspects of SE might use different SE methods, it must be 
possible to use a different schema in representing the rationale and artifacts 
for each aspect. To integrate the various aspects of SE into a coherent 
overall SE process, it must also be possible to establish links between the 
models of rationale for the individual aspects. In particular, it must be 
possible to establish dependency relationships between the various aspects 
and to support these relationships with computation. 

The RMS should be capable of constructing hyperdocuments for all of 
the schema-based, argumentative rationale approaches currently found in 
the literature. These include IBIS (Kunz and Rittel 1970), PHI (McCall 
1990), QOC (MacLean et al. 1991), DRL (Lee 1991), RATSpeak (Burge 
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and Brown 2004) and Scenario-Claims Analysis (Carroll and Rosson 
1996), as well as the various SE-specific approaches, such as WinWin 
(Boehm and Kitapci 2006), TEAM (Lacaze et al. 2006), and REMAP 
(Ramesh and Dhar 1992). In addition, the RMS must make it possible for 
software engineers to invent new schemas and to arbitrarily modify 
schemas to accommodate information that is specific to particular software 
projects, SE aspects, SE artifacts, SE methods, and the problem-solving 
styles of software engineers. 

The RMS should have the ability to create typed and labeled links and 
nodes with content in every major type of medium, including text, sound, 
and 2D and 3D graphics and animation. It must be possible to establish 
links not only between nodes but also between nodes and links. One 
specific reason for doing this is to be able to represent rationale approaches 
like QOC that require this. The more general reason is because, as Lee has 
pointed out (Lee 1991), links correspond to claims. Since they are claims, 
it should be possible to comment on them and reason about them in 
various ways. This requires linking rationale nodes to the links being 
discussed. 

The RMS should be an open hypermedia system with the capability of 
associating nodes and links with external content created in external systems. 
In particular, it should be possible to use external content as the content of 
nodes.  It also should be possible to link directly to external content. 

17.3.2.2 Computation 

The central mechanism for realizing the integration that is the hallmark of 
the integrative architecture is the use of dependency relationships, 
including both ordinary links and computed dependencies. These 
relationships and their computational support integrate the collections of 
rationale for different SER activities with each other and with the artifact-
centered decision-making processes of SE.  

To support integration, the RMS needs have the capability of 
establishing and supporting computable dependencies between the states 
of different nodes. It should be possible to use any algorithm to compute 
these dependencies. Ideally, there should be support for users establishing 
and editing basic computable dependencies, such as those based on 
algebraic formulas and conditional statements.  

Supporting integration also requires that the RMS should support 
traceability of both computed and noncomputed dependency relationships. 
The RMS should also support what–if computation with computable 
dependencies. It must also be possible to establish computable dependencies 
of internal content on external content. Where external systems allow it, it 
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should also be possible to establish computational dependencies of 
external content on the content of RMS hyperdocuments. 

17.3.2.3 Display and Input 

To support the use of various rationale approaches, the RMS should provide 
standard hypermedia display capabilities, including outline-formatted 
display of node structure and content in the manner of JANUS (Fischer at al. 
1996) and PHIDIAS (McCall et al. 1994) as well as graph-based displays in 
the manner of gIBIS (Conklin and Begeman 1988), SIBYL (Lee 1990), and 
Compendium (Shum et al. 2006). The RMS should be able to alert users to 
the existence of rationale associated with a particular decision task, artifact 
or condition and then display the relevant rationale. 

As is typical of hypermedia systems, the input of content to 
hyperdocuments should be possible using editors for various media, these 
editors being part of the RMS or external systems. Editors should be 
provided for node content, hyperdocument structure, and schemas. To 
support all major approaches to capture, both prompted and unprompted 
input should be possible. Both schema-driven and free-form structuring of 
input should also be supported.   

17.3.2.4 Additional Capabilities 

To support SE practice, the RMS should enable multiuser creation, editing 
and display of representations of rationale and artifacts as well as 
hyperdocument structure and schemas. To do this, it must provide 
communication and shared workspaces for members of groups of project 
participants—e.g., members of a development team working on the design 
of a particular subsystem. 

To support an integrative approach to the capture, structuring, and 
delivery of rationale, the RMS must also support the creation and browsing 
of a version history of the creation of hyperdocuments. It should be possible 
to attach rationale and commentary at any point in the version history. 

17.3.3 Integration with External Systems 

17.3.3.1 Integration with Software Engineering Tools 

To support an integrative approach to the capture, structuring, and delivery 
of rationale, one type of connection that should be possible between a 
hyperdocument and an artifact is computationally coupling of nodes with 
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SE artifacts, including those artifacts that are parts of other artifacts. This 
coupling means that a change in the state of an SE artifact, such as a part of 
document or model, can automatically result in a change in the state of a 
node in the hyperdocument. This coupling enables the content and existence 
of the actual artifact to be reflected automatically in the content and 
existence of a node that represents it. In other words, the creation, deletion, 
and change of the content of an artifact, or part of an artifact, could 
automatically be reflected in the creation, deletion or change in the content 
of the corresponding node. Coupling in the other direction would mean that 
a change in the node is reflected in a change in the corresponding artifact. 
This coupling is likely to be harder to achieve but is useful where possible. 

The second type of connection that should be possible between a 
hyperdocument and an SE artifact is that the structure of the artifact should 
be coupled with the links in such a way that a change in the structure of the 
artifact is automatically reflected in the structural connections between 
nodes in the hyperdocument. Coupling in the other direction is useful but 
likely to be harder to achieve. 

The computational coupling of hyperdocuments to artifacts is the 
mechanism that enables the automatic capture and structuring of rationale 
from the use of software tools in making SE decisions. In particular, it 
enables any decision tasks, decision alternatives, and final decisions to be 
reflected automatically in corresponding hyperdocument nodes with 
appropriate links between these nodes. It also enables the automatic 
modeling of the state of the artifacts at any given time. When combined with 
the version history capability of the RMS, this makes it possible to have a 
history of the evolution of the SE artifact as it is created and modified. Such 
a history by itself suggests much of the rationale for the final form of the 
artifact, but it also provides a useful way of automatically structuring and 
indexing rationale by the states of the artifact’s evolution. 

17.3.3.2 Integration with Communications Systems and Sources 

While the RMS needs to provide communication capabilities for group 
creation of rationale through argumentative discourse, these capabilities 
cannot fully satisfy the communication needs for a project group. In 
particular, it is naïve to suppose that all group communication can be 
mediated by structured argumentative discourse. There need to be multiple 
additional channels for communication, including informal discussion and 
meetings. Some of this communication is likely to be computer mediated, if 
for no other reason than that an increasing percentage of all human 
communication is computer mediated. To the extent that project-related 
communication is computer mediated, it is a near certainly that it will 
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involve discussion that includes a substantial amount of project-related 
rationale. Given the current difficulty of capturing rationale, this 
communication is a valuable source of rationale, although mining records of 
communication for this rationale presents a number of technical challenges. 
The most accessible form of computer-mediated communication is text and 
may involve email, chat or other modes of text-based communication. 
Audio- and video-based communication is more difficult to access, but is 
still of potentially great value as a record of project decisions and the 
reasoning underlying them. 

Some important communication is face to face rather than computer 
mediated. Meetings are the most important example, but even here, digital 
records of this communication are easy to make in the form of text, audio 
or video. Such records may well constitute important records of the history 
and rationale of a software project. Currently, audio and video records of 
face-to-face communication need to be analyzed manually; text, however, 
can be partially analyzed using automated or computer-assisted means. In 
the future, of course, analysis of audio and video will also be more 
computer supported. While indexing and structuring such records is 
difficult and possibly labor intensive, there is no doubt that these records 
contain large amounts of project rationale. 

To support the integration of rationale management with the processes 
of SE decision-making, the RMS should incorporate automated or semi-
automated techniques for mining records of communications among 
project personnel for relevant rationale. This support should include means 
for analyzing and indexing records of meetings and computer-mediated 
communication. Since the techniques for this sort of mining of 
communication are still in their infancy, the further description of the 
required functionality remains a task for future research. 

Ideally support for integration of rationale management with SE 
decision-making should also provide support for the delivery of rationale 
that is relevant to computer-mediated communication. But once again, this 
is a task for future research.  

17.3.3.3 Integration with Persistent Stores of Reusable Rationale 

The third major type of connection between the RMS and external systems 
is the linkage to external stores of reusable rationale. There are two major 
reasons for this linkage. The first is to improve SE decision-making by 
informing it with rationale that project participants would not think of on 
their own. The second reason is that the retrieval of relevant rationale from 
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external stores offers the potential of alleviating the rationale capture 
problem by obviating the need for the capture of some rationale. 

The main functionality needed for the retrieval rationale from external 
stores is the ability to browse and to query the systems which manage 
external stores of rationale. The sorts of queries that are useful are those 
that can retrieve rationale that is relevant to decision tasks that the current 
software project is attempting to deal with. The RMS should also provide 
means for its users to select and record which search results are relevant to 
the current project and to link such rationale to the rationale for this 
project.    

17.4 Summary and Conclusions 

Implementing a rationale-based approach to software engineering requires 
the use of rationale management systems having an integrative 
architecture. Such an architecture makes two types of integration possible. 
One type is integration with each other of the rationale associated with 
different software engineering activities, including requirements 
determination, design, construction, use, maintenance, and project 
management. This integration uses dependency relationships to organize 
the different collections rationale into an integral body of reasoning that 
shapes the code that is delivered to customers. The other type is the 
integration of the processes of creating, structuring, and delivering 
rationale with the processes of creating software engineering artifacts, 
including documents, models, and code. This type of integration makes it 
easier to capture, structure, and deliver large quantities of software 
engineering rationale. 

The architectural framework presented here basically describes a 
conventional hypermedia-based RMS with a few added capabilities. It is 
these added capabilities that are responsible for the integration that is the 
hallmark of the architecture. The two crucial capabilities are (1) the ability 
to connect to external systems and sources of information and (2) the 
provision of computational support for static and computed dependency 
relationships. While these capabilities may sound simple, they might not 
be simple to implement. Nevertheless, their implementation is likely to be 
crucial for the success of a rationale-based approach to software 
engineering. 
 



18 Rationale-Based Software Engineering: 
Summary and Prospect 

This chapter summarizes the main points of this book and looks at the 
prospects for rationale to aid software engineers in dealing with the 
problems of future software development. It concludes that, while the 
potential of rationale to aid software engineering is great, several crucial 
issues must be resolved if this potential is to be realized.  

18.1 Introduction 

18.1.1. Rationale as an Aid to Software Engineering 

Moore’s Law and the Internet have fueled an exponential explosion of 
technology that is unprecedented in human history. Public demand for 
digital technologies currently appears insatiable. As a consequence, 
computing and digital communication are spreading to nearly every aspect 
of life and to nearly every part of the world. But this technological 
revolution is dependent in every part and at every stage on the creation of 
software capable of harnessing the power of digital hardware to meet 
human needs. And this is where the revolution is running into trouble. 

Software developers have not been able to keep up with increases in 
hardware capabilities, and the current rate of success for software projects 
is disturbingly low. Yet the demands placed on developers continue to 
increase relentlessly. Software is growing in scale, complexity, variety, 
and longevity. Change in technologies and user needs is unceasing. As a 
consequence, software developers urgently need new approaches and tools 
for handling the challenges of future software projects. Rationale-Based 
Software Engineering (RBSE) can play a crucial role in helping to meet 
these challenges. 
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18.1.2 Objectives of This Chapter 

This book makes a case for RBSE as a crucial part of research in software 
engineering (SE) and as an essential part of future software development 
and maintenance. In previous chapters, the book has explained what RBSE 
is, what its potential value is for SE, what its research challenges are, and 
how these challenges might be met. The intention of this final chapter is to 
provide a summary of the previous chapters and a look at the future 
prospects of RBSE as a way of meeting the challenges of future SE 
practice. 

Section 18.2 presents a summary of the book that describes its overall 
goals and how it attempts to achieve those goals. Section 18.3 reviews 
some of the challenges facing future software development. Section 18.4 
then looks at the potential contribution of rationale-based software 
engineering to meeting these challenges. Section 18.5 describes two 
challenges that in turn need to be met if this potential is to be realized. 
Finally Section 18.6 briefly summarizes the chapter. 

18.2 Summary of the Book 

This book makes a case for a rationale-based approach to SE, i.e., an 
approach that attempts to capture and use rationale to increase the quality 
of SE. To do this, it explains what RBSE is, describes a wide range of 
ways of using rationale to aid SE, and presents frameworks meant to guide 
future work in the field. It also argues that RBSE provides software 
engineers with an invaluable tool for dealing with the increasingly difficult 
problems of developing and maintaining software. 

Part 1 of the book introduces the basic concepts and ideas underlying 
RBSE. Most of the rest of the book describes issues associated with various 
uses of rationale in SE. Part 2 of the book describes uses for rationale in 
relations to such general activities as presentation, evaluation, collaboration, 
and decision-making. Part 3 describes uses of rationale in various activities 
within the software lifecycle: requirements engineering, design, testing, 
maintenance and reuse. Finally, Part 4 presents ideas meant to serve as 
guides for future work on RBSE, including a conceptual framework and 
suggestions for the architecture of rationale management systems. 

The authors paint a portrait of a field of research that is just hitting its 
stride. It is a field that has gotten beyond the naïve mistakes of its 
formative years and now appears to be converging on an understanding of 
its problems and how to solve them. The variety, breadth, and depth of the 
research are considerable, and new ideas continue to emerge regularly. 
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The book goes to considerable lengths to survey the literature on 
rationale in SE and other relevant domains. But it also provides a number 
of new ideas. Above all, it proposes shifting the focus of research in SE 
from design rationale (DR) to software engineering rationale (SER), so as 
to emphasize the capture and use of rationale in every aspect of SE and 
every part of the software lifecycle. It also describes how these various 
types of SER might work together in the context of the overall SE process. 

While the literature on SER is rich, it suffers from a sort of tower of 
Babel of conflicting terminology. This situation makes it extremely 
difficult to compare the many approaches that have been proposed and 
applied. This book has therefore sought to devise a consistent naming 
scheme for the common elements and relationships of rationale without 
favoring any one rationale approach over the others. Basic terminology is 
established early in the book and then used and elaborated to create a 
consistent conceptual framework for discussing the variety of phenomena 
described in the research literature. 

While staying relatively neutral, or ecumenical, in the choice of a 
conceptual framework for the field, this book has not maintained neutrality 
in all areas. Comparisons and analyses of different rationale approaches 
have sometimes pointed out their potential limitations or advantages. Such 
judgments might be controversial, but wherever the book has made them 
there has been attempt to provide convincing rationale for them. At very 
least, this rationale should provide those who disagree with those 
judgments a basis for arguing against them. 

In the debate over the status of the rationale capture problem, the book 
has favored those who believe that the traditional approaches to rationale 
capture are not sufficient and that additional approaches are needed. In 
particular, in describing an architectural framework for rationale 
management systems (RMSs), the book has argued against the use of 
traditional stand-alone RMSs and in favor of systems that derive rationale 
from connections with SE tools, communications among project 
participants, and external stores of reusable rationale. A similar argument 
is made for dealing with the problem of delivering rationale to those who 
need it. 
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18.3 The Challenges of Future Software Development 

18.3.1 Managing Change  

There are a number of major problems that software engineers need to solve 
if software development is to be successful in coping with the emerging 
challenges. Perhaps the most pressing of these problems is coping with 
change. The hallmark of future software creation will be change, and 
software engineering will itself need to change if it is to succeed.   

There are two central sources of change. One is the extraordinary, 
continuing change in hardware capabilities. This is partly due to the 
explosive growth of the computational power and memory capacity of 
hardware due to Moore’s Law, but is also taking the form of a fundamental 
change to parallel processing. Adding to this is the continuing growth and 
evolution of the Internet, which has created the possibility of a wide 
variety of new types of software applications. 

A second major source of change is the volatility of user requirements 
(Rajlich 2006), though ultimately it may be the growth in technology  that 
causes much of this volatility. The understanding of requirements can 
change within the timeframe for developing a single version of a software 
product. But as products increasingly go through version after version, the 
change in user requirements become a major engine of the redesign of 
systems. Already, most of the design currently done by developers is re-
design, and the need for redesign is likely to increase dramatically in 
coming years. Ultimately, the ongoing changes in requirements may be 
propelled by the fact that the satisfaction of the requirements of users and 
organizations fundamentally changes the environment in which they work, 
and this changed environment creates new needs and suggests new 
possibilities that lead to new requirements. Where and when this process 
ends—and where it is taking society in general and SE in particular—are 
anyone’s guess.  

18.3.2 Managing the Increasing Scale, Complexity, and 
Longevity of Software Projects  

Technological possibilities and customer demand are driving developers to 
create software of increasingly complex and diverse functionality. This in 
turn is leading to larger development teams with increasingly diverse types 
of expertise. This creates problems of coordination, collaboration, and 
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management. When project teams are small, as they have been in many 
well-known projects in the past, little or no formal management and 
communication are needed, because there is a great deal of shared tacit 
knowledge. Collaboration and coordination are easily accomplished using 
informal communication. Management can be highly informal. In large 
and diverse development teams, however, there is little tacit knowledge 
that is shared by all team members. Coordination and collaboration are 
crucial but difficult. The management of such teams requires more explicit 
and formalized communication and procedures.  

If team members do not understand how their decisions depend on 
decisions made by others—and vice versa—the stage is set for the creation 
of serious errors in design, redesign, testing, implementation, and 
maintenance. The rationale for every activity in the software lifecycle 
depends on other lifecycle activities. Good design depends on decisions 
about requirements, which may in turn depend on the experiences of users 
of the system. Good design may also depend on experience in 
implementing and maintaining previous versions of a system. Similarly, 
decisions about maintenance and redesign require an understanding of the 
decisions about requirements and the previous design of the system—so 
that crucial functionality does not become broken as a side-effect of 
maintenance or redesign. 

18.4 The Promise of Rationale-Based Software 
Engineering 

The goal of Rationale-Based Software Engineering is to use rationale to 
improve every activity of software development and use. There are two 
ways it can do this: by informing these activities and by improving the 
reasoning processes underlying them, i.e., by making these processes more 
thorough, consistent, and correct. Every stakeholder in a software project, 
including developers, clients, and users, should be a potential source of 
rationale as well as a potential user of rationale information and methods. 
Every decision-maker in a development team should be aware of the way 
in which the decisions of others in the team affect their work, especially 
the way such decisions have consequences for their own decision-making. 
In addition, all decision-makers should have the chance to learn from the 
rationale of those who have faced similar decisions in past projects. 
Decision-making in every activity in development, from requirements 
engineering to design, to testing, to implementation, to maintenance, 
would be improved by rationale information and methods. 
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18.4.1 Rationale and the Management of Change 

There are several ways in which rationale can help in managing change. 
One is by showing how decisions throughout the spectrum of SE activities 
depend on assumptions, requirements, and other decisions. This makes it 
possible to understand both the direct and indirect effects of any changes 
in those assumptions, requirements or decisions. This in turn provides 
crucial information for deciding how to make changes and even whether 
they are worth making.  

A second way in which rationale aids the management of change is by 
providing records of the intent behind the decisions that shaped the 
previous state of the software. This rationale helps in preserving the intent 
of those earlier decisions. This can aid in deciding how to implement 
change without violating the original intent of those decisions; and when 
required changes do violate that intent, rationale can help in fixing 
problems by guiding the generation and selection of alternative means for 
satisfying that original intent. 

Rationale from the construction and use of the software can provide 
feedback that alerts requirements engineers, designers, and managers to the 
need for change. In particular, user-centric rationale methods, such as 
Scenario-Claims Analysis and Case-Based Design Aids, can play a 
decisive role in detecting needs to changes in requirements, design, and 
construction. Decision-centric rationale can also play a vital role in 
detecting the need for change by encouraging the participation of users and 
clients in the SE process. It does this by making the decision-making 
processes of software engineers transparent to users and clients, i.e., open 
for inspection and evaluation. This tends to provoke responses from those 
users and clients, thus encouraging their participation. In fact, this use of 
decision-centric rationale was one of the main motivations for Rittel’s 
pioneering work in design rationale (Rittel 1972a). 

Finally, rationale helps to manage change by documenting the intent of 
the changes themselves, so that these changes and their intent are not 
violated by future revisions. This is especially important when those 
making future changes are not the same people who made earlier 
changes. The importance of rationale in this case is due to the fact that 
changes are often made to decisions only after the initial, intuitive 
decisions failed to live up to expectations. The lesson about the failure of 
those earlier decisions results from hard-won experience and is, by 
definition, counterintuitive. So if those responsible for making future 
changes do not have access to the rationale for previous changes, they are 
very likely to “correct” them by restoring the decisions to their original, 
“intuitive” but erroneous states. In such cases, recording the rationale for 
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changes is even more important than recording the rationale for the 
original, “intuitive” decisions. 

18.4.2 Using Rationale to Manage the Increasing Scale, 
Complexity, and Longevity of Software Projects 

18.4.2.1 Using Rationale to Promote Coordination and Collaboration 

Decision-centric rationale can play a role in promoting coordination and 
collaboration amongst the members of a project team. This works for the 
same reason that it works in facilitating participation, namely, that 
revealing the reasoning behind a decision enables others to critically 
evaluate that reasoning and thus participate intelligently in the decision-
making. Ultimately, collaboration and rationale management are mutually 
beneficial and interdependent, because (1) communicating rationale is the 
basis for collaboration and (2) collaborative communication is the best 
available source of rationale. 

18.4.2.2 Using Rationale for Managing Large and Diverse Project 
Teams 

If extensive amounts of rationale are generated by all the members of a 
project team, then managers of the project have a crucial means for 
monitoring all aspects of the development effort. It can become clear when 
projects are slipping behind schedule and in what areas they are slipping. 
Potential conflicts of decisions can be spotted before too much work is 
invested in building on or implementing flawed or inconsistent decisions. 
The need for additional collaboration may become clear to managers 
before it is clear to the potential collaborators themselves. 

18.5 Challenges for Rationale-Based Software 
Engineering 

For the potential of Rationale-Based Software Engineering to be realized a 
number of research challenges must be met. One is that researchers need to 
continue to explore the role of rationale in SE activities that go beyond 
design and requirements engineering. Another is that much more research 
is needed on methods and systems for rationale management in support of 
iterative approaches to development, including incremental, evolutionary, 
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and agile development as well as Extreme Programming. Such research is 
still in its infancy. Meeting these challenges will require a great deal of 
work, but does not appear particular problematic. 

By contrast there are two research challenges that have been known about 
for more than a decade but with respect to which there has, until recently, 
been little progress: the capture problem and the delivery problem. 

18.5.1 Addressing the Capture Problem 

Rationale-Based Software Engineering offers considerable promise, but 
there is also a substantial amount of work that has to be done before this 
promise can be realized. The problem that has proved to be by far the most 
challenging is the so-called capture problem. The name is somewhat 
misleading, because what most researchers mean when they talk about the 
capture problem is a collection of three things: eliciting rationale from 
decision-makers, structuring that rationale—e.g., according to a given 
conceptual schema—and recording that rationale in a structured form. 
People tend to mentally combine these three things because rationale capture 
has traditionally involved doing all three at essentially the same time.  

The thing that makes rationale capture hard to accomplish is the 
structuring. This process tends to be highly labor intensive and may 
actually disrupt the thinking involved in decision-making (Fisher et al. 
1996); so decision-makers are often unwilling to do it. As a consequence, 
it often happens that little rationale is captured. 

Though the difficulty of the capture problem should not be 
underestimated, it must also be said that software development appears to be 
changing in a way that favors capture. As software systems have become 
larger, more complicated, and increasingly critical (business critical, mission 
critical, and safety critical), the need to rigorously define, monitor, and adapt 
the software development process has increased. As software development 
organizations increase the repeatability and rigor of their processes, such as 
by operating at the higher levels of the Capability Maturity Model  (CMM) 
(Paulk et al. 1993), the percentage of time spent in tasks that do not involve 
writing code, such as documenting the software and collecting metrics, has 
increased. While this probably has not resulted in developers enjoying those 
tasks more, they are viewed as necessary in order to achieve the goal of 
producing high quality software. The replacement for the CMM, the 
Capability Maturity Model Integration (CMMI) (CMMI Team 2006) has 
recognized the importance of rationale to software decision-making by 
defining the Decision Analysis and Resolution (DAR) process area. DAR 
recommends that a process be put in place to use alternatives and their 
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rationale to evaluate “high risk” decisions.  This suggests that for some types 
of software systems, rationale capture may be required for at least some 
decisions. 

While software development appears to changing in some ways that 
favors capture, it is not yet clear that these changes, if they continue, will 
be enough to enable the capture problem to be substantially solved. It 
seems foolish to rely on such changes alone. Additional techniques are 
needed to reduce the barriers to capture. Above all, the central problem is 
the daunting amount of work that needs to be done to structure rationale 
and index it for retrieval. This work inhibits capture when traditional 
techniques are used in which software developers are required to structure 
their own rationale according to a given schema. 

18.5.1.1 Exploiting the Unique Characteristics of Software 
Development to Ameliorate the Capture Problem 

Amid the dire warnings about the future of software development, there is 
one interesting piece of good news. The larger and more diverse 
development teams that are increasingly common in future software 
development will be far better sources of the software engineering rationale 
that will aid them in performing their jobs. The reason for this is that larger 
and more diverse teams inevitably require more explicit communication to 
collaborate and coordinate their activities, and informally stated rationale is 
a major part of all such communication. This means that there will be more 
rationale captured as a side-effect of the normal development processes, at 
least in raw, unstructured form, as a side-effect of the normal development 
processes. This provides the possibility that at least some project rationale 
might be captured automatically. 

The problem, of course, is that in its raw form rationale is difficult to 
retrieve and comprehend. For such rationale to be of real value, it must be 
structured for comprehension and indexed for retrieval. The crucial 
question then becomes whether this structuring and indexing can be 
accomplished without excessive investment of time, money and human 
resources. Answering this question positively is a crucial challenge for 
future research on rationale. 

It should be remembered that software development differs from the 
development of almost all other artifacts in that every part of the software 
lifecycle takes place on the computer—including system use and all 
activities of software development. This means that rationale can be 
captured from communication amongst all stakeholders in the project, 
including users; it also means that this captured rationale can be structured 
by being linked to the structure of the artifact itself, i.e., the structure of the 
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software. These factors reduce the work of eliciting and recording rationale 
as well as the work of structuring and indexing it. 

Schneider (Schneider 2006) has shown how rationale might be captured 
and structured as by-product of using of software engineering tools. Myers 
and her co-workers have used a different approach to capture rationale as 
by-product of computer-based tool use (Myers et al. 1999). While this 
latter research was on the design of physical artifacts, it seems applicable 
to every aspect of SE that uses computer-based tools. This means it is not 
only applicable to software design but to the full spectrum of decision-
making in SE. 

 

18.5.1.2 Reusing Rationale to Reduce the Need for Capture  

The basic idea behind the reuse of rationale is that since it so much work to 
elicit, structure, and record rationale from scratch, it would be good if 
software engineers could take advantage of the fact that other decision-
makers had already gone to the trouble of doing this for their own project 
rationale. That way software engineers could “copy, paste and edit” their 
rationale rather than having to think up all the rationale from scratch. This 
would enable them to save their energy and resources—such as time, 
money, and manpower—for the parts of their project that were unique. In 
other words, they would reuse rationale for the same basic reasons that we 
seek to re-use code rather than code everything from scratch. 

The simplest way of reusing rationale is in the case of redesign, in 
which one can simply use the rationale for the previous version of the 
software being redesigned. This rationale would have to be altered, but it 
would still be the rationale with the closest fit to the current task. The only 
problem with this strategy is that it presumes that someone will have 
already put in the work of eliciting, structuring, and recording the relevant 
rationale. It would be good if one could start a new software project by 
using the rationale for another project as a starting point. 

Despite the unique features of each project, there are often important 
commonalities between projects. Many of the same decision tasks, 
decision alternatives, and evaluation argumentation are often found in 
prior projects. Even if the constellation of factors is different for each 
project, there are still similar parts of the rationale. A previous project can 
help to make sure that the crucial topics are dealt with using this crucial 
information. So, even if the solutions to two projects are quite different, 
there may still be crucial overlaps in the rationale used. 

There are a number of ways of reusing rationale. One is to build a case 
library of prior projects. This is, in effect, a type of case-based reasoning. 
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A fundamentally different approach to reusing rationale would be to use 
rationale associated with the reusable information known as design 
patterns. A number of researchers have worked on this already and there is 
likely to be much more work in this area in the future. Yet another 
approach would be to use Domain-Oriented Issue Bases (DOIBs), such as 
those used by the JANUS (Fischer at al. 1996) and PHIDIAS (McCall et 
al. 1992) systems. DOIBs feature the issues, positions, arguments, and 
dependency relationships that commonly arise in the various project within 
a given application domain. While no one has attempted to build DOIBs 
using argumentative approaches other than PHI (McCall 1991), there 
seems to be no principled reason why this could not be done.  

18.5.1.3 Future Work on the Capture Problem 

While there are many approaches for addressing the capture problem that 
appear to have promise, the effectiveness of these approaches remains to 
be demonstrated. Even if they are highly successful, they will still leave 
much of the capture problem unsolved. While there are also reasons to 
believe that software development is changing in ways that favor capture, 
there is still no guarantee that these changes will make capture practical in 
a significant percentage of practical projects. It seems, therefore, that the 
capture problem is likely to remain the central challenge for the success of 
RBSE for the foreseeable future. 

18.5.2 Addressing the Delivery Problem 

Better means are needed for getting rationale to those who need it, when 
they need it. This might be done by improving the ways in which rationale 
is indexed for retrieval. It might also be done by integrating rationale 
retrieval into the various tools used for decision-making throughout 
software development.  

Improving retrieval ultimately cannot solve the entire rationale delivery 
problem adequately. Retrieval only works when someone thinks to search 
for the information in an information system. Often people do not realize 
that a system contains information that affects their decision-making. So 
there need to ways for people to be alerted to the existence of information 
they need even when they do not know to ask for it. Some such alerting 
mechanisms have been developed for special situations (Fischer et al. 
1996; Burge and Brown 2006), but more mechanisms and mechanisms of 
greater generality need to be developed. 
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In SE every decision-making and usage experience takes place on a 
computer, and a high percentage of the communication amongst 
stakeholders in a project is mediated by computer. In addition to aiding 
rationale capture, this would also facilitate rationale delivery. If rationale 
that refers to a part or feature of the software being developed were actually 
linked to the part or feature, it would be easy to retrieve that rationale by 
using the software itself as an index to it. Ideally this would work best if 
both the source code and the running code could be used to retrieve the 
rationale in this manner. It should also be noted that the same piece of 
rationale might be linked to several different parts of code and at several 
different levels of grouping in the hierarchy of code features or parts. 

Linking rationale to the software itself also provides a way of alerting 
members of the software team to the existence of newly created rationale 
that are relevant to their interests. Generally, each member’s responsibility 
for software features/parts is clearly assigned. These assignments can be 
used to alert the members of the team to the existence of new rationale that 
affects the decisions for which they are responsible. This strategy is similar 
to the one used by PHIDIAS’s knowledge-based agents to alert team 
members to potential opportunities for collaboration (McCall et al. 1997) 
as well as Burge’s strategy in the SEURAT system (Burge and Brown 
2006). 

Another approach could use dependency relationships between 
decisions to alert team members to changes in decisions on which their 
own decisions depend. For the design decisions that implement certain 
requirements, this approach could be used to alert the designer when those 
requirements are modified in any way, or even when the rationale for those 
requirements is modified. This approach could also alert programmers who 
implement certain design features about any change in those features or in 
the rationale for those features. A variation of this approach might alert the 
designer to the addition of new requirements, and alert programmers to the 
addition of new features to the design of the system.  

18.6. Summary and Conclusions 

Rationale-Based Software Engineering has a great deal to offer software 
engineers to help them cope with emerging problems in software 
development. Realizing this potential will require improvements in the 
way rationale is captured and delivered to those who need it. However, the 
unique features of software development and the progress made in 
rationale research make it clear that substantial improvement in these areas 
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is achievable. In fact, because of the way in which software development 
differs from the development of other artifacts, software engineering is 
likely to succeed in using rationale management before any other field that 
seeks to design and construct artifacts.  
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Glossary 

abstraction 
A view of an object that focuses on the information relevant to a 

particular purpose and ignores the remainder of the information [IEEE Std 
610.12-1990] 
adaptability 

Adaptability concerns the ease of altering a system to meet the needs of 
a user [Randal and Buxton 1970] 
adaptive maintenance 

Changes made to the software during maintenance that do not change its 
functionality 
agile methods 

Software development methods that use iterative development to 
provide a more agile response to changing requirements 
analysis 

The phase in the software lifecycle that analyzes the system 
requirements in order to build a model describing the application domain  
analysis of design 

A process that provides a view of the design process that is not 
otherwise available 
Analytic Hierarchy Process (AHP) 

A decision-making technique where alternatives are evaluated by 
making a series of pairwise comparisons 
anthropomorphism 

Software analysis and design method that involves metaphorically 
thinking about software components as animate 
anti-model 

Vivid characterizations of features and outcomes that a problem solver 
or decision-makers definitely wants to avoid 
architectural description 

A collection of products to document an architecture [IEEE Std 1471-
2000] 
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architectural design 

The result of the process of defining a collection of hardware and 
software components and their interfaces to establish the framework for 
the development of a computer system [adapted from IEEE Std 610.12-

architectural framework  
Describes the elements of a concrete architecture in terms of 

components, connectors, and dependencies 
architectural style 

A family of architectures constrained by component/connector 
vocabulary, topology, and semantic constraints [adapted from Garlan and 
Shaw 1993] 
architectural tactic  

A transformation of an architecture to achieve particular quality 
attribute goals 
architecturally significant requirements (ASR)  

 Software requirements that have broad cross-functional implications 
such performance, usability, maintainability, and security. These include 
nonfunctional requirements (NFRs) and quality attributes 
architecture 

Architecture is the fundamental organization of a system embodied in its 
components, their relationships to each other, and to the environment, and 
the principles guiding its design and evolution [IEEE Std 1471-2000].  
Architecture is a description (model) of the basic arrangement and 
connectivity of parts of a system (either a physical or a conceptual object 
or entity) [ISO 15704 1999] 
architecture decision  

A high-level design decision that an architect or designer takes to satisfy 
the functional and nonfunctional requirements of a system 
architecture description 

A collection of products to document an architecture [IEEE Std 1471-
2000] 
artifact 

The result of any activity in the software lifecycle such as requirements, 
architecture model, design specifications, source code, and test scripts 
[http://w3.umh.ac.be/genlog/SE/SE-contents.html] 
assumption 

A proposition that is believed to be, but not known to be, true 
Attribute-based Architectural Styles (ABASs) 

Architectural styles associated with an attribute reasoning framework 
associated with a quality attribute 

1990] 
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awareness (in collaboration) 

Relevant knowledge about collaborators; for example, their identity, 
activity, goals and expectations, and focus of attention. Effective 
collaboration requires awareness 
bad smell 

Code structures that signal potential problems or poor designs that 
indicate the need for refactoring 
basic software 

basic functions, like an operating system, or perform elementary tasks such 
as a compiler [Chaudron et al. 2004] 
benchmark 

A benchmark is a set of tests used to compare the performance of 

black-box reuse 
A kind of reuse where a component is reused without changing anything 

within the component  
black-box testing 

Software testing that looks only at the inputs and expected outputs and 
is not aware of the internal contents of the code 
business case 

the decision to develop the system, together with an analysis of the 
development and operational cost of the system, and of the benefits of the 
system and the revenues it might generate [Chaudron et al. 2004] 
Capability Maturity Model (CMM) 

A process model developed by the Software Engineering Institute to 
assess the maturity of a software organization’s process by classifying it 
into one of five levels 
Capability Maturity Model Integration (CMMI) 

A replacement for the CMM that assesses the maturity level for 22 
process areas 
Computer-Aided Software Engineering (CASE) 

The use of software tools to assist in the development and maintenance 
of software 
classical decision model 

Decision model in which solution alternatives are exhaustively 
enumerated, analyzed, and contrastively evaluated  

[http://w3.umh.ac.be/genlog/SE/alternative tools, methods, or techniques 
SE-contents.html] 

Software that is used by the computer hardware to give the system its 

Description of the system in terms of the stakeholders that have to make 
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common ground 

The knowledge shared by interlocutors or collaborators. Effective 
collaboration requires periodic verification of common ground 
commonalities 

The set of features or properties of a component (or system) that are the 
same, or common, between systems [http://w3.umh.ac.be/genlog/SE/SE-
contents.html] 
community of practice 

Groups of actors that share values, norms, concepts, behavior scripts, 
and strategies pertaining to a domain of human endeavor 
compatibility 

The ability of two or more systems or components to perform their 
required function while sharing the same hardware or software 
environment [IEEE Std 610.12-1990] 
component 

A component is a self-contained piece of software with clearly defined 
interfaces and explicitly declared context dependencies [Stahl and Volter 
2006] 
Component-Based Software Engineering (CBSE) 

A software engineering approach that builds software systems from re-
usable software components  
conceptual framework (or frame of reference)  

Establishes terms and concepts pertaining to the content and use of a  
specific architectural descriptions 
confirmation bias 

Tendency of human decision-makers to seek and prize data that 
confirms their decisions over data that disconfirms their decisions 
consistency 

The degree of uniformity, standardization, and freedom from 
contradiction among the documents or parts of a system or component 
[IEEE Std 610.12-1990] 
consistency management 

The process of managing the consistency between the different software 
artifacts developed during the software development process  
coordination  

Self-management among collaborators to ensure that individual 
contributions can be synthesized into effective wholes 
corrective maintenance 

Software maintenance changes that are made in order to repair defects 
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correctness 

The ability of software products to perform their exact tasks, as defined 
by their specification [Meyer 1997] 
Commercial Off-the-Shelf (COTS) 

Software products that are purchased rather than custom made 
criterion-based evaluation 

A way of evaluating a decision alternative or artifact feature which 
consists of (1) the statement of a criterion, e.g. a goal, and (2) an 
assessment of the alternative or feature with respect to the stated criterion, 
these two elements in effect constituting a single argument for or against 
the alternative or feature 
decision-centric rationale approaches 

Rationale approaches that deal with the rationale for decision-making in 
artifact creation 
Decision Representation Language (DRL) 

Lee’s revision and extension of the Potts and Bruns approach to 
rationale. DRL’s schema corresponds roughly to a superset of QOC’s 
schema and has dependency relationships between elements. Like QOC, 
DRL uses a form of criterion-based evaluation 
defect 

A problem in a software artifact that causes it to be incorrect 
deliberate (verb) 

To consider what the answer to a question should be and, more 
specifically, to evaluate one or more proposed answers to a question 
design (noun) 

An artifact description that is detailed enough to be used to construct 
that artifact 
design pattern 

Names, abstracts, and identifies the key aspects of a common design 
structure that make it useful for creating a reusable object-oriented design 
[Gamma et al. 1995] 
design rationale (DR)  

 DR is the reasoning underlying the creation and use of artifacts 
design space decisions 

Decisions as to what features that an artifact will have 
Design Space Analysis 

Representation of a set of design space decision tasks together with their 
decision alternatives and the evaluations of these alternatives 
domain-oriented issue base (DOIB)  

PHI-based collections of issues, positions, arguments, and subissues that 
commonly arise in a particular design domain 
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detailed design 

 The result of the process of refining and expanding the preliminary 
design of a system or component to the extent that the design is 
sufficiently  complete to be implemented [IEEE Std 610.12-1990] 
domain 

An area of knowledge or activity characterized by a set of concepts and 

enhancive maintenance 
Software maintenance changes that are made to add additional features 

or otherwise improve a software system 
extensibility  

The ease of adapting software products to changes of specification 
[IEEE Std 610.12-1990] 
extreme programming (XP) 

A popular agile method that proposes taking software best practices “to 
the extreme” 
familiarity bias 

Tendency of human decision-makers to consider familiar data and 
interpretations as typical 
fixation 

Tendency of designers to make solution decisions before adequately 
understanding the full problem space, and then to disproportionate adduce 
confirmatory evidence to justify and maintain those decisions 
flexibility 

The case with which a system or component can be modified for use in 
application or environments other than those for which it was specifically 
designed [IEEE Std 610.12-1990] 
framework 
    A generic structure that can be adapted or extended via systematic 
extension or configuration [adapted from Stahl and Volter 2006] 
functional design 

The result of the process of defining the working relationships among 
the components of a system [IEEE Std 610.12-1990] 
functional requirement 

A requirement that describes functionality that the system must provide 
in order to be acceptable to the customer 
functionality 

The extent of services provided by a system [adapted from Mayer 1997] 
generality 

The degree to which a system or component performs a broad range of 
functions [IEEE Std 610.12-1990] 

terminology understood by practitioners in that area [Booch et al., 1990] 
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generative paradigm 

An alternative devised by Gruber and Russell to the “record and replay” 
paradigm used by almost all other approaches to rationale. Rather than 
recording rationale, the generative paradigm involves recreating it after the 
fact by deriving it from various data obtained automatically during design 
glass-box testing 

Software testing based on information about the structure of the code. 
Examples would be branch or path testing 
hypermedia (hypertext) 

Information structure consisting of nodes of content including link 
anchors to other nodes of content 
iconic models 

Graphical models in Euclidean space of artifacts that will occupy 
Euclidian space when constructed   
ility 

A quality attribute, or nonfunctional requirement. The name comes from 
the form of many requirements such as scalability, reusability, 
modifiability, etc. 
implementation 

The software lifecycle phase where the software (i.e., the source code) is 
written 
ill-structured problem 

Term used by Reitman and later by Simon to refer to open-ended 
problems, like software design, that cannot be uniquely decomposed into 

inconsistency 
A state in which two or more overlapping elements of different software 

models make assertions about aspects of the system they describe which 
are not jointly satisfiable [Spanoudakis and Zisman 2001] 
incremental delivery 

A software development process where the software is developed and 
delivered in increments rather than as one completed system at the end of 
development 
inspection 

A verification technique that involves reviewing the software artifacts to 
look for defects 
integrated rationale 

Rationale for a software system that is stored with or as part of the 
software that it describes and explains 

verifiable steps. See also “wicked problems” 
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integration testing 

Tests performed to ensure that the subsystems that comprise a software 
system work correctly together 
interaction 

interface 

types of the messages that are exchanged and the order in which this may 
occur [Chaudron et al. 2004] 
Issue-Based Information System (IBIS) 

A way of modeling argumentation; it was invented by Rittel in 1970. 
See also “wicked problems” 
Knowing-in-Action 

In Schön’s theory of Reflective Practice, the process of performing tasks 
in an intuitive, nonreflective manner that involves unselfconscious 
engagement in the task at hand 
Lehman’s laws 

Eight laws that describe how software systems evolve 
maintenance 

Software modifications made to systems after they have been delivered 
to the customer 
metaphor (in software design) 

A direct comparison of a software component to a physical object (desk 
top), a social institution (library), an animate entity (garbage collector), 
etc. to assist in comprehension and communication. See also 

metrics 
Measurements of software properties or processes used to evaluate the 

software and/or the process by which it was developed 
model 

data models that give a static view and process models that give a dynamic 
view [Chaudron et al. 2004] 
model (with concurrent multiple views of RBSE) 

Describes logical organization, dynamic behavior, software 
organization, process decomposition, and physical realization 
Model-Driven Architecture (MDA) 

In MDA, models are the central elements of the software development 
process. The main goal is to transform platform-specific models, possibly 
automatically, into platform-independent models [Kleppe et al. 2003] 

The mutual influence of two actors and/or components. Interaction is 
performed via an interface [Chaudron et al. 2004] 

For two components, or a component and an external actor, a model of  

“anthropomorphism” 

A formal representation of an aspect of a system. Typical examples are 
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model-driven development 

Software developed by first building a model of the system and then 
transforming it into the code 
multiscale visualization 

Visualizations with qualitatively/structurally distinct levels of zoom 
narrative 

An informal design rationale representation in which stories or scenarios 
describe how and why a design decision was reached, or how and why a 
user experienced a design system 
naturalistic decision-making 

Decision-making methodology that emphasizes identifying and 
leveraging the strengths of human decision-making, instead of merely 
remediating weaknesses and fallacies 
nonfunctional requirement (NFR) 

Software requirements that describe desirable properties of the software 
that do not map to specific functionality but instead apply to the system as 
a whole 
ontology 

A set of entities, their definitions, and the relationships between them 
Open-source software 

Software where the source code is freely available for use and 
modification 
open–closed principle 

A class that follows the open-closed principle is open to extension and 
closed to modification 
operational environment 

The environment in which the software is operating after delivery 
Pareto optimality 

A solution that cannot be improved further by one criteria without 
worsening in another 
pattern mining 

A process of extracting and documenting architecturally significant 
information from patterns to support the architecture design and evaluation 
process 
perfective maintenance 

Changes to improve a software system that are not in response to defects 
Personal Software Process (PSP) 

A methodology for improving individual software process by collecting 
and using metrics captured during software development on an individual 
basis 
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platform 

A set of subsystems and technologies that provide a coherent set of 
functionality through interfaces and specified usage patterns, which any 
application supported by that platform can use without concern for the 
details of how the functionality provided by the platform is implemented 
[Kleppe et al. 2003] 
portability 

The property of a system which permits it to be mapped from one 
environment to a different environment [Randal and Buxton 1970] 
post-specification traceability 

The ability to trace from a software requirement forward to the code that 
implements it and the tests that verify it has been implemented 
Potts–Bruns rationale approach 

A modification of IBIS for use in software design. The crucial 
innovation of their approach is to include in their schema elements that 
represented “intermediate artifacts,” i.e., the various models, documents, 
and prototypes produced during design to represent the software being 
designed 
pre-specification traceability 

The ability to trace from a software requirement backward to the 
customer request that it responds to 
preventative maintenance 

Changes to a software system to avoid anticipated future problems 
problem-based evaluation 

Informal design rationale approach in which a set of problem scenarios 
are used to evaluate a design proposal analytically 
Procedural Hierarchy of Issues (PHI) 

A refinement of IBIS whose main innovation is to show that frequently 
a decision on one issue depends on the decisions made on others. PHI 
models rationale as a quasihierarchical structure of issues linked by 
dependency relationships 
product line 

A collection of existing and potential products that address a coherent 
business area and share a set of similar characteristics. All these products 
are made by the same process and for the same purpose, and differ only in 
style, model or size [http://w3.umh.ac.be/genlog/SE/SE-contents.html] 
program comprehension 

The process of understanding the source code of a software system 
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quality assurance 

An approach to ensure that the software product, and the processes used 
to develop it, conform to the software specification and other required 
standards and procedures 
Questions, Options, and Criteria (QOC) 

A rationale approach resembling IBIS but not derived from it. Like 
IBIS, QOC centers on decision tasks that are represented as questions, but 
unlike IBIS, QOC deals only with “design space” questions, i.e. those that 
determine features of the designed artifact, rather than the wider range of 
questions dealt with by IBIS. QOC’s main innovation is the use of 
criterion-based evaluation in the first level of argumentation of decision 
alternatives (options) 
Rapid Application Development (RAD) 

A software development process that makes heavy use of Computer 
Aided Software Engineering (CASE) tools to build software systems 
quickly 
rationale approach 

A way of modeling and using rationale 
rationale database 

Structured repository of reusable rationales, accessible via type of 
system, application, scenario, issue, position, argument, etc. 
Rationale Based Software Engineering (RBSE) 
     Research on and use of rationale capture and delivery to support every 
aspect of software engineering.  
rationale capture problem 

The difficulty of capturing rationale in a structured form. This is 
considered by many to be the main impediment to widespread use of 
rationale approaches in artifact creation in general and software 
development in particular 

 

rationale management  
     The capture, representation, retrieval, and use of the reasoning behind 
decisions made during the system development process 
rationale management system 

Software tools developed to support rationale management 
RATSpeak 

Burge’s extension of DRL to make it more suitable for software 
engineering. RATSpeak introduces new types of elements into its schema 
and provides an argument ontology tailored to software engineering. These 
additions enable automated checking and inference making 
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recognition-primed decision model 

Expert decision model in which situations are rapidly classified and 
addressed as exemplars of known prototypes 
re-engineering 

Rewriting all or part of an existing software system to improve its 
quality. This typically refers to a legacy system currently in use that is no 
longer maintainable. 
refactoring 

Making modifications to code to correct “bad smells” and to prepare the 
code for future extension. Refactoring does not add or change functionality 
Reflection-in-Action 

In Schön’s theory of Reflective Practice, the process of explicitly 
reflecting on why an intuitive performance of a task broke down, i.e., led 
to unforeseen results 
Reflective Practice 

Schön’s theory that design and other practical problem solving activities 
consist of repeated alternation between two processes that he labeled 
Knowing-in-Action and Reflection-in-Action 
regression testing 

Repeating earlier tests on a previously tested product to ensure that new 
modifications have not introduced defects into existing code 
requirement 

A property that is demanded to be fulfilled by a software system 
[adapted from Chaudron et al. 2004] 
requirements elicitation 

Obtaining requirements from various system stakeholders by a variety 
of techniques including interviews, observation, and prototyping 
requirements engineering 

The process of eliciting and documenting software requirements to 
ensure completeness and consistency 
requirements traceability 

The ability to trace the impact of a requirement on the delivered system 
in order to ensure that all requirements have been satisfied 
reuse 

Using existing code when building a new system. This may or may not 
involve modifying that code 
reverse engineering 

Using the source code to create the specification and models that 
describe the system 
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satisficing 

Evaluation metric used in problem solving and decision-making in 
which the first acceptable solution is adopted. Contrasts with optimization 
Scenario Claims Analysis (SCA) 

Informal design rationale in which core user interactions afforded by a 
software system are described by scenarios and implicit design tradeoffs in 
the scenarios (claims) 
semantic inference 

Inferences that use the semantics of the items being analyzed. In the 
case of rationale, it means inferencing over the contents and not just the 
structure. 
Service-oriented development 

Systems are built around a Service Oriented Architecture (SOA) using 
loosely coupled distributed services that can be accessed transparently of 
their platform implementation 
situated cognition 

Approach to analyzing human thought that regards the actors and 
objects of social and material contexts as constitutive resources 
social capital 

A sense of generalized reciprocity within a social group 
social loafing 

The tendency of people to work less hard when working in the context 
of others doing the same work 
Software Engineering (SE) 

The development and maintenance of software by the systematic 
application of engineering techniques in the software domain [adapted 
from IEEE Std 610.12-1990] 
Software Engineering Institute (SEI) 

A federally funded (USA) software engineering research center that 
conducts software engineering research in a number of areas that include 
software architecture, software product lines, and software process 
improvement 
Software Engineering Rationale (SER) 

 SER emphasizes that rationale models are used during all activities of 
software development, including requirements engineering, architectural 
design, implementation, testing, and system deployment 
Software Process (SP) 

A related set of activities and processes that are involved in developing 
and evolving a software system [Sommerville 2007] 
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software process improvement 

Evaluating and modifying a software development process to achieve a 
higher level of repeatability, maturity, and performance 
solution-first bias 

Tendency of designers to rapidly frame a solution to a problem they do 
not yet fully understand 
Spiral model 

A software lifecycle model that utilizes iteration where each trip around 
the spiral involves determining objectives, assessing risk, developing the 
current phase of the product, and planning the next phase  
stakeholder 

Anyone who has interest in the success of the software project 
syntactic inference 

Inference over rationale that looks only at the structure of the 
argumentation and not at the contents 
system 

A generic term for a group of interrelated, interdependent or interacting 
elements serving a collective purpose [Chaudron et al. 2004] 
system architecture  

The fundamental organization of a system, embodied in its components, 
their relationships to each other and the environment, and the principles 
governing its design and evolution [IEEE Std 610.12-1990] 
system engineering 

The process of developing a system that must fulfill a certain purpose 
using the systematic application of engineering techniques, and of which 
software engineering is a part, provided the system has a software 
subsystem [Chaudron et al. 2004] 
team software process 

A methodology for working in teams that includes a framework for 
managing, tracking, and reporting on the team’s performance 
test case 

A software testing document that consists of the input for and expected 
result of running the test 
Test-driven development 

A software development methodology where unit tests are written first 
and then the code is written to pass the test 
traceability 

The degree to which a relationship can be established between two or 
more products of the development process [adapted from IEEE Std 
610.12-1990] 
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testing 

Executing a piece of software to look for defects 
traditional approach to rationale capture 

The approach in which rationale is structured according a given 
rationale schema as it is recorded 
Unified Modeling Language (UML) 

A standardized specification language for object modeling 
[http://www.omg.org/uml] 
Unified Process (UP) 

A software development framework utilizing incremental and iterative 
development. The Unified Process contains four phases: inception, 
elaboration, construction, and transition 
unit testing 

Testing the smallest testable pieces of source code 
usage-centric rationale approaches 

Rationale approaches that deal with rationale derived from the 
experiences of users as they use artifacts 
validation 

Ensuring that the software system conforms to its specification 
Value-based Software Engineering 

A theory of software development where the emphasis is on providing 
value to all the system stakeholders 
verification 

Ensures that the software system is fit for its intended use 
view 

A view is a representation of a whole system from the perspective of a 
related set of concerns [IEEE Std 1471-2000] 
viewpoint 

A viewpoint is a specification of the conventions for constructing and 
using a view.  Typical viewpoints are structure, behavior, functionality, 
security, distribution, performance, usability, usefulness, and reliability 
[IEEE Std 1471-2000] 
V-model 

A software development lifecycle model where each development stage 
is paired with the corresponding verification stage 
war-room (in design) 

A dedicated design workroom in which analyses and artifacts are pinned 
to the walls 
Waterfall model 

A sequential software development model where development flows 
from one stage to the next 
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white-box testing 

Software testing that is based on information about the structure of the 
code. Examples would be branch or path testing. 
wicked problems 

Rittel’s theory of problems of artifact creation as fundamentally open-
ended and potentially controversial. According to Rittel, such problems 
cannot be solved using a strictly scientific approach or purely automated 
methods. Instead, their solution requires methods that support creative 
human problem solving by means of an “argumentative approach.” 
Wicked problems theory was used to justify Rittel’s pioneering work on 
design rationale 
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