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Abstract. We investigate the following problem: Given a list of n items
and a function defined over lists of these items, generate a bounded
amount of auxiliary information such that range queries asking for the
value of the function on sub-lists can be answered within a certain time
bound.

For the function “mode” we improve the previously known time bound
O(nε log n) to O(nε) with space O(n2−2ε), where 0 ≤ ε < 1/2. We
improve the space bound O(n2 log log n/ log n) for an O(1) time bounded
solution to O(n2/ log n).

For the function “median” the space bound O(n2 log log n/ log n) is
improved to O(n2 log(k) n/ log n) for an O(1) time solution, where k is
an arbitrary constant and log(k) is the iterated logarithm.

1 Introduction

In this work we investigate the complexity of the following problem: Let A =
(a1, . . . , an) be a list of elements chosen from some set S and let f be a function
defined for lists over S. After possibly computing auxiliary information about A
in advance, a sequence of range queries asking for f(ap, . . . , aq) with varying p
and q has to be answered. We simultaneously bound the size of the additional
data stored by the preprocessing (the space) and the time for each query. The
computational model is a unit-cost RAM with Θ(log n) word length.

The obvious solution of storing answers for all sub-lists uses Θ(n2) space and
has constant time complexity. Our goal is to improve the space-time product to
sub-quadratic bounds.

The problem of range queries is particularly easy if S is a group with a constant
time computable operation and f(ap, . . . , aq) = ap · · · aq is the product of all
elements in the range. In this case all partial products mi = a1 · · · ai and their
inverses can be precomputed and stored in O(n) space. The computation of
f(ap, . . . , aq) = m−1

p−1mq is possible in constant time. Since the list A itself
requires space n these bounds are asymptotically optimal.

Among the operators of interest that do not admit the computation of inverses
are min and max where S is an ordered set. Nevertheless an optimal O(n) space

V. Geffert et al. (Eds.): SOFSEM 2008, LNCS 4910, pp. 418–423, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Improved Bounds for Range Mode and Range Median Queries 419

and O(1) query time solution has been given by Gabow, Bentley, and Tarjan
[GBT84], which is based on the solution of the nearest common ancestor problem
by Harel and Tarjan [HT84]. A simplified version is due to Bender and Farach-
Colton [BFC00, BFCP+05].

A median is an element of a sorted multi-set dividing the higher half from
the lower half. In comparison to the average (which usually is not a member
of the multi-set), the median often more accurately captures the concept of a
typical element. As an example of an area where median computations arise we
mention the definition of poverty: In the EU a person with an income below 60
% of the median in a country is considered to be at risk of poverty [SCFF05,
p. 125]. Another (not necessarily unique) parameter of a multi-set is the mode,
a value with maximum frequency.

The problem of computing the median and mode for ranges of lists has been in-
vestigated by Krizanc, Morin and Smid [KMS05]. For mode we improve their time
bound O(nε log n) with space O(n2−2ε) by a logarithmic factor and for the O(1)
time solution we improve the space bound O(n2 log log n/ log n) to O(n2/ logn).

For the function median we improve the previous space bound
O(n2 log log n/ logn) to O(n2 log(k) n/ logn) for the O(1) time solution, where
k ≥ 1 is an arbitrary constant and log(k) is the iterated logarithm.

Algorithms for approximate range mode and median queries are due to Bose,
Kranakis, Morin and Tang [BKMT05]. For computing an approximate range
mode they also present an Ω(n log n) lower bound on the time necessary for
preprocessing and answering the query, where the model is that of algebraic
decision trees. Notice that the algorithms of [KMS05] and the present work are
designed for random access machines.

The new bounds obtained and some previous results are summarized in the
following tables (for restrictions on ε see the references):

Range Mode
space time space × time ref.

O(n2−2ε) O(nε) O(n2−ε) Theorem 1
O(n2/ logn) O(1) O(n2/ logn) Theorem 2

Range Median
space time space × time ref.
O(n) O(nε) O(n1+ε) [KMS05]

O(n log2 n/ log log n) O(log n) O(n log3 n/ log log n) [KMS05]
O(n2 log(k) n/ logn) O(1) O(n2 log(k) n/ logn) Theorem 3

2 Results

We need the following observation from [KMS05]:

Lemma 1. Let A, B, C be multi-sets. If a mode of A ∪ B ∪ C is not a member
of A ∪ C, then it is a mode of B.
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In the following proofs we often use non-integer values when an integer is re-
quired. We assume that these values are appropriately rounded.

Theorem 1. For every 0 ≤ ε < 1/2 there is a data structure of size O(n2−2ε)
that can answer range mode queries in O(nε) time.

Proof. We first notice, that each element can be represented by an integer from
{1, . . . , n}, since a translation table can be stored within the space bound. We
will work only with these numbers and identify them with the original elements.

Let r = �ε/(1−2ε)�. Notice that r is a constant with ε ≤ r/(2r+1). We divide
the list into nested intervals, where each level � interval has length n(r+�)·ε/r for
0 ≤ � ≤ r. A level � interval thus contains nε/r level � − 1 intervals. For each
level r interval i we pre-compute a table fi of size n that stores the frequency of
each element in the prefix of the list up to and including interval i. Notice that
the frequency of element e in the range from interval j to k is fk[e]− fj−1[e] (f0
is always 0).

For each level � interval i with � > 0 we choose a constant time computable
hash function hi that is perfect for the elements occurring in the interval and
mapping into a set of size O(n(r+�)·ε/r) [FKS84]. We store each element e in a
table s at position hi(e). All entries of s that are not mapped to by hi are filled
with an arbitrary element from the interval. In addition we form a table t(g, j)
of size O(n(r+�+1)·ε/r) that stores for every hash value g and every level � − 1
interval j the frequency of the hashed element in the prefix of the list up to and
including that level � − 1 interval.

In addition a table of size O(n2−2ε) is set up that stores for each sorted pair of
(possibly identical) level 0 intervals the mode of the list between them (including
both intervals) and the frequency of each of these modes.

Finally a table c with n entries will be initialized with zeroes. While processing
a query this table will record the frequency of certain elements from the selected
range. After a query has been processed, the table will be reset to its initial state.
An easy way to do this without increasing the time complexity by more than a
constant factor is to record all modified entries in a linked list. After processing
the query all recorded entries are set to zero.

Suppose a range mode query for the list from position p to position q has to
be answered. If p and q are in the same level 0 interval, then in one scan for
every element e in the range c[e] is incremented. In a second scan of the interval
the element with the maximum count is selected.

In the following we assume that p and q are in different level 0 intervals. Let m
be the mode of the pair of (possibly identical) level 0 intervals properly between
p and q, or an arbitrary element of the range if p and q are in neighboring level 0
intervals. By Lemma 1 the mode of the sub-list from p to q is m or one of the O(nε)
elements in the prefix resp. suffix of the level 0 intervals containing p resp. q.

By the remarks in the introduction it is sufficient to compute the frequency
from the start of the list up to position p (resp. q − 1) for each element e which
could be the mode in constant time. The frequency can be computed as the
difference of the two values. We describe the frequency computation for position
p. Let � be the minimal level of intervals containing p and a position at which e
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occurs, or � = r+1 if no such interval exists. This � can be computed in constant
time by performing the test e = s(hi(e)) for each of the at most r + 1 intervals
involved. If � = r+1 the frequency up to the preceding level r interval i (which is
the result) can be looked up in fi. If r ≥ � > 0, then the value t(hi(e), j) for the
level � interval i and the level �− 1 interval j containing p is the result. If finally
� = 0, then an approximate frequency up to the preceding level 0 interval j can
be fetched from t(hi(e), j), where i is the level 1 interval containing j. All these
approximate frequencies are stored in table c. Also the frequency of m is stored
in c. Now in a second pass for each occurrence of an element e in the prefix of
the level 0 interval containing p entry c[e] is incremented. This can be done in
O(nε) steps, thus in constant time per element. In this way the frequency of
each element in a prefix is computed in time O(1). From the non-zero entries of
c the maximum frequency is selected and returned as the answer to the query.

Each level r interval is of length n2ε, therefore there are n1−2ε of them. Hence
the tables fi with n entries require space O(n2−2ε) in total. The space used
by each level is dominated by the tables t which are of size O(n1+ε/r). We
have 1 + ε/r ≤ 1 + 1/(2r + 1) = 2 − (2r/(2r + 1)) ≤ 2 − 2ε and therefore
O(n1+ε/r) = O(n2−2ε). The table of modes of pairs of level 0 intervals can be
stored in space O((n1−ε)2) = O(n2−2ε). ��

Theorem 2. There is a data structure of size O(n2/ logn) that can answer
range mode queries in O(1) time.

Proof. In order to simplify computations we assume that the n elements are
stored in A[0, . . . , n − 1]. For every interval of the list of the form A[i, j · log n]
for 0 ≤ i ≤ n − 1 and i ≤ j log n ≤ n − 1 its mode is stored in the array m at
position m[i, j]. For each of the log n−1 positions k = j ·log n+1, j ·log n+2, . . . ,
(j +1) · log n−1 the mode of A[i, k] is the mode of A[i, k −1] or element A[k] by
Lemma 1 (notice that one of the sets is empty). This information can be encoded
into a single bit and all log n − 1 bits thus determined can be encoded into a
number r[i, j] stored in an array r. A systematic way to do this is to store the
bit for k = j · log n+1 as the least significant bit and proceed to more significant
bit positions in r[i, j].

Arrays m and r clearly require space O(n2/ logn). The information stored can
be accessed with the help of an auxiliary array b. Entry b[v, �] selects for value
v the least significant � bits and returns the position of the most significant 1
among those bits, or 0 if all selected bits are 0. Array b is of size O(n log n). If the
mode of A[i, p] has to be determined, then first j = p div log n and � = p−j ·logn
are computed. If b[r[i, j], �] = 0 then m[i, j] is returned. Otherwise the result is
element A[j · log n + b[r[i, j], �]].

Since the number of array accesses is fixed the running time is O(1). ��

We define the iterated logarithm function by letting log(1) n = log n and log(k+1)

n = log log(k) n.

Theorem 3. There is a data structure of size O(n2 log(k) n/ logn) that can an-
swer range median queries in O(1) time for every integer k ≥ 1.
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Proof. For k = 1 the statement holds, since the trivial solution of storing answers
to all possible queries suffices. In the following we assume that k ≥ 2.

We construct k levels of data structures. The level 1 structure contains for
every pair of blocks of length b1 = log n of the list the at most 4b1 elements that
can possibly be a median for pairs of indices within the blocks (each element
in the blocks can be a median, and the 2b1 elements in the center of the sorted
sequence of blocks properly in between, if any). The level 1 structure requires
space O(n2/ logn).

Suppose level �−1 has been constructed for 2 ≤ � ≤ k−1. Then level � contains
for every pair of blocks B�

i and B�
j of length b� = log(�) n pointers to the at most

4b� elements that can be a median for every pair of indices within the blocks.
These pointers are relative to the start of the data of the pair of level �−1 blocks
B�−1

i′ and B�−1
j′ containing B�

i and B�
j . Therefore O(log(�) n) bits per pointer are

sufficient, leading again to a space complexity of O(n2/ logn).
The construction for level k stores a pointer to the level k − 1 structure of

length O(log(k) n) for every pair of indices, thus the level k structure requires
space O(n2 log(k) n/ log n).

In order to meet the space bounds, the pointers have to be packed as fields into
numbers of O(log n) bits each. Accessing a field requires shift and bit-mask oper-
ations which can be implemented efficiently with the help of tables as explained
below (if these operations are assumed not to be included into the instruction
set of a RAM).

A query is answered by following pointers starting from level k. If the median
of (ap, . . . , aq) has to be computed, the algorithm first fetches log(k) n + 2 bits
from a three-dimensional array mk with n × (n div log n)× (log(k) n + 2) entries.
It reads mk[p, (q div log n), ((q mod log n) · (log(k) n + 2)) div log n] and extracts
log(k) n + 2 bits starting at position ((q mod log n) · (log(k) n + 2)) mod log n.
Here we start counting at the least significant position and allow for at most
log n + log(k) n + 1 bits per stored word in order to have only one access to mk.
The bits are shifted to the least significant positions, which can be accomplished
with the help of a table of size O(n log(k−1) n logn), since the number of bits
stored is O(log n). Then the lower log(k) n+2 bits are selected with the help of a
table of size O(n log(k−1) n). Now the algorithm has computed a pointer i with
0 ≤ i < 4 log(k−1) n. Suppose a pointer i into the data structure for level � < k
has been determined. If � ≥ 2 then the algorithm computes p′ = p div log(�) n,
q′ = q div log(�) n, reads m�[p′, (q′ div log n), ((q′ mod log n) · (log(�) n + 2)2 + i ·
(log(�) n+2)) div log n] and extracts log(�) n+2 bits starting at position ((q′ mod
log n) · (log(�) n + 2)2 + i · (log(�) n + 2)) mod log n. Here the tables have sizes at
most O(n log2 n) and O(n log n), which is within the claimed space bound. For
level � = 1 the access is to m1[(p div log n), (q div log n), i], where the index of an
element is stored directly.

Since the number of levels is fixed and every level requires a constant number
of operations or memory accesses, we get time complexity O(1). ��
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Remark 1. By the method from the proof of Theorem 3 we can also obtain the
space bound O(n2 log∗ n/ logn) with time bound O(log∗ n).

3 Summary

We have improved previous bounds for range mode and range median queries
on lists. No non-trivial lower bounds for these problems are known on the RAM.
Thus it is not clear how far these solutions are from being optimal and algorith-
mic improvements as well as lower bounds are problems left open.

Acknowledgments. The author is grateful to Benjamin Hoffmann, Jürn Laun,
and the referees for useful comments.
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