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Abstract. We propose a new way of characterizing the complexity of
online problems. Instead of measuring the degradation of output quality
caused by the ignorance of the future we choose to quantify the amount of
additional global information needed for an online algorithm to solve the
problem optimally. In our model, the algorithm cooperates with an oracle
that can see the whole input. We define the advice complexity of the
problem to be the minimal number of bits (normalized per input request,
and minimized over all algorithm-oracle pairs) communicated between
the algorithm and the oracle in order to solve the problem optimally.
Hence, the advice complexity measures the amount of problem-relevant
information contained in the input.

We introduce two modes of communication between the algorithm and
the oracle based on whether the oracle offers an advice spontaneously
(helper) or on request (answerer). We analyze the Paging and DiffServ
problems in terms of advice complexity and deliver tight bounds in both
communication modes.

1 Introduction

The term “online” is used to describe algorithms that operate without the full
knowledge of the input: a typical scenario would be a server that must continually
process a sequence of requests in the order they arrive. More formally, an online
algorithm processing an input sequence of requests x = 〈x1, x2, . . . , xn〉 produces
an output sequence y = 〈y1, y2, . . . , yn〉 in such a way that each yi is computed
as a function of the prefix 〈x1, x2, . . . , xi〉. On the other hand, an algorithm
computing the whole output sequence y from the entire input sequence x is
termed “offline”. The systematic study of online problems began in the late
sixties [12], and has received much attention over the years (see e.g. [1], [4]).
The standard measure used for evaluating online algorithms is the competitive
ratio [16], [20], i.e. the worst case ratio between the solution quality of the given
online algorithm and that of the optimal offline algorithm. The competitive
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complexity of an online problem is the best competitive ratio attainable by an
online algorithm solving the problem. Intuitively, this measure describes the
price, in terms of solution quality, that has to be paid for not knowing the whole
input from the beginning.

In this paper we propose a new way of characterizing the complexity of online
problems. The hardness incurred by the online setting comes from the fact that
there is some information about the future input that is not available to the
algorithm. In our approach we measure the amount of this hidden information.
However, the input contains also information that is irrelevant to the problem at
hand, and we have to find a way of distilling the problem-relevant information
from the input.

Our approach to measure the relevant information is inspired by the commu-
nication complexity research. We consider, in addition to the algorithm itself,
an oracle that sees the whole input and knows the algorithm. When computing
the i-th output yi, the algorithm not only sees the sequence 〈x1, x2, . . . , xi〉, but
can also communicate with the oracle. We require that the algorithm always
computes an optimal solution. The advice complexity of the algorithm is the
number of bits communicated between the algorithm and the oracle, normalized
per request. The advice complexity of an online problem is the minimum advice
complexity over all oracle–algorithm pairs that together solve the problem.

Apart from its theoretical significance, this measure can be of use in some
semi-online scenarios where the input is available, but has to be accessed sequen-
tially by the algorithm. As a motivation example, consider the scenario where
a simple device (e.g. a remote robot) is supposed to process a large amount
of data (e.g. a series of orders) in an online fashion. The data are stored and
sequentially fed to the device from a powerful entity (base station) over a (wire-
less) communication link. In order to guide the robot in the processing, the base
station may pre-process the data and send some additional information together
with each data item. However, since communication rapidly depletes the robots
battery, the amount of this additional communication should be kept as small
as possible.

We are primarily interested in the relationship between the competitive ratio
and the advice complexity. If the competitive ratio measures the price paid for
the lack of information about future, the advice complexity quantifies for how
much information is this price paid.

Note that there are two ways to achieve trivial upper bounds on advice com-
plexity: (1) the oracle can send, in some compressed way, the whole input to the
algorithm, which then can proceed as an optimal offline algorithm, and (2) the
oracle can tell the algorithm exactly what to do in each step. However, both these
approaches can be far from optimum. In the first case all information about the
future input is communicated, although it may not be relevant1. In the second
case, the power of the online algorithm is completely ignored. Indeed, an online

1 Consider, e.g. the Paging problem. There may be a long incompressible sequence of
requests that do not result in a page fault; the information about the actual requests
in this sequence is useless for the algorithm.
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algorithm may be able to process large parts of the input optimally without any
advice, requiring only occasional help from the oracle.

In the paper, we define two modes of interaction with the oracle. In the helper
mode, the algorithm itself cannot activate the oracle; instead, the oracle oversees
the progress of the algorithm, and occasionally sends some pieces of advice. In
the answerer mode the oracle remains passive, and the algorithm may, in any
particular step, ask for advice.

To model the impact of the timing of the communication, let the algorithm
work in a synchronous setting: in the i-th step, it receives the i-th input request
xi, and possibly some advice ai, based on which it produces the output yi. In
a manner usual in the synchronous distributed algorithms (see e.g. [22] and ref-
erences therein) we count the number of bits communicated between the oracle
and the algorithm, relying upon the timing mechanism for delimiting both in-
put and advice sequences 2. We show that these two modes are different, but
are related by BH(P) ≤ BA(P) ≤ 0.92 + BH(P) where BH(P) is the advice
complexity of a problem P in the helper mode, BA(P) is the complexity in the
answerer mode. Moreover, we analyze two well studied online problems from the
point of view of advice complexity, obtaining the results shown in Figure 1. Due
to space constraints some of the proofs have been omitted and can be found in
the technical report [7].

competitive ratio helper answerer

Paging K [24] (0.1775, 0.2056) (0.4591, 0.5 + ε)

DiffServ ≈ 1.281[8] 1
K

( log K
2K

, log K
K

)

Fig. 1. Communication complexities of some online problems compared with compet-
itive ratio (asymptotics for large K)

To conclude this section we note that there has been a significant amount of
research devoted to developing alternative complexity measures for online prob-
lems. The competitive ratio has been criticized for not being able to distinguish
algorithms with quite different behavior on practical instances, and giving too
pessimistic bounds [13]. Hence, several modifications of competitive ratio have
been proposed, either tailored to some particular problems (e.g. loose compet-
itiveness [26]), or usable in a more general setting. Among the more general
models, many forms of resource augmentation have been studied (e.g. [15],[21]).
The common idea of these approaches is to counterbalance the lack of informa-
tion about the input by granting more resources to the online algorithm (e.g.
by comparing the optimal offline algorithm to an online algorithm that works
k-times faster). Another approach was to use a look-ahead where the online algo-
rithm is allowed to see some limited number of future requests [3],[15],[25]. The
2 Alternatively, we might require that both the input requests, and the oracle advices

come in a self-delimited form. This would alter our upper bounds by a factor of at
most 4, as discussed in the appendix.
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main problem with the look-ahead approach is that a look-ahead of constant
size generally does not improve the worst case performance measured by the
competitive ratio. Yet another approach is based on not comparing the online
algorithms to offline ones, but to other online algorithms instead (e.g. Max/Max
ratio [3], relative worst-order ratio [6]; see also [9]). Still another approach is
to limit the power of the adversary as e.g. in the access graph model [5,14],
statistical adversary model [23], diffuse adversary model [18], etc.

Finally, a somewhat similar approach of measuring the complexity of a prob-
lem by the amount of additional information needed to solve it has been recently
pursued in a different setting by Fraigniaud, Gavoille, Ilcinkas, and Pelc [10,11].

2 Definitions and Preliminaries

An online algorithm receives the input incrementally, one piece at a time. In
response to each input portion, the algorithm has to produce output, not knowing
the future input. Formally, an online algorithm is modeled by a request-answer
game [4]:

Definition 1. Consider an input sequence x = 〈x1, x2, . . . , xn〉. An online algo-
rithm A computes the output sequence y = A(x) = 〈y1, y2, . . . , yn〉, where yi =
f(x1, . . . , xi). The cost of the solution is given by a function CA(x) = COST (y).

In the competitive analysis, the online algorithm A is compared with an optimal
offline algorithm OPT , which knows the whole input in advance (i.e. y = f(x))
and can process it optimally. The standard measure of an algorithm A is the
competitive ratio:

Definition 2. An online algorithm is c-competitive, if for each input sequence
x, CA(x) ≤ c · COPT (x)

Let us suppose that the algorithm A is equipped with an oracle O, which knows
A, can see the whole input, and can communicate with A. We shall study pairs
(A, O) such that the algorithm (with the help of the oracle) solves the problem
optimally. We are interested in the minimal amount of communication between
A and O, needed to achieve the optimality.

We distinguish two modes of communication: the helper mode, and the answerer
mode. In the helper mode, the oracle (helper) sends in each step i a binary advice
string ai (possibly empty), thus incurring a communication cost of |ai|. A can use
this advice, together with the input x1, . . . , xi to produce the output yi.

Definition 3 (Online algorithm with a helper). Consider an online algo-
rithm A, an input sequence x = 〈x1, x2, . . . , xn〉, and a helper sequence O(x) =
〈a1, a2, . . . , an〉 of binary strings ai. The online algorithm with helper (A, O)
computes the output sequence y=〈y1, y2, . . . , yn〉, where yi =f(x1, . . . , xi, a1, . . . ,
ai). The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit) com-
plexity is BH

(A,O)(x) =
∑n

i=1 |ai|
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In the answerer mode, on the other hand, the oracle is allowed to send an advice
only when asked by the algorithm. However, this advice must be a non-empty
string. For the ease of presentation we define the answerer oracle as a sequence
of non-empty strings. However, only those strings requested by the algorithm
are ever considered.

Definition 4 (Online algorithm with an answerer). Consider an algorithm
A, an input sequence x = 〈x1, x2, . . . , xn〉, and an answerer sequence O(x) =
〈a1, a2, . . . , an〉 of non-empty binary strings ai. The online algorithm with an-
swerer (A, O) computes the output sequence y = 〈y1, y2, . . . , yn〉 as follows:

1. in each step i, a query ri ∈ {0, 1} is generated first as a function of previous
inputs and advices, i.e. ri = fr(x1, . . . , xi, r1 � a1, . . . , ri−1 � ai−1)3

2. then, the output is computed as yi = f(x1, . . . , xi, r1 � a1, . . . , ri � ai)
The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit)
complexity is BA

(A,O)(x) =
∑n

i=1 |ri � ai|

As already mentioned, we are interested in the minimal amount of information
the algorithm must get from the oracle, in order to be optimal. For an algorithm
A with an oracle (helper or answerer) O, the communication cost is the worst
case bit complexity, amortized per one step:

Definition 5. Consider an online algorithm A with an oracle O using commu-
nication mode M ∈ {H, A}4. The bit complexity of the algorithm is

BM
(A,O) = lim sup

n�→∞
max
|x|=n

BM
(A,O)(x)

n

The advice complexity of an online problem P is the minimum bit complexity
of an optimal pair (A, O):

Definition 6. Consider a problem P. The advice complexity of P in commu-
nication mode M ∈ {H, A} is BM (P) = min(A,O) BM

(A,O) where the minimum is
taken over all (A, O) such that ∀x : C(A,O)(x) = COPT (x)

We start analyzing the advice complexity with an immediate observation that
the answerer model is more restrictive in the following sense:

Claim 1. For each problem P, BH(P) ≤ BA(P) ≤ 0.92 + BH(P).

In the lower bound arguments, we shall use the notion of a communication pat-
tern. Informally, a communication pattern is the entire information that the
algorithm receives from the oracle. Since the algorithms are deterministic, the
number of different communication patterns gives the number of different be-
haviors of the algorithm on a given input.

3 The function “�” is defined c � α =
{

empty string if c = 0
α otherwise .

4 In the description of communication modes, H stands for helper and A for answerer.
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Definition 7 (Communication pattern – helper). Consider an algorithm
with helper. The communication pattern is defined as the sequence of advices
given at each particular step, i.e. 〈a1, . . . , an〉, where ai is a, possibly empty,
binary string.

Obviously, the input and communication pattern completely determine the be-
havior of the algorithm.

Lemma 1. Consider an algorithm with helper, and let the input sequence be
of length n + 1. For a fixed s, consider only communication patterns in which
the helper sends in total at most s bits over all n + 1 advices. The number
X of distinct communication patterns with this property is at most log X ≤
s
(
log(1 + α) + 1 + 1

ln 2

)
+ 1

2

[
log

(
1 + 1

α

)
+ log s

]
+ c where α = n

s > 1, and c is
some constant.

The situation in the answerer mode is slightly more complicated due to the fact
that answers are delivered only when requested.

Definition 8 (Communication pattern – answerer). For each execution of
an algorithm with q queries to the answerer, the communication pattern is the
sequence 〈ai1 , . . . , aiq〉 of non-empty answers, where ij is the step in which the
j’th question was asked.

The behavior of the algorithm is clearly completely determined by the input,
the communication pattern and a mapping that assigns for each aij the step
j in which the answer was delivered. However, this mapping bears no relevant
information: for a given input and communication pattern, the algorithm always
receives identical answers, and hence it also asks identical questions. Hence, the
behavior of an algorithm with answerer is completely determined by its input
and communication pattern.

Lemma 2. Consider an algorithm with answerer. For a fixed q, and s ≥ q,
consider only communication patterns, in which the algorithm ask q questions,
and s is the total number of bits in all answers. Then there are X = 1

3

(
22s+1 + 1

)

different communication patterns with this property5.

In the rest of the paper we assume that the algorithm knows the length of the
input. Indeed, it is always possible to alter the oracle in such a way that it sends
the length of the input6 in the first step. Since there are O(log n) additional
bits sent, the normalized contribution to one request is O(log n/n) which is
asymptotically zero.

3 Paging

Paging and its many variants belong to the classical online problems. The virtual
memory of a computer is divided into logical pages. At any time K logical pages
5 Note that the formula does not depend on q.
6 In self-delimited form to distinguish it from the possible advice.
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can reside in the physical memory. A paging algorithm is the part of the operating
system responsible for maintaining the physical memory. If a program requests
access to a logical page that is not currently in the physical memory, a page fault
interrupt occurs and the paging algorithm has to transfer the requested page
into physical memory, possibly replacing another one. Formally, we define the
paging problem as follows:

Definition 9 (Paging Problem). The input is a sequence of integers (logical
pages) x = 〈x1, x2, . . . , xn〉, xi > 0. The algorithm maintains a buffer (physical
memory) B = {b1, . . . , bK} of K integers. Upon receiving an input xi, if xi ∈ B,
yi = 0. If xi �∈ B a page fault is generated, and the algorithm has to find some
victim bj, i.e. B := B \ {bj} ∪ {xi}, and yi = bj. The cost of the solution is the
number of faults, i.e. COST (y) = |{yi : yi > 0}|.

It is a well known fact [24] that there is a K-competitive paging algorithm,
and that K is the best attainable competitive ratio by any deterministic online
algorithm. The optimal offline algorithm is due to [2]. Let us consider the advice
complexity of this problem for both helper and answerer modes. We prove that
for the helper mode the complexity is between 0.1775 and 0.2056, and for the
answerer mode the complexity is between 0.4591 and 0.5 + ε bits per request.
Let us first analyze the helper mode. We start with a simple algorithm that uses
one bit per request:

Lemma 3. Consider the Paging problem. There is an algorithm A with a
helper O, such that O sends an advice of exactly one bit each step.

Proof. Consider an input sequence x, and an optimal offline algorithm OPT
processing it. In each step of OPT , call a page currently in the buffer active,
if it will be requested again, before OPT replaces it by some other page. We
design A such that in each step i, the set of OPT ’s active pages will be in B,
and A will maintain with each page an active flag identifying this subset. If A
gets an input xi that causes a page fault, some passive page is replaced by xi.
Moreover, A gets with each input also one bit from the helper telling whether
xi is active for OPT . Since the set of active pages is the same for OPT and A,
it is immediate that A generates the same sequence of page faults. 
�

Now we are going to further reduce the advice complexity. The algorithm will
still receive the required one bit for every input, however, it is possible to encode
the bits in a more efficient way using larger strings as advice:

Lemma 4. For r large enough, the helper can communicate a binary string of
length αr using r bits over a period of αr steps, where α ≈ 4.863876183.

Theorem 1. BH(Paging(K)) ≤ 1
α , where α ≈ 4.863876183.

On the lower bound side, we can prove the following:

Theorem 2. For every fixed K, there is a constant αK < 20.742 such that
BH(Paging(2K)) ≥ 1

αK
. Moreover, αK is a decreasing function in K and

limK �→∞ αK ≈ 5.632423693
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Sketch of the proof. We shall consider a particular subset of input sequences
x = {xk}K(2+3i)

k=1 for some i. Each input sequence consists of the sequence S0 =
〈1, 2, . . . , 2K〉 followed by i frames, each of length 3K, where the jth frame has
the form Dj · 〈dj〉 · Sj . The first part of each frame, Dj is of length K − 1 and
contains unused pages that generate page faults, the next request dj is again
an unused page. The last part, Sj is a sequence of length 2K consisting of any
subsequence of Sj−1 · Dj of length 2K − 1, followed by dj .

1
D D

21
d

2
dS

1
S

2
S

0

1 2 3 4 5 6 7 8 9 2 3 5 6 7 9 3 6 710 11 12 10 129

Fig. 2. An example of first two frames for K = 3, i.e. with buffer of size 6. The arrows
indicate which pages are replaced during faults.

It is easy to see that no optimal algorithm can generate a page fault in Sj ,
which means that at the beginning of Sj , the content of the buffer of any optimal
algorithm is uniquely determined.

Since any optimal algorithm needs a different communication pattern for each

input, a simple calculation shows that there must be at least Y =
[

2
3

(3K
K

)]i

different communication patterns. However, using Lemma 1, we get that there
are at most X different communication patterns of length n + 1 using at most s
bits. Comparing these two numbers concludes after some calculations the proof.


�
Let us proceed now with the analysis of the answerer mode. First, we give an
upper bound by refining Lemma 3:

Theorem 3. For each ε > 0, BA(Paging(K)) ≤ 1
2 + ε

To conclude this section, the same technique as used in Theorem 2 can be em-
ployed to deliver the corresponding lower bound:

Theorem 4. BA(Paging(2K)) ≥ 0.4591 − O
(

log K
K

)

4 Diff-Serv

DiffServ is another problem widely studied using competitive analysis (see
[8],[19] and references therein). The setting involves a server processing an in-
coming stream of packets of various values. If the processing speed of the server is
slower than the arrival rate, some packets must be dropped, ideally those least
valuable. For our purposes, following [19], the packets arrive in discrete time
steps. In each step a number of packets can arrive, one packet can be processed,
and at most K packets can be stored in a buffer. Moreover, it is required that
the packets are processed in FIFO manner. The formal definition is as follows:
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Definition 10 (Diff-Serv problem). Consider a sequence of items 〈p1, . . . ,
pm〉, partitioned into a series of subsequences, called requests. The input is the
sequence of requests x = 〈x1, . . . , xn〉, where each xi = 〈pji−1+1, . . . , pji〉 is a
(possibly empty) request. Each item pi has a value v(pi). In each step i, the algo-
rithm maintains an ordered buffer Bi = 〈b1, . . . , bK〉 of K items. Upon receiving
a request sequence xi, the algorithm discards some elements from the sequence
Bi ·xi, keeping some subsequence B′

i 
 Bi ·xi of length at most K +1. The first
item (if B′

i is nonempty) of B′
i is submitted, and the remainder of the sequence

forms the new buffer, i.e. B′
i = yi · Bi+1. The process ends if there are no more

requests7 and the buffer is empty.
The cost of the solution is the sum of the values of all submitted elements, i.e.

COST (y) =
∑

i>0 v(yi).

For the remainder of this section we shall consider only the case of two distinct
item values; we shall refer to them as heavy and light items. Without loss of
generality we may assume that each request contains at most K +1 heavy items.
Lotker and Patt-Shamir [19] presented an optimal greedy offline algorithm. We
first present another optimal offline algorithm, and then show how to transform
it to an online algorithm with a helper.

Let us start with a simple greedy algorithm that never discards more items
than necessary (Algorithm 1 without line 4). This algorithm is not optimal in
situations where it is favorable to discard leading light items even if the buffer
would not be filled8. These situations, however, can easily be recognized:

Definition 11. Consider a buffer B at time t0 and the remainder {xt0+i}n
i=1

of the input sequence. Let a0 be the number of heavy elements in B (before xt0+1
has arrived), and ai ≤ K + 1 be the number of heavy elements in xt0+i. The
remainder of sequence x is called critical (w.r.t. B), if there exists t > 0 such
that

∑t
i=0 ai ≥ K + t, and for each t′ such that 0 < t′ ≤ t it holds

∑t′

i=0 ai ≥ t′.

Informally, an input sequecne is critical w.r.t. an initial buffer if the buffer grad-
ually fills with heavy items even if the algorithm submits a heavy item in each
step. Our algorithm processes requests sequentially. Each request is processed as
shown in Algorithm 1, and it can be proven that this algorithm is optimal.

Now we turn this offline algorithm into an online algorithm with helper. We
are going to simulate Algorithm 1 with an algorithm and a helper. The only place
where the algorithm needs information about the future is on line 4, where the
algorithm tests the criticality of the input. Clearly, one bit per request (indicating
whether the input is critical or not) is sufficient to achieve optimality. However,

7 In this case some number of virtual empty requests is added until the buffer is
emptied.

8 Consider a situation with a buffer of size 3 containing one light and two heavy items.
If there are no more requests, the best solution is to submit all three of them in the
next three steps. However, if there is another request coming, containing two heavy
items, the best solution is to discard the light one and submit heavy items in the
next four steps.
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Algorithm 1. Processing of a request xi with a buffer B

1: B′ ← B · xi

2: starting from left, discard light items from B′ until |B′| = K + 1 or there are no
light items left.

3: if |B′| > K + 1 then discard last |B′| − K − 1 (heavy) items
4: if the remainder of the input sequence is critical and there are some heavy items

in B′ then discard leading light items from B′

5: submit the first item of B′ (if exists)
6: B ← remainder of B′

we show that situation in which a bit must be sent can occur at most once in
every K + 1 steps.

Theorem 5. BH(DiffServ(K)) ≤ 1
K+1

Using a technique similar to the proof of Theorem 2, we can show the following:

Theorem 6. For K ≥ 4 it holds BH(DiffServ(K)) ≥ 1
γK ·K , where γK ≤ 6.13

and limK �→∞ γK = 1

In a similar fashion, the following results can be shown for the answerer mode:

Theorem 7. BA(DiffServ(K)) ≤ 1+log(K+1)
K+1

Theorem 8. For each fixed K ≥ 4 there exists a γK ≤ 3.822 such that
BA(DiffServ(K)) ≥ log(K+2)

γK(K+2) Moreover limK �→∞ γK = 2.

5 Conclusion

We have proposed a new way to evaluate online problems, based on the commu-
nication complexity. While the competitive analysis is an algorithmic measure
evaluating the output quality degradation incurred by the requirements to pro-
duce the output online, our measure is a structural one quantifying the amount
of additional information about the input needed to produce optimal output in
an online fashion. The study of the relation between those two measures can
lead to a deeper understanding of the nature of online problems. We have shown
that there are problems like Paging and DiffServ where the advice complex-
ity (in the helper mode) is proportional to the competitive ratio. On the other
hand, there are problems with simple structure like SkiRental [17], which has
competitive ratio 2 − ε, but a single bit of information is sufficient to solve the
problem optimally (i.e. it has zero advice complexity).

Studying advice complexity of a problem can lead to exposure of the criti-
cal decisions to be made (like in Algorithm 1 for DiffServ) and subsequently
to better understanding of the problem and possibly more efficient algorithms.
Moreover, we expect that in certain situations involving cooperating devices of
uneven computational power communicating over a costly medium (as e.g. in
sensor networks), the advice complexity might be of practical interest.
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The proposed topic presents a number of intriguing open questions. Is it, for
example, possible to characterize a class of problems where the competitive ratio
is proportional to the advice complexity? Another whole research area is to study
the tradeoff between the amount of communicated information and the achieved
competitive ratio.

There is also a number of variations of the model that could be investigated.
One potential modification would be to limit the size of advice given in one step.
In our model this size is unbounded, and this fact is heavily relied upon (sending
the length of the input in one step). However, for modelling potentially infinite
inputs it would be more appealing to limit the size of advice to be independent
of the input size.
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